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Abstract. A character identity which relates irreducible character values of the hyperocta-
hedral group Bn to those of the symmetric group S2n was recently proved by Lübeck and
Prasad. Their proof is algebraic and involves Lie theory. We present a short combinatorial
proof of this identity, as well as a generalization to other wreath products.
Keywords. Character identity, wreath product, partition, Murnaghan–Nakayama rule, col-
ored permutations
Mathematics Subject Classifications. 20C30, 20E22, 05E10

1. Introduction

One of the most important and well-studied finite groups is the classical Weyl group of type Bn,
also known as the hyperoctahedral group, the group of symmetries of the hypercube, or the group
of signed permutations. The character theory of the hyperoctahedral group was developed by
Specht more than 80 years ago, using its presentation as a wreath product. While the irreducible
characters of the symmetric group Sn are indexed by the integer partitions of n, those of Bn are
indexed by pairs of partitions of total size n, or equivalently by partitions of 2n with an empty
2-core (to be defined below). It is well known that the degree of an irreducible Bn-character is
equal, up to sign, to the value, at the longest element of S2n, of the irreducible S2n-character
indexed by the same partition of 2n; see, e.g., [Lus83, p. 110].

This phenomenon was recently generalized by Lübeck and Prasad [LP21], presenting the
following character identity, which relates the irreducible characters of Bn to those of S2n.

Recall the notation λ ` n for an integer partition λ of n. Denote by χλ (respectively, ψλ) the
irreducible character of Sn (respectively, Bn) indexed by λ ` n (respectively, by λ ` 2n with an
empty 2-core). For a partition µ ` n, denote by χλµ (respectively, ψλ(µ,∅)) the evaluation of this
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character at a conjugacy class of type µ (respectively, (µ,∅)). Denote by Par2(2n) the set of all
partitions of 2n with an empty 2-core.

Theorem 1.1 ([LP21, Theorem 6.1]). There exists a function ε : Par2(2n) → {1,−1} such
that, for every λ ∈ Par2(2n) and µ ` n,

ψλ(µ,∅) = ε(λ)χλ2µ,

where 2(µ1, . . . , µt) := (2µ1, . . . , 2µt).

The proof in [LP21] is algebraic in nature, and involves Lie theory. We present here a short
combinatorial proof, applying the Murnaghan–Nakayama rule. We state it, more generally, for
the wreath product G o Sn where G is any finite abelian group; see Theorems 3.1 and 4.2 below.

The rest of the paper is organized as follows. Relevant background and notation are given in
Section 2. The main result (Theorem 3.1) is stated and proved in Section 3. This result is further
generalized in Section 4 (see Theorem 4.2). Section 5 contains some alternative descriptions of
the r-sign function.

2. The Murnaghan–Nakayama rule for wreath products

In this section we recall some useful facts from combinatorial character theory, regarding the
Murnaghan–Nakayama rule for the symmetric group Sn and for the wreath products Zr o Sn.

The Murnaghan–Nakayama rule is an explicit formula for computing values of irreducible
characters of the symmetric group; see, e.g., [Sag01, §4.10]. A generalization to wreath prod-
ucts G o Sn, where G is any finite group, was described by Stembridge [Ste89, Theorem 4.3].
We now give a very short exposition of the Murnaghan–Nakayama rule for Zr o Sn, following
[APR10, Proposition 2.2]. We use the term ribbon instead of the older, equivalent, terms border
strip, skew hook, and rim hook.

2.1. General version

A composition of a non-negative integer n is a sequence λ = (`1, . . . , `k) of positive inte-
gers whose sum is n; we say that n is the size of λ and k is its length. It is a partition of n
if `1 > . . . > `k; in that case we write λ ` n. The only composition (or partition) of 0 is the
empty one, with k = 0. The diagram corresponding to λ, according to the English convention,
is an array of cells in the plane, arranged in left-justified rows of lengths `1, . . . , `k, from top to
bottom.

