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ABSTRACT OF THE DISSERTATION 

 
 

Multiple Strategies for a Selective Detection Task in Mice: Stimulus Attenuation, 
Prestimulus State, Object-Based and Temporal Transitions with Intermediates Across 

Learning 
 
 
 

by 
 
 

Krista C. Marrero 
 

Doctor of Philosophy, Graduate Program in Neuroscience 
University of California, Riverside, March 2023 

Dr. Edward Zagha, Chairperson 
 
 
 
 

Strategies for optimized performance in any task do not spontaneously occur. They 

develop over time. Across learning, our first strategy may be a successful strategy. On the 

other hand, we may require multiple strategies to succeed in a task. In this body of work, 

we examine spatial and temporal behavioral and neuronal strategies relevant to reward 

driven decision making using a whisker-based selective detection paradigm where mice 

learn to selectively respond to a preferred (target) stimulus and selectively ignore a 

nonpreferred (distractor) stimulus. Through widefield calcium imaging of task-relevant 

sensory and motor cortices, we first identified comparable target and distractor stimulus 

encoding in sensory regions, followed by attenuation of distractor and propagation of 

target encoding in motor regions.  We interpret this localized attenuation filter as a 



 ix 

functional, potentially reactive, neural strategy for the selection process after stimulus 

presentation and before a planned motor response. Then we found that a global cortical 

state of low activity and low variability in a prestimulus epoch predicted response 

outcomes. We interpret the global prestimulus profile as a preemptive, potentially 

proactive, neural strategy before stimulus presentation. Finally, longitudinal investigation 

across learning behavior revealed that mice used both object-based and temporal 

strategies to transition from naïve to expert performance in the selective detection task. 

Furthermore, we found that the transition strategies differed between male and female 

mice such that male mice overlapped their response and temporal strategies before 

improving their object-based performance and that female mice improved their 

performance through sequential temporal and object-based intermediate strategies.  We 

find evidence that supports development of multiple strategies across learning, 

transitioning mice from suboptimal to optimal performance in the selective detection 

task. In conjunction with the neural findings of expert behaving mice, we can further our 

understanding of how behavioral strategies form across learning to maximize successful 

outcomes.  
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Chapter 1: Introduction and Background 

Age-old debates of nature versus nurture occur as far back as the Greek philosophers: 

Socrates, Plato, and Aristotle. Latter philosophical dichotomies feature the empiricists 

and the transcendentalists; Immanuel Kant suggested that experiences are not learned 

but inherent, derived from within a preexisting framework, while John Locke suggested 

that experience-dependent sensory inputs are acquired and accumulated onto an initially 

blank slate (Bird, 2023; Rogers, 2023). Thus, the discussion on how the brain processes 

space and time based on sensory inputs continues. Current investigations, of course, 

consider both nurture and nature as key aspects in an individual’s spatiotemporal 

perception; though they coexist, the spatial percept has been comprehensively studied 

compared with the understudied temporal percept. Even so, spatial versus temporal 

percepts are often distinctly investigated (Dent 2012, Richter 2020). In consideration of 

mental health disorders such as autism spectrum (ASD), attention deficit (ADHD), 

learning, and schizophrenic disorders, where atypical behavior both influences and is 

influenced by complex and dynamic spatiotemporal environments, behavior paradigms 

can be designed to investigate collective strategic measures instead of isolated cognitive 

variables (Krakauer et al., 2017; Voelkl et al., 2020; Wurbel et al., 2020). 

Neuroscience provides further insight into how the brain processes space and 

time; throughout this text, spatial and temporal features will be used analogously. Spatial 

attention is not investigated here. Neither is temporal attention investigated. Instead, we 

attempt to address the necessary features, including learning aspects, of spatial (object-
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based) and temporal (waiting, timing, withholding through a duration) features required 

for one to selectively detect a preferred stimulus. By investigating and interpreting spatial 

and temporal features in tandem, we suitably address behavioral and neural components 

observed in the process of selective detection: selectively ignoring nonpreferred 

(unrewarded, distractor) stimuli and selectively responding to preferred (rewarded, 

target) stimuli. Such processes can be further explored regarding various paradigms, 

animal models, and mental health disorders. The ongoing discussion of whether 

spatiotemporal processes are natural and inherently preexistent or whether nurtured 

experience is required for the learning of spatiotemporal paradigms is yet to be satisfied. 

Hence, the necessity of this body of work, which will explore the object-based features of 

selective detection, the selective detection ‘state’, and the unexpected temporal features 

that became apparent for a whisker-based selective detection paradigm in mice.  

Current paradigms investigate various object-based and temporal features. 

Strategies can include expert performance or developed performance across learning of 

object-based features; individual strategy contributions to the learning of temporal 

features, however, are comparatively understudied and need to be further investigated. 

Object-based goal directed sensory and motor paradigms include tasks for detection 

(Huber et al., 2012), discrimination (Erlich et al., 2011; Pai et al., 2011; Rudebeck & 

Murray, 2008; Song et al., 2020), categorization (Baunez & Robbins, 1997, 1999; 

Freedman et al., 2003; Reinert et al., 2021), and sequencing (Jin & Costa, 2010; Smits-

Bandstra & De Nil, 2007), but such tasks also involve non-feature components such as 
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anticipation (Chen et al., 2017; Grabenhorst et al., 2019; McClure et al., 2003), attention 

(Katzner et al., 2009; Robbins, 2002), aversion (Chowdhury et al., 2019; Kutlu et al., 2020), 

confidence (Lak et al., 2014; Lak et al., 2020), emotion (Dolensek et al., 2020; Droit-Volet 

& Meck, 2007), evidence accumulation (Churchland et al., 2011; Erlich et al., 2015; 

Roitman & Shadlen, 2002), exploration and exploitation (Gagnon et al., 2016; Gagnon et 

al., 2018; Pisupati et al., 2021), flexibility (Duan et al., 2021; Nakayama et al., 2018), 

impulse control (Peterson et al., 1999; Robbins, 2002), reward discounting (Kable & 

Glimcher, 2007; Mar et al., 2011; Mobini et al., 2002), starting and stopping (Bari & 

Robbins, 2013; Hanisch et al., 2006), and uncertainty (Daw et al., 2005; Fiorillo et al., 2003; 

Lawson et al., 2021; Mendonça et al., 2020). These components represent variable mixes 

of allocentric or egocentric, internal and external, and both object-based and temporal 

elements that models use while forming strategies (Chen et al., 2021; Guitart-Masip et 

al., 2012; Reynolds et al., 2001). Optimal strategies for such multi-faceted tasks would 

involve knowledge of task consistency, restraint, sensorimotor integration, and structure, 

both spatially and temporally (Harvey et al., 2012; Jimenez-Gomez et al., 2009; 

McDannald et al., 2011; Walton et al., 2010). For example, in a stop-signal reaction time 

task, an optimal temporal strategy may include fast ‘stop’ reaction times but is 

concurrently influenced by known suboptimal phenotypes involving hazard (faster ‘go’ 

reaction times for longer waits) and motivation (slower overall reaction times upon 

disengagement) in performance (Hardung et al., 2017; Janssen & Shadlen, 2005; 

McBurney-Lin et al., 2020; Narayanan & Laubach, 2009). Potential suboptimal temporal 
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strategies are evidenced in behavioral phenotypes such as fast reaction times for a 

waiting paradigm (Kopec et al., 2015; Narayanan et al., 2006; Reyes et al., 2020), history-

based “win-stay, lose-switch” for a probabilistic paradigm (Chen et al., 2021; Daw et al., 

2006; International Brain et al., 2021), choice-based “perseverance” for a block switch 

paradigm (Ashwood et al., 2022; Busse et al., 2011; Duan et al., 2015; Lak et al., 2020), or 

withholding response for a target epoch paradigm (Makino & Komiyama, 2015; Tremblay 

& Schultz, 2000b). For a detection task, temporal strategies transition from suboptimal to 

optimal, such as naïve “sampling” (Kawai et al., 2015; O'Doherty, 2004; Soon et al., 2008) 

to expert stimulus-driven “timing” (Romo & Schultz, 1990), and may compete with or 

synergize with object-based detection strategies (Laubach et al., 2000). The ultimate 

benefit of temporal transitions in learning converges with that of object-based 

transitions: competitive edge, efficiency, sensorimotor fluidity, success (Barraclough et 

al., 2004; O'Doherty et al., 2003; Sakai & Fukai, 2008; Tremblay & Schultz, 2000a).  

Paradigm for Selective Detection 

Object-based and temporal behavior strategies certainly intertwine throughout the 

research: their dissociation is, at best, tricky. The temporal features, waiting and timing, 

may still be determined through object-based paradigms. Correspondingly, we would 

expect that object-based features, detection and discrimination, may be determined 

through temporal paradigms (Murakami et al., 2017; Toda et al., 2017). To that end, 

understanding object-based and temporal strategy transitions in behavioral shaping adds 

essential elements to the interpretation of naïve, learning, and expert behavior. We draw 
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our attention to the selective detection task. The selective detection behavior paradigm 

involves selectively not responding to a distractor stimulus and selectively responding to 

a target stimulus. The task extends beyond basic detection of a sensory stimulus to the 

cognitive process of ignoring irrelevant stimuli while responding to relevant stimuli 

(Aruljothi et al., 2020; Marrero et al., 2021; Zareian et al., 2023).  

As mentioned, attention is not evaluated in the selective detection task. Attention 

can only be examined when a mouse attends and ignores flexibly; this imposes the 

requirement of switching target and distractor assignments to observe whether one truly 

attends versus ignores. Measures such as detection and discrimination are used for 

standard attention paradigms in the field. These are well-established in literature, 

primarily in primates, and we can leverage standardized signal detection measures to 

determine selectivity of detection (K. Britten et al., 1992; Britten et al., 1996a; Luck et al., 

1997). Selective detection is not explored as extensively in mice; still, the whisker barrel 

system in mice is ideal for sensory stimuli due to its barrel-specificity, spatial laterality, 

and prevalence in the natural rodent environment. Also, extensive transgenic methods 

are utilized involving the whisker barrel system as it maps distinctly onto the smooth 

surface of the mouse cortex and can therefore be leveraged in the selective detection 

task (Petersen, 2019). As one can imagine, the benefits of studying how we ignore 

irrelevant information and respond to relevant information would apply to mental health 

conditions such as ADHD and ASD. 
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Stimulus Attenuation Strategy 

Stimulus attenuation has been proposed as a framework by which one prevents irrelevant 

sensory information from influencing decisions based on relevant stimulus information. 

Effective strategies involve blocking or filtering of specific stimulus information in the 

cognitive stream of behavior. In the attenuation framework, both target and distractor 

sensory signals reach lower orders of the cognitive process. The relevant signal is then 

allowed to propagate to higher orders of the cognitive process, necessary for successful 

goal-directed behavior. Broadbent proposed that irrelevant signals in the signal 

processing stream are blocked by an attenuation filter (Broadbent, 1958). Treisman 

recognized that this, however, did not explain the ‘cocktail effect’, a well-known 

phenomenon by which select information (an individual’s name) still reaches a higher 

order process (auditory recognition) by way of the filter despite successful ignoring of 

ambient noise (Anne M. Treisman, 1964). The nuance seems trivial, but the discussion 

was essential in fundamental debates regarding attention and the attenuating filter. In 

chapter 2, we explore the sensory to motor transformation process, providing evidence 

of the Treisman framework in the mouse whisker system. Importantly, we found a 

localized attenuation filter between task-related cortical regions, which predicted success 

in the selective detection task. The discovery of this stimulus attenuation filter is seminal 

in ongoing investigations into selective behavior and its neural correlates.  
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Prestimulus State Strategy 

The prestimulus period is the short epoch preceding the presentation of an expected 

stimulus. The overall perspective of an individual in the prestimulus period is termed a 

‘state’ in this body of work and can be imagined as a determinant in any post-stimulus 

outcome. For a subject in a performance task, the properties of a potential stimulus in 

the prestimulus epoch are still unknown. Still, the absence of a stimulus in this period can 

be just as informative in the accumulation of evidence as the presence of the stimulus in 

the post-stimulus period. Relevant evidence indicates favorable outcomes for in-task 

success. In this way, the prestimulus state influences perception in a behavior task. 

Investigations into various paradigms can use this epoch to explore certainty versus 

uncertainty, anticipation versus surprise, positive versus negative valence, and baseline 

performance in the prestimulus period. The prestimulus epoch is also used as a proxy for 

attention, termed the ‘fixation period.’ For instance, preparatory behavior occurs due to 

fixation, when the eminence of a stimulus is disclosed before the stimulus occurs; this can 

be differentiated from an uncued prestimulus epoch. 

Although successful selectivity can rely on an individual’s prestimulus state as a 

strategy, research is scarce regarding prestimulus activity in the selective detection goal-

directed behavior. Investigation into the prestimulus state began in anesthetized animals, 

neglecting the overarching goal of understanding the cognitive process of perception 

(Arieli, 1995, 1996). Prestimulus states have been observed, albeit underreported, in 

other detection tasks; this is likely due to the object-based feature of the paradigms 
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employed, which focus on the post-stimulus features of a detected stimulus (S. Crochet 

& C. C. H. Petersen, 2006; Poulet et al., 2012; Poulet & Petersen, 2008; Zagha et al., 2015). 

To this end, we question whether a prestimulus state in awake behaving mice determines 

outcomes for the selective detection task in chapter 3, where we found that global 

prestimulus activity predicted trial outcomes. Thus, we defined an optimal neural state of 

low variability with a distinct component profile. The prestimulus state gives insight into 

determinants for cognitive goal-directed outcomes, which we can further pursue in 

optimizing conditions for learning and for improved performance in naïve versus expert 

behavior. 

Regions of Interest for Strategies 

The strategies investigated here are first seen in behavioral paradigms. Consequently, the 

neural correlates for successful stimulus attenuation and an optimal prestimulus state are 

studied only after behavior is established. Neural correlates of behavior are found in the 

topic of neural cognitive ‘maps’, which won a Nobel prize for its great impact on both 

hippocampal and broader neuroscientific communities (Burgess, 2014; McNaughton et 

al., 2006). Similarly, cortical involvement in cognitive paradigms of behavior is well 

supported by the literature. Investigations into the primate visual system indicate that 

early attenuation begins in the thalamus (Crick, 1984a). Some investigations localize 

attenuation within cortex (Moran & Desimone, 2010). Still others suggest that 

attenuation occurs within prefrontal cortex (Mante et al., 2013). It is well-established that 

detected stimulus signals reach primary sensory cortices and that task-related pathways 
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extend into motor cortices (Shubhodeep Chakrabarti & Cornelius Schwarz, 2018; Chen et 

al., 2017; Ferezou et al., 2007; Zagha et al., 2015). Specialized cortices are indicated in 

preparatory signaling, potentially functioning via competing or counterbalanced 

accumulation mechanisms, which optimizes signal to noise gain to reach internal neural 

“bounds” (de Lange et al., 2013). For a true prestimulus network, the cortical network 

closest to a favorable bound would result in a favorable outcome. Therefore, cortex is 

justified as a critical structure of interest for investigation into the selective detection task. 

For this body of work, simultaneous visualization of attenuation or prestimulus activity 

across cortex is made possible by widefield calcium (Ca2+) imaging, which reveals Ca2+-

related population neural activity during awake behavior (Guo et al., 2014; Makino et al., 

2017; Musall et al., 2019).  

Brain regions other than cortex have been considered in cognitive literature. 

Prefrontal cortices (PFCs) receive the most attention regarding decision making, 

premature responding, response inhibition, and waiting (Aron et al., 2003; Donnelly et al., 

2015; Hayton et al., 2010; Hayton et al., 2011; Pardey et al., 2013). Delay (duration) signals 

have been shown to persist in motor cortices (M1/M2) and medial PFCs (Finkelstein et 

al., 2021; Narayanan et al., 2013; Narayanan et al., 2006; Narayanan & Laubach, 2006, 

2009; Smith et al., 2010). Other subcortical structures are involved in many aspects of our 

selective detection paradigm, including anticipation and prediction, premature 

responding, processing value and reward association, waiting and wait erroring (Fiorillo 

et al., 2008; Galtress & Kirkpatrick, 2010; Guitart-Masip et al., 2012; Koch et al., 2009; 
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Miyazaki et al., 2012; Totah et al., 2009; Wiener et al., 2008). For example, striatum is a 

popular region of interest for stimulus encoding and premature response, both factors in 

our selective detection task, and is surely indicated in reward processing (Matell & Meck, 

2000; Matell & Meck, 2004; Merchant et al., 2013; Zareian et al., 2023). Even though 

prefrontal and subcortical regions are worth investigating, widefield imaging has yielded 

cortical sensory to motor ‘maps’ that can be further investigated for both learning and 

performance regarding the selective detection task (Aruljothi et al., 2020; Marrero et al., 

2021). 

Waiting as a Temporal Strategy 

We predetermine as a logical premise that waiting is a strategy in the prestimulus period, 

especially for success in the selective detection task, and that the wait strategy is shaped 

by reward association. To defend a waiting strategy, as is the case for any other cognitive 

process, we must agree on the fundamental definition of waiting. Waiting is defined as 

withholding for a temporal duration (usually for an expected reward or to prevent an 

impending punishment); it requires temporal recognition of a duration and temporal 

navigation throughout the duration. Waiting in the selective detection task occurs before 

stimulus presentation and is motivated by the expectation of reward.  

