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ABSTRACT OF THE DISSERTATION

Sensing Approaches and Reconstruction Methods for Improved Lensless Imaging

by

Yucheng Zheng

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2023

Dr. M. Salman Asif, Chairperson

Lensless imaging systems present a novel alternative to traditional camera designs by

replacing the camera lens with a thin, flat, and potentially inexpensive optical encoder, often referred

to as a coded mask. This dissertation establishes a framework for the lensless imaging model and

explores computational algorithms to extract image and depth information from lensless imaging

measurements. The dissertation is organized around three primary areas of focus:

Lensless Imaging for 3D Reconstruction Traditionally, estimating the disparity map of a

scene requires either capturing a sequence of focus-stacked images or utilizing binocular views with

a baseline. However, in lensless imaging, the optical encoder positioned above the camera sensor

generates a complex and structured point spread function (PSF) that varies significantly depending

on the depth of the light source. This unique property enables the retrieval of depth information from

a single frame of measurements. In order to estimate depth maps more accurately on a continuous

domain, we formulate the forward imaging model of the system, such that the PSF is represented

as a continuous function of depth. Based on this imaging model, we design an alternating update

algorithm to jointly estimate the RGB and depth information from the measurements.
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Improved 3D Lensless Imaging With Learned Programmable Masks Existing meth-

ods for lensless imaging can recover both depth and intensity of a scene, but they necessitate solv-

ing computationally-intensive inverse problems. Additionally, these methods encounter difficulties

when attempting to recover dense scenes with significant depth variations. To address these chal-

lenges, we propose a lensless imaging system that captures a limited number of measurements using

distinct patterns on a programmable mask. We introduce a fast recovery algorithm, which can be

parallelized, to recover textures on a fixed number of depth planes from multiple measurements.

Furthermore, we examine the mask design problem for programmable lensless cameras and offer a

design template aimed at optimizing mask patterns to enhance depth estimation.

Coded Illumination for Improved Lensless Imaging In space-limited situations, such

as under-display imaging, the imaging system is often ill-conditioned, and the number of sensing

elements may be constrained. However, by employing coded illumination patterns, we can capture

more potentially uncorrelated measurements, thereby improving the conditioning of the original

linear system. In the proposed framework, the scene is illuminated by a sequence of simple coded

illumination patterns while the lensless camera captures sensor measurements. We introduce a fast

and low-complexity recovery algorithm that leverages the properties of the illumination patterns and

the system. Ultimately, the images reconstructed by combining measurements from the illuminated

scene demonstrate a significant improvement over the original camera system.
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Chapter 1

Introduction

Lensless cameras provide novel designs for extreme imaging conditions that require small,

thin form factor, large field-of-view, or large-area sensors [3, 6, 12, 14]. Compared to conventional

lens-based cameras, lensless cameras can be flat, thin, light-weight, and potentially flexible be-

cause the physical constraints imposed by a lens are relaxed. In lensless imaging, the measurements

formed on the sensor with a coded mask is a linear superposition of shifted and scaled versions of

the point spread function. To recover the scene image from the sensor measurements, we need to

solve a linear inverse problem. The quality of the recovered image depends on the conditioning of

the linear system; especially in the absence of any prior knowledge about the scene.

The main features of lensless camera are its small-size, light weight and scalable FOV

depending only on the area of sensor, such flat lensless camera has wide potential application under

space-limited circumstances, such as under-display sensing, microscopy, or installed on AR/VR de-

vice. In addition to the physical advantages, due to its complex and structured point spread function

pattern, lensless camera is amenable to compressive sensing approaches. In contrast to a traditional
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lens-based camera, the point spread function of our proposed lensless camera is more complex and

structured. The PSF shifts when the point moves parallel to the sensor plane and expands/shrinks

when the point source moves toward/away from the sensor plane. The measurements recorded on

the sensor thus represent a superposition of shifted and scaled versions of the mask shadows cor-

responding to light sources in different directions and depths. One main track of this dissertation

focuses on exploiting this property and retrieving RGB and depth information from lensless mea-

surements.

Despite its advantages in space-saving, FOV, and compressive sensing, lensless camera

suffer from its ill-conditioned system and low light throughput due to the lack of lens. Therefore,

the imaging quality of lensless camera is often poor compared to conventional camera, especially in

constrained conditions, such as space-limited applications where the mask is put very close the sen-

sor or the number of sensing elements is constrained. Fortunately, we may improve such situation

with the assistance of external light source. The second main track of this dissertation focuses on

improving the 2D and 3D imaging quality with the assistance of a sequence of coded illumination

patterns.

This dissertation is organized as follows, we develop the a general framework and imaging

model for RGB and depth estimation from single-frame lensless measurements in Chapter 2. To

further improve the depth quality, we propose in Chapter 3 to capture measurements with a sequence

of learned programmable mask patterns. To improve the stability and imaging quality of lensless

camera, we propose a novel imaging model with the application of coded illumination patterns in

Chapter 4. In the end, we also explore its application in 3D reconstruction in Chapter 5.
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1.1 Lensless Imaging for 3D Reconstruction

Depth estimation is an important and challenging problem that arises in a variety of ap-

plications including computer vision, robotics, and autonomous systems. Existing depth estimation

systems use stereo pairs of conventional (lens-based) cameras or time-of-flight sensors [44, 45, 88].

These cameras can be heavy, bulky, and require large space for their installation. Therefore, their

adoption in portable and lightweight devices with strict physical constraints is still limited.

In fact, depth estimation is an integral part of lensless imaging. The basic principle of a

lensless camera is that the sensor records the summation of the measurements associated with the

scene points. Each scene point casts its own unique sensor measurement, depending on its three-

dimensional (3D) spatial location and radiance. Thus, the 3D scene information is encoded in the

sensor measurements, but its recovery requires us to solve a nonlinear inverse problem. Further, it is

important to model this depth dependence in the measurements especially since ignoring it results

in significant reduction in the quality of reconstructions.

1.1.1 Joint Image and Depth Estimation From Single-Frame Lensless Measurements

Despite the nature of lensless camera in encoding 3D information with its measurements,

existing depth recovery algorithms either assume that the scene consists of a small number of depth

planes or solve a sparse recovery problem over a large 3D volume. Both these approaches fail to

recover the scenes with large depth variations. In chapter 2, we propose a new approach for depth

estimation based on an alternating gradient descent algorithm that jointly estimates a continuous

depth map and light distribution of the unknown scene from its lensless measurements.
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To accurately estimate the depth of the scene pixels, we exploit the relationship between

the depth and PSF and formulate the imaging model as following

y = Ψ(α)l, (1.1)

where y ∈ RM2
is denotes sensor measurements, l ∈ RN2

represents RGB intensity from all the

angles, and Ψ is a matrix with all the basis functions parameterized by the inverse depth α.

To jointly estimate the depth and light distribution, we propose a two-step approach that

consists of an initialization step and an alternating gradient descent step to minimize our objective.

To preserve sharp edges in the image intensity and depth map, we include an adaptive regularization

penalty in our objective function.

1.1.2 Improved 3D Lensless Imaging With Learned Programmable Masks

Existing methods for 3D lensless imaging can be divided into two categories. One cate-

gory of methods estimate the 3D scene with a single image measurement [1, 3, 5, 13, 122]. These

methods jointly estimate the image and depth map of a 3D scene by solving an optimization prob-

lem using iterative techniques. Since the number of variables to be estimated is much larger than the

number of measurements, the recovery problem is severely under-determined and the methods rely

on some prior knowledge about the 3D scene. For instance, [3] assumes that 3D volume is sparse

and solves an ℓ1 norm-based optimization problem to estimate a 3D image. Another drawback of

these optimization-based methods is their large computational cost and run time. The second cate-

gory of methods capture multiple measurements, each with a different mask, which makes the 3D

recovery of dense scenes possible [48, 114].
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In chapter 3, we propose a novel framework that reconstructs the 3D scene using lensless

measurements captured with multiple learned programmable masks. The most related work that

concerns designing mask patterns for multiple measurements is SweepCam [48], which captures

multiple measurements of the same scene using a programmable, shifting mask and estimates one

plane in the 3D scene at a time. The recovery of a single plane is much faster than joint recovery of

the entire 3D scene, but the number of mask patterns needed to achieve artifact-free reconstruction

of a single depth plane can be large (in the range of 100mm–400mm). Our proposed method falls

in the second category, but instead of estimating a single plane, we recover the 3D scene at multiple

depth planes jointly from a smaller number of measurements, using a simple algorithm.

The proposed algorithm exploits the well-known fact that convolutional systems are di-

agonalized in the Fourier domain. Given that the measurement operator associated with each scene

depth is well-approximated as a convolution, we show that the joint depth and image recovery prob-

lem can be significantly simplified when we model the scene intensities in the spatial frequency

domain. Hence, instead of solving a single large linear system for image intensity across all of the

depth planes, we solve several small linear systems in parallel, with each system associated with a

different frequency coefficient.

1.2 Lensless Imaging With Coded Illumination

Despite recent progress in lensless cameras, the quality of images recovered from the

lensless cameras is often poor due to the ill-conditioning of the underlying measurement system,

especially in space-limited applications where the mask is put very close the sensor or the number

of sensing elements is constrained.
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1.2.1 Coded Illumination for Improved Lensless Imaging

In chapter 4, we propose a novel framework that combines coded illumination with mask-

based lensless cameras to improve the quality of recovered images. A 2D target scene is illuminated

with multiple coded patterns during data acquisition. We capture sensor measurements for each

illumination pattern and use a fast recovery algorithm to reconstruct the scene using all the mea-

surements.

We can formulate the sensor measurements Yi,j for each of the projected illumination

pattern Pi,j as the following

Yi,j = ΦL(Pi,j ⊙X)Φ⊤
R + Ei,j , (1.2)

where ΦL,ΦR are forward imaging matrices, X is the target image, ⊙ denotes element-wise multi-

plication operator and Ei,j denotes measurement noise. By exploiting the separability of the mask

and illumination pattern, we can solve for the underlying X in a fast and low-complexity closed-

form solution.

1.2.2 Binocular 3D Lensless Imaging With Coded Illumination

Existing methods for 3D reconstruction from lensless measurements suffer from poor

spatial and depth resolution. This is partially due to the system ill conditioning that arises because

the point-spread functions (PSFs) from different depth planes are very similar. In this chapter, we

propose to capture multiple measurements of the scene under a sequence of coded illumination
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patterns to improve the 3D image reconstruction quality. In addition, we put the illumination source

at a distance away from the camera. With such baseline distance between the lensless camera and

illumination source, the camera observes a slice of the 3D volume, and the PSF of each depth plane

becomes more resolvable from each other.
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Chapter 2

Lensless Imaging for 3D Reconstruction

Mask-based lensless cameras replace the lens of a conventional camera with a custom

mask. These cameras can potentially be very thin and even flexible. Recently, it has been demon-

strated that such mask-based cameras can recover light intensity and depth information of a scene.

Existing depth recovery algorithms either assume that the scene consists of a small number of depth

planes or solve a sparse recovery problem over a large 3D volume. Both these approaches fail to

recover the scenes with large depth variations. In this chapter, we propose a new approach for depth

estimation based on an alternating gradient descent algorithm that jointly estimates a continuous

depth map and light distribution of the unknown scene from its lensless measurements. We present

simulation results on image and depth reconstruction for a variety of 3D test scenes. A compar-

ison between the proposed algorithm and other method shows that our algorithm is more robust

for natural scenes with a large range of depths. We built a prototype lensless camera and present

experimental results for reconstruction of intensity and depth maps of different real objects.
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Figure 2.1: An overview of the proposed intensity and depth estimation framework. Consider a
natural scene as a 3D point cloud, where each point represents a light source located at a differ-
ent depth. The camera consists of a fixed, coded mask placed on top of an image sensor. Every
point in the scene casts a shadow of the mask on the sensor plane. Each sensor pixels records a
linear combination of the scene modulated by the mask pattern. The recovery algorithm consists
of two steps. (1) Initialization using a greedy depth selection method. (2) An alternating gradient
descent-based refinement algorithm that jointly estimates the light distribution and depth map on a
continuous domain.

2.1 Introduction

An overview of the reconstruction framework is illustrated in Figure 2.1. In this chapter,

we use the same sampling framework proposed in [5]. We initialize the estimate of the depth map

by selecting a single plane or solving the greedy algorithm proposed in [5]. The greedy method

assumes that the scene consists of a small number of depth planes and fails to recover scene with

continuous depth variations. The method proposed in this chapter can estimate continuous depth by

minimizing an objective function with respect to image intensity and depth via alternating gradient

descent. We present extensive simulation and real experimental results with different objects. The

main contributions of this chapter are as follows.
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• We propose a new computational framework for joint estimation of light intensity and depth maps

from a single image of a mask-based lensless camera. In contrast to other methods, our method

estimates the depth map on a continuous domain. Our algorithm consists of a careful initialization

step based on greedy pursuit and an alternating minimization step based on gradient descent.

• The problem of joint image and depth recovery is highly nonconvex. To tackle this issue, we

present different regularization schemes that offer robust recovery on a diverse dataset.

• We present simulation results on standard 3D datasets and demonstrated a significant improve-

ment over existing methods for 3D imaging using coded mask-based lensless cameras.

• We built a hardware prototype to capture measurements of real objects. We present image and

depth reconstruction results of these real objects using our proposed algorithm and a comparison

with existing methods.

2.2 Background and Related Work

A pinhole camera, also known as camera obscura, is the simplest example of a mask-

based lensless camera. Even though a pinhole can easily provide an image of the scene onto a sensor

plane, the image quality is often severely affected by noise because the amount of light collected is

limited by the pinhole aperture [118]. Coded aperture-based lensless cameras avoid this problem by

increasing the number of pinholes and allowing more light to reach the sensor [3, 6, 12, 19, 23, 34].

In contrast to a pinhole camera where only one inverted image of the scene is obtained through a

single pinhole, the measurements captured through a coded-mask are a linear combination of all the

pinhole images under every mask element. To recover an image of the scene, we need to solve a

computational image recovery problem [3, 6, 34].
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Recent work on mask-based lensless imaging broadly falls into two categories. FlatCam

[5] uses a separable mask aligned with the sensor such that the sensor measurements corresponding

to a plane at a fixed depth from the sensor can be written as a separable system. DiffuserCam [3]

assumes that the mask size and angular span of the object are small enough so that the sensor

measurements of a plane can be modeled as a convolution of the mask pattern with image intensity

at that plane. The convolutional model can be computationally efficient if the object falls within

a small angular range because we can use fast Fourier transform to compute convolutions. The

separable model does not require a small angular range assumption. A number of methods based

on deep learning have also been developed recently for both separable and convolutional imaging

models to recover images at a fixed depth plane [30, 52, 73].

A coded aperture system offers another advantage by encoding light from different direc-

tions and depths differently. The depth-dependent imaging capability in coded aperture systems is

known since the pioneering work in this domain [10, 34]. However, the classical methods usually

assume that the scene consists of a single plane at known depth. In this chapter, we assume that the

depth map is arbitrarily distributed on a continuous domain and the true depth map is unknown at

the time of reconstruction.

The 3D lensless imaging problem has also recently been studied in [1, 3, 5, 48]. These

methods can broadly be divided into two categories. In the first category, the 3D scene is divided

into a finite number of voxels. To recover the 3D light distribution, these methods solve an ℓ1 norm-

based recovery problem under the assumption that the scene is very sparse [1, 3]. In the second

category, the 3D scene is divided into an intensity map and multiple depth planes such that each

pixel is assigned one intensity and depth. To solve the intensity and depth recovery problem, these
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methods either sweep through the depth planes [48] or assign depth to each pixel using a greedy

method [5]. Our proposed method belongs to the second category in which we model the image

intensity and depth separately and assume that the depth values of the scene are distributed on a

continuous domain. To recover the 3D scene, we jointly estimate the image intensity and depth map

from the available sensor measurements.

Joint estimation of image intensity and depth map can be viewed as a nonlinear in-

verse problem in which the sampling function is dependent on scene depth. Similar inverse prob-

lem also arises in many other fields such as direction-of-arrival estimation in radar [102], super-

resolution [17] and compressed sensing [9, 76, 107]. Similar to the joint estimation of image inten-

sity and depth, the solution approaches to these problems consists of two main steps: identification

of signal bases and the estimation of signal intensities based on the identified bases. The problem of

identifying the signal bases from continuously varying candidates is often called off-the-grid signal

recovery. The methods for solving the off-the-grid signal recovery problems can be divided into

two main types. The first approach formulates the problem as a convex program on a continuous

domain and solves it using an atomic norm minimization approach [27, 103]. The second approach

linearizes the problem for the optimization parameter using a first-order approximation at every

iteration [17, 116]. Our proposed algorithm is inspired by the second approach.

Mask-based lensless cameras have traditionally been used for imaging light at wave-

lengths beyond the visible spectrum [19, 23]. Other examples related to mask-based cameras in-

clude controllable aperture and employing coded-mask for compressed sensing and computational

imaging [100, 127], distributed lensless camera [121], single pixel camera [32] and external mask

setting [82].
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Coded masks have also recently been used with conventional lens-based cameras to es-

timate depth and lightfield [47, 56, 66, 108]. Recently, a number of data-driven methods have been

proposed to design custom phase masks and optical elements to estimate depth from a single im-

age [28, 113]. An all-optical diffractive deep neural network is proposed in [60, 67], which can

perform pattern recognition tasks such as handwritten digits classification using optical mask lay-

ers. Such networks can literally process images at a lightning-fast pace with near-zero energy cost.

2.3 Forward Lensless Imaging Model

We divide the 3D scene under observation into N ×N uniformly spaced directions. We

use θi and θj to denote the angular directions of a light source with respect to the center of the

sensor. The intensity and depth of the light source are denoted using li,j and zi,j respectively.

Figure 2.2 depicts the geometry of such an imaging model. A planar coded-mask is placed on top

of a planar sensor array at distance d. The M ×M sensor array captures lights coming from the

scene modulated by the coded-mask.