An r-partite partition of n is an r-tuple λ = (λ0, . . . , λr−1) such that each λi is a partition
of a non-negative integer ni and n0 + . . .+nr−1 = n. (We shall use boldface to denote r-partite
concepts.) An r-partite ribbon tableau of shape λ is a sequence

T : ∅ = λ(0) ⊆ . . . ⊆ λ(t) = λ

of r-partite partitions (diagrams) such that each consecutive difference bi := λ(i) \ λ(i−1) for
1 6 i 6 t, as an r-tuple of skew shapes, has r−1 empty parts and one nonempty part which is a
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ribbon, namely a connected skew shape “of width 1”; explicitly, a ribbon is a sequence of cells
in which consecutive cells share an edge, and the steps are either due East or due North. For
each 1 6 i 6 t, let fT(i) ∈ {0, . . . , r − 1} be the index of the nonempty part in the r-tuple bi,
let `T(i) be the length (number of cells) of this part, and let htT(i) be its height (one less than
its number of rows). An r-partite ribbon tableau can also be described by an r-tuple of tableaux,
in which the cells of each ribbon bi are marked i (1 6 i 6 t).

Example 2.1. Here is a 3-partite ribbon tableau T of shape λ = ((4, 3), (2), (1, 1)), with t = 4.
The ribbon indices (omitting the subscript T) are f(1) = f(3) = 0, f(4) = 1, f(2) = 2, with
corresponding lengths `(1) = 3, `(3) = 4, `(4) = `(2) = 2, and heights ht(1) = ht(3) =
ht(2) = 1, ht(4) = 0: (

1 1 3 3

1 3 3
, 4 4 ,

2

2

)
.

The wreath product Zr oSn is the semidirect product of Znr , the n-th direct power of the cyclic
group Zr, with the symmetric group Sn, obtained by the natural Sn-action on the n copies of Zr,
namely

Zr o Sn := {(σ, (z1, . . . , zn)) : σ ∈ Sn, zi ∈ Zr (∀i)}

with the group operation

(σ, (z1, . . . , zn)) · (τ, (y1, . . . , yn)) := (στ, (zτ−1(1) + y1, . . . , zτ−1(n) + yn)).

The group Zr o Sn can also be viewed as a group of r-colored permutations, consisting of all
the permutations of the set of rn colored digits {(i, z) : 1 6 i 6 n, z ∈ Zr} which are
Zr-equivariant, in the sense that if π(i, z) = (j, y) then π(i, z + x) = (j, y + x) for all x ∈ Zr.
The cycle decomposition of an element (σ, (z1, . . . , zn)) ∈ Zr o Sn is the decomposition of its
underlying permutation σ ∈ Sn as a product of disjoint cycles, with each cycle c = (i1, . . . , ik)
assigned a corresponding color z(c) := zi1 + . . .+ zik ∈ Zr. The corresponding cycle structure
is the r-partite partition λ = (λ0, . . . , λr−1), where each partition λj (0 6 j 6 r−1) records the
cycle lengths of color j. The conjugacy classes of Zr o Sn, as well as its irreducible characters,
are indexed by the r-partite partitions of n.

Theorem 2.2 (Murnaghan–Nakayama rule forZroSn). Fix an arbitrary ordering c =(c1, . . . , ct)
of the disjoint cycles of an element π ∈ Zr o Sn. Let `(ci) be the length of the cycle ci, and
let z(ci) ∈ Zr be its color. Then, for any r-partite partition λ of n,

ψλ(π) =
∑

T∈RTc(λ)

t∏
i=1

(−1)htT(i)ωfT(i)·z(ci),

whereRTc(λ) is the set of all r-partite ribbon tableauxT of shape λ such that `T(i)=`(ci) (∀i);
fT(i) ∈ Zr and htT(i) are, respectively, the i-th index and height ofT, as above; and ω :=e2πi/r.
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For r = 1 this reduces to the usual Murnaghan–Nakayama rule for Sn:

χλ(σ) =
∑

T∈RTc(λ)

t∏
i=1

(−1)htT (i),

where c = (c1, . . . , ct) is an arbitrary ordering of the cycles of a permutation σ ∈ Sn, λ is a par-
tition of n, andRTc(λ) is the set of all ribbon tableaux T of shape λ such that `T (i) = `(ci) (∀i).