The motivation to wait can be interrupted by several processes. The classic 

Stanford marshmallow experiment, which investigated children’s ability to wait in a 

delayed gratification task, gives a fun introspection into one aspect that interrupts the 

motivation to wait (Mischel & Ebbesen, 1970). It was found that the longer the delay, the 
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less likely a child was motivated to wait for a preferred reward. The test is also referenced 

as a proxy for impulsivity, a process that interrupts the ability to wait. To ensure voluntary 

task engagement, the selective detection task required waiting. The waiting strategy can 

be shaped by punishing impulsive ‘premature’ responses (Robbins, 2002). Paradigms that 

allow premature responses do not report waiting (Parker et al., 2014). 

The motivation to wait can also be driven by other processes. In an effort to 

reduce processes down to their essential contributions to motivation, the Piers-Steel 

“Temporal Motivation Theory” explains motivation through the procrastination equation 

(Steel, 2007; Steel & König, 2006), a function of expectancy, value, delay, and 

impulsiveness:  

𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =  
𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 × 𝑉𝑎𝑙𝑢𝑒

𝐼𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 × 𝐷𝑒𝑙𝑎𝑦
 

Motivation - Equation 1 

With these in mind, we can determine the motivation to wait in the selective detection 

task: before the stimulus presentation, mice must learn strategies based on the 

expectation of a stimulus, the understanding of reward value, the withholding of 

impulsive action, and the knowledge the temporal restriction of waiting through a delay. 

Hence, waiting is a strategy and must develop across learning.  

Timing as a Temporal Strategy 

We apply similar logic to the temporal strategy of timing. We predetermine that timing is 

a strategy after stimulus presentation for success in the selective detection task, also 

shaped by reward association. To defend a timing strategy, we must agree on the 
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fundamental definition: timing is defined as withholding until a target duration (for an 

expected reward or to prevent punishment); it requires temporal recognition of the 

target duration and requires temporal navigation for the target execution. Timing in the 

selective detection task occurs after stimulus presentation, motivated by the expectation 

of reward.  

The selective detection task attempted to remove temporal confounds such as 

timing (and waiting). For this discussion, timing behavior involves a stimulus and a 

response. Different tasks vary in temporal aspects, but if there is no stimulus, there is no 

target timing. Withholding through a duration sans stimulus is still considered waiting. In 

addition to object-based strategies, in chapter 4, we approach waiting and timing directly 

as unexpected strategies exhibited by the mice.  

Before timing strategies form, reward association must be shaped with classical 

conditioning: a stimulus is delivered, then a reward is delivered, independent of response 

activity (Bakhurin et al., 2017). Developing a strategy for target timing recruits operant 

conditioning: a stimulus is delivered and a reward is only delivered if the subject responds 

(Kawai et al., 2015). The response behavior is arbitrary when a subject learns a timing task 

(Reyes et al., 2020; Tunes et al., 2022). If we revisit the procrastination equation, we can 

determine the motivation to time in the selective detection task: mice must learn 

strategies based on the expectation of a reward, the understanding of the reward value, 

the withholding of impulsive reaction, and the temporal knowledge the target delay. 

Separate from waiting, timing is a strategy and must develop across learning.  
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Strategies across Learning 

Because the decision making process incorporates multiple strategies to transform 

incoming stimuli into outgoing choices, optimizing performance across learning must 

employ multiple, dynamic, evolving strategies or readouts. As a subject learns to 

transition their performance from naïve behavior to expert behave, it takes into 

consideration the relevance, salience, structure, and readouts of a task paradigm; both 

object-based and temporal features are integrated into optimal strategies (Emmons et 

al., 2017; Kar & DiCarlo, 2021; Ni et al., 2018; Ruff & Cohen, 2019).  

For our task, after mice have learned stimulus and response reward associations 

through classical and operant conditioning, they are introduced to the full measure of the 

selective detection paradigm. In naïve behavior before a stimulus presentation, mice 

exhibit sampling as spontaneous licking (Dickinson & Balleine, 1994; O'Doherty et al., 

2003). They must learn to withhold this prepotent response for a stimulus presentation. 

In naïve behavior after a stimulus presentation, mice exhibit sampling as randomized 

responses to a stimulus (Laubach et al., 2000; van Maanen et al., 2012). They must learn 

to withhold a reactive response immediately after a stimulus presentation.  

Learning strategies are known to change across sessions, within sessions, from 

trial to trial, and, indeed, across animal models (International Brain et al., 2021; Musall et 

al., 2019; Parker et al., 2015; Roy et al., 2021; Tanaka et al., 2004). Yet, the order of 

learning for these strategy transitions is frequently overlooked across investigations. 

Furthermore, the manner and order in which strategies are learned is useful when 
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investigating neuronal and behavioral correlates, especially when temporal performance 

is known to be compromised over spatial performance as in ADHD (Pardey et al., 2009; 

Rubia et al., 2009; Toplak et al., 2006), ASD (Meilleur et al., 2020), learning disorders (Eden 

et al., 1995), and schizophrenia (Carroll et al., 2009; Lee et al., 2009).  

Lastly, it is unknown how, whether, or why male versus female strategies differ. 

The concern over whether genders are investigated equally has become more and more 

prevalent in ongoing investigations. It has been found that executive functioning is 

invariable between genders, positive reinforcement learning affects genders similarly, 

and that cognitive flexibility paradigms show no differences when comparing genders 

(Grissom & Reyes, 2019). However, gender differences have been found in avoidance 

behavior, novel environment navigation, risk, switch and preferential sampling behavior 

in uncertain conditions, and sensitivity in probabilistic versus certain punishment 

outcomes (Chen et al., 2021; Gagnon et al., 2016; Gagnon et al., 2018). Consequently, 

some gender differences have been found to influence efficiency and success depending 

on the paradigm. It may be that genders show differences in behavior due to an intrinsic 

prestimulus state, the ability to attenuate a stimulus, initial conditions before learning, 

final resolutions after learning, or a difference in the learning transition from naïve to 

expert behavior for the selective detection task.  

Relevance of Research 

In this body of work, we explore expert performance in awake behaving mice, task-related 

cortical correlates during this expert behavior, and a longitudinal analysis indicating that 
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mice use multiple learning strategies as they transition from naïve to expert behavior. The 

examination of multiple learning strategies regarding behavior adapts a more 

comprehensive interpretation to ongoing investigations into neural correlates of learning 

behavior across animal models and task paradigms.   
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Chapter 2: Functional Localization of an Attenuating Filter 

Multiple aspects were required for the first widefield imaging manuscript. First, it was 

important for our lab to establish the robustness of the selective detection task in mice. 

Behaviorally, this included response rates and discrimination, as these were considered 

when we qualified expert behavior in mice. To our chagrin, criterion bias was not reported 

here, even though this is an important feature to consider for animals performing for 

detection paradigms.  Additionally, although the whisker system has been used as a 

standard somatosensory model in rodents, our selective detection paradigm yielded 

compelling and reliable evidence of the attenuation filter localized within cortex for the 

selective detection task in mice.    

We also needed to demonstrate the widefield technique that produced our 

results. Although widefield calcium imaging has been used for rodent models performing 

in decision making paradigms, this manuscript introduced the techniques used in our lab 

environment. Finally, the establishment of an attenuating filter instead of a blocking filter 

addressed the Broadbent versus Treisman framework as discussed in the introduction. 

We were able to defend the latter framework as our widefield imaging did not completely 

block cortical signal between sensory to motor cortices, as evidenced by target versus 

distractor reduction but not elimination of stimulus encoding.  

My contributions to this work included animal surgeries, behavioral training of 

mice used in imaging analyses, collection of widefield imaging data, and data analyses for 

fluorescence activity, stimulus encoding, choice encoding (see below), and seed 
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correlation. Visualization and quantification of stimulus encoding for target versus 

distractor sensory and motor cortices were key findings from this manuscript. In this way, 

our work was essential for subsequent analyses from the Zagha lab. 

A major change has been made concerning this adapted chapter. Although we 

termed data from the preresponse frames ‘choice probability’, which proposes a  

percentage data output, the more accurate term for the quantification regarding 

preresponse frames, both for the preresponse frames and for the change in preresponse 

frames, is ‘choice encoding’. Choice probability is usually reported as a probabilistic 

percentage, but our choice encoding extended choice probability a step further based on 

signal detection theory. In retrospect, the reported neurometric d’ methods apply to both 

terms ‘stimulus encoding’ and ‘choice encoding’. The neurometric d’ for stimulus 

encoding refers to a stimulus present (fluorescence activity after a stimulus) signal as it 

compares to a stimulus absent (fluorescence activity before a stimulus) signal. The 

neurometric d’ for choice encoding refers to a choice present (fluorescence activity for a 

response) signal as it compares to a choice absent (fluorescence activity for no response) 

signal. The results and resulting interpretations remain unchanged; only the terminology 

is addressed. The changes adapted are noted in blue. 
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Abstract 

An essential feature of goal-directed behavior is the ability to selectively respond to the 

diverse stimuli in one’s environment. However, the neural mechanisms that enable us to 

respond to target stimuli while ignoring distractor stimuli are poorly understood. To study 

this sensory selection process, we trained male and female mice in a selective detection 

task in which mice learn to respond to rapid stimuli in the target whisker field and ignore 

identical stimuli in the opposite, distractor whisker field. In expert mice, we used 

widefield Ca2+ imaging to analyze target-related and distractor-related neural responses 

throughout dorsal cortex. For target stimuli, we observed strong signal activation in 

primary somatosensory cortex (S1) and frontal cortices, including both the whisker region 

of primary motor cortex (wMC) and anterior lateral motor cortex (ALM). For distractor 

stimuli, we observed strong signal activation in S1, with minimal propagation to frontal 

cortex. Our data support only modest subcortical filtering, with robust, step-like 

attenuation in distractor processing between mono-synaptically coupled regions of S1 

and wMC. This study establishes a highly robust model system for studying the neural 

mechanisms of sensory selection and places important constraints on its implementation. 
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Significance Statement 

Responding to task-relevant stimuli while ignoring task-irrelevant stimuli is critical for 

goal-directed behavior. Yet, the neural mechanisms involved in this selection process are 

poorly understood. We trained mice in a detection task with both target and distractor 

stimuli. During expert performance, we measured neural activity throughout cortex using 

widefield imaging. We observed responses to target stimuli in multiple sensory and motor 

cortical regions. In contrast, responses to distractor stimuli were abruptly suppressed 

beyond sensory cortex. Our findings localize the sites of attenuation when successfully 

ignoring a distractor stimulus and provide essential foundations for further revealing the 

neural mechanism of sensory selection and distractor suppression. 
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Introduction 

We are constantly bombarded by sensory stimuli. To complete a given task, we must 

selectively respond to task-relevant stimuli while ignoring task-irrelevant stimuli. A 

framework for understanding stimulus selection is provided by the Treisman attenuation 

theory (Figure 2.1). According to this theory, both attended and unattended signals enter 

short-term storage. Responses to attended stimuli propagate forward for higher-order 

processing. Responses to unattended stimuli, however, are suppressed by an attenuating 

filter at some point along the processing stream (A. M. Treisman, 1964). The attenuation 

theory was originally developed to understand selection amongst conflicting speech 

patterns, yet has since been adapted to study sensory selection across multiple sensory 

modalities and species (Moran & Desimone, 1985; Sridharan et al., 2014; Wiederman & 

O'Carroll, 2013). 

Where in the brain does attenuation occur and what are the neural mechanisms 

involved? Extensive studies in the primate visual system have identified stimulus filtering 

throughout multiple brain regions. Sensory selection was initially proposed to occur in the 

thalamus, mediated by the modulation of thalamic relay neuron activation by the 

reticular thalamus (Crick, 1984b). Recordings in behaving primates have demonstrated 

early-onset attentional modulations in thalamus (McAlonan et al., 2008), consistent with 

stimulus filtering prior to reaching cortex. However, earlier physiological studies 

demonstrated robust attentional filtering within cortex, between primary visual cortex 

and visual area V4 (Moran & Desimone, 1985). Alternatively, other studies argue for 



39 

 

filtering occurring primarily within prefrontal cortex (Mante et al., 2013). Potential ‘top-

down’ pathways establishing an attenuating filter include cortical feedback and ascending 

neuromodulation (Miller & Cohen, 2001; Noudoost & Moore, 2011). Yet, these 

mechanisms are poorly understood, in part due to the apparent highly distributed 

filtering processes of the primate visual system.   

Our goal in this study is to localize the attenuating filter for a simple sensory-motor 

task in the mouse whisker system. This model system benefits from extensive 

characterization of the sensory and motor regions and pathways involved, with 

significantly fewer hierarchical levels than the primate visual system (Guo et al., 2014; 

Kleinfeld et al., 1999; Petersen, 2019). Whisker deflection activates brainstem pathways 

which travel predominantly through the ventral posteromedial (VPM) thalamus and onto 

primary somatosensory (barrel) cortex (S1). From S1, there are robust, mono-synaptic 

connections to the whisker region of primary motor cortex (wMC) (Mao et al., 2011; 

Miyashita et al., 1994; Porter & White, 1983). Sensory responses in S1 rapidly propagate 

to wMC, under both anesthetized and awake conditions (Chakrabarti et al., 2008; Farkas 

et al., 1999; Ferezou et al., 2007; Kleinfeld et al., 2002; Zagha et al., 2015). Moreover, this 

pathway may be particularly important for input detection; S1-wMC projection neurons 

were found to be preferentially responsive to touch in an object detection task (Chen et 

al., 2013), which enhanced during task training (Chen et al., 2015). Recent studies in the 

rodent whisker system have reported sensory filtering within the thalamus (Rodenkirch 

et al., 2019) and brainstem (S. Chakrabarti & C. Schwarz, 2018). However, it remains 
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unknown to what extent these subcortical or cortical pathways contribute to filtering 

during a sensory selection task. 

We designed a selective detection task with spatially and temporally distinct 

processing streams. Mice respond to rapid deflections of one whisker field (target) and 

ignore identical stimuli in the opposite, contralateral whisker field (distractor). Rather 

than presenting target and distractor stimuli together, as in the original studies on sensory 

selection (Moran & Desimone, 1985; A. M. Treisman, 1964), we present each stimulus 

individually on different trials. Thus, we can evaluate target and distractor processing 

separately across space (different hemispheres) and time (different trials). The motor 

response in our task is a straight-forward lick. As the sensory and motor content of our 

task is symmetric, the only asymmetry is the selection process. In expert performing mice, 

we used widefield Ca2+ population imaging (Wekselblatt et al., 2016) to simultaneously 

monitor neural activity bilaterally in sensory and motor regions. We then quantified the 

asymmetry in target aligned versus distractor aligned sensory processing streams to 

localize sites of attenuation. 
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Materials and Methods 

Animal Subjects and Surgery 

All experiments performed in this study were approved by the IACUC of University of 

California, Riverside. Mice were purchased from Jackson Laboratories (JAX). Task-related 

neural imaging data were obtained from GCaMP6s expressing Snap25-2A-GCaMP6s-D 

mice (JAX #025111). The SNAP25-2A-GCaMP6s mouse line expresses GCaMP6s pan-

neuronally, in both excitatory and inhibitory neurons throughout the brain (Madisen et 

al., 2015). Transgenic mice were backcrossed into the BALB/cByJ (JAX 000651) 

background. Both male and female mice were used in these experiments. Recording 

sessions from male and female mice were similar according to behavioral performance 

(imaging experiments: 4 male mice, 32 sessions, 1 female mouse, 7 sessions; 

discriminability d’: male 2.0 ± 0.1, female 1.9 ± 0.2, two sample t-test, p= 0.36, t(37)= 0.92; 

target stimulus reaction time (s): male 0.30 ± 0.01, female 0.32 ± 0.02 , two sample t-test, 

p= 0.70, t(37)= -0.38) and neural responses (data not shown), and therefore data were 

combined for grand average analyses. Mice were housed on a light cycle of 12 hours light/ 

12 hours dark. All trainings and recordings were conducted on mice head-fixed in the 

behavioral apparatus. For headpost implantation, 2 to 5 months-old mice were placed 

under a combination of isoflurane (1-2%), ketamine (100 mg/kg), and xylazine (10 mg/kg) 

anesthesia. A 10 mm x 10 mm piece of scalp was resected to expose the skull.  The 

exposed skull was cleared of connective tissue and a custom-built headpost was 

implanted onto the skull with cyanoacrylate glue.  The lightweight titanium or stainless 
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steel headpost (3 cm in length and 1.5 grams in weight) had an 8 mm x 8 mm central 

window for imaging and recording. For in vivo widefield Ca2+ imaging, a thin layer of 

cyanoacrylate gap-filling medium (Insta-Cure, Bob Smith Industries) was applied to the 

window, to both seal the exposed skull and enhance skull transparency. Silicone 

elastomer (Reynolds Advanced Materials) was additionally applied above the imaging 

window. After surgery, mice were placed onto a heating pad to recover and administered 

meloxicam (0.3 mg/kg) and enrofloxacin (5 mg/kg) for three days post-op. Mice were 

given a minimum of three days to recover from surgery before water-restriction and 

behavioral training. Recordings under anesthesia were conducted immediately after 

headpost implantation.   