Every light source in the scene casts a shadow of the mask on the sensor array, which

we denote using basis functions ψ. We use su and sv to index a pixel on the rectangular sensor

array. The shadow cast by a light source with unit intensity at (θi, θj , zi,j) can be represented as the

following basis or point spread function:

ψi,j(su, sv) = mask [αi,jsu + d tan(θi), αi,jsv + d tan(θj)], (2.1)
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Figure 2.2: 1D imaging model for a planar sensor with a coded mask placed at distance d. Light
rays from a light source at location (θ, z) are received by all the sensor pixels. A light ray that hits
sensor pixel s passes through mask at location m.
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where mask[u, v] denotes the transmittance of the mask pattern at location (u, v) on the mask plane

and αi,j is a variable that is related to the physical depth zi,j with the following inverse relation:

αi,j = 1− d

zi,j
, (2.2)

If the 3D scene consists of only a single point source at (θi, θj) with light intensity li,j , the mea-

surement captured at sensor pixel (su, sv) would be

y(su, sv) = ψi,j(su, sv)li,j . (2.3)

The measurement recorded on any sensor pixel is the summation of contributions from

each of the point sources in the 3D scene. The imaging model for a single sensor pixel can be

represented by

y(su, sv) =
N∑
i=1

N∑
j=1

ψi,j(su, sv)li,j . (2.4)

We can write the imaging model for the entire sensor in a compact form as

y = Ψ(α)l+ e, (2.5)

where y ∈ RM2
is a vectorized form of an M × M matrix that denotes sensor measurements,

l ∈ RN2
is a vectorized form of an N ×N matrix that denotes light intensity from all the locations

(θi, θj , αi,j), and Ψ is a matrix with all the basis functions corresponding to θi, θj , αi,j . The basis

functions in (2.5) are parameterized by the unknown α ∈ RN2
and e denotes noise and other

nonidealities in the system.
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We can jointly estimate light distribution (l) and inverse depth map (α)1 using the fol-

lowing optimization problem:

minimize
α,l

1

2
∥y −Ψ(α)l∥22. (2.6)

Note that if we know the true values of α (or we fix it to something), then the problem in (2.6)

reduces to a linear least-squares problem that can be efficiently solved via standard solvers. On the

other hand, if we fix the value of l, the problem remains nonlinear with respect to α. In the next few

sections we discuss our approach for solving the problem in (2.6) via alternating minimization.

2.4 Technical Approaches

2.4.1 Matching Pursuit Algorithm

Since the minimization problem in (2.6) is not convex, a proper initialization is often

needed to ensure convergence to a local minimum close to the optimal point. non-convex and

non-smooth because of its dependence on the depth. The mask pattern ψ we use in (2.1) is not

necessarily differentiable with respect to depth either. Therefore, solving the optimization problem

in (2.6) from scratch without a good initialization will be difficult. To overcome this problem, we

need a good preliminary estimate for initialization.
1α has an inverse relation with the depth map (2.2); therefore we refer to it as inverse depth map throughout the paper.
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Depth Scanning A naı̈ve approach is to initialize all the point sources in the scene at the same

depth plane. To select an initial depth plane, we sweep through a set of candidate depth planes and

perform image reconstruction on one depth plane at a time by solving the following linear least

squares problem:

minimize
l

1

2
∥y −Ψ(α)l∥22. (2.7)

We evaluate the loss value for all the candidate depth planes and picked the one with the smallest

loss as our initialized depth. The mask basis function in (2.1) changes as we change α, which has

an inverse relation with the scene depth. We select candidate depth corresponding to uniformly

sampled values of α, which yields non-uniform sampling of the physical scene depth. The single-

depth initialization approach is computationally simple and provides a reasonable initialization of

light distribution to start with, especially when the scene is far from the sensor.

Matching Pursuit Our second approach for initialization is the greedy method proposed in [5].

Greedy algorithms are widely used for sparse signal recovery [9,76,107]. Based on these algorithms,

[5] proposed a greedy depth pursuit algorithm for depth estimation from FlatCam [6]. The algorithm

works by iteratively updating the depth surface that matches the observed measurements the best.

The depth pursuit method assumes that the scene consists of a small number of predefined

depth planes. We start the program by initializing all the pixels at a single depth plane and the

estimation of light intensities l based on the initialized depth map. The first step is to select new

candidate values for α. The new candidates are selected using the basis vectors that are mostly

correlated with the current residual of the estimate. In the second step, new candidates for α are
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appended to the current estimate. We solve a least squares problem using the appended α. In the

third step, we prune the α by selecting αi,j as the value corresponding to the largest magnitude

of li,j . Although this method may not estimate the off-grid point sources well, it produces a good

preliminary estimate of the scene.

2.4.2 Alternating Gradient Descent for Continuous Image and Depth Estimation

To solve the minimization problem in (2.6), we start with the preliminary image and depth

estimates from the initialization step and alternately update depth and light distribution via gradient

descent. The main computational task in gradient descent method is computing the gradient of the

loss function w.r.t. α. To compute that gradient, we expand the loss function in (2.6) as

L =
1

2

M∑
u,v=1

(y(su, sv)−
N∑

i,j=1

ψi,j(su, sv)li,j)
2 (2.8)

We define Ru,v = y(su, sv)−
∑N

i,j=1 ψi,j(su, sv)li,j as the residual approximation error at location

(su, sv). The derivatives of the loss function with respect to the αi,j is given as

∂L

∂αi,j
=

M∑
u,v=1

Ru,v
∂Ru,v
∂αi,j

= −li,j
M∑

u,v=1

Ru,v
∂ψi,j(su, sv)

∂αi,j
. (2.9)
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We compute the derivatives of sensor value with respect to the αi,j using the total deriva-

tive 2 as follows.

∂ψi,j(su, sv)

∂αi,j
=
∂ψi,j(su, sv)

∂ui,j

∂ui,j
∂αi,j

+
∂ψi,j(su, sv)

∂vi,j

∂vi,j
∂αi,j

=
∂ψi,j(su, sv)

∂ui,j
su +

∂ψi,j(su, sv)

∂vi,j
sv. (2.10)

ui,j = αi,jsu + d tan(θi) and vi,j = αi,jsv + d tan(θj) denote two dummy variables that also

correspond to the specific location on the mask where a light ray from a point source at angle

(θi, θj) and depth αi,j and sensor pixel at (su, sv) intersects with the mask plane. The terms in

∂ψi,j(su,sv)
∂ui,j

,
∂ψi,j(su,sv)

∂vi,j
can be viewed as the derivatives of mask pattern along the respective spa-

tial coordinates and evaluated at ui,j , vi,j . We compute these derivatives using finite-difference of

ψi,j(su, sv) over a fine grid and linear interpolation.

2.4.3 Algorithm Analysis

To solve the non-linear least squares problem in (2.6) in our algorithms, we compute the

gradient derived in (2.10) and use it as input of a optimization solver. Suppose ψi and ψj denote the

basis function vectors evaluated on a 1D mask as

ψi(su) = mask [αi,jsu + d tan(θi)]

ψj(sv) = mask [αi,jsv + d tan(θj)]. (2.11)

2Recall that the total derivative of a multivariate function f(x, y) is ∂f(x,y)
∂x

dx+ ∂f(x,y)
∂y

dy.
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If we use a separable mask pattern, then the 2D mask function ψi,j in (2.1) can be computed as the

outer product of two vectors given as ψi,j = ψiψ
T
j . Similarly, we define 1D sub-gradient function

g as

gi(su) =
∂ψi,j(su, sv)

∂ui,j

gj(sv) =
∂ψi,j(su, sv)

∂vi,j
, (2.12)

Similar to (2.10), the functions ∂ψi,j(su,sv)
∂ui,j

and ∂ψi,j(su,sv)
∂vi,j

are the sub-gradient functions along the

1D mask. It takes non-negative values at locations where mask pattern value changes and takes

zero value at the other places. Using the derivation in (2.10), the matrix contains ∂ψi,j(su,sv)
∂αi,j

at all

(su, sv) can be computed using the following sum of two vector outer products.

∂ψi,j
∂αi,j

= giψ
T
j + ψig

T
j (2.13)

Using the derivations in (2.9), the derivative of loss function with respect to depth value can be

computed using the following matrix multiplications, where R refers to the matrix of residual Ru,v

at all (su, sv)

∂L

∂αi,j
= gTi Rψj + ψTi Rgj (2.14)

Suppose we have M × M pixels on sensor array. The computation in (2.14) takes 2M2 + 2M

multiplications. We then feed our gradients to minfunc solver [93] with L-BFGS algorithm [61]

to solve the non-linear optimization problem in (2.6).
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2.4.4 Regularization Approaches

ℓ2 Regularization on Spatial Gradients. The optimization problem in (2.6) is highly non-convex

and contains several local minima; therefore, the estimate often gets stuck in some local minima and

the estimated intensity and depth maps are coarse. To improve the performance of our algorithm

for solving the non-convex problem in (2.6), we seek to exploit additional structures in the scene. A

standard assumption is that the depth of neighboring pixels is usually close, which implies that the

spatial differences of (inverse) depth map are small. To incorporate this assumption in our model,

we add a quadratic regularization term on the spatial gradients of the inverse depth map to our loss

function. The quadratic regularization term is defined on an N × N inverse depth map matrix α

and can be written as

R(α) =
N∑

i,j=1

(αi,j − αi+1,j)
2 + (αi,j − αi,j+1)

2

= ∥∇rα∥2F + ∥∇cα∥2F , (2.15)

where the operators ∇r,∇c compute spatial differences along rows and columns, respectively. We

call this regularization an ℓ2 norm-based total variation (TV-ℓ2) in this chapter. Figure 2.3 illustrates

the effect of the depth regularization. From Figure 2.3, we observe that smoothness regularization

improves the loss function by removing several local minima. We also observed this effect in our

simulations for a high-dimensional depth recovery problem, which is not very sensitive to initial-

ization with depth regularization.
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(a) Without smooth regularization, the loss curve is
highly non-convex and contains several local minima.

(b) With the smooth regularization, the loss curve is
smooth and several local minima are removed.

(c) Similar to 1D case, loss surface contains many
local minima without smooth regularization.

(d) With smooth regularization, many local minima
are removed from loss surface.

Figure 2.3: A comparison between objective loss functions without and with smooth regularization.
The inverse depth axis refers to the value of α.

Weighted ℓ2 Regularization on Spatial Gradients. Even though smoothness regularization on

the inverse depth map removes some local minima and helps with converge, it does not respect the

sharp edges in the depth map. To preserve sharp discontinuities in the (inverse) depth map, we used

the following adaptive weighted regularization inspired from [62]:

RW (α) =
N∑

i,j=1

W c
i,j(αi,j − αi+1,j)

2 +W r
i,j(αi,j − αi,j+1)

2, (2.16)
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where W r,α
i,j and W c,α

i,j denote weights for row and column differences, respectively. We aim to

select these weights to promote depth similarity for neighboring pixels, but avoid smoothing the

sharp edges. To promote this, we selected weights with exponential decay in our experiments that

we compute as

W r
i,j = exp

(
−(αi,j − αi+1,j)

2

σ

)
W c
i,j = exp

(
−(αi,j − αi,j+1)

2

σ

)
. (2.17)

Such a weighted regularization forces pixels that have depth within a small range of one another

to be smooth and does not penalize the points that have larger gap in depth (which indicates the

presence of an edge). This helps preserve sharp edges in the reconstructed depth estimates. This

weighting approach is analogous to bilateral filtering approach for image denoising [33, 106].

The regularized estimation problem for image and depth can be written in the following

form:

minimize
α,l

1

2
∥y −Ψ(α)l∥22 + λRW (α). (2.18)

We call this regularization approach weighted TV-ℓ2 and solve it by alternately updating the inverse

depth map α and light intensity l. A pseudocode of the algorithm is presented at Algorithm 1.
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Figure 2.4: The weighted regularization function penalizes depth values that are within a small
distance of one another and does not penalize those values that are above certain threshold. The
smooth range can be changed by tuning the parameter σ. In contrast to the TV-ℓ2, a weighted TV-ℓ2
regularization term does not penalize neighboring pixels with large depth disparity, which tends to
preserve the sharpness of the edges in the depth estimation.

ℓ1 Regularization on Spatial Gradients. It is well-known that the ℓ1 norm regularization enforces

the solution to be sparse. We add an ℓ1-based total variation norm [87] of the depth to our optimiza-

tion problem. By enforcing the sparsity of spatial gradients, the edges of (inverse) depth map can

be preserved. The ℓ1 norm-based TV regularization term is given as

RTV (α) =

N∑
i,j=1

|αi,j − αi+1,j |+ |αi,j − αi,j+1|

= ∥∇rα∥1 + ∥∇cα∥1. (2.19)
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Algorithm 1 Weighted TV-ℓ2 regularized optimization
Input: Sensor measurements: y
Output: Light distribution and inverse depth map: l,α

Initialization via greedy algorithm:
Compute α and l with depth pursuit algorithm in [5].
Refinement via alternating gradient descent:
for k = 1 : kmax do
α̂k = argmin

α

1
2∥y −Ψ(α)lk−1∥22 + λRW (α)

l̂k = argmin
l

1
2∥y −Ψ(αk)l∥22

end for
return l̂ and α̂

To solve the nonlinear optimization problem with ℓ1 norm regularization, we write the optimization

problem as

minimize
α,l

1

2
∥y −Ψ(α)l∥22 + λ(∥dr∥1 + ∥dc∥1)

s.t. dr = ∇rα, dc = ∇cα. (2.20)

We solve this problem (2.20) using a split-Bregman method [37]. A pseudocode is presented in

Algorithm 2, where µ is the factor for the penalty function of the equation constraints in the uncon-

strained form of the optimization problem (2.20). soft represents soft-thresholding operator [109].

Every step in Algorithm 2 can be solved either in a closed form or using a gradient descent-based

solver as in Algorithm 1.
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Algorithm 2 TV-ℓ1 regularized optimization

Input: Sensor measurements y, intial light intensity l, and inverse depth map α
Output: Light distribution and inverse depth map: l,α

Initialization: Set dr,dc,bx,by to zero
Refinement via Split-Bregman steps:
for k = 1 : kmax do
α̂k = argmin

α
∥y −Ψ(α)lk−1∥22 + . . .

+ µ(∥dk−1
r −∇rα

k − bk−1
r ∥22 + ∥dk−1

c −∇cα
k − bk−1

c ∥22)

l̂k = argmin
l

∥y −Ψ(αk)l∥22

dkr = soft(∇rα
k + bk−1

r , 2λµ )

dkc = soft(∇cα
k + bk−1

c , 2λµ )

bkr = bk−1
x + (∇rα

k − dkr )
bkc = bk−1

y + (∇cα
k − dkc )

end for
return l̂ and α̂

2.5 Simulation Results

In this section, we present simulation results to evaluate the performance of our methods

under different noise levels and sensor sizes. We also present a comparison of our proposed method

with two existing methods for 3D imaging with lensless cameras.

2.5.1 Simulation Setup

To validate the performance of the proposed algorithm, we simulate a lensless imaging

system using a binary planar mask with a separable maximum length sequence (MLS) pattern [63]

that is placed 4mm away from a planar sensor array. We used an MLS sequence of length 1024 and

converted all the −1s to 0s to create a separable binary pattern. We used square mask features, each

of which is 30µm wide. Since we optimize the objective function in (2.6) with respect to α and

need to compute the gradient in (2.9), we require the mask function to be smooth and differentiable

with respect to α. Therefore, we convolved the binary pattern with a Gaussian blur kernel of length
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15µm and standard deviation 5. In our simulations, we do not explicitly model the diffraction

blur. However, the Gaussian blur kernel that we apply to the mask function can be viewed as an

approximation of the diffraction blur. The sensor contains 512 × 512 square pixels, each of which

is 50µm wide. The chief ray angle of each sensor pixel is ±18◦. We assume that there is no

noise added to the sensor measurements. In our experiments for continuous depth estimation, we

fixed all the parameters to these default values and analyze the performance with respect to a single

parameter.

Original

Image PSNR:

Depth RMSE:

Greedy [5]

16.57dB

87.48mm

Ours

31.65dB

17.90mm

Figure 2.5: Left to right: original image and depth of the Cones scene; image and depth initialized
via greedy algorithm [5]; depth estimation using weighted ℓ2-based regularization. The depth in
this scene varies from around 0.99m to 1.7m.
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2.5.2 Reconstruction of Scenes With Continuous Depth

Depth Datasets We performed all our experiments on 3D images created using light intensities

and depth information from Middlebury [91], Make3D [89,90] and NYU Depth [74], the test scenes

and their depth ranges are listed in Table 2.1.

Test datasets Min depth (m) Max depth (m)
Sword 0.65 0.95

Playtable 1.47 3.75
Cones 0.99 1.70
Corner 3.93 10.60

Whiteboard 1.08 2.90
Playroom 1.62 2.93
Moebius 0.74 1.23
Books 0.73 1.27

Table 2.1: Analysis experiments are performed on multiple scenes picked from Middlebury [91],
Make3D [89, 90] and NYU Depth [74]. Results of the two scenes above line are presented within
the main text, while the rest of them are reported in the supplementary material.

Initialization via Greedy Method Let us further discuss our simulation setup using the Cones

scene, for which the results are presented in Figure 2.5. We simulated the 3D scene using depth

data from Middlebury dataset [91]. We sample the scene at uniform angles to create a 128 × 128

image and its (inverse) depth map with the same size. We can compute the physical depth from α

using (2.2). In our simulation, the depth of this scene ranges from around 0.99m to 1.7m. We used

depth pursuit greedy algorithm in [5] as our initialization method. We selected 15 candidate depths

by uniformly sampling the inverse depth values α from 0.996 to 0.9976, which gives an effective
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depth in the same range as the original depth. Since we are trying to gauge the performance for

off-the-grid estimate of depth, the candidate values of α are not exactly the same as the true values

of α in our simulations. The output of the initialization algorithm is then fed into the alternating

gradient descent method.

Performance Metrics We evaluate the performance of recovered image intensity and depth inde-

pendent of each other. We report the peak signal to noise ratio (PSNR) of the estimated intensity

distribution and root mean squared error (RMSE) of the estimated depth maps for all our experi-

ments. The estimates for image intensity and depth maps for the initialization and our proposed

weighted TV-ℓ2 method are shown in Figure 2.5, along with the PSNR and RMSE. We can observe

that both image and depth estimation from greedy method [5] contain several spikes because of the

model mismatch with the predefined depth grid. In contrast, many of these spikes are removed in

the estimations from the proposed algorithm with weighted TV-ℓ2 while the edges are preserved.

Comparison of Regularization Methods Here we present a comparison between three different

regularization approaches. We reconstruct image intensity and (inverse) depth map using the same

measurements with TV-ℓ2, weighted TV-ℓ2, and TV-ℓ1 regularization. The results are shown in Fig-

ure 2.6. Compared to the TV-ℓ2 method, we observe that both weighted TV-ℓ2 and TV-ℓ1 preserve

the sharp edges in image and depth estimates. Overall, in our experiments, weighted TV-ℓ2 provided

the best results. Therefore, we used that as our default method for the rest of the paper.
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Original Scene

(a) Image and depth of
the original scene. The
selected Cones scene is
taken from Middlebury
dataset [91]. The range of
depth is from 0.99 to 1.7
meters.

TV-ℓ2

(b) Image and depth re-
construction from isotripic
total variation. PSNR
of image is 29.69dB and
depth RMSE is 25.21mm.

Weighted TV-ℓ2

(c) Image and depth recon-
struction from weighted ℓ2
total variation. The PSNR
of image is 31.65dB and
the RMSE of depth is
17.90mm. The edges of
depth are preserved better.

TV-ℓ1

(d) Image and depth re-
construction from TV-ℓ1.
The PSNR of image is
30.82dB and the depth
RMSE is 19.56mm. The
edges of depth are pre-
served better .

Figure 2.6: Comparison between reconstructions using three different regularization approaches
from the same measurements.