2.2. A restatement

We want to restate Theorem 2.2, in the special case where z(ci) = 0 (∀i), with the following
notational changes:

1. Use a 0/1 encoding of partitions.

2. Use a recursive interpretation of (r-partite) ribbon tableaux.

3. Replace each r-partite partition by a single partition.

Let λ be a partition, and let D = [λ] be the corresponding diagram, drawn according to
the English convention, so that row lengths weakly decrease from top to bottom. The boundary
sequence of λ is a finite 0/1 sequence ∂(λ) = (δ1, . . . , δt), constructed as follows: start at
the southwestern corner of the diagram D, and proceed along the edges of the southeastern
boundary up to the northeastern corner; encode each horizontal (east-bound) step by 1, and each
vertical (north-bound) step by 0. Thus ∂(λ) starts with a 1 and ends with a 0 (unless λ is the
empty partition, for which ∂(λ) is the empty sequence). Each 1 corresponds to a column of D
(columns ordered from left to right), and each 0 corresponds to a row of D (rows ordered from
bottom to top).

Observation 2.3. For [µ] ⊂ [λ], the skew diagram [λ/µ] = [λ]\ [µ] is a ribbon of length k if and
only if ∂(µ) is obtained from ∂(λ) by exchanging two entries δj = 1 and δj+k = 0 for some j
(and deleting leading 0-s and trailing 1-s from the resulting sequence).

In the situation described in Observation 2.3 we say that µ is obtained from λ by peeling a
ribbon of length k. Thus a ribbon tableau of shape λ corresponds to a sequence of peelings of
ribbons from λ, and similarly for r-partite ribbon tableaux.

Example 2.4. The 3-partite ribbon tableau in Example 2.1 corresponds to the following se-
quence of ribbon peelings, where cells are labeled for clarity:(

1 1 3 3

1 3 3
, 4 4 ,

2

2

)
−→

(
1 1 3 3

1 3 3
, ∅ ,

2

2

)
−→

(
1 1

1
, ∅ ,

2

2

)
−→

(
1 1

1
, ∅ , ∅

)
−→ ( ∅ , ∅ , ∅ ) .
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It also corresponds to the following sequence of 3-tuples of boundary sequences, where the
exchanged entries are marked:

(111010, 1̌10̌, 100) → (11̌1010̌,∅, 100) → (1010,∅, 1̌00̌) → (1̌010̌,∅,∅) → (∅,∅,∅).

So far we have described two of the three changes in interpretation that we intend to intro-
duce; let us now describe the third.

Definition 2.5. Let δ = (δ1, . . . , δt) be a finite 0/1 sequence containing both 0-s and 1-s. Define

mi := |{1 6 j 6 i : δj = 1}| − |{i+ 1 6 j 6 t : δj = 0}| (1 6 i 6 t),

namely the number of 1-s weakly preceding δi minus the number of 0-s strictly succeeding δi.

Observation 2.6.
mi+1 −mi = 1 (1 6 i 6 t− 1)

and m1 6 0 < mt. Therefore there is a unique index 1 6 i 6 t − 1 satisfying mi = 0.
The position between indices i and i+ 1 is called the anchor of the sequence; the number of 1-s
preceding it is equal to the number of 0-s succeeding it. This position is invariant under addition
of leading 0-s and trailing 1-s to the sequence.

Example 2.7. Here is a 0/1 sequence, with its anchor denoted by the separator “|”:

i : 1 2 | 3 4 5
δi : 1 0 | 1 1 0
mi : −1 0 | 1 2 3

and here is the same sequence with some leading 0-s and trailing 1-s added:

i : 1 2 3 4 | 5 6 7 8
δi : 0 0 1 0 | 1 1 0 1
mi : −3 −2 −1 0 | 1 2 3 4

Definition 2.8. Let Par be the set of all partitions of integers, including the empty partition,
and let r be a positive integer. Define a function ϕr : Parr → Par, on r-tuples of partitions,
as follows: for λ(0), . . . , λ(r−1) ∈ Par, the partition λ = ϕr(λ

(0), . . . , λ(r−1)) is obtained by the
following procedure.

1. Consider the r boundary sequences ∂(λ(0)), . . . , ∂(λ(r−1)).

2. Add to these sequences leading 0-s and trailing 1-s such that the resulting sequences
s(0), . . . , s(r−1) have the same length t and the same position of the anchor.

