
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous
Systems

Permalink
https://escholarship.org/uc/item/4r15r46s

Author
Wetter, Michael

Publication Date
2008-08-22

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4r15r46s
https://escholarship.org
http://www.cdlib.org/

A MODULAR BUILDING CONTROLS VIRTUAL TEST BED FOR THE INTEGRATION
OF HETEROGENEOUS SYSTEMS

Michael Wetter1 and Philip Haves2
1Simulation Research Group, Building Technologies Department,

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA.

2Commercial Building Systems Group, Building TechnologiesDepartment,
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA.

ABSTRACT
This paper describes the Building Controls Virtual Test

Bed (BCVTB) that is currently under development at
Lawrence Berkeley National Laboratory. An earlier pro-
totype linked EnergyPlus with controls hardware through
embedded SPARK models and demonstrated its value in
more cost-effective envelope design and improved con-
trols sequences for the San Francisco Federal Building.
The BCVTB presented here is a more modular design
based on a middleware that we built using Ptolemy II,
a modular software environment for design and analysis
of heterogeneous systems. Ptolemy II provides a graph-
ical model building environment, synchronizes the ex-
changed data and visualizes the system evolution during
run-time. Our additions to Ptolemy II allow users to cou-
ple to Ptolemy II a prototype version of EnergyPlus, MAT-
LAB/Simulink or other simulation programs for data ex-
change during run-time. In future work we will also im-
plement a BACnet interface that allows coupling BACnet
compliant building automation systems to Ptolemy II.

We will present the architecture of the BCVTB and ex-
plain how users can add their own simulation programs to
the BCVTB. We will then present an example application
in which the building envelope and the HVAC system was
simulated in EnergyPlus, the supervisory control logic
was simulated in MATLAB/Simulink and Ptolemy II was
used to exchange data during run-time and to provide real-
time visualization as the simulation progresses.

INTRODUCTION
We discuss the current development of a Building

Controls Virtual Test Bed (BCVTB). The BCVTB is
a modular, extensible, open-sourcesoftware platform
that allows designers, engineers and researchers of
building energy and control systems to interface different
simulation programs with each other and, in the future,
with Building Automation Systems (BAS). Typical
applications include the performance assessment of
integrated building energy and control systems, either
in co-simulation mode or synchronized to real-time, the
development of new control algorithms, the testing of

control hardware and software in an emulated environ-
ment, and the formal verification of control algorithms
prior to deployment in a building.

Significant work on using simulation to evaluate the
performance of local loop and supervisory control has
been performed in the International Energy Agency (IEA)
Annex 17 (Lebrun 1992). Control strategies were im-
plemented in simulation and in real, commercial, control
hardware coupled via analog interfaces to building enve-
lope and system simulations (Haves et al. 1996; Haves
et al. 1991; Kelly, Park, and Barnett 1991; Laitila et al.
1991; Vaezi-Nejad et al. 1991; Wang, Haves, and Nus-
gens 1994; Peitsman et al. 1994; Decious, Park, and
Kelly 1997; Wittwer et al. 2001). The techniques de-
veloped in the IEA Annex 17 were further developed in
the ASHRAE Research Project 825-RP and resulted in
a simulation testbed for control algorithms (Haves et al.
1996). The US National Institute for Standards and Tech-
nology has been developing a Virtual Cybernetic Build-
ing Testbed (VCBT) that uses the Common Object Re-
quest Broker Architecture (CORBA) and BACnet to link
computer models for building envelope, HVAC systems,
fire and smoke propagation and control hardware. Earlier
work conducted by Lawrence Berkeley National Labora-
tory led to a prototype link between building control sys-
tems and EnergyPlus, using SPARK models embedded in
EnergyPlus to communicate with the control system via
digital/analog converters.

Different building energy analysis programs have also
been coupled by several others (Hensen 1999; Lam et al.
2002; Trcka, Hensen, and Wijsman 2006; Zhai and Chen
2005; Trcka, Wetter, and Hensen 2007). In most cases,
the coupling is done by a direct link between two simu-
lators. Our approach differs from a direct coupling as we
use a modular middleware that allows users to couple to
the middleware any simulation program, either locally or
remotely over the internet, and BACnet compliant BAS.
The middleware allows users to graphically couple simu-
lators and control interfaces, and it provides a library so
users can add their own system models directly within the

middleware. Such system models can be used to model
physical systems (such as HVAC systems) or communi-
cation networks. It also provides models for data process-
ing, such as output analysis, online visualization and re-
porting. The middleware can simulate systems as fast as
possible, synchronized to real-time or at any speed in be-
tween. One of our main goals is to make our BCVTB
available to other users who can use this platform to link
their own simulation programs or control interfaces with
little effort. Thus, our work does not attempt to solve the
problems of data and process interoperability (Augenbroe
et al. 2004; Bazjanac 2004), but we provide a modular
software framework that can be used to interface different
simulation tools and BAS for run-time data exchange.