Original

PSNR:

RMSE:

20dB

1.15dB

66.98mm

30dB

11.33dB

38.84mm

40dB

19.16dB

34.29mm

Original

PSNR:

RMSE:

20dB

5.12dB

360.95mm

30dB

15.50dB

163.26mm

40dB

24.88dB

151.46mm

Figure 2.7: Effects of noise: Reconstruction from the measurements with signal-to-noise ratio
(SNR) at 20dB, 30dB and 40dB, along with the PSNR of reconstructed image and RMSE of re-
constructed depth map. As expected, the quality of reconstructed image and depth improves as the
noise level is reduced. The sequence in left is for Sword, right is Playtable.
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(a) Image PSNR for different noise levels (b) Depth RMSE for different noise levels

Figure 2.8: Reconstruction from measurements with different levels of Gaussian noise on multiple
scenes. Both of the image Peak Signal-Noise Ratio and depth Root mean squared error are improved
as the noise is reduced. The reconstruction quality degrades if the scene is placed farther from the
camera.

2.5.3 Effects of Noise

Sensor noise exists widely in any observation process. The amplitude of noise depends

on the intensities of sensor measurements and can adversely affect the reconstruction results. To

investigate the effect of noise on our algorithm, we present simulation results for the reconstruction

of scenes from the same sensor measurements under different levels of additive white Gaussian

noise. The experiments are performed on multiple 3D scenes listed in Table 2.1. Some examples of

reconstruction with different levels of noise are shown in Figure 2.7.
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The plots recording PSNR of image intensities and RMSE of depth maps over a range of

measurement SNR values are presented in Figure 2.8. As we can observe from the curves that the

quality of both estimated image and depth improve when the measurements have small noise (high

SNR) and the quality degrades as we add more noise in the measurements (low SNR). Another

observation we can make is that the scenes that are farther away have higher RMSE. This aspect is

understandable because as the scenes move farther, α of the scene pixels all get very close to 1 and

we cannot resolve fine depth variations in the scene.

Original

PSNR:

RMSE:

25µm

24.31dB

45.61mm

50µm

22.27dB

34.39mm

100µm

21.92dB

24.42mm

Original

PSNR:

RMSE:

25µm

32.38dB

198.50mm

50µm

31.50dB

147.68mm

100µm

28.09dB

134.15mm

Figure 2.9: Reconstructions from measurements with different sizes of sensor pixels. The number
of sensor pixels is fixed as 512 × 512. We compare the results in metric image PSNR and depth
RMSE. The quality of depth reconstruction improves as we increase the size of sensor pixels.

2.5.4 Size of Sensor

In conventional disparity-based depth estimation method [44], the quality of reconstructed

depth depends on the disparity between frames captured from multiple camera views. Larger dis-

tance between camera viewing positions results in better depth estimation accuracy. In a lensless

imaging system, we can think of each pinhole on the mask and the sensor area behind the mask
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as a tiny pinhole camera. The analogy only goes this far, because we do not record images from

these tiny pinhole cameras separately; instead, we record a multiplexed version of all the views.

The disparity between different points on the sensors, however, does affect our ability to resolve the

depth of the scene, which is determined by the size of sensor.

To analyze the effect of disparity in our system, we performed experiments with three

different sizes of sensor pixels from 25µm, 50µm, and 100µm. For comparison, the number of

sensor pixels and other parameters are set to the default settings as described earlier. No noise is

included in this experiment. Results in terms of reconstructed image and depth maps are presented

in Figure 2.9, where we observe that the quality of depth reconstruction improves as we increase the

size of sensor pixels. The results in Figure 2.9 demonstrate that increasing the disparity of viewing

points increases the depth reconstruction quality.

2.5.5 Comparison With Existing Methods

Original

PSNR:

RMSE:

3D Grid [3]

9.10dB

87.55mm

Greedy [5]

14.04dB

47.59mm

Ours

22.27dB

34.39mm

Original

PSNR:

RMSE:

3D Grid [3]

7.14dB

479.78mm

Greedy [5]

16.71dB

400.99mm

Ours

31.50dB

147.68mm

Figure 2.10: Comparison of existing 3D recovery methods for lensless imaging, 3D grid method
from [1,3] and greedy method from [5], with our proposed method in metric image PSNR and depth
RMSE. 3D grid method provides a 3D volume with multiple depth planes; therefore, we pick the
depth with the largest light intensity along any angle for comparison.
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Finally, we present a comparison of our proposed algorithm and two other methods for

3D recovery with lensless cameras. In our method, we estimate light intensity and a depth map over

continuous domain. The greedy method in [5] also estimates intensity and depth separately, but the

depth map for any angle is restricted to one of the predetermined planes. Three-dimensional re-

covery using lensless cameras for 3D fluorescence microscopy was presented in [3] and [1], which

estimate the entire 3D volume of the scene sampled over a predetermined 3D grid. Since the un-

known volume scene in microscopy is often very sparse, the 3D scene recovery problem is solved

as a sparse recovery problem for the light intensity over all the grid voxels. The result is a light

distribution over the entire 3D space. We call this method 3D Grid and use the code provided in [3]

to solve the 3D recovery problem using the forward model and measurements from our simulation

setup.

The imaging experiments in [3] and [1] are aimed at fluorescence imaging in which ob-

jects are mostly transparent and all the points in the 3D volume can contribute to the sensor mea-

surements without occluding one another. In contrast, we consider natural photographic scenes,

where objects are usually opaque and block light from objects behind them along the same angular

direction. We can model such scenes as having only one voxel along any angle to be nonzero; how-

ever, that will be a nonconvex constraint and to enforce that we will have to resort to some heuristic

similar to the one in [5]. For the sake of comparison, we solve the ℓ1 norm-based sparse recovery

problem as described in [3], but then we pick the points with the maximum light intensity at each

angle to form the reconstructed image and (inverse) depth map.
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A comparison of different recovery methods with the same imaging setup is shown in

Figure 2.10. For the same scene, we reconstruct the same measurements using the three methods. As

we can observe that our proposed algorithm offers a significant improvement compared to existing

methods in all the test scenes.

The time and storage complexity of our proposed method and the other two methods de-

pend on different factors; such as whether the imaging model is separable or convolutional and

the sampling density along the depth. Since the main computational complexity of all the methods

arises from the applications of the forward and adjoint operators, we will just discuss the complexity

of those operators for different methods. The imaging operator in the greedy algorithm uses a sep-

arable mask and assumes that the scene consists of D depth planes. The computational complexity

of the operator is O(DMN2) when we have M ×M sensor pixels to reconstruct N × N image

at D predefined depth planes. The convolutional model can be implemented using a fast Fourier

transform and its complexity for a 3D volume with D depth planes is O(DN2 log(N). The time

complexity of forward imaging operator in the proposed method is O(M2N2) because we assign

independent depth values to each of the angles.

2.6 Experimental Results

To demonstrate the performance of our proposed method in the real world, we built a

FlatCam prototype to capture images of different objects with different depth profiles. Below we

discuss the details of our experiments and present reconstructed intensity and depth maps for some

real objects.
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2.6.1 Prototype Setup

Image Sensor. We used a Sony IMX249 CMOS color sensor that came inside a point grey camera

(model BFLY-U3-23S6C-C). The sensor has 1920×1200 pixels and the size of each pixel is 5.86µm.

The physical size of the sensor is approximately 11.2mm×7mm.

Figure 2.11: Camera prototype. The side view of the sensor and mask assembly. The sensor and
mask are placed at a large distance for this image, but their distance (d) is approximately 4mm in
our experiments. The mask pattern is binary and separable, and the physical size of each feature is
60µm.

Mask Pattern. We printed a binary mask pattern on a plastic sheet. The mask pattern was created

by computing an outer product of two 255-length MLS vectors and setting all the -1 entries to 0.

The physical size of each mask feature is 60µm. The physical size of the generated mask pattern is

approximately 15.3mm×15.3mm.

Sensor and Mask Placement. We placed the mask and the bare sensor on two optical posts such

that the mask-to-sensor distance (d) is approximately 4mm; we attached kinematic platforms on top

of the optical posts so that we can align the sensor and mask. Pictures of our sensor and mask setup

are shown in Figure 2.11.
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Figure 2.12: Experiments on real objects. (a) A slanted card; the depth range is 18–28cm (b)
Two slanted cards; the depth range of left card is 18–28cm and the right card is 26–29cm. (c) Hand
sculpture; depth range is 15–30cm. (d) A mug with card texture; depth range is 24–27cm. We
divide each group of real scenes into four columns, the first column is front view and side view
of the scene, the second column is the result from greedy algorithm in [5], the third column is the
output of sparse 3D grid recovery algorithm proposed in [3] and [1], and the last column is the
image intensity and depth map estimated using our proposed algorithm.

Data Acquisition and Processing. In our experiments, we calibrated the system by capturing

sensor measurements while moving an LED flashlight at different locations in front of the camera.

We performed all our experiments by uniformly illuminating the object with a table lamp. We

reconstructed depth map and colored images at 128 × 128 pixel resolution from 512 × 512 sensor

measurements. The sensor provides 1920×1200 pixels; we first resize the sensor measurement into

960× 600 pixels by binning 2× 2 pairs, and then we crop a 512× 512 area in the center.
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2.6.2 Calibration Procedure of the Prototype Camera

We use a separable mask pattern and align the mask and sensor assembly such that the

response of any point source on the sensor is a rank-one image after mean subtraction [6]. Let us

denote the Hadamard patterns as an n × n orthogonal matrix H = [h1, . . . ,hn], where each hi

represents a Hadamard pattern of length n. To calibrate the system for an n × n pixel grid, we

project n horizontal and n vertical (rank-one) Hadamard patterns on a flat surface in the scene and

record their response on the sensor. Every horizontal pattern can be represented as an n × n rank-

one matrix Xi = hi1
⊤, where 1 denotes a vector of all ones. The corresponding sensor response

can be represented as a rank-one matrix Yi = ΦL(hi1
⊤)Φ⊤

R ≡ ukv
⊤, where ui = ΦLhi and

v = ΦR1. We can concatenate all the ui as columns in a matrix as U = [u1 · · · un] = ΦLH

and estimate ΦL = UH⊤. We can repeat the same procedure with vertical Hadamard patterns 1h⊤
i

and estimate ΦR. Instead of calibrating the separable system matrices for different depth planes, we

calibrated the mask pattern function at one depth and evaluated the point spread function at arbitrary

depth and angle according to (2.1). Because our mask pattern is bigger than the sensor, we captured

sensor measurements for LED flashlight at 9 different angles at the same depth and merged them to

estimate the mask function at that depth.

In our experiments, we captured the sensor measurements by placing an LED at z = 42cm

away from the sensor, which corresponds to the mask function in (2.1) evaluated at α = 1− d/z =

0.9905 for d = 4mm, z = 42cm. We first resized the calibrated mask function to compute the

mask function corresponding to α = 1.
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2.6.3 Reconstruction of Real Objects

We present results for four objects in Figure 2.12, (a) slanted card has depth range from

18cm to 28cm, (b) two slanted cards have depth ranges from 18cm to 28cm and 26cm to 29cm, (c)

hands sculpture has depth range from 15cm to 30cm, and (d) mug with card texture depth is from

24cm to 27cm. The figure is divided into four boxes. In each box, we present a front- and side-view

of the object along with estimated scene intensity and depth maps for three methods. the greedy

algorithm in [5], the sparse 3D volume recovery method from [1, 3], and our proposed method. For

the greedy and 3D grid method, we generated 15 candidate depth planes by uniformly sampling the

inverse depth values α between 0.96 and 0.9905 (corresponding to the depth of 10cm and 42cm,

respectively).

All the objects in our experiments are placed in front of the black background and the

depth values for dark pixels are not meaningful. We can observe that in all these experiments,

our proposed method provides a continuous depth map that is consistent with the real depth of

the object in the scene. In comparison, both the greedy algorithm [5] and the sparse 3D volume

recovery algorithm [1, 3] produce coarse and discretized depth maps. The intensity map recovered

by our method is also visually better compared to other methods.

39



Even though our proposed algorithm produces better intensity and depth maps compared

to the greedy and 3D grid methods, we observed that the estimated depth has some errors in the

darker parts of the objects. For instance, the left part of the mug is darker than the right part because

the object was illuminated from a lamp on the right side. The left part appears to have errors in the

depth estimate as several pixels are assigned small depth values, but that part is in fact farther from

the sensor. We also observe a similar effect in other experiments, where depth estimates for darker

parts of the scene appear to have larger errors.

2.7 Conclusion

We presented a new algorithm to jointly estimate the image and depth of a scene using a

single snapshot of a mask-based lensless camera. Existing methods for 3D lensless imaging either

estimate scene over a predefined 3D grid (which is computationally expensive) or a small number of

candidate depth planes (which provides a coarse depth map). We divide the scene into an intensity

map at uniform angles and a depth map on a continuous domain, which allows us to estimate a

variety of scenes with different depth ranges using the same formulation. We jointly estimate the

image intensity and depth map by solving a nonconvex problem. We initialize our estimates using a

greedy method and add weighted regularization to enforce smoothness in the depth estimate while

preserving the sharp edges. We demonstrated with extensive simulations and experiments with real

data that our proposed method can recover image and depth with high accuracy for a variety of

scenes. We evaluated the performance of our methods under different noise levels, sensor sizes,

and numbers of sensor pixels and found the method to be robust. We presented a comparison with

existing methods for lensless 3D imaging and demonstrated both in simulation and real experiments
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that our method provides significantly better results. We believe this work provides a step toward

capturing complex scenes with lensless cameras, where depth estimation is a feature as well as a

compulsion because if the depth information is unavailable or inaccurate, that will cause artifacts in

the recovered images.

41



Chapter 3

Improved 3D Lensless Imaging With

Learned Programmable Masks

Lensless cameras provide a framework to build thin imaging systems by replacing the

lens in a conventional camera with an amplitude or phase mask near the sensor. Existing meth-

ods for lensless imaging can recover the depth and intensity of the scene, but they require solving

computationally-expensive inverse problems. Furthermore, existing methods struggle to recover

dense scenes with large depth variations. In this chapter, we propose a lensless imaging system

that captures a small number of measurements using different patterns on a programmable mask.

In this context, we make three contributions. First, we present a fast recovery algorithm to recover

textures on a fixed number of depth planes in the scene. Second, we consider the mask design

problem, for programmable lensless cameras, and provide a design template for optimizing the
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Figure 3.1: Examples of two 3D scenes reconstructed at different depth planes from eight sensor
measurements using SweepCam [48] and our proposed method.

Figure 3.2: An overview of the proposed method. The lensless camera captures multiple measure-
ments with a programmable mask. We reconstruct multiple image planes in the 3D scene by solving
multiple small systems of equations in parallel (one for each frequency component). Using the re-
covery algorithm as a differentiable function, we learn the mask patterns to improve the estimates
of image planes. We further refine the estimated image planes and convert them into an all-in-focus
image and a depth map using a trained refinement network.

mask patterns with the goal of improving depth estimation. Third, we use a refinement network as

a post-processing step to identify and remove artifacts in the reconstruction. These modifications

are evaluated extensively with experimental results on a lensless camera prototype to showcase the

performance benefits of the optimized masks and recovery algorithms over the state of the art.

3.1 Introduction

Contributions. The main contributions of this chapter are as follows.
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• We present a fast algorithm to recover multi-plane images for the 3D scene from lensless mea-

surements in the Fourier domain.

• We implement a multi-plane lensless camera and Fourier-domain recovery algorithm as a differ-

entiable network to optimize mask patterns for the lensless camera.

• We train a neural network to map the estimated multi-plane images into an all-in-focus image and

a continuous-valued depth map.

• We built a prototype lensless camera with a programmable mask and report several experiments

to validate our proposed methods and a comparison with existing methods.

Limitations. Despite the advantages listed above, the mask-based lensless camera that we pro-

pose here has some limitations. One main limitation, common to many lensless cameras, is the light

throughput and limited dynamic range of the sensor. A second set of limitations stem from the as-

sumption of the convolutional model, a common assumption in 3D lensless imaging work. The con-

volutional model fails to account for small sensor area that crop the measurements, non-Lambertian

scenes, and the sensor’s angular response. In our experiments, we observe some artifacts in those

scenarios, but they are usually local; for example, artifacts from sensor cropping only affect image

boundaries and specular reflections only produce artifacts in local regions, and do not affect other

parts of images. Finally, we assume the scene is static in the duration that multiple measurements

are captured. However, this work significantly reduces the number of measurement required, and

hence the duration in which the scene is required to be static, compared to previous methods [48].
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3.2 Background and Related Work

A pinhole camera is a classical example of lensless imaging. FlatCam [6] is an extended

version of a pinhole camera that uses a mask that has multiple pinholes. The sensor captures linear

measurements of the scene and the system requires careful calibration and computational algorithm

to reconstruct the target scene. The lensless imaging system underlying FlatCam has been used

in face detection [101], privacy protection [78] and fluorescence microscopy [1]. Recently, deep

learning-based recovery methods have also been introduced for FlatCam in [53].

In contrast to FlatCam, where an amplitude mask is used, DiffuserCam [3] places a phase

mask on top of the sensor. The imaging system exploits the shift-invariant property of the PSF and

models the measurements as the convolution between the scene and corresponding PSF. Diffuer-

Cam has also been used to recover other types of high-dimensional signals, such as video [4] and

hyperspectral images [72]. Methods for learning-based approaches have been introduced in [73].

Algorithms for depth estimation or 3D image reconstruction with a single mask-based

FlatCam and DiffuserCam can be divided into two categories. One approach solves a sparse recov-

ery problem based on a 3D grid [1, 3]. These methods are often used to recover sparse images in

fluorescence microscopy where all the light point sources in the field of view can be detected by

the sensor. The main drawback of these iterative 3D reconstruction algorithms is that they often

require large time and space complexity for recovery. The other approach jointly estimates the im-

age intensity and depth of every point/angle in the image [5, 122]. These methods assume angular

sampling of 3D scenes in which only one light source exists at every angle and a greedy or nonlinear

optimization algorithm to estimate the intensity and the depth map of the 3D scene.
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SweepCam [48] is an extension to FlatCam that reconstructs image texture and depth map

using multiple sensor measurements captured by shifting the mask pattern. The shifting mask pat-

tern provides a depth-dependent disparity of different planes in the 3D scene for every measurement

instance, which makes it possible to recover a focused image for a specific depth plane. Sweep-

Cam reconstructs one depth at a time and generates depth map using local contrast information of

reconstructed depth planes. The main disadvantage of SweepCam is that it requires a very large

number of sensor measurements, often in hundreds, to recover the depth planes without artifacts.

In this chapter, we use a similar imaging setup as SweepCam [48] but use only eight to ten sensor

measurements to recover the depth planes jointly.