Animal Behavior 

Mice were trained in a Go/NoGo passive whisker selective detection task. During 

behavioral training mice were given food ad libitum but were water-restricted to a 

minimum of 1 mL per day. Weights were monitored daily to maintain over 85% of their 

initial post-surgery weights, and additional water was given as needed to maintain this 

level. The behavioral apparatus was controlled by Arduino and custom MATLAB 

(MathWorks) code. Piezo-controlled paddles (Physik Instrumente and Piezo.com) were 

placed bilaterally in the whisker fields, with each paddle contacting 2 to 4 whiskers. 

Paddle deflections of a triangle waveform had rising phases that ranged from 0.1 s (for 

large deflections) to 0.01 s (for small deflections), followed by an immediate falling phase. 

Deflection velocity was constant, therefore increased duration correlated with increased 
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deflection amplitude. The maximum amplitude, for 0.1 s deflections, was 1 mm. Stimulus 

duration and amplitude were varied with training with the goal of maintaining a 75% hit 

rate. This target hit rate was selected to maintain high reward rates while still operating 

within the dynamic range of each mouse’s psychometric curve. Within every session, 

target and distractor stimulus strengths were identical. Directly below the mouse’s snout 

was a central lick port. Each ‘hit’ trial was rewarded with ~5 mL of water delivered through 

the lick port.  

Behavioral training consisted of three stages. Inter-trial intervals for all stages 

varied from 5 to 9 s with a negative exponential distribution to minimize potential timing 

strategies. Additionally, in all stages a ‘lockout’ period of 200 ms separated stimulus onset 

and the earliest opportunity for reward. Target and distractor whisker fields were 

assigned at Stage 1 and remained constant throughout training. Target/distractor 

assignment was varied across the population and analyzed separately (Figure 2.7A-C) 

before combining for grand average analyses. Each session lasted approximately 60 

minutes and consisted of ~200 trials.  (Stage 1) Classical conditioning: Unilateral (target) 

whisker deflection was paired with fluid reward; distractor whisker deflection was neither 

rewarded nor punished. Mice were trained on this stage for 1 to 3 days, 1 to 2 sessions 

per day. (Stage 2) Operant conditioning: Following unilateral (target) whisker deflection, 

mice were required to contact the lick port within a lick detection window of 1.5 s to 

initiate the fluid reward. Mice were trained on this stage for 2 to 3 days, 1 session per 

day. (Stage 3) Impulse control: Similar task structure as above, except all incorrect 
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responses (licking during the ITI, during the lockout period, or following distractor 

deflections) were punished by re-setting the ITI, effectively acting as a time-out. The 

response detection window was shortened to 1 s. Following full-length ITIs, trial types 

were selected randomly from a distribution of 80% distractor and 20% target. For 

distractor trials, not responding (correct rejection) was rewarded with a shortened ITI (2 

to 4 s, negative exponential distribution) and a subsequent target trial. Licking to the 

distractor (false alarm) or not responding to the target (miss) initiated a subsequent full-

length ITI. Responding to the target stimulus (hit) triggered a fluid reward, followed by a 

full-length ITI. Behavioral and neural imaging data for hit trials with and without preceding 

correct rejections were compared (Figure 2.7D, E) before combining for grand average 

analyses. For approximately half of the mice in this study, following full-length ITIs, catch 

trials without a whisker stimulus were interspersed at a rate of 10% of all stimulus trials. 

A single, contiguous behavioral window was considered for analyses, from session 

onset until 120 s of no responding, which we interpreted as task disengagement. Hit rate, 

false alarm rate, spontaneous lick rate, and reaction times were all used to assess task 

performance. Foremost, we used the sensitivity or d-prime (d’) framework from signal 

detection theory. Traditionally, d’ is used as a measure of detection between stimulus 

present and stimulus absent conditions.  Here, we implemented a discriminability d’ 

between target detection and distractor detection [d’ = Zhit rate - Zfalse alarm rate] where Z is 

the inverse of the normal cumulative distribution function. Mice were considered expert 
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in our task once they achieved a d’>1 for three consecutive days. The spontaneous lick 

rate was calculated as the response rate during the last 1 s of the full-length ITI. 

Widefield Imaging 

Widefield imaging was performed through-skull in head-fixed mice while they performed 

the selective detection task. Imaging was conducted through a Macroscope IIa 

(RedShirtImaging), beam diverter removed, 75 mm inverted lens with 0.7x magnification 

and 16 mm working distance.  The lens (NA 0.4) was positioned directly over the cranial 

window, providing a 7 mm x 5.8 mm field of view, including most of dorsal parietal and 

frontal cortex bilaterally. Illumination was provided by a mounted 470 nm LED (Thorlabs 

M470L3), dispersed with a collimating lens (Thorlabs ACL2520-A), band-pass filtered 

(Chroma ET480/40x) and directed through the macroscope using a dichroic mirror 

(Chroma T510lpxrxt). Fluorescent light returning to the brain was band-pass filtered 

(Chroma ET535/50m) prior to reaching an RT sCMOS camera (SPOT Imaging). On camera 

2x2 binning and post-processing image size reduction gave a final resolution of 142 x 170 

pixels at 41 μm per pixel and 12-bit depth. Images were acquired at a temporal resolution 

of 10 Hz, aligned to the trial structure. TIF image sequences were imported to MATLAB 

for preprocessing and analysis. 

Local field potential (LFP) recordings 

LFP recordings were conducted through small (<0.5 mm diameter) craniotomies and 

durotomies positioned above S1 (from bregma: posterior 1.5 mm, lateral 3.5 mm), wMC 

(anterior 1 mm, lateral 1 mm) and ALM (anterior 2.5 mm, lateral 1.5 mm), in target aligned 
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and distractor aligned cortices. Recording sites were positioned 750 mm below the pial 

surface, targeting layer 5. Recordings were acquired with silicon probes (Neuronexus, 

A1x16-Poly2-5mm-50s-177), bandpass filtered from 0.1 Hz to 8 kHz and digitized at 32 

kHz (Neuralynx). Further analyses were conducted in MATLAB. 

Imaging of whisker movements 

A CMOS camera (Thorlabs DCC3240M camera with Edmund Optics lens 33-301) was 

positioned directly above the mouse while performing the detection task. Field of view 

included both whisker fields and stimulus paddles. Images were captured at 8-bit depth 

continuously at 60 Hz (ThorCam) and imported to MATLAB for all analyses. 

Data Analysis 

All data analyses were performed in MATLAB using custom scripts. 

Fluorescence Preprocessing and Trial-Based Neural Activity 

Peri-stimulus trial imaging time windows included 1 s before stimulus onset and 1.2 s after 

stimulus onset, which included the lockout and response windows. The first step of image 

processing was to concatenate fluorescence activity from consecutive trials to create a 

raw movie F, where Fn(i,j,f) shows the fluorescence of each pixel (ith row, jth column) in 

the fth frame for each individual trial n. The pre-stimulus baseline fluorescence Fo(i,j,n) 

was calculated by averaging pixelwise activity across the first 10 frames preceding the 

stimulus onset per trial n (1 s pre-stimulus).  
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Finally, relative fluorescent signal normalized to pre-stimulus baseline (dF/F) was 

calculated as 

𝑑𝐹
𝐹0(𝑖, 𝑗, 𝑛)⁄  =  

[𝐹𝑛(𝑖, 𝑗, 𝑓) − 𝐹0(𝑖, 𝑗, 𝑛)]
𝐹0(𝑖, 𝑗, 𝑛)⁄  

Baseline Fluorescence - Equation 2 

Average trial movies were created by indexing trials according to trial outcome (hit, miss, 

false alarm, correct rejection, spontaneous) and averaging activities at each pixel across 

the corresponding frame of each corresponding trial. Frame alignments were conducted 

both with reference to stimulus onset (stimulus aligned) and with reference to the first 

frame containing the response (response aligned) (see Figure 2.4). Spontaneous trials 

were those in which a response occurred during the 1 s pre-stimulus imaging period. Trials 

with responses during the lockout period were excluded from all further analyses.   

Data were analyzed per session (n=39), per mouse (n=5), per target-distractor 

assignment (n=2) and across all experiments (grand average). For a session to be included 

in our analyses, our inclusion criteria were d’>1 for at least 10 minutes of continuous 

engagement. Only one engagement period per session was included. For qualitative 

analyses, trial movies from recording sessions were spatially aligned to bregma and 

averaged per mouse. These data were then averaged per target-distractor assignment 

(see Figure 2.7 for whisker deflection assignments). One target-distractor assignment 

dataset was then flipped horizontally (rostro-caudal axis) at bregma before the grand 

average dF/F. For quantitative analyses, the subsequent datasets were first flipped at 
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bregma according to target-distractor assignment (as before) and then averaged across 

all sessions. 

Quantification of Stimulus Encoding 

To quantify stimulus response magnitude, we calculated the neurometric d’ (K. H. Britten 

et al., 1992) comparing activity pre-stimulus (stimulus absent) and post-stimulus (stimulus 

present), specifically during the lockout period. Neurometric d’ was calculated separately 

for target and distractor trials and included all trials regardless of outcome (hit and miss 

trials for target and false alarm and correct rejection for distractor). Pre-stimulus (10 

frames preceding stimulus onset) and post-stimulus activities were binned and plotted in 

an ROC (receiver operating characteristic) curve. The area under the curve (AUC) was 

converted to d’ using the equation: 

𝑛𝑒𝑢𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑑′ =  √2 ∗  𝑍𝐴𝑈𝐶   
d’ Neurometric - Equation 3 

In the context of this study, neurometric d’ is the performance measurement of a pixel 

where d’>0 denotes more post-stimulus pixel activity and d’<0 denotes more pre-stimulus 

pixel activity. For each region of interest, we report the peak neurometric d’ within the 

spatially defined region of interest (ROI). Subsequent analyses compared target stimulus 

encoding in target aligned cortices to distractor stimulus encoding in distractor aligned 

cortices. 
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Quantification of Choice Encoding 

To quantify choice-related neural activity, we calculated choice encoding d’ (Britten et al., 

1996b) comparing activity on hit trials (response present) and miss trials (response 

absent), specifically during the lockout phase. Sessions were included in this analysis if 

they had 5 or more trials of each type. Trials with stimuli of different amplitudes were 

combined only if response rates for each amplitude-specific trial type were comparable 

(within 15%). Overall, 9 sessions were excluded from this analysis, due to too few miss 

trials (n=30, instead of n=39). Choice probability was calculated for activity within the pre-

response frame (100 to 200 ms during the lockout) and for activity between the pre-

response frames (change in activity, subtraction of activity in the 0 to 100 ms frame 

window from the 100 to 200 ms frame window during the lockout).  In the context of this 

study, choice encoding d’ is the performance measurement of a pixel where d’>0 denotes 

more response-related pixel activity and d’<0 denotes more no response-related pixel 

activity. Response present and response absent activities were binned and plotted in an 

ROC curve. The area under the curve was converted to d’ as described above. 

Seed Correlation Analysis 

Correlation maps were generated separately for target and distractor hemispheres and 

for S1, wMC and ALM seed regions (generating six correlation maps per session). Baseline 

averaged fluorescence activity trajectories from all trial types (excluding spontaneous) 

were concatenated into a single time series. The following trial structures were analyzed 

separately: 1) full trial, including 10 frames pre-stimulus and 12 frames post-stimulus 
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including the lockout and response windows, 2) pre-stimulus only, including 10 frames 

pre-stimulus, 3) peri-stimulus and lockout, including 1 frame pre-stimulus and 2 frames 

post-stimulus during the lockout, and 4) response, including 10 frames after the lockout 

and during the response window. The seed was the average time series from all pixels in 

the indicated region of interest. Pairwise correlation coefficients were calculated 

between the seed and all other pixels. To reduce computation time, all trial movies were 

spatially down sampled 4-fold across both axes for a resolution of 36 x 43 pixels at 164 

um per pixel prior to running the correlation analyses. We report r2 values, as the square 

of the correlation coefficient. For each region of interest, we report the average 

correlation r2 within the spatially defined region. Subsequent analyses compared target 

aligned intracortical correlations to distractor aligned intracortical correlations. 

Evoked-potential analyses 

Single-trial LFP recordings were aligned to target and distractor stimulus onset. To isolate 

the LFP signal, single-trial data were bandpass filtered from 0.2 Hz to 100 Hz using a 

second order Butterworth filter, then down sampled to a sampling frequency of 400 Hz. 

Following filtering and down sampling, single-trial data were averaged according to trial 

type. In Figure 2.9, stimulus artifacts at 0-10 ms post-stimulus were truncated when 

present.  

Whisker movement analyses 

Movies were parsed into regions of interest containing target or distractor whisker fields. 

Whisker motion energy (WME) within each region was calculated for each frame as the 
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temporal derivative for each pixel of the mean gray value from the previous frame. Values 

per pixel were normalized (squared) and summed across pixels, providing a single WME 

value. WME data from the movies were aligned to target and distractor stimulus onset 

and averaged across trial type. 

Statistical Analyses 

For neurometric d’ and choice encoding d’, statistical analyses were performed to 

determine whether each pixel value was significantly different than zero across sessions 

(one sample t-test). Data were spatially aligned across sessions as described above. The 

threshold for statistical significance was corrected for multiple comparisons using the 

Bonferroni correction [0.05/(142x170) = 2.1x10-6 for a single imaging session and 

0.05/(156x194) = 1.7x10-6 across aligned imaging sessions]. For neurometric d’ and seed 

correlation, we additionally conducted region of interest (ROI) analyses. For neurometric 

d’, reduction in distractor encoding was calculated as: (target d’ – distractor d’) / target 

d’, calculated separately for S1, wMC and ALM. Statistical analyses were performed to 

determine whether reduction in distractor encoding was significantly different than zero 

within each region across sessions (one sample t-test, significance threshold corrected for 

multiple comparisons 0.05/3 = 0.017). Additionally, comparison of reduction in distractor 

encoding between the three ROIs across sessions was conducted using ANOVA and post-

hoc Tukey test. For seed correlation, comparison between the three ROIs across sessions 

and comparisons between different trial phases across sessions were conducted using 

ANOVA and post-hoc Tukey test. To quantify changes in whisker motion energy (WME), 
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post-stimulus values (each frame) were compared to average pre-stimulus (1 s baseline) 

values. Comparisons were conducted using paired t-test for each post-stimulus window, 

with a p-value threshold of 0.01 for significance. Average data are reported as mean ± 

standard error of the mean. 
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Results 

Training mice in a selective detection task 

To study the neural mechanisms of sensory selection, we developed a Go/NoGo passive 

whisker detection task in head-fixed mice (Figure 2.2). In this task, target stimuli are rapid 

deflections of multiple whiskers in one whisker field and distractor stimuli are identical 

deflections in the opposite whisker field (Figure 2.2A). Throughout training we quantified 

task performance as the separation (d’) between hit rate and false alarm rate (Figure 

2.2C). We considered mice ‘expert’ once they achieved a discriminability d’>1 on three 

consecutive sessions. Average time to expert performance was 11 days in the full task 

(see Methods) (Figures 2.2D and 2.2E) (number of sessions to expert performance: 11.2 

± 0.9, n=43 mice). Performance measures for the imaging sessions used in subsequent 

analyses are shown in Figure 2.2F (n=39 sessions across n=5 mice, hit rate (%), 80.4 ± 2.2; 

false alarm rate, 13.6 ± 1.1; spontaneous lick rate, 8.1 ± 0.5; d’ comparing hit vs false alarm 

rates, 2.0 ± 0.1). 

Two key features of this task facilitate the study of sensory selection. First, target 

and distractor stimuli are presented to contralateral whisker fields. Given the highly 

lateralized somatosensory whisker representation, we expect the target aligned and 

distractor aligned processing streams to be well separated across hemispheres. Second, 

we imposed a short (200 ms) lockout period after stimulus onset and before the response 

window. Responding during the lockout is punished with a time-out, and mice learn to 

withhold their licking responses through this period (e.g., Figure 2.2G). All analyses of 
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stimulus selection are conducted within this lockout period, which is post-stimulus onset 

and pre-reward, thereby isolating the selection process from reward-associated behavior. 

Propagation of cortical activity during task performance 

We used widefield calcium imaging (GCaMP6s Ca2+ sensor) to monitor neural activity 

broadly across dorsal cortex during task performance. We used a combination of 

anatomic landmarks and functional mapping to identify various cortical regions (Figures 

2.3A and 2.3B). Whisker deflection in anesthetized mice was used to localize the primary 

somatosensory barrel field (S1) and the whisker region of primary motor cortex (wMC) 

(n=13, example session shown in Figure 2.3B, left). Reward-triggered licking in water-

restricted yet task naïve mice was used to localize anterior lateral motor cortex (ALM), 

which has recently been identified as a pre-motor licking-related region (Chen et al., 2017; 

Guo et al., 2014) (n=6, example session shown in Figure 2.3B, right). Thus, our anatomic 

and functional mapping confirms that we can simultaneously monitor licking-related and 

whisker sensory and motor cortical regions bilaterally.  

