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A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its

circumstellar environment

A. Corsi1,2, E. O. Ofek3, A. Gal-Yam3, D. A. Frail4, S. R. Kulkarni5, D. B. Fox6,

M. M. Kasliwal7, M. Sullivan8, A. Horesh5, J. Carpenter5, K. Maguire8, I. Arcavi5,

S. B. Cenko9,10, Y. Cao5, K. Mooley5, Y.-C. Pan8, B. Sesar5, A. Sternberg11, D. Xu3,12,

D. Bersier13, P. James13, J. S. Bloom10, P. E. Nugent10,14

ABSTRACT

We present the discovery, classification, and extensive panchromatic (from radio

to X-ray) follow-up observations of PTF11qcj, a supernova discovered by the Palo-

mar Transient Factory. Our observations with the Karl G. Jansky Very Large Ar-

ray show that this event is radio-loud: PTF11qcj reached a radio peak luminos-

ity comparable to that of the famous gamma-ray-burst-associated supernova 1998bw

(L5GHz ≈ 1029 erg s−1Hz−1). PTF11qcj is also detected in X-rays with the Chandra

observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis

probes the supernova interaction with circumstellar material. The radio observations
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suggest a progenitor mass-loss rate of ∼ 10−4 M⊙ yr−1× (vw/1000 km s−1), and a veloc-

ity of ≈ 0.3 − 0.5 c for the fastest moving ejecta (at ≈ 10 d after explosion). However,

these estimates are derived assuming the simplest model of supernova ejecta interacting

with a smooth circumstellar wind, and do not account for possible inhomogeneities in

the medium and asphericity of the explosion. The radio data show deviations from such

a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj

is compatible with the high-frequency extrapolation of the radio synchrotron emission

(within the large uncertainties). A light echo from pre-existing dust is in agreement with

our infrared data. Our pre-explosion data from the Palomar Transient Factory suggest

that a precursor eruption of absolute magnitude Mr ≈ −13mag may have occurred

≈ 2.5 yr prior to the supernova explosion. Overall, PTF11qcj fits the expectations from

the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing

the final pre-explosion evolution of such stars.

Subject headings: supernovae: general — supernovae: individual (PTF11qcj)

1. Introduction

Supernovae (SNe) of type Ib/c are believed to mark the death of massive stars that are stripped

of their hydrogen (H), and possibly helium (He) envelopes before explosion (e.g., Filippenko 1997).

Since the discovery of an association between the low-luminosity, long-duration γ-ray burst (GRB)

980425 and SN1998bw (Galama et al. 1998; Kulkarni et al. 1998; Pian et al. 1999), it has become

evident that long duration GRBs are a rare sub-class of type Ib/c SNe (for a recent review, see

Woosley & Bloom 2006, and references therein). Their ejecta are highly energetic and collimated

relativistic outflows, emitting in γ-rays, and likely powered by a central engine (an accreting black

hole or a neutron star).

SN1998bw showed that events with properties intermediate to “classic” high-energy, highly

relativistic GRBs, and ordinary non-relativistic Ib/c SNe, do exist and could probably allow us to

solve the mystery of the GRB-SN connection if more of them were to be discovered.

After GRB980425/SN 1998bw, a few other GRBs have been reliably associated with nearby

SNe (Woosley & Bloom 2006), that are all of type Ic “broad-line” (BL), i.e. showing broad spec-

tral features indicative of high photospheric velocities. After hundreds of Ib/c SNe have been

monitored in radio in search for SN1998bw-like events, SN2009bb has marked the discovery of a

Ic SN characterized by a relativistic (radio and X-ray emitting) ejecta, with no associated γ-rays

(Soderberg et al. 2010).

Radio observations are a key to discover events just on the dividing line between GRBs and

ordinary Ib/c SNe (Berger et al. 2003; Soderberg et al. 2006b). In fact, while the SN optical emis-

sion traces the slower explosion debris (v ≈ 0.03 − 0.1 c), synchrotron emission from the fastest
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ejecta peaks in the radio band (on typical timescales of 10-30 d since explosion). Radio (and X-

ray) emission, because it originates from the interaction between the high velocity SN ejecta and

the low-velocity wind from the SN progenitor, can probe the density of the circumstellar medium

(CSM), and constrain the wind properties of the SN progenitor. Since massive stars are speculated

to undergo strong episodic mass-loss events, radio studies of type Ib/c SNe can help us understand

the nature of their progenitors.

Here, we report on the discovery of a radio-loud SN, PTF11qcj, and on the results of our

extensive, multi-wavelength follow-up campaign extending till ≈1.5 yr after optical detection. While

further observations are on-going, the data gathered during the first year of our campaign allow

us to set important constraints on the nature of this event. Our paper is organized as follows.

In Section 2 we describe the optical discovery, spectral classification, and IR-to-X-ray follow-up

observations of this event; in Section 3 we describe our multi-frequency analysis; finally, in Section

4 we present our summary.

2. Panchromatic observations

2.1. SN optical photometry

On 2011 November 01 (hereafter all times are given in UTC unless otherwise stated), we

discovered PTF11qcj in an R-band image from the 48-inch Samuel Oschin telescope at Palomar

Observatory (P48), which is routinely used by the Palomar Transient Factory (PTF1; Law et al.

2009; Rau et al. 2009). The SN was also detected by our autonomous discovery and classification

framework called Oarical (Bloom et al. 2012). PTF11qcj is located at α = 13h13m41.51s, δ =

+47◦17′57.′′0 (J2000), at an angular distance of ≈ 0.68′′ from the nucleus of the galaxy SDSS2

J131341.57+471757.2, at z = 0.0287 (Figure 1). Assuming H0 = 71 km s−1Mpc−1, ΩM = 0.27,

ΩΛ = 0.73, this redshift correspond to a luminosity distance of dL ∼= 124Mpc. The SN was visible

at a magnitude of g ≈ 17.6 in a previous exposure taken in g-band on 2011 October 23. It was not

detected in an R-band image taken with the P48 on 2011 August 17.

Subsequent observations with the P48 were conducted with the Mould-R and Gunn-g fil-

ters (Figure 1). Photometry (Table 2) was performed relative to the SDSS r-band and g-band

magnitudes of stars in the field (York et al. 2000), using our custom pipeline which performs image

subtraction followed by PSF photometry on stacks of PTF images extracted from the PTF Infrared

Processing and Analysis Center (IPAC) archive (Maguire et al. 2012; Ofek et al. 2012, 2013c). The

flux residuals from individual subtracted images were binned, and then converted to magnitudes.

The errors were estimated from the standard deviation of the photometric measurements in each

1http://ptf.caltech.edu/iptf/

2Sloan Digital Sky Survey (York et al. 2000)

http://ptf.caltech.edu/iptf/
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bin (Figure 2).

Multi-color optical (gri) optical light curves were also obtained using the Palomar 60-inch

telescope (P60; Cenko et al. 2006) and the RATCAM optical imager on the robotic 2m Liverpool

Telescope (LT; Steele et al. 2004) located at the Roque de Los Muchachos Observatory on La

Palma. P60 and LT photometry was extracted using the same pipeline described above (Table 2).

2.2. Spectral classification

After the discovery of PTF11qcj with P48, we triggered a spectroscopic follow-up campaign3

(Figure 3). A first spectrum was taken on 2011 November 5 using OSIRIS on the Gran Telescopio

Canarias4 (GTC), with a 1′′ long-slit and the R300R grism (≈ 5000− 10000 Å). The exposure time

for this observation was ≈ 240 s. Two other spectra were obtained on 2011 November 7 and on

2011 December 21 using ISIS on the William Herschel Telescope5 (WHT), with a 1′′ long-slit, the

R300B grating plus ≈ 4500 Å central wavelength on the blue side; the R158R grating plus ≈ 7500 Å

central wavelength on the red side. The exposure times were of 600 s and 1800 s, respectively for

the two observations. On 2011 November 26 and 2011 December 31, we obtained two spectra using

LRIS (Oke et al. 1995) mounted on the Keck-I 10m telescope6. For both spectra we used a 1′′

slit, with the 400/8500 grating plus ≈ 7850 Å central wavelength on the red side, and the 400/3400

grism on the blue side. The exposure times were 1200 s for the blue side and 720 s for the red side,

on 2011 November 26; 900 s for the blue side and 840 s for the red side, on 2011 December 31.

Finally, on 2012 March 20, we took a last spectrum with DEIMOS (Faber et al. 2003) mounted on

the Keck-II 10m telescope, using a 0.8′′ slit, and the 600ZD (600/7500) grism centered at 7000 Å .

The wavelength coverage was 4350 − 9650 Å , the exposure time was 2 × 1200 s, and the spectral

resolution was ≈ 3.4 Å.

Our first spectrum obtained on 2011 November 5 with the GTC (see Figure 3) is found to

be most similar to a type Ic SN by the Superfit software (Howell et al. 2005). A comparison with

template spectra shows relatively high velocities (around 22,000 km s−1 derived from the Ca II IR

triplet minimum), that are driving superfit to find the BL SN 1998bw (at ≈ 19 d post-maximum)

as the best fit (Figure 3, red line). However, more normal type Ic SN spectra (e.g., SN1994I, black

line in Figure 3) could also provide an acceptable fit, provided these are artificially blue shifted by

∼5,000 km s−1 (dotted line in Figure 3). In fact, the absorption features profiles are more similar

to SN1994I than to SN1998bw. Aside from nebular Hα emission from the host galaxy, no strong

narrow lines are seen in this first spectrum.

