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Abstract. In this paper, we study the numbers Dn,k which are defined as the number of permu-
tations σ of the symmetric group Sn such that σ has no cycles of length j for j ≤ k. In the case
k = 1, Dn,1 is simply the number of derangements of an n-element set. As such, we shall call
the numbers Dn,k generalized derangement numbers. Garsia and Remmel [4] defined some nat-
ural q-analogues of Dn,1, denoted by Dn,1(q), which give rise to natural q-analogues of the two
classical recursions of the number of derangements. The method of Garsia and Remmel can be
easily extended to give natural p, q-analogues Dn,1(p, q) which satisfy natural p, q-analogues
of the two classical recursions for the number of derangements. In [4], Garsia and Remmel also
suggested an approach to define q-analogues of the numbers Dn,k . In this paper, we show that
their ideas can be extended to give a p, q-analogue of the generalized derangements numbers.
Again there are two classical recursions for generalized derangement numbers. However, the
p, q-analogues of the two classical recursions are not as straightforward when k ≥ 2.

Keywords: permutations, derangements, p, q-analogues

1. Introduction

In this paper, we study the numbers Dn,k which are defined as the number of permu-
tations σ of the symmetric group Sn such that σ has no cycles of length j for j ≤ k.
In the case k = 1, Dn,1 is simply the number of derangements of an n-element set. As
such, we shall call the numbers Dn,k generalized derangement numbers. There are
two classical recursions for the number of derangements. In particular, it is easy to
see that D1,1 = 0 and D2,1 = 1, so that for n ≥ 2,

Dn+1,1 = nDn,1 + nDn−1,1, (1.1)
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and for n ≥ 1,
Dn+1,1 = (n + 1)Dn,1 +(−1)n+1. (1.2)

Garsia and Remmel [4] defined a natural q-analogue of Dn,1, denoted by Dn,1(q),
which satisfy two natural q-analogues of (1.1) and (1.2). That is, let Dn,k denote
the set of permutations σ ∈ Sn such that σ has no cycles of length j for j ≤ k.
Then given a σ ∈ Dn,1, Garsia and Remmel arranged the cycles of σ so that the
second smallest element in each cycle is on the right and the cycles are ordered
from left to right by increasing second smallest elements. We shall refer to such
an arrangement of cycles of σ ∈ Dn,1 as the 1-standard order of σ. For example,
σ = (3, 1, 11, 2)(10, 4, 5)(9, 8, 12, 6, 13, 7) is in 1-standard order. Having written σ
in 1-standard order, Garsia and Remmel then set σ to be the permutation in one line
notation that results from the 1-standard order of σ by erasing the parentheses and
commas. Thus in our case, σ = 3 1 11 2 10 4 5 9 8 12 6 13 7.

Garsia and Remmel defined their q-analogue of the derangement numbers by set-
ting

Dn,1(q) = ∑
σ∈Dn,1

qinv(σ), (1.3)

where for any σ = σ1 · · ·σn ∈ Sn, inv(σ) =
∣∣{1 ≤ i < j ≤ n | σi > σ j

}∣∣ denotes the
number of inversions of σ. With D1,1(q) = 0 and D2,1(q) = 1 following immediately
from this definition, Garsia and Remmel then proved the following q-analogues of
(1.1) and (1.2):

Dn+1,1(q) = q[n]qDn,1(q)+ [n]qDn−1,1(q), for n ≥ 2 (1.4)

and
Dn+1,1(q) = [n + 1]qDn,1(q)+ (−1)n+1, for n ≥ 1, (1.5)

where [n]q = 1 + q + · · ·+ qn−1 = 1−qn

1−q is the usual q-analogue of n.
In the same paper, Garsia and Remmel defined a second q-analogue of the de-

rangement numbers by setting

Dn,1(q) = ∑
σ∈Dn,1

qcoinv(σ), (1.6)

where for σ = σ1 · · ·σn ∈ Sn, coinv(σ) equals the number of pairs 1 ≤ i < j ≤ n such
that σi < σ j. Again, with D1,1(q) = 0 and D2,1(q) = q following immediately from
(1.6), Garsia and Remmel showed that for n ≥ 2,

Dn+1,1(q) = [n]qDn,1(q)+ qn[n]qDn−1,1(q), (1.7)

and for n ≥ 1,

Dn+1,1(q) = [n + 1]qDn,1(q)+ (−1)n+1q(n+1
2 ). (1.8)

Generalizing Garsia and Remmel’s definition in (1.3), one can define an obvious
p, q-analogue of the derangement numbers by setting

Dn,1(p, q) = ∑
σ∈Dn,1

qinv(σ)pcoinv(σ). (1.9)
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From this definition, it is easy to see that D1,1(p, q) = 0 and D2,1(p, q) = p. Fur-
thermore, with the usual p, q-analogue of n given by [n]p,q = pn−1 + qpn−2 + · · ·+

qn−2 p + qn−1 = pn−qn

p−q , we claim that the Dn,1(p, q) given in (1.9) satisfy the follow-
ing p, q-analogue of (1.1)

Dn+1,1(p, q) = q[n]p,qDn,1(p, q)+ pn[n]p,qDn−1,1(p, q), (1.10)

for n ≥ 2. In order to prove (1.10), we classify the elements of Dn+1,1 according
to whether n + 1 lies in a cycle of length j for j ≥ 3 or n + 1 lies in a cycle of
length 2. If σ ∈ Dn+1,1 is such that n + 1 lies in a j-cycle where j ≥ 3, then we
can remove n + 1 from its cycle to get a permutation σ′ ∈ Dn,1. For example, if
σ = (3, 1, 11, 2)(10, 4, 5)(9, 8, 12, 6, 13, 7) ∈ D13,1 is written in 1-standard order,
then σ′ = (3, 1, 11, 2)(10, 4, 5)(9, 8, 12, 6, 7)∈D12,1. In such a situation, since n+1
is not the second smallest element in its cycle, the result of removing n + 1 from
the cycle structure of σ will leave a permutation σ′ whose cycle structure is still
in 1-standard order. Moreover, it is easy to see that for each such σ′, there are n
permutations τ ∈ Dn+1,1 which yield σ′ upon removing n + 1 from τ. That is, each
such τ is the result of inserting n + 1 directly in front of some element of σ′ in its
cycle structure.

It is easy to see that if τi is the result of inserting n + 1 directly in front of the
i-th element of σ′ reading from left to right in the 1-standard order of σ′, then τi is in
1-standard order and

inv(τi) = n− i+ 1 + inv
(
σ′

)
and coinv(τi) = i−1 + coinv

(
σ′

)
.

Therefore, it easily follows that

∑
τ∈Dn+1,1

n+1 is in a j-cycle for j ≥ 3

qinv(τ)pcoinv(τ)

=
(
qn + qn−1p + · · ·+ q2pn−2 + qpn−1) ∑

σ∈Dn,1

qinv(σ)pcoinv(σ)

= q[n]p,qDn,1(p, q).

On the other hand, if σ ∈ Dn+1,1 is such that n + 1 is in a 2-cycle, then there must be
some i ∈ {1, . . . , n} such that (i, n + 1) is a 2-cycle in σ. Moreover, in the 1-standard
order of σ, the last cycle of σ is precisely (i, n+1) since n+1 is the second smallest
element of the cycle (i, n+1) and the cycles are ordered from left to right by increas-
ing second smallest elements. Given such a σ, we can obtain an element of σ′′ ∈
Dn−1,1 by removing the cycle (i, n + 1) and replacing the numbers i+ 1, i+ 2, . . . , n
in the rest of cycle structure by i, i + 1, . . . , n− 1 respectively. For example, if σ =
(3, 1, 6, 11, 2)(10, 4, 5)(9, 12, 7)(8, 13), then σ′′ = (3, 1, 6, 10, 2)(9, 4, 5)(8, 11, 7).
Moreover, if we are given σ′′ ∈ Dn−1,1, then there are n permutations τ ∈ Dn+1,1 such
that n+1 is in a 2-cycle and τ′′ = σ′′ depending on which number i ∈ {1, . . . , n} is in
the 2-cycle with n + 1. Moreover, it is easy to see that if (i, n + 1) is a 2-cycle of τ
and τ′′ = σ′′, then

qinv(τ)pcoinv(τ) = qn−ipi−1 pnqinv(σ′′)pcoinv(σ′′),
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so that

∑
τ∈Dn+1,1

n+1 is in a 2-cycle

qinv(τ)pcoinv(τ)

= pn (
qn−1 + qn−2p + · · ·+ qpn−2 + pn−1) ∑

σ∈Dn−1,1

qinv(σ)pcoinv(σ)

= pn[n]p,qDn−1,1(p, q).

