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Abstract

This paper describes a class of procedures for
discovering linguistic structure, along with some
specific procedures and measures of their effec-
tiveness. This approach is well-suited to prob-
lems like learning the forms of words from con-
nected speech, learning word formation rules, and
learning phonotactic constraints and phonological
rules. These procedures acquire a symbolic rep-
resentation, such as a list of word forms, a list
of morphemes, or a set of context sensitive rules,
each of which serves as the language-particular
component of a generative grammar. Each pro-
cedure considers only a clearly defined set of pos-
sible generative grammars. This hypothesis space
can be thought of as the procedure’s “universal
grammar” . Procedures are evaluated for effective-
ness by computer simulation on input consisting
of naturally occurring language. Thus, they must
be robust. That is, small changes to the input
must lead to little or no change in the conclusions.
This research program resembles the connection-
ist program in its focus on phenomena like word-
segmentation, morphology, and phonology, its em-
phasis on robustness, and its reliance on computer
simulation. However, it is closer to parameter set-
ting and learnability theory in its focus on learn-
ing generative grammars selected from a clearly
defined hypothesis space, or “universal grammar”.
Further, to the extent that connectionism is about
neural implementations while parameter setting
and learnability theory are about universal gram-
mars, the study of effective procedures for lan-
guage acquisition stands at an intermediate level
of abstraction.

1 Introduction

Recent advances in the theory of induction have
made it possible to design algorithms that discover
generative grammars for some linguistic regular-
ities. This paper explains the principle behind
these algorithms and presents one particular algo-
rithm for the discovery of morphemic suffixes. Im-
plementing such algorithms and running them on
naturally occurring language can shed light on the
informational structure of natural languages, the
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robustness of language acquisition, and the value
of search heuristics for language acquisition.

Informational Structure. Consider the var-
ious domains of linguistic knowledge, such as the
forms of words, their meanings, their syntactic
properties, the forms of morphemes, the morpho-
tactic rules governing their combination, phono-
tactic constraints, and so on. To what extent is
knowledge in each domain useful or necessary for
learning about each of the other domains?

Robustness. Language acquisition is robust
in the sense that garbled or ungrammatical in-
put does not have catastrophic effects on the out-
come. In fact, at naturally occurring frequencies
it seems to have no effect at all. Further, creoliza-
tion processes suggest that children are attracted
to linguistic rules and tend to discount inconsis-
tent evidence.! What do these properties have
in common, and what kinds of language learning
procedures have them?

Controlling Search. Even when known uni-
versal constraints are taken into account, the num-
ber of possible hypotheses consistent with a given
linguistic input is generally so large that evaluat-
ing them all is computationally intractible. For
example, the phonological effects of morpholog-
ical processes in the world’s languages are ex-
tremely diverse, including suffixes, prefixes, in-
fixes, circumfixes, ablaut/umlaut, vowel-tier mor-
phemes, tonal morphemes, metatheses, and trun-
cations (Anderson, 1992). One technique that
might aid children in the identification of mor-
phemes is search ordering, where the most likely
hypotheses are explored first. For example, suf-
fixation appears to be the most common effect of
morphological processes in the world’s languages,
and all languages in Greenberg’s survey that have
non-affixal morphology also have prefixes, suffixes,
or both (Greenberg, 1966{(. Thus, it would make
sense for children to look for suffixes and pre-

'Newport (1993) reports on a deaf child raised
by deaf parents who are late learners of American
Sign Language. Although the parents use a particu-
lar morpheme in only 65% of obligatory contexts, the
child regularizes it, reaching about 90% of obligatory
contexts.
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fixes before looking for metatheses and trunca-
tions. Search ordering would clearly speed the
identification of suffixes, as compared to search-
ing for all sorts of phonological effects at once,
and since suffixes are so common, the average rate
of acquisition would be improved too. But look-
ing for suffixes first might actually speed the ac-
quisition of non-affixal morphology as well. The
rapid discovery of some suffixes might provide the
child with a toe-hold on the language’s morphol-
ogy, making possible partial analysis of the input
and thereby simplifying the search for other mor-
phemes. How much can search ordering help in
language acquisition? What other search heuris-
tics exist, and how much do they help?

These questions can be investigated by devis-
ing algorithms for learning in a particular domain,
such as morpheme discovery, implementing them
as computer programs, and running the programs
on naturally occurring language. The informa-
tional structure of languages can be investigated
by varying the information provided from domains
other than the one to be learned. For example,
how much does knowing the major syntactic cat-
egory of each word help in discovering morphemic
suffixes? This question is addressed in Section 3.
If experiments on naturally occurring input leave
any doubt about the robustness of an algorithm,
it can be tested on input that has been artificially
corrupted in various ways and to various degrees.
Finally, computer simulation can be used to ex-
plore the effects of various constraints on the hy-
pothesis space and heuristics for searching it, both
in terms of the time required for learning and the
outcome. For example, given an effective proce-
dure for identifying morphemic suffixes, what hap-
pens when infixes and circumfixes are considered
too? How much longer does it take to find the
suffixes, to what extent are incidental regularities
mistaken for infixes and circumfixes, and how does
that affect which suffixes are found?