3All spectra will be made public via WISeREP (Yaron & Gal-Yam 2012)

4http://www.gtc.iac.es/instruments/osiris/

5http://www.ing.iac.es/Astronomy/instruments/isis/index.html

6http://www2.keck.hawaii.edu/inst/lris/

http://www.gtc.iac.es/instruments/osiris/
http://www.ing.iac.es/Astronomy/instruments/isis/index.html
http://www2.keck.hawaii.edu/inst/lris/
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Fig. 1.— P48 Mould-R pre-discovery (upper-left) and discovery (upper-right) images of the

PTF11qcj field. We also show multi-color images taken with P60 and P200 during our multi-

wavelength follow-up campaign. In all the images, the P48 discovery position of PTF11qcj is

marked with a circle of 2 ′′radius.

Fig. 2.— The PTF11qcj r-band light curve (corrected for Galactic extinction and local host-galaxy

extinction) is compared with the light curve of the Ic-BL SN1998bw (Clocchiatti et al. 2011), and

of the normal Ic SN1994I (Richmond et al. 1996). The orange-dashed line is the optical light curve

of SN1998bw compressed in time by a factor of 1.33 and scaled in peak magnitude so as to match

our P48 observations of PTF11qcj. (See the electronic version of this paper for colors.)
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Fig. 3.— Comparison of our first spectrum of PTF11qcj (blue line) with spectra of Type Ic SNe

1998bw (Ic-BL at ≈ 19 days post-maximum light, red line; Patat et al. 2001) and 1994I (normal

type Ic at maximum light, black line; Clocchiatti et al. 1996). Telluric absorptions have been

excised. To match the spectrum of SN1994I, an additional blue shift of ∼5,000 km s−1 needs to be

applied (dotted line). (See the electronic version of this paper for colors.)
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Fig. 4.— Optical spectra of PTF11qcj obtained with the WHT (black and red) and Keck (orange,

blue, and purple). From top to bottom, these spectra were taken on 2011 November 07 (black),

2011 November 26 (orange), 2011 December 21 (red), 2011 December 31 (blue), and 2012 March

20 (purple). See text for a detailed description of these spectra. (See the electronic version of this

paper for colors.)
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The WHT spectrum taken two days later (Figure 4, black line) extends to bluer wavelengths.

No narrow lines are seen except for common host galaxy lines (Balmer series, O[III] and O[II]), and

the continuum shape is red (with a prominent decreasing trend beyond ≈ 5500 Å) as is common

for SNe of type Ic. As the SN flux declines, most notably in the spectra taken on and after 2011

November 26, the SN signal is strongly mixed with underlying emission from the host galaxy.

Given the classification as Ic-BL SN, we commenced, in addition to our optical spectroscopic

follow-up, an extensive radio, X-ray, and IR follow-up campaign (Sections 2.4-2.6).

2.3. Pre-explosion images and photometry

We searched for evidence of pre-explosion activity in the PTF images taken before the discovery

date of PTF11qcj. To this end, we constructed a reference frame from 30 images taken over the

period 2013 March - May 2013 (≈ 16 months after the SN explosion, when PTF11qcj was no longer

detected by P48). We geometrically resampled this reference image to the coordinate frame of

every image of the PTF11qcj field taken before and during the SN explosion (hereafter, the “science

images”). We matched the PSFs of the resampled reference image and of the science images using

a non-parametric kernel (a process that usually results in the degradation of the reference image

quality; e.g., Bramich 2008), and subtracted the reference image from each science image. Note that

in this process the science frames are never geometrically resampled. PSF photometry was then

performed on the difference images at the position of PTF11qcj, which was measured accurately

from the difference images in which the SN is present, with the shape of the PSF measured from

either the pre-subtraction science or reference images. This results in a flux and flux uncertainty

computed at the position of PTF11qcj for every science image, regardless of whether the SN was

present or not (see also Ofek et al. 2013c).

In Figure 5 we show the light curve data obtained for the pre-SN season of May 2009 -

September 2010 (top panel), and for the post-SN season of January 2012 - January 2013 (bottom

panel). In each of these Figures, the black circles show measurements made using PSF fitting at

the SN position on the individual difference images; the green area shows the weighted-mean flux

in time bins, and the extent of the error on the mean; finally, the blue area shows the typical range

of PSF counts obtained by performing PSF photometry on other galaxies in the PTF11qcj field,

having similar magnitude as the PTF11qcj host (±2mag), and at the same isophotal radius as the

one at which PTF11qcj occurred in its own host. Thus, while the blue areas in these Figures

track any global image subtraction problems, the green areas track departures in the mean flux

from zero and allow us to asses the presence of any pre-SN activity.

As evident from Figure 5, during the pre-SN season (top panel) we find tentative evidence for

periods of activities in between May 2009 and July 2009 (see also panel B in Figure 6), and between

May 2010 and June 2010 (see also panel D in Figure 6). These active periods are separated by

a period of non-detection, between November 2009 and May 2010 (see also panel C in Figure 6).
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Fig. 5.— The detailed P48 R-band light curve of PTF11qcj in flux space, with day zero defined as

the first day on which PTF observed the field of PTF11qcj. Two seasons are shown. The first (top)

shows the season 2 yr before the SN explosion, and the second (bottom) shows the year after the

SN explosion. The black circles show measurements made using PSF fitting at the SN position on

the individual difference images. The green solid lines area shows the weighted-mean flux in time

bins, and the extent of the green hashed area the error on the mean. The blue hashed area shows

the typical range of PSF counts obtained by performing PSF photometry in other galaxies near to

the host of PTF11qcj; this tracks any global image subtraction problems. The horizontal dashed

line shows the position of zero flux. The letters B, C, D and F correspond to the photometry

bins stacked to produce the images shown in Figure 6. To convert the counts scale to apparent

magnitude, use m = −2.5 log(counts) + 27. (See the electronic version of this paper for colors.)
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Fig. 6.— Six postage stamps showing the area around PTF11qcj. Top left (panel A) shows a deep

reference image generated from 30 images taken across March-May 2013. The remaining panels

(B-F) show stacked image subtractions for the time periods indicated. Panels B-D are constructed

from difference images from before the SN explosion, with an apparent faint precursor detection

in panels B and D. Panel E is near the peak of the SN light curve, and panel F is ∼6 months

after explosion once the SN had faded to a similar flux level as the candidate precursor detections.

The positions of panels B, C, D and F in the SN light curve can be seen in Figure 5. See text for

discussion.
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Specifically, we note that during the active period of May 2009 - July 2009, the possible precursor

from PTF11qcj is as bright as the SN was during April 2012 - May 2012 (this is also evident

comparing panels B and F in Figure 6). We finally checked whether any evidence for excess flux

was still present during the post-SN season (after the SN itself faded below the P48 detection limit).

As evident from the bottom panel of Figure 5, at t & 1 yr after explosion no excess flux is detected

at the position of PTF11qcj. This further supports the evidence for precursor activity during the

pre-SN season.

2.4. Radio observations

On 2011 November 15, we started a long-term monitoring campaign of PTF11qcj (along with

calibrators J1327+4326 and 3C 286) with the Karl G. Jansky Very Large Array7 (VLA; Perley et al.

2009) in its D, DnC, C, CnB, and A configurations, under our Target of Opportunity programs8.

VLA data were reduced and imaged using the Common Astronomy Software Applications (CASA)

package.

The light curves of PTF11qcj at frequencies of 2.5GHz, 3.5GHz, 5GHz, 7.4GHz, 13.5GHz,

16GHz are reported in Table 3. The VLA measurement errors are a combination of the rms map

error which measures the contribution of small unresolved fluctuations in the background emission

and random map fluctuations due to receiver noise, and a basic fractional error (here estimated to

be of ≈ 5%) which accounts for inaccuracies of the flux density calibration (see e.g., Weiler et al.

1986; Ofek et al. 2011).

We also observed the field of PTF11qcj (together with the test calibrator J1203+480) using

the Combined Array for Research in Millimeter-wave Astronomy9 (CARMA), at a frequency of

93GHz. Bad weather caused de-coherence which resulted in a limited follow-up of this source with

CARMA. Nevertheless, the data collected on 2011 November 19 and 2011 November 2610 both

resulted in a detection of PTF11qcj (Table 3).

7The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under

cooperative agreement by Associated Universities, Inc.; https://public.nrao.edu/telescopes/vla

8VLA/11A-227, VLA/11B-034, VLA/11B-247, VLA/12B-195 - PI: A. Corsi

9http://www.mmarray.org/

10CARMA program #c0857; PI: A. Horesh

https://public.nrao.edu/telescopes/vla
http://www.mmarray.org/
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2.5. X-ray observations

We have carried out an X-ray monitoring campaign of PTF11qcj with Chandra11 (Weisskopf et al.

2002) and Swift12 (Gehrels et al. 2004). All our Swift-XRT observations yielded non detections (see

Table 4), while Chandra detected PTF11qcj in three epochs13. The results of our X-ray follow-up

are reported in Table 4.