Several methods for joint design of optics and reconstruction algorithms have been re-

cently proposed in [13, 28, 68, 98, 99, 111, 113]. The main design principle is to represent sensor

measurements as a differentiable function of the scene image and reconstruction of image as a dif-

ferentiable neural network, after which parameters for the optical elements and the neural network

can be learned jointly in an end-to-end manner. In our proposed framework, we recover 3D scene as

a regularized least squares problem that has a closed-form solution. The main motivation for using

a simple solver instead of training a deep network for reconstruction is to build a well-conditioned

system that is generalizable to arbitrary scenes. We then train a separate refinement network that

maps the estimated multi-plane images to an all-in-focus image and a continuous-valued depth map.
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In this chapter, we propose a framework that (1) Instead of estimating one depth at a time,

we recover multiple depth planes jointly using a computationally simple algorithm in the Fourier

domain. (2) We implement our imaging model and recovery algorithm as a differentiable function

and optimize the mask patterns to recover images planes accurately. (3) Finally, we train a network

to remove any artifacts from the estimated image planes and recover an all-in-focus image and

continuous-valued depth map as a post-processing step.

3.3 Technical Approches

3.3.1 Multi-Plane Lensless Imaging Model

We introduce the model underlying our lensless imager, where 3D scenes are represented

using multi-plane images. Under some mild conditions on the scene and sensor sizes, we can

represent sensor measurements as a summation of every scene plane convolved with its respective

depth-dependent point spread function (PSF). The PSF depends on the mask pattern, which we can

change to capture multiple sensor measurements and recover the 3D scene.

Let us assume that our lensless camera consists of a programmable amplitude mask placed

at a distance d from a planar sensor array. Let us further assume that the sensor is placed at the

origin of a Cartesian coordinate system indexed by (u, v, z), where (u, v) denotes the horizontal

and vertical coordinates and z denotes the depth. In a mask-based lensless camera, every sensor

pixel records a linear combination of light coming from all points in the 3D scene. Let us assume

that light rays originating from scene point (u, v, z) have same effective brightness l(u, v, z) with

respect to every sensor pixel. Suppose we use an amplitude mask whose attenuation at (u, v) in the
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mask plane is represented as φ(u, v). Under these assumptions, the sensor measurement recorded

at pixel (u, v) is given as

y(u, v) =

∫
z

[∫
u0,v0

l(u0, v0, z)φ (ũ, ṽ) du0dv0

]
dz, (3.1)

where ũ = z−d
z u + d

zu0, ṽ = z−d
z v + d

zv0. A simple derivation shows that the inner integration in

(5.1) for a fixed z can be represented as a convolution of two functions [3, 48]:

y(u, v) =

∫
z

[∫
u0,v0

lz(u0, v0)φz(u− u0, v − v0)du0dv0

]
dz

=

∫
z
[lz ∗ φz](u, v)dz, (3.2)

where lz(u, v) = l(d−zd u, d−zd v) denotes the scene plane at depth z and φz(u, v) = φ( z−dz u, z−dz v)

denotes the PSF for any point at depth z.

Let us assume that the sensor array has M pixels on a uniform grid. By discretizing the

system in (3.2) along (u, v, z), we can write the sensor measurements as a summation of 2D linear

convolutions:

y =
∑
z

φz ∗ lz + e, (3.3)

where y denotes an array with M sensor measurements y(u, v), lz denotes image-plane intensity

values lz(u, v), φz denotes the PSF for depth z, and e denotes the sensor noise. For the ease of

exposition, we ignore the additive noise term in the equations below, but we include noise in our

experiments. If the sensor size is large enough so that the response of every light source in the scene
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is completely recorded by the sensor, then we can treat the linear convolution in (3.3) as circular

convolution. We can diagonalize the system in (3.3), using the convolution theorem, as

F(y) = F(φz)⊙F(lz) ⇒ Y =
∑
z

Φz⊙z, (3.4)

where F(·) denotes the 2D Fourier transform operator, Y, Φz , and z denote 2D Fourier transforms

of y, φz and lz , respectively, and ⊙ denotes an element-wise multiplication operator. All the arrays

in (3.4) have M entries.

Since we use a programmable mask, we can capture multiple measurements of the scene

using different mask patterns. Let us represent the sensor measurements captured using kth mask

pattern as

yk =
∑
z

φkz ∗ lz
F−→ Yk =

∑
z

Φkz ⊙z . (3.5)

3.3.2 Fast Algorithm for Multi-Plane Reconstruction

In this section, we discuss a Fourier-domain algorithm to recover 3D scene using multiple

lensless measurements in (3.5). This method is an adaptation of the classical frequency-domain

multi-channel deconvolution method [36] to the lensless imaging setup. Let us assume that we are

given K sensor measurements as yk for k = 1, . . . ,K. Let us further assume that the 3D scene

consists of D planes represented as l1, . . . , lD. To simplify the notation, we will use φ1, . . . , φD to

denote PSFs for different depths. To recover the image planes in the Fourier domain, we can solve

the following regularized least-squares problem:

min
1,...,D

∑
k

∥Yk −
∑
z

Φz ⊙z ∥2F + τ
∑
z

∥z∥2F , (3.6)
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which involves solving for MD unknowns using MK measurements and can be computationally

expensive to solve for large values of M , K, and D.

Fortunately, we can simplify the recovery problem by separating the optimization problem

in (3.6) into M independent problems, each defined over a single frequency coefficient in all the

depth planes. Note that because of the diagonal structure in the Fourier domain, we can separate the

measurements for a frequency coefficient ωm as


Y1(ωm)

...

YK(ωm)

 =


Φ1

1(ωm) . . . Φ1
D(ωm)

...
. . .

...

ΦK
1 (ωm) . . . ΦK

D (ωm)




1(ωm)

...

D(ωm)

. (3.7)

We can rewrite this system in a compact form as

Yωm = Φωmωm , (3.8)

Yωm is a complex vector of lengthK, Φωm is aK×D complex matrix, and ωm is the unknown vec-

tor of lengthD. The original optimization problem can be written as a summation ofM independent

optimization problems as

min
ω1 ,...,ωM

∑
ωm

∥Yωm − Φωmωm∥2F + τ∥ωm∥2F . (3.9)

The solution for any ωm can be written in a closed-form as

ω̃m = (Φ∗
ωm

Φωm + τI)−1Φ∗
ωm

Yωm , (3.10)
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which we can compute by either directly inverting the D×D matrices or using an iterative method

such as conjugate gradients [38]. Since the computations for all the ωm are independent of one

another, we can solve (3.10) in parallel, which provides a fast recovery algorithm. To recover the

3D image planes, we can apply inverse Fourier transform on reconstructed frequency-domain depth

planes. In practice, we adjust τ for each ωm according to the Frobenius norm of the corresponding

system matrix. Our method recovers multiple image planes from multiple measurements using a

closed-form solution. In fact, if K = D = 1, then our method is equivalent to the standard Wiener

deconvolution.

Practical Considerations. To ensure stable recovery of arbitrary 3D scenes, we desire the ma-

trices in (3.10) to be invertible for all frequencies ωm. In practice, we can resolve this issue in two

ways. First, the energy of the Fourier coefficients for natural images is mostly concentrated at a

small number of frequencies; therefore, we can recover the image planes reliably as long as the ma-

trices corresponding to the significant frequencies are well-conditioned. In Sec. 3.3.3, we discuss

an approach to improve the conditioning of the system and the estimation of the image planes by

optimizing the mask patterns. Second, even though the invertibility condition requires the number

of depth planes (D) to be at most the number of mask patterns (K), we have the flexibility to choose

which depth planes to recover. We can adjust the location of depth planes according to the scene or

select the depth planes that provide the best recovery performance. In our experiments, we observed

that sampling depth planes uniformly in α = 1 − d
z parameter provides best reconstruction, where

α ∈ [0, 1] maps to z ∈ [d,∞].
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Relation to Existing Methods. In our proposed method, we use multiple mask patterns to recover

multiple depth planes in a 3D scene. Recovery of a 3D scene using a single mask pattern (K = 1)

is possible, but it remains a challenging problem. Existing methods for 3D lensless imaging from a

single sensor image either assume sparse prior on the 3D scene and solve an ℓ1-regularized problem

over the 3D volume [3, 12] or solve a nonlinear inverse problem to jointly recover the intensity and

depth of scene [5, 122]. Both of which are computationally expensive. SweepCam [48] recover

a single depth plane using a “focusing” operation. We can show that the focusing operation for a

shifting mask pattern in SweepCam is equivalent to solving the system in (3.7) for one depth at a

time in the frequency domain. Mathematically, it is equivalent to estimating a single frequency ωm

for plane at depth z, which can be written as the following scalar equation:

z̃(ωm) =

∑
k Φ

k
z(ωm)

∗Yk(ωm)

(
∑

k Φ
k
z(ωm)

∗Φkz(ωm) + τ)
. (3.11)

In the experiment section, we present a detailed comparison between the performance of our pro-

posed method, depth pursuit in [5], and SweepCam [48]; our results demonstrate that our method

outperforms existing methods.
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3.3.3 Learning Mask Patterns

To improve the quality of estimated image planes, we optimize the mask patterns by

implementing the multi-plane image recovery algorithm as a differentiable network. We build a

computation graph that implements the imaging model in (3.5) and the fast recovery algorithm, as

illustrated in Figure 3.2. The optimization variable is aK×Pu×Pv tensor that hasK mask patterns

each of size Pu × Pv (we used Pu = Pv = 63 in our experiments). We minimize the mean squared

error (MSE) between the input and reconstructed image planes with respect to the mask patterns via

backpropagation. We use 50 scenes from NYU [74] dataset as training data to optimize the masks.

To implement the imaging model in (3.5), we first perform linear interpolation to compute

the PSF of every mask for D predefined depth planes that are uniformly sampled along α = 1− d
z .

This provides us a K × D × Mu × Mv tensor, where Mu × Mv is the size of the sensor (i.e.,

M = MuMv). Then we generate sensor measurements for given training image planes using

the convolution model in (3.5). We add independent instances of Gaussian noise in the sensor

measurements during mask optimization. The reconstruction operator provides D estimated image

planes from the simulated measurements by solving the problem in (3.9). As explained in Sec 3.3.2,

we can solve independent least-squares problems for all the frequencies and then reconstruct the

image planes with an inverse Fourier transform. We optimize the masks for 300 epochs using Adam

optimizer [54] with the learning rate of 0.01.

We use a liquid crystal on Silicon (LCoS) spatial light modulator (SLM) as a programmable

mask and restrict the mask patterns to be binary during training. The phase retardation in LCoS has

a strong spectral dependence, which makes it hard to implement a desired continuous-valued pattern

consistently across a span of wavelengths. This is not an issue for binary patterns since we can sat-
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urate phase retardation across all wavelengths. We represent the mask as a zero-centered sigmoid

function of a continuous-valued optimization variable, which keeps the mask values in the range

[-1,1] during optimization. We increase the slope of the sigmoid function at every epoch, which

pushes the mask values closer to -1 or 1, and we finally set them to -1/1 at the end of optimization.

3.3.4 Refinement Network and Post-Processing

To further enhance the image quality and depth accuracy of the estimated planes, we train

a neural network using the U-Net architecture [86] that maps the estimated multi-plane images to

an all-in-focus image and a continuous-valued depth map. The U-Net accepts all the color channel

of the multi-plane image stack and generates an RGBD tensor [28, 113]. To train the U-Net param-

eters, we generated synthetic multi-plane images using NYU depth dataset [74]. We first scale the

depth of scenes in the NYU dataset linearly in the 35mm to 200mm range and then quantize the

scenes to create 100 depth planes. Then we simulate the sensor measurements using the imaging

model in (3.5) and reconstruct images at D = 8 depth planes by solving the problem in (3.9). The

reconstructed image planes are fed into the U-Net as a single tensor with D RGB planes, and U-Net

provides an output RGBD tensor. The U-Net loss function is defined as the mean squared error

between the ground-truth and the output RGBD tensors. We used 380 scenes to train the network

for 200 epochs. In our experiments, we compare the U-Net results against a model-based approach

in which we first denoise the estimated image at every depth using BM3D [29], and then assign

each pixel the depth value that provides maximum local contrast in the chosen depth plane.
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3.4 Simulation Results

Simulation Setup. To validate the proposed algorithm and learn the mask patterns, we simulated

an imaging system for the camera prototype discussed in Sec. 3.5. We used a 256 × 256 sensor

array with a mask placed 10.51mm away. The number of features in each mask pattern is 63 × 63

and each feature size is 36. We evaluate the algorithm on five scenes selected from Middlebury

dataset (cones, books, piano, playroom, and playtable) [91]. The spatial resolution of each image

is 128 × 128. We rescale the depth values in every scene to 35–380mm range and quantize the

resulting depth into eight planes. We add Gaussian noise at 40dB SNR to the sensor measurements.

After we reconstruct the image planes of the 3D scene using the proposed algorithm, we generate

an all-in-focus image and depth map using local contrast in which we pick the depth with the largest

local contrast among all planes for every pixel. We evaluate the quality of recovered all-in-focus

images using structural similarity index (SSIM). We evaluate the quality of the estimated depth map

using depth accuracy that we define as the ratio of pixels that are assigned the correct depth to those

assigned incorrect depth.

Number and Types of Mask Patterns. We evaluate the performance of our proposed method for

different types and number of mask patterns (K). We test four different types of mask patterns:

random binary masks, separable MLS masks [6], shifted MLS masks as used in SweepCam [48],

and learned mask patterns that are optimized according to the method discussed in Sec. 3.3.3. We

test K = {4, 6, 8, 10} for each mask pattern with five scenes, each of which have D = 8 depth

planes. Our test includes both the cases for under-determined (K < D) and over-determined (K >

D) systems. We use sensor measurements with eight masks to reconstruct the multi-plane image
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stacks as described in (3.10). Then we convert image planes to an all-in-focus image and a depth

map using local contrast. We present examples of reconstructed images and average performance

curves over five test scenes in terms of SSIM and depth accuracy in Figure 3.3. The reconstruction

quality of image and depth improves as K increases. We observe that the learned masks provide

significantly better reconstruction for intensity and depth estimates compared to MLS, random,

and shifted MLS. Incorrect depth estimates cause model mismatch, which in turn cause artifacts

in the reconstructed intensity images that can be seen in Figure 3.3(a). Additional examples of

reconstructed all-in-focus images and depth maps are available in the supplementary material.

3.5 Experiments With Camera Prototype

3.5.1 Camera Prototype

To evaluate the performance of our proposed algorithms and mask patterns, we built a

camera prototype (as shown in Figure 3.2 and the supplementary material). The camera consists of

an image sensor and an LCoS display that acts as the programmable amplitude mask. Our LCoS

is HOLOEYE LC2012 transmissive spatial light modulator; it has a pixel pitch of 36 and fill factor

58%; and it is sandwiched between a pair of cross polarizers. The distance between LCoS and

the sensor is 10.51mm. We use a Sony IMX183 sensor on a board level Blackfly S, which has

5472 × 3648 pixels with 2.4 pitch and sensor area of 1.31cm × 0.88cm. In our experiments, we

used 228× 342 sensor measurements by binning 16× 16 adjacent pixels, which gives an effective

sensor pixel of size 38.4. The reconstructed image planes have 148 × 274 pixels because we crop

the remaining pixels.
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We capture measurements for multiple scenes with varying depths in the range from

30mm to 600mm. We calibrate the PSF of the camera at different depths. For each scene, we

capture eight measurements using eight mask patterns with +1/-1 entries. We capture measure-

ments for positive and negative parts of the masks separately and subtract the measurements for the

negative part from the measurements for the positive part. Each mask has 63 × 63 pixels. We test

the algorithms on four types of masks in our experiments: Shifted MLS masks: shifted versions of

a single separable MLS mask [48]. The shifting distance is from 0 to 48 LCoS pixels. MLS masks

are separable MLS masks generated from different random seeds. Random masks are non-separable

random ±1 masks. Learned masks are the he optimized masks generated from data-driven method

discussed in Sec. 3.3.3. To present the images with the same dynamic range, we applied the same

brightness and color contrast adjustment to all the images.

3.5.2 Reconstruction Using Learned Masks

We first present some example scenes and the reconstructed image planes using our pro-

posed method. For each scene, we capture sensor measurements using eight learned mask patterns.

Then we recover eight depth planes using the proposed algorithm in Sec. 3.3.2. We sampled the

depth planes uniformly in [1− d
zmin

, 1− d
zmax

], where we input rough estimate of zmin, zmax for each

scene. Figure 3.4 presents three of the estimated planes for each scene. The first scene has a net

mesh nearly 30mm from the camera and a rubber duck nearly 100mm behind the net. The near-

depth plane image is focused on the net and duck is blurred, while the far-depth plane is focused

on the rubber duck and the net has almost disappeared. The third scene consists of 2 cards, the red

card (on left) is placed at 35mm and the yellow card (on right) is placed at 200mm. The near plane
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has the left card in focus and the far plane has the right card in focus. The last scene has 3 toys,

the blue toy is placed at 80mm, yellow toy at 200mm, and white toy at 600mm. We observe that

the blue, yellow, and white toys appear sharpest in near, middle, and far planes, respectively. In

lensless imaging systems, depth estimates of farther and darker objects are not as accurate as that of

the closer and brighter objects; therefore, we removed the depth values of low-intensity pixels from

the displayed depth maps.

The scene shown in Figure 3.5 consists of a fork and a plate and demonstrates the lim-

itation of our imaging system. Both of these objects have non-Lambertian surfaces and include

specular reflections, which violates our convolution assumption. For this reason, the reconstructed

images show artifacts.
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(a) Reconstructed all-in-focus images and depth maps for cones with K = 8.

(b) SSIM for all-in-focus image (c) Accuracy for estimated depth

Figure 3.3: Comparison of different types and number of masks. (a) Reconstructed all-in-focus
images and depth maps for cones with K = 8 measurements. (b,c) Average SSIM of recovered
all-in-focus images and accuracy of estimated depth for five test scenes. Quality of reconstruction
improves as the number of masks increases, and learned mask patterns outperform other mask
patterns.
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camera view near plane middle plane far plane all-in-focus image depth map

Figure 3.4: Reconstruction of depth planes for different scenes using our proposed fast recovery
algorithm with learned masks. Objects outside the recovered plane almost disappear. We also show
all-in-focus image and depth map (in mm) created after passing the estimated multi-plane images
through the trained U-net based refinement network, as discussed in Sec. 3.3.4. Depth values of
pixels with low intensity (e.g., mesh in the first row) are usually unrealiable and therefore removed.
Results of additional depth planes and scenes are available in the supplementary material.

camera view near plane middle plane far plane

Figure 3.5: Reconstructions of a scene with specular reflections that our method fails to recover.
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Figure 3.6: Reconstructions of depth planes for recovered depth planes using SweepCam [48] and
our proposed methods using shifted MLS masks, MLS masks, random masks, and learned masks.
We observe that the learned masks outperform all the other masks.
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Figure 3.7: Comparison of the depth pursuit algorithm [5], SweepCam [48], and our proposed
method. The details in the results from our proposed method are cleaner and sharper than the
results from other methods.