We imaged expert mice while they were performing the whisker detection task. 

Here, we show stimulus evoked cortical activity on target and distractor trials across all 

mice and all sessions (grand average: n=5 mice, n=39 sessions) (Figures 2.3C and 2.3D). 

The two sequential imaging frames both occurred within the lockout period, which is after 

stimulus onset and before the earliest allowed response time. As expected, for both trial 

types we observed activity initiation in S1 contralateral to the deflected whisker field. By 

the end of the lockout period, we observed strong S1 activity following both target and 
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distractor stimuli. On target trials we observed propagation of activity to wMC, ALM, and 

retrosplenial cortex (RSP). Note that the activity does not spread uniformly from the site 

of initiation, but rather emerges in discrete cortical regions. In contrast, on distractor trials 

the activity was largely contained within S1, with only mild activation of wMC. 

In Figure 2.4, we show the grand average fluorescence signals across all trial types 

and outcomes, aligned to both stimulus onset and response onset. Notice that during the 

response (post-response onset for hit, false alarm and spontaneous licking trials) we 

observed strong signals that are widespread throughout dorsal cortex. However, in this 

study we are most interested in the activity initiating, and therefore preceding, the 

response. On hit trials (Figure 2.4A), we observed the propagation of activity from S1 to 

frontal and parietal regions post-stimulus (aligned to stimulus) and pre-response (aligned 

to response). On correct rejection trials (Figure 2.4E), we also saw strong activity in S1, 

but with very little propagation to other cortical regions. Propagation is not simply 

delayed on these trials, as we can track the resolution of distractor-evoked activity into 

the response window.        

The incorrect trial types also showed distinct activation patterns. On both false 

alarm trials (Figure 2.4B) and miss trials (Figure 2.4D), in addition to lateralized S1 

responses, we also observed prominent bilateral activity in the somatosensory limb 

regions. We interpret these neural signals as reflecting the self-motion of the mouse. Prior 

studies have shown that during passive whisker detection tasks, self-motion (quantified 

by whisking behavior) reduces detection probability (D. R. Ollerenshaw et al., 2012). Thus, 
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limb region activation observed here is consistent with self-motion contributing to 

incorrect, both miss and false alarm, trial outcomes. On spontaneous trials (responses not 

preceded by a whisker stimulus) we observed minimal pre-response cortical activity 

(Figure 2.4C). 

Quantification of stimulus encoding and attenuation across cortex 

The above analyses demonstrate, qualitatively, the differential propagation of cortical 

signals for target and distractor stimuli. Next, we sought to quantify these responses. To 

do this, we calculated the neurometric sensitivity index (d’) (K. H. Britten et al., 1992) for 

each pixel in our imaging window (Figure 2.5). Across each session we compared the pre-

stimulus activity (stimulus absent) to activity during the lockout period (stimulus present). 

Importantly, for this analysis we included all target trials and all distractor trials regardless 

of trial outcome (although excluding trials with responses during the lockout). We use d’ 

rather than dF/F, as the former accounts for trial-by-trial variability and reflects the ability 

of an ideal observer to distinguish signal from noise on single trials. The d’ maps from 

target and distractor stimuli largely match dF/F patterns described above; for target 

stimuli high d’ values are observed in S1, wMC, ALM and RSP (Figure 2.5A, right) whereas 

for distractor stimuli, high d’ values are only observed in S1 (Figure 2.5B, right). These 

regions show neurometric d’ values significantly above zero (Figure 2.5C and 5D). We do 

observe a focal increase in d’ for distractor wMC (Figure 2.5B, right), but this does not 

reach statistical significance after correction for multiple comparisons (Figure 2.5D).  
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Next, we quantified the propagation of stimulus responses for target versus 

distractor stimuli. We describe this analysis first for S1. For each session, we determined 

the peak neurometric d’ for the target stimulus in target aligned S1 versus the peak 

neurometric d’ for the distractor stimulus in distractor aligned S1. We plotted these data 

in Figure 2.6A. Data along the unity line indicate equal neurometric d’ values for target 

and distractor stimuli for that session. For S1, the data are widely distributed, yet with a 

nonsignificant trend towards larger responses for target stimuli (n=39 sessions, 8.8 ± 7.9% 

reduction in distractor d’, one sample t-test, p=0.27, t(38)= 1.12) (Figure 2.6D). We 

repeated these analyses for wMC and ALM. For these regions we find that neurometric 

d’ values are consistently larger for target stimuli (Figures 2.6B and 2.6C). Reduction in 

distractor d’ is 61.0±7.1% in wMC (one sample t-test, p=1.76e-10, t(38)= 8.62) and 72.1 ± 

6.9 % in ALM (one sample t-test, p=8.83e-13, t(38)= 10.49) (Figure 2.6D). Additionally, 

reduction in distractor encoding is greater for wMC and ALM compared to S1 (ANOVA, 

p=7.97e-9, F(1,38) = 54.2, with post-hoc Tukey comparison). Overall, these data 

demonstrate robust attenuation of distractor responses between the mono-synaptically 

connected regions of S1 and wMC. 

Analyses of intrinsic lateralization, trial history, electrical activity, whisker movements 

and choice encoding 

We performed a series of analyses to determine whether the neural activity described 

above reflects the selection process or can be accounted for by task or behavioral 

confounds. First, widespread cortical propagation in our task could reflect target selection 
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or an intrinsic lateralization of cortical activity (e.g., left-sided whisker deflections always 

evoke more widespread cortical activation). To distinguish between these possibilities, 

two cohorts of mice were trained with opposite target-distractor assignments. In previous 

analyses we aligned all data with respect to target-distractor orientation. Here, we show 

behavioral performance (Figure 2.7A) and neural activity separately according to target 

assignment (Figure 2.7B target aligned right hemisphere, n=3 mice and n=25 sessions; 

Figure 2.7C target aligned left hemisphere, n=2 mice, n=14 sessions). Note that 

propagation from S1 to frontal and other parietal cortices occurs selectively on target 

trials, irrespective of the side of target assignment. Therefore, these differential patterns 

of cortical activation reflect learned adaptations to our task, rather than intrinsic 

lateralization. 

 In our task, most target trials followed a correct rejection and shortened inter-trial 

interval (80%), while a minority of target trials was not preceded by a correct rejection 

and followed a long inter-trial interval (20%). It is possible that the mice in our task 

implemented a strategy of using the distractor stimulus to orient attention to the target 

whisker field rather than solely attending the target stimulus. To determine the likelihood 

of this strategy, we compared behavioral performance on target trials (Figure 2.7D) and 

hit-related neural activity (Figure 2.7E) separately according to the presence of a 

preceding correction rejection. The similar behavioral performance (hit rate, paired t-test, 

p=0.63, t(38)=-0.49; reaction time, paired t-test, p=0.77, t(38)=0.29) and neural activity 

suggest that the distractor stimulus was not utilized to enhance target detection. 
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 Next, we sought to confirm our Ca2+ imaging findings with local field potential 

(LFP) recordings, which have much higher temporal resolution. We recorded LFP signals 

from layer 5 of S1, wMC and ALM, in target aligned and distractor aligned hemispheres 

(not simultaneously recorded). We compared target-evoked responses in target aligned 

cortices (Figure 2.8 A-C) to distractor-evoked responses in distractor aligned cortices 

(Figure 2.8 D-F). We find that early post-stimulus activity, likely reflecting the initial 

feedforward sensory sweep, is similar in target aligned and distractor aligned S1 and wMC 

(Figure 2.8 G, H; peak 1, occurring within 50 ms post-stimulus). Late activity does diverge 

in S1 and wMC between target and distractor recordings. In ALM, notably, the large post-

stimulus activity in target recordings is nearly absent in distractor recordings. These LFP 

data support our Ca2+ imaging findings of minimal subcortical filtering of the sensory 

response followed by robust attenuation across cortex. 

 To further understand how neural activity relates to movements during the task, 

in four additional sessions we imaged whisker movements during task performance and 

analyzed task aligned whisker motion energy. We present two example sessions in Figure 

2.9, in which we plot whisker motion energy for target and distractor whiskers aligned to 

target and distractor stimulus trials. We find that whisker movements increase on target 

trials in both target and distractor whiskers approximately 100 ms after stimulus onset 

(Figure 2.9 A, B, E, F) (latency, n=4; target whiskers: 100 +/- 10 ms; distractor whiskers: 

129 +/- 4 ms). This increase in bilateral whisker movements is before the onset of licking 

(>200 ms, due to lockout window), and therefore appears to be part of a response motor 
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sequence (Musall et al., 2019). Whisker motion energy on distractor trials remained at 

pre-stimulus levels or increased late in the trial (Figure 2.9G, H), for target and distractor 

whiskers. In comparing the onset of neural signals (LFP) to the onset of behavior (whisking 

and licking) we find that the cortical signals precede overt behavior. Our data are 

therefore consistent with activation of wMC and ALM triggering a whisking and licking 

response sequence. 

We conducted additional analyses of the widefield imaging data to determine 

whether the observed propagation to frontal cortex for target stimuli is predictive of 

response initiation. The alternative hypothesis is that propagation reflects a learned 

stimulus association that may be independent of responding. To distinguish between 

these hypotheses, we calculated choice encoding (Britten et al., 1996b) for each pixel 

(Figure 2.10), comparing activity on hit trials (response present) versus miss trials 

(response absent). The average spatial map of target stimulus choice encoding is shown 

in Figure 2.10A (left). This analysis revealed pixels with modest positive (increased on hit 

trials) and negative (increased on miss trials) values of choice encoding. However, none 

of the pixel values were significantly different than zero after correction for multiple 

comparisons (Figure 2.10A, right). 

We reasoned that hit versus miss outcomes may depend on both the state of the 

mouse as well as the strength of the stimulus-evoked responses. To isolate the latter 

component, we recalculated choice encoding based on the difference in activity between 

early and late lockout period activity (see Methods). With this method, we observed large 
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and significant choice encoding values in target aligned wMC and bilateral ALM (Figure 

2.10B). We also observed focal increases in choice encoding in target aligned S1 and RSP, 

but these regions did not reach statistical significance after correction for multiple 

comparisons (Figure 2.10B). Thus, cortical activation of frontal cortex on target trials is 

predictive of response initiation.   

Quantification of functional connectivity across cortex 

Finally, we sought to determine whether the differences in propagation for target versus 

distractor stimuli are reflected in the correlation patterns, or ‘functional connectivity’, 

between sensory and motor cortices. To do this, we created pixel-by-pixel correlation 

maps for S1, wMC, and ALM in target aligned or distractor aligned hemispheres as seed 

regions of interest (ROIs). We show the correlation maps for the full trial data, which 

include the pre-stimulus, peri-stimulus, and response windows for all stimulus trial types 

(Figures 2.11A-F). The most striking findings are regional structure and symmetry. The 

spatial correlation patterns are highly similar for wMC and ALM seeds, which are quite 

different from S1 seeds (compare Figures 2.11A/D with 2.11B/E, C/F). This regional 

structure illustrates that the correlation values reflect local neural activity rather than 

global imaging artifacts. Regarding symmetry, for all three cortical regions, the target 

aligned and distractor aligned seed maps are qualitatively extremely similar (compare 

Figure 2.11A-C with 2.11D-F). 

Despite these similarities, we do find significant differences in correlations 

between S1 and wMC (r2, target 0.84±0.01, distractor 0.76±0.01, paired t-test, p=2.9e-7, 
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t(38)=6.2, n=39) and between S1 and ALM (r2, target 0.80±0.01, distractor 0.68±0.02, 

paired t-test, p=8.6e-10, t(38)=8.1, n=39). (Figure 2.11G). The largest differences in target 

aligned and distractor aligned correlations were between S1 and ALM (ANOVA, p=1.6e-8, 

F(2,37)=30.3, with post-hoc Tukey comparison) (Figure 2.11G). To determine whether 

these differences are persistent or related to specific phases of the task, we ran the 

correlation analyses separately for the pre-stimulus, peri-stimulus, and response 

windows. We found that differences in correlations for target aligned versus distractor 

aligned S1 to wMC (Figure 2.11H) and S1 to ALM (Figure 2.11I) were significantly larger in 

the response phase compared to the pre-stimulus phase (ANOVA with post-hoc Tukey 

comparison, S1-wMC, p=0.0004; S1-ALM, p=0.0005). However, even in the pre-stimulus 

phase, there was a small yet significant increase in S1 to ALM correlation in target aligned 

compared to distractor aligned hemispheres (paired t-test, p=0.0018, t(38)=3.4) (Figure 

2.11I). Overall, these data are inconsistent with large, global changes in synaptic plasticity 

or functional connectivity driving task performance, but rather implicate more focal, 

possibly pathway-specific, adaptations. 
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Discussion 

We developed a Go/NoGo selective detection task to study the neural processes of 

sensory selection in the mouse somatosensory whisker system. Mice learned to respond 

to target whisker deflections and ignore contralateral, distractor whisker deflections, 

achieving expert performance within 2 to 3 weeks of training (Figure 2.2). The main 

finding of this study is robust attenuation of distractor compared to target stimulus 

processing between mono-synaptically coupled cortical regions S1 and wMC (Figures 2.3-

2.6). We interpret this observation as reflecting the presence of an intra-cortical 

attenuating filter, suppressing higher order processing of unattended stimuli (A. M. 

Treisman, 1964). 

We note important differences between our study and previous studies of the 

neural correlates of sensory selection. In our task, target and distractor receptive fields 

were assigned at the onset of training and remained constant throughout the learning 

process. This contrasts with previous studies in primates, in which the target and 

distractor assignments are cued each block or trial. Moreover, our target and distractor 

stimuli were always across hemispheres, rather than varying in proximity. Yet, despite 

differences in training, species, sensory modality, stimulus details, and recording 

technique, we do note remarkable similarities with previous studies. As in the primate 

visual system, we observe progressive distractor suppression along the cortical hierarchy 

(Figure 2.6D) (Moran & Desimone, 1985; Tootell et al., 1998; Treue, 2001). Comparing 

modulation amplitudes between studies is problematic because they vary widely 
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depending on task and stimulus details. However, generally, within thalamus and primary 

visual cortex, attentional modulations of approximately 10% have been reported 

(McAlonan et al., 2008; Motter, 1993; Tootell et al., 1998), which is similar to the 8.8% 

average modulation we observed in primary somatosensory cortex. Within higher order 

sensory cortices, attentional modulations of 50 to 65% have been reported (Moran & 

Desimone, 1985; Tootell et al., 1998), which is similar to the 61.0% and 72.1% average 

modulations we observed in wMC and ALM, respectively. 

What is the nature of distractor suppression? One possibility is that suppression is 

reactive, that once a distractor is detected, another brain region initiates an inhibitory 

brake to prevent further processing. This type of transient activation is observed, for 

example, in prefrontal cortex during stop-signal reaction time tasks at the detection of a 

‘stop’ signal (Aron & Poldrack, 2006; Hanes et al., 1998). A second possibility is that 

suppression is proactive, already deployed in the initial conditions of the brain regions 

receiving the distractor stimulus. Insofar as we do not observe additional transient 

activations for distractor stimuli, our data support the second explanation of proactive 

suppression. 

Given our localization of an attenuating filter between S1 and wMC, there are 

multiple possible mechanisms for implementing this filter. The most direct mechanism 

would be bidirectional modulation of the S1-wMC intra-cortical projection pathway. 

Previous studies of whisker detection have identified increased sensory processing with 

learning in wMC and in specific S1-wMC projection neurons (Chen et al., 2015; Le Merre 
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et al., 2018). Whether this pathway decreases in strength when aligned with a distractor 

has not been studied. However, such a finding of bidirectional modulation would provide 

strong evidence for involvement of this pathway in specific stimulus selection, rather than 

general task engagement. Additionally, regulated propagation between S1 and wMC may 

involve subcortical loops through the striatum (Alloway et al., 2006) or posterior medial 

thalamus (Kleinfeld et al., 1999), or cortical feedback projections from PFC to wMC or 

from wMC to S1 (Xu et al., 2012; Zagha et al., 2013). For example, wMC to S1 feedback 

may strengthen (target aligned) or weaken (distractor aligned) the reciprocal S1 to wMC 

feedforward pathway. Strengthening or weakening may occur through feedback 

targeting of excitatory, inhibitory or disinhibitory S1 neurons (Kinnischtzke et al., 2014; S. 

Lee et al., 2013; Petreanu et al., 2009; Rocco & Brumberg, 2007; Zagha et al., 2013). Our 

task provides an excellent platform for studying the plasticity and cellular/circuit 

contributions of each of these mechanisms towards target enhancement and/or 

distractor suppression. Alternatively, our findings are inconsistent with strong reductions 

in ascending sensory drives to distractor aligned S1 (Figures 2.3-2.6 and 2.8) or large, 

global reductions in the structural or functional connectivity between distractor aligned 

S1 and the rest of cortex (Figure 2.11). 