We reduced Swift data adopting an on-source circular aperture of 7.2 ′′and assuming that

37% of the photons are within this aperture. In addition to the results obtained for single-epoch

observations (see Table 4), we also provide the upper-limit obtained by co-adding all of the Swift

non-detections.

For Chandra observations, we adopted a circular aperture of 2′′ fixed on the optical position

of PTF11qcj. The background has been estimated from nearby portions of the image. Net source

counts have been derived by subtracting from the counts measured in the on-source region the

number of counts measured in the background region, scaled by the ratio of the on-source to

background region areas. We caution that the background estimated from nearby portions of the

image does not include any diffuse or point sources associated with the host galaxy itself. In this

sense, the count rates indicated in Table 4 are upper-limits on the flux from PTF11qcj. Since the

first epoch is brighter than the third, we can however be confident that we have seen some emission

from PTF11qcj during the first epoch.

2.6. IR observations

We observed the position of PTF11qcj with Spitzer14 (Fazio et al. 2004) on two epochs15

(on 2012 March 28.747 and 2012 June 25.643; Table 5). Data were reduced using the standard

Spitzer/IRAC pipeline. Subsequently, aperture photometry was performed using a radius of 4

pixels (i.e., 2.4′′) for PTF11qcj, and an annulus of radii 8 to 16 pixels (i.e., 4.8′′ to 9.6′′)for the

sky background. Calibration and aperture corrections were as per the zero points listed in the

Spitzer/IRAC handbook. However, there is clearly a host galaxy contribution at the position of

PTF11qcj (see Figure 7): for this reason, we consider the flux measurement obtained with Spitzer

as an upper-limit to the IR flux of PTF11qcj.

On 2012 March 28, we also observed the field of PTF11qcj in Ks-band with the Palomar

11http://www.nasa.gov/mission_pages/chandra/main/index.html

12http://heasarc.nasa.gov/docs/swift/

13DDT proposals #501793, #501794, #501797; PI: A. Corsi

14http://www.spitzer.caltech.edu/

15DDT proposal #31731; PI: A. Corsi

http://www.nasa.gov/mission_pages/chandra/main/index.html
http://heasarc.nasa.gov/docs/swift/
http://www.spitzer.caltech.edu/


– 13 –

Fig. 7.— Spitzer images of the PTF11qcj field. The black circle indicates the position of PTF11qcj.

Contamination from the host galaxy is evident in all the images.

200-inch telescope (P200). The contribution of the host galaxy is clearly evident at the position of

PTF11qcj in the P200 image (Figure 1, lower-right panel). Performing aperture photometry with

respect to two reference stars in the field (2MASS 13134736+4719100 and 13135239+4717152), we

derive a Ks-band photometric data point that, as for the Spitzer observations, we consider as an

upper-limit to the SN flux in this band (Table 5).

3. Multi-wavelength analysis

3.1. Spectroscopic properties

As discussed in Section 2.2, our first spectrum of PTF11qcj shows relatively high velocities

(around 22,000 km s−1). The spectral similarity between PTF11qcj at ≈ 13 d after g-band discovery

(2011 November 5, or 55870MJD), and the Ic-BL SN1998bw at ≈ 19 d after peak (Figure 3),

suggests that we discovered PTF11qcj around peak time or shortly thereafter. We thus infer

an explosion date of 55830MJD. te . 55850MJD, assuming an explosion-to-peak timescale of

≈ 7− 20 d, as derived from well studied Ib/c SN samples (e.g., Figure 5 in Drout et al. 2011).

The continuum shape observed in the spectrum of PTF11qcj taken on 2011 November 26

(Figure 4, orange line), is flat or even rising toward the blue side down to ≈ 3500 Å. Indeed, this

spectrum and the ones taken after 2011 November 26 show the SN signal strongly mixed with

underlying emission from the host galaxy. We have attempted to subtract this contribution using
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Fig. 8.— Optical spectra of PTF11qcj (black) compared with the spectra of other notable SNe

(green). All the spectra except for the upper-left one have been host subtracted as described

in the text. The earlier spectra (upper panels) suggest a match with SNe of the Ic-BL type

(SN1998bw and SN2002ap; Galama et al. 1998; Mazzali et al. 2002; Gal-Yam et al. 2002). The

later spectra (lower panels) are better matched by more normal SNe Ib/c (SN2008D and SN1985F;

Filippenko & Sargent 1986; Begelman & Sarazin 1986; Mazzali et al. 2008; Soderberg et al. 2008).

(See the electronic version of this paper for colors.)
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a spectrum of the host galaxy obtained by the SDSS survey16. We scaled the host spectrum

until the strong emission lines approximately matched in intensity the lines observed in our SN

spectra, rebinning the spectra as needed to match the line width, and then subtracted the host

spectrum (resampled onto the SN spectrum wavelength scale) from our observed spectra. These

host-subtracted spectra are plotted in Figure 8.

We run the Superfit program on the host-subtracted spectra and find a reasonable match to

spectra of SNe Ib/c of comparable ages. The earlier-epoch spectra seem to fit SNe of the Ic-BL

class, while later-epoch ones are better matched by more normal SNe Ib/c. We stress that the

host-subtraction procedure we attempted is quite rough due to the irregular nature of the host and

an apparent bright star-forming knot seen in pre-explosion SDSS imaging, co-located with the SN.

Still, in view of the matches found between the host-subtracted spectra and observations of other

events, it is certainly reasonable to assume that PTF11qcj evolved in a similar way to other SNe

Ib/c.

Finally, the late-time spectrum (2012 March 20; Figure 4, purple line) is nebular, with O I

6300 Å and Ca II emission lines. After subtracting the host contribution, this spectrum appears

quite similar to late spectra of SN1998bw, again within the large uncertainties related to host

contamination (Figure 9).

In order to estimate the host-galaxy extinction toward the SN, we measured the Na D ab-

sorption doublet in our high signal-to-noise and high-resolution Keck/DEIMOS spectrum obtained

on March 20, 2012. We detect weak features consistent with the Na D doublet at the host red-

shift, for which we measure the following equivalent width values using the IRAF/splot routine:

EW
5890Å

= 0.087Å, and EW
5896Å

= 0.265Å. Since the 5890Å component is always stronger (op-

posite what we see), and the FWHM of the 5896Å component is almost 3 times larger than that

of the 5890Å line, we assume that the 5896Å doublet component is probably contaminated by a

noise fluctuation. Using the relation of Poznanski et al. (2012) (see their Figure 7) we estimate

an extinction of EB−V=0.03 (AR ∼ 0.08mag) using the 5890Å component. We thus apply this

small correction, together with the correction for Galactic extinction, to our photometry plotted in

Figure 2.

3.2. Pre-SN activity: a precursor from PTF11qcj progenitor?

In recent years pre-SN eruptions have been detected from type IIn SNe (e.g., Mauerhan et al.

2013; Prieto et al. 2013; Ofek et al. 2013c) and type Ibn SNe (e.g., Nakano et al. 2006; Pastorello et al.

2007; Foley et al. 2007). The total ejected mass in these outbursts is estimated to be a fraction of

a solar mass (e.g., Immler et al. 2008; Ofek et al. 2013b,c). However, pre-SN eruptions were never

detected before from other types of SNe.

16
http://skyserver.sdss3.org/dr9/en/get/specById.asp?id=1642855417023326208

 http://skyserver.sdss3.org/dr9/en/get/specById.asp?id=1642855417023326208
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Our pre-explosion images of PTF11qcj show tentative evidence for the existence of pre-explosion

activity, particularly in terms of a precursor event reaching mr ≈ 22.3mag during May-July 2009,

≈ 2.5 yrs before the SN discovery. Marginal evidence for further pre-SN activity (mr ≈ 23mag) is

found during May-June 2010, ≈ 1.5 yrs before discovery.

At the distance of PTF11qcj (dL ∼= 124Mpc), correcting for local (see Section 3.1) and Galac-

tic (Ar = 0.024mag; Schlafly & Finkbeiner 2011) extinction at the SN position, mr ≈ 22.3mag

(mr ≈ 23mag) corresponds to Mr ≈ −13.3mag (Mr ≈ −12.6mag). For comparison, the pre-

cursor observed 2 yr before explosion of the prototype Ibn SN2006jc reached Mr ≈ −14mag

(Pastorello et al. 2007). Based on our pre-SN images, we can exclude a precursor as bright as

the one observed for SN2006jc during the epochs covered by our observations (see Figure 5).

3.3. SN optical light curve analysis

As discussed in Section 3.1, we likely discovered PTF11qcj around peak time. Based on

our first detection with P48 (mr ≈ 17.6mag), we can constrain the peak r-band magnitude to

be mr,peak . 17.6mag. Correcting for extinction (Galactic plus local), our upper-limit on the

peak r-band magnitude of PTF11qcj (mr,peak . 17.6mag) corresponds to an absolute r-band

peak magnitude of Mr,peak . −18mag. This limit is compatible with the average R-band peak

magnitudes found in recent systematic studies of Ib/c SNe (Drout et al. 2011).