INTENDED APPLICATIONS AND
REQUIREMENTS

The BCVTB should allow users of EnergyPlus to ex-
tend EnergyPlus’ capabilities for control simulation and
for system simulation. For a researcher who is interested
in assessing the performance of new HVAC system archi-
tectures that are not implemented in EnergyPlus, a typi-
cal use case would be to couple an EnergyPlus model of
the building envelop with a modular simulation environ-
ment such as Dymola (Brück et al. 2002) that enables the
researcher to quickly build a simulation model of a new
HVAC system and to couple the two programs for data
exchange during run-time. A control engineer who needs
to develop a new supervisory control sequence, such as
for an active facade of a naturally ventilated building,
may develop a control sequence in MATLAB/Simulink
and couple MATLAB/Simulink with EnergyPlus through
the BCVTB. To verify that a supervisory control algo-
rithm works as intended, a control technician may couple
a BACnet compliant BAS to EnergyPlus, which is then
used as a virtual representation of the actual building to
which the control algorithm will be deployed. This may
help reduce commissioning time and eliminate errors in a
supervisory control sequence. In future applications, we
also envision the use of the BCVTB for local control, but
this is not subject of this paper.

Based on the above use cases and on interviews with
stakeholders from industry, we deduced the following re-
quirements:

1. The BCVTB should allow users to couple different
new clients, i.e., a new simulation program, with
code modifications required only in the new client.

2. The BCVTB should be fast enough to be applicable
for co-simulation.

3. The BCVTB should be made modular and simulation
tool independent so that different clients can be cou-
pled to it. Examples of clients are EnergyPlus, MAT-

LAB/Simulink, simulation environments for Mod-
elica, a BACnet compatible BAS and visualization
tools for the online plot of variables.

4. For BACnet operation, the coupling should be fault
tolerant in the sense that clients can proceed with
their operation even if no updated values are avail-
able from BACnet. This situation can occur if com-
munication problems prevent BACnet from sending
updated values.

5. The middleware should allow communication with
clients over the internet.

6. The middleware should run on Windows XP, Linux
and Mac OS X.

IMPLEMENTATION
We implemented the BCVTB using a modular architec-

ture in which a middleware links the different simulation
programs and the BAS. To simplify the discussion, when-
ever we say client we mean a simulation program or a
BAS. Using a middleware, as opposed to linking clients
directly to each other, allows the coupling of an arbitrary
number of clients. It also provides a central point for
starting the simulation of all clients, establishing the com-
munication channels, synchronizing the simulation time
and stopping the clients. Fig. 1 shows the architecture of
the BCVTB where the different clients may be a building
energy simulation program, a daylighting simulation pro-
gram, a building energy control system, a lighting control
system and a visualization tool.

Time Synchronization

In the current implementation, we exchange data be-
tween the different clients using a fixed synchronization
time step. There is no iteration between the clients. In
the co-simulation literature, this coupling scheme is re-
ferred to asquasi-dynamic coupling, loose couplingor
ping-pong coupling(Hensen 1999; Zhai and Chen 2005).
For co-simulation, there may be computationally more ef-
ficient data exchange scheme (with the communication in-
terval being adaptive depending on the rate of change of
variables, and possibly with iteration between the clients
if implicit integration schemes are used) but we restrict
our initial implementation to this simple data exchange
scheme.

Middleware

To implement the middleware, we used the Ptolemy II
software (Brooks et al. 2007). Ptolemy II is a Java based
software framework developed by the University of Cali-
fornia at Berkeley to study modeling, simulation and de-
sign of concurrent heterogeneous real-time systems. In
Ptolemy II, models can be built by instantiatingactors.

simulator 1 simulator 2 control system 1 control system 2

middleware

visualization

so
ck

et

so
ck

et

B
A

C
ne

t

B
A

C
ne

t

so
ck

et

Figure 1: Architecture of the BCVTB with the middleware thatconnects different clients.