This paper presents a robust algorithm for dis-
covering morphemic suffixes. This algorithm is
not linguistically universal, in the sense that there
are morphological processes other than suffixa-
tion. Further, it is not intended as a detailed
model of how children process each input utter-
ance. Rather, it should be seen as a tool for
evaluating certain strategies that may be used by
children’s language acqusition algorithms. Ulti-
mately, this algorithm may lead to others that
are more linguistically universal and more faith-
ful to the incremental nature of language acquisi-
tion, but that awaits further research. Finally, as
a practical matter, the experiments that have been
done to date use as input journalistic text in or-
thographic form. The conditions of child language
acquisition would be more accurately reflected by
phonetic transcripts of child-directed speech, and
such experiments are planned. Nonetheless, the
types of morphological phenomena to be found in
the two forms of input are, at an appropriate level
of abstraction, similar.
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2 Generative Explanations

The algorithms presented here are based on an
idea that Rissanen (1983) dubbed the Minimum
Description Length Principle. This idea has deep
roots in the theory of probability and computa-
tion, and, ultimately, in the philosophy of science
fLi and Vitanyi, 1992). Recently, practical in-
erence procedures using this idea have been pro-
posed by researchers in statistics }Rissanen, 1983,;
Rissanen, 1986) and artificial intelligence (Quinlan
and Rivest, 1989; Ellison, 1991; Ellison, 1992).

Language acquisition procedures based on the
Minimum Description Length Principle are per-
haps better described as Minimum Generative Ex-
planation procedures. These procedures attempt
to find a generative explanation for the regulari-
ties in the input. Part of a generative explanation
is a theory about how the input is generated. A
generative theory in this sense could be something
as simple as the theory that utterances are gener-
ated by selecting words from a lexicon and con-
catenating them. An instantiation of this theory
would include a hypothesis about the word forms
in the lexicon from which the input was generated.
Such an instantiation would provide a partial ex-
planation for the fact that the and dog occur re-
peatedly in the input in various different contexts,
while thed and og appear in a very limited range of
contexts — frequently together and in that order.
In this way, identifying the word stock of the in-
put language from connected speech can be cast as
finding a language-particular word list for the con-
catenation theory, which itself is part of a search
for a generative explanation of regularities in the
input.

General theories such as the one that sentences
are generated by concatenating words should be
thought as heuristics for learning — they can be
useful without explaining all the regularities in the
input. For example, the word concatenation the-
ory leaves many regularities unexplained, includ-
ing those created by phonotactic, morphological,
syntactic, and semantic constraints. It is possible
that those regularities might overwhelm and con-
fuse the regularities due to word forms, making it
impossible to discover word forms using phonolog-
ical information alone. It is also possible that, for
example, phonotactic, morphological, and lexical
regularities in the sound patterns of language can
be detected independently of one another — in ef-
fect, that they constitute distinct signals on the
same channel. This is the type of question about
the informational structure of language which I
hope to answer.

Another simple generative theory is that En-
glish words are formed by concatenating a stem
and a suffix, each chosen from a fixed set. This
theory is somewhat less accurate than the theory
about sentences being generated by concatenat-
ing words — for instance, more than one suffix
may be used in forming a given word. Further,
phonological and orthographic rules often adjust
a concatenated stem and suffix, as in watches (not
“watchs”) and bores (not “boxs”). Nonetheless,



the concatenative morphology theory is not a bad
zeroth-order approximation to English word for-
mation. A somewhat refined theory is that, af-
ter concatenation of stem and suffix, phonological
segments (or letters) are inserted or deleted at the
morpheme boundary, in a way that depends on the
original segments surrounding the boundary. An-
other, independent refinement is the theory that,
once a stem and a suffix have been chosen, a syn-
tactic category is chosen from among those avail-
able for the suffix. Instantiations of these theo-
ries, including specific stems, suffixes, adjustment
rules, and so on, would help the learner explain
why the observed input contains the patterns it
does.

Minimum Generative Explanation procedures
attempt to find the best instantiation of the gen-
eral theory, given a certain body of input, where
best means most accurate at predicting which ut-
terances are acceptable and which are not. This
problem can be separated into two subproblems.
First, given two instantiations, how can the learner
decide which one is better, in view of the input?
Second, how can the learner generate some plau-
sible instantiations to evaluate and compare?

