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Abstract 

We present strategies for "online·· dynamic power management(DPM) based on the notion of the com­
petitive ratio that allows us to compare the effectiveness of algorithms against an optimal strategy. This 
paper makes two contributions: it provides a theoretical basis for the analysis of DPM strategies for sys­
tems with multiple power down states: and provides a competitive algorithm based on probabilistically 
generated inputs that improves the competitive ratio over deterministic strategies. Experimental results 
show that our probability-based DPM strategy improves the efficiency of power management O\er the 
deterministic DPM strategy by 25%, bringing the strategy to within 23% of the optimal offline DPM. 



1. Introduction 

Dynamic Power Management(DPM) has gained considerable attention over the last few years as a 

way to save energy in devices that can be turned on and off by operating system control. Dynamic 

power management is an inherently online problem in that an algorithm governing power management 

must make decisions about the expenditure of resources before all the input to the system is available. 

For DPM strategies, the input is the length of an upcoming idle period and the decision to be made is 

whether to transition to a lower power dissipation state while the system is idle. Analytical solutions to 

online problems are best described in terms of a competitive ratio [9] that compart'.s the cost of an online 

algorithm to the optimal offtine solution which knows the input in advance. 

Earlier work on competitive analysis of dynamic power management strategies presented bounds on 

the quality of DPM solutions [ 11, 5]. Competitive analysis has proven to be a powerful tool in providing 

a guarantee on the performance of an algorithm for any input. We address here two chief limitations of 

this earlier work: real systems often have multiple idle states with transition energy costs that must be 

taken into account. This paper presents analytical bounds on the performance of strategies for systems 

with multiple idle states. Secondly, competitive analysis often gives overly pessimistic bounds for the 

behavior of algorithms. This is inherently the result of the fact that competitive analysis is a worst-case 

analysis. Competitive analysis still has great value in situations where it is impractical to obtain and 

process information for predicting future inputs. However, in many applications, there is structure in 

the input sequence that can be utilized to fine tune online strategies and improve their performance. 

Indeed. earlier work [ l, 10] has relied on modeling the distribution governing interri.val times as an 

exponential distribution. In practice, such stochastic modeling seems to hold well for specific kinds 

of applications. However, these assumptions have led to complications in other settings due to such 

phenomena as the non-stationary nature of the arrival process, clustering, and the lack of independence 

between subsequent events. These problems have been addressed to some extent in [8, 3]. Our approach 

relies upon a probability distribution governing the arrival sequence of requests which is learned based 

on historical data. One of the strengths of this method is that we make no assumptions about the form 

of this distribution. Once the distribution is learned, we can automatically generate a probability-based 

DPM strategy that minimizes the expected power dissipation given that the input is generated according 

to that distribution. We compare the expected power dissipation of our online algorithm to that of the 
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optimal offhne algorithm to get a probabilistic competiti\'e ratio. This method has been used in the 

context of two-state systems [5, 6]. We generalize this work for multi-state systems. 

In the literature, one can find many strategies proposed and evaluated for DPM. such as predictive 

strategies [ 4, 12], stochastic modeling based strategies [ 1, 10], session clustering and prediction strate­

gies [8], on-line strategies [11], and adaptive learning based strategies [3]. In [7]. one can find a quanti­

tative comparison between various existing management strategies. Previous work on prediction based 

dynamic power management can be categorized into two groups: adaptive and non-adaptive. Non­

adaptive strategies set a threshold on the idle time interval for transitioning from the active to the sleep 

state. For multiple state systems, there is a sequence of thresholds each of which indicates when to 

transition to the next lower power consumption state. In either case, non-adaptive strategies set these 

thresholds once and for all and do not alter them based on observed input patterns. Adaptive strategies, 

on the other hand, use the history of idle periods to guide the decisions of the algorithm for future idle 

periods. There have been a number of adaptive strategies proposed in the literature [4, 5, 1, 2]. In par­

ticular, Chung, Benini and De Micheli [3] address multiple idle state systems. In addition, they use a 

prediction scheme based on adaptive learning trees that proves to be robust under a variety of systems. 