Thus (1.10) holds as claimed.
Next, we claim that for n ≥ 1, Dn,1(p, q) satisfy the following p, q-analogue of

(1.2):

Dn+1,1(p, q) = [n + 1]p,qDn,1(p, q)+ (−1)n+1p(n+1
2 ). (1.11)

We will prove (1.11) by induction on n. First, one can easily verify that (1.11) holds
when n = 1 and assuming that (1.11) holds for n < r, then

Dr+1,1(p, q) = q[r]p,qDr,1(p, q)+ pr[r]p,qDr−1,1(p, q)

= q[r]p,qDr,1(p, q)+ pr
(

Dr,1(p, q)− (−1)r p(r
2)

)

= (pr + q[r]p,q)Dr,1(p, q)+ (−1)r+1p(r+1
2 )

= [r + 1]p,qDr,1(p, q)+ (−1)r+1p(r+1
2 ).

For the generalized derangement numbers, Dn,k, we note that when k ≥ 1, there
are again two natural recursions. First, one can easily derive the recursion

Dn+1,k = nDn,k +(n)↓k Dn−k,k, (1.12)

where (n)↓k= n(n−1) · · ·(n−k+1), by classifying the elements of Dn+1,k according
to whether n + 1 is in a j-cycle for j > k + 1 or whether n + 1 is in a (k + 1)-cycle.
The second recursion on Dn,k can easily be obtained from the following application
of the theory of exponential structures:

∞

∑
n=0

Dn,ktn

n!
= e∑m≥k+1

(m−1)!tm
m! . (1.13)

From (1.13), we obtain

∞

∑
n=0

Dn,ktn

n!
= e∑m≥k+1

tm
m = eln(1/(1−t))−

(
t+ t2

2 +···+ tk
k

)
=

e−te−
t2
2 · · ·e−

tk
k

1− t
. (1.14)

Multiplying both sides of (1.14) by 1− t and expanding the exponential functions
gives

(1− t)
∞

∑
n=0

Dn,ktn

n!
= e−te−

t2
2 · · ·e−

tk
k =

k

∏
i=1

∑
ai≥0

(−1)ait iai

iai(ai!)
. (1.15)
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Then, taking the coefficient of tn+1 on both sides of (1.15) and multiplying by (n+1)!
yields

Dn+1,k − (n + 1)Dn,k = ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)a1+···+ak
(n + 1)!

(1a1a1!)(2a2a2!) · · · (kak ak!)
.

(1.16)
Solving for Dn+1,k in (1.16) gives

Dn+1,k = (n + 1)Dn,k

+ ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)a1+···+ak

(
n + 1

a1, 2a2, . . . , kak

) k

∏
j=1

Fact(a j, j),

(1.17)

where

Fact(a j, j) =
( ja j)!

ja j (a j!)
=

a j−1

∏
s=0

(s j + 1)(s j + 2) · · ·(s j + j−1). (1.18)

The main goal of this paper is to define a p, q-analogue of the generalized de-
rangement numbers Dn,k which yields natural p, q-analogues of recursions (1.12) and
(1.17). The outline of this paper is as follows. In Section 2, we follow a suggestion
of Garsia and Remmel [4] and define a p, q-analogue of the generalized derange-
ment numbers, which we denote by Dn,k(p, q), so that the following p, q-analogue of
(1.12) holds:

Dn+1,k(p, q) = q[n]p,qDn,k(p, q)+ pn[n]p,q↓k Dn−k,k(p, q)

where [n]p,q ↓k= [n]p,q[n− 1]p,q · · · [n− k + 1]p,q. However, we shall see that a p, q-
analogue of (1.17) is not as straightforward. In Section 3, we will consider the special
case when k = 2 in which (1.17) becomes

Dn+1,2 = (n + 1)Dn,2 + ∑
a1,a2≥0

a1+2a2=n+1

(−1)a1+a2

(
n + 1

a1, 2a2

)
Fact(a2, 2)

= (n + 1)Dn,2 +(−1)n+1
�(n+1)/2�

∑
j=0

(−1) j
(

n + 1
2 j

)
1 ·3 · · ·(2 j−1).

One might hope that the p, q-analogue of (1.17) would be of the form

Dn+1,2(p, q) = qan pbn [n + 1]p,qDn,2(p, q)

+ (−1)n+1
�(n+1)/2�

∑
j=0

(−1) jqcn, j pdn, j
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·

[
n + 1

2 j

]
p,q

[1]p,q · [3]p,q · · · [2 j−1]p,q (1.19)

for appropriate choices of an, bn, cn, j, and dn, j. However, we will show in Sec-
tion 3 that this is not possible. Instead, we will show that the p,q-analogue of

∑�(n+1)/2�
j=0 (−1) j

(n+1
2 j

)
1 · 3 · · ·(2 j − 1) arises by p,q-counting a certain set of words

counted by ∑�(n+1)/2�
j=0 (−1) j

(n+1
2 j

)
1 ·3 · · ·(2 j−1). Finally, in Section 4, we shall show

how the arguments of Section 2 can be generalized to give p, q-analogues of recur-
sions (1.12) and (1.17) for an arbitrary integer k ≥ 1.

2. p, q-Analogues of Dn,k

In this section, we describe our p, q-analogues of the generalized derangement num-
bers. For a fixed k ≥ 1, arrange the cycles of each σ ∈ Dn,k so that

(1) each cycle of σ is arranged with the (k + 1)-th smallest element on the right and
(2) the cycles are ordered from left to right by increasing (k+1)-th smallest elements.

We will refer to such an arrangement of σ as the k-standard order of σ. For example,
suppose k = 3 and

σ = (1, 4, 14, 11)(2, 6, 5, 3, 15)(7, 13, 8, 12, 9, 10) ∈ D15,3.

Then, the 3-standard order of the σ is given by

(5, 3, 15, 2, 6)(7, 13, 8, 12, 9, 10)(11, 1, 4, 14).

Next, for each σ ∈ Dn,k, we let σ(k) denote the permutation that results by starting
with the k-standard order of σ and erasing the parentheses and commas. In our ex-
ample,

σ(3) = 5 3 15 2 6 7 13 8 12 9 10 11 1 4 14.

Definition 2.1. For each natural number n and k, we define the p, q-analogue of Dn,k
by

Dn,k(p, q) = ∑
σ∈Dn,k

qinv(σ(k))pcoinv(σ(k)). (2.1)

Our first theorem shows that our definition of Dn,k(p, q) satisfies a natural p, q-
analogue of (1.12).

Theorem 2.2. If k ≥ 1, then

(1) Dn,k(p, q) = 0, for 1 ≤ n ≤ k,
(2) Dk+1,k(p, q) = pk[k]p,q!, and
(3) Dn+1,k(p, q) = q[n]p,qDn,k(p, q)+ pn[n]p,q↓k Dn−k,k(p, q),

where [n]p,q↓k= [n]p,q[n−1]p,q · · · [n− k + 1]p,q and [k]p,q! = [k]p,q↓k.
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Proof. (1) is trivial since Dn,k is empty for n ≤ k.

For (2), note that the only elements of Dk+1,k are the permutations σ ∈ Sk+1 consist-
ing of a single (k + 1)-cycle. Under our k-standard ordering of cycles, the (k + 1)-th
smallest element in each cycle must be on the right. That is, for each σ ∈ Dk+1,k,
σ(k) has the form σ(k) = σ1 · · ·σk (k + 1), for some σ1 · · ·σk ∈ Sk. Moreover, for

each σ ∈ Dk+1,k, it is easy to see that qinv(σ(k))pcoinv(σ(k)) = pkqinv(α) pcoinv(α) where
α = σ1 · · ·σk ∈ Sk. Thus, (2) follows immediately from MacMahon’s result that
∑σ∈Sn qinv(σ)pcoinv(σ) = [n]p,q!.

For (3), we classify the elements of Dn+1,k according to whether n + 1 lies in a cycle
of length j for j ≥ k + 2 or n + 1 lies in a cycle of length k + 1. If σ ∈ Dn+1,k is such
that n+1 lies in a j-cycle where j ≥ k +2, then we can remove n+1 from σ to get a
permutation σ′ ∈ Dn,k.