Given a general theory, a generative ezplanation
of the input consists of an instantiated theory plus
an accounting of the properties of the input that
are not explained by the theory. For example, the
instantiated theory might include the assertions
that dog is a possible stem and -s is a possible suf-
fix, but it could not predict whether or not the
word dogs will appear in some particular input
sample — that depends on what people choose
to talk about, which is outside the domain of the
theory of word formation. An explanation for the
occurrence of the word dogs in a given sample,
then, has two parts: first, the theory that input
words are generated by a procedure that is capa-
ble of generating dogs because dog is on its stem
list and -s is on its suffix list; second, the asser-
tion that the stem dog and the suffix -s happen to
have been chosen for concatenation at some par-
ticular moment, due to unknown factors. Each of
these two parts constitutes a stipulation. Once ac-
cepted, these two stipulations completely explain
the input, including its predictable and its unpre-
dictable properties. Minimum Generative Expla-
nation algorithms formalize the venerable notion
that the shortest explanation is most likely to pre-
dict future observations.

For the sake of illustration, consider the input
sample consisting of the words shown in the left
hand table of Figure 1. The remaining tables of
Figure 1 provide a plausible generative explana-
tion for the presence of these words in the input.
Namely, words in the input are generated by a
procedure that concatenates a stem from the stem
table with a suffix from the suffix table, and the
stems and suffixes that happen to have been con-
catenated to form the input sample are as indi-
cated on the word table. The word table is rep-
resented here as a sequence of pairs of indices,
or code words. The stem table shows the corre-
spondence between stems and stem code words,
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while the suffix table shows the same for suffix
code words. In order to allow each word to be
represented uniformly as a stem and a suffix, each
monomorphemic word is assigned a “null suffix,”
denoted by the symbol e.

Now consider two alternative explanations that
rely on different suffixes and stems. In Figure 2,
the first row of tables shows a generative expla-
nation in which each suffix is one character longer
than before, while the second row shows an ex-
planation in which each is one character shorter.
Each of the three explanations is equally consis-
tent with the data, but the first one seems more
likely to accurately predict which words are ac-
ceptable than the latter two. For example, the ex-
planation using long suffixes predicts that dumring
and dumked are possible English words, whereas
dumped and dumping are not. The first analy-
sis correctly predicts the opposite, even though
dumped and dumping have never been observed.
(Of course, even first analysis makes some faulty
predictions, since the general theory it instantiates
ignores many of the constraints on English word
formation.)

The difference in the predictive accuracy of
these three theories can be understood in terms
of the widely held intuition that the shortest ex-
planation is the most likely one. Throughout the
modern period, scientists have used this intuition,
which 1s often called Occam’s Razor, to choose
among alternative explanations of their observa-
tions. The success of modern science lends credi-
bility to the intuition. In terms of computational
resources, shorter explanations have the advantage
of using less memory than longer ones. The use
of Occam’s Razor for induction has been formal-
ized and justified mathematically in several ways
(Li and Vitanyi, 1992, and sources cited therein),
but there is a substantial leap of faith in going
from the mathematical ideal to real procedures for
finding short explanations. The most convincing
argument for Occam’s Razor is still the powerful
intuition behind it and the fact that it has served
well in the past.

2.1 Evaluating Explanations

If a learning procedure is to choose the shortest
explanation it must have some formal measure of
explanation length. This section sketches some of
the issues involved in developing such a measure,
using concatenative morphology as an example.

Given a general theory such as the concatena-
tive theory of word formation, the first step in de-
veloping a measure of explanation size is to choose
a representation for explanations in terms of a fi-
nite set of symbols. The representation in Figure 1
is a first step, but it is not expressed entirely in
terms of a finite symbolic alphabet. Some of the
information in Figure 1 is represented by the dis-
tances between characters on the page and their
alignment into rows and columns. One alternative
would be to represent the explanations using one
long string of keyboard characters, such as:



Encoded Words

Input Words Stem Table Suffix Table : T30 r
walk referral stem code || sull | code ? = z;u : ;em 2“ .
walks refer walk | [3 1 1 9 3 1
walked refers referr 2 8 2 1 3 3 2
walking | dump refer 3 ed |3 1 1 4 1
referred | dumps dump 1 ing | 4 9 3 4 9
referring | preferential || preferenti | § al |5 9 1 5 5