In the 15 days following the P48 discovery, the P48 r-band light curve of PTF11qcj decreased

by ∆mr ≈ 0.9mag. The optical light curve of the GRB-associated SN1998bw dropped by 1.1mag

in the first 15 d after peak (McKenzie & Schaefer 1999). Note that for PTF11qcj the 15-days

magnitude drop is calculated with respect to the discovery time rather than the peak time; however,

we likely discovered the PTF11qcj around peak. In Figure 2, we show a comparison between the

PTF11qcj r-band light curve, and the light curves of the Ic SN1994I (Richmond et al. 1996), and

the Ic-BL SN1998bw (Clocchiatti et al. 2011), scaled to the distance of PTF11qcj. The explosion

time of PTF11qcj is taken as ≈ 15 d before peak, where the last is assumed to be coincident with

our g-band discovery (as suggested by our spectral analysis). A rise time of ≈ 15 d is a factor

of ≈ 1.3 shorter than the rise time of SN1998bw (≈ 20 d). Indeed, the SN1998bw R-band light

curve compressed by a factor of ≈ 1.33 (Figure 2, orange dashed-line) seems to match the one of

PTF11qcj.

The early-time (t . 60 d) evolution of Ib/c SNe is usually referred to as the photospheric

phase. This phase is characterized by a high optical depth, and a post-maximum light curve decay

rate slower than the 56Ni-to-56Co decay. During this phase, we can use the light curve properties

to estimate the physical parameters of the SN explosion (Arnett 1982): the 56Ni mass, the ejecta

mass, and the kinetic energy. From Figure 22 in Drout et al. (2011), for ∆m15,r ≈ 0.9mag and

Mr,peak . −18mag, we roughly estimate MNi & 0.1M⊙ and (EK/1051 erg)−1/4(Meje/M⊙)
3/4 ≈ 1.2.

For a photospheric velocity of 22,000 km s−1 (Section 3.1), these values imply (e.g., Equations (1)-
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(2) in Drout et al. 2011) Meje ≈ 2.5M⊙ and EK ≈ 8 × 1051 erg. While these are very tentative

estimates due to the uncertainties in the PTF11qcj peak-time and magnitude, these values are

compatible with the ones observed for other Ib/c SNe. Particularly, the energy is consistent with

what observed for BL-Ic and engine-driven events (Drout et al. 2011).

3.4. Radio emission modeling

Our radio monitoring campaign reveals that PTF11qcj is among the most radio-luminous Ib/c

SNe. With a peak luminosity of L5GHz ≈ 1029 erg s−1 Hz−1, PTF11qcj is comparable to the GRB-

associated SN1998bw (Figure 10; Kulkarni et al. 1998). From the presence of incoherent radio

emission, assuming a non-relativistic source, we can derive a lower-limit on the size of the emitter

(Θ), by imposing that the brightness temperature TB does not exceed the equipartition value of

TB,eq ≈ 1011 K (Readhead 1994; Kulkarni et al. 1998):

TB =
c2fν

2kBν2πΘ2
. 1011 K ⇒ Θ & 2.1

(

fν
µJy

)1/2
( ν

GHz

)−1
µas (1)

where kB is Boltzmann’s constant, ν is the observing frequency, fν is the observed flux density,

and Θ is the angular diameter of the emitting region. As evident from the above Equation, the

largest lower limits are obtained for the lowest frequencies (and highest fluxes). Adopting the flux

measured at 2.5GHz around day 100 (when the low-frequency radio flux is around peak), we get

Θ100 d & 33µas. At the distance of PTF11qcj, this corresponds to a size of 2r & 6 × 1016 cm, or

an average expansion speed r/100 d & 0.1 c. We note that typical average speeds measured for the

fastest moving ejecta of non GRB-associated Ib/c SNe are in the range (0.03− 0.3)c (Berger et al.

2003; Wellons et al. 2012).

A remarkable feature of PTF11qcj is that its radio light curves do not show a smooth evolu-

tion (see Figure 10). This behavior, while difficult to model, is not completely unusual. Indeed,

Soderberg et al. (2006b) found that ≈ 50% of radio SNe show evidence for abrupt light curve vari-

ability, including abrupt steepening, abrupt rise, or episodic variations (. than a factor of 2 in flux)

of the radio light curve. These are typically explained as inhomogeneities in the CSM. We caution,

however, that data corresponding to the most abrupt flux variation observed for PTF11qcj - a

factor of ≈ 2 in about 1 day between ≈ 55949.6 and ≈ 55950.4MJD - were collected in 2012 while

the VLA antennas were being moved from the D to the C configuration.

Radio SNe are known to emit non-thermal synchrotron radiation. According to the model

proposed by Chevalier (1982), the relativistic electrons and amplified magnetic fields necessary for

synchrotron emission are produced in the SN blast wave during the interaction with an ionized CSM.

The last is usually assumed to be emitted via a constant mass-loss rate, constant velocity wind (i.e.,

ρCSM = Ṁw/(4πvwr
2)) from a massive progenitor. The observed radio emission is characterized

by a smooth turn-on first at higher frequencies, and later at lower frequencies, usually explained

as temporally decreasing self-absorption as the shock propagates toward lower density regions.
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The initial turn on may also be related to free-free absorption in the ionized CSM (Chevalier

1998). While external free-free absorption from a homogeneous medium is predicted to cause an

exponential rise of the low-frequency radio flux, a power-law is characteristic of self-absorption,

internal absorption from thermal absorbing gas mixed into the synchrotron emitting gas, or free-

free absorption from a clumpy external medium (Weiler et al. 1990).

In Figure 12 we show the observed spectral indices β (with fν ∝ νβ) for PTF11qcj, as derived

from VLA observations in adjacent sub-bands. The observed spectral indices at early times do not

exceed the limiting value of 2.5 expected in the case of synchrotron self-absorption. In what follows,

we thus assume the simplest “standard” synchrotron-self absorption model. However, we stress that

alternative scenarios invoking internal free-free absorption, or free-free absorption from a clumpy

CSM, may also explain such spectral indices and/or contribute to the attenuation mechanisms

during the earlier part of our observations (Chevalier 1998; Weiler et al. 1990).

To estimate the physical parameters of PTF11qcj, we follow the formulation by Soderberg et al.

(2005) for synchrotron self-absorbed emission arising from sub-relativistic SN ejecta expanding in a

smooth circumstellar medium with a power-law density distribution. Given the observed variability

of PTF11qcj, we do not expect smooth hydrodynamic models to provide a perfect fit to its radio

observations. Nevertheless, we attempt such modeling to provide a tentative estimate of the bulk

properties of PTF11qcj and its surrounding environment. Hereafter, we consider all the data

points collected with the VLA before 56101MJD. On and after this epoch, a radio re-brightening

is evident (possibly associated with an enhanced density CSM; Figure 11 and 13). Since late-time

radio observations of PTF11qcj aimed at confirming and tracking this phase of enhanced emission

are on-going at the time of writing, here we concentrate on the interpretation of the earlier epochs.

Within the synchrotron self-absorbed model, at any time t the observed synchrotron emission

originates from a shell of shock-accelerated electrons, with radius r and and thickness r/η. The

shell expands spherically while following a self-similar evolution in the interaction with a smooth

CSM. The electrons are accelerated into a power-law energy distribution N(γ) ∝ γ−p, with γ & γm,

and carry a fraction ǫe of the energy density of the ejecta. A fraction ǫB of such energy goes into

magnetic fields. The temporal evolution of the radius (r), magnetic field (B), minimum Lorentz

factor (γm), and of the electrons-to-magnetic field energy ratio (ǫe/ǫB), is parametrized as follows

(Soderberg et al. 2005, 2006a):

r = r0

(

t− te
t0

)αr

B = B0

(

t−te
t0

)αB

(2)

γm = γm,0

(

t− te
t0

)αγ

ǫe
ǫB

,= F0

(

t−te
t0

)αF

, (3)

where t0 is an arbitrary reference time that we set to day 10 since explosion, and te is the explosion

time of the SN. In the above equations, αr = (n − 3)/(n − s) (Chevalier 1982, 1996), where n

characterizes the density profile of the outer SN ejecta (ρSN ∝ (r/t)−n), and s characterizes the

density profile of the radiating electrons within the shocked CSM (ne ∝ r−s).
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In the “standard” scenario (Chevalier 1996), the magnetic energy density (UB ∝ B2) and the

relativistic electron energy density (Ue ∝ neγm) are assumed to be a fixed fraction (i.e., αF = 0) of

the total post-shock energy density (U ∝ ne 〈v〉
2). With these assumptions (Soderberg et al. 2005,

2006a),

Ue ∝ U ⇒ αγ = 2(αr − 1), (4)

and

UB ∝ U ⇒ αB =
(2− s)

2
αr − 1, (5)

With the above parametrization, the flux density from the uniform shell of radiating electrons

reads (Soderberg et al. 2005, 2006a):

fν = Cf

(

t− te
t0

)(4αr−αB)/2

(1− exp(−τ ξν (t)))
1/ξ
( ν

1GHz

)5/2
×

× F3(x)F
−1
2 (x)mJy (6)

where x = 2/3(ν/νm), and

νm = γ2m
eB

2πmec
= νm,0

(

t− te
t0

)2αγ+αB

(7)

is the characteristic synchrotron frequency of electrons with Lorentz factor γm; F2 and F3 are

integrals of the modified Bessel function of order 2/3 (see Equation (A11) in Soderberg et al.