3.5.3 Comparison of Mask Patterns

We show the comparison between different mask patterns and the learned masks. We

present the reconstruction results in Figure 3.6. We compare SweepCam method with shifted MLS

masks [48] and our method using shifted MLS masks, MLS masks, random masks, and learned

masks. Figure 3.6 shows that SweepCam fails to recover depth planes accurately because we only

used eight mask patterns. The reconstruction from learned masks using our method provides the

best quality among all the mask types; far-depth plane separates the net and duck clearly. Compared

to the learned masks, all the other mask patterns carry artifacts in their reconstructions (the shifted

MLS and MLS masks give poor reconstruction for image at 100mm and random mask reconstruc-

tion exhibit haze artifacts). Additional experiments are available in the supplementary material.
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3.5.4 Comparison With Existing Methods

We compare the performance of our proposed method with the greedy depth pursuit al-

gorithm in [5] and the depth sweep method in [48]. In our experiments, the depth pursuit algorithm

uses a single MLS mask, SweepCam method uses 8 shifted MLS masks, and our proposed method

uses 8 learned masks. We present the estimated all-in-focus images and depth maps from the three

methods in Figure 3.7, which shows that our method provides a better all-in-focus image and depth

map compared to the other methods.

3.5.5 Refinement and Post-Processing

We show a comparison between two post-processing approaches for converting estimated

image planes to all-in-focus image and continuous-valued depth map in Figure 3.8. In the first

approach, we apply a BM3D denoiser [29] on every estimated plane; then we perform a local

contrast analysis to select the depth for every pixel that has maximum local contrast. In the second

approach, we use a trained U-Net [86] following the approach outlined in Sec. 3.3.4. Figure 3.8

shows that the U-Net results have less artifacts but all-in-focus image looks blurry. The results from

local contrast-based method have more artifacts but images look sharp.

3.5.6 Computational Complexity and Time

To reconstruct an Mu ×Mv ×D volume with K mask patterns, we solve M = MuMv

least-squares problems, each of size K × D as in (3.10). The computational complexity of every

least-squares problem is O(D3 + KD2) [38]. Since all the least-square problems can be solved

independently of each other, we can solve them in parallel to accelerate the algorithm. In practice,

63



Local contrast U-Net
all-in-focus image depth map all-in-focus image depth map

Figure 3.8: The all-in-focus images and depth maps generated by the local contrast-based method
and the trained U-Net. Local contrast method uses 47.85 seconds and U-Net uses 0.0043 seconds
on average.

the average running time to reconstruct eight depth planes with a single mask using the greedy

depth pursuit algorithm [5] is 138.16 seconds. The average running time to reconstruct eight depth

planes with eight programmable masks are 0.82 seconds for SweepCam [48] and 0.33 seconds for

our method. In the post-processing step, which converts image planes to all-in-focus image and

depth map, BM3D followed by local contrast method requires an average of 47.85 seconds, while

the trained U-Net requires 0.0043 seconds.

3.6 Conclusion

In this chapter, we present a new framework to recover 3D scenes using a lensless camera

with a programmable mask. Our proposed method can recover multiple depth planes in the 3D scene

using a computationally efficient algorithm that solves multiple small linear systems in parallel in

the frequency domain. To further improve the quality of 3D scene recovery, we optimized the

mask patterns and trained a U-Net that converts estimated image planes to all-in-focus image and
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continuous-valued depth map. Our experimental results demonstrate that the proposed method can

reliably recover dense 3D scenes with a small number of sensor measurements and outperform

existing methods. The reconstruction quality of our proposed method, like other lensless imaging

systems, drops for scenes with specular reflections and large occlusions.
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Chapter 4

Coded Illumination for Improved

Lensless Imaging

Mask-based lensless cameras can be flat, thin, and light-weight, which makes them suit-

able for novel designs of computational imaging systems with large surface areas and arbitrary

shapes. Despite recent progress in lensless cameras, the quality of images recovered from the lens-

less cameras is often poor due to the ill-conditioning of the underlying measurement system. In

this chapter, we propose to use coded illumination to improve the quality of images reconstructed

with lensless cameras. In our imaging model, the scene/object is illuminated by multiple coded

illumination patterns as the lensless camera records sensor measurements. We designed and tested

a number of illumination patterns and observed that shifting dots (and related orthogonal) patterns

66



provide the best overall performance. We propose a fast and low-complexity recovery algorithm

that exploits the separability and block-diagonal structure in our system. We present simulation

results and hardware experiment results to demonstrate that our proposed method can significantly

improve the reconstruction quality.

4.1 Introduction

Figure 4.1: An overview of our proposed method. We project a sequence of binary illumination
patterns onto the object and capture the sensor measurements corresponding to each illumination
pattern. The reconstruction result using multiple coded illumination patterns significantly outper-
forms the conventional method where the scene is illuminated by uniform illumination.

In this chapter, we propose a new method that combines coded illumination with mask-

based lensless cameras (such as FlatCam) to improve the quality of recovered images, illustrated in

Fig. 5.1. A 2D scene is illuminated with multiple coded patterns during data acquisition. We capture

sensor measurements for each illumination pattern and use a fast recovery algorithm to reconstruct

the scene using all the measurements. The main contributions of this chapter are as follows

• We propose a new framework to combine coded illumination with lensless imaging.
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• We propose a fast and low-complexity algorithm that exploits separability of the mask and illumi-

nation patterns and avoids storing all the measurements or creating large system matrices during

reconstruction.

• We design shifting dots and orthogonal patterns that provide best overall performance in terms of

quality and computational complexity.

• We present simulation results to show that our method can improve the image reconstruction

quality under different system conditions.

• We present real experiments using a prototype we built to evaluate the performance of our imag-

ing system and algorithm in the real environments.

Our main objective is to demonstrate that we can significantly improve the conditioning

of a lensless imaging systems and the quality of the reconstruction by using coded illumination. Our

experiments show that the image quality improves in almost all cases as we increase the number of

illumination patterns. Our method also has an inherent trade-off between imaging speed and the

quality of the recovered images. In this chapter, we mainly implement and discuss the design of

FlatCam [6] with separable masks and illumination patterns. Nevertheless, the ideas presented here

can be used to improve the imaging performance of other lensless systems, such as DiffuserCam [3],

fresnel zone aperture [97], or phlatcam [13].

The proposed framework can be used to build large-area, high-resolution, and compact

cameras that can potentially be used for under-the-display fingerprint and vein imaging. Such cam-

eras can use the display panels for coded illumination [115,119,120]. Lensless microscopes [1,3,24]

can also benefit by combining coded illumination with data capture. Another potential application

for such lensless cameras is in different wearable devices. In particular, our inspiration came from a
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project in which we seek to embed lensless sensors on a soft robot that will be used to assist infants

in rehabilitation. The goal is to track infant arm motion using lensless sensors on a wearable sleeve

while they reach objects. In all these cases, the objects in the scene can potentially be illuminated

with a built-in display, a mini projector, or an add-on light source combined with a shifting mask,.

4.2 Background and Related Work

The mask-based lensless camera such as FlatCam [6] is an extended version of pinhole

cameras. Although a pinhole camera is able to image the scene directly on its sensor, it often suffers

from noise [118]. Coded aperture-based cameras alleviate this problem by using multiple pinholes

placed in a designed pattern [6, 12, 19, 23, 34]. In contrast to conventional lens-based cameras that

capture images of the scene directly, coded mask-based cameras capture linear measurements of

the scene and perform reconstruction by solving a linear inverse problem. Coded aperture-based

cameras can also recover the depth information of a scene [1, 3, 5, 48, 56, 122, 125]. The main

advantage of FlatCam is the thin and flat form factor, which also makes the system ill-conditioned

and affects the quality of reconstructed images.

Signal recovery from ill-conditioned and under-determined systems is a classical and

long-standing problem in signal processing. A number of methods have been proposed to tackle

these problems over the decades [21, 38, 87]. An ill-conditioned system is unstable as its solu-

tion can change dramatically with tiny perturbations; thus, such a system rarely generates good

results in a signal recovery problem. An under-determined system has fewer measurements than the

number of unknowns; thus, it admits infinitely many solutions, and one can hardly determine the

true solution using only the measurements. A standard approach to deal with ill-conditioned and
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under-determined systems is to add a signal-dependent regularization term in the recovery problem,

which constrains the range of solutions. Popular methods include adding sparse and low-rank pri-

ors on the signals [8, 21, 31, 81, 87] and natural-image-like generators prior [15, 43, 49]. Another

approach is to capture multiple, diverse measurements of the scene that makes the modified imag-

ing system well-condition and the reconstruction more accurate [48, 125]. Recently, a number of

methods have been proposed that use deep networks to reconstruct images from lensless measure-

ments [13, 52, 71, 73]. Some of these methods provide an exceptional improvement over traditional

optimization-based methods. Nevertheless, deep learning-based methods in general, and end-to-end

methods in particular, provide a huge variation in performance for simulated and real data (mainly

because of mismatch in the simulated/actual mask-sensor-projector configuration and scenes). In

contrast to deep learning methods, our method seeks to improve the conditioning of the underlying

linear system and offer better generalization and robust results for arbitrary scenes without the need

for any learning from data.

Multiplexed illumination analysis is discussed in [92], which shows how overall recon-

struction SNR can be improved using coded illumination with Hadamard codes. Plenoptic imaging

and noise analysis for reconstruction from multiplexed measurements are discussed in [110]. Even

though this chapter is focused on lensless imaging with coded illumination, the noise analysis we

discuss in Sec. 4.6.1 follows similar arguments as [92,110] to show the relationship between recon-

struction error and overall system conditioning and singular values.
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Our proposed approach is an active imaging approach combining coded modulation or

structured illumination method with coded aperture imaging [35, 42, 75]. Structured illumination

schemes are commonly used for imaging beyond diffraction in microscopy. These schemes use

multiple structured illumination patterns to down-modulate high spatial frequencies in a sample

into a low-frequency region that can be captured by the microscope [41, 42, 46]. Structured light is

also widely used in multiplexing scene recovery to improve image quality and SNR [40,70,80,92].

Other active imaging approach includes time-of-flight sensors [45,88] that estimate the 3D scene by

sending out infrared light and measuring its traveling time in reflection. Coded diffraction imaging is

used to recover complex-valued wavefront from Fourier measurements [22,96]. In coded diffraction

imaging, the signal of interest gets modulated by a sequence of illumination patterns before the

K-space measurements were captured [20, 50, 69]. Ptychography is another related method for

capturing high-resolution microscopy images by capturing multiple images of the scene using a

sequence of coded illumination patterns [85, 104]. Dual photography [94] and compressive sensing

[32, 95] schemes also use coded illumination to sample the scenes. A dual photography system can

create a high-resolution image of the scene by scanning the entire scene one pixel at a time, but it

requires a fast laser projector. Single-pixel camera collects thousands of multiplexed measurements

of the scene and solves a regularized optimization problem to reconstruct the image. In our method,

we use lensless camera to capture tens of sensor frames with shifting coded illumination patterns

and get better reconstruction with improved system conditioning.
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A random illumination patterns-based lensless imaging method with simulations was pre-

sented in [126]. In contrast, we design shifting dots and orthogonal patterns that are significantly

superior to random patterns in terms of quality of reconstruction and computational complexity.

We provide detailed simulations and experimental results on real data captured with a custom-built

prototype.

4.3 Technical Approaches

4.3.1 Separable Imaging Model

FlatCam [6] consists of an amplitude mask placed on top of a bare sensor, and every

sensor pixel records a linear combination of the entire scene. Suppose the sensor plane is at the

origin of the 3D Cartesian coordinates (u, v, z) and an amplitude mask is placed parallel to the

sensor at distance d. We can model the measurement recorded at sensor pixel (u, v) as

y(u, v) =

∫
x(u′, v′, z)φ(u′, v′, u, v, z) du′dv′dz, (4.1)

where x(u′, v′, z) represents the intensity and φ(u′, v′, u, v, z) represents the sensor response of a

point source at (u′, v′, z). In this chapter, we assume that the scene consists of a single plane at a

known depth; therefore, we can ignore the depth parameter and represent the sensor measurements

as

y(u, v) =

∫
x(u′, v′)φ(u′, v′, u, v) du′dv′

⇒ y = Φx, (4.2)
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where x denotes the scene intensity vector, Φ denotes the system matrix, and y denotes the sensor

measurement vector. The computational and memory complexity of the general imaging model

in (4.2) makes it unsuitable for systems with a large number of scene and sensor pixels. We can

overcome this challenge in a number of ways; for instance, we can use a separable model as in

FlatCam [1, 6] or a convolutional model as in DiffuserCam [3]. We use a separable system in this

chapter.

A separable mask pattern that is aligned with the sensor grid yields a separable imaging

system, which can be represented as

y(u, v) =

∫ ∫
x(u′, v′)φL(u

′, u) du′ φR(v
′, v) dv′. (4.3)

The product of φL(u′, v) and φR(v′, v) represents the separable system response for point sources

along u, v axes. Let us assume that X represents an n × n image of the scene intensities at a fixed

plane and Y denotes m ×m sensor measurements, then we can represent the separable system in

(4.3) as

Y = ΦLXΦ⊤
R, (4.4)

where ΦL,ΦR denote the system matrices for u, v axes, respectively. We assume square shapes

for the scene and sensor to keep our discussion simple, but the ideas can be extended to arbitrary

shapes.
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4.3.2 Coded Illumination and Reconstruction

The effect of illumination can be modeled as an element-wise product between the scene

and the illumination patterns. In our experiments, we use a laser projector placed next to the lensless

camera to illuminate the object. In other applications, such as under-the-display cameras, an LED

screen can be used for illumination. To simplify the recovery process, we further assume that the

illumination patterns are separable and drawn from columns of n × k matrices PL and PR. Let

us denote a pattern as Pi,j = pLip
⊤
Rj , where pLi and pRj are ith and jth columns of PL and PR,

respectively. We can describe sensor measurements for any given illumination pattern Pi,j as

Yi,j = ΦL(Pi,j ⊙X)Φ⊤
R + Ei,j , (4.5)

where ⊙ represents element-wise multiplication operator and Ei,j denotes measurement noise.

To recover image X from the sensor measurements Yi,j , we can solve the following ℓ2-

regularized least-squares problem:

argmin
X

∑
i,j

∥Yi,j − ΦL(Pi,j ⊙X)Φ⊤
R∥22 + λ∥X∥22, (4.6)
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where λ > 0 is a regularization parameter. An optimal solution of (4.6) must satisfy the following

conditions (which can be derived by setting the gradient to zero) with Q =
∑

i,j(Φ
⊤
LYi,jΦR)⊙Pi,j :

Q = (ΦTLΦL ⊙ PLP
T
L )︸ ︷︷ ︸

AL

X (ΦTRΦR ⊙ PRP
T
R )︸ ︷︷ ︸

AR

+λX,

⇒ Q = ALXAR + λX, (4.7)

where AL, and AR are n × n matrices. The solution of (4.7) can be written in closed form using

the eigen-decomposition of AL,AR [6] as

X̂ = VL[(V
⊤
LQVR)./(sLsR

⊤ + λ11⊤)]V⊤
R, (4.8)

where VL,VR denote the eigenvectors and sL, sR denote the eigenvalues of AL,AR, respectively,

./ denotes element-wise division of entries in two matrices, and 1 denotes a vector with all ones.

A naı̈ve approach would require storing all the measurements Yi,j , which increases the

storage complexity of the system proportional to the number of illumination patterns. The proce-

dure described above avoids this cost, as we can recursively update an estimate of all the matrices

and vectors needed for image recovery without any additional storage overhead. Thus, the storage

cost of our method remains constant regardless of the number of illumination patterns. Every cap-

tured sensor measurement requires some processing, so the computational cost per recovered image

increases linearly with the number of illumination patterns.
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The required storage space for all the parameters is O(n2) because Q,AL, and AR are

n×nmatrices. We only need to compute AL,AR once, each of which costsO(mn2+kn2). Eigen-

decomposition of n×n matrices is O(n3). The most expensive step in our method is computing Q,

which we can perform by in-place addition of (Φ⊤
LYi,jΦR) ⊙ Pi,j as we acquire measurements for

all i, j. In this manner, we never need to store any of the captured measurements. The complexity

of updating Q is O(k2(nm2 +mn2)).

4.3.3 Choice of Illumination Patterns

One of our goals is to select the n×k illumination pattern matrices PL, PR that maximize

the quality of reconstruction for fixed ΦL,ΦR. The quality of reconstruction in (4.8) directly de-

pends on the conditioning of the AL,AR matrices in (4.7), which in turn depends on the mask and

illumination patterns. One possible approach to improve the conditioning of AL,AR is to make

them diagonal or diagonally dominant [38], which we can achieve by enforcing the same structures

in PLP⊤
L , PRP

⊤
R .

In principle, we can make PLP⊤
L diagonal or even identity by using PL as an identity

matrix, which requires k = n. This would be equivalent to scanning the entire scene by illuminating

one pixel at a time. We can also make PLP⊤
L identity by selecting PL as any orthogonal matrix,

which also requires k = n. In a practical scenario, we can only use a small number of illumination

patterns; therefore, k ≪ n. Below we discuss how we can get diagonally dominant AL,AR using

small values of k.
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We propose to use illumination patterns that constitute an orthogonal basis over k × k

blocks and repeat the same patterns across the entire scene. The simplest example of such patterns

is a dot pattern in which two adjacent dots are placed k scene pixels apart. We can then shift the

dot pattern across horizontal and vertical directions, one pixel at a time, to capture k2 shifting dots

patterns. These shifting dots patterns are separable and orthogonal over every k × k block. More

generally, we can use any sequence of orthogonal separable patterns over k × k blocks. Let us

assume the separable illumination patterns can be drawn from PL, PR that are defined as

PL = PR =



ψk

...

ψk,


⇒ PLP

⊤
L = PRP

⊤
R =



Ik . . . Ik

...
. . .

...

Ik . . . Ik


, (4.9)

whereψk and Ik denote k×k orthogonal and identity matrices, respectively. The resultingPLP⊤
L , PRP

⊤
R

matrices (shown above) will be block matrices with k×k identity blocks, and the AL,AR matrices

(shown in Fig. 4.2) will be block matrices with k × k diagonal blocks.

Recall that AL,AR are system matrices for the linear system we need to solve in (4.7).

We can permute the rows and columns of Q, which is equivalent to permuting rows of AL and

columns of AR, without affecting the solution of (4.7). Let us represent the resulting permuted

equations as

Q̃ = ÃLXÃR + λX. (4.10)
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Figure 4.2: Illustration of system in (4.7) when the illumination patterns form orthogonal basis over
k × k image patch. (Left) AL and AR are n× n block matrices with diagonal blocks of size k × k.
(Right) Permuting rows and columns results in block diagonal matrices with block size n

k ×
n
k . The

recovery performance of this system depends on the conditioning of each block. We can solve the
block diagonal system by recovering n

k × n
k patches in X independently, in parallel.

We illustrate the permuted system in Fig. 4.2, where ÃL, ÃR represent n × n block diagonal ma-

trices, with k blocks along the diagonal each of size n
k × n

k . As we increase the value of k, the

system matrices ÃL, ÃR become diagonally dominant and the overall conditioning of the system

improves.