Actors encapsulate the action performed on input tokens
to produce output tokens. In the BCVTB, an actor may be
a Java class that communicates during run-time with En-
ergyPlus. Its input token may be a control signal to be sent
to an actuator in EnergyPlus, and an output token may be
a sensor value received from EnergyPlus. To send output
tokens to input tokens of another actor, a user can draw
in Ptolemy II’s graphical editor a connection line among
the actors’ ports. The interaction among the actors is de-
fined by aModel of Computation(MoC). The MoC spec-
ifies the communication semantics among ports. Exam-
ples of MoC that are of particular interest for the BCVTB
areSynchronous Data Flow(SDF) andFinite State Ma-
chines(FSM). We used SDF for linking different actors
that represent a simulation program or a BAS. In the SDF,
each actor is fired when a fixed, pre-specified number of
tokens is available on each of its input. In this domain,
each actor produces a fixed, pre-specified number of out-
put tokens at each firing. Another domain of interest for
the BCVTB is the Finite State Machine domain. In this
domain, entities are not actors but ratherstates, and the
connections among the entities represent transitions be-
tween states. FSM are useful for expressing control log-
ics in which different control laws are used depending on
the state of the system, such as sequencing control strate-
gies for air-handling units (Seem, Park, and House 1999).
The modular extensible structure of Ptolemy II will allow
future use of the BCVTB for other research applications,
such as analyzing the effect of lost packages or of commu-
nication latency in a communication network on the per-
formance of a building control system, or the integration
of optimization algorithms for demand response control.

Additions to Ptolemy II

We added to Ptolemy II a new Java package
called LBNLActors. This package contains the classes
Simulator, net.Server and util.XMLWriter. The
classSimulator is an actor that starts a simulation pro-
gram, sends its input tokens to the simulation program,
receives new values from the simulation program and out-
puts these values to its output port. The classSimulator
uses the classnet.Server for the interprocess com-
munication with the simulation program. The interpro-
cess communication is implemented using the Berkeley

socket interface (BSD sockets). In our implementation,
net.Server is the server and the simulation program is
the client. To connect to the server, the client needs to
know on what port number it needs to connect. To pass
the port number from the server to the client, the class
Simulator writes an XML file usingutil.XMLWriter,
which is then read by the client at program start.

This implementation allows the classSimulator to
start through a system call any executable, such as a batch
file on Windows, a shell script in Mac OS X or Linux, or
directly a compiled program such as MATLAB/Simulink.

Library for Clients

We implemented two libraries with C functions that
can be used by developers to implement an interface in
client programs that allows the client program to connect
to and to communicate with the BCVTB. One library
provides functions for parsing XML files. This library
can be used by clients to parse the configuration file
shown in Fig. 5 below using search commands in the
XPath language. The other library provides functions
for establishing the BSD socket connection and for
exchanging data through the BSD socket. We will show
in the next section how these libraries can be used to add
new clients.

For developers, the BCVTB contains Makefiles to com-
pile the library, the Ptolemy II additions and illustrative
examples. The Makefiles can be used on Windows (us-
ing Cygwin), Mac OS X and Linux. The library and
Ptolemy II additions are documented using the doxygen
automatic code documentation system.

Example to Illustrate how to Connect a Client to the
BCVTB

We will now show an example to illustrate how to con-
nect a client program to the BCVTB. We consider the con-
figuration where we have two rooms, each with a heater
that is controlled by a proportional controller. We will
implement the simulation program for the room in a C
program and the controller in Ptolemy II.

Let k ∈ {0, 1, 2, . . .} denote the number of equidistant
time steps and letl ∈ {1, 2} denote the number of the
room. For thek-th time step and the room numberl , let

T l (k) denote the room temperature and letul (k) denote
the control signal for the heater. We use for the room tem-
perature the equation

T l (k+1)= T l (k)+
∆t
Cl (UA)l (Tout−T l (k))+

∆t
Cl Ql

0ul (k),

(1)
where∆t is the time interval,Cl is the room thermal ca-
pacity,(UA)l is the room heat loss coefficient,Tout is the
outside temperature andQl

0 is the heater’s nominal capac-
ity. In (1), we assumed that the communication time step
is small enough to be used as the integration time step.
If this is not the case, we could of course use a differ-
ent integration time step or integration algorithm and syn-
chronize the integration time step with the communication
time step. The governing equation for the control signal
is

ul (k+1) = min
(

1, max
(

0, γl (T l
set−T l (k))

))

, (2)

where γl > 0 is the control gain,T l
set is the set point

temperature and the min(·, ·) and max(·, ·) functions limit
the control signal between 0 and 1.