3. Merge the sequences s(0), . . . , s(r−1) into a single sequence s of length rt, in an interlacing
fashion:

s
(0)
1 , s

(1)
1 , . . . , s

(r−1)
1 , s

(0)
2 , s

(1)
2 , . . . , s

(r−1)
2 , . . . , s

(0)
t , s

(1)
t , . . . , s

(r−1)
t .

4. Let λ be the unique partition such that ∂(λ) is equal to s, with leading 0-s and trailing 1-s
removed.
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Remark 2.9. The function ϕr is well-defined, namely independent of the precise lengthening of
the sequences is step (2). It is injective, but (for r > 1) not surjective. Its image, denoted Parr,
consists of all partitions with an empty r-core, namely partitions which can be reduced to the
empty partition by some sequence of peelings of ribbons of length r. For each λ ∈ Parr, the
unique preimage ϕ−1r (λ) = (λ(0), . . . , λ(r−1)) is also called the r-quotient of λ. Note that, by
Observation 2.3, peeling a ribbon of length r from λ is equivalent to peeling a ribbon of length 1,
namely a single cell, from one of λ(0), . . . , λ(r−1). It follows that |λ| = r · (|λ(0)|+ . . .+ |λ(r−1)|)
for λ ∈ Parr. For more details see, e.g., [AR15, §9]. Note that the convention there differs
slightly from that of [LP21], which follows the abacus interpretation of [JK84, Section 2.7]; the
difference amounts to a cyclic shift of the r-quotient.

Example 2.10. For r = 3 and the shapes in Example 2.4,

λ(0) = (4, 3) 7→ ∂(λ(0)) = 11|1010 7→ s(0) = 11|1010
λ(1) = (2) 7→ ∂(λ(1)) = 1|10 7→ s(1) = 01|1011
λ(2) = (1, 1) 7→ ∂(λ(2)) = 10|0 7→ s(2) = 10|0111

and therefore λ = ϕ3(λ
(0), λ(1), λ(2)) is obtained by

s = 101110|110001111011 7→ ∂(λ) = 101110|1100011110 7→ λ = (10, 6, 6, 6, 4, 1).

Indeed, |λ(0)|+ |λ(1)|+ |λ(2)| = 7 + 2 + 2 = 11 and |λ| = 33 = 3 · 11.

We now restate Theorem 2.2 in the special case where the colors of all cycles are zero. Note
that, by Remark 2.9, the irreducible characters of Zr o Sn can be indexed by partitions λ of rn
with an empty r-core, instead of r-partite partitions of n.

Theorem 2.11. Let λ be a partition of rn with an empty r-core, and let µ = (µ1, . . . , µt) be a
composition of n. The character ψλ(µ,∅,...,∅) is equal to the sum of values obtained by all possible
applications of the following “peeling algorithm”:

Initialization: µ := (µ1, . . . , µt), δ := ∂(λ), and ε := 1.

Main loop:

1. If t = 0 then end the loop and output ε.

2. Choose an index q such that δq = 1 and δq+rµt = 0. If there is no such index, set
ε := 0 and end the loop. [This is the case of an unsuccessful peeling.]

3. Redefine δ by switching the two entries, i.e., letting δq := 0 and δq+rµt := 1.

4. Multiply ε by−1 if the number of zeros in δ between the switched entries, in positions
congruent to q (mod r) only, is odd (and by 1 otherwise).

5. Redefine µ := (µ1, . . . , µt−1), t := t− 1.

6. Go to step (1).
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Remark 2.12. There is a choice in step (2) of the algorithm. Each successful round of the main
loop (ending with t = 0) is called a µ-peeling, and contributes a summand ε = ±1 to ψλ(µ,∅,...,∅).

Proof. Let π ∈ Zr o Sn belong to the conjugacy class corresponding to (µ,∅, . . . ,∅). Each
ordering (c1, . . . , ct) of the cycles of π with lengths `(ci) = µi (∀i) has, by assumption, col-
ors z(ci) = 0 (∀i). Therefore the formula in Theorem 2.2 reduces to

ψλ(π) =
∑

T∈RTc(λ)

t∏
i=1

(−1)htT(i).