While our study identifies a sensory filtering process distal to S1, other studies 

have identified sensory gating in S1 and earlier subcortical structures. Previous studies of 

the rodent whisker system have examined differences in sensory processing during 

periods of whisking versus non-whisking. In general, these studies find reductions in 



66 

 

sensory responses during whisking (S. Chakrabarti & C. Schwarz, 2018; S. Crochet & C. C. 

Petersen, 2006; Fanselow & Nicolelis, 1999; Ferezou et al., 2007; Lee et al., 2008), which 

is already present in the first sensory brainstem relay (S. Chakrabarti & C. Schwarz, 2018). 

This sensory gating process is likely mediated by both top-down cortical (S. Chakrabarti & 

C. Schwarz, 2018; Lee et al., 2008) and neuromodulatory (Eggermann et al., 2014) inputs. 

Thus, modulations of sensory processing may occur all along the ascending sensory 

pathway, including brainstem, thalamus, and cortex. Why different behavioral contexts 

engage different mechanisms of sensory gating is currently unknown. 

Finally, we currently do not know how wMC contributes to the sensory selection 

process. This cortical region has been studied extensively with respect to whisking, 

specifically in establishing its set-point, initiation, and amplitude modulation (Carvell et 

al., 1996; Hill et al., 2011). Consistent with this, we find that wMC activation on target 

trials correlates with bilateral increases in whisking (Figure 2.9). Alternatively, more 

recent studies have demonstrated roles for this same region in orienting behaviors and 

action suppression (Ebbesen et al., 2017; Erlich et al., 2011; Zagha et al., 2015). Our study 

demonstrates, at the representational level, a possible additional function of regulating 

the propagation of sensory processing for sensory selection. And yet, wMC is only one of 

the many routes by which a whisker stimulus can initiate a motor output (Kleinfeld et al., 

1999). Defining how wMC contributes to sensory-motor processing in this task and in 

other behavioral contexts will be a major focus of future investigations. 
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Figures and Legends 

Figure 2.1: Treisman Attenuation Model 

 

This model of selective attention proposes that both attended and unattended signals 
enter an early sensory store. At some point in the processing stream, however, an 
attenuating filter suppresses unattended signals while allowing attended signals to 
propagate forward for higher order processing. 
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Figure 2.2: Behavior Paradigm and Measures of Selective Detection 
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(A) Illustration of the behavioral setup. Mice are head-fixed in the behavioral rig with 
piezo-controlled paddles within their whisker fields bilaterally. Each paddle is assigned as 
target (purple) or distractor (green) at the start of training. Mice report stimulus detection 
and receive rewards from a central lickport. (B) Task structure. Each trial consists of an 
inter-trial interval, a stimulus and 200ms lockout, and a 1 s response window. Trial type 
as determined by the stimulus could be target, distractor or catch (no stimulus). (C) 
Calculation of discriminability d’, as the separation between hit rate and false alarm rate. 
(D) Performance trajectories for all mice (n=43 mice) and box and whiskers summary plot. 
Those used for imaging studies (n=5 mice) are indicated in blue.  Mice were considered 
expert once they achieved a d’>1 for three consecutive days. (E) Comparison of d’ for 
novice mice (first day of training on impulse control) and expert mice (n=43 mice, paired 
sample t-test, p=3.7e-20, t(42)=16.71). (F) Performance measures for the imaging sessions 
(n=39 sessions). Lines below plot denote statistical significance. (G) Example session data 
showing reaction time distributions for target and distractor trials. 
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Figure 2.3: Sensory and Motor Cortical Representations Using Widefield Imaging 

 

(A) Illustration of the imaging setup (left) and example frame from the through-skull 
GCaMP6s imaging (right). Surface vessels appear as dark striations overlaying the brain 
parenchyma. Bregma is indicated by the central ink blot. ALM, anterior lateral motor 
cortex; wMC, whisker region of primary motor cortex; S1, primary somatosensory cortex; 
bf, barrel field; RSP, retrosplenial cortex. (B) Cortical activity (dF/F) following whisker 
deflections in an anesthetized mouse (left), to localize the sensory and motor whisker 
representations. Cortical activity following reward-triggered licking in a naïve mouse 
(right), to localize licking-related activity. (C) Cortical activity on target trials during the 
two sequential imaging frames of the lockout period in expert mice performing the 
detection task (grand average, n=39 sessions). Black arrow indicates whisker stimulus 
onset, which coincides with the start of the first imaging frame. (D) Same as [C], but for 
distractor trials. Note the differential propagation of cortical activity depending on trial 
type. Scale bars in [A] and [B] are 1mm. 
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Figure 2.4: Cortical Activity Patterns across All Trial Types 

 

(A) Hit trials. Black arrows indicate alignment to stimulus onset (left three panels) or 
response onset (right three panels). The third frame aligned to stimulus (300 ms) is the 
first frame after the lockout and within the response window. Note the strong activity in 
contralateral S1 (pink arrows) with propagation to wMC (white arrows) and ALM, prior to 
response generation. (B) False alarm trials, with the same plot structure as in [A]. Asterisks 
mark elevated activity in the S1-limb regions, bilaterally. (C) Spontaneous trials (no 
stimulus alignment). (D) Miss trials. As there is no response on these trial types, we plot 
an extended series of post-stimulus activity. (E) Correct rejection trials, with the same plot 
structure as in [D]. Note the strong activity in S1 (pink arrow) yet lack of propagation to 
wMC (white arrow) and ALM. Scale bar in [A] is 1 mm. 
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Figure 2.5: Spatial Maps of Stimulus Encoding 

 

We quantified stimulus encoding as the separation between stimulus absent and stimulus 
present d’, computed pixel-by-pixel. (A) Map of target stimulus encoding during the two 
sequential frames of the lockout period (black arrow represents stimulus onset). (B) Map 
of distractor stimulus encoding during the same time windows as in [A]. (C) and (D) 
Significance maps of the right panels of [A] and [B], respectively. The significance threshold 
determined by the Bonferroni correction for multiple comparisons is indicated by the 
arrow on the color bar (Bonf). Pixels with smaller p-values (warmer colors) have d’ values 
significantly above 0. For target stimuli, we observed widespread stimulus encoding 
including in multiple frontal and parietal regions. For distractor stimuli, significant 
stimulus encoding is restricted to S1.   
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Figure 2.6: Quantification of Target vs Distractor Stimulus Propagation within Cortex 

 

For each session, we compared target stimulus encoding in target aligned cortices to 
distractor stimulus encoding in distractor aligned cortex. (A-C) Scatter plots of target 
versus distractor encoding in S1 (A), wMC (B) and ALM (C). Each data point is one session 
(n=39 sessions). Note that the data are broadly distributed in S1, and highly biased 
towards stronger target encoding in wMC and ALM. (D) Summary data, comparing 
reductions in distractor encoding within each region (values above each data point) and 
between regions (lines below graph denote statistical significance). Reductions in 
distractor encoding are significantly larger in wMC and ALM compared to S1. 
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Figure 2.7: Similar Behavior and Neural Activity Across Target Assignments and Trial 

Structures 
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(A) Discriminability d’ and reaction times reported (box and whisker plots) separately for 
mice with left or right target whisker field assignment. None of the behavioral measures 
were significantly different between these two populations. (B) Cortical activity during the 
lockout period for target trials (top) and distractor trials (bottom) for sessions in which the 
target was assigned to the left whisker field (represented by the right cortical hemisphere) 
(n = 3 mice, n = 25 sessions). (C) Same as [B], but for sessions in which the target was 
assigned to the right whisker field (represented by the left cortical hemisphere) (n = 2 mice, 
n = 14 sessions). Signal propagation to frontal cortex correlated with target assignment. 
(D) Hit rates and reaction times reported (box and whisker plots) separately for target 
trials with and without a preceding correct rejection. None of the behavioral measures 
were significantly different between these two trial structures. (E) Cortical activity during 
the lockout period for hit trials following a correct rejection (top) and hit trials not 
following a correct rejection (bottom) (n=39 sessions for both). 
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Figure 2.8: LFP Signal Transformation across S1, wMC and ALM 

 

LFP signals were recorded from layer 5 of S1, wMC and ALM. (A-F) Each trace reflects 
average LFP signals from one session, across all target trials in target aligned cortices (A-
C) and across all distractor trials in distractor aligned cortices (D-F). The count in each 
panel refers to the number of recorded sessions included. (G-I) Target aligned (black) and 
distractor aligned (grey) LFP signals, averaged across sessions. We observed three distinct 
event-related potentials, two negative-going (1 and 3) and one positive-going (2). Event 
1, which is large in S1, small in wMC and absent in ALM, likely reflects the initial 
feedforward sensory sweep. This event is similar in target and distractor recordings. Event 
3, which is large in ALM and moderate in wMC and S1, is highly dissimilar between target 
and distractor recordings. 
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Figure 2.9: Bilateral Whisker Movements on Target Trials 
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Whisker movement energy was calculated from target or distractor whisker fields and 
plotted separately for target and distractor trials. Significant changes in post-stimulus 
compared to pre-stimulus whisker movements are indicated as black bars above each plot. 
Two example sessions are shown, session 1 (A-D) and session 2 (E-H). (A, E) Target whisker 
energy on target trials; (B, F) distractor whisker energy on target trials; (C, G) target 
whisker energy on distractor trials; (D, H) distractor whisker energy on distractor trials. 
Significant increases in whisker movements occurred for both target and distractor 
whiskers approximately 0.1 seconds after target stimulus onset (A, B, E, F). Target and 
distractor whisker movements to distractor stimuli were either non-significant throughout 
the trial (C, D) or delayed (G, H).    
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Figure 2.10:  Spatial Maps of Choice Encoding 

 

We quantified choice encoding as the separation between response absent and response 
present d’, computed pixel-by-pixel. (A) Choice encoding map (left) and significance map 
(right) during the last frame of the lockout period. None of the pixels reached significance 
after correcting for multiple comparisons (Bonferroni). (B) Same as in [A], except with 
choice encoding computed on the difference in activity between the two lockout frames. 
With this approach, significant choice encoding was observed in target aligned wMC and 
bilateral ALM. 
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Figure 2.11: Spatial Correlation Analysis 

 

(A-F) Correlation maps for full trial data. Seed regions of interest (marked by asterisk) 
included S1, wMC and ALM, in target aligned (A-C) and distractor aligned (D-F) cortices. 
(G) Summary data of average pairwise correlation values between S1-wMC, wMC-ALM 
and S1-ALM. Statistical comparisons were made between target aligned (T) and distractor 
aligned (D) correlations, with significance denoted by lines connecting adjacent columns. 
Statistical comparisons were also made based on the differences in target aligned and 
distractor aligned correlations between regions, with significance denoted by lines 
connecting pairs of columns. (H, I) Similar structure as in [G], except for comparisons of 
target aligned and distractor aligned correlations (H, S1-wMC; I, S1-ALM) for different trial 
phases (pre, pre-stimulus; stim, peri-stimulus; resp, response).  
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Chapter 3: Global, Low Amplitude Cortical State 

The prestimulus manuscript was an effort to address the underlying activity before a 

successful versus unsuccessful trial outcome. Does an animal subject prepare a response 

before a stimulus arrives or is the decision making process entirely reliant on neuronal 

signaling after the stimulus presentation? We anticipated that a predictive prestimulus 

condition; we termed the potential condition a prestimulus ‘state.’ Although we discussed 

whether we could defend this state as an optimal state, we resolved that without 

presenting an optimal versus suboptimal state, our interpretation on whether cortical 

optimality had been achieved was beyond the purview of the investigation. Nevertheless, 

by evaluating the cortical activity in the prestimulus period, we were determined that 

prestimulus activity did predict trial outcome; specifically, as presented here, the 

prestimulus activity predicted a response outcome.  

As this work was built upon the previous widefield manuscript, my contributions 

to this work were similar in nature to the attenuation work: animal surgery and behavior, 

fluorescence data analyses, and stimulus encoding. Importantly, we defended a 

prestimulus analysis using the sliding window method with optimized sliding window 

parameters for our data analysis. Consistent results with regards to previously reported 

post-stimulus localization and stimulus encoding were essential for defending this work.  

A minor change has been made regarding this adapted chapter. All statements 

using the terminology ‘in a selective detection task’ have been replaced with ‘for a 
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selective detection task’.  This was changed for this work only, purely based on 

consistency with previous works. The changes adapted are noted in blue. 

An attempt was made regarding choice encoding in the prestimulus epoch. 

Because we identified a low amplitude cortical state preceding all responses, we would 

expect prestimulus activity to show negative choice encoding (lower than chance choice 

probability). We found marginal negative choice probability in target aligned single unit 

analyses, which confirmed our manuscript claims. When the choice probability analysis 

was performed for the widefield calcium imaging, we found additional evidence for global 

prestimulus choice probability (not in manuscript). This data was not included in the 

original manuscript because we are still pondering its interpretation. When this analysis 

was initially run across mice, we identified more significance in lower than chance choice 

probability for focal distractor aligned regions in the prestimulus epoch for target trials 

only. We would then expect negative choice encoding in the identified distractor aligned 

regions. Still to be explored, focal localization of negative choice encoding may indicate 

evidence for region-specific suppression preceding successful outcome trials. To note, the 

significance was observed in distractor aligned and task-related motor cortices and 

retrosplenial cortex. The results, however, have not yet been reproduced. Therefore, the 

original figure is included in Appendix Figure 1 and can be further discussed as a possible 

future direction. As the widefield choice probability analysis still yielded global 

significance, it did not change our prestimulus interpretations, but may point to additional 

prestimulus mechanisms for a prestimulus cortical state.   
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Abstract 

Spontaneous neuronal activity strongly impacts stimulus encoding and behavioral 

responses. We sought to determine the effects of neocortical prestimulus activity on 

stimulus detection. We trained mice for a selective whisker detection task, in which they 

learned to respond (lick) to target stimuli in one whisker field and ignore distractor stimuli 

in the contralateral whisker field. During expert task performance, we used widefield Ca2+ 

imaging to assess prestimulus and post-stimulus neuronal activity broadly across frontal 

and parietal cortices. We found that lower prestimulus activity correlated with enhanced 

stimulus detection: lower prestimulus activity predicted response versus no response 

outcomes and faster reaction times. The activity predictive of trial outcome was 

distributed through dorsal neocortex, rather than being restricted to whisker or licking 

regions. Using principal component analysis, we demonstrate that response trials are 

associated with a distinct and less variable prestimulus neuronal subspace. For single 

units, prestimulus choice probability was weak yet distributed broadly, with lower than 

chance choice probability correlating with stronger sensory and motor encoding. These 

findings support a low amplitude, low variability, optimal prestimulus cortical state for 

stimulus detection that presents globally and predicts response outcomes for both target 

and distractor stimuli.  

 

Keywords 

Neocortex, widefield imaging, sensory detection, choice probability, prestimulus  
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Introduction 

The brain is never silent. Throughout sleep and wakefulness, spontaneous neuronal 

activity reflects dynamic, self-organized states that affect the generation and propagation 

of neuronal signals (Arieli et al., 1995; Arieli et al., 1996; Ferezou et al., 2007; McCormick 

et al., 2015; McGinley, David, et al., 2015; McGinley, Vinck, et al., 2015; Niell & Stryker, 

2010; Poulet et al., 2012; Zagha & McCormick, 2014). Changes in spontaneous activity 

impact the amplitude of neuronal sensory responses (S. Crochet & C. C. Petersen, 2006; 

Haider & McCormick, 2009; Poulet & Petersen, 2008; Sachdev et al., 2004; Shimaoka et 

al., 2018) and behavioral outcomes (Boly et al., 2007; Fiebelkorn & Kastner, 2021; Kim & 

Sejnowski, 2021; Mazaheri et al., 2011; McGinley, David, et al., 2015; van Kempen et al., 

2020). In awake subjects, these changes correlate with changes in task engagement, 

movement, and internal (cognitive or egocentric) versus external (perceptive or 

allocentric) processing modes (Andreou & Borgwardt, 2020; Boly et al., 2007; de Lange et 

al., 2013; Murphy et al., 2018; Musall et al., 2020; Salkoff et al., 2020; Stringer et al., 2019). 

However, most studies of sensory processing and sensory detection normalize post-

stimulus by prestimulus activity, thereby obscuring the impacts of spontaneous activity. 

And yet, understanding how spontaneous activity impacts neuronal signaling and task 

performance will reveal important principles of context-dependent sensory and motor 

processing. 

 This study focuses on prestimulus activity during a sensory detection task, for 

which many open questions remain. First, is the ability to detect a stimulus improved by 
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high or low prestimulus activity (Figure 3.1A)? A common model of decision-making is 

integration to bound, which proposes that a decision is made once neuronal activity 

reaches a specific threshold (Gold & Shadlen, 2007; Hanes & Schall, 1996; Roitman & 

Shadlen, 2002). Within this model, higher prestimulus activity may bring a network closer 

to decision threshold and/or increase the gain of a network and therefore promote 

stimulus detection (Haider & McCormick, 2009). Consistent with this framework, studies 

in primary visual cortex demonstrate that higher prestimulus activity leads to larger 

amplitude stimulus responses (Haider et al., 2007). However, higher prestimulus activity 

may reduce cortical stimulus responses (Hasenstaub et al., 2007), due to increased 

cortical inhibition and reduced intrinsic and synaptic excitability. Studies in the primary 

somatosensory and primary auditory cortices support this alternative noise suppression 

framework, demonstrating that lower prestimulus activity, or activity in a low-arousal 

synchronized state, leads to larger amplitude stimulus responses (McGinley, David, et al., 

2015; Petersen et al., 2003; Sachdev et al., 2004).  