Fig. 3 shows the source code of the implemented
client. There are two function calls that interface the
client with the BCVTB: On line 2, the function call
establishclientsocket establishes the socket connec-
tion from the client to the middleware. The return value
is a descriptor that references the socket. This descriptor
is then used on line 11 as an argument to the function call
exchangewithsocket. This function writes data to the
socket and reads data from the socket. Its arguments are
the socket file descriptor, a flag to send a signal to the mid-
dleware (a non-zero value means that the client will stop
its simulation) and a flag received from the middleware (a
value of 1 indicates that no further values can be written to
or read from the socket by the client). The remaining argu-
ments are the array lengths and the array data to be written
to and read from the middleware. There is a double array,
an integer array and a boolean array. Even though the C
language lacks a true boolean type, we added a vector of
boolean values as clients that are implemented in other
languages that may want to exchange boolean variables.

For this example, we implemented the controller di-
rectly in the middleware, using actors from the Ptolemy II
library; however, the controller could as well be imple-
mented in MATLAB/Simulink or in a user written pro-
gram that communicates through a BSD socket similarly
to the C client above. Fig. 2 shows the system diagram
with the actor for the controller and the actor that inter-
faces the simulation program.

In Fig. 4 we show the sequence of data exchange
between the clients and Ptolemy II. In this schematic,
we assumed two clients, but more clients are possi-
ble if needed. The figure shows the function calls

Figure 2: System diagram that couples the simulation pro-
gram for the rooms and the controller in Ptolemy II.

(rectangles), the data exchange between the clients and
Ptolemy II (straight arrows), the data exchange inside
Ptolemy II (circular arrows) and the simulation time
in the clients and in Ptolemy II. The simulation times
are not to scale. The hatched boxes are calls to
exchangewithsocket. Once a client has initialized its
data, it callsexchangewithsocket to write its initial val-
ues to Ptolemy II, as indicated by the arrowy0 for client
1. Ptolemy II will send these initial values to the other
Ptolemy II actors, which may include client 2. This ex-
change within Ptolemy II is indicated by the first circular
arrow. Then, the time integration starts: Ptolemy II sends
data that include initial conditions of other clients to the
sockets and the clients receive them. This is illustrated by
the arrow labeledu0 where data is sent to client 1 which
still waits until its first call toexchangewithsocket re-
turns. Now, client 1 computesy1 = f (u0) by advanc-
ing the simulation time fromt = 0 to t = 1. Next,
client 1 may call its output report routines and then call
exchangewithsockets to write y1 to Ptolemy II and to
receiveu1 from Ptolemy II. Onceu1 has been received,
the computation ofy2 = f (u1) can start. This exchange
scheme continues until Ptolemy II reaches its final time.
Then, Ptolemy II writes a flag with a value of 1 to the
client to indicate that the last time step has been reached
and, hence, that the client won’t receive any further data.

EnergyPlus Interface

In a prototype version of EnergyPlus, we implemented
an interface to the BCVTB. The interface allows the
BCVTB to write to a special version of aDAYSCHEDULE
object, which we namedDAYSCHEDULE:DYNAMIC, and to
read anyREPORT VARIABLE that has been set up in the
EnergyPlus input data file (idf-file). We also plan to im-
plement a schedule based on theSCHEDULE:COMPACT, but
this is not yet completed. The idf entry to write to a day
schedule with nameSP-TC and to allow reading the room
temperature is as follows:

1 DAYSCHEDULE :DYNAMIC ,
2 SP-TCooling , ! Name

1 // Establish the client socket
2 const int sockfd = establishclientsocket ("simulation .cfg");
3 if (sockfd < 0){
4 fprintf(stderr ,"Error: Failed to obtain socket file descriptor .\n");
5 exit ((sockfd)+100); }
6 // Simulation loop
7 while(1){
8 // assign values to be exchanged
9 for(i=0; i < nDblWri; i++) dblValWri[i]=TRoo[i];