Figure 1: An input lexicon and a generative explanation for it.
Stem Table Suffix Table Encoded Words
sul. | code [] sul. | code |[ stem sufl. | stem sul.
giem soce e Tl ral |7 T Y2 7
refer 9 ks 2 r 8 1 2 3 8
refe 3 ked |3 IS 9 1 3 3 9
dviin 1 king | 4 p 10 1 4 4 10
e farental 5 red |5 ps |11 2 5 4 11
P ring | 6 ial | 12 2 6 |6 12
Stem Table Encoded Words
stem code || stem code | Suffix Table [stem suf. | stem sul.
walk I refera i suf. | code I 1 T 2
walks | 2 refer 8 € 1 2 2 8 1
walke | 3 refers 9 d 2 3 3 9 2
walki | 4 dump 10 ng |3 4 4 10 1
referre | 5 dumps 14 | 4 5 3 11 2
referri | 6 preferentia | 12 6 4 12 5

Figure 2: Generative explanations using suffixes that are too long (first line) and too short (second line).

walk-referr-refer-dump-preferenti:<e>-s-ed
-ing-al:1/1-1/2-1/3-...

If the conventions for converting between the table
representation and the string are laid out clearly
then the number of characters in the string can be
taken as a measure of the representation length of
the explanation. In fact, the number of charac-
ters could be calculated from the tables without
actually constructing the string. This measure of
representation length could then be used to de-
cide which of two explanations is more plausible.
Clearly, this measure would prefer the explanation
in Figure 1 over those in Figure 2.

Although the string representation given above
might well work for the problem of finding stems
and suffixes, it does not put the best face on each
explanation by representing it as briefly as possi-
ble. Further, the way in which the 41 characters
are used leads to a certain arbitrariness in the rep-
resentation length. For example, if the numbers in
the last segment of the table get large enough to
require several digits, it is wasteful to encode them
in base 10, which uses only 10 of the 41 available
symbols. A shorter encoding would use a for 10,
b for 11, and so on. Conceivably, there might be
two explanations, A and B, such that A is shorter
when the numbers are encoded in base 10, and B
is shorter when they are encoded in base 36.

This slight arbitrariness becomes more pro-
nounced when more complex generative theories
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are considered. For example, the concatenation
theory can be elaborated to account for the ob-
served syntactic categories of words (assuming for
the moment that the categories are known to the
learner) as well as for their orthographic and pho-
netic forms. The theory would be that each suffix
has an associated list of syntactic categories that
are available to words ending in that suffix. Words
are generated by picking a stem and a suffix as be-
fore, then assigning the word a syntactic category
from the suffix's category list. An instantiation
of this theory would include a stem list, a suffix
list, and a category list for each suffix. The input
sample would consist of words paired with their
syntactic categories. (In this representation, am-
biguous words occur once with each of their cat-
egories.) This schema is illustrated in Figure 3,
assuming the same stem and suffix tables shown
in Figure 1. The representation length of an ex-
planation using an instantiation of this theory is
a function of the lengths of the category lists as
well as the stems and suffixes. For example, if
the suffixes in some instantiation are too short,
then they will not predict syntactic category accu-
rately. For example, words ending in —ify are likely
to be verbs, but words ending in -y may also be
nouns (day, bunny), adjectives (easy, funny), ad-
verbs (quickly, slowly), or prepositions (by). Thus,
if —y is chosen as a morphemic suffix while —ly and
-ify are not, the representation size of the cate-
gory list will be longer. Often, finding the short-



B. Category Table

[ sul. T caf. T code ]

C. Encoded Lexicon

A. Input Lexicon

OO O O~
T B W W NN N
TR = B = O D
Ot et OO = N

|
1
2
2
3
4
4
3

[ G J T G S g

walk V | referring vl ¢
walk N | referring A
walks V | referral N [} 8
walks N | refer \'
walked V| refers v ||ed
walking V | dog N || '8
walking N | dogs N
referred V| preferential A r
a

z>>zﬁ<z<z<

e | Sl e fe Flles Lol e

Figure 3: Input lexicon, category table, and encoded lexicon for the class of induction of generators that

label words with syntactic categories.

est explanation means finding the optimal tradeoff
between the lengths of different parts of the rep-
resentation, such as the stem lists, suffix lists, and
category lists. However, if there is arbitrary waste
in the representation of the various components,
and if the waste 1s greater in some components
than in others, the optimal tradeoff will be cor-
respondingly biased toward reducing the size of
some components at the expense of others. This
can affect which explanation has the minimal rep-
resentation cost.

There is no way to ensure a complete absence of
waste in a representation, but much of the obvious
waste can be removed by standard changes of rep-
resentation called encodings. The first step is to
represent all portions of the explanation using the
same alphabet. In view of the way current digital
computers operate, an obvious choice is the two-
symbol alphabet, whose symbols are usually writ-
ten as 1 and 0. I will assume the binary alphabet,
but in the final analysis the explanation chosen
will not depend on the alphabet. The represen-
tation discussed above, using typewriter symbols,
could be trivially converted to binary by choos-
ing a unique binary sequence of six bits for each
character, regardless of where it occurs in the rep-
resentation. However, that would simply multiply
the number of symbols in each representation by
six, without eliminating any waste. At a mini-
mum, integers should be represented in base two,
rather than translating each decimal digit into a
sequence of six bits. However, it is possible to go
much further than that.