2005); ξ parametrizes the sharpness of the spectral break between optically thick and thin regimes

(Soderberg et al. 2005, 2006a), and

τν(t) = Cτ

(

t− te
t0

)(p−2)αγ+(3+p/2)αB+αr+αF ( ν

1GHz

)−(p+4)/2
F2(x) (8)

is the optical depth (Soderberg et al. 2005, 2006a).

As evident from Equations (6)-(8), the observed spectral and temporal evolution of the radio

emission depends on the parameters (Cf , Cτ , νm,0, te, p, ξ, αr , s). Note that the three parameters

Cf , Cτ , and νm,0 are functions of the four normalization constants r0, B0, γ0, F0
17 (and of the

source distance dL). Thus, while Cf , Cτ , and νm,0 can be determined by comparison with the

data, another constraint is needed to derive r0, B0, γm,0, F0 from the fitted values of Cf , Cτ ,

and νm,0. Following common practice in radio SNe studies, we set s = 2 (as expected for a wind

density profile), p ≈ 3, and ν0 ≈ 1GHz. This reduces the number of free parameters to five,

(Cf , Cτ , te, ξ, αr), or four when the explosion date te is known.

In the case of PTF11qcj, we first set te ≈ 55842MJD (as suggested by our optical observations;

see Sections 3.1 and 3.3). Using a χ2 minimization procedure and the simplified four-parameter

17We refer the reader to Equations (6)-(8) in Soderberg et al. (2005) for the expression of Cf , Cτ , νm,0, as functions

of r0, B0, γ0, F0.
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model described above, we obtain the results reported in Table 1 (Model 1). The model predictions

are shown in Figures 11-13 (dotted lines). From our radio best fit results and by Equations (2-

3) here and (6-8) in Soderberg et al. (2005), we derive the evolution of r, B, and γm (Table 1).

The radial evolution is within the expected range of 0.67 . αr . 1.0 (Chevalier 1996, 1998),

and it implies an ejecta velocity of dr/dt ≈ 0.34c at day 10. A velocity of ≈ 0.3 c at day 10, is

somewhat higher than the typical range of (0.1 − 0.25) c for normal Ib/c SNe (e.g., Berger et al.

2003), but significantly slower than SN1998bw, for which the bulk Lorentz factor was estimated to

be Γ ∼ 2 on a similar timescale (Kulkarni et al. 1998; Li & Chevalier 1999). We also note that the

implied velocity of ≈ 0.28 c at the time of our first spectrum of PTF11qcj, is consistent with the

lower-limit estimate derived from the Ca triplet (≈ 22, 000 km s−1), while the implied size at day

100 (r ≈ 7 × 1016 cm) is consistent with the lower limit (r & 3 × 1016 cm at day 100) derived in

Equation (1).

The number density of the emitting electrons, progenitor mass loss rate, and total energy of

the ejecta, then follow from the relations (Soderberg et al. 2005, 2006a):

ne =
p− 2

p− 1

B2
0

8π

F0

mec2γm,0

(

t− te
10 d

)2αB−αγ

= ne,0

(

t− te
10 d

)αne

(9)

Ṁ =
8π

η
ne,0mpr

2
0vw

(

t− te
10 d

)2αB−αγ+2αr

= Ṁ0

(

t− te
10 d

)α
Ṁ

(10)

EK =
4πF0

η
r30

B2
0

8πǫe

(

t− te
10 d

)2αB+3αr

= EK,0

(

t− te
10 d

)αEk

(11)

for a nucleon-to-electron density ratio of 2 (as appropriate for W-R winds). The values derived for

these quantities within Model 1 are also reported in Table 1.

In terms of total energy in the radio emitting material, PTF11qcj ranks as one of the most en-

ergetic Ib/c SNe, comparable to the GRB-associated SN1998bw (Kulkarni et al. 1998), and similar

to other radio SNe that show evidence for CSM density variations (e.g., SN2003bg; Soderberg et al.

2006a). The mass-loss rate estimates for GRBs and engine-driven SNe such as 1998bw are typi-

cally (Ṁ/10−5M⊙yr
−1)×(vw/10

3 km s−1)−1 ≈ 0.1−1 (Panaitescu & Kumar 2002; Yost et al. 2003;

Chevalier et al. 2004). PTF11qcj lies at the higher end of the range observed for local W-R stars,

Ṁ ≈ (0.6 − 9.5) × 10−5M⊙ yr−1 (Cappa et al. 2004), and is similar to normal type Ib/c SNe with

prominent variations in the radio light curves (such as SNe 2004cc and 2004gq; Soderberg et al.

2006a; Wellons et al. 2012).

As underlined before, we do not expect the simplified model used in our analysis to provide a

perfect fit to (nor to represent a complete physical interpretation of the) PTF11qcj radio emission.

Indeed, our high χ2/d.o.f=1790/90 is similar to what obtained in other analyses of complex radio

SN light curves (e.g., Soderberg et al. 2006a; Krauss et al. 2012). So the results of our fit should

be regarded as a tentative insight into the properties of the PTF11qcj fastest ejecta and CSM.
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Table 1: Radio model parameters for a standard synchrotron self-absorbed model with s = 2 and

νm,0 = 1GHz. All quantities marked with a 0 are normalized to t − te = 10 d. The first five

rows give the values of the fitted parameters. The other rows give the values of physical quantities

derived by Equations (2-3), (4-5), (9-11), and Equations (6-8) in Soderberg et al. (2005).

Model 1 (fixed te) Model 2 (free te)

Cf ≈ 7.1× 10−4 ≈ 1.9× 10−3

Cτ ≈ 1.8 × 107 ≈ 9.3 × 106

ξ ≈ 0.23 ≈ 0.17

αr ≈ 0.80 ≈ 0.80

te (MJD) 55842 ≈ 55857

r0 (cm) ≈ 1.1 × 1016F
−1/17
0 (η/10)1/17 ≈ 1.7 × 1016F

−1/17
0 (η/10)1/17

B0 (G) ≈ 6.7F
−1/17
0 (η/10)4/17 ≈ 5.1F

−1/17
0 (η/10)4/17

αB -1 -1

γm,0 ≈ 7.3F
2/17
0 (η/10)−2/17 ≈ 8.3F

2/17
0 (η/10)−2/17

αγ -0.40 -0.40

ne,0 (cm−3) ≈ 1.4× 105F
13/17
0 (η/10)10/17 ≈ 7.6 × 104F

13/17
0 (η/10)10/17

αne ≈ −1.6 ≈ −1.6

Ṁ0 (M⊙yr
−1) ≈ 1.2 × 10−4F

11/17
0 (η/10)−5/17(vw/10

3 km s−1) ≈ 1.4 × 10−4F
11/17
0 (η/10)−5/17(vw/10

3 km s−1)

αṀ 0 0

EK,0 (erg) ≈ 9.3× 1048(ǫe/0.33)
−1F

12/17
0 (η/10)−6/17 ≈ 1.9× 1049(ǫe/0.33)

−1F
12/17
0 (η/10)−6/17

αEK
0.40 0.40



– 22 –

The match between Model 1 and data is most problematic during the earlier observations at

the lowest frequencies (2.5− 3.5GHz): we caution, however, that at such low frequencies the data

are most affected by RFI, so the uncertainties on the measured fluxes may be underestimated.

We note that it is unlikely that the high value of the χ2 derived for the radio model is entirely

dominated by interstellar scattering and scintillation (ISS). Indeed, considering the data collected

at t ≤ 56057MJD (i.e., in between ≈ 38 − 215 d since 55842MJD), we derive a modulation index

with respect to our best fit model flux predictions (fν,pred),

mobs(ν) =

√

〈(fν,obs − fν,pred)2〉 −
〈

σ2
ν,obs

〉

〈fν,obs〉
(12)

(where fν are the measured flux densities and σν their measured uncertainties), of m(ν) ≈ 0.1−0.3

for ν = (2.5−16) GHz (with the highest modulation observed at the lowest frequencies). Using the

maps provided by Walker (2001) and the PTF11qcj Galactic coordinates (l = 112deg, b = 69deg),

we roughly estimate ν0 ≈ 5GHz for the ISS transition frequency between the strong and weak

scattering regimes (thus, our lowest frequency observations are in the strong scattering regime),

and Θ0 ≈ 5µas for the Fresnel angle at the transition frequency. The expected value for the

modulation index in the refractive strong scattering reads (e.g., Walker 1998, 2001; Kulkarni et al.

1998; Cenko et al. 2013):

mp(ν) =

(

ν

ν0

)17/30 (Θr

Θ

)7/6

, (13)

with

Θr = Θ0

(ν0
ν

)11/5
(14)

Using the above Equations, mp(2.5GHz) ≈ 0.3 requires Θ ≈ 45µas around day 130, or r ≈

4 × 1016 cm, which is a factor of ≈ 2 smaller than the radius at day 130 implied by our radio fits.

Moreover, flux variations are observed up to the highest frequencies of our observations (16GHz),

that fall in the weak scattering regime (and so the observed modulations at such frequencies cannot

be explained by ISS).