The work of Chung et al. (along with most of the adaptive algo~ithms in the literature) seeks to 

make a single prediction for what the upcoming idle period will be. The algorithm then behaves as 

if this prediction \vill hold and pays a price in the event that it is wrong. Since we use a probability 

distribution to predict the upcoming idle period length, we allow for some degree of uncertainty in our 

prediction for the future and optimize our algorithm in a way that takes the nature of this uncertainty into 

account. An interesting aspect of this work is that we present analytical as well as empirical bounds for 

the performance of our algorithms. This provides a baseline to compare different algorithms and even 

the effects of individual decisions made by an algorithm. 

All of the previous work on competitive analysis for dynamic power management has concentrated 

on two-state systems [5, 6. 11]. We say that an algorithm is c-competitive if for any input, the cost of 

the online algorithm is bounded by c times the cost of the optimal offline algorithm for that input. The 

competitive ratio of an algorithm is the infimum over all c such that the algorithm is c-competitive. It 

has been proven that 2 is the best competitive ratio achievable by any deterministic online algorithm [9]. 

We extend this analysis to show a 2-competitive algorithm for the multi-state case. This result is tight in 
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Figure l. Energy consumption for each state for a four state system. Each state is represented by a line which indicates the 

energy used if an algorithm stays in that state as a function of the length of the idle period. For ~ach state. the slope is the 

power dissipation rate and they intercept is the energy required to power up from that state. 

advance. We show later that depending on request arrival patterns, this worst case bound may not really 

happen, and the empirical ratio of the online to offtine costs may be much lower. 

However, as shown in [10, 3, l], input sequences are often interrelated, and hence modeling of the 

input pattern and exploiting that knowledge in the design of the algorithm can help bridge the gap be­

tween the performance of online strategy and that of the optimal offtine strategy. In the next subsection, 

we discuss our probability-based algorithm and show that if the request interrival time probability distri­

bution is known before hand. the worst case competitive ratio can be improved by 21 %, with respect to 

the deterministic case. Moreover, we show through experimental evaluation that this worst case bound 

is pathological. In fact, we can bring the energy cost of the online algorithm within 27% of the optimal 

offline one. 

2.2. The Probability-based Algorithm 

In this section, we assume that the length of the idle interval is generated by a fixed, known distribution 

whose density function is rr. We first discuss systems with two states and then give our generalization 

to the multi-state case. let~ be the start-up energy of the sleep state and a the power dissipation of the 

active state. Suppose that the online algorithm uses T as the threshold at which time it will transition 

from the active state to the sleep state if the system is still idle. In this case, the expected energy cost for 

the algorithm for a single idle period will be 

r n(t)(ru)dt + r= 7!(t)[at+ ~]dt. Jo .Jr 
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The best on line algorithm will select a value for T which minimizes this expression. The offtine algorithm 

which knows the actual length of an upcoming idle period \vill have an expected cost of 

j -Bja .loo rr( t )( w )dt + rr( t) Bdt. 
o B/a 

It is known for the two state case, that the online algorithm can pick its threshold Tso that the ratio of its 

expected cost to the expect cost of the optimal algorithm is at most e / ( e - l) [5, 6]. That is. for any rr. 