10 // Exchange values
11 const int retVal = exchangewithsocket (&sockfd , &flaWri , &flaRea ,
12 &nDblWri , &nIntWri , &nBooWri , &nDblRea , &nIntRea , &nBooRea ,
13 &simTimWri, dblValWri, intValWri, booValWri ,
14 &simTimRea, dblValRea, intValRea, booValRea);
15 // Check flags
16 if (retVal < 0){
17 printf("Simulator received value %d when reading from socket. Exit simulation .\n", retVal);
18 closeipc(&sockfd); exit((retVal)+100); }
19 if (flaRea == 1){
20 printf("Simulator received end of simulation signal from server. Exit simulation .\n");
21 closeipc(&sockfd); exit (0); }
22 if (flaRea != 0){
23 printf("Simulator received flag = %d from server. Exit simulation .\n", flaRea);
24 closeipc(&sockfd); exit (1); }
25 // Assign exchanged variables
26 for(i=0; i < nRoo; i++)
27 y[i] = dblValRea[i];
28 // Compute new state and update time x(k+1) = f(y(k))
29 for(i=0; i < nRoo; i++)
30 TRoo[i] = TRoo[i] + delTim/C[i] * (UA * (TOut -TRoo[i]) + Q0Hea * y[i]);
31 simTimWri += delTim; // advance simulation time
32 } // end of simulation loop

Figure 3: Code snippet that shows the integration of simulator in the BCVTB.

1 2 3

u0 u1 u2 1y0 y1 y2 y3

client 1 time:

middleware time:

0 1 2 3

0

client 2 time:

elapsed real time:
(not to scale)

0 31 32 3

0

Figure 4: Time synchronization and function calls between the Ptolemy II middleware and two clients.

3 Temperature , ! ScheduleType
4 24; ! Initial value ,
5 ! used during warm -up
6
7 DAYSCHEDULE :DYNAMIC ,
8 SP-THeating , ! Name
9 Temperature , ! ScheduleType

10 20; ! Initial value ,
11 ! used during warm -up
12
13 Report Variable ,
14 ZONE SOUTH , ! Key_Value
15 ZONE/SYS AIR TEMPERATURE , ! Variable_Name
16 timestep , ! Report_Frequency
17 ReportSch; ! Schedule_Name

The schedule type inDAYSCHEDULE:DYNAMIC is treated
in EnergyPlus the same way as aDAYSCHEDULE object.
Next, a user needs to provide an XML file that allows the
BCVTB interface to connect the variables in the array of
double values to the corresponding EnergyPlus variables.
Fig. 5 shows an example of such an XML file. In this file,
the value of the attributesource specifies what software
computes the variable.

1 <?xml version="1.0" encoding="ISO -8859-1"?>
2 <BCVTB -variables>
3 <variable source="EnergyPlus ">
4 <EnergyPlus name="ZONE SOUTH"
5 type="ZONE/SYS AIR TEMPERATURE "/>
6 </variable>
7 <variable source="Ptolemy">
8 <EnergyPlus dayschedule ="SP-TCooling"/>
9 </variable>

10 <variable source="Ptolemy">
11 <EnergyPlus dayschedule ="SP-THeating"/>
12 </variable>
13 </BCVTB -variables>

Figure 5: XML file for client configuration.

Simulink Interface

We also implemented a Simulink block that enables a
Simulink model to exchange data with ourSimulator
class in Ptolemy II. Fig. 6 shows how to link a Simulink
controller model (block labeled ”controller” in the figure)
with a model that handles the interface with Ptolemy II
(block labeledsocketIO). Input to the blocksocketIO
are a vector containing the control signals, such as set-
points and actuator values, and a trigger signal. If the trig-
ger signal is 0, then the block will not be called during
the simulation. This enables a model builder to test and
debug the control algorithm in isolation from the plant
model. Output of the blocksocketIO is a vector of sen-
sor values that has been received from Ptolemy II. Since

Figure 6: Simulink model that interfaces a Simulink con-
troller model (left grey box) with a model that interfaces
Ptolemy II (right grey box).

MATLAB’s code generation tool, which we used to in-
terface our C socket library requires MATLAB function
outputs to have a fixed array size, the output vector of
socketIO has typically more elements than required. The
blockselector selects the array elements needed by the
controller. If more elements are needed than are currently
allocated in thesocketIO interface, a user can increase
the value in a MATLAB script and recompile the MAT-
LAB/Simulink socket library using a Makefile that is part
of the BCVTB environment.