We can exploit the block diagonal structure of the system matrices to solve the system in

(4.10) in a reliable and computationally efficient manner. Note that the separable, block diagonal

system can be divided into k2 independent systems, each involving an n
k × n

k patch in X. We can

solve all these systems in parallel to speed up recovery. The overall complexity of the inversion also

reduces from O(n3) to O(n3/k). Furthermore, the conditioning of the overall system now depends

on the conditioning of each n
k ×

n
k block in ÃL, ÃR. As long as all the blocks are well-conditioned,

we can recover the underlying signal accurately.
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4.4 Simulations

4.4.1 Simulation Setup

To validate the performance of the proposed algorithm, we simulate a lensless imaging

system where a coded-mask is placed on top of an image sensor. We use a separable maximum

length sequence (MLS) mask pattern. The size of each mask feature is 60µm, and the sensor-mask

distance is 2mm. The sensor pitch in the simulation is 11.72µm and the total number of pixels on

the sensors is 512× 512. We simulate a 128× 128 planar scene that is 40cm away from the sensor,

and the height/width of the scene is 12cm. The simulated sensor noise includes photon noise and

read noise [48], and the noisy sensor measurements can be described as

Yn =
G

F
(Poisson(

F

G
Y) +N(0, σ2)), (4.11)

where Y and Yn refers to original and noisy measurements, F stands for the full-well capacity, and

G represents the gain value. The variance σ = F × 10−R/20 and R is the dynamic range. We show

the reconstruction results on a few example scenes using different illumination patterns; additional

results can be found in the supplementary material.

4.4.2 Effect of Illumination on Reconstruction

We first evaluate the conditioning of different illumination patterns by observing the sin-

gular values of the system matrices in (4.7). The matrices that have flat singular value spectrum

provide better recovery performance [3, 6, 38]. We tested different types of binary, separable illu-

mination patterns for this experiment. We generate different instances of matrices PL, PR and use
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outer products of all pairs of columns to generate the illumination patterns. We ensure that the union

of all the patterns should illuminate all the pixels (i.e., if we add columns of PL, PR, they should be

nonzero everywhere). Uniform: One pattern that illuminates all the pixels simultaneously; PL, PR

are vectors of all ones. Random: PL and PR are k × n binary random matrices that generate

k2 patterns. Orthogonal: We tested two types of orthogonal patterns (shifting dots and repeated

Hadamard) that yield identical system matrices in (4.10). Shifting dots: PL, PR are k × n matri-

ces, each of which consists of k × k identity matrices stacked on top of each other (as described

in (4.9)). The base illumination pattern consists of dots separated by k pixels along the horizontal

and vertical directions. We generate a total of k2 illumination patterns, each of which is a shifted

version of the base pattern. The summation of all the patterns will give us a uniform illumination

pattern. Repeated Hadamard: As an extension to shifting dots, PL, PR are k × n matrices, each

of which consists of the same k × k orthogonal Hadamard matrix stacked on top of each other. We

can use grayscale or color patterns to illuminate the scene. In real experiments, the calibration of

the projector and nonlinearity of color/intensity ranges pose additional challenges.

To evaluate the effect of illumination on the lensless imaging system, we observe the

decay of singular values of the system matrices in (4.7) as we increase the number of illumination

patterns. Figure 4.3a plots the singular values for different illumination patterns. The singular

values of the original system matrix with one uniform illumination decay sharply. We tested various

patterns and found that the shifting dots or orthogonal patterns provide the best overall conditioning

(flat SVD curve) for a given budget of measurements. As we increase the number of illumination
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(a) System singular values. (b) Average PSNR values.

Figure 4.3: Recovery performance of the imaging system. (a) Singular values of the system ma-
trices with uniform, 64 random, and 4, 25, and 64 orthogonal shifting dots patterns. (b) Average
PSNR of 8 test images reconstructed with different numbers of illumination patterns. Red dashed
line shows results with uniform illumination. Reconstruction quality improves as we increase the
number of illumination patterns. The orthogonal patterns outperform random and uniform patterns.

patterns, the singular values spectrum becomes flatter, which corresponds to a system that is nearly

orthogonal. In principle, we can use a dot projector to create shifting dots patterns, but we need a

programmable projector for Hadamard-like patterns. In our experiments, we use a laser projector

for illumination.

We present simulation results for reconstruction of 8 test images using different types

and number of illumination patterns in Fig. 5.2. We observe that orthogonal patterns outperform

other patterns in terms of PSNR. Additional simulation results are available in the supplementary

material.
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(a) Examples of reconstructed images with sensor-to-mask distance at 750µm
and 2000µm.

(b) Average PSNR of all test im-
ages.

Figure 4.4: Simulation results for reconstruction with different sensor-to-mask distances in uniform
illumination and shifting dots illumination patterns. The reconstruction quality improves as the
sensor-to-mask distance increases.

4.4.3 Effect of Sensor-to-Mask Distance

The sensor-to-mask distance of a lensless imaging system greatly influences the condi-

tioning of the system and the quality of reconstruction. We present simulation results to evaluate

the performance with different sensor-to-mask distances. We keep the sensor size fixed at 512×512

pixels, and test the sensor-to-mask distance at 500µm, 750µm, 1000µm, and 2000µm. The recon-

struction results for two test images are presented in Fig. 4.4, along with the PSNR plot for different

numbers of shifting dots patterns. We observe that multiple coded illumination patterns outperform

the results with a single uniform pattern at all the sensor-to-mask distances. Even if the sensor-

to-mask distance is 750µm, the results with 25 coded illumination patterns are comparable to the

uniform illumination results at 2000µm. Additional simulation results are available in the supple-

mentary material.
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4.4.4 Comparison With Multishot Lensless Methods

Multishot lensless methods are also applied in [48, 125], where multiple frames of lens-

less measurements are captured with a shifting or programmable mask on top of the image sensor.

We present the simulation results comparing with a shifting mask-based multishot lensless imaging

system [48] in Fig. 4.5. We keep the sensor size fixed at 512× 512 and sensor-to-mask distance at

2000µm. The mask feature size is 60µm in all cases. We simulate the imaging process for Sweep-

Cam [48] with the mask at multiple shifting positions between −15 and +15 mask feature pixels

(i.e., −900µm to +900µm physical shift). The number of captured frames for SweepCam [48] are

the same as our method with coded illumination patterns. The simulation results in Fig. 4.5 show

that our method with the same number of coded illumination patterns provides significantly better

results compared to SweepCam.

4.5 Experiments

4.5.1 Experiment Setup

We build a prototype with a lensless camera and a Sony MP-CL1 laser projector, shown

in Fig. 4.6. The lensless camera prototype consists of an image sensor with a coded mask on top of

it. The mask has a separable MLS pattern described in [6]. The mask has 511×511 square features,

each of length/width 60µm. The sensor-mask distance is 2mm. We use a Sony IMX249 sensor that

has 1920× 1200 pixels with 5.86µm pixel pitch. We bin 2× 2 sensor pixels and record 512× 512

measurements from the center of the sensor. The effective sensor pitch is 11.72µm and the effective
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uniform SweepCam [48] ours

PSNR: 22.85dB 26.83dB 34.01dB

PSNR: 21.29dB 24.88dB 35.53dB

(a) Example results with uniform illumination, 49 shifting masks, and 49
shifting dots. (b) Average PSNR of all test images.

Figure 4.5: Simulation results for reconstruction using uniform illumination, shifting masks from
SweepCam [48] and shifting dots illumination patterns using our method at different number of
measurements instances. Our method outperform uniform the other methods.

sensor area is nearly 6×6 mm. The target objects are 40cm away from the camera, and the projector

illuminates 12 × 12 cm area on the scene plane. Finally, we reconstruct 128 × 128 pixels in the

illuminated area, which results in the effective sampling interval of 120mm/128 = 0.93mm per pixel

in the reconstructed images.

In our experiment, the pixel grid of the scene, illumination patterns PL, PR, the system

matrices ΦL, ΦR must be correctly aligned; otherwise, we will get artifacts in the reconstruction. To

avoid any grid mismatch, we use the same projector to calibrate the system matrices and generate

the illumination patterns in our experiments. We estimate the system matrices ΦL,ΦR following

the Hadamard pattern-based calibration procedure in [6]. Let us denote the Hadamard patterns as

an n × n orthogonal matrix H = [h1, . . . ,hn], where each hi represents a Hadamard pattern of
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Figure 4.6: The experiment setup and five test scenes (annotated and scaled to proportional size).
The projector is placed right next to the lensless camera. The target scenes/objects are 40cm away
from the camera.

length n. To calibrate the system for an n × n pixel grid, we project n horizontal and n vertical

(rank-one) Hadamard patterns on a flat surface in the scene and record their response on the sensor.

Every horizontal pattern can be represented as an n × n rank-one matrix Xi = hi1
⊤, where 1

denotes a vector of all ones. The corresponding sensor response can be represented as a rank-one

matrix Yi = ΦL(hi1
⊤)Φ⊤

R ≡ ukv
⊤, where ui = ΦLhi and v = ΦR1. We can concatenate all the

ui as columns in a matrix as U = [u1 · · · un] = ΦLH and estimate ΦL = UH⊤. We can repeat

the same procedure with vertical Hadamard patterns 1h⊤
i and estimate ΦR. Finally, we conduct the

experiments with coded illumination while the position and angle of the projector are fixed. This

ensures that the pixel grids of the projector and the transfer matrices are identical.
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Uniform 16 Shifting dots 25 Shifting dots 49 Shifting dots

Figure 4.7: Experimental results on five test scenes with different numbers of shifting dots patterns.
The reconstruction results using multiple coded illumination patterns outperform the standard lens-
less camera with uniform illumination. The quality of reconstruction gradually increases as the
number of illumination patterns increases.

4.5.2 Effect of Illumination Patterns

We present experimental results of our method on five different scenes in Fig. 4.7 and

Fig. 4.8. The first three rows are printed card, color board, and a resolution target on sheets of paper.

Since these scenes are planar, they fit the 2D scene assumption of our model perfectly. The last two

rows are real objects with depth variations and may cause depth mismatch in the reconstruction.
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From the results in Fig. 4.7, we observe that a single uniform illumination provides poor

reconstruction. As we increase the number of illumination patterns, the resolution of the recon-

struction images improves significantly. For example, in the third row, the horizontal and vertical

features that cannot be resolved with the uniform illumination are easily resolved with the 49 pat-

terns. Also, we observe in the fourth row that, the letters on the cookie bag that are completely

unrecognizable with uniform illumination become very clear with 49 illumination patterns. The last

two rows also suggest that our method is robust to small variations in depth. From the results in

Fig. 4.8, the repeated orthogonal patterns(shifting dots and Hadamard) outperform other patterns,

as expected from the singular values in Fig. 4.3a.

Note that the neighboring pixels have a similar response on the sensor in the lensless

imaging system; therefore, neighboring pixels are harder to resolve compared to two pixels that are

far from each other. The shifting dots pattern is a dot array where the illuminated pixels are maxi-

mally separated; therefore, two neighboring pixels in the scene are not illuminated at the same time.

Also, as we increase the number of shifting dots patterns, the distance between adjacent illuminated

pixels also increases, and that provides better reconstruction. Hadamard patterns provide similar

separation because of their orthogonal structure.

Note that if we increase the number of measurements with coded illumination, the system

conditioning and the quality of reconstructed images improve. On the other hand, if we increase

the number of measurements for the uniform illumination pattern, the system conditioning and the

quality of reconstructed images remains unchanged. To show this effect, we provide experimental

results comparing the quality of reconstruction with multiple measurements captured under uniform

and coded illumination. We present the results using 49 uniform and 49 shifting dots illumination
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patterns in Fig. 4.9. Note that the 49 uniform and 49 shifting dots illuminations use the same

amount of exposure/capture time. We observe that shifting dots illumination provides significantly

better reconstruction compared to uniform illumination. We observe that capturing 49 shots with

uniform illumination reduces noise slightly compared to one uniform illumination, but 49 shifting

dots provide significantly superior results. Note that multiple shots with uniform illumination can

provide slightly better SNR because noise variance reduces due to averaging. The improvement

with shifting dots patterns is the result of the better conditioning of the system that multiple uniform

illumination shots cannot provide.

In summary, the ill-conditioned system matrices with uniform illumination pattern cause

various artifacts. Capturing measurements from coded illumination improves the conditioning of

the overall system and the resulting reconstructed images contain much fewer artifacts and noise.

More illumination patterns demand more acquisition time, which enforces a trade-off between the

quality of reconstruction and data acquisition time.

4.5.3 Effective Resolution and MTF

We use the resolution target image in Fig. 4.10 to analyze the spatial resolution of our

method empirically. The distance between two printed white stripes in group 20 (upper-left) is

7.5mm (0.13 lp/mm) and the distance between two white stripes in group 5 is 1.9mm (0.52 lp/mm).

The resolution of our imaging system is directly determined by the sampling interval of the illumi-

nation patterns. We place the target scene 40cm away from the camera and projector. The resolution

of the MP-CL1 projector is 1280×720 and the overlap between the camera FOV and the maximum

illuminating area at 40cm throw distance is 22× 13cm. The projector pixel pitch is 0.17mm, which
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determines the achievable resolution of our method with the MP-CL1 projector. In our experiments,

the width of every reconstructed pixel is 0.93mm, and the angular sampling of our system is 0.27◦.

We can select smaller sampling intervals pitch by dividing the illuminating area into more pixels,

but the minimal size cannot be smaller than projector pixel.

We present the modulation transfer function (MTF) of the reconstruction from different

numbers of illumination patterns in Fig. 4.10. MTF measures how well we can discern the intensity

of bright and dark pixels in line pairs under different conditions [112]. To plot the MTF, we manually

select every group of horizontal and vertical line pairs after subtracting a fixed DC background, then

average every group along the columns and rows, respectively, and finally compute the contrast

percentage as Imax−Imin
Imax+Imin

× 100. We observe from the MTF plots that the contrast ratio for all the

resolution groups improves as we increase the number of illumination patterns. We also plot the

intensity values of the horizontal line stripes from multiple groups in Fig. 4.10, where the peaks

and valleys correspond to the white and black stripes of the horizontal line pairs. We observe that

the line pairs of group 12 can be distinguished clearly while the line pairs of group 3 cannot be

distinguished.

4.5.4 Compressive Sensor Measurements

One potential application of coded illumination with lensless imaging is to expand the

space of sensor measurements without increasing the number of sensor pixels. This can be es-

pecially useful when sensors capture fewer measurements than the number of pixels we seek to

recover. Compressive sensing often deals with such scenarios where the number of sensor pixels is
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smaller than the number of unknown scene pixels [21, 31]. The system becomes under-determined

and the reconstruction quality becomes worse. In lensless imaging systems, the number of sensor

measurements is often larger than the number of reconstruction pixels, but that comes at the expense

of low resolution of reconstructed images or larger and more costly sensors.

To validate the robustness of our method in the case of an under-determined system, we

performed an experiment by binning the sensor measurements at increasing factors. The results are

presented in Fig. 4.11. In our experiments, we capture 512 × 512 measurements and bin them to

256 × 256, 128 × 128, or 64 × 64 pixels by averaging the neighboring pixels in post-processing.

The reconstruction image has 128 × 128 pixels, which implies the 64 × 64 sensor measurements

yield an under-determined system with one illumination. We present the result of two scenes with

different binning factors. We observe that as we bin a larger number of pixels, the system with a

single uniform illumination becomes ill-conditioned and the quality of reconstruction degrades. On

the other hand, the system with 49 shifting dots patterns provides stable reconstruction even when

the measurements are binned to 64× 64 pixels.

4.5.5 Deep Network-Based Denoising vs Reconstruction

Deep learning-based methods have been widely used for image recovery and enhancement

tasks [28, 52, 73]. For instance, UNet [86] is used for image denoising and removing artifacts from

reconstructed images [52,125]. Deep learning is also used as the priors to improve the reconstruction

results [15], especially when the number of measurements is small. UNet-based networks have

been used to recover photorealistic images from lensless measurements in [52]. In our experiments,

we observed that deep learning-based methods that learn to recover images directly from sensor
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measurements perform very well on simulated data but provide catastrophic results on real data.

In contrast, the simple least-squares method we discussed in (4.8) provides stable results in all

cases because coded illumination provides a well-conditioned system. We present simulation and

experimental results below.

We performed some experiments to compare the performance of four methods with coded

and uniform illumination: least squares (LS) in (4.8), LS with a trained UNet that is used as a

refinement network, LS with pretrained refinement network in FlatNet [52], and end-to-end trained

FlatNet. We present results for simulated sensor measurements in Fig. 4.12 and on real data captured

using our prototype in Fig. 4.13.

The description of the four methods is as follows. We used 1000 natural RGB images

from [25] to train the deep networks.

• LS. Images are reconstructed using the least-square (LS) method with ℓ2-regularization (4.8).

• LS + Trained UNet. We trained a UNet using 1000 training images that learns to map the LS

reconstruction into a refined image.

• Trained FlatNet. FlatNet [52] contains two steps: inversion step and refinement step that are

trained jointly in an end-to-end manner. The inversion step maps the sensor measurements into

a coarse image estimate, while the refinement step maps the coarse estimate to a cleaner image.

We train both steps of the FlatNet in an end-to-end manner with simulated measurements for

uniform and coded illuminations. We created the synthetic data by simulating the noisy lensless

measurements for training images using the calibrated transfer matrices ΦL,ΦR described in

Sec.4.5.1. Note that we need to train a separate network for different types/number of illumination

patterns.
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• LS + Pretrained FlatNet. The refinement network in FlatNet has same architecture as our trained

UNet. For the sake of comparison, we also used the pretrained refinement network from FlatNet

to refine the LS solution.

Figure 4.12 shows images reconstructed from simulated measurements of selected test

images. We observe that LS, LS+UNet, and trained FlatNet provide good reconstruction for sim-

ulated data using uniform illumination. In particular, images from trained FlatNet have best visual

appearance simulations Fig. 4.12(d). For coded illumination, the quality of reconstruction improves

for all the methods. The pretrained refinement network from FlatNet provides overly smoothed

images and distorts spatial details.

Figure 4.13 shows images reconstructed from measurements captured by real prototype.

Trained FlatNet fails to recover images from real data captured with uniform illumination in Fig. 4.13.

In contrast, LS and LS+UNet provide a low-resolution reconstruction with uniform illumination.

For coded illumination, trained FlatNet reconstructions have high quality that is similar to the re-

sults provided by LS and LS + trained UNet. Figure 4.13 further shows that UNet can partially

reduce the artifacts and noise in the images reconstructed from the uniform illumination, but fails

to improve the spatial resolution. In contrast, coded illuminations significantly improves the resolu-

tion and quality of the reconstructed images. Additional results can be found in the supplementary

material.
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Our main takeaway from these experiments is that deep networks cannot always re-

cover missing details if the system is ill conditioned. In particular, deep network-based refine-

ment/denoising can improve the appearance of images but cannot recover missing details. End-

to-end trained networks, which recover images directly from multiplexed sensor measurements,

perform well when train and test settings are identical, but provide catastrophic results in case of

any mismatch. Coded illuminations improve the conditioning of the system, which benefits all the

recovery methods.