and any a and B, 
minT { foT rr( t )( W )dt + .JT00 

rr( t )[ Ci.T + BJdt} e 
~~~~~~~~~~~~~~~~ < ~-. 

Jt1arr(t)(ru)dt+ fi/arr(t)Bdt - e-1 

This is optimal in that for any a and B, there is a distribution rr such that this ratio is at least e / ( e - l). 

Let us now consider the multi-state case. As in the previous section, let t1 be the solution to the 

equation a jl + BJ = a 1_ 1 t +BJ- I· t J is the time that LEA will transition from state j to state j - 1. We 

will assume here that we have thrown out all the lines which do not appear on the lower envelope at 

some point. This is equivalent to the assumption that tk < tk- I < · · · < t1 < t1. For ease of notation, we 

will define tk+ 1 to be 0 and to to be =. The cost (expected energy consumption) of the optimal offtine 

algorithm is: 

k 11' ~ 
11
+

1 

rr(t)[ait + Bi]dt. 

Nmv to determine the online algorithm, we must determine k thresholds, where the threshold Li is the 

time at which the online algorithm will transition from state i to state i - 1. In the spirit of the determin­

istic online algorithm for the multi-state case, we will let Li be the same as the threshold which would 

be chosen if i and i - l were the only two states. We call this algorithm the Probability-based Lower 

Envelope Algorithm(PLEA). The proof of the following theorem appears in the appendix. 

Theorem 2 For any distribution, the e.\pected cost of the Probability-based Lmver Envelope Algorithm 

is irithin a factor of e / ( e - l) of the expected cost for the optimal offiine algorithm. 

3. Experimental Results 

To demonstrate the utility of our probability-based algorithm, we use a mobile harddrive from IBM 

[14]. This drive has four power down states, as shown in Figure 3. Here, the start-up energy refers to 

the energy cost in transitioning from a state to the active state. For application disk access data, we used 
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trace data from auspex file server archive which is available at [13]. From this data, we collected the 

inter-arrival time for requests for disk access for 0.4 million disk accesses divided into multiple trace 

files, corresponding to different hours of the day. 

Power Start-up Transition 

State Consumption Energy Time 

in Watts in Joules to Active 

Sleep 0 4.75 SS 

Stand-by .2 1.575 1.5 s 
Idle .9 .56 40mS 

Active 2.4 0 0 

Figure 2. Values for the power dissipation and start-up energy for the IBM mobile harddrive at ( 14] used in our experiments. 

To evaluate the deterministic algorithm, we ran it on fifteen different traces. For each trace, we 

calculated the total energy expenditure by the online algorithm and the total energy expenditure by the 

optimal offline algorithm and took the ratio between those two values. This data appears in the first 

column of numbers in Figure 3. Note that for all the traces, the ratio is significantly less than 2 (the 

theoretical upper bound). This demonstrates that the algorithm does much better in practice than the 

competitive ratio indicates. 

To test the probability-based algorithm, we used each trace to build a distribution over idle period 

lengths. The probability distribution was constructed by first building a histogram in which all the idle 

period lengths were stored. The histogram was then used as the basis of a probability distribution as 

follows: each bin in the histogram represents a range of values for an idle period. Each bin was chosen 

in proportion to the weight of that bin in the histogram. An idle period length was then chosen by 

uniformly selecting a value from the range for that bin. We did not use uniform ranges for the bins 

since the data contained a few very long idle periods. Thus, we used a finer granularity for tpe bins 

representing shorter idle periods. 

Once the probability distribution was constructed, we use this data to determine the thresholds for the 

Probability-based Lower Envlope Algorithm. Then we generated 10000 idle period lengths according 

to this distribution. For each idle period, we calculated the ratio between the total energy expenditure 
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of PLEA and the total energy expenditure of the optimal offtine algorithm. Thus. \\'e assume for these 

experiments that we have perfect knowledge of the distribution generating the idle periods. Our goal is 

to examine how effectively we use this information in optimizing power management. The traces were 

useful as the basis for determining typical probability distributions. The second column of numbers in 