We note that in such a situation, n + 1 is not the (k + 1)-th smallest element in
its cycle. So, removing n + 1 from the cycle structure of σ will leave a permutation
σ′ ∈ Dn,k whose cycle structure is still in (k + 1)-standard order. As in the k = 1
case, it is easy to see that each σ′ arises from n different τi ∈ Dn+1,k by removing
n + 1 from τi. In particular, for 1 ≤ i ≤ n, τi is the permutation obtained from σ′ by
inserting n + 1 directly in front of the i-th element of σ′ reading from left to right in
the k-standard order of σ′. We note that for each 1≤ i≤ n, τi will still be in k-standard
order and

inv
(

τ(k)
i

)
= n− i+ 1 + inv

((
σ′

)(k)
)

and coinv
(

τ(k)
i

)
= i−1 + coinv

((
σ′

)(k)
)

.

It easily follows that

∑
τ∈Dn+1,k

n+1 is in a j-cycle for j ≥ k+2

qinv(τ(k))pcoinv(τ(k))

=
(
qn + qn−1p + · · ·+ q2 pn−2 + qpn−1) ∑

σ∈Dn,k

qinv(σ(k))pcoinv(σ(k))

= q[n]p,qDn,k(p, q).

On the other hand, if σ ∈ Dn+1,k is such that n + 1 is in a (k + 1)-cycle, then there
must be some sequence i1, . . . , ik of elements in {1, . . . , n} such that (i1, . . . , ik, n+1)
is a (k + 1)-cycle in σ. Moreover, in the (k + 1)-standard order of σ, the last cycle
of σ is precisely (i1, . . . , ik, n + 1) since n + 1 is the (k + 1)-th smallest element of its
cycle and we are ordering the cycles from left to right by increasing (k +1)-th small-
est elements. Given such a σ, we can obtain an element σ′′ ∈ Dn−k,k by removing
the cycle (i1, . . . , ik, n+1) and replacing the remaining elements { j1 < · · ·< jn−k}=
{1, . . . , n}−{i1, . . . , ik} respectively by 1, . . . , n− k in the rest of the cycle structure.
For example, if σ = (3, 1, 2, 15, 6)(10, 4, 5, 11)(9, 12, 7, 16)(14, 8, 13, 17) is an ele-
ment of D17,3, whose cycles are written in 3-standard order, then σ′′ = (3, 1, 2, 12, 6)
(9, 4, 5, 10)(8, 11, 7, 13). Moreover, for each σ′′ ∈ Dn−k,k, there are n↓k permuta-
tions τ ∈ Dn+1,k such that n+1 is in a (k+1)-cycle and τ′′ = σ′′ depending on which
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sequences of numbers i1, . . . , ik ∈ {1, . . . , n} are in the (k+1)-cycle (i1, . . . , ik, n+1)
with n + 1.

Now suppose that we are given σ ∈ Dn−k,k whose cycles are written in k-standard
order. We would like to compute

S = ∑
τ

qinv(τ(k))pcoinv(τ(k)), (2.2)

where the sum runs over all τ∈ Dn+1,k such that n+1 is in a (k+1)-cycle and τ′′ = σ.
Suppose that τ contains the cycle (i1, . . . , ik, n + 1). Then since τ′′ equals σ, we can
see that by p, q-enumerating the elements in the cycles preceding (i1, . . . , ik, n+1) by

inversions and coinversions we obtain a factor of qinv(σ(k))pcoinv(σ(k)) to S. Moreover,
n+1 contributes no inversions and n coinversions to τ(k) and thus contributes a factor
of pn to S. The remaining contribution to S comes from our choices of i1, . . . , ik
from {1, . . . , n}. Note that ik contributes n− ik inversions and ik − 1 coinversions to
the elements preceding ik in τ(k), and hence, the choice of ik gives a contribution of
qn−1 + pqn−2 + · · ·+ qpn−2 + pn−1 = [n]p,q to S. Fixing our choice of ik, we can
repeat the same argument to show that if we count the number of inversions and
coinversions with all the elements preceding ik−1 in τ(k) over all choices of ik−1, then
we get a contribution qn−2 + pqn−3 + · · ·+qpn−3+ pn−2 = [n−1]p,q to S. Continuing
in this way, we see that

S = qinv(σ(k))pcoinv(σ(k))pn[n]p,q[n−1]p,q · · · [n− k + 1]p,q. (2.3)

Therefore, it follows that

∑
τ∈Dn+1,k

n+1 is in a k+1-cycle

qinv(τ(k))pcoinv(τ(k)) = pn[n]p,q↓k ∑
σ∈Dn−k,k

qinv(σ(k))pcoinv(σ(k))

= pn[n]p,q↓k Dn−k,k(p, q).

Thus, Dn+1,k(p, q) = q[n]p,qDn,k(p, q)+ pn[n]p,q↓k Dn−k,k(p, q) as claimed.

3. A Second Recursion for Dn,2(p, q)

Our p, q-analogue of the recursion in (1.17) will be given in the next section. In this
section, we would like to motivate that recursion by considering the case when k = 2.
From (1.17), it follows that the generalized derangement numbers Dn,2 satisfy the
following recursion for n ≥ 1,

Dn+1,2 = (n + 1)Dn,2 +(−1)n+1
�(n+1)/2�

∑
j=0

(−1) j
(

n + 1
2 j

)
Fact( j, 2), (3.1)

where Fact(0, 2) = 1 and Fact(n, 2) = 1 ·3 · · ·(2n−1) if n ≥ 1. One might hope that
our Dn,2(p, q)’s would satisfy a recursion like

Dn+1,2(p, q) = qan pbn [n + 1]p,qDn,2(p, q)



A p, q-Analogue of the Generalized Derangement Numbers 9

+(−1)n+1
�(n+1)/2�

∑
j=0

(−1) jqcn, j pdn, j

[
n + 1

2 j

]
p,q

Fact( j, 2)p,q, (3.2)

for some an, bn, cn, j, and dn, j where Fact(0, 2)p,q = 1 and Fact(n, 2)p,q = [1]p,q ·
[3]p,q· · · [2n−1]p,q if n ≥ 1. However, we can show that even in the case p = 1, this
is not possible. That is, suppose we define

Dn,k(q) = Dn,k(1, q) = ∑
σ∈Dn,k

qinv(σ(k)).

Then, we will show that there are no an and cn, j for which

Dn+1,2(q) = qan [n + 1]qDn,2(q)+ (−1)n+1
�(n+1)/2�

∑
j=0

(−1) jqcn, j

[
n + 1

2 j

]
q
Fact( j, 2)q,

(3.3)
where Fact(0, 2)q = 1 and Fact(n, 2)q = [1]q · [3]q · · · [2n− 1]q if n ≥ 1. One can
easily see that D1,2 = D2,2 = 0 since D1,2 = D2,2 = /0. Furthermore, there are
2 elements of D3,2, (1, 2, 3) and (2, 1, 3), written in 2-standard order. As such,
D3,2(q) = qinv(123) + qinv(213) = 1 + q = [2]q. We can compute D4,2(q) and D5,2(q)
using the following recursion for Dn,k(q) obtained from Theorem 2.2 by setting p = 1:

Dn+1,k(q) = q[n]qDn,k(q)+ ([n]q)↓k Dn−k,k(q).

That is,
D4,2(q) = q[3]qD3,2(q)+ [3]q[2]qD1,2 = q[3]q[2]q

and
D5,2(q) = q[4]qD4,2(q)+ [4]q[3]qD2,2 = q2[4]q[3]q[2]q.

In the case n + 1 = 5, (3.3) becomes

D5,2(q) = qa4 [5]qD4,2(q)+ (−1)5

(
qc4,0 −qc4,1

[
5
2

]
q
+ qc4,2

[
5
4

]
q
[3]q

)
. (3.4)

Since
[5

2

]
q = [5]q

(
1 + q2

)
,
[5

4

]
q = [5]q, D4,2(q) = q[3]q[2]q =

(
q + 2q2 + 2q3 + q4

)
,

and D5,2(q) = q2[4]q[3]q[2]q =
(
q2 + 3q3 + 5q4 + 6q5 + 5q6 + 3q7 + q8), we can

rewrite (3.4) as

qc4,0 + q2 + 3q3 + 5q4 + 6q5 + 5q6 + 3q7 + q8

= [5]q
(
qa4

(
q + 2q2 + 2q3 + q4)+ qc4,1

(
1 + q2)−qc4,2

(
1 + q + q2)) . (3.5)

By setting E =
(
q2 + 3q3 + 5q4 + 6q5 + 5q6 + 3q7 + q8) and F =

(
qa4

(
q + 2q2 + 2q3

+q4)+ qc4,1
(
1 + q2)−qc4,2

(
1 + q + q2)), we can rewrite (3.5) as qc4,0 +E = [5]qF.