EXAMPLE COSIMULATION OF

ENERGYPLUS AND SIMULINK

We now present an example in which we linked En-
ergyPlus and MATLAB/Simulink to the BCVTB. Ener-
gyPlus simulates the building including its natural venti-
lation and MATLAB/Simulink simulates a controller that
determines the window opening positions. Both programs
exchange via Ptolemy II data every 1 minute of simulation
time. In EnergyPlus, we use two report variables for the
room air temperatures of two rooms through which cross
ventilation occurs, and we use a report variable for the
outside drybulb temperature. These three temperatures
are input into the Simulink controller, together with the
current clock time. The controller determines the room
air setpoint temperature, using different values for day and
night and a 2 Kelvin deadband between opening and clos-
ing the windows. The control logic is as follows: For
some time stepk ∈ N, let Ts(k) denote the setpoint tem-
perature, letTr(k) denote the bigger of the two room tem-

peratures and letTo(k) denote the outside drybulb tem-
perature. IfTr(k) > max(Ts(k), To(k)), then windows are
allowed to be open. Otherwise they are closed. There are
three opening positions for the windows: For a constant
gain γ = 0.5, the controller computes the control signal
y(k) = γ(Tr(k)−Ts(k)). For 0≤ y(k) ≤ 1, one window
group is open, for 1< y(k) ≤ 2 two window groups are
open and for 2< y(k) all windows are open. This control
logic is implemented in a Simulink block similar to the
block labelledcontroller in Fig. 6.

Fig. 7 shows the temperature trajectories and the win-
dow positions. In the first few days, there is significant
chattering, with the window opening and closing in a 15
minute long limit cycle (lower graph). This would be un-
acceptable for building occupants and would wear out the
actuators. Hence, a more sophisticated control algorithm
should be used as was implemented in the actual build-
ing. A better control algorithm may involve modulating
the window opening to avoid the bang-bang control that
led to the limit cycle. In the future we anticipate to use
the EnergyPlus Energy Management System module, cur-
rently under development at the National Renewable En-
ergy Laboratory (Ellis, Torcellini, and Crawley 2007), to
write continuous actuator signals from the BCVTB con-
trol signals to actuators in EnergyPlus, thereby modulat-
ing the window opening position.

CONCLUSIONS

Using the Ptolemy II modeling and simulation environ-
ment as a middleware for the BCVTB allowed us to cre-
ate a modular environment to which different simulation
programs or building control systems can be coupled. It
also offers users the possibility to implement system mod-
els directly in Ptolemy II, for example, to model physical
systems or control systems using different models of com-
putation, such as continuous time, synchronous data flow
or finite state machines. Ptolemy II also contains libraries
of component models that can be used for data processing;
example applications include visualization or transforma-
tion of data that is exchanged between different clients.

The interface for simulation clients that we added in
the form of a Ptolemy II model allows users to add addi-
tional simulation programs to the BCVTB by adding two
function calls to the new simulation program; one call for
establishing a communication connection with Ptolemy II
and one call for exchanging data during run-time.

ACKNOWLEDGMENT

This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231.

(a) 5 days plot during summer

(b) 45 minutes magnification during night

Figure 7: Ptolemy II’s online plot showing the outside air
temperature (red), the room air temperatures (blue and
green), the room set point temperature (black) and the
window openings (the upper lines indicate open and the
lower lines indicate closed windows) during five summer
days (upper graph) and during 45 minutes at night (lower
graph).

REFERENCES
Augenbroe, Godfried, Pieter de Wilde, Hyeun Jun

Moon, and Ali Malkawi. 2004. “An interoperability
workbench for design analysis integration.”Energy
and Buildings36 (8): 737–748 (August).

Bazjanac, Vladimir. 2004. “Building energy perfor-
mance simulation as part of interoperable software
environments.”Energy and Buildings39 (8): 879–
883 (August).

Brooks, Christopher, Edward A. Lee, Xiaojun Liu,
Steve Neuendorffer, Yang Zhao, and Haiyang Zheng.
2007. “Ptolemy II – Heterogeneous Concurrent
Modeling and Design in Java.” Technical Report,
University of California at Berkeley.

Brück, Dag, Hilding Elmqvist, Sven Erik Mattsson, and
Hans Olsson. 2002, March. “Dymola for Multi-
Engineering Modeling and Simulation.” Edited by
Martin Otter,Proceedings of the 2nd Modelica con-
ference. Modelica Association and Deutsches Zen-
trum fur Luft- und Raumfahrt, Oberpfaffenhofen,
Germany, 55–1 – 55–8.