Each r-partite ribbon tableau T ∈ RTc(λ) corresponds to a sequence of ribbon peelings of
the r-partite partition λ = (λ(0), . . . , λ(r−1)). Peeling a ribbon of length µt from λ(j) is equiv-
alent to switching two entries δk = 1 and δk+µt = 0 in ∂(λ(j)). The relevant height htT(t)
is the number of zeros in ∂(λ(j)) strictly between δk and δk+µt . This can be restated in terms
of λ = ϕr(λ

(0), . . . , λ(r−1)): by Definition 2.8, peeling the ribbon corresponds to switching two
entries δq = 1 and δq+rµt = 0 in ∂(λ), for a suitable index q. The height htT(t) is the number of
zeros in ∂(λ) strictly between δq and δq+µt , but only in positions congruent to q (mod r). This
explains step (4) of the algorithm.

Example 2.13. The peeling in Example 2.4, viewed as a peeling of λ = ϕ3(λ
(0), λ(1), λ(2)), as

in Example 2.10, is

10111̌0|11000̌11110 → 1011̌00|1100111110̌ → 101̌000|110̌0 → 1̌00000|1110̌ → | = ∅

The corresponding numbers of zeros, in intermediate positions with the correct remainder mod 3,
are 0, 1, 1, and 1. The contribution to the character value is therefore (−1)0+1+1+1 = −1.

3. Main Theorem

Noting that Bn
∼= Z2 o Sn, we state the following generalization of Theorem 1.1.

Theorem 3.1. For every positive integer r there exists a function signr : Parr → {1,−1}
such that, for every r-partite partition λ = (λ(0), . . . , λ(r−1)) of a positive integer n and every
composition µ = (µ1, . . . , µt) of n:

ψ
(λ(0),...,λ(r−1))
(µ,∅,...,∅) = signr(λ) · χλrµ,

whereψ(λ(0),...,λ(r−1)) is the irreducibleZroSn-character indexed by (λ(0), . . . , λ(r−1)), χλ is the ir-
reducible Srn-character indexed by λ :=ϕr(λ

(0), . . . , λ(r−1)) ∈ Parr, and rµ :=(rµ1, . . . , rµt).

Let us start with a sequence of observations and definitions, leading to an explicit expression
for signr(λ) in Definition 3.7 and Lemma 3.9. Then Proposition 3.10 will imply Theorem 3.1.

As remarked before Observation 2.3 above, if λ is any partition then the zeros in the boundary
sequence ∂(λ) correspond to the parts of λ, in reverse order; equivalently, to the rows of diagram
of λ, ordered from bottom to top. In the sequel it will be convenient to fix a positive integer k and
consider partitions with at most k parts, namely λ = (`1, . . . , `k) where `1 > . . . > `k > 0. We
thus require the boundary sequence ∂(λ) to contain exactly k zeros, by allowing leading zeros.
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Observation 3.2. If λ = (`1, . . . , `k) where `1 > . . . > `k > 0, then the position in ∂(λ) of the
zero corresponding to `i (1 6 i 6 k) is equal to `i + k− i+ 1; there are `i ones and k− i zeros
preceding it.

Definition 3.3. Let λ = (`1, . . . , `k) with `1 > . . . > `k > 0. For each 1 6 i 6 k,
let 0 6 ai 6 r − 1 be the remainder obtained upon dividing `i + k − i by r. The (length k)
row-color sequence of λ is a(k)(λ) := (a1, . . . , ak).

Remark 3.4. The numbers `i + k − i are called β-numbers in [JK84, LP21].
Let Parr(rn) denote the set of all partitions of rn with an empty r-core.

Lemma 3.5. If λ = (`1, . . . , `k) has an empty r-core and the empty partition ∅ is represented
as a sequence of k zeros, then the sequence a(k)(λ) is a permutation of the sequence a(k)(∅).

Proof. Assume that λ = (`1, . . . , `k) ∈ Parr(rn). By assumption, there is a peeling by ribbons
of length r which reduces λ to the empty partition. It suffices to show that the sequence a(k)(λ)
is a permutation of the sequence a(k)(λ′), for any partition λ′ ∈ Parr(r(n− 1)) obtained from λ
by peeling one ribbon of length r.