Now suppose c4,0 ≥ 11. Then we must have that E
∣∣
q j = ([5]qF)

∣∣
q j for j ≤ 10

where for any q-series f (q) = ∑n≥0 fnqn, we let f |q j = f j . By setting E = ∑i≥0 Eiqi

and F = ∑i≥0 Fiqi, it must follow that

E0 = F0 = 0,



10 K. Briggs and J. Remmel

E1 = F0 + F1 = 0,

E2 = F0 + F1 + F2 = 1,

E3 = F0 + F1 + F2 + F3 = 3,

E4 = F0 + F1 + F2 + F3 + F4 = 5,

E5 = F1 + F2 + F3 + F4 + F5 = 6,

E6 = F2 + F3 + F4 + F5 + F6 = 5,

E7 = F3 + F4 + F5 + F6 + F7 = 3,

E8 = F4 + F5 + F6 + F7 + F8 = 1,

E9 = F5 + F6 + F7 + F8 + F9 = 0,

E10 = F6 + F7 + F8 + F9 + F10 = 0.

The unique solution to this system of equations is given by F0 = 0, F1 = 0, F2 =
1, F3 = 2, F4 = 2, F5 = 1, F6 = −1, F7 = −1, F8 = 0, F9 = 1, F10 = 1.

It is easy to see that there is no choice a4, c4,1, and c4,2 which satisfy

q2 + 2q3 + 2q4 + q5 −q6 −q7 + q9 + q10

=
(
qa4

(
q + 2q2 + 2q3 + q4)+ qc4,1

(
1 + q2)−qc4,2

(
1 + q + q2)) .

As such, we must conclude that c4,0 ≤ 10. However, one can use any computer
algebra package to see that if we set Gi = qi +E for 0≤ i≤ 10, then Gi is not divisible
by [5]q. Thus, (3.5) has no solution.

Since we’ve shown that our obvious guess in (3.2) does not even work when
p = 1, we must wonder “What is a p, q-analogue of recursion (3.1)?” To answer
this question, we first develop a p, q-analogue of

(n+1
2 j

)
Fact( j, 2). To this end, let’s

consider the set R
(
0n+1−2 j, 12, . . . , j2) of all rearrangements of (n + 1− 2 j) 0’s,

two 1’s, two 2’s,. . ., two j’s. Given r = r1 · · · rn+1 ∈ R
(
0n+1−2 j, 12, . . . , j2), we let

Fin(r) = {i : ri > 0 & ri /∈ {ri+1 · · ·rn+1}}. That is, Fin(r) is the set of indices of the
last occurrences of 1, . . . , j in r. For example, if n = 10, j = 3, and

r = 01302003012,

then Fin(r)= {8, 10, 11}. Now if r = r1 · · · rn+1 ∈R
(
0n+1−2 j, 12, . . . , j2) and Fin(r)

=
{

i1 < · · · < i j
}

, then we let f in(r) = ri1 ri2 · · · ri j and note that f in(r) will always
be a permutation in S j. In our example, f in(r) = 312.

Next, we define

Tn+1, j =
{

r ∈ R
(
0n+1−2 j, 12, . . . , j2) : f in(r) = 12 · · · j

}
. (3.6)

Our next result will show that the cardinality of Tn+1, j is
(n+1

2 j

)
Fact( j, 2).
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Theorem 3.1. For n ≥ 1 and j ∈ {0, . . . , �(n + 1)/2�},

Tn+1, j =
∣∣Tn+1, j

∣∣ =

(
n + 1

2 j

)
Fact( j, 2). (3.7)

Proof. First, we note that (3.7) follows when j = 0 since Tn+1,0 = R
(
0n+1) and(n+1

0

)
Fact(0, 2) = 1. Similarly if j = 1, then Tn+1,1 = R

(
0n−1, 12). In this case,

we can construct an element r = r1 · · · rn+1 ∈ Tn+1,1 in
(n+1

2

)
ways by choosing the

positions of the two 1’s in r. Therefore, Tn+1,1 =
(n+1

2

)
=

(n+1
2

)
Fact(1, 2).

Now suppose that j ≥ 2. We can construct an element r = r1 · · · rn+1 ∈ Tn+1, j as
follows. First choose the positions 1 ≤ p1 < p2 < · · · < p2 j ≤ n + 1 of the nonzero
elements of r in

(n+1
2 j

)
ways. Since f in(r) = 12 · · · j, it must follow that rp2 j = j,

leaving 2 j−1 positions for the leftmost occurrence of j in r. Having fixed the position
of the leftmost occurrence of j in r, we know that the rightmost unassigned value in
r must be j − 1 leaving 2 j − 3 positions for the leftmost occurrence of j − 1 in r.
Continuing in this way, we see that

Tn+1, j =

(
n + 1

2 j

)
(2 j−1)(2 j−3) · · ·3 ·1 =

(
n + 1

2 j

)
Fact( j, 2),

as desired.

Given (3.7), we can now rewrite the recursion in (3.1) as

Dn+1,2 = (n + 1)Dn,2 +(−1)n+1
�(n+1)/2�

∑
j=0

(−1) jTn+1, j. (3.8)

In order to obtain a q- and p, q-analogue of (3.8), we must define a q-analogue
and p, q-analogue of Tn+1, j. To this end, let’s define for each r ∈ Tn+1, j and 1≤ i ≤ j,

(i, i)r = r j+1 · · · rk−1,

where j < k and r j = rk = i. We then let (i, i)r,<i be the number of elements ra in
the sequence (i, i)r such that ra < i. That is, (i, i)r is the interval between the two
occurrences of i in r and (i, i)r,<i is the number of elements of r which are less than i
and fall between the two occurrences of i in r. Finally, we define for each r ∈ Tn+1, j,

θ(r) =
j

∑
i=1

(i, i)r,<i. (3.9)

This given, we define our q-analogue of Tn+1, j for 0 ≤ j ≤ �(n + 1)/2� to be

Tn+1, j(q) = ∑
r∈Tn+1, j

qθ(r),

and our p, q-analogue of Tn+1, j for 0 ≤ j ≤ �(n + 1)/2� to be

Tn+1, j(p, q) = p(n+1
2 )Tn+1, j(q/p).

By making the convention that Tn, j = Tn, j(q) = Tn, j(p, q) = 0 if j < 0, we find that
the Tn+1, j(q)’s and Tn+1, j(p, q)’s satisfy simple recursions given in the following
theorem.
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Theorem 3.2. For all n ≥ 2 and 0 ≤ j ≤ �(n + 1)/2�,

Tn+1, j(q) = Tn, j(q)+ [n]qTn−1, j−1(q) (3.10)

and
Tn+1, j(p, q) = pnTn, j(p, q)+ pn[n]p,qTn−1, j−1(p, q). (3.11)

Proof. Note that when j = 0, Tn+1,0 =
{

0n+1} for all n ≥ 0. So by our definition,
Tn+1,0(q) = 1 for all n ≥ 0 and, hence,

Tn+1,0(p, q) = p(n+1
2 )Tn+1,0(q/p) = p(n+1

2 ) = pnTn,0(p, q)+ [0]p,qTn−1,−1(p, q)

as desired.
Now assume that j ≥ 1. In this case, we will only prove (3.10) as (3.11) is a simple

consequence of (3.10). To prove (3.10), we observe that if r = r1 · · ·rn+1 ∈ Tn+1, j,
then either rn+1 = 0 or rn+1 = j. Clearly, when rn+1 = 0, θ(r1 · · ·rn+1) = θ(r1 · · ·rn)
which implies that ∑r∈Tn+1, j,rn+1=0 qθ(r) = Tn, j(q). On the other hand, if rn+1 = j, let
Tn+1, j,s,n+1 be the set of all r = r1 · · ·rn+1 ∈ Tn+1, j such that rs = rn+1 = j. Clearly
if we remove rs and rn+1 from such an r, we will get an element r ′ ∈ Tn−1, j−1 for
which

θ(r) = n− s+ θ
(
r′
)
,

since all the elements in the interval ( j, j)r are less than j. It easily follows that

∑
r∈Tn+1, j ,rn+1= j

qθ(r) =
n

∑
s=1

∑
r∈Tn+1, j, s,n+1

qθ(r)

=
n

∑
s=1

qn−s ∑
r ′∈Tn−1, j−1

qθ(r ′)

= [n]qTn−1, j−1(q).