Due to the uncertainties in the explosion date of PTF 11qcj, we also performed a fit remov-

ing the constraint on the explosion time (Model 2; see Table 1 and the solid lines in Figures

11-13). In this case the fit drives te around the discovery time of PTF11qcj, 55857MJD, and

χ2
r/d.o.f.=1717/89. We note, however, that in this last model the velocity of the fastest ejecta is

rather high, dr/dt ≈ 0.52c at day 10. Assuming PTF11qcj exploded around 55842MJD (see Section

3.1), the delayed onset of the radio emission may be interpreted as interaction with a shell whose

inner radius is located at a distance r & 22, 000 km s−1 × 15 d≈ 3 × 1015 cm. This is comparable

to the distances that may have been reached by material ejected during the pre-SN activity event

probed by our P48 pre-discovery images (see Section 3.2), if such material was ejected at speeds

vw & 400 km s−1.
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An element common to both the above fit results is the low value of ξ ≈ 0.2, a parameter that

measures the sharpness of the spectral break between optically thick and thin regimes. Indeed,

we see that at the higher frequencies the late-time spectral index of PTF11qcj appears to remain

& −1, or show an abrupt increase (this is evident during our latest two VLA observations; Figure

12 and Figure 13) rather than transition toward a value of ≈ −1. Recently, Björnsson (2013) has

shown that the broadening observed in the radio spectra and/or light curves of some type Ib/c SNe

may be a direct indication of inhomogeneities in the CSM.

The increase in spectral index observed for PTF11qcj at t & 300 d (during the re-brightening

phase) in the 2.5-13GHz range is reminiscent of cases like the normal type Ic SN2004cc, for

which light curve variations associated with an increase of the spectral peak have been observed

(Wellons et al. 2012), or the Ic-BL SN2007bg, for which an increase in the flux density accompanied

by an increase in spectral index was observed around day 300 and interpreted as an absorption

turn-on associated with a sharp CSM density enhancement presumably due to evolution of the

progenitor wind (Salas et al. 2013). Indeed, this event seems most similar to PTF11qcj (see also

Figure 10). According to our radio modeling of the earlier data, the re-brightening occurs at

r & 1.7× 1017 cm.

Finally, we note that Moriya et al. (2013) have recently investigated the link between LBV as

SN progenitors and the appearance of episodic light curve modulations in the radio light curves of

the SN events, showing how these early modulations have the potential to probe the progenitor’s

mass loss history immediately before the SN explosion. A long-term monitoring campaign of

PTF11qcj aimed at tracking the properties of its late-time re-brightening is on-going at the time

of writing.

3.5. X-ray emission modeling

We performed a spectral fit of our three observations of PTF11qcj with Chandra (Figure 14).

We used a power-law model with fixed NH , and power-law index Γ (where Nphot(E) ∝ E−Γ) free to

vary but constrained to be the same across the three epochs. Flux normalizations were set free to

vary for each epoch. This way, we derive Γ = 1.70+0.81
−0.72 (90% confidence; Cstat/d.o.f.=5.18/3) for

NH = 1020 cm−2 (Galactic column density in the direction of PTF11qcj). We achieve satisfactory

X-ray spectral fits for fixed NH and power-law photon index unchanging across the three epochs, as

long as NH is less than a few ×1021 cm−2. Even if the CSM is not ionized, this upper-limit on NH

is consistent with the mass-loss (and radius at day 100) derived from our radio analysis. Indeed,

for a given Ṁ and r, the implied NH (from r to infinity) reads (e.g., Ofek et al. 2013a):

NH ≈ 1020

(

Ṁ

1.5× 10−4M⊙ yr−1

)

( vw
103 km s−1

)−1

×

(

r

7× 1016 cm

)−1

cm−2 . (15)
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From the above spectral analysis, we derive the corresponding unabsorbed X-ray fluxes for

the three epochs (see the last column in Table 4). If we conservatively assume that all the flux

measured during the last of our Chandra observations is entirely due to the contribution of the

host galaxy, and subtract such flux from the flux measured during the first epoch, then we get that

the X-ray emission from PTF11qcj is & (4.5 ± 2.9) × 10−15 erg cm−2 s−1, which corresponds to an

X-ray luminosity & (8± 5)× 1039 erg s−1 (0.3-8 keV; cps-to-flux conversion computed assuming the

best fit Γ ≈ 1.7, and an NH ≈ 1020 cm−2).

Hereafter, we consider three main mechanism to explain PTF11qcj X-ray observations (Chevalier & Fransson

2006): synchrotron emission; thermal (free-free) bremsstrahlung emission from material in the cir-

cumstellar shock or in the ejecta reverse shock; and inverse Compton scattering of photospheric

emission photons by relativistic electrons.

The radio-to-X-ray spectral index estimated comparing the 16GHz flux of PTF11qcj around

the time of our first Chandra observation (F16GHz ≈ 6.5mJy) with the X-ray one (FX & 4.5 ×

10−15 erg cm−2 s−1/(2.4 × 1017 Hz) ≈ 2 × 10−6 mJy), is Γ − 1 ≈ 0.9. The last is in agreement

with both the X-ray spectral index derived from the analysis of our Chandra data, and the radio

synchrotron self-absorbed model discussed in the previous section. Indeed, within the last model,

the optically thin portion of the synchrotron spectrum is predicted to have a photon index of

Γ− 1 ≈ (p− 1)/2 ≈ 1.

Based on the above considerations, synchrotron emission would seem to be the most straight-

forward interpretation of the PTF11qcj X-ray observations. A complication (not unique to the

case of PTF11qcj) arises from the fact that the synchrotron cooling break is expected to steepen

the spectral index between the radio and X-ray bands. For PTF11qcj, this would cause the X-

ray flux extrapolated from our radio data to fall below the one measured by Chandra. However,

Ellison et al. (2000) have suggested that a cosmic-ray dominated shock can flatten the synchrotron

spectrum at high frequencies, and Chevalier & Fransson (2006) have invoked such a flattening to

explain the X-ray emission of SN1994I in the context of synchrotron emission.

Within the thermal emission hypothesis, X-rays are produced while the forward shock plows

into the CSM and/or by the reverse shock heating the ejecta. Thus, the X-ray luminosity depends on

the density of the emitting material, which then cools by free-free emission. For an r−2 wind density

profile, the free-free luminosity can be estimated as (e.g., Chevalier & Fransson 2001; Sutaria et al.

2003; Soderberg et al. 2005, 2006a; Ofek et al. 2013b):

LX ≈
C

690
× 3× 1039

(

Ṁ

1.5 × 10−4M⊙yr−1

)2
( vw
103 km s−1

)−2

×

(

r

5× 1015 cm

)−1

erg s−1, (16)
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where C = 4(1+(n−3)(n−4)2/4) accounts for both the reverse and forward shock contribution18.

As evident from the above Equation, for typical values of n = 5 − 12.5 (i.e., C ≈ 6 − 690 or

αr ≈ 0.67−0.9; Chevalier 1982) and Ṁ . 1.5×10−4M⊙yr
−1(vw/10

3 km s−1) (as typically found in

Ib/c SNe; Wellons et al. 2012), LX & (8± 5)× 1039 erg s−1 at 100 d requires r (100 d). 5× 1015 cm.

This is smaller than the r (100 d)& 3× 1016 cm derived from Equation 1, and r (100 d)≈ 7× 1016 cm

derived from the radio modeling (see Table 1).

In the inverse Compton scenario, the X-ray luminosity can be estimated as follows (e.g.,

Björnsson & Fransson 2004; Soderberg et al. 2005, 2006a):

LX

Lradio
≈

Uph

UB
(17)

where:

UB =
B2

8π
(18)

and (Soderberg et al. 2006a):

Uph ≈ 0.4

(

Lbol

1042erg s−1

)(

t

1d

v

c

)−2

erg cm−3. (19)

For PTF11qcj, using our late-time P48 photometry and applying a tentative bolometric correction

of ≈ −0.5 (for a SN temperature of ≈ 104 K; Corsi et al. 2012), we estimate Lbol ≈ 108L⊙ during

the first Chandra epoch. Also, at this time, we estimate v = dr/dt ≈ 0.2 c and B ≈ 0.7G

based on the radio model discussed in Section 3.4. Thus, we get Uph ≈ 4 × 10−4 erg cm−3 and

UB ≈ 2 × 10−2 erg cm−3, or Uph/UB ≈ 0.02. Since Lradio ≈ 2 × 1039 erg s−1 (based on the 16GHz

flux of ≈ 6.5mJy during the first Chandra observation), we derive LX ≈ 4 × 1037 erg s−1, which

underestimates the observed X-ray luminosity by a factor of & 100.

In conclusion, synchrotron emission seems to be the easiest explanation for the X-ray counter-

part to PTF11qcj but, as discussed before, a mechanism flattening the spectrum at high frequencies

(such as a cosmic-ray dominated shock) would be required. Free-free emission could explain the

observed counterpart only for mass-loss rates in excess of the highest values found for SNe of type

Ib/c (Ṁ & 1.5 × 10−4 M⊙ yr−1); the inverse Compton scenario seems hard to reconcile with the

observed X-ray counterpart to PTF11qcj, unless the magnetic field energy is much lower than what

estimated from the radio fit (which assumes equipartition; see also Horesh et al. 2012).