4.6 Discussion

We propose a framework for combining coded illumination with lensless imaging. We

present extensive simulation and real experiment results to demonstrate that we can get significantly

improved reconstruction with multiple coded illumination patterns compared to original uniform

illumination.

Advantages

• Qualitative experiment results show that our method has robust performance even if the original

system is severely ill-conditioned (small sensor-mask distance and small number of measure-

ments).

• In space-limited applications such as under-the-display sensing, where the sensor-to-mask dis-

tance has to be small, our proposed method can offer significantly better reconstruction compared

to uniform illumination.
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• Our proposed reconstruction algorithm is efficient in both space and time. For shifting dots

(and any other orthogonal) pattern over k × k blocks, the system can be transformed into k2

independent small problems that can be solved in parallel for faster and better reconstruction.

• Shifting dots patterns have a simple structure but provide the best results in our experiments.

Shifting dots patterns can be easier to implement because all the patterns are simply the shifted

copies of the same base pattern.

• Programmable orthogonal patterns would provide similar gains as shifting dots with potentially

better performance in strong ambient light (at the expense of complex hardware).

Limitations

• The resolution of reconstructed images are limited by the resolution of illumination patterns.

• Coded illumination hardware can bring additional cost and complexity to the system design.

• Our current system cannot capture dynamic scenes because our model requires multiple mea-

surements of every scene under different illumination patterns.

• The shifting dots patterns are simple and easy to implement, but they reduce the light throughput.

• The camera and projector are co-located in our setup; therefore coded illumination does not

provide a direct advantage toward depth estimation. Reconstruction of 3D and dynamic scenes

with this framework is possible and requires additional work [123].

• Similar to other active illumination systems, the performance of our method will suffer under

strong ambient lights (see supplementary).

• Our imaging model does not account for non-Lambertian objects, and any such object can cause

artifacts in the reconstruction (see supplementary).
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4.6.1 Error Analysis in Multi-Shot System

In this section, we discuss the effects of noise and system conditioning on the recon-

struction error. In our coded illumination method (especially, with shifting dots), each frame of

the multi-shot system can have low SNR compared to single-shot system, given the same capture

time. While the SNR of each frame is worse, the multi-shot systems offer much better conditioning,

which in turn provides better reconstruction.

Let us represent the measurements captured by a reference lensless camera under uniform

illumination in the following vectorized form: y = Ax + e, where A denotes the system matrix,

x denotes the unknown image, and e denotes the measurement noise. We denote the measurement

signal to noise ratio of this reference system as SNRref . Note that under the assumption that photon

count can be approximated as N (λt, λt), SNRref ∝
√
λt, where λ represents rate of photon arrival

and t represents exposure time).

Suppose A is full rank but ill-conditioned with singular values s1, . . . , sN , and the least-

squares solution is x̂. If we capture T measurements with uniform illumination (or increase expo-

sure time of a single measurement by a factor of T ), then the measurement SNR will increase by

a factor of
√
T but the singular values remain unchanged. A simple derivation (see details in [92])

can show that mean signal to mean reconstruction error ratio (SER) can be written as

SERunif =
E∥x∥2

E∥x− x̂∥2
=

√
T SNRref√

Tr(A⊤A)−1
=

√
T SNRref
ρref

, (4.12)

where ρref = Tr(A⊤A)−1 =
√∑N

i=1 1/s
2
i . The reconstruction error is dominated by the small

singular values as they will increase the denominator.
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On the other hand, using coded illuminations will provide us a modified system matrix Ã

with singular values s̃1, . . . , s̃N that decay at a slower rate (as shown in Fig. 4.3a). The SNR of

coded-illumination measurements can be different from uniform illumination; for example, if we

turn on every kth pixel in the illumination pattern, the measurement SNR will reduce by a factor

of
√
k. In our equivalent design with shifting dots, we would capture T = k measurements with

shifting dots. Therefore, the mean signal to mean reconstruction error ratio (SER) with T shifting

dots illumination patterns can be written as

SERdots =
E∥x∥2

E∥x− x̂∥2
=

SNRref
ρdots

, (4.13)

ρdots = Tr(Ã⊤Ã)−1 =
√∑N

i=1 1/s̃
2
i . Note that if we use T Hadamard patterns instead of shifting

dots, then the SNR per measurement would not reduce, and the error bound above will not have the

√
T factor in the denominator.

In summary, suppose we use same total exposure time (or number of equal-exposure

measurements) for uniform and shifting dots patterns, then

SERdots
SERunif

=
1

T

ρref
ρdots

. (4.14)

In practice, the coded illumination-based system offers significantly better conditioning compared

to reference system; that is, ρref ≫ ρdots.

We also show experimental results for multi-shot coded illumination system and uniform

pattern system with the same amount of exposure time in Fig. 4.9(c,d). We can observe that the 49

shifting dots outperform the reconstruction using uniform illumination.
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4.6.2 Coded Illumination With Nonseparable Systems

All the lensless cameras can be modeled as a linear system; therefore, the broader finding

that adding coded illumination improves the conditioning of the system is valid across all the lens-

less designs. Our particular choice of separable masks and illumination patterns is indeed specific to

FlatCam-inspired designs, where we gain computational advantages as the solution can be written

in a separable closed form.

In principle, we can add coded illumination to convolutional models such as DiffuserCam

as Yi = φ ∗ (Pi ⊙ X), where φ denotes PSF for the mask, X denotes the unknown image, Pi

denotes ith illumination pattern, and Yi denotes the corresponding sensor measurements. We do

not have a closed-form solution for such an imaging model; therefore, reconstruction involves using

iterative solver.

To validate our argument, we also provide simulation results in Fig. 4.14 combining our

coded illumination system with the convolution model proposed in DiffuserCam [3]. The PSFs

used in the simulation are also from the DiffuserCam data. We observe in Fig. 4.14 that the coded

illumination pattern also improves the condition of the DiffuserCam.

Combining a convolution model with coded illumination has some additional practical

challenges that do not arise in the separable model we presented earlier in the paper. Two main

challenges we encounter are (1) alignment of spatial grids and (2) reconstruction complexity. The

alignment process is necessary to avoid any model mismatch. The sampling grid in the convo-

lutional model cannot be arbitrary, as it is deteremined by the PSF and sensor pixel pitch. The

alignment requires additional (tedious) calibration steps to estimate relative sizes/displacements of

illumination pixels and scene pixels. We leave the calibration and hardware implementation tasks
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for future work. In contrast, in our paper, we used a separable model that can be calibrated using

the illumination pattern itself (as long as illumination grid yields a separable response on the sen-

sor). Coded illumination-based convolutional models do not have a simple closed-form solution

because the combined operator cannot be diagonalized with Fourier transform. We can implement

the forward and adjoint operators using Fourier transform, but the overall reconstruction procedure

is much slower than the separable model we used in our paper, as shown in Fig. 4.14c.
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Uniform 64 Random 64 Shifting dots 64 Hadamard

Figure 4.8: Experimental results on five test scenes with different types of illumination patterns.
The orthogonal patterns (shifting dots, hadamard) outperform random patterns and uniform illumi-
nation.
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(a) Test scene (b) 1 Uniform

(c) 49 Uniform (d) 49 Shifting dots

Figure 4.9: Sample results for imaging performance with one uniform, 49 uniform, and 49 shifting
dots illumination patterns. Capturing 49 shots requires the same data acquisition time, but the results
for 49 shifting dots patterns are significantly better than 49 uniform patterns.
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(a) 9 patterns (b) 16 patterns (c) 49 patterns

(d) Modulation transfer function plot. The vertical axis shows the contrast ratio in percentage.

Figure 4.10: Resolution analysis of coded illumination. Top images in (a,b,c) show resolution target
reconstructed using 9, 16, and 49 shifting dots patterns. Bottom plots in (a,b,c) show the intensity of
a line from group 12 to group 3. The MTF (modulation transfer function) plot for different numbers
of shifting dots illumination patterns is shown in (d). To compute MTF, we manually select each
group of horizontal and vertical line pairs after subtracting a fixed DC background, then average
every group along the columns and rows, respectively, and finally compute the contrast ratio.
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Figure 4.11: Experimental results for reconstructing the 128 × 128 images from 64 × 64 and
128 × 128 measurements. Single (uniform) illumination-based method fails to recover images as
the number of measured pixels reduce. Our method with 49 shifting dots patterns recovers near-
perfect reconstruction at different levels of binning (compression) factors.
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Figure 4.12: Reconstruction results for simulated measurements with 49 uniform and shifting dots
illumination patterns. Images in four columns show (a) LS solution, (b) LS solution with trained
UNet refinement, (c) LS solution with pretrained FlatNet refinement, and (d) trained FlatNet that
reconstructs image directly from measurements. For each image, we show the SSIM value under-
neath.
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Figure 4.13: Reconstruction results for real-hardware measurements with 49 uniform and shifting
dots illumination patterns. Images in four columns show (a) LS solution, (b) LS solution with
trained UNet refinement, (c) LS solution with pretrained FlatNet refinement, and (d) trained FlatNet
that reconstructs image directly from measurements.
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uniform 49 shifting dots uniform 49 shifting dots

PSNR: 18.96dB 38.46dB 21.71dB 42.53dB

PSNR: 19.23dB 44.51dB 24.56dB 44.52dB

(a) Example reconstructed images using DiffuserCam model [3].

(b) Average PSNR values. (c) Average reconstruction time.

Figure 4.14: Simulation results with uniform illumination and 49 shifting dots coded illumination
patterns using the convolution model in DiffuserCam [3]. (a) Sample reconstructed images in (a)
and average reconstruction PSNR vs number of patterns in (b) show that coded illumination patterns
improve the imaging performance of DiffuserCam. (c) Average reconstruction time for the convolu-
tional model is an order of magnitude larger than the separable model that has a simple closed-form
solution.
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Chapter 5

Binocular 3D Lensless Imaging With

Coded Illumination

Mask-based lensless cameras offer a novel design for imaging systems by replacing the

lens in a conventional camera with a layer of coded mask. Each pixel of the lensless camera en-

codes the information of the entire 3D scene. Existing methods for 3D reconstruction from lensless

measurements suffer from poor spatial and depth resolution. This is partially due to the system ill

conditioning that arises because the point-spread functions (PSFs) from different depth planes are

very similar. In this chapter, we propose to capture multiple measurements of the scene under a se-

quence of coded illumination patterns to improve the 3D image reconstruction quality. In addition,

we put the illumination source at a distance away from the camera. With such baseline distance
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between the lensless camera and illumination source, the camera observes a slice of the 3D volume,

and the PSF of each depth plane becomes more resolvable from each other. We present simulation

results along with experimental results with a camera prototype to demonstrate the effectiveness of

our approach.

5.1 Introduction

Lensless cameras provide novel designs for extreme imaging conditions that require small,

thin form factor, large field-of-view, or large-area sensors [3, 6, 12, 14]. Compared to conventional

lens-based cameras, lensless cameras are flat, thin, light-weight, and geometry flexible. Depth es-

timation with lensless imaging has been a challenging problem [1, 3, 122]. The primary reason is

that the sensor responses for different depth planes have small differences, which makes the 3D

reconstruction an ill-conditioned problem.

In this chapter, we propose a new method that combines coded illumination with mask-

based lensless cameras (such as FlatCam [6]) to improve the quality of recovered 3D scenes. We

project a sequence of coded illumination patterns onto the 3D scene and capture multiple frames of

lensless measurements. We then solve an inverse problem to recover the 3D scene volume using

all the coded measurements. Coded illumination-based measurements provide a better-conditioned

system and improve the quality of 3D reconstruction. The illumination source is separated from

the camera by a baseline distance, which ensures that the depth-dependent point spread functions

(PSFs) of each depth plane is different from one another. The choice and design of the illumination

source depend on the application of the imaging system. We use a projector installed next to the

lensless camera as the illumination source.
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The main contributions of this chapter are as follows.

• We propose a novel framework to capture lensless measurements under a sequence of coded

illumination patterns and improve the 3D reconstruction results.

• We show that the baseline between projector and camera cause depth-dependent shifts of PSF

and enhance the 3D performance at large distances.

• We provide simulation and experimental results to validate the proposed method. Our experi-

ments show that the quality of 3D reconstruction improves significantly with coded illumina-

tion.

5.2 Background and Related Work

Mask-based lensless cameras, such as FlatCam [6], can be viewed as extended versions of

pinhole cameras. Although a pinhole camera is able to image the scene directly on a sensor, it often

suffers from severe sensor noise [118]. Coded aperture-based cameras alleviate this problem by

using multiple pinholes arranged in a designed pattern [6,12,19,23,34]. The scene is reconstructed

by solving an inverse problem using the linear multiplexed lensless measurements. With the small

baseline between the pinholes on the mask, the coded aperture-based cameras are also able to cap-

ture the depth information of the scene [1, 3, 5, 48, 56, 122, 125]. 3D reconstruction using a single

snapshot of a lensless camera is an under-determined and highly ill-conditioned problem [122].
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Signal recovery from ill-conditioned and under-determined systems is a long-standing

problem in signal processing. A standard approach to deal with ill-conditioned and under-determined

systems is to add a signal-dependent regularization term in the recovery problem, which con-

strains the range of the solutions. Popular methods include adding sparse and low-rank priors

[8, 21, 31, 81, 87] or natural image prior [15, 43, 49]. Recently, a number of methods have been

proposed that use deep networks to reconstruct or post-process the images from lensless measure-

ments [13, 52, 71, 73]. Some of these methods provide exceptional improvement over traditional

optimization-based methods. Nevertheless, deep learning-based methods in general, and end-to-end

methods in particular, provide a huge variation in performance for simulated and real data (mainly

because of mismatch in the simulated/actual mask-sensor-projector configuration and scenes). In

contrast to deep learning methods, our method seeks to improve the conditioning of the underlying

linear system and offer better generalization and robust results for arbitrary scenes without the need

for learning from data [48, 125].

Our proposed approach can be viewed as an active imaging approach combining coded

modulation or structured illumination method with coded aperture imaging [35, 42, 75]. Structured

illumination schemes are commonly used for imaging beyond diffraction in microscopy. These

schemes use multiple structured illumination patterns to down-modulate high spatial frequencies in

a sample into a low-frequency region that can be captured by the microscope [41, 42, 46]. Coded

illumination for lensless imaging of 2D scenes was recently presented in [124]. Another active

imaging approach uses time-of-flight sensors [45, 88] that estimate the 3D scene by sending out

infrared light pulses and measuring the traveling time of their reflections.
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5.3 Technical Approaches

5.3.1 Imaging Model

Mask-based lensless cameras replace the lens with a layer of coded mask and capture

linear multiplexed measurements with an image sensor. The mask pattern can be placed parallel to

the sensor plane at distance d, as illustrated in Figure 5.1. In general, we can model the measurement

recorded at a sensor pixel (su, sv) as a linear function of the scene intensity as

y(su, sv) =

∫
I(x, y, z)φ(su, sv;x, y, z) dxdydz, (5.1)

where I(x, y, z) denotes the image intensity at 3D location (x, y, z) and φ(su, sv;x, y, z) denotes

the point spread function (PSF) or the sensor response recorded at (su, sv) in the sensor plane for a

point source at (x, y, z).

The general system in (5.1) can be simplified depending on the system design and place-

ment and pattern of the mask. In our proposed method, we use a separable model proposed in [6],

where we use a rank-1 matrix as the amplitude mask. With the separable mask placed parallel to

the image sensor, the PSF of an arbitrary point, φ(su, sv;x, y, z), will be a rank-1 matrix, and the

general model in (5.1) can be written in a simpler form as a separable system.

Suppose we discretize the continuous scene I(x, y, z) into D depth planes I1, . . . , ID,

each with N ×N pixels. The separable system can be represented in the following compact form:

Y =
∑
k

ΦkIkΦ
T
k . (5.2)
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Figure 5.1: Illustration of a lensless camera with coded illumination. Camera and projector are
separated by baseline distance B. The 3D scene is illuminated by a sequence of coded illumination
patterns from the projector, and observed by the camera sensor beneath the coded mask. Rays that
receive same illumination in projector coordinates appear at different angles in camera coordinates
that provides different depth-dependent PSFs.

Y represents M ×M sensor measurements and Φk represents the system matrix for the k-th depth

plane.

5.3.2 Coded Illumination

We use a projector separated by baseline distance B from the camera to illuminate the

scene with a sequence of coded illumination patterns (as illustrated in Figure 5.1. The effect of

coded illumination can be modelled as an element-wise product between the illumination pattern

and the scene. We divide the field-of-view (FOV) cone of the projector into N ×N angles, which

also determines the spatial discretization of the scene. We generate a sequence of illumination
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patterns and capture the corresponding measurements on the sensor. The measurements captured

for i-th pattern Pi can be represented as

Yi =
∑
k

Φk(Pi ⊙ Ik)Φ
T
k . (5.3)

Note that we assume the same illumination pattern for every depth plane at a time. This is because

we use the projector to determine the scene discretization at every depth plane.

To recover the 3D scene as a stack of D planes, I = {I1, . . . , ID}, we solve the following

regularized least-squares problem:

min
I1,...,ID

∑
i

∥Yi −
∑
k

Φk(Pi ⊙ Ik)Φ
T
k ∥22 + λ∥D(I)∥2. (5.4)

D(I) represents a finite difference operator that computes local gradients of the 3D volume I along

spatial and depth directions. The ℓ2 norm of the local differences provides the 3D total variation

function that we use as the regularization function. The total variation function constrains the magni-

tude of the local variation in the reconstruction and is widely used in ill-conditioned image recovery

problems [58, 87]. The optimization problem in (5.4) can be solved using an iterative least-squares

solvers; we used the TVreg package [51].
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5.3.3 Effect of Baseline on Depth-Dependent PSFs

As discussed in previous work on 3D lensless imaging [1,3,48,122], the points at different

depth in the scene provide a scaled version of the mask pattern as the sensor response. However,

if the object is far from the lensless camera, the depth-dependent differences in the sensor reponse

become almost negligible.

Coded illumination in our proposed system provides robust 3D reconstruction for two

main reasons: (1) Coded illumination selects a subset of scene points that contribute to each sen-

sor measurement. (2) Spatial separation between camera and projector (i.e., baseline) maps depth

variations in scene points into depth-dependent shifts in the sensor response. Since shifted versions

of the the mask pattern can be easily resolved compare to the scaled versions, the baseline plays a

critical role in quality of 3D reconstruction.

Let us consider the 1D case of our proposed framework, the projector P is placed at a

baseline distance B away from the camera C, as shown in Figure 5.1. For an arbitrary point at

(p, z) in the coordinate system of C, its measurements on camera C can be written as

ϕ(s; p, z) = mask
[
(1− d

z
)s+ d

p

z

]
, (5.5)
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where s denotes the coordinates on the camera sensor and d denotes the sensor-to-mask distance.