In somatosensory (whisker) detection tasks, impacts of prestimulus activity on 

stimulus encoding and detection have been studied at the level of membrane potential 

through whole cell patch clamp recordings. While prestimulus membrane potential 

activity of primary somatosensory cortical neurons did predict sensory response 

amplitudes (Sachidhanandam et al., 2013), it did not predict trial outcome (e.g., hit versus 

miss) (Sachidhanandam et al., 2013; Yang et al., 2016). However, these whole cell 

recording studies are limited by relatively small samples sizes (10s of neurons) which may 
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obscure the ability to resolve small yet widespread contributions of prestimulus activity 

to task performance.   

A second open question is whether the prestimulus activity that impacts stimulus 

encoding and detection is focal and restricted to specific cortical regions or global and 

observed throughout neocortex (Figure 3.1B). Global activity may reflect changes in 

arousal and movement (Musall et al., 2020; Salkoff et al., 2020; Stringer et al., 2019) 

whereas focal changes may reflect shifts in, for example, attentional focus or response 

preparation (Fries et al., 2001; Ghose & Maunsell, 2002; Luck et al., 1997; Moore & 

Armstrong, 2003). It is currently unknown whether prestimulus activity in sensory 

compared to motor cortices have larger impacts on task performance, and whether the 

directionality of that impact is the same across neocortical regions (Shimaoka et al., 2018). 

In addition to considering different cortices individually, is there an ‘optimal state’ of 

prestimulus activity that includes the contributions of multiple cortices (Figure 3.1C)? A 

third open question is whether prestimulus activity has the same or different impacts on 

target (attended) versus distractor (unattended) stimulus encoding and detection (Figure 

3.1A, C). For example, the same prestimulus activity may promote discrimination 

(response to targets, no response to distractors) or bias responses for detection (respond 

to or ignore all stimuli). Lastly, do the neurons that express task-relevant changes in 

prestimulus activity overlap with or are they distinct from the neuronal populations that 

express strong post-stimulus sensory and/or motor activity (Figure 3.1D)? 
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 We address these questions in the context of a selective whisker detection task in 

mice. We trained mice to respond (lick) to deflections on one whisker field (target) and 

ignore deflections in the contralateral whisker field (distractor) (Aruljothi et al., 2020; 

Zareian et al., 2021). Using widefield Ca2+ imaging, we previously identified the cortical 

regions that are highly active post-stimulus and pre-response, and therefore may 

contribute to stimulus detection: the whisker region of primary somatosensory cortex 

(S1), the whisker region of primary motor cortex (wMC), and the pre-motor licking region 

anterior lateral motor cortex (ALM) (Aruljothi et al., 2020). We consider these cortical 

regions to be ‘task-related’ and all other cortical regions to be ‘task-unrelated’. Here, we 

implement a sliding window normalization to preserve prestimulus fluctuations. We 

investigate the impacts of prestimulus activity levels on trial outcome, for both target and 

distractor stimuli. Additionally, we use dimensionality reduction of the imaging data to 

assess prestimulus variability across cortices. Lastly, we assess prestimulus choice 

probability of single units in task-related cortices to determine the distribution of these 

signals across the neuronal population. 
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Materials and Methods 

The experimental datasets in this study were previously published, including the whisker 

monitoring, widefield GCaMP6 imaging (Aruljothi et al., 2020) and single unit recordings 

(Zareian et al., 2021).  Below, we summarize these experimental methods and describe 

the new analyses used in this study. 

Animal Subjects 

Experiments were approved by the IACUC of University of California, Riverside. Both male 

and female adult mice were used, either wild type (C57BL/6J, BALB/cByJ) or transgenic 

(Snap25-2A-GCaMP6s-D, backcrossed to BALB/cByJ). GCaMP6s expressing transgenic 

mice were used for widefield Ca2+ imaging; wild type mice were used for whisker imaging 

and electrophysiology. Mice were housed in a 12-hour light/dark cycle; experiments were 

conducted during the light cycle.  

Animal Surgery 

For headpost implantation, mice were placed under isoflurane (1-2%), ketamine (100 

mg/kg), and xylazine (10 mg/kg) anesthesia. The scalp was cut (10 mm x 10 mm) and 

resected to expose the skull. A lightweight metal headpost was fixed onto the skull using 

cyanoacrylate glue. An 8 mm × 8 mm headpost window exposed most of the dorsal cortex. 

The skull was covered with a thin layer of cyanoacrylate gap-filling medium (Insta-Cure, 

Bob Smith Industries) to seal the exposed skull and enhance skull transparency; the 

window was sealed with a quick-dry silicone gel (Reynolds Advanced Materials). Mice 

were administered meloxicam (0.3 mg/kg) and enrofloxacin (5 mg/kg) for three days post-
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op. Water restriction began after recovery from surgery (minimum of three days). 

Training on the behavior rig began after one day of water restriction. For 

electrophysiological recordings, craniotomies and durotomies (< 0.5 mm diameter) were 

performed under isoflurane anesthesia. Full recovery from anesthesia was allowed (up to 

60 minutes) before placement on the behavioral rig. 

Animal Behavior 

Training stages, metrics of learning, and criterion for expert performance in the Go/NoGo 

selective whisker detection task were previously reported (Aruljothi et al., 2020). Briefly, 

head-fixed and water deprived mice were placed on a behavioral apparatus controlled by 

Arduino and custom MATLAB (MathWorks) scripts. Two paddles were placed in whisker 

fields on the opposite sides of the face, designated as target or distractor. Target and 

distractor designations were assigned at the beginning of training and remained constant. 

Following variable intertrial intervals, mice could receive a target trial (rapid deflection of 

the target paddle), distractor trial (rapid deflection of the distractor paddle) or catch trial 

(no whisker stimulus). Mice responded by licking at a central lick port. Hits (responses to 

target stimuli) were rewarded with ~5 μL of water, correction rejections (not responding 

to distractor stimuli) and correct withholdings (not responding during the catch trial) were 

rewarded with a shortened intertrial-interval (ITI) and a subsequent target trial. Licking 

during the ITI was punished by resetting the ITI, effectively a time-out.  
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Mice were considered expert once they achieved a discriminability d’ > 1 (separation of 

hit and false alarm response rates) for three consecutive days:  

𝑑𝑖𝑠𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑′ = 𝜙𝐻𝑖𝑡 𝑟𝑎𝑡𝑒
−1  −  𝜙𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒

−1  
d’ Discriminability - Equation 4 

All recordings were conducted in expert mice while performing the task.  

Widefield Imaging 

Widefield imaging during expert task performance was conducted as previously reported. 

The dataset consists of 38 behavioral/imaging sessions, recorded from 5 mice.  The 

through-skull imaging window included bilateral dorsal parietal and frontal cortices. 

Illumination from a 470 nm LED source (Thorlabs) was band-pass filtered for excitation 

(Chroma ET480/40x) and directed onto the skull via a dichroic mirror (Chroma 

T510lpxrxt). Emitted fluorescence was band-pass filtered (Chroma ET535/50m) and 

collected using an RT sCMOS camera (Diagnostic Imaging, SPOT Imaging software). 

Images were acquired at 10 Hz with a final resolution of 142 x 170 pixels (41 μm per pixel). 

Image sequences were imported to MATLAB for subsequent analyses. 

Electrophysiology  

Single unit recordings during expert task performance were conducted as previously 

reported (Zareian et al., 2021). The dataset consists of 32 behavioral/recording sessions, 

recorded from 22 mice, yielding a total of 936 single units from three cortical regions 

(target aligned whisker region of primary somatosensory cortex [S1], whisker region of 

motor cortex [wMC], and anterior lateral motor cortex [ALM]). Coordinates (mm, from 
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bregma): S1 3.2-3.7 lateral, 1-1.5 posterior; wMC 0.5-1.5 lateral, 1-2 anterior; ALM 1-2 

lateral, 2-2.5 anterior. Recordings were targeted to layer 5 of S1, wMC, and ALM, 

approximately 500 to 1100 μm below the pial surface. Electrophysiological recordings 

were conducted using a silicon multielectrode probe (NeuroNexus A1x16-Poly2-5mm-

50s-177), positioned using a Narishige micro-manipulator. Neuralynx amplifier (DL 4SX 

32ch System) and software were used for data acquisition and spike sorting. 

Whisker imaging 

Whisker imaging during expert task performance was conducted as previously reported 

(Aruljothi et al., 2020). The dataset consists of 9 behavioral/recording sessions, recorded 

from 4 mice. Images were acquired with a CMOS Camera (Thorlabs DCC3240M camera 

with Edmund Optics lens 33-301) at either 20 or 60 Hz. No systematic difference between 

20 and 60 Hz was observed (data not presented). The imaging field of view included both 

paddles and the mouse’s head (including whiskers and snout).   

Data Analysis  

Data analyses were performed in MATLAB using custom scripts. 

Engagement period 

To ensure that analyses were conducted during task engagement, ‘engaged periods’ were 

defined as continuous behavioral performance of at least 10 minutes without 60 seconds 

of no responding. For sessions with more than one engaged period, the longest engaged 

period was used for further analyses. Furthermore, sessions were included in subsequent 

analyses only if performance was at expert level: discriminability d’>1. For sessions with 
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multiple stimulus amplitudes, trials were combined for further analyses only when the 

differences in response rates were 15% or less. 

Sliding Window Normalization and Trial-Based Neuronal Activity 

The trial-based imaging time window consisted of the prestimulus epoch (1 s), the 

stimulus and lockout epoch (0.2 s), and the allowable response epoch (1 s), a total of 2.2 

s. A raw movie F was created by concatenating fluorescence activity from consecutive 

trials, where Fn(i,j,f) is the fluorescence of each pixel (row i and column j) in frame f for 

each trial n. To generate normalized fluorescence values, we first determined the sliding 

window local mean for each pixel, computed every 2 s using a +/- 200 s window size 

[FSW(i,j,n)]. Then, we calculated the normalized fluorescence (Salkoff et al., 2020) (see also 

Supplemental Figure 3.1) for each pixel at each frame as:   

𝑑𝐹𝑆𝑊/𝐹𝑆𝑊(𝑖, 𝑗, 𝑛) = [𝐹𝑛(𝑖, 𝑗, 𝑓) − 𝐹𝑆𝑊(𝑖, 𝑗, 𝑛)]/𝐹𝑆𝑊(𝑖, 𝑗, 𝑛) 
Sliding Window Fluorescence - Equation 5 

Trialwise average movies were then compiled by first indexing outcome type (hit, miss, 

false alarm, correct rejection) and then by averaging pixelwise activity across 

corresponding frames of corresponding trials. Frames were aligned to the stimulus onset 

frame (stimulus aligned) where stimulus occurred or aligned to the first frame containing 

the response (response aligned) where response occurred. Trials with responses during 

the lockout period were considered premature and excluded from the analysis. Trials with 

responses before the stimulus but within the prestimulus imaging period were considered 

spontaneous, dF/F reported but not further analyzed. Grand average movies (n = 38 
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sessions) were aligned to bregma, flipped at bregma according to target-distractor 

assignment, and then averaged across all sessions. Trialwise average, standard deviations, 

and differences in averages and standard deviations were compiled and aligned as above, 

but across the full 1 s prestimulus epoch (n = 38 sessions). 

Difference in Prestimulus Fluorescence 

Fluorescence differences for target and distractor assignment were calculated per trial 

type per session. Prestimulus frames 6 to 10 (capturing the last 500 ms of the prestimulus 

window, before stimulus onset) were trialwise and pixelwise averaged per session. 

Session data were excluded from this analysis if there were fewer than 5 incorrect trials 

in the session (excluding 9 sessions for target Miss, 6 sessions for distractor FA). For target 

fluorescence difference frames (n = 29 sessions), Hits fluorescence mean frame was 

subtracted from Miss fluorescence mean frame. For distractor fluorescence difference 

frames (n = 32 sessions), FA fluorescence mean frame was subtracted from CR 

fluorescence mean frame. Response prestimulus frames were subtracted from no 

response prestimulus frames because no response fluorescence activity was generally 

higher than response fluorescence activity. Prestimulus difference frames were aligned, 

assigned, and averaged across all sessions (as above). To normalize for differences in 

changes in fluorescence across regions, we indexed the pixelwise mean of fluorescence 

map differences across sessions normalized by the pixelwise deviation in fluorescence 

map differences across sessions (μi,j/σi,j). For quantification of target versus distractor 



 101 

prestimulus difference, normalized difference (index), and significance, frames were 

averaged across pixels for scalar values. 

Regression Analyses between Prestimulus Activity and Reaction Time for Response Trials 

The correlation between activity during prestimulus period (dF/F) and reaction times (RT) 

for response trials (Hits and FAs) were computed as a linear regression from which we 

obtained the slope of the linear fit with 95% confidence interval and coefficient of 

determination, R2, as the goodness of fit (B. Zareian et al., 2020) (Curve Fitting Toolbox in 

Matlab). For this analysis, we assigned prestimulus dF/F as the independent variable and 

reaction time as the dependent variable. 

Defining Cortical Regions of Interest 

For task relevant and task irrelevant cortical regions, we defined a center pixel according 

to pixel resolution (41 μm) and alignment with bregma as center pixel value = 

[coordinates from bregma (in mm)]/0.041 mm. Thus, we converted coordinates from 

bregma (mm) [wS1 ±3.4 lateral, 1.2 posterior; wMC ±1.2 lateral, 1.2 anterior; ALM ±1.5 

lateral, 2.3 anterior; RSP ±0.4 lateral, 2.4 posterior; limb S1 ±2.0 lateral, 0.6 posterior] to 

coordinates from bregma (pixels); we then systematically defined rectangles about the 

center pixel with width (±medial/lateral) and height (±anterior/±posterior) in pixels [wS1 

10, 25 ; wMC 15, 15; ALM 15, 15; RSP 10, 25; limb S1 25, 25]. Rectangles that fell off-frame 

were cropped at frame borders instead of shifted. Subsequent analyses for region specific 

Hits-Miss, dF/F versus RT, and seed correlation used these defined ROIs (n = 29 sessions, 

target; n = 32 sessions, distractor). 
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Seed Correlation Analysis 

Correlation maps were trialwise generated for target and distractor hemispheres and for 

wS1, wMC, ALM, RSP, and limb S1 seed regions of interest (ten maps per session). Seed 

regions were defined as the mean of the pixels in the indicated ROI (rectangles defined 

above). Pairwise correlation coefficients were calculated between the defined seed 

region and all other pixels. The R2 values are reported as the square of the pixelwise 

correlation coefficient. 

Stimulus Encoding in Post-Stimulus Fluorescence 

Stimulus encoding was quantified as the neurometric d’ (K. Britten et al., 1992) of 

prestimulus fluorescence (stimulus absent) and post-stimulus fluorescence (stimulus 

present) during the lockout epoch, as previously applied to imaging data (Aruljothi et al., 

2020). We excluded session data from this analysis if there were fewer than 4 incorrect 

trials in the session (excluding 5 sessions for target Miss, 2 sessions for distractor FA). 

Neurometric d’ was calculated separately according to target and distractor assignment 

and then according to trial type outcome. This resulted in 6 different datasets for stimulus 

encoding: all target, all distractor, hit trials, miss trials, false alarm trials, and correct 

rejection trials. Prestimulus and post-stimulus fluorescence histograms were plotted into 

receiver operating characteristic (ROC) curves and the area under the curve (AUC) was 

converted to d’ as the neurometric: 

𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑑′
𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 =  √2 ∗ 𝑍𝐴𝑈𝐶  

d’ Stimulus Encoding - Equation 6 
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Region specific pixel values for stimulus encoding were identified as the maximum value 

within the defined regions of interest (ROI), performed for target aligned and distractor 

aligned regions of S1, wMC, and ALM. The difference in stimulus encoding in S1 between 

the response and the no response trials for both target and distractor stimuli was 

calculated as the percentage: 

%𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙 − 𝑛𝑜 𝑟𝑒𝑠𝑝𝑠𝑒 𝑡𝑟𝑖𝑎𝑙

(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙 + 𝑛𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑟𝑖𝑎𝑙)/2
∗ 100 

% diff Stimulus Encoding - Equation 7 

Whisker Motion Energy During Behavior 

The imaging window was cropped by region of interest: target or distractor paddle 

stimulus or whisker fields. The function vision.VideoFileReader was used for optimal 

reading of video frames into MATLAB. Whisker movement per frame (Δframe) was 

calculated as the pixelwise frame by frame mean gray value (MGV) difference (ΔMGVpixel). 