Thus, (3.10) holds.

Our next result shows that our Dn,2(p, q)’s satisfy a p, q-analogue of (3.8). That
is,

Theorem 3.3. For all n ≥ 1,

Dn+1,2(p, q) = [n + 1]p,qDn,2(p, q)+ (−1)n+1
�(n+1)/2�

∑
j=0

(−1) jTn+1, j(p, q). (3.12)

Proof. First, we establish (3.12) when n = 1 and n = 2. Clearly D2,2(p, q) =
D1,2(p, q) = 0 since D2,2 = D1,2 = /0. The two elements of D3,2 in 2-standard order
are (1, 2, 3) and (2, 1, 3). Therefore, it follows that D3,2(p, q) = p3 + p2q = p2[2]p,q.

To prove (3.12) when n = 1, we must show that

D2,2(p, q) = [2]p,qD1,2(p, q)+ (−1)2
1

∑
j=0

(−1) jT2, j(p, q)
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= T2,0(p, q)−T2,1(p, q). (3.13)

However, T2,0 = {00} and T2,1 = {11} so that T2,0(p, q) = T2,1(p, q) = p(2
2) = p.

Thus (3.13) holds. Likewise, to prove (3.12) when n = 2, we must show that

D3,2(p, q) = [3]p,qD2,2(p, q)+ (−1)3
1

∑
j=0

(−1) jT3, j(p, q)

= T3,1(p, q)−T3,0(p, q). (3.14)

But, T3,0 = {000} and T3,1 = {110, 101, 011}, so that T3,0(p, q) = p(3
2) = p3 and

T3,1(p, q) = p(3
2)(1 +(q/p)+ 1)= 2p3 + qp2. Thus (3.14) holds.

Now assume that n ≥ 3 and (3.12) holds for all m ≤ n. Using (3.11) and the fact
that Tm,−1(p, q) = 0 for all m ≥ 1, it follows that for n ≥ 3,

[n + 1]p,qDn,2(p, q)+ (−1)n+1
�(n+1)/2�

∑
j=0

(−1) jTn+1, j(p, q)

= q[n]p,qDn,2(p, q)+ pnDn,2(p, q)

+ (−1)n+1
�(n+1)/2�

∑
j=0

pn(−1) j(Tn, j(p, q)+ [n]p,qTn−1, j−1(p, q)
)

= q[n]p,qDn,2(p, q)+ pn

(
Dn,2(p, q)− (−1)n

�(n+1)/2�

∑
j=0

(−1) jTn, j(p, q)

)

+(−1)n+1pn[n]p,q

�(n+1)/2�

∑
j=1

(−1) jTn−1, j−1(p, q). (3.15)

By induction, we can assume that

Dn,2(p, q)− (−1)n
�(n+1)/2�

∑
j=0

(−1) j Tn, j(p, q) = [n]p,qDn−1,2(p, q). (3.16)

Using (3.16) in (3.15), we see that

[n + 1]p,qDn,2(p, q)+ (−1)n+1
�(n+1)/2�

∑
j=0

(−1) j Tn+1, j(p, q)

= q[n]p,qDn,2(p, q)+ pn[n]p,qDn−1,2(p, q)

+ (−1)n+1pn[n]p,q

�(n+1)/2�

∑
j=1

(−1) j Tn−1, j−1(p, q))

= q[n]p,qDn,2(p, q)
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+ pn[n]p,q

(
Dn−1,2(p, q)− (−1)n−1

�(n−1)/2�

∑
j=0

(−1) j Tn−1, j(p, q)

)
. (3.17)

Again by induction, we can assume that

Dn−1,2(p, q)−(−1)n−1
�(n−1)/2�

∑
j=0

(−1) j Tn−1, j(p, q) = [n−1]p,qDn−2,2(p, q). (3.18)

Thus using (3.18) in (3.17), we find

[n + 1]p,qDn,2(p, q)+ (−1)n+1
�(n+1)/2�

∑
j=0

(−1) j Tn+1, j(p, q)

= q[n]p,qDn,2(p, q)+ pn[n]p,q[n−1]p,qDn−2,2(p, q)

= Dn+1,2(p, q),

where for the last step we have used the fact that Theorem 2.2 holds.

4. The General Case

Suppose that a1 + 2a2 + · · ·+ kak = n and set

An,a1,a2,...,ak = {(i, j, a) : 1 ≤ i ≤ k, 1 ≤ j ≤ ai, 1 ≤ a ≤ i} .

Let Pn,a1,a2,...,ak denote the set of all permutations of the letters in the set
An,a1,a2,...,ak . Then, for each i ≥ 2 and r = r1 · · · rn ∈ Pn,a1,a2,...,ak , we define

Fin(r, i) =

{
s

∣∣∣∣∣
rs = (i, j, a) for some 1 ≤ j ≤ ai and 1 ≤ a ≤ i, and

no letter of the form (i, j, −) occurs in rs+1 · · ·rn

}
. (4.1)

If Fin(r, i) = {s1 < s2 < · · · < sai}, then set

f in(r, i) = rs1rs2 · · ·rsai
. (4.2)

Definition 4.1. Let Tn,a1,a2,...,ak denote the set of all r ∈ Pn,a1,a2,...,ak such that

(1) (1, 1, 1), (1, 2, 1), . . . , (1, a1, 1) is a subsequence of r,
(2) for all 2 ≤ i ≤ r, f in(r, i) = (i, 1, i)(i, 2, i) · · · (i, ai, i),

and set Tn,a1,a2,...,ak =
∣∣Tn,a1,a2,...,ak

∣∣ .
Lemma 4.2. For any natural numbers n and k,

Tn,a1,a2,...,ak =

(
n

a1, 2a2, . . . , kak

) k

∏
j=2

Fact (a j, j) .
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Proof. To construct a word in Tn,a1,a2,...,ak , first note that we can select the a1, 2a2,
. . . , kak positions of the letters of the form (1, −, −), (2, −, −), . . . , (k, −, −) in( n

a1,2a2,...,kak

)
ways. Then, by condition (1) in Definition 4.1, there is only one way

to place the letters (1, 1, 1), (1, 2, 1), . . . , (1, a1, 1) in the selected positions. More-
over, for each 2≤ j ≤ k, condition (2) in Definition 4.1 forces the letter ( j, a j, j) to be
placed in the last position among those selected for letters of the form ( j, −, −). Once
( j, a j, j) has been placed, there remain ja j −1 positions to place ( j, a j, j−1), ja j −
2 positions to place ( j, a j, j−2), . . . , j(a j −1)+1 positions to place ( j, a j, 1). Next,
among the remaining j(a j−1) positions, ( j, a j−1, j) must be placed in the last avail-
able position. Once ( j, a j−1, j) has been placed, there remain j(a j−1)−1 positions
to place ( j, a j−1, j−1), j(a j −1)−2 positions to place ( j, a j−1, j−2), . . . , j(a j−
2)+1 positions to place ( j, a j−1, 1). Continuing in this way, we find that there are a
total of ( ja j −1) · · · ( j (a j −1)+ 1)( j (a j −1)−1) · · ·( j (a j −2)+ 1)( j (a j −2)−1)
· · ·( j +1)( j−1) · · ·1 = Fact(a j, j) ways to place the letters of the form ( j, −, −) in
the ja j selected positions, for each 2 ≤ j ≤ k.

We are now in a position to define a statistic Θ on words in the set Tn,a1,a2,...,ak
from which we obtain a q- and p, q-analogue of the value Tn,a1,a2,...,ak .

Definition 4.3. Let r ∈ Tn,a1,a2,...,ak and i≥ 2. Then for each 1≤ j ≤ ai, define Θi, j(r)
as follows:

(1) Consider the position s of (i, j, i) in r.
(2) Let Γi, j(r) be the word that arises from r1 · · · rs by eliminating all letters (a, b, c)

such that a letter of the form (a, b, −) occurs in rs+1 · · ·rn.
(
By our convention,

we note that each of the letters (i, j, 1), . . . , (i, j, i) must occur in Γi, j(r) and the
last letter of Γi, j(r) is (i, j, i).

)
(3) For each 1 ≤ a ≤ i− 1, let c>(i, j,a)(Γi, j(r)) be the number of letters that follow

(i, j, a) in Γi, j(r) that are not of the form (i, j, b) with b > a.
(4) Set

Θi, j(r) =
i−1

∑
a=1

c>(i, j,a) (Γi, j(r)) .