An exposition on coding theory would be out of
place here (see, e.g. Hamming, 1986; Li and Vi-
tanyi, 1992 ), but Figure 4 gives a general flavor
for coding techniques. Rather than simply assign-
ing sequential integers to the stems and suffixes,
we can assign binary code words in such a way
that the commonly used ones are shorter than the
rarely used ones. An example is shown in Fig-
ure 4. In the top representation, more commonly
used stems and suffix are assigned shorter code-
words, whereas in the bottom representation the
situation is reversed. The table of encoded words
in the first representation takes only 60 bits, while

32

that in the second takes 69. The representation in
which all stems and suffixes get equal length code-
words is even longer — five stems is too many to
represent in two bits, so each code-word has to
have three.

Shannon’s Noiseless Coding Theorem shows
that the length of a sequence of code words is min-
imized when the length of each individual code-
word is approximately the logarithm of the inverse
of its relative frequency in the sequence. This ef-
fectively determines how binary code words should
be assigned to stems and suffixes. Let us use
the term symbol to refer to the entities, such as
the stems and suffixes, to which frequency-based
code words are assigned. Then the representation
length of the entire explanation is, to a first order
approximation, the sum of the Shannon informa-
tion of each of the symbol sets. (Further details are
provided in Brent, Lundberg, and Murthy, 1993.)
The Shannon Information is a simple function of
the frequencies of the symbols — 1t can be com-
puted without actually constructing binary code-
words for each symbol. Thus, evaluating hypothe-
ses Is a computationally inexpensive procedure.

Figures 1 and 2 illustrate the strong intuitive
connection between the number of characters in
the stem and suffix lists of an instantiated the-
ory and its predictive power. However, the impor-
tance of choosing stems and suffixes that minimize
the size of the “Encoded Words” table is less ob-
vious. To see why it 1s important, consider the
refined theory that tries to explain the syntactic
categories of words in terms of their morphemic
analysis, as shown in Figure 3. The length each
entry in the category table is a function of the
number of different categories that words formed
with the corresponding suffix belong to. Thus, if
all words in the input ending in -ly are adverbs,
the category table entry for -ly will be short, re-
warding the choice of a suffix that predicts syn-
tactic category. If, on the other hand, the mput
happens to contain the noun bully, and that word
1s erroneously analyzed as being formed with the
morpheme -ly, then the length of the entry for -ly
n the category table will nearly double. The entry
would be the same length as if half the words end-



Stem Table Suffix Table
stem code |[ suf. | code
walk 00 € 00
referr 01 S 01
refer 100 ed 100
dump 101 ing | 101
preferenti | 1100 || al 110

Stem Table Suffix Table
stem code |[ suf. | code
walk 1100 [ € 110
referr 100 S 101
refer 101 ed 100
dump 00 ing | 00
preferenti | 01 al 01

Encoded Lexicon

stem suf. | stem suf.
00 00 | 0T 110
00 01 100 00
00 100 | 100 01
00 101 | 101 00
01 100 | 101 01
01 101 | 1100 110
Encoded Lexicon
stem suf. [ stem suf.
[100  TI10 | 100 01
1100 101 | 101 110
1100 100 | 101 101
1100 00 | 00 110
100 100 | 00 101
100 00 |01 01

Figure 4: Efficient and wasteful choices for stem and suffix code words

ing in -ly were nouns and half adverbs. Intuitively,
though, the suffix -ly remains a good predictor of
syntactic category even with the bully exception,
whereas its predictive power would be seriously
diminished if half the words formed with it were
nouns. Although this distinction is not reflected
in the length of the category table, it is reflected
in the representation length of the particular out-
comes of the nondeterministic choices made by
the generating procedure — i.e., in the “Encoded
Words” table. The frequency-based encoding of
symbols has the following property: among all se-
quences of n symbols drawn from a fixed symbol
set, the more equal the frequencies of the symbols
in the sequence the longer its encoded form; con-
versely, the more the sequence consists of a few
common symbols plus some rare ones, the shorter
its encoded form. For example, sequences of 99
copies of Adverb and one copy of Noun can be en-
coded much more briefly than sequences of 60 and
40, respectively. As a result, the cost of encod-
ing the categories of words is greater if the words
formed with -ly are equally likely to be adverbs
or nouns than if they are almost all adverbs, with
a few exceptions. This reflects the intuition that
the misanalysis of bully should not be too damag-
ing to the explanation that words formed with -ly
are (generally) adverbs.