Whisker motion energy (WME) was defined as the sum of the squares across pixels: 

𝑊𝑀𝐸 =  (𝛥𝑙)2 = ∑ (
𝛥𝑀𝐺𝑉𝑝𝑖𝑥𝑒𝑙

𝛥𝑓𝑟𝑎𝑚𝑒
)

2

𝑝𝑖𝑥𝑒𝑙𝑠

 

Whisker Motion Energy - Equation 8 

WME traces of the cropped videos of the paddles were used to detect stimulus events 

(target/distractor). This was performed by using a constant threshold and aligning 

detected events from the video to their temporally closest events recorded using 

Arduino. The traces from the cropped videos of whisker fields were transformed (z-

scored) to have a mean of zero and standard deviation of 1 for the purpose of comparison 

across sessions. Subsequently, WME data were temporally aligned by trial type to 
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stimulus onset (target/distractor) determined from the videos. The prestimulus analysis 

window was the 500 ms preceding stimulus onset. 

Principal Component Analysis of Fluorescence 

Fluorescence was averaged across anatomic masks [target and distractor S1, wMC, ALM, 

and retrosplenial (RSP) cortex] per frame per trial per session. Mean regions were 

normalized and placed into a covariance matrix. The covariance matrix was decomposed 

into an eigenmatrix, eigenvectors were sorted by eigenvalue weight, and eigenvectors 

were projected into component space. All frames were separated by trial type, plotted in 

PC space, and differentiated by trial epoch (prestimulus, post-stimulus and pre-response 

lockout, and allowable response window). Component data for prestimulus frames were 

further analyzed: confidence area ellipses of 1 standard deviation, σ, was defined by the 

ellipsoid distribution of prestimulus frames in PC space per session. Centroids were 

defined as the geometric means of prestimulus frames in PC space per session.  

Spike Sort and Cluster of Single Units 

Using Neuronalynx recording system, signals were sampled at 32 kHz, band-pass filtered 

from 0.1 Hz to 8000 Hz (wideband), and high pass filtered at 600 Hz to 6000 Hz (for spike 

detection). Putative spikes crossed thresholds of 20 to 40 μV, isolated from baseline noise. 

KlustaKwik algorithm in SpikeSort3D software was used for spike sorting and clustering. 

Clusters were defined by waveform and cluster location in feature space (peaks and 

valleys); movement artifacts (atypical waveforms or those occurring across all channels) 

were removed, as previously reported (Zareian et al., 2021). Subsequent analyses were 
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conducted using MATLAB software (MathWorks). For analyses of population data, spike 

times of single units from each recording session were combined into a multiunit. 

Sensory and Motor Encoding of Single Units 

Sensory and motor encoding of single units was performed as previously reported 

(Zareian et al., 2021). Sensory encoding was quantified by the neurometric d’ using 

stimulus absent spiking (300 ms prestimulus) and stimulus present spiking (100 ms post-

stimulus). Motor encoding was quantified by the neurometric d’ using response absent 

spiking (300 ms prestimulus) and response present spiking (100 ms pre-response). 

Distributions were plotted into ROC curves and the AUC was converted to d’ as a 

neurometric: 

𝑠𝑝𝑖𝑘𝑒 𝑑′
𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑜𝑟 𝑑′

𝑚𝑜𝑡𝑜𝑟 =  √2 ∗ 𝑍𝐴𝑈𝐶  

d’ Single Unit Encoding - Equation 9 

Choice Probability of Single Units  

For choice probability analyses, we ensured that there was a minimum of 5 trials per trial 

type (minimum 5 Hits and 5 Miss). Choice probability (%) was quantified as the separation 

of prestimulus spiking in Hits versus Miss trials. ROC and AUC were calculated from the 

distributions of Hits and Miss across trials, 500 ms to 0 ms before stimulus onset, averaged 

over 50 ms nonoverlapping intervals, as previously reported (Zareian et al., 2021).  

Local Field Potential Analyses 

A single middle site from each silicon probe recording was used for local field potential 

(LFP) analyses; use of other sites led to qualitatively similar results (data not shown). To 



 106 

obtain the LFP, wideband signals were down sampled to 200 Hz using MATLAB function 

decimate. Power spectral densities were calculated using the welch method (MATLAB 

function pwelch). Frequency resolution step for calculating power was 0.78 Hz. 

Subsequently, trial-by-trial spectral densities were averaged from a one second period 

before stimulus onset and pooled across all trials and sessions. For spike triggered average 

(STA) analyses, we used the 400 ms window surrounding each prestimulus spike (±200 

ms) for power analyses. We included spikes from 1 sec to 200 ms before the stimulus so 

that STA windows would not overlap with the stimulus onset. For STA power calculation, 

LFP signals and spikes were not analyzed from the same recording site to minimize spike 

waveform artifacts (Fries et al., 2001).  

Statistical Analyses  

For imaging statistics, threshold for statistical significance was corrected for multiple 

comparisons with a Bonferroni correction. For all dF/F and dF/F differences (Miss–Hits, 

CR–FA, means, standard deviations), statistical analyses determined whether dF/F frames 

were significantly different than zero across sessions (one sample t-test). For region 

specific dF/F of Hits-Miss trials across defined ROIs, statistical analysis determined 

whether dF/F within ROIs was significantly different from zero (one-sample t-test) and 

whether dF/F across ROIs was significantly different from each other (one-way ANOVA 

and multiple comparison Tukey-Kramer test). For analyses of correlations between dF/F 

and RT within ROIs, statistical analyses of region-specific linear regression determined 

whether slopes within ROIs were significantly different from zero (one-sample t-test) and 
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whether slopes across ROIs were significantly different from each other (one-way 

ANOVA).  For whisker analyses statistics, since the number of samples in the whisking 

data were low, we used one-sample Kolmogorov-Smirnov test (kstest in MATLAB) to test 

for normality assumptions. Since the data mostly violated the normality assumption, 

Wilcoxon signed rank (signrank in MATLAB) and rank sum (ranksum in MATLAB) tests 

were used for comparisons between prestimulus and post-stimulus whisking and 

between trial types (Hits vs. Miss, FA vs. CR), respectively. For stimulus encoding 

(neurometric d’), statistical analyses determined whether the trialwise (Hits, Miss, FA, CR) 

maximum pixel value in S1 was significantly different than zero across sessions (one 

sample t-test). For differences in stimulus encoding, statistical analyses determined 

whether the stimulus aligned S1 maximum pixel value was significantly different between 

response (Hits, FA) and no response (Miss, CR) outcome types across sessions (two 

sample t-test). For PCA ellipsoid variance and centroid distribution, statistical analysis 

determined whether ellipsoid variance or centroid distribution was significantly different 

between response and no response prestimulus frames, evaluated per component. Box 

whisker plots show the distribution of prestimulus frames or ellipsoid centroids per trial 

type with outliers, evaluated per component. For choice probability of single units, 

statistical analysis determined whether distributions within regions were significantly 

different from chance (one-sample t-test, chance level 50%) and whether distributions 

between regions were significantly different from each other (ANOVA and post-hoc Tukey 

test). For the significance assessment of sensory and motor encoding of single units, one-
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sample t-test was used to compare d-prime distributions to zero. For the relationship 

between sensory and motor encoding and choice probability of single units, statistical 

analysis determined whether regression slopes were significantly different from zero 

(95% confidence bounds for slopes). Box whisker plots were used to show distributions 

of sensory encoding, motor encoding, and choice probability of single units evaluated 

within regions. Single unit and multi-unit average data are presented as mean +/- 

standard error of the mean, unless otherwise indicated. For LFP and STA LFP power 

comparisons between hit and miss or FA and CR trials, statistical analysis determined 

whether response trials were different from no response trials for each frequency step 

(paired t-test, p<0.01).  
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Results  

Global prestimulus activity predicts response outcomes 

We considered how prestimulus activity may influence sensory detection (Figure 3.1A-D). 

High prestimulus activity may promote detection of target and distractor stimuli; 

alternatively, low prestimulus activity may promote detection of target and distractor 

stimuli or discrimination of target from distractor stimuli (Figure 3.1A). The prestimulus 

activity that influences behavioral outcomes may present focally in specific task-related 

regions or globally across neocortex (Figure 3.1B). A low variability, specific ‘optimal state’ 

configuration may promote stimulus detection or target/distractor discrimination (Figure 

3.1C). At the level of single units, prestimulus contextual signals and post-stimulus sensory 

and motor signals may be carried by distinct neuronal ensembles (sparse coding) or 

overlapping neuronal ensembles (dense coding) (Figure 3.1D). We tested these 

possibilities for a selective whisker detection task, in which head-fixed mice learn to 

respond to rapid deflections in one whisker field (target) and ignore identical deflections 

in the opposite whisker field (distractor) (Figure 3.1E). In this task, the possible trial 

outcomes include hit (response to target), miss (no response to target), false alarm (FA, 

response to distractor), and correct rejection (CR, no response to distractor) (Figure 3.1F). 

Prior to each stimulus was a variable inter-trial interval (ITI), in which mice were required 

to withhold responding or else reset the ITI. The prestimulus epoch we used for analyses 

is the last 1 second of the ITI immediately prior to stimulus onset (Figure 3.1G). 
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We used widefield Ca2+ imaging to measure neuronal activity during expert task 

performance in frontal and parietal cortices, bilaterally (Figure 3.1F). Our imaging dataset 

consists of 38 imaging sessions from 5 mice, using a single task-engaged period per 

session (see Methods). Due to the highly lateralized cortical whisker representation, we 

could clearly define target aligned and distractor aligned cortical regions, contralateral to 

the side of the whisker stimulus. To preserve activity fluctuations prestimulus, we 

normalized raw fluorescence activity using a sliding window method (400 s sliding 

window, see Methods and Supplemental Figure 3.1).  

In Figure 3.2 we present grand average fluorescence activity for each trial 

outcome, aligned to the onsets of both the stimulus and response. In the first column of 

Figure 3.2 we show the last prestimulus frame, which is representative of the full 

prestimulus epoch (Supplemental Figure 3.2A). We note stark differences in prestimulus 

activity for different trial outcomes, particularly when comparing hit (Figure 3.2A) and 

miss (Figure 3.2D) trials. We observed lower prestimulus activity for hit versus miss and 

for FA versus CR trials, indicating that lower prestimulus activity precedes ‘response’ 

compared to ‘no response’ outcomes. Interestingly, low prestimulus activity appears to 

be specifically related to stimulus detection rather than response preparation. This is 

evidenced by higher activity preceding spontaneous responses (Spont, a response during 

the ITI, Figure 3.2C) compared to stimulus-related responses (hits and FA, Figures 3.2A 

and 3.2B). The magnitude of the prestimulus differences is large, on the same scale as the 

post-stimulus activity. Additionally, prestimulus activity suppression preceding response 
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trials appears to be widely distributed throughout dorsal neocortex, rather than being 

focused on the task-related regions of S1, wMC and ALM. 

 We quantified the differences in prestimulus activity between response and no 

response trials for target and distractor stimuli (Figure 3.3A-F). Shown in this figure are 

data from the last 500 ms of the prestimulus (similar results were obtained using 1 s 

prestimulus epochs, Supplemental Figure 3.2C, E). We subtracted the average 

prestimulus fluorescence activity of hit from miss trails (Figure 3.3A). The positive values 

indicate higher activity preceding miss compared to hit trials (n=29 sessions, averaged 

across the entire field of view: dF/F μ[Miss-Hits]=2.1%±0.3%; one-sample t-test, t(28)=8.1, 

p=7.9e-09). The largest differences were not in the task-related whisker or licking regions 

but appear to be focused on the limb regions of somatosensory cortex. While dF/F is 

already a normalized metric, we sought to further control for possible regional differences 

in imaging sensitivity. Therefore, we conducted the same subtraction analysis, but on 

normalized dF/F values, indexed using the pixelwise mean and standard deviation across 

sessions. With this analysis (Figure 3.3B), the activity differences are more uniformly 

distributed across frontal and parietal cortices, with an average miss-hit difference of 1.2 

standard deviations. 

 To determine the spatial regions of significance, on each pixel we performed a 

paired, two-sample t-test on average prestimulus fluorescence activity in hit versus miss 

sessions (p-value of each pixel shown in Figure 3.3C). All neocortical regions within our 

field of view demonstrated statistical significance, even with a Bonferroni corrected alpha 
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level to control for multiple comparisons (28,960 pixels). Thus, lower prestimulus activity 

on upcoming target trials is predictive of hit versus miss outcomes. This is observed for all 

cortical regions within our field of view, including task-related and task-unrelated regions. 

Similar findings were obtained for measures of variability (Supplemental Figure 3.2B,D,F), 

with increased standard deviation of prestimulus activity on miss compared to hit trials 

globally throughout dorsal cortex.   

 There were some notable similarities and differences for distractor trials (Figure 

3.3D-F). Similar to target trials, higher activity was observed preceding no response (CR) 

versus response (FA) trials (n=32 sessions, averaged across the entire field of view: dF/F 

μ[CR-FA]= 0.36± 0.11% one-sample t-test, t(31)=3.38, p=0.002). However, the fluorescence 

differences were approximately 5-fold higher for target trials compared with distractor 

trials (dF/F μ[Miss-Hits]=2.1% versus μ[CR-FA])=0.36%). A second difference is that for distractor 

trials, the focus on the somatosensory limb regions was observed in dF/F, standard 

deviation, indexed, and p-value maps (Figure 3.3D-F, Supplemental Figure 3.2B,D,F). The 

regions with the lowest p-value were slightly above the Bonferroni corrected alpha level. 

Thus, while lower activity preceding distractor trials was also predictive of a response, the 

effect size was smaller and less widespread. 

 In addition to predicting response outcome, we also sought to determine whether 

prestimulus activity levels predict reaction time on response trials (Figure 3.3G-J). For 

these analyses, we determined the slope and coefficient of determination (R2) of linear 

fits for prestimulus dF/F versus reaction time for Hit and FA trials (separately) for each 
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session. As shown in the example session in Figure 3.3G, a positive slope indicates a 

correlation between higher prestimulus activity and longer post-stimulus reaction times. 

Across all sessions, we found a significant positive correlation (positive slope) on Hit trials 

between prestimulus activity and reaction time (n=30 sessions, slope=0.64±0.23, one-

sample t-test: t(29)=2.73, p= 0.011;  R2=0.074±0.023) (Figure 3.3H). Thus, for target 

stimuli, lower prestimulus activity predicts both Hit versus Miss outcomes and faster 

reaction times. We performed the same regression analyses for FA trials (Figure 3.3I,J). In 

contrast to Hit trials, FA trials across sessions did not show a consistent correlations 

between prestimulus activity and reaction time (n=32 sessions, slope=-0.45±1.48, one-

sample t-test: t(31)=-0.3, p=0.76; R2=0.12±0.021) (Figure 3.3J). 

The above analyses demonstrated that lower prestimulus activity broadly across 

dorsal cortex predicted response (versus no response) outcomes and faster reaction 

times (for hit trials). Subsequent analyses determined if these correlations displayed 

regional differences. We defined regions of interest (ROIs) bilaterally (target aligned and 

distractor aligned: wS1, wMC, ALM, retrosplenial cortex (RSP), limb S1). For Hits-Miss 

prestimulus dF/F, parietal regions (wS1, RSP, and limb S1) showed significantly larger 

differences compared to frontal regions (wMC and ALM) (one-way ANOVA, F(289)=7.53, 

p=7.1e-10, post-hoc multiple comparisons) (Supplemental Figure 3.3). However, we did 

not observe differences amongst these ROIs in the relationships between prestimulus 

activity and reaction time (Supplemental Figure 3.4, one-way ANOVA, Hits: F(149)=0.63, 

p=0.64, FA: F(159)=0.2, p=0.94). 
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In addition to analyzing these regions individually, we also determined whether 

their prestimulus spatial correlations predicted response outcomes. We defined seed 

ROIs as above and determined the pairwise correlations across prestimulus frames for 

each pixel (Supplemental Figure 3.5). Interestingly, this analysis revealed widespread 

spatial correlations preceding no response trials (higher R2 values outside of the seed 

region). Inversely, our data demonstrate spatial decorrelation preceding response trials. 

Similar patterns were observed for both target and distractor trials (Supplemental Figure 

3.5A and B, respectively). 

Contributions of stimulus encoding and movement on trial outcomes 

Next, we assessed whether the differences in trial outcome were reflected in differences 

in stimulus responses in the neocortex. We quantified the stimulus encoding during the 

lockout period (200 ms post-stimulus and pre-response) for each trial type (Figure 3.4). 

For each pixel, we measured stimulus encoding as the neurometric sensitivity index d’ 

(Figure 3.4A-F) and determined whether these values were significantly different from 

zero (Figure 3.4G-L). We observed significant stimulus encoding in the stimulus aligned 

primary somatosensory cortex (S1) for each trial type (one-sample t-test, n= 38, hits: 38, 

miss: 33, FA: 36, CR: 38, hits: d’ μS1=0.98±0.06, t(37)=15.58, p=7.79e-18; miss: d’ 

μS1=0.69±0.08, t(32)=9.08, p=2.26e-10; FA: d’ μS1=1.05±0.09, t(35)=12.08, p=4.87e-14; CR: 

d’ μS1=0.58±0.049, t(37)= 11.89, p=3.32e-14). Thus, significant stimulus responses occur 

in S1 for both response and no response trials. However, we did observe a 40-60% 

reduction in S1 stimulus encoding in no response compared to response trials for target 
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and distractor stimuli (hits vs. miss: d’ μ% difference=39.84±7.44%, paired-sample t-test, 

t(32)= 4.51, p=8.26e-05; FA vs. CR: d' μ% difference=61.62±7.26%, paired-sample t-test, t(35)= 

6.72, p=8.75e-08, see Methods). In summary, response trials are associated with reduced 

prestimulus activity and enhanced post-stimulus sensory responses. 