We then define Θ(r) =
k

∑
i=2

ai

∑
j=1

Θi, j(r) and let

Tn,a1,a2,...,ak(q) = ∑
r∈Tn,a1,a2,...,ak

qΘ(r). (4.3)

Finally, we define

Tn,a1,a2,...,ak(p, q) = p(n
2)Tn,a1,a2,...,ak(q/p) = ∑

r∈Tn,a1,a2,...,ak

qΘ(r)p(n
2)−Θ(r). (4.4)

Given Definition 4.3, we now prove a q-analogue of Lemma 4.2.
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Theorem 4.4. For all natural numbers n and k,

Tn+1,a1,a2,...,ak(q) = Tn,a1−1,a2,...,ak(q)

+
k

∑
i=2

[n]q[n−1]q · · · [n− i+ 2]qTn−i+1,a1,...,ai−1,ai−1,ai+1,...,ak(q).

(4.5)

Proof. We first note that the contribution to Tn+1,a1,a2,...,ak(q) of all words in Tn+1,a1,

a2,...,ak(q) which end in (1, a1, 1) is Tn,a1−1,a2,...,ak(q).
Next note that for each 2≤ i ≤ k, the term [n]q[n−1]q · · · [n− i+2]q× Tn−i+1,a1,...,

ai−1,ai−1,ai+1,...,ak(q) accounts for those words in Tn+1,a1,a2,...,ak which end in (i, ai, i).
To see this, let r ∈ Tn−i+1,a1,...,ai−1,ai−1,ai+1,...,ak . We can construct any r ∈ Tn+1,a1,a2,

...,ak from r with rn = (i, ai, i) by first placing (i, ai, i) at the end of r and then inserting
(i, ai, 1) at any of the n− i+2 positions before (i, ai, i) labelled by 0, 1, . . . , n− i+1
as follows:

0 r1 1 r2 2 · · · n− i rn−i+1 n− i+1 (i, ai, i).

For each 0 ≤ j ≤ n− i + 1, if (i, ai, 1) is inserted in the j-th position, then c>(i,ai,1)

(Γi,ai(r)) = n− i+ 1− j which yields a factor of [n− i+ 2]q when summed over all
j. Since (i, ai, 1) would contribute to c>(i,ai,2)(Γi,ai(r)), it follows similarly that the
insertion of (i, ai, 2) yields a factor of [n− i + 3]q. Continuing in this way, we find
that the insertion of (i, ai, a) yields a factor of [n− i+ 1 + a]q for each 1 ≤ a ≤ i−1,
proving the claim.

Corollary 4.5. For all natural numbers n and k,

Tn+1,a1,a2,...,ak(p, q) = pnTn,a1−1,a2,...,ak(p, q)

+
k

∑
i=2

pn[n]p,q↓(i−1) Tn−i+1,a1,...,ai−1,ai−1,ai+1,...,ak(p, q).

(4.6)

Proof. This corollary follows immediately from (4.4) and (4.5). Namely,

Tn+1,a1,a2,...,ak(p, q)

= p(n+1
2 )Tn+1,a1,a2,...,ak

(
q
p

)

= p(n+1
2 )

(
Tn,a1−1,a2,...,ak

(
q
p

)
+

k

∑
i=2

[n] q
p
↓(i−1) Tn−i+1,a1,...,ai−1,ai−1,ai+1,...,ak

(
q
p

))

= pn
(

p(n
2)Tn,a1−1,a2,...,ak

(
q
p

))

+
k

∑
i=2

pn
i−2

∏
j=0

(
pn− j−1[n− j] q

p

)(
p(n−i+1

2 )Tn−i+1,a1,...,ai−1,ai−1,ai+1,...,ak

(
q
p

))
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= pnTn,a1−1,a2,...,ak(p, q)+
k

∑
i=2

pn[n]p,q↓(i−1) Tn−i+1,a1,...,ai−1,ai−1,ai+1,...,ak(p, q).

We now give a p, q-analogue of (1.17).

Theorem 4.6. For all natural numbers n and k,

Dn+1,k(p, q) = [n + 1]p,qDn,k(p, q)

+ (−1)n+1 ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)a2+2a3+···+(k−1)ak Tn+1,a1,...,ak(p, q).

(4.7)

Proof. We will prove (4.7) by induction on k and then on n. First if k = 1, we note
that for any n ≥ 1,

Tn+1,n+1,0,...,0 = {(1, 1, 1)(1, 2, 1) · · · (1, n + 1, 1)},

so that Tn+1,n+1,0,...,0(p, q) = pcoinv(12 ···n+1) = p(n+1
2 ). Therefore, by (1.11)

Dn+1,1(p, q) = [n + 1]p,qDn,1(p, q)+ (−1)n+1Tn+1,n+1,0,...,0(p, q).

Next, assume that (4.7) holds for some k−1≥ 1 and all n ∈ N. We will show that
(4.7) holds for k by induction on n. We proceed by establishing k base cases. That
is, we will show that (4.7) holds for each 1 ≤ n ≤ k. Since Dn+1,k(p, q) = 0 for all
1 ≤ n < k and Dk+1,k(p, q) = pk[k]p,q!, it suffices to prove that when 1 ≤ n < k,

∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)a2+2a3+···+(k−1)akTn+1,a1,...,ak(p, q) = 0, (4.8)

and for n = k,

∑
a1,...,ak≥0

a1+2a2+···+kak=k+1

(−1)a2+2a3+···+(k−1)akTk+1,a1,...,ak(p, q) = (−1)k+1 pk[k]p,q!.

(4.9)
To prove (4.8) for 1 ≤ n < k, we first apply the recursion in Corollary 4.5 to

Tn+1,a1,...,ak to get

∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn+1,a1,...,ak(p, q)

= pn ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j

(
Tn,a1−1,a2,...,ak(p, q)+

k

∑
i=2

[n]p,q↓(i−1) Tn−i+1,a1,...,ai−1,...,ak(p, q)

)
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= pn

⎛
⎜⎝ ∑

a1≥1,a2,...,ak≥0
a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn,a1−1,a2,...,ak(p, q)

+
k

∑
i=2

[n]p,q↓(i−1) ∑
ai≥1,a j≥0 for j �=i

a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn−i+1,a1,...,ai−1,...,ak(p, q)

⎞
⎟⎟⎠

= pn

⎛
⎜⎝ ∑

a1,...,ak≥0
a1+2a2+···+kak=n

(−1)∑k
j=2( j−1)a jTn,a1,...,ak(p, q)+

k

∑
i=2

[n]p,q↓(i−1) (−1)i−1×

∑
a1,...,ak≥0

a1+2a2+···+kak=n−i+1

(−1)∑k
j=2( j−1)a j Tn−i+1,a1,...,ak(p, q)

⎞
⎟⎠ . (4.10)

Since n < k, it must be the case that ak = 0 in both summations on the right hand side
of (4.10). Furthermore, it follows by Definition 4.1 and (4.4) that

Tn,a1,...,ak−1,0(p, q) = Tn,a1,...,ak−1(p, q) (4.11)

for all natural numbers n and k. As such, the right hand side of (4.10) can be rewritten
as

pn

⎛
⎜⎜⎝ ∑

a1,...,ak−1≥0
a1+···+(k−1)ak−1=n

(−1)∑k−1
j=2( j−1)a j Tn,a1,...,ak−1(p, q)+

k

∑
i=2

(−1)i−1[n]p,q↓(i−1) ×

∑
a1,...,ak−1≥0

a1+···+(k−1)ak−1=n−i+1

(−1)∑k−1
j=2( j−1)a j Tn−i+1,a1,...,ak−1(p, q)

⎞
⎟⎟⎠ , (4.12)

which by induction equals

pn
(

(−1)n (Dn,k−1(p, q)− [n]p,qDn−1,k−1(p, q))+
k

∑
i=2

(−1)i−1[n]p,q↓(i−1) ×

(−1)n−i+1
(

Dn−i+1,k−1(p, q)− [n− i+ 1]p,qDn−i,k−1(p, q)

))
. (4.13)

Since 1 ≤ n < k, Theorem 2.2 implies that Dn,k−1(p, q) = Dn−1,k−1(p, q) =
Dn−i+1,k−1(p, q) = Dn−i,k−1(p, q) = 0 for each i = 2, . . . , k. Therefore, the expres-
sion in (4.13) equals 0, proving (4.8).
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Next, to prove (4.9), we note that

∑
a1,...,ak≥0

a1+···+kak=k+1

(−1)a2+2a3+···+(k−1)akTk+1,a1,...,ak(p, q)