3.6. Search for γ-rays

Given the radio and X-ray detections of PTF11qcj, we have searched the Fermi GRB catalog

for GRBs with explosion date in between the time of our first detection of PTF11qcj, and a month

18The factor of 4 accounts for the fact that the density behind the forward shock (ρFS) is 4 times larger than the CSM

one; moreover, the expression for C takes into account the fact that ρRS = ρFS(n−4)2(n−3)/4 (Chevalier & Fransson

2001).
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earlier. No GRBs were found within such time frame, with positions compatible with PTF11qcj.

The non-relativistic speeds suggested by the simplest radio model (Section 3.4) are in agreement

with the lack of a GRB detection.

From a tentative comparison with the light curves of off-axis low-luminosity GRBs expanding

in a constant density environment available in the literature (van Eerten & MacFadyen 2011), we

deduce that fitting the PTF11qcj radio and X-ray emission within the simplest off-axis GRB sce-

narios, may be difficult to achieve. Moreover, despite there is some amount of controversy in the

literature concerning whether the contribution from a GRB counter jet could cause a late-time light

curve bump (e.g., Li & Song 2004; Wang et al. 2009; van Eerten & MacFadyen 2011), the late-time

radio re-brightening observed in PTF11qcj is a feature that challenges the simplest off-axis models.

3.7. IR echo

We detected an IR counterpart to PTF11qcj in both the Spitzer (Figure 7) and P200 (Figure

1) images. The extrapolation from the visible light spectral energy distribution suggests that a

late-time IR excess may be associated with PTF11qcj (Figure 15). A continuum IR emission can

be expected from hot dust - either newly formed hot dust, or pre-existing dust in the CSM that is

heated by the SN. Several heating mechanisms are possible. Pre-existing dust, for example, may be

collisionally heated by hot shocked gas, or radiatively heated by either the peak SN luminosity or

the late-time optical emission from circumstellar interaction (e.g., Draine & Salpeter 1979; Draine

1981; Dwek 1983, 1985).

Detailed modeling of the dust components and heating mechanisms is hard to accomplish with

only upper limits. Nonetheless, we can get some tentative insight into the properties of the dust

using our Spitzer and P200 observations. The following analysis should be considered as an order of

magnitude estimate of the dust properties around PTF11qcj, rather than an accurate measurement.

The simplest scenario usually invoked to explain IR echos observed in type II SNe is that

of radiative heating of pre-existing dust by the SN optical emission. The SN peak luminosity is

expected to vaporize the dust out to a vaporization radius rvap, and heat the inside of this shell to a

temperature roughly equal to the vaporization temperature, Tvap ≈ 2000K for graphite (hereafter,

we limit our discussion to graphite grains only since our data do not allow us to distinguish between

e.g. graphite and silicate). Alternatively, the dust may be formed at a radius recho larger than the

vaporization radius, and heated to a temperature Techo . Tvap.

For simple dust populations composed entirely of graphite with a single grains size, we can

estimate the echo (vaporization) radius (recho/vap) of a dust shell at Techo (Tvap ≈ 2000K), using

the estimated peak bolometric luminosity of PTF11qcj (Lbol,p), and the fact that the equilibrium

dust temperature is set by balancing the energy absorbed by a spherical dust grain of radius a
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(Fox et al. 2010):

Labs(a) = 4πr2SN
πa2

4πr2echo/vap

∫

πBν(TSN)Qν(a)dν =

=
Lbol,p

σT 4
SN

a2

4r2echo/vap

∫

πBν(TSN)Qν(a)dν, (20)

and the energy emitted by the dust:

Lrad(a) = 4πa2
∫

πBν(Techo/vap)Qν(a)dν. (21)

In the above Equations we have assumed wavelength dependent emissivities/absorption Qν(a)

(Draine & Lee 1984; Laor & Draine 1993); Bν(T ) is the Planck black-body function; σ is the Stefan-

Boltzmann constant; TSN ≈ 104 K is the effective SN temperature; and rSN the effective SN emitting

radius. The equality condition yields (Fox et al. 2010):

recho/vap(a) =

√

3

64

Lbol,p

(πρdaσT
4
SN)

∫

Bν(TSN)Qν(a)dν
∫

Bν(Techo/vap)kν(a)dν
(22)

where k(ν) = Qν(a)/(4/3ρda) is the mass absorption coefficient, and ρd = 2.25 g cm−3 (Smith et al.

2008) is the assumed dust density.

To estimate PTF11qcj peak bolometric luminosity we use the observed P48 peak magni-

tude corrected for Galactic and local host galaxy extinction, and apply a bolometric correction of

−0.5mag (for a SN temperature of ≈ 104 K; Corsi et al. 2012). This way we get Lbol,p ≈ 109.2L⊙

(but note that our observations do not allow us to precisely constrain the optical peak). Thus,

from Equation (22):

rvap ≈ (1− 5)× 1016 cm. (23)

The above range is calculated for dust grains of sizes (0.03 − 0.3)µm, and the smaller rvap are for

the larger dust grains (note that in Equation (22) rvap ∼ a−1).

In the radiative heating scenario, the shock radius (rs) sets a lower limit for the dust radius

(since any dust within this radius would be independently heated or destroyed by the forward

shock). At the time of our first Spitzer observation:

rs ≈ (0.3 − 1)× 1017 cm (24)

The smallest value above is calculated assuming an average speed of 22, 000 km s−1 as indicated

by the optical spectra of PTF11qcj (Section 3.1), while the largest value is derived from the radio

model (radio emission probes the fastest ejecta; see Section 3.4). Moreover, if the dust shell is

located at or beyond the vaporization radius, light travel time effects cause the thermal radiation
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from the dust grains to reach the observer over an extended period of time (thus the term “IR

echo”). So the duration of the IR echo sets a scale for the dust radius (Fox et al. 2010, 2011):

c×∆tIR ≈ 2× rIR. (25)

Using the fact that in the case of PTF11qcj ∆tIR & 100− 200 d, we deduce rIR & (1− 3)× 1017 cm

(which is indeed larger than, or at the least comparable to, rs - this assures self-consistency of the

IR echo scenario).

Since rvap < rIR, we conclude that the dust should be at Techo < Tvap in order for the IR echo

scenario to be self-consistent. Using again Equation (22), and setting the condition recho ≈ rIR &

(1 − 3) × 1017 cm, we derive the maximum temperatures that the dust can reach when heated by

PTF11qcj optical peak:

Techo . 580− 1500K, (26)

where the smallest temperature is for dust of size 0.3µm located at a dust echo radius of recho ≈

3× 1017 cm, while the largest temperature is for dust grains of 0.03µm located at recho ≈ 1017 cm.

We note that temperatures in the range of 500-770 K are typically found in modeling type IIn SNe

emission with graphite dust grains of sizes a ≈ 0.01 − 0.3µm (Fox et al. 2011).

For optically thin dust with massMd, located at a distance dL from the observer, and thermally

emitting at a single equilibrium temperature Techo (note that the IR emission of SNe such as

SN2006jd and SN2005ip was best fit by a multi-component dust model as opposed to a single

component one; here we limit our discussion to a single component - a similar approach has been

used for other SNe with limited data-sets; see e.g. Fox et al. (2011)), the total flux reads (see e.g.

Fox et al. 2010):

Fν =
Md

4/3πρda3
Lν(a)

4πd2L
=

MdBν(Techo)kν(a)

d2L
, (27)

where Lν(a) is defined in Equation (21). As shown in Figure 15, for dust grains of sizes 0.03−0.3µm

we tentatively estimate dust masses in the range Md ∼ 10−5 − 10−3 M⊙. For comparison, dust

masses in the range Md ≈ 2× 10−5 − 5× 10−2 M⊙ are typically invoked for type IIn SNe with IR

emission (Fox et al. 2011).

The estimates derived in this section are subject to the large uncertainties related to the

limitation of our IR data-set. However, a light echo scenario from pre-existing dust, presumably

emitted by the SN progenitor before the SN itself, seems to offer a consistent explanation.

4. Summary

We have presented panchromatic follow-up observations of SN PTF11qcj, that span an epoch

of up to ≈ 1.5 yr since optical discovery. While longer-time follow-up at radio wavelengths is still

on-going at the time of writing, the radio (VLA and CARMA), IR (Spitzer and P200), optical

(P48, P60, LT, WHT, and Keck), and X-ray (Swift and Chandra) data presented here allow us
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to estimate the mass-loss, energy, and mean expansion velocity of this interacting SN. PTF11qcj

is as radio-luminous as the GRB-associated SN1998bw, and comparably energetic. However, its

fastest-moving ejecta are slower, and appear to be expanding in a CSM of density substantially

higher than usually observed in engine-driven SNe, but comparable to other Ib/c SNe showing

prominent radio light curve variations.

Our X-ray observations likely suffer from some contamination from PTF11qcj host galaxy. We

have conservatively set a lower-limit to PTF11qcj X-ray emission by subtracting the flux measured

during the third epoch of our Chandra observations to the one observed during the first epoch. All

the models we considered to explain PTF11qcj X-ray observations tend to predict an X-ray flux

that falls below our lower-limit to PTF11qcj X-ray counterpart. Synchrotron emission may offer

a viable explanation of our X-ray measurements if a mechanism flattening the spectrum at high

frequencies (such as a cosmic-ray dominated shock) is invoked. Free-free emission could explain the

observed counterpart only for mass-loss rates in excess of the highest values found for SNe of type

Ib/c (Ṁ & 1.5 × 10−4 M⊙ yr−1).