Recent studies have demonstrated widespread neuronal activity increases due to 

movement (Musall et al., 2020; Salkoff et al., 2020; Stringer et al., 2019). Therefore, in a 

separate set of recordings, we determined the magnitude of prestimulus and post-

stimulus whisker movements on different trial outcomes. Whisker movement was 

quantified as whisker motion energy (WME, normalized by z-score, see Methods). In 

Figure 3.5A-C we present these analyses for one example session for target stimuli. On 

hit trials, WME increased dramatically post-stimulus (Figure 3.5A, purple trace). We 

interpret this as whisking being part of the ‘uninstructed’ behavioral response sequence 

(Musall et al., 2020). Importantly, we also observed differences in WME prestimulus, with 

higher WME on miss compared to hit trials (mean +/- STD WME μHits=-0.45 ± 0.32, WME 

μMiss=0.19 ± 0.71, rank sum=1516, p=0.001, two-sided Wilcoxon rank sum test; Figure 

3.5A and 3.5B). In Figure 3.5C, we show prestimulus WME for each target trial, with the 

color of the bar indicating trial outcome. High prestimulus WME was more likely to result 

in a miss trial, even though many miss trials were not preceded by high prestimulus WME. 

Similar results were observed across all sessions (n=9 session, Figure 3.5D, Wilcoxon sign 

rank test, mean +/- STD prestimulus WME μHits=-0.12 ± 0.17 vs. prestimulus WME 
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μMiss=0.12 ± 0.15, signed rank=1, p=0.008). Thus, high prestimulus movement was 

associated with some, but not all, of the miss trials. 

 Differences in prestimulus WME were not as pronounced on distractor trials 

(Figure 3.5E-H). We did notice a trend towards increased WME on CR trials. However, this 

effect was not statistically significant across sessions (n=9 session, Figure 3.5H, Wilcoxon 

sign rank test: prestimulus WME μFA=-0.14 ± 0.2 vs. prestimulus WME μCR=-0.04 ± 0.10, 

signed rank=8, p=0.098). Notably, the effects of prestimulus movement on target and 

distractor trial outcomes parallel the effects of prestimulus neuronal activity: low 

prestimulus neuronal activity and low prestimulus WME predict response outcomes, yet 

these effects are much more pronounced for target compared to distractor trials.  

Analyses of prestimulus activity variance and subspace in reduced spatial dimensions 

Next, we sought to characterize frame-by-frame variability in our imaging data. To 

accomplish this, we used principal component analysis (PCA) to reduce the spatial 

dimensionality (Figure 3.6). First, we extracted regional single-trial fluorescence activity 

using anatomic masks from the dorsal neocortex centered on regions of interest: 

target/distractor S1, RSP, wMC, and ALM (Figure 3.6A). We concatenated data from all 

frames, trials, sessions, and mice and performed PCA on this combined matrix. This 

enabled us to convert all sessions into the same lower-dimensional axes. Most of the 

variability in our imaging data could be explained by the first component (~91%) and the 

first two components explained ~96% of the variance (Figure 3.6B-D). Therefore, further 

analyses focused on these first two spatial components.  
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 We determined the distributions of prestimulus activity from single frames within 

this PCA space (Figure 3.7). In Figure 3.7A, we plot the data from two example sessions, 

in which each data point is a single prestimulus frame preceding a hit (purple) or miss 

(yellow) trials. We noticed that the data from hit trials were more tightly clustered than 

the data from miss trials. To quantify this observation, first we fit the data from each trial 

type with a covariance ellipse. The shaded ellipses in Figure 3.7A represent a confidence 

area of 1 standard deviation, σ, which we used as a measure of framewise variability. 

Figure 3.7B plots the confidence area for prestimulus activity on hit and miss trials for all 

sessions (n=29 sessions). The prestimulus activity variance is significantly lower for hit 

compared to miss trials (effect size, Cohen’s d=1.92; paired t-test, t(28)= 9.43, p=1.74e-

10). 

 We conducted the same analyses for distractor trials and obtained similar results. 

The two example sessions in Figure 3.7C show more tightly clustered prestimulus activity 

for response (FA) compared to no response (CR) trials. Across all sessions (n=32), the 

confidence areas are significantly lower for FA compared to CR trials (effect size, Cohen’s 

d=1.11; paired t-test, t(31)= 7.40, p=1.22e-8, Figure 3.7D). Thus, for both target and 

distractor trials, lower framewise prestimulus variability predicts response outcomes.   

 In addition to differences in variability, we also noticed that the prestimulus 

activity resides in different subspaces preceding response and no response trials. As 

evident in Figure 3.7A, within each session the centroids of the hit and miss confidence 

areas are offset, whereas between these two sessions the hit centroids occur at similar 
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positions. In Figure 3.7E, we plot the centroid position for all sessions (n=29 sessions). 

Indeed, we find that across all sessions the centroid positions preceding hit trials are 

separated from the centroid positions preceding miss trials. For target trials, this 

separation is significant, for both PC1 and PC2 axes (Figure 3.7F, PC1: d=2.19, paired t-

test, t(28)=8.55, p=1.34e-9; PC2: d=1.24, t(28)=4.01, p=2.07e-4). In contrast, for distractor 

trials, the centroids of prestimulus activity show greater overlap for response (FA) and no 

response (CR) trials (Figure 3.7G). However, we do still find significantly different centroid 

positions on distractor trials along PC1 (Figure 3.7H, PC1: d=0.57, paired t-test, t(31)=2.99, 

p=0.0027; PC2: d=0.43, t(31)=1.30, p=0.10). These data indicate that the neuronal activity 

across dorsal neocortex preceding response trials is less variable than no response trials 

and occupies a separate subspace. Additionally, like prestimulus neural activity (Figure 

3.3) and movement (Figure 3.5), the differences in variability and subspace position are 

larger for target compared to distractor trials. Taken together, these data specify an 

optimal neuronal and behavioral state for stimulus detection. 

Distribution of prestimulus choice probability among single units 

The above analyses of widefield imaging data assessed population neuronal activity. In 

this final series of analyses, we sought to determine the distribution of task-relevant 

prestimulus activities among single units (Figure 3.8). During the same selective whisker 

detection task, we recorded 936 single units, from target aligned S1 (377 units), target 

aligned wMC (338 units) and target aligned ALM (221 units). First, we quantified the 

prestimulus choice probability of all units on target trials. Choice probabilities (CP) of 
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single units in each region were marginally below chance (Figure 3.8A, CP μS1=49.10 ± 

0.16, one-sample t-test, t(376)=-5.72, p=2.21e-8, CP μwMC=49.44 ±0.2, one-sample t-test, 

t(337)=-2.82, p=0.005, CP μALM=49.64 ±0.19, one-sample t-test, t(220)=-1.92, p=0.06). 

These distributions were not significantly different across the three regions (two-way 

ANOVA: F(2,933)= 2.18, p=0.11 and post hoc Tukey: S1 vs. wMC, p=0.33; wMC vs. ALM, 

p=0.76; S1 vs. ALM, p=0.12). To increase spike density, we combined single units from 

each session (Behzad Zareian et al., 2020) and calculated the average prestimulus choice 

probability for these multiunit ensembles across all sessions. This analysis generated a 

slightly lower prestimulus choice probability than the analysis of single units (all regions: 

n=43 sessions, 47.62 ± 5.78, one-sample t-test, p=0.01). Prestimulus choice probability 

below chance indicates that lower activity predicts hit compared to miss outcomes, and 

therefore is consistent with the widefield imaging data. However, the distributions of 

these data indicate that only a small portion of single units show strong prestimulus 

choice probability. 

 Given this variability of single units, we next asked whether the units with strong 

prestimulus choice probability overlap with the units with strong post-stimulus sensory 

and pre-response motor encoding. To test this, we plotted prestimulus choice probability 

against post-stimulus sensory (Figure 3.8A) and pre-response motor (Figure 3.8B) 

encoding. The negative regression slopes show correlations between choice probability 

and sensory encoding for S1, and between choice probability and motor encoding for S1, 

wMC, and ALM (Figure 3.8C and 3.8D, one-sample t-test, sensory encoding slope: mS1=-
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1.96 ± 0.31, t(375)=-6.34, p=6.56e-10; one-sample t-test, motor encoding slope: mS1=-

2.05 ± 0.28, t(375)=-7.35, p=1.23e-12 , mwMC=-0.64 ± 0.26, t(336)=-2.49, p=0.013, mALM=-

0.96 ± 0.28, t(219)=-3.46, p=6.41e-4). Thus, units in these regions have combined 

neuronal representations such that those representing prestimulus behavior context 

overlap with those with post-stimulus (sensory) and pre-response (motor) task-relevant 

encoding. This overlap may be influenced by a common factor such as firing rate 

(Supplemental Figure 3.6). Nevertheless, these analyses demonstrate that the subset of 

neurons that show the largest prestimulus suppression on hit trials are the same neurons 

that encode post-stimulus task features. 

Prestimulus LFP power and spike-LFP synchrony do not predict trial outcome 

Finally, we wondered whether the low amplitude, low variability prestimulus widefield 

Ca2+ signals preceding response trials reflect changes in neuronal synchrony. Specifically, 

this activity profile may reflect low frequency desynchronization observed during 

behavioral states of high arousal (Harris & Thiele, 2011; Zagha & McCormick, 2014). To 

test this, we analyzed local field potentials (LFPs) recorded from layer 5 of the target 

aligned wS1, wMC, and ALM (Figure 3.9). First, we compared prestimulus LFP power 

preceding hit and miss trials. We did not observe difference in LFP power (0-50 Hz) across 

all regions combined and did not observe any differences in low frequencies (0-20 Hz) in 

each region analyzed separately (Figure 3.9A-D). Similar results were obtained for FA and 

CR trials (Supplemental Figure 3.7A-D). Second, we measured the prestimulus spike 

triggered average (STA) LFP, as a measure of spike-LFP synchrony. Similarly, we did not 
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observe differences in prestimulus STA LFP preceding hit and miss trials (Figure 3.9E-H) or 

FA and CR trials (Supplementary Figure 3.7E-H). These negative findings suggest that the 

global activity differences observed in widefield Ca2+ imaging data are not due to a 

difference in neuronal synchrony. 
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Discussion 

The primary focus of this study is to determine whether and how neuronal activity before 

stimulus onset predicts trial outcomes during goal-directed behavior. We assessed this 

for both target and distractor stimulus detection. We find that lower prestimulus activity 

predicts detection of both target and distractor stimuli (Figures 3.2 and 3.3) and faster 

reaction times on Hit trials (Figure 3.3). This low activity state is distributed globally 

throughout dorsal cortex (Figure 3.3), maps onto a distinct, less variable subspace than 

activity preceding no response trials (Figure 3.7) and is represented most robustly in the 

subset of neurons also encoding post-stimulus sensory and pre-response motor task 

features (Figure 3.8). Additionally, this global low amplitude cortical state preceding 

response trials is associated with long-range spatial decorrelation (Supplementary Figure 

3.5) without changes in local synchronization (Figure 3.9).   

 The impacts of spontaneous activity on stimulus responses have been explored 

extensively in both physiological and computational studies. Increased spontaneous 

activity has been proposed to increase response gain by two primary mechanisms: 

depolarization to reduce membrane potential distance to spike threshold and increased 

variance to amplify the impacts of weak inputs (Cardin et al., 2008; Haider et al., 2007; 

Haider & McCormick, 2009; Hô & Destexhe, 2000; Rudolph & Destexhe, 2003; Shu et al., 

2003). Therefore, we were surprised to find that reduced prestimulus activity correlated 

with both enhanced stimulus detection (Figures 3.2 and 3.3) and increased sensory 

responses (Figure 3.4). And yet, our data are consistent with studies in primary 
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somatosensory and auditory cortices, demonstrating increased sensory responses with 

reduced prestimulus activity (Cardin et al., 2008; Hasenstaub et al., 2007; McGinley, 

David, et al., 2015; Sachdev et al., 2004). Future studies are required to determine the 

cellular and network mechanisms underlying increased responsiveness with low activity, 

with possibilities including reduced membrane conductance (Chance et al., 2002), 

reduced inhibition, and reduced synaptic depression. 

 Our study was conducted in the context of a somatosensory (whisker) detection 

task. It is not currently known, however, whether these findings will generalize to other 

sensory modalities and other types of tasks. Reduced network activity and reduced 

synaptic variance have been shown to predict a network with a discrete, all-or-none 

input-output function (Hô & Destexhe, 2000). This configuration may improve 

distinguishing the presence versus absence of a stimulus as needed for stimulus 

detection. Such a network state, though, would be predicted to poorly encode the precise 

features of a stimulus. Therefore, we speculate that tasks requiring discrimination of fine 

stimulus details may be optimal in a high activity network state with a continuous input-

output function. However, this remains to be tested.  

 Most studies of the impacts of spontaneous activity on sensory responses focus 

on primary sensory areas. However, stimulus detection tasks require the contributions of 

multiple cortices (de Lafuente and Romo 2006). Indeed, we have recently shown that the 

task in this study activates multiple sensory and motor cortices, including S1, wMC, and 

ALM (Aruljothi et al., 2020; Zareian et al., 2021). In this study we demonstrate that the 
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prestimulus activity predictive of trial outcome is global, involving all regions of dorsal 

neocortex. This global cortical state may reflect the coordination amongst multiple 

cortices, to improve not just stimulus encoding in primary sensory cortex, but the 

propagation of task-relevant signals throughout neocortex. Interestingly, we found 

prestimulus activity suppression to be largest in the same neurons that also strongly 

encode post-stimulus sensory and pre-response motor features, in S1, wMC, and ALM. 

This organization may ensure coordination not just between cortical regions, but among 

the specific neuronal ensembles involved in this stimulus detection task. Low activity in 

these specific neuronal ensembles may increase excitability and transmission by 

increasing membrane resistance and reducing synaptic depression.   

 Global changes in cortical state, as observed here, are traditionally associated with 

changes in arousal, driven by widespread ascending neuromodulatory systems (Zagha & 

McCormick, 2014). More recently, studies have shown that movement is associated with 

global increases in neocortical activity (Musall et al., 2020; Salkoff et al., 2020; Stringer et 

al., 2019). As with low activity preceding response trials, we also find that whisker 

movements are reduced preceding hit trials (Figure 3.5), consistent with previous reports 

(Kyriakatos et al., 2016; Douglas R. Ollerenshaw et al., 2012). We suspect that whisker 

movements impair detection for multiple reasons: 1) reafference signals from self-

generated movements (Fee et al., 1997) may obscure stimulus-evoked afferent signals, 2) 

self-generated movements may evoke top-down sensory gating and thereby suppress 

stimulus evoked signals (Shubhodeep Chakrabarti & Cornelius Schwarz, 2018), and 3) 
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centrally-mediated cortical activation associated with whisker movements (Poulet et al., 

2012) may reduce network excitability. And yet, our findings support a view of cortical 

state as higher dimensional than stationary versus moving (Zagha and McCormick 

2014;McGinley, 2015 #1163). Among Hit trials, we find a positive correlation between 

prestimulus activity and reaction time (Figure 3.3). This suggests that even within overt 

changes in arousal, the precise levels of cortical activity impact performance in our task, 

with the lowest prestimulus activity correlating with optimal performance.  

The neural processes that underlie the low amplitude, low variable widefield Ca2+ 

imaging signals preceding response trials could be due to multiple mechanisms. One 

possibility is that these low amplitude signals reflect a ‘desynchronized’ cortical state, as 

observed in whole-cell recordings, EEG, or LFP signals during wakefulness and high 

arousal compared to sleep and low arousal (Poulet & Petersen, 2008; Tan et al., 2014; 

Zagha & McCormick, 2014). To test this possibility, we analyzed LFP power and spike 

triggered average LFP power from three different cortical areas. Overall, these measures 

did not identify differences in cortical state preceding response versus no response 

outcomes. A second possibility is that the low amplitude Ca2+ imaging signals reflect low 

spiking activity. To test this possibility, we analyzed prestimulus spike rates from the same 

cortical areas as in the LFP analyses. Indeed, we observed significantly reduced spike rates 

before response compared to no response trials. Thus, the low amplitude Ca2+ imaging 

signals can, at least in part, be accounted for by reduced spike rates. However, we do 

recognize a difference in magnitude: the prestimulus reductions in dF/F are larger than 
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the reductions in spike rate when converted to a common metric (such as d’, data not 

shown). This may simply reflect a sub-sampling of spiking activity. However, a third 

possibility is that the low amplitude Ca2+ imaging signals reflect robust modulations of 

apical dendrites, with only modest impacts on axo-somatic spike rates. We suspect that 

most of the Ca2+ imaging signals reported here are derived from the apical dendrites of 

supragranular and infragranular pyramidal neurons. Local spikes in these apical dendrites 

have been shown to modulate axo-somatic spiking output (