= (−1)(k−1)Tk+1,1,0,...,0,1(p, q)

+ ∑
a1,...,ak−1≥0,ak=0

a1+···+(k−1)ak−1=k+1

(−1)a2+2a3+···+(k−2)ak−1Tk+1,a1,...,ak−1,0(p, q), (4.14)

which by (4.11) equals

(−1)(k−1)Tk+1,1,0,...,0,1(p, q)

+ ∑
a1,...,ak−1≥0

a1+···+(k−1)ak−1=k+1

(−1)a2+2a3+···+(k−2)ak−1Tk+1,a1,...,ak−1(p, q). (4.15)

Clearly, Ak+1,1,0,...,0,1 = {(1, 1, 1), (k, 1, 1), (k, 1, 2), . . . , (k, 1, k)}. So, for any r ∈
Tk+1,1,0,...,0,1, either rk+1 = (1, 1, 1) and rk = (k, 1, k) or rk+1 = (k, 1, k). In either
case, we can build up a word by first placing the letter (k, 1, 1), then placing the letter
(k, 1, 2), etc. Note that for any j, the placement of letters (k, 1, j + 1), . . . , (k, 1, k−
1) does not effect the statistic c>(k,1, j))

(
Γk, j(r)

)
so that we can easily compute the

contribution to the placement of a letter (k, 1, j) to Tk+1,1,0,...,0,1(q). In the case where
rk+1 = (1, 1, 1) and rk = (k, 1, k), we have only one choice where to put (k, 1, 1)
which contributes a factor of 1 = [1]q to Tk+1,1,0,...,0,1(q). Having placed (k, 1, 1),
we then have 2 choices where to place (k, 1, 2) and it can easily be seen that the
placement of (k, 1, 2) contributes a factor of 1 + q = [2]q to Tk+1,1,0,...,0,1(q). In
general, having placed (k, 1, 1), . . . , (k, 1, j − 1), we then have j choices where to
place (k, 1, j) and it can easily be seen that the placement of (k, 1, j) contributes a
factor of [ j]q to Tk+1,1,0,...,0,1(q). It follows that the contribution of all words r where
rk+1 = (1, 1, 1) and rk = (k, 1, k) is [k− 1]q!. Now if rk+1 = (k, 1, k), then we can
start with the word (1, 1, 1)(k, 1, k) and then build up a word by first placing the letter
(k, 1, 1), then placing the letter (k, 1, 2), etc. In this case, we have two choices where
to put (k, 1, 1) which contributes a factor of 1 + q = [2]q to Tk+1,1,0,...,0,1(q). Having
placed (k, 1, 1), we then have 3 choices where to place (k, 1, 2) and it can easily
be seen that the placement of (k, 1, 2) contributes a factor of 1 + q + q2 = [3]q to
Tk+1,1,0,...,0,1(q). In general, having placed (k, 1, 1), . . . , (k, 1, j − 1), we then have
j + 1 choices where to place (k, 1, j) and it can easily be seen that the placement
of (k, 1, j) contributes a factor of [ j + 1]q to Tk+1,1,0,...,0,1(q). It follows that the
contribution of all words r where rk+1 = (k, 1, k) is [k]q!. Thus Tk+1,1,0,...,0,1(q) =
[k−1]q! +[k]q! and so

(−1)(k−1)Tk+1,1,0,...,0,1(p, q) = (−1)k−1
(

p2k−1[k−1]p,q! + pk[k]p,q!
)

. (4.16)

Next, by induction (on k) and Theorem 2.2, it follows that

(−1)k+1 ∑
a1,...,ak−1≥0

a1+···+(k−1)ak−1=k+1

(−1)a2+2a3+···+(k−2)ak−1Tk+1,a1,...,ak−1(p, q)
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= Dk+1,k−1(p, q)− [k + 1]p,qDk,k−1(p, q)

= q[k]p,qDk,k−1(p, q)+ pk[k]p,q↓k−1 D1,k−1(p, q)− [k + 1]p,qDk,k−1(p, q)

= (q[k]p,q − [k + 1]p,q)Dk,k−1(p, q)+ pk[k]p,q ↓k−1 D1,k−1(p, q)

= −p2k−1[k−1]p,q!. (4.17)

Combining (4.15) and (4.17) proves (4.9).

Now assume that n ≥ k + 1 and (4.7) holds for all m ≤ n. Using (4.6), the right
hand side of (4.7) can be written as

q[n]p,qDn,k(p, q)+ pnDn,k(p, q)+ (−1)n+1 ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)a2+2a3+···+(k−1)ak×

(
pnTn,a1−1,a2,...,ak(p, q)+

k

∑
i=2

pn[n]p,q↓(i−1) Tn−i+1,a1,...,ai−1,...,ak(p, q)

)

= q[n]p,qDn,k(p, q)

+ pn

⎛
⎜⎝Dn,k(p, q)− (−1)n ∑

a1≥1,a2,...,ak≥0
a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn,a1−1,a2,...,ak(p, q)

⎞
⎟⎠

− (−1)n
k

∑
i=2

pn[n]p,q↓(i−1)

∑
a j≥0 for j �= i,ai≥1

a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn−i+1,a1,...,ai−1,...,ak(p, q)

= q[n]p,qDn,k(p, q)+ pn

(
Dn,k(p, q)

− (−1)n ∑
a1,...,ak≥0

a1+2a2+···+kak=n

(−1)∑k
i=2(i−1)aiTn,a1,...,ak(p, q)

)

− (−1)n
k

∑
i=2

(−1)i−1 pn[n]p,q↓(i−1)

∑
a1,...,ak≥0

a1+···+kak=n+1−i

(−1)∑k
j=2( j−1)a jTn−i+1,a1,...,ak(p, q). (4.18)
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By induction, we can assume that

Dn,k(p, q)−(−1)n ∑
a1,...,ak≥0

a1+2a2+···+kak=n

(−1)∑k
i=2(i−1)aiTn,a1,...,ak(p, q)= [n]p,qDn−1,k(p, q).

(4.19)
Therefore, using (4.19) in (4.18) yields

[n + 1]p,qDn,k(p, q)+ (−1)n+1 ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn+1,a1,...,ak(p, q)

= q[n]p,qDn,k(p, q)+ pn[n]p,qDn−1,k(p, q)

− (−1)n
k

∑
i=2

(−1)i−1 pn[n]p,q↓(i−1)

∑
a1,...,ak≥0

a1+···+kak=n+1−i

(−1)∑k
j=2( j−1)a j Tn−i+1,a1,...,ak(p, q)

= q[n]p,qDn,k(p, q)+ pn[n]p,q

(
Dn−1,k(p, q)

− (−1)n−1 ∑
a1,...,ak≥0

a1+···+kak=n−1

(−1)∑k
j=2( j−1)a jTn−1,a1,...,ak(p, q)

)

− (−1)n
k

∑
i=3

(−1)i−1 pn[n]p,q↓(i−1)

∑
a1,...,ak≥0

a1+···+kak=n+1−i

(−1)∑k
j=2( j−1)a j Tn−i+1,a1,...,ak(p, q), (4.20)

which again, by induction, equals

q[n]p,qDn,k(p, q)+ pn[n]p,q[n−1]p,qDn−2,k(p, q)

− (−1)n
k

∑
i=3

(−1)i−1 pn[n]p,q↓(i−1) ∑
a1,...,ak≥0

a1+···+kak=n+1−i

(−1)∑k
j=2( j−1)a j Tn−i+1,a1,...,ak(p, q).

Continuing in this way, we find that k total uses of induction (on n) yields

[n + 1]p,qDn,k(p, q)+ (−1)n+1 ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)∑k
j=2( j−1)a j Tn+1,a1,...,ak(p, q)

= q[n]p,qDn,k(p, q)+ pn[n]p,q↓k Dn−k,k(p, q)
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= Dn+1,k(p, q),

proving the theorem.