This example illustrates a key point about using
representation length to evaluate hypothesis: it is
robust in the face of error. A single misanalysis
of bully as bul-ly has a small rather than a catas-
trophic effect on the evaluation of a hypothesis.
Further, the evaluation is responsive to frequency.
A few exceptions to a generalization do not nec-
essarily cause the generalization to be rejected.
Even if every suffix cooccurred occasionally with
every syntactic category, the generalization that
suffixes provide information about syntactic cat-
egory might still reduce the cost of explanations
that use the correct suffixes relative to those that
use the wrong suffixes. As a result, learning proce-
dures that exploit this evaluation are quite differ-
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ent from those in which a single example triggers a
general conclusion about all examples of the same
type. Such approaches cannot maintain general-
izations in the face of exceptions that occur rarely
but regularly.

3 Experiment: Discovering
Morphemic Suffixes

This section describes an experiment aimed at an-
swering the following questions about the informa-
tional structure of English:

1. To what extent can morphemes, which have
consistent characteristics of form, syntax, and
meaning, be discovered on the basis of form
alone?

2. To what extent do non-morphemic regulari-
ties in the forms of words, such as the rela-
tively high frequency of final -sk and -ld in
English roots, interfere with the detection of
morphemic regularities?

3. To what extent do adjustment rules, such as
the deletion of final “e” before suffixes begin-
ning in a vowel, ohscure the forms of mor-
phemes and interfere with the discovery of
morphemic suffixes?

4. To what extent does the constraint between
a composite word’s final suffix and its major
syntactic category help in identifying suffixes?

In this experiment, a computer program gener-
ates a series of hypotheses about the morphemic
suffixes used to form words in an input sample
and evaluates them by computing the represen-
tation length of the corresponding generative ex-
planations. The input consists of words in stan-
dard orthography gleaned from journalistic text.
The words are distinct, so this experiment tests
a system of information flow in which the iden-
tification of whole words precedes the identifica-
tion of morphemic suffixes. Of course, there are
other interesting configurations, such as the one



in which words and morphemes are identified si-
multaneously. Other configurations can be inves-
tigated using similar methods. The program used
in this experiment attempts to formulate brief ex-
planations using instantiations of the two general
theories described above: that words are formed
by concatenating a stem and a suffix; and that, in
addition, composite words are assigned a syntac-
tic category chosen from a list that depends on the
suffix (but not the stem). These general theories
can be restated as constraints on morphemes in
the following way: stems and suffixes are entities
that recombine with one another to form multi-
ple words; and suffixes are entities that constrain
the syntactic categories of words in which they oc-
cur. Details of the representations, the formulas
used to compute their length, and the procedure
for generating hypotheses can be found in Brent,
Lundberg, and Murthy (1993).

One point about child language acquisition is
worth making at the outset: although natural
languages have many non-concatenative morpho-
logical processes (Anderson, 1992), children may
nonetheless have innate mechanisms of searching
for concatenative morphemes. They must have
some way of discovering non-concatenative mor-
phology too, but the discovery process need not
be homogeneous.

3.1 Generating Explanations

Methods for choosing among alternative expla-
nations have been discussed, but the problem of
generating explanations to choose among has not.
Consider explanations for the forms of words, set-
ting aside the question of syntactic categories.
Each possible way of analyzing the words in some
input into stems and suffixes constitutes a dis-
tinct explanation with its own representation size.
For a word of length n, there are potentially n
ways to analyze it. In order to limit the search
to stem/suffix combinations, avoiding most pre-
fix/stem combinations, only analyses in which the
left half is at least as long as the right half are
considered. Approximately 7 analyses remain for
a word of length n.

Changing the analysis of even a single word
changes the explanation, so the number of pos-
sible explanations is the product, over all words
in the input, of one-half their length. This num-
ber grows exponentially with the number of input
words, so it 1s not possible to evaluate all of the
explanations. However, the aim of this procedure
is to discover morphemic suffixes, not to analyze
individual words. Many explanations yield the
same suffix set. For example, if the input contains
walking and string, and if at least one of them
is analyzed as having been formed with the suf-
fix -ing in the shortest explanation, it is does not
matter which one — -ing will be on the suffix list
for that explanation in any case. The procedure
tested here evaluates only one of the many pos-
sible explanations that correspond to each suffix
set. Different explanations using the same suffix
set may have different lengths, so it is possible that

the best explanation of all will not be the best ex-
planation tested. However, the explanation tested
for each suffix set is chosen in a way that seems
likely to make it one of the best if the suffix set
contains morphemic suffixes. In particular, the ex-
planation tested is the one in which all words that
end in a given suffix are analyzed as having been
formed with it. This corresponds to the intuition
that there are many more words ending in mor-
phemic -ing than there are words like string and
bring, there more words ending in morphemic -ed
than there are words like seed and weed, and so
on.