Indeed, assume that ∂(λ′) is obtained from ∂(λ) by switching the entries δq = 1 and δq+r = 0.
Let i1, . . . , i2 (1 6 i1 6 i2 6 k) be the indices of the rows in the diagram of λ corresponding to
the zeros in the interval δq, . . . , δq+r. Note that the order is reversed; in particular, i1 corresponds
to δq+r = 0, while i2 corresponds to the first zero after δq = 1. The switch moves a zero in ∂(λ)
from position q + r to position q, without moving the other zeros. By Observation 3.2 and
Definition 3.3, the row-color sequence (a1, . . . , ak) of λ and the row-color sequence (a′1, . . . , a

′
k)

of λ′ are related by

a′i =


ai, if i < i1 or i > i2;

ai+1, if i1 6 i 6 i2 − 1;

ai1 , if i = i2.

The equality a′i2 = ai1 holds since q− 1 and q+ r− 1 have the same remainder (mod r). Thus
the effect of this peeling step on the row-color sequence is a cyclic shift of the entries ai1 , . . . , ai2 .
In particular, a(k)(λ) is a permutation of a(k)(λ′).

Example 3.6. Let r = 3, n = 6, and λ = (5, 5, 4, 3, 1) ∈ Par3(3 · 6). If k = 5 then
(`1 + 4, . . . , `5 + 0) = (9, 8, 6, 4, 1) and a(5)(λ) = (0, 2, 0, 1, 1). The corresponding repre-
sentation of the empty partition ∅ = (0, 0, 0, 0, 0) has (`1 + 4, . . . , `5 + 0) = (4, 3, 2, 1, 0) and
a(5)(∅) = (1, 0, 2, 1, 0). Clearly a(5)(λ) is a permutation of a(5)(∅).

Definition 3.7. For k, λ and a(k)(λ) = (a1, . . . , ak) as in Definition 3.3, the r-inversion set of λ
is

Inv(k)
r (λ) := {(i, j) : i < j, ai > aj}

and its r-inversion number is
inv(k)

r (λ) := |Inv(k)
r (λ)|.

The r-sign of λ is
sign(k)

r (λ) := (−1)inv
(k)
r (λ)−inv(k)r (∅),

where ∅ is the empty partition, represented as a sequence of k zeros.
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Observation 3.8. sign(k)
r (λ) = −1 if and only if the length of some (equivalently, each) sequence

of transpositions transforming a(k)(λ) into a(k)(∅) is odd, where only transpositions switching
two distinct values in the sequence are counted.

Lemma 3.9. The number sign(k)
r (λ) is independent of k, as long as k is larger or equal to the

number of (positive) parts of λ. We shall therefore denote it simply by signr(λ).

Proof. If a(k)(λ) = (a1, . . . , ak) then a(k+1)(λ) = (a1 + 1, . . . , ak + 1, 0), where addition is
modulo r. A similar connection holds between a(k)(∅) and a(k+1)(∅), and the claim thus follows
from Observation 3.8.

As noted in the proof of Theorem 2.11, if λ = ϕr(λ
(0), . . . , λ(r−1)) ∈ Parr(rn) and m is a

positive integer, then peeling a ribbon of length rm from λ is equivalent to peeling a ribbon of
length m from one of λ(0), . . . , λ(r−1). It follows that, for every composition µ = (µ1, . . . , µt)
of n, there is a natural bijection between rµ-peelings of λ and µ-peelings of its r-quotient
(λ(0), . . . , λ(r−1)). To prove Theorem 3.1, it thus suffices to show that the signs of matching
peelings under this bijection differ by a ±1 factor which depends only on r and λ.

Proposition 3.10. For any partition λ ∈ Parr(rn) and any composition µ of n, the sign of
any rµ-peeling of λ and the sign of the corresponding µ-peeling of its r-quotient differ by the
multiplicative factor signr(λ).