To demonstrate the recursion given in Theorem 4.6, we now return to our ex-
ample from Section 2. Namely, we will compute D5,2(p, q) given that D4,2(p, q) =
qp2[3]p,q[2]p,q:

D5,2(p, q) = [5]p,qD4,2(p, q)+ (−1)5 ∑
a1,a2≥0

a1+2a2=5

(−1)a2T5,a1,a2(p, q)

= [5]p,qqp2[3]p,q[2]p,q − (T5,5,0(p, q)−T5,3,1(p, q)+ T5,1,2(p, q)) .
(4.21)

One can easily check that T5,5,0 = {(1, 1, 1)(1, 2, 1)(1, 3, 1)(1, 4, 1)(1, 5, 1)}, so

that T5,5,0(p, q) = p(5
2) = p10. Next, we see that T5,3,1 consists of the words labelled

in the following table by their p, q-weight.

p10 : (2, 1, 1)(2, 1, 2)(1, 1, 1)(1, 2, 1)(1, 3, 1)
(1, 1, 1)(2, 1, 1)(2, 1, 2)(1, 2, 1)(1, 3, 1)
(1, 1, 1)(1, 2, 1)(2, 1, 1)(2, 1, 2)(1, 3, 1)
(1, 1, 1)(1, 2, 1)(1, 3, 1)(2, 1, 1)(2, 1, 2)

p9q : (2, 1, 1)(1, 1, 1)(2, 1, 2)(1, 2, 1)(1, 3, 1)
(1, 1, 1)(2, 1, 1)(1, 2, 1)(2, 1, 2)(1, 3, 1)
(1, 1, 1)(1, 2, 1)(2, 1, 1)(1, 3, 1)(2, 1, 2)

p8q2 : (2, 1, 1)(1, 1, 1)(1, 2, 1)(2, 1, 2)(1, 3, 1)
(1, 1, 1)(2, 1, 1)(1, 2, 1)(1, 3, 1)(2, 1, 2)

p7q3 : (2, 1, 1)(1, 1, 1)(1, 2, 1)(1, 3, 1)(2, 1, 2)

That is, T5,3,1(p, q) = p7q3 + 2p8q2 + 3p9q + 4p10. Finally, T5,1,2 consists of the
words labelled in the following table by their p, q-weight.

p10 : (2, 1, 1)(2, 1, 2)(2, 2, 1)(2, 2, 2)(1, 1, 1)
(2, 1, 1)(2, 1, 2)(1, 1, 1)(2, 2, 1)(2, 2, 2)
(1, 1, 1)(2, 1, 1)(2, 1, 2)(2, 2, 1)(2, 2, 2)

p9q : (2, 1, 1)(2, 2, 1)(2, 1, 2)(2, 2, 2)(1, 1, 1)
(2, 1, 1)(1, 1, 1)(2, 1, 2)(2, 2, 1)(2, 2, 2)
(2, 1, 1)(2, 1, 2)(2, 2, 1)(1, 1, 1)(2, 2, 2)
(1, 1, 1)(2, 1, 1)(2, 2, 1)(2, 1, 2)(2, 2, 2)

p8q2 : (2, 2, 1)(2, 1, 1)(2, 1, 2)(2, 2, 2)(1, 1, 1)
(2, 1, 1)(1, 1, 1)(2, 2, 1)(2, 1, 2)(2, 2, 2)
(2, 1, 1)(2, 2, 1)(2, 1, 2)(1, 1, 1)(2, 2, 2)
(1, 1, 1)(2, 2, 1)(2, 1, 1)(2, 1, 2)(2, 2, 2)

p7q3 : (2, 1, 1)(2, 2, 1)(1, 1, 1)(2, 1, 2)(2, 2, 2)
(2, 2, 1)(1, 1, 1)(2, 1, 1)(2, 1, 2)(2, 2, 2)
(2, 2, 1)(2, 1, 1)(2, 1, 2)(1, 1, 1)(2, 2, 2)

p6q4 : (2, 2, 1)(2, 1, 1)(1, 1, 1)(2, 1, 2)(2, 2, 2)
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That is, T5,1,2(p, q) = p6q4 + 3p7q3 + 4p8q2 + 4p9q + 3p10. Plugging these values
into the right hand side of (4.21) gives

D5,2(p, q) = [5]p,qqp2[3]p,q[2]p,q −
(

p10 −
(

p7q3 + 2p8q2 + 3p9q + 4p10)
+ p6q4 + 3p7q3 + 4p8q2 + 4p9q + 3p10)

= p2q8 + 3p3q7 + 5p4q6 + 6p5q5 + 5p6q4 + 3p7q3 + p8q2

= p2q2[4]p,q!. (4.22)

One can easily use Theorem 2.2 to verify that in fact D5,2(p, q) = p2q2[4]p,q!.

5. Conclusions and Perspectives

In the previous sections, we proved that our generalized p, q-derangement numbers,
Dn,k(p, q), defined in (2.1), satisfy the following p, q-analogues of (1.12) and (1.17):

Dn+1,k(p, q) = q[n]p,qDn,k(p, q)+ pn[n]p,q↓k Dn−k,k(p, q),

where Dn,k(p, q) = 0 for 1 ≤ n ≤ k, and

Dn+1,k(p, q) = [n + 1]p,qDn,k(p, q)

+ (−1)n+1 ∑
a1,...,ak≥0

a1+2a2+···+kak=n+1

(−1)a2+2a3+···+(k−1)ak Tn+1,a1,...,ak(p, q).

While our definition of Dn,k(p, q) was motivated by Garsia and Remmel’s
q-enumeration of derangements in Sn by the inversion statistic, we also note that
q-derangements have also been defined in literature (see [3, 7]) using the major in-
dex statistic. In particular, Wachs defined a q-analogue of the derangements Dn,1 in
the symmetric group Sn by q-enumerating the derangements according to their major
index. That is, Wachs defined

D̃n,1(q) := ∑
σ∈Dn,1

qma j(σ),

where for any permutation σ = σ1 · · ·σn ∈ Sn, ma j(σ) = ∑i : σi>σi+1 i, and proved
combinatorially that

D̃n,1(q) = [n]q!
n

∑
k=0

(−1)kq(k
2)

[k]q!
, (5.1)

which is a natural q-analogue of the classical formula Dn,1 = n!∑n
k=0(−1)k/k!. It is

not difficult to see that the D̃n,1(q) also satisfy the following recursion:

D̃n+1,1(q) = [n + 1]qD̃n,1(q)+ (−1)n+1q(n+1
2 ), (5.2)
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with initial conditions D̃1,1(q) = 1 and D̃2,1(q) = q. Comparing (5.2) with (1.8),
we see that D̃n,1(p) = Dn,1(p, 1). Moreover, it is easy to see that Dn,1(p, q) =

q(n
2)Dn,1(p/q, 1), so that

Dn,1(p, q) = q(n
2)Dn,1(p/q, 1)

= q(n
2)D̃n,1(p/q)

= q(n
2) ∑

σ∈Dn,1

(p/q)ma j(σ)

= ∑
σ∈Dn,1

(p)ma j(σ)qcoma j(σ),

where for any permutation σ = σ1 · · ·σn ∈ Sn, coma j(σ) = ∑i : σi<σi+1 i. Thus, we
have two different combinatorial interpretations for Dn,1(p, q) in this case.

It is natural to ask whether D̃n,k(q) := ∑σ∈Dn,k
qma j(σ) is also a specialization of

Dn,k(p, q). However, this is not the case. To see this, note there are six permutations
in D4,2. The table below gives the statistics ma j(σ), inv(σ), and coinv(σ) for which
it is easy to see that no specialization of D4,2(p, q) will yield D̃4,2(q).

σ in cyclic notation σ in one line notation ma j(σ) inv(σ) coinv(σ)
(1, 2, 3, 4) 2 3 4 1 3 0 6
(1, 3, 2, 4) 3 4 2 1 5 1 5
(2, 1, 3, 4) 3 1 4 2 4 1 5
(2, 3, 1, 4) 4 3 1 2 3 2 4
(3, 1, 2, 4) 2 4 1 3 2 2 4
(3, 2, 1, 4) 4 1 2 3 1 3 3

We note that Chow [3] later extended Wachs’ result by defining a q-analogue
of the derangements dB

n in the hyperoctahedral group Bn by q-enumerating the de-
rangements according to their flag-major index (see [1, 2] for definition). That is, he
defined

dB
n (q) := ∑

σ∈DB
n

q f ma j(σ),

where DB
n = {σ ∈ Bn : σ(i) �= i for all i ∈ [n]}, and proved the following analogue of

(5.1):

dB
n (q) = [2]q[4]q · · · [2n]q

n

∑
k=0

(−1)kq2(k
2)

[2]q[4]q · · · [2k]q
. (5.3)

There are many natural questions that arise from these developments, which we
will pursue in subsequent work. In particular,

(1) How does Chow’s model extend to Cm 	Sn?

(2) Can we extend our model of generalized derangements to Bn?

(3) Can we extend our model of generalized derangements to Cm 	Sn?
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