Figure 3 shows the ratio of the cost of the probability-based online algorithm to the offtine algorithm on 

the data generated by the probability distributions based on each trace. 

Figure 4 shows the average energy consumption for all four algorithms: deterministic online, deter­

ministic offtine, probability-cased online, probability-based offtine. Thus, the deterministic column in 

Figure 3 is the ratio of the heights of the first two bars from Figure 4 for each trace. Similarly, the 

probability-based column in Figure 3 is the ratio of the values in the last two bars. The second bar for 

each trace in Figure 4 is the actual average offtine cost for the idle periods in each trace. The fourth bar 

for each trace in Figure 4 is the average offtine cost for idle periods generated according to a probability 

distribution based on each trace. Thus we expect the two values to be close, although not identical. 

The results demonstrate that knowledge of the probability distribution over idle periods can improve 

power consumption by 25% over the deterministic algorithm, bringing the power consumption down to 

1.23 times the optimal offtine algorithm on average. Earlier experime~ts for two-state models show that 

the deterministic algorithm compares favorably with respect to other adaptive algorithms in the literature 

[11]. Since the probability-based algorithm given here improves upon the deterministic algorithm, this 

comparison would be even more favorable for PLEA. 

The worst case for the deterministic algorithm is a competitive ratio of 2. Thus, 2 is a theoretical 

upper bound for the the first column of numbers in Figure 3. In many cases, the results are actually much 

better than 2, showing that the theoretical bound is often a pessimistic estimate on the performance of 

the algorithm. In generaL the deterministic online algorithm will do well for short idle periods in which 

case it does not drop to a lower energy consumption state. In these cases, the ratio of the cost of the 

online to the offtine algorithms is close to one. The deterministic algorithm will do the most poorly for 

idle periods which are just longer than one of its threshold times. That is, it will do the most. poorly 

in comparison to the optimal offtine algorithm when a new request arrives just after it has transitioned 

to a lower power dissipation state. The very worst case which will force its ratio closest to 2 is when 

a request arrives just after it transitions to the sleep state. Thus, one would expect that on those traces 
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where the deterministic competitive ratio is very close to two. the distribution of idle period lengths i~ 

tightly clustered just after the longest threshold for the algorithm. 

The probability-based algorithm will, in general, perform better on those distributions that are highly 

clustered since those distributions give the most information about what idle periods lengths are more 

likely to occur. This is born out in our experimental results: those traces which result in ratios which 

are very close to two for the deterministic algorithm achieve ratios that are relatively close to one for 

the probability-based algorithm. Analysis of the two-state case tells us that the distributions that result 

in the worst ratio for the probability-based algorithm are exponentially distributed. They give the online 

algorithm very little information about the length of the upcoming idle period. The exponential distri­

bution is the distribution that results in PLEA achieving a ratio of e / ( e - l) ~ 1.58 for the two-state 

case. Notice that on the traces used in our experiments, the results are much better than the worst case 

e / ( e - l) since the distributions resulting from the traces give the online algorithm more information 

about the upcoming idle period length. 

4 Conclusions 

This paper presents two algorithms for dynamic power managemen·t for systems with multiple sleep 

states. Competitive analysis is used to guarantee a bound on the performance of the deterministic algo­

rithm for any input sequence. Our empirical results show that it actually performs better than this bound 

on the harddisk data used in our study. The next algorithm assumes that the idle periods are generated 

according to a known probability distribution. In this case, we show, analytically and empirically, that 

this knowledge can be used to greatly enhance the performance of a DPM strategy. 