In order to ensure that each hypothesized suffix
set leads to only one analysis of each input word,
the following constraint is imposed: no suffix may
end in another suffix. This constraint is overly
strong. For example, suffix sets containing -s can-
not also contain -ness or -ous, and those contain-
ing -ly or -ity cannot also contain -y. There are
various possibilities for relaxing this constraint,
but they have not yet been tested. See Brent
(1993) for additional heuristics governing the gen-
eration of hypotheses.

3.2 Methods

Input. The evaluation function and search tech-
niques described above were tested on lexicons of
various sizes. The lexicons were prepared from
sample of the Wall Street Journal tagged for part-
of-speech by the Penn Treebank project. All words
except those containing capital letters or non-
alphabetic symbols were sorted by frequency, and
input lexicons of different sizes were prepared by
taking the most common words from the top of the
sorted list. Experiments were done using the the-
ory of word form alone and the combined theory
of word form and syntactic category. In the lat-
ter case, the Penn categories were mapped down
to a set of five representing all common nouns, all
verbs, all types of adjectives, all adverbs, and all
other words.

Scoring. The results were scored in three ma-
jor categories: the bound morphemes like -ing and
-1sm, the free morphemes in compounds like -ball,
-mark, and -man, and the non-morphemic end-
ings like “-1d” and “-sk”. The reference for scoring
bound morphemes was Marchand (1969) Inde-
pendent words that appear as suffixes of another
word and whose independent meaning contributes
in any way to that of the whole were scored as free
morphemes.

Some of the suffixes hypothesized by the sys-
tem are clearly extensions of real morphemes.
For example, one experiment yielded the suffix “
mental,” as in governmental, which clearly con-
tains the morpheme -al. Since these contain lin-
guistically meaningful morphemes, they seem to
have a different status than non-morphemic end-
ings, such as the final “ld” of mold, hold, held,
buzld, sold, yield, bald, sold etc. Extensions of
bound and free morphemes were scored in their
categories.



Words B EB F EF E Tot %M %P
500 | 6/7 1073 [ 16/10 38/70  38/70
1000 | 10/10 3/0 | 13/10 78/100 78/100
2000 | 15/16 2/1  2/2 1/1 | 20/20 95/95  85/90
4000 | 19/18 7/7 8/8 1/1 4/5 | 39/39 90/87  70/67
8000 | 27/28 9/9 19/18 3/6 | 58/61 95/90  79/75

Figure 5: Categorization of suffixes output as a function of the number of words in the input lexicon. Simple

recombination / syntactic category and recombination.

3.3 Results

The results of the experiments are summarized in
Figure 5. Each row represents two experiments:
one using recombination only (above the slash)
and one using both recombination and syntactic
category prediction (below the slash). The first
column shows the number of words in the input
lexicon for each of the two experiments. The fol-
lowing five columns show the number of bound
morphemes identified (B); extensions of bound
morphemes (EB); free morphemes (F); extensions
of free morphemes (EF); and errors (E), which in-
cludes all outputs that are not assigned to one of
the other four categories. The final three columns
show summary statistics: the total number of
items hypothesized as morphemes (Tot); the per-
centage of those that were linguistically meaning-
ful in some way, either as morphemes or exten-
sions of morphemes (%M); and the percentage of
the total that were perfect morphemes, neither ex-
tensions nor errors (%P).

For the procedure that attempts to explain the
distribution of syntactic categories, the best expla-
nation of the 1000 word lexicon used the following
suffixes: age al ed ing ion ity ly ment nce and s.
nce was counted as correct because it is the or-
thographic sequence common to a morphological
process that yields either ance, as in guidance, or
ence, as in preference. For the 2000 word lexicon
the best explanation included all the suffixes from
the 1000 word lexicon, plus the following new suf-
fixes: able ary ful ive ld ncy one out ship and sure.

3.4 Discussion

The results of this experiment indicate that the
formal combinatory properties of morphemic suf-
fixes alone provide a tremendous amount of in-
formation about the stock of morphemes in En-
glish. The input lexicons contained thousands of
non-morphemic endings and mere dozens of mor-
phemic suffixes, but the output contained primar-
ily morphemic suffixes in all cases but one. Thus,
the effects of non-morphemic regularities are min-
imal. Adjustment rules had no noticeable effect.
Thus, the “signal” from morphological recombi-
nation emerges quite clearly from the confusion of
other signals, if the learning algorithm is tuned to
it.