Decious, Gaylon M., Cheol Park, and George E.
Kelly. 1997. “A Low Cost Building/HVAC Emu-
lator.” HPAC Heating/Piping/AirConditioning, Jan-
uary, 188–193.

Ellis, Peter G., Paul A. Torcellini, and Drury B. Crawley.
2007. “Simulation of Energy Management Systems
in EnergyPlus.” Edited by Jiang Yi, Zhu Yingxin,
Yang Xudong, and Li Xianting,Proc. of the 10-th
IBPSA Conference. International Building Perfor-
mance Simulation Association and Tsinghua Univer-
sity.

Haves, P., A. L. Dexter, D. R. Jorgensen, K. V. King, and
G. Geng. 1991. “Use of a Building Emulator to De-
velop Techniques for Improved Commissioning and
Control of HVAC Systems.”ASHRAE Transactions
97, no. 1.

Haves, P., L. K. Norford, M. DeSimone, and L. Mei.
1996. “A Standard Simulation Testbed for the Eval-
uation of Control Algorithms & Strategies.” Final
report 825-RP, ASHRAE, Atlanta, GA.

Hensen, Jan L. M. 1999. “A comparison of coupled and
de-coupled solutions for temperature and air flow in a
building.” ASHRAE Transactions105 (2): 962–969.

Kelly, G. E., C. Park, and J. P. Barnett. 1991. “Us-
ing emulators/testers for commissioning EMCS soft-
ware, operator training, algorithm development, and
tuning local control loops.”ASHRAE Transactions
97, no. 1.

Laitila, P. K., R. O. Kohonen, K. I. Katajisto, and G. K.
Piira. 1991. “An emulator for testing HVAC systems
and their control and energy management systems.”
ASHRAE Transactions97, no. 1.

Lam, K. P., A. Mahdavi, S. Gupta, N. H. Wong,
R. Brahme, and Z. Kang. 2002. “Integrated and dis-

tributed computational support for building perfor-
mance evaluation.”Advances in Engineering Soft-
ware33 (4): 199–206.

Lebrun, Jean. 1992. “Annex 17.” Final report, Interna-
tional Energy Agency.

Peitsman, H. C., S. W. Wang, P. Haves, S. Karki, and
C. Park. 1994. “Investigation of the reliability of
building emulators for testing energy management
and control systems.”ASHRAE Transactions100,
no. 1.

Seem, John E., Cheol Park, and John M. House.
1999. “A New Sequencing Control Strategy for Air-
Handling Units.” HVAC&R Research5 (1): 35–59
(January).

Trcka, M., J. L. M. Hensen, and A. J. Th. M. Wijsman.
2006. “Distributed building performance simulation
- a novel approach to overcome legacy code limita-
tions.” ASHRAE HVAC&R12 (3a): 621–640.

Trcka, Marija, Michael Wetter, and Jan Hensen. 2007.
“Comparison of co-simulation approaches for build-
ing and HVAC/R Simulation.” Edited by Jiang
Yi, Zhu Yingxin, Yang Xudong, and Li Xianting,
Proc. of the 10-th IBPSA Conference. International
Building Performance Simulation Association and
Tsinghua University.

Vaezi-Nejad, H., E. Hutter, P. Haves, A. L. Dexter,
G. Kelly, P. Nusgens, and S. Wang. 1991, August.
“Use of Building Emulators to Evaluate the Perfor-
mance of Building Energy and Management Sys-
tems.” Edited by J. A. Clarke, J. W. Mitchell, and
R. C. Van de Perre,Proc. of the IBPSA Conference.
Nice, France.

Wang, S. W., P. Haves, and P. Nusgens. 1994. “Design,
construction and commissioning of building emula-
tors for EMCS applications.”ASHRAE Transactions
100, no. 1.

Wittwer, Christof, Werner Hube, Peter Schossig, An-
dreas Wagner, Christiane Kettner, Max Mertins, and
Klaus Rittenhofer. 2001, August. “ColSim - a new
simulation environment for complex system analysis
and controllers.” Edited by R. Lamberts, C. O. R.
Negrão, and J. Hensen,Proc. of the 7-th IBPSA Con-
ference, Volume I. Rio de Janeiro, Brazil, 237–244.

Zhai, Zhiqiang John, and Qingyan Yan Chen. 2005.
“Performance of coupled building energy and CFD
simulations.”Energy and Buildings37 (4): 333–344
(April).