The most important direction for future work is to develop methods for finding a probability distribu­

tion which will accurately predict future idle periods lengths based on past idle period lengths. 
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A. Appendix 

Proof of Theorem 1. First we establish that the worst case for the algorithm will always be just after 

a transition time. Consider the time t1+Y. for some k 2'.: j 2'.: I and 0 :s; y < t1_ 1 -t1. For any value ofy 

in the given range. the optimal cost will be 

For any value of yin the given range, the online cost will be: 

/.: 

Cf.J.:tJ.:+ L,a1-dt1-1-tt)+a1-1Y+~J-I· 
I=) 

The ratio of these two will be maximized for y = 0. 

Now suppose that the interval ends just after t J for some /..: 2'.: j 2'.: 1. Using the cost for the on line and 

offiine determined above. the ratio of the online cost to the offiine cost will be 
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k 
l~ U.1-:.t1-:.~Lt=ju.1-1(t1-1-t1l-a.J-1lj 

Cl.j-Jlj+ f3J-I 

Thus, it is sufficient to prove that 

k 

G.ktk +I, CX/-1 (t/-1 -tt)- G.j-Jlj::::; Cl.j-llj + f3J-I · 
l=j 

Rearranging, we must prove that 

Each t1 was chosen so that 

k 

I,(a.1 -a.1-1 )t1 -Ct.jlj-1::::; Cf.J-lfJ+ f3J-1· 
I=} 

so we can substitute these values into Inequality l to get that 

(f3k-l - f3d + ... + (f3J-l -f31)- Cl.jlj-1 

Collapsing the telescoping sum, we get that 

Since all the a.·s. f3"s and r's are non-negative, the equation holds. 1111 

( l) 

Proof of Theorem 2. Consider a system in which there are only two states: i and i _;. 1. Both online 

and offtine must pay at least ai- It for an interval of length t. In addition, each must pay at least f3i for 

the start-up cost. These costs which are incurred by both algorithms, regardless of their choices will 

only serve to decrease the competitive ratio. In determining, Ti, we will disregard these additional costs. 

Consider the system where the power consumption rate in the ON state is ai - ai-1 and is 0 in the OFF 

state. The energy required to transition from the ON to the OFF state is f3i-I - f3i. We will choqse Li to 

the be the transition time for the optimal online policy in this system. Thus, we will choose Li to be 

argmin rr: TC( t )t( G.i - G.i-1 )dt 
T ./o 

+ r= TC(t)[t(Ct.i - G.i-1) + (f3i-1 - f3i)Jdt . 
./ T 
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The on line cost for this ne\\' system is the abo\·e expression e\'aluated at T = T( 

ONi ('
1 

n! t )t( ai - ai-1 idt 
Jo 

+ r= n(t)[Ti(ai-ai_i)+(~i-1-~i)]dt . 
./ T1 

Let ti be defined to be (~i-1 - ~i)/(ai - ai-1 ). Note that this is the same definition in the pre\·ious 

proof: the point v.1here the lines ait + ~i and ai-1 t + ~i-1 meet. The offtine cost for the new system is 

OF Fi /"
1 

n(t)t(ai - ai-1 )dt Jo 
+ ;·= n(t )( ~i-1 - ~i )dt. 

11 

We are guaranteed that the ratio of the expected online to offtine costs is at most e / ( e - 1) [5. 6]. 

Since the ratio of ONi to OF Fi is at most e / ( e - 1) for each i. we know that 

We will now prove that I1=l ONi is exactly the expected cost for PLEA on the multi-level system. We 

will also prove that I1=l OF Fi is exactly the expected cost of the optimal algorithm for the multi-level 

system. 

We will rephrase ONi by separating the integral into the intervals from T J+ 1 to Ti· To simplify notation, 

T,1: 71 will denote 0 and To will denote 00 • 

In the sum over all ONi. we will group together all the contributions from each ONi over the interval 

~Tj+ 1. rJ] fork:::; j:::; 1. Note that this is the interval that the algorithm will spend in state}. This value 

will be: 

(2) 
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Th us. \\ e h::i.\'e that 
k k 

IoNi= If1J1. 
i=I }=0 

v:here 

f(j) ± {1 n:(1)[-r;(a;-a;_i)+(~;-1-~;)]d1 
i=j+I· T1+1 

Putting the summations inside the integrals and collapsing the telescoping sums, the expression in (2) 

becomes: 

\\·here 

Note that 

t 1 
n( t )cost( t )dt . 

./Tj+I 

cost(t) (~J-~t:)+Tt:ak 
k 

+ L (T1-1 -T1 )a1-1 + (t -Tj+J )aJ. 
1=}+2 

k 

( ~ J - ~k ) + t k ak : L ( t 1- 1 - t 1 ) a1- 1 + ( t - t J+ 1 ) a J 
1=}+2 

is exactly the energy expended by PLEA if the idle period tis in the range [tJ+J · t1]. Thus. the expected 

cost for PLEA is: 

k ;·T L ·' n( t )cost! t .ldr = 
j=O· T.1+1 

The proof that the expected offtine cost is equal to I}= 1 OFF i is the same as the proof for the on line 
cost. except that the integrals are separated into intervals according to the ti's instead of the Ti's. 
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