The coordinates of two arbitrary pointsA1(p1, z1) andA2(p2, z2) on the same ray of the projector in

the coordinate system of P become (p1+B, z1), (p2+B, z2) in the coordinate system of camera C

(because of the the baseline between camera and projector). We can represent the camera response

or PSF corresponding to each of these points as

ϕ(s; p1, z1) = mask
[
(1− d

z1
)s+

dp1
z1

− dB

z1

]
= mask

[
(1− d

z1
)(s− dB

z1 − d
) + d

p1
z1

]
(5.6)

ϕ(s; p2, z2) = mask
[
(1− d

z2
)s+

dp2
z2

− dB

z2

]
= mask

[
(1− d

z2
)(s− dB

z2 − d
) + d

p2
z2

]
. (5.7)

Note that p1z1 = p2
z2

because the two points are at different depths on the same ray angle. Therefore,

the PSF of pointsA1 andA2 differ from each other with a scaling factor 1− d
z and a depth-dependent

shift dB
z−d .

Specifically, when the object is far from the camera, we can often ignore the difference

in depth scaling factor 1 − d
z , and the difference of the depth-dependent shift becomes | dBz1−d −

dB
z2−d |. When the baseline is zero, two point light sources on the same ray are the scaled versions of

each other, and the scaling factor becomes almost the same when the object distance (z) is large.
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However, by separating the camera and project by baseline distanceB, the camera observes a shifted

3D grid; two points on the shifted grid provide an angular difference with respect to the camera.

Therefore, the depth resolvability of the system improves. This effect was previously discussed

in [5] for more general geometries with multiple cameras.

In general, the projector P and camera C can be separated laterally and axially. Lateral

separation provides depth-dependent shifts of the PSF, which we discussed in (5.6) and (5.7). Axial

separation would provide depth-dependent scaling and shifts of the PSF, which can also be deduced

from (5.6) and (5.7). For instance, if the camera and projector are separated axially by ∆z, the

depth-dependent shifts can be calculated by replacing z1, z2 with z1 + ∆z, z2 + ∆z, respectively.

Since these terms appear in the denominator, their influence on the PSF shift will be small compared

to lateral baseline B.

5.4 Simulation Results

To validate the performance of the proposed algorithm, we simulate a lensless imaging

system where a coded-mask is placed on top of an image sensor. We use a separable maximum

length sequence (MLS) mask pattern [6, 19]. The size of each mask feature is 60µm, and the

sensor-mask distance is 2mm. The sensor pitch in the simulation is 4.8µm and the total number

of pixels on the sensors is 512 × 512. We simulate a multi-plane 3D scene with 128 × 128 × 10
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voxels. The simulated sensor noise consists of photon noise and read noise, and the noisy sensor

measurements can be described as

Yn =
G

F
(Poisson(

F

G
Y) +N(0, σ2)), (5.8)

where Y and Yn refers to original and noisy measurements, where F stands for the full-well ca-

pacity of the sensor, and G represents the gain value. The variance σ = F × 10−R/20 and R is the

dynamic range.

5.4.1 Effect of Illumination Patterns

We test different types of binary illumination patterns for the simulation. The patterns are

designed to be binary to keep the model simple and to avoid the effect of non-linearity caused by

the Gamma curve of the projector..

Uniform. One pattern that illuminates all the pixels simultaneously;

Random. A sequence of separable binary random matrices. We ensure that the union of all the

patterns should illuminate all the pixels (i.e., if we add up all the illumination patterns, they should

not have zero entries anywhere).

Shifting Dots Array. The base illumination pattern consists of dots separated by k pixels along

the horizontal and vertical directions. We then generate a total of k2 illumination patterns, each

of which is a shifted version of the base pattern. The summation of all the patterns will give us a

uniform illumination pattern.
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Shifting Lines. Similar to shifting dots array, the base illumination patterns consist of horizontal

lines separated by k pixels along vertical axis and vertical lines separated along horizontal axis.

We then generate shifted version of these two base patterns. The summation of all the patterns is a

uniform illumination pattern.

We present simulation results with different number and types of illumination patterns in

Figure 5.2. The simulated test scene is taken from NYU depth dataset [74]. The depth of scene is

rescaled into the range from 40 to 60 and discretized into 50 depth planes to simulate the sensor

measurements. The camera setup and the baseline between camera and projector are fixed during

the simulation. The shifting lines and shifting dots outperform the uniform pattern in terms of depth

RMSE. Also, the depth RMSE drops as we increase the number of illumination patterns.

5.4.2 Effects of Baseline

The baseline between the lensless camera and the projector affects the depth resolvability

of the system. Shifting the lensless camera by a distance, the camera observes the scene from

a side view and transfers the depth difference of two points into angular difference. We present

simulation results in Figure 5.3 to demonstrate the effect of camera-projector baselines. The number

of illumination patterns for all the simulation are the same. We then fix the baseline along axial

direction to 0cm and the baseline along lateral direction as B = {0, 2.5, 5, 7.5}. As shown in

Figure 5.3, the depth RMSE is decreased as we increase the baseline between the camera and the

projector. When the baseline is zero, which means the camera and projector are overlapped, we

barely distinguish any depth.
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One important consideration for our method is that the target object should lie within

the intersection of the sensor FOV cone and the projector illumination cone. As we increase the

baseline, the intersection of the two cones is pushed farther from the sensor. Therefore, we should

determine the maximum baseline based on the object distance, sensor FOV, and projector cone. If

we increase the baseline beyond the maximum limit, then the reconstruction quality can decrease.

5.4.3 Comparison With an Ideal Pinhole Camera

In existing structured illumination methods [41, 42, 46], a lens-based camera is used to

capture the scene from the side view of the projector and depth map can be accurately reconstructed

by triangulation. We can model the lens-based camera as an ideal pinhole camera (ignoring photon

or sensor noise) for the sake of comparison with our method. We present simulation results com-

paring a pinhole-based camera with structured illumination in Figure 5.4. The baseline between the

projector and the camera is fixed at 5cm in all the simulations. Results in Figure 5.4 show that the

pinhole mask (that represents an ideal lens-based camera) provides better results compared to the

MLS mask. Compared to mask-based lensless camera where the sensor measurements are multi-

plexed, a lens-based system can offer better conditioning and depth reconstruction. Nevertheless, a

lens-based camera imposes additional burden in terms of device thickness, weight, and geometry.
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5.4.4 Comparison With Multishot Lensless System

In our proposed method, multiple frames of measurements are captured, which introduce

additional limitations such as long capture time and low frame rate. In Figure 5.5, we present

simulation results comparing our method with another multi-shot lensless imaging system called

SweepCam [48]. SweepCam captures multiple frames of sensor measurements while translating

the mask laterally. The translation of the mask offers a perspective shift in the measurements that

depends on the depth of objects in the scene. In our simulations, the SweepCam mask is translated

to 48 positions within a range of 2.88mm × 2.88mm. However, since the translating distance of

the mask is limited by the sensor area, the SweepCam method fails to resolve the depths when the

scene is farther than 30cm.

5.5 Experimental Results

To validate our proposed method, we built a prototype with a lensless camera and a Sony

MP-CL1 laser projector, shown in Figure 5.6. The lensless camera prototype consists of an image

sensor and a coded amplitude mask on top of it. We employ the outer-product of two MLS vectors

as our mask pattern. The mask has 511 × 511 square features. The pixel pitch is 60µm and the

sensor-to-mask distance is 2mm. We use a Sony IMX183 sensor and bin 2× 2 sensor pixels, which

yields the effective sensor pitch close to 4.8µm. We record 512×512 measurements from the sensor

and the effective sensor size is 2.46mm × 2.46mm. We place the test 3D objects within 40cm and

60cm depth range with respect to the camera. Finally, we reconstruct 128 × 128 × 10 voxels in
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the illuminated area. In our method, the lensless camera and the projector are separated by a 55mm

baseline. We first reconstruct the depth planes by solving the regularized least-squares problem in

(5.4). Then we create an all-in-focus image and depth map by selecting the pixel with the maximum

amplitude along each light ray.

In our experiments, the pixel grid of the scene, illumination patterns Pi , the system matri-

ces at each depth Φk must be correctly aligned; otherwise, we will get artifacts in the reconstruction.

To avoid any grid mismatch, we use the same projector to calibrate the system matrices and generate

the illumination patterns in our experiments.

5.5.1 Effect of Illumination Patterns

We present experimental results of 3D reconstruction with our proposed method for real

objects in Figures 5.7 and 5.9. We show the results of reconstructed depth planes, estimated all-

in-focus images and depth maps using uniform, shifting lines, and shifting dots patterns. For com-

parison, we captured the original image and depth map for each scene using Intel RealSense D415

depth camera, where the baseline between the lens-based camera and the projector is 55mm.

The results in Figure 5.7 compare 3D reconstruction with uniform and 48 shifting lines.

In the first two rows, the scene is a slanted box, containing continuous depth varying from 40cm

to 60cm. In the last two rows, the scene contains a red toy located at 40cm and a green toy lying

from 50cm to 60cm. The results in the first three columns in Figure 5.7 represent three depth planes

at 58cm, 62cm, and 66cm. The results show that the correct depth can be easily distinguished in
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images reconstructed with 48 shifting lines pattern, whereas depth planes reconstructed with the

uniform illumination pattern show incorrect depth and intensity. The estimated all-in-focus image

and depth maps for 48 shifting lines also appear significantly better than those from the uniform

illumination patterns.

The results in Figure 5.8 compare different number and types of illumination patterns.

We observe that the uniform illumination pattern barely recover any depth. The illumination pattern

with 16 and 49 shifting dots provide better results than uniform illumination. 16 shifting lines

provide slightly better results compared to shifting dots and 48 shifting lines provide significanlty

better image and depth map.

In summary, the ill-conditioned system matrices with uniform illumination pattern cause

various artifacts in 3D reconstruction. Capturing measurements from coded illumination improves

the conditioning of the overall system and the reconstructed images have better spatial and depth

resolution. Increasing the number of illumination patterns provides better reconstruction. More illu-

mination patterns would require longer acquisition time as well, which enforces a trade off between

the quality of reconstruction and data acquisition time.
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5.5.2 Effect of Baselines

We show experimental results for different baselines in Figure 5.9. We captured the same

scene with 5.5 and 10.5 baseline and performed 3D reconstruction with the respective measure-

ments. The results in Figure 5.9 show that 10.5cm baseline offers finer depth resolution (indicated

as narrow depth of field) compared to the reconstruction with 5.5cm baseline. The improvement

is small, and this effect was observed in the simulation results in Figure 5.3b that show the depth

RMSE of the system tapers off as we increase the baseline between the camera and the projector.

5.6 Conclusion and Discussion

We propose a framework for combining coded illumination with lensless imaging for

3D lensless imaging. We present simulation and real experiment results to demonstrate that our

proposed method can achieve significantly improved 3D reconstruction with multiple coded illu-

mination compared to uniform illumination. Such a mask-based lensless camera can be useful in

space-limited applications such as under-the-display or large-area sensing, where installing a lens-

based camera can be challenging. Our proposed setup can also be useful for distributed lensless

sensors (in different shapes and geometries), where we may want to image over a large area, large

field-of-view, but keep the devices flat, thin, and lens-free.

Limitaitons. Our current setup can add extra cost and complexity to the system design because of

the illumination source. The need to capture multiple shots can also increase the data acquisition

time and restrict the usage for static or slow-moving objects.
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original image uniform 16 lines 48 lines

original depth SSIM: 0.28 0.64 0.66

RMSE:8.28cm 4.53cm 2.96cm

(a) Reconstruction of synthetic 3D test scene for different numbers of illumination patterns with the same baseline. Top
row represents the estimated all-in-focus images. Bottom row represents the estimated depth maps.

(b) Averaged depth RMSE of all test scenes.

Figure 5.2: Reconstruction and averaged depth RMSE for different number and types of illumina-
tion patterns. The baseline is fixed at 5cm during simulation. We observe that performance improves
as we increase the number of illumination patterns.
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original image Baseline: 0cm 1cm 5cm

original depth SSIM: 0.91 0.63 0.66

RMSE:8.57cm 6.60cm 2.96cm

(a) Reconstruction of synthetic 3D test scene for different baselines with 48 shifting lines patterns. Top row represents
the estimated all-in-focus images. Bottom row represents the estimated depth maps.

(b) Averaged depth RMSE of all test scenes.

Figure 5.3: Reconstruction and averaged depth RMSE for different values of baseline distance. The
number of illumination patterns is fixed for all tests. We observe that larger baselines provide better
3D reconstruction.
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MLS mask pinhole MLS mask pinhole
16 lines 16 lines 48 lines 48 lines

SSIM: 0.64 0.66 0.66 0.69

RMSE: 4.53cm 3.52cm 2.96cm 1.72cm

(a) Reconstruction of synthetic 3D test scene. Top row represents the estimated all-in-focus images. Bottom row
represents the estimated depth maps.

(b) Averaged depth RMSE of all test scenes.

Figure 5.4: Comparison of the ideal pinhole-based and MLS mask-based camera models with
coded illumination patterns. The pinhole-based model performs better due to its better system
conditioning.
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16 coded 16 mask 48 coded 48 mask
illuminations shifts [48] illuminations shifts [48]

SSIM: 0.64 0.61 0.66 0.62

RMSE: 4.53cm 10.48cm 2.96cm 9.87cm

Figure 5.5: Comparison of the proposed coded illumination-based reconstruction with shifting
mask-based reconstruction in SweepCam [48]. The SweepCam fails to resolve objects that are far
from the camera.

Figure 5.6: Camera and projector setup used in our experiments. The projector is placed next to the
camera. The scene objects are placed ranging from 40cm to 60cm. We capture multiple frames of
sensor measurements under a sequence of coded illumination patterns from the projector to improve
the 3D image reconstruction quality.
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Figure 5.7: Reconstructed images at three selected depth planes, all-in-focus images, and depth
maps using uniform and 48 coded shifting lines patterns. The depth maps of the real scenes and the
estimated depth maps are all plotted in grayscale to show range from 40cm to 60cm. We observe
that uniform illumination-based system fails to recover correct depth planes whereas the coded
illumination-based system can recover depth planes and entire 3D image with high quality.
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Figure 5.8: Reconstruction results with original, uniform, 16 and 49 shifting dots patterns, 16 and
48 shifting lines patterns. We show estimated depth maps and all-in-focus images by selecting the
pixel with the maximum light magnitude along each ray. The depth maps of the real scenes and the
estimated depth maps are all plotted in grayscale to show range from 40cm to 60cm. We observe
that 48 shifting lines provides high-quality spatial and depth resolution.
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Figure 5.9: Reconstructed depth planes with 5.5cm and 10.5cm baselines within the adjustable
range of hardware. The 10.5cm baseline results have better depth resolvability. The patterns are
fixed with 48 shifting lines. We observe that larger baseline offers better depth resolvability.
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Chapter 6

Conclusions

As conclusion, we present the summary of the contribution of each chapter and the dis-

cussion of potential future directions. Lensless cameras of a flat optical encoder(coded mask) and

its camera sensor underneath. The imaging process of lensless cameras is formulated as linear

equations and the underlying images or 3D scenes are solved with linear algebra techniques. In this

dissertation, we explore the joint design of sensing approaches, such as coded mask and external

light source, along with reconstruction algorithm. With sophisticated designed sensing approaches

and reconstruction algorithm, the quality of the reconstruction can be improved significantly, the

forward imaging model and computation complexity can also be simplified.

In Chapter 2, we presented a new algorithm to jointly estimate the image and depth of a

scene using a single snapshot of a mask-based lensless camera. Existing methods for 3D lensless

imaging either estimate scene over a predefined 3D grid (which is computationally expensive) or

a small number of candidate depth planes (which provides a coarse depth map). We divide the

scene into an intensity map at uniform angles and a depth map on a continuous domain, which
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allows us to estimate a variety of scenes with different depth ranges using the same formulation. We

jointly estimate the image intensity and depth map by solving a nonconvex problem. We initialize

our estimates using a greedy method and add weighted regularization to enforce smoothness in

the depth estimate while preserving the sharp edges. We demonstrated with extensive simulations

and experiments with real data that our proposed method can recover image and depth with high

accuracy for a variety of scenes. We evaluated the performance of our methods under different noise

levels, sensor sizes, and numbers of sensor pixels and found the method to be robust. We presented

a comparison with existing methods for lensless 3D imaging and demonstrated both in simulation

and real experiments that our method provides significantly better results.

In Chapter 3, we present a new framework to recover 3D scenes using a lensless camera

with a programmable mask. Our proposed method can recover multiple depth planes in the 3D scene

using a computationally efficient algorithm that solves multiple small linear systems in parallel in

the frequency domain. To further improve the quality of 3D scene recovery, we optimized the

mask patterns and trained a U-Net that converts estimated image planes to all-in-focus image and

continuous-valued depth map. Our experimental results demonstrate that the proposed method can

reliably recover dense 3D scenes with a small number of sensor measurements and outperform

existing methods. The reconstruction quality of our proposed method, like other lensless imaging

systems, drops for scenes with specular reflections and large occlusions.

In Chapter 4, we propose a framework for combining coded illumination with lensless

imaging. We present extensive simulation and real experiment results to demonstrate that we can get

significantly improved reconstruction with multiple coded illumination patterns compared to orig-

inal uniform illumination. In space-limited applications such as under-the-display sensing, where
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the sensor-to-mask distance has to be small, our proposed method can offer significantly better re-

construction compared to uniform illumination. We also explore that any orthogonal illumination

patterns(such as simple shifting dots patterns) can be practical in improving the system conditioning

and imaging quality.

In Chapter 5, we propose a framework for combining coded illumination with lensless

imaging for 3D lensless imaging. We present simulation and real experiment results to demonstrate

that our proposed method can achieve significantly improved 3D reconstruction with multiple coded

illumination compared to uniform illumination. Such a mask-based lensless camera can be useful in

space-limited applications such as under-the-display or large-area sensing, where installing a lens-

based camera can be challenging. Our proposed setup can also be useful for distributed lensless

sensors (in different shapes and geometries), where we may want to image over a large area, large

field-of-view, but keep the devices flat, thin, and lens-free.

As for future directions, extending our method to dynamic scenes is a natural direction

for future work. We also need to further explore if some other illumination patters can offer bet-

ter 3D reconstruction for scenes with different depth profiles. Co-design of illumination patterns,

mask pattern/placement, and overall system arrangement can further improve the quality of 3D re-

construction. On the algorithmic side, the recovery algorithm can be improved by including more

sophisticated priors for the 3D scenes.

132



Data-driven methods such as deep learning techniques has been demonstrated effective

in many aspects of image processing and computer vision. However, due to its ill interpretability,

the outputs of trained networks for lensless imaging may vary drastically depending on the lensless

cameras and light conditions. One interesting future direction is explore whether we can fine-tune

only part of the network parameters to make it work with different lensless camera systems and light

conditions.
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