Proof. By induction on n. Of course, the claim trivially holds for n = 0.
Assume that n > 0. If there is no rµ-peeling of λ then there is also no µ-peeling of its

r-quotient, and the claim holds vacuously. We can therefore assume that there exists an rµ-
peeling of λ, and consider one of them. We further consider only the last entry rµt of rµ, which
corresponds to a ribbon of length rµt. Let λ′ ∈ Parr(r(n − µt)) be the partition obtained by
peeling it from λ.

By assumption, there exists an index q such that ∂(λ′) is obtained from ∂(λ) by switching
the entries δq = 1 and δq+rµt = 0. We want to show that the sign contribution of this step to
the rµ-peeling of λ and the sign contribution of this step to the corresponding µ-peeling of its
r-quotient differ by the multiplicative factor

signr(λ)/signr(λ
′).

Indeed, by Theorem 2.11(4), the effect of the switch on the sign of the µ-peeling is multiplication
by (−1)n1 , where n1 is the number of zeros strictly between the switched letters, counting only
positions which are congruent to q (mod r). On the other hand, by the same theorem with r
and n replaced by 1 and rn, respectively, the effect of this switch on the sign of the rµ-peeling
is multiplication by (−1)n2 , where n2 is the total number of zeros strictly between the switched
letters. Hence, the effect on the ratio of these two signs is multiplication by (−1)n3 , where
n3 = n2 − n1 is the number of zeros between the switched letters, in positions which are not
congruent to q (mod r).

Now let i1, . . . , i2 be the indices of the rows corresponding to the zeros between positions q
and q + rµt in ∂(λ). Note that the order is reversed; in particular, i1 corresponds to δq+rµt = 0,
while i2 corresponds to the first zero after δq = 1. Then

n3 = |{i : i1 < i 6 i2, ai 6= ai1}|.
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By the same argument as in the proof of Lemma 3.5, the switch (or peeling step) amounts to
a cyclic shift of the entries ai1 , . . . , ai2 in the row-color sequence. Thus, by Definition 3.7,
inv(k)

r (λ)− inv(k)
r (λ′) has the same parity as n3 above. Thus

(−1)n3 = (−1)inv
(k)
r (λ)−inv(k)r (λ′) = signr(λ)/signr(λ

′),

as required. This completes the induction step.

As remarked above, Proposition 3.10 implies Theorem 3.1.

4. Wreath product with a finite abelian group

As noted by an anonymous referee, the results stated above actually hold for the wreath product
of Sn with an arbitrary finite abelian group G, not only a finite cyclic group. In order to justify
this claim, let us first state Stembridge’s extension of the Murnaghan–Nakayama formula in full
generality.

Let G be a finite group, CG its set of conjugacy classes, and IG its set of irreducible char-
acters. Denote r := |CG| = |IG|. The conjugacy classes of G o Sn are indexed by func-
tions κ : CG → Par such that the sum of the sizes of all partitions is n; and the irreducible
characters of G o Sn are indexed by functions χ : IG → Par with a similar restriction. Now
fix a bijection from {0, . . . , r − 1} to IG, so that IG = {θ0, . . . , θr−1}. Then the irreducible
characters ψλ of G o Sn are indexed by r-partite partitions λ of n, as defined in Section 2.

View the wreath productG oSn as the group of n×n pseudo permutation matrices in which
the nonzero entries are chosen from G, and let π ∈ G o Sn. If c = (i1, . . . , ik) is a cycle in the
permutation in Sn underlying π, and g1, . . . , gk ∈ G are the nonzero entries in rows i1, . . . , ik
of the matrix π, then the product gk · · · g1 ∈ G is well-defined up to a cyclic shift of the indices,
thus up to conjugacy in G. Let z(c) ∈ CG be the corresponding conjugacy class.

Recall, from Section 2, the notion of an r-partite ribbon tableaux T and the corresponding
functions `T, htT and fT. Stembridge’s extension of the Murnaghan–Nakayama formula can be
stated as follows.