Consider first the effects of vocabulary size when
syntactic categories are not used. When the input
consists of only the 500 most common words in the
corpus, the formal recombination property alone
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did not do very well at identifying morphemic suf-
fixes. This is not surprising, since one would ex-
pect the 500 most common words in a journal-
1stic corpus to contain a very high proportion of
monomorphemic words, especially syntactic func-
tion words. Since there are so few instances of
genuine morphemic suffixes to compete with, the
spurious regularities in the corpus dominate. For
input lexicons between 1000 and 8000 words the
percentage of outputs that are genuine morphemes
fluctuates around 80%, but shows no long-term
trend.

Now consider the effect of adding in a syntactic
property of morphemic suffixes — the fact that, in
languages with right-headed words, the final suf-
fix of a complex word predicts its major syntactic
category. When explanations for the distribution
of word-forms and their categories are represented
as in Figure 3, category information appears to be
a mixed blessing. For vocabularies of 2000 words
or smaller it improves accuracy substantially, but
when vocabulary size reaches 4000 to 8000 words,
it shows a slight trend toward reducing accuracy.
One possible explanation is that morphemic suf-
fixes do not predict syntactic category very well
in lower frequency words. A more plausible expla-
nation, however, is that, since there are only five
categories in this formulation, chance regularities
are a significant factor by 8000 words. Syntactic
information about words would probably be more
useful if it were not limited to major categories.
Since the effects of syntax are reflected in word-
adjacency distributions, descriptive categories can
be induced by clustering these distributions (Finch
and Chater, 1992). Such categories might aid mor-
pheme identification more than a priori major cat-
egories, since the induced categories would also
reflect auxiliary structure, agreement, and related
syntactic effects of morphology. In addition, there
are more regularities to exploit even using the ma-
Jjor categories. Notably, the category of the stem
constrains the range of morphemic suffixes that
can attach to it. Syntactic categories would prob-
ably be even more useful for an algorithm that ex-
ploited this regularity to help distinguish between
morphemic suffixes and non-morphemic endings.
In summary, this experiment suggests that know-
ing syntactic categories is marginally useful, but it
does not suggest that they are any great bonanza.
If they are not particularly useful for predicting
syntactic category, then perhaps the flow of infor-
mation should be primarily in the opposite direc-



tion, from morphemes to category assignment. On
the other hand, morpheme giscovery algorithms
that make use of lexical syntactic information in
more sophisticated ways may yet demonstrate that
it is extremely valuable.

Presumably, it is most important for children
to learn the most productive morphemes — those
which speakers apply most freely to form words
that have never heard or hear very rarely. Al-
though many of the most productive English
morphemes were discovered in these experiments,
many low productivity morphemes were also dis-
covered. Thus, it would be interesting to refine
the algorithms used in the experiment so they fo-
cus more narrowly on the productive morphemes.
One way to do this is to learn only from the lowest
frequency words in the input, since the low fre-
quency words are less likely to be memorized and
more likely to be formed by productive morpho-
logical processes (Baayen and Lieber, 1991). At
a minimum, this would have the benefit of elimi-
nating the syntactic function words from consid-
eration. It would also fit in nicely with an on-
line processing model in which novel words draw
the “attention” of the morpheme discovery proce-
dures, whereas familiar words are quickly memo-
rized and no longer subjected to analysis. How-
ever, experimentation with such a model awaits
future work.

4 Conclusions

Minimum Generative Explanation algorithms are
a promising tool for research in language acqui-
sition, especially in domains like morphology and
phonology. They appear to be the first algorithms
that are robust enough to learn generative theories
from naturally occurring input. If this research
program is successful, it will ultimately yield a col-
lection of techniques for discovering linguistic reg-
ularities in various domains. Taken together, these
techniques will be capable of learning the regular-
ities in typologically diverse languages. Beyond
elucidating the questions of information flow, ro-
bustness, and search heuristics, they may also lead
to models of how children modify their hypotheses
incrementally, in response to individual inputs.
This research program emerges from a view of
the language acquisition as a complex system gov-
erned by the interaction of loosely coupled mecha-
nisms, each specialized for finding regularities of a
particular type. On this view, the language acqui-
sition device is analogous to a cell, which consists
of a collection of complex molecules, each special-
ized to a particular task. The enzymes, for ex-
ample, each carry out a particular chemical reac-
tion, and these reactions are coupled in a dynami-
cal system. Further, the behavior of each individ-
ual enzyme on a short timescale is stochastic, but
its average behavior, stabilized by the behavior of
other enzymes, is predictable, and the system as
a whole is robust to a wide variety of inputs from
the environment. This level of analysis contrasts
with that of connectionist models, in which the
individual elements are homogeneous, rather than
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specialized. It also contrasts with the level of anal-
ysis in parameter setting models and learnability
theory, which look at the modes of behavior of the
system as whole, rather than at the specialized
elements from which it emerges.
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