The IR excess detected at the location of PTF11qcj suggests an IR echo associated with

radiative heating of pre-existing dust by the SN optical emission. The order-of-magnitude estimates

derived for the values of dust mass and temperature, seem to be compatible with those of type IIn

SNe. However, these estimates are subject to the large uncertainties related to the contamination

from the SN host galaxy. Observations of the PTF11qcj host galaxy aimed at better estimating

the level of contamination to the IR counterpart of PTF11qcj will be the subject of a future paper.

Our optical observations of the PTF11qcj field about 2 yr before discovery, show tentative

evidence for a precursor eruption that could have emitted the material with which the SN is

observed to interact. However, we can exclude a precursor as bright as the one observed 2 yr before

the Ibn SN2006jc. Given the relatively large amount of mass-loss rate deduced from the radio

modeling (Ṁ ∼ 10−4 M⊙yr
−1), it may be possible that some of this mass was lost in an eruptive

process. Indeed, our radio observations presumably require a non-smooth density profile that can

be explained by periods of higher-than average mass-loss rates (via eruptions) from the PTF11qcj

progenitor.

Overall, PTF11qcj seems to be consistent with the explosion of a massive W-R star. Future

data from our long-term monitoring campaign of this source will allow us to further constrain the

properties of this rare SN.
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Table 2:: Optical observations of PTF11qcj.

Date Telescope Band Exposure Time Magnitude

(MJD) (s) [AB]

55857.543 P48 g 60 17.579 ± 0.040

55859.538 P48 g 60 17.726 ± 0.022

55862.530 P48 g 60 18.046 ± 0.018

55864.524 P48 g 60 18.189 ± 0.024

55865.520 P48 g 60 18.283 ± 0.019

...19 ... ... ... ...

Table 3:: Radio observations of PTF11qcj.

MJD Observatory Central freq. Flux Density

(GHz) (mJy/beam)

55880.538 VLA - D 6 0.577 ± 0.041

55880.538 VLA - D 5 0.421 ± 0.026

55884.803 CARMA 93 3.96 ± 0.88

55887.508 VLA - D 7.4 1.556 ± 0.079

55887.508 VLA - D 5 0.619 ± 0.034

55891.640 CARMA 93 3.62 ± 0.75

...20 ... ... ...

19This Table is published in its entirety in the electronic version of this paper; a portion is shown here for guidance

regarding its form and content.

20This Table is published in its entirety in the electronic version of this paper; a portion is shown here for guidance

regarding its form and content.
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Table 4:: X-ray observations of PTF11qcj. Count rates have

been converted into fluxes assuming a spectral index of Γ ≈

1.7 and a Galactic column density NH ≈ 1020 cm−2.

Date Instrument Band Exposure Time Count Rate Flux (0.3-8 keV, unabs)

(MJD) (keV) (ks) (s−1) (erg cm−2 s−1)

55883.00 Swift-XRT 0.2-10 4.352 < 6.9× 10−4 < 2.4× 10−14

55916.71 Swift-XRT 0.2-10 4.937 < 9.6× 10−4 < 3.4× 10−14

55923.59 Swift-XRT 0.2-10 1.216 < 2.5× 10−3 < 8.8× 10−14

55930.02 Swift-XRT 0.2-10 1.538 < 3.1× 10−3 < 1.1× 10−13

55937.63 Swift-XRT 0.2-10 4.750 < 6.3× 10−4 < 2.2× 10−14

55949.07 Swift-XRT 0.2-10 9.231 < 6.8× 10−4 < 2.4× 10−14

55956.02 Swift-XRT 0.2-10 2.951 < 1.0× 10−3 < 3.5× 10−14

55957.09 Swift-XRT 0.2-10 2.402 < 2.0× 10−3 < 7.0× 10−14

55930 (mean) Swift-XRT 0.2-10 31.380 < 4.1× 10−4 < 1.4× 10−14

55939.05 Chandra-ACIS 0.3-8 9.836 (8.8 ± 3.0) × 10−4 (7.6 ± 2.6) × 10−15

55983.37 Chandra-ACIS 0.3-8 9.931 (5.7 ± 2.5) × 10−4 (4.9 ± 2.1) × 10−15

56028.36 Chandra-ACIS 0.3-8 19.930 (3.3 ± 1.3) × 10−4 (3.1 ± 1.2) × 10−15

Table 5:: IR observations of PTF11qcj

MJD Observatory Wavelength (µm) Flux density (µJy)

56014.063 P200 2.159 53± 4

56014.747 Spitzer 3.550 195.0 ± 1.7

56014.747 Spitzer 4.493 158.3 ± 1.2

56103.643 Spitzer 3.550 177.9 ± 1.6

56103.643 Spitzer 4.493 144.3 ± 1.1
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Fig. 9.— Comparison between our last spectrum of PTF11qcj (taken on 2012 March 20) and the

nebular spectrum of SN1998bw. (See the electronic version of this paper for colors.)
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Fig. 10.— Radio light curves of Ibc/IIb supernovae (5GHz or 8.5GHz) compared with the 5GHz

light curve of of PTF11qcj. The GRB-associated SN1998bw (open circles) is peculiar for its

bright radio emission and early-time peak (which is indicative of relativistic expansion). PTF11qcj

(filled circles) radio luminosity is comparable to SN1998bw, but the peak time is shifted to longer

timescales. SN2003bg (diamonds) was a IIb SN showing abrupt achromatic flux variations likely

associated to episodic density enhancements (Soderberg et al. 2006a). Long-term flux variations

are also evident in the case of the Ic SN2004cc (bow ties; Wellons et al. 2012). PTF11qcj shows

even more drastic light curve variations, with the most abrupt being a variation of a factor of ≈ 2 in

flux over a timescale of 1 d around epoch ≈ 100 d since 55842MJD (we caution, however, that this

abrupt variation is seen in data collected while the VLA antennas were being moved). SN2007bg

(squares; Salas et al. 2013) is an example of Ic-BL SN with complex circumstellar environment and

a late-time re-brightening similar to the one observed for PTF11qcj.
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Fig. 11.— Radio light curves of PTF11qcj obtained with the VLA. Synchrotron self-absorbed

models with parameters as described in the text are also shown for comparison (solid and dotted

lines). We note that the models break down during our latest three multi-frequency observations

of this source, when a radio re-brightening is evident (especially at the optically thin frequencies).
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Fig. 12.— Observed evolution of PTF11qcj radio spectral indices β (with fν ∝ νβ). Time is

calculated in days since time te = 55857MJD. The spectral index evolution as predicted by the

radio models discussed in the text is also shown for comparison (solid and dotted lines).
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Fig. 13.— Comparison of the observed radio spectra of PTF11qcj at various epochs, and the

synchrotron self-absorption model predictions (solid and dotted lines; see text for the models de-

scription). We note that the models break down during our latest spectra of this source, when a

radio re-brightening is evident.
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Fig. 14.— Chandra X-ray spectral fit to our three observations of PTF11qcj. Top panel: Best-

fit power-law spectra (smooth lines) and binned data (points with error bars) for the three epochs

(first epoch: purple squares and solid line; second epoch: blue diamonds and long dashed line; third

epoch: green circles and short dashed line). The multiepoch spectral fit has hydrogen-equivalent

absorbing column fixed at the estimated Galactic column of NH = 1020 cm−2, fluxes allowed to

vary at each epoch, and power-law index fixed across the three epochs; this fit yields photon index

Γ = 1.70+0.81
−0.72 (90%-confidence range). Bottom panel: C-statistic residuals to the fit; numerical

simulations give an acceptable goodness metric of 30%, and no obvious defects are apparent.
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Fig. 15.— Spitzer and P200 data points (downward pointing triangles) collected on 2012 March

plotted as upper limits (due to the contribution from the host galaxy emission, see Section 2.6), and

P48 and LT gri photometric data points around the same epoch. Plotted as lower-limits (upward

pointing triangles) are the data obtained by subtracting from the flux measured by Spitzer on 2012

March, the one measured on 2012 June (see Figure 7). Data are compared with the spectrum that

would be expected for dust grains of size 0.03µm, temperature Techo ≈ 1600K, and dust mass

Md ≈ 10−5 M⊙ (or 107.4 L⊙; dash-dotted line); and with the spectra expected for dust grain of

size 0.3µm, temperature Techo ≈ 580K, and dust mass in between Md ≈ 2× 10−4 M⊙ (or 106.8 L⊙;

dashed line) and Md ≈ 10−3 M⊙ (or 107.7 L⊙; solid line). For reference, we also plot a 10,000K

black body spectrum normalized so as to match the P48 and LT data, showing that the contribution

from the SN light to the IR is negligible compared to our IR lower-limits.


	1 Introduction
	2 Panchromatic observations
	2.1 SN optical photometry
	2.2 Spectral classification
	2.3 Pre-explosion images and photometry
	2.4 Radio observations
	2.5 X-ray observations
	2.6 IR observations

	3 Multi-wavelength analysis
	3.1 Spectroscopic properties
	3.2 Pre-SN activity: a precursor from PTF11qcj progenitor?
	3.3 SN optical light curve analysis
	3.4 Radio emission modeling
	3.5 X-ray emission modeling
	3.6 Search for -rays
	3.7 IR echo

	4 Summary