Theorem 4.1 ([Ste89, Theorem 4.3]). LetG be a finite group with |CG| = |IG| = r, specifically
IG = {θ0, . . . , θr−1}, and let π ∈ GoSn. Fix an arbitrary ordering c = (c1, . . . , ct) of the disjoint
cycles of (the permutation underlying) π. Let `(ci) be the length of the cycle ci, and let z(ci) ∈ CG
be the corresponding conjugacy class, as above. Then, for any r-partite partition λ of n,

ψλ(π) =
∑

T∈RTc(λ)

t∏
i=1

(−1)htT(i)θfT(i)(z(ci)),

whereRTc(λ) is the set of all r-partite ribbon tableauT of shape λ such that `T(i) = `(ci) (∀i);
htT(i) > 0 is the i-th height of T; and fT(i) ∈ {0, . . . , r − 1} is the i-th index of T, as in
Theorem 2.2.
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Now assume, further, that G is commutative, so that r = |CG| = |IG| = |G| and
all irreducible characters are one-dimensional. Labeling the elements of the group
G = {idG = g0, g1, . . . , gr−1}, an element of G o Sn with all cycles ci satisfying z(ci) = {idG}
is of type (µ,∅, . . . ,∅) for some partition µ of n, and then θj(z(ci)) = 1 for all i and j. We
obtain the following extension of Theorem 3.1.

Theorem 4.2. For every positive integer r there exists a function signr : Parr → {1,−1} such
that for every finite abelian group G of order r, every r-partite partition λ = (λ(0), . . . , λ(r−1))
of a positive integer n, and every composition µ = (µ1, . . . , µt) of n:

ψ
(λ(0),...,λ(r−1))
(µ,∅,...,∅) = signr(λ) · χλrµ,

whereψ(λ(0),...,λ(r−1)) is the irreducibleGoSn-character indexed by (λ(0), . . . , λ(r−1)), χλ is the ir-
reducible Srn-character indexed by λ :=ϕr(λ

(0), . . . , λ(r−1)) ∈ Parr, and rµ :=(rµ1, . . . , rµt).

Proof. The proof is exactly the same as for the special case G = Zr, since the combinatorics
of peelings described in Subsection 2.2 (leading to Theorem 2.11) and analyzed in Section 3
(leading to Theorem 3.1) is the same.

Remark 4.3. The function signr depends on the size r = |G| only, and not on the structure ofG.
An alternative algebraic proof of Theorem 4.2 was suggested by an anonymous referee.

5. Alternative descriptions

We conclude with some alternative descriptions of signr(λ).

Definition 5.1. For a partition λ with an empty r-core, let k be any integer larger or equal to
the number of parts in λ. Define dr(λ,∅) to be the minimal number of adjacent transpositions
needed to transform the word a(k)(λ) ∈ [0, r− 1]k into the word a(k)(∅) ∈ [0, r− 1]k, where ∅
is the empty partition represented by a sequence of k zeros. Note that dr(λ,∅) is independent
of the choice of k.

Example 5.2. For r = 3, k = 5 and λ = (5, 5, 4, 3, 1) as in Example 3.6, a(k)(λ) = (0, 2, 0, 1, 1)
and a(k)(∅) = (1, 0, 2, 1, 0), so that dr(λ,∅) = 4.

Observation 3.8 implies

Observation 5.3. The signr function in Theorem 3.1 satisfies

signr(λ) = (−1)dr(λ,∅).

For r = 2 there is also a surprisingly simple formula, observed in [LP21].

Corollary 5.4 ([LP21, Proposition 5.4]). For every partition λ ` 2n with an empty 2-core

sign2(λ) = (−1)odd(λ)/2,

where odd(λ) is the number of odd parts in λ.
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Proof. By induction on n. If n = 0, then sign2(∅) = 1, odd(∅) = 0 and equality holds. For
every λ ∈ Par2(2n) there exists a ribbon ν of size 2 (“domino”) such that λ \ ν ∈ Par2(2n− 2).
If ν is horizontal then odd(λ) = odd(λ \ ν) and a(λ \ ν) = a(λ), thus by Observation 5.3,
sign2(λ) = sign2(λ\ν). If ν is vertical then odd(λ) = odd(λ\ν)±2 and a(λ) is obtained from
a(λ\ν) by switching two adjacent entries, hence by Observation 5.3, sign2(λ) = −sign2(λ\ν).
The induction hypothesis completes the proof in both cases.

Question 5.5. Is there a similar formula for other values of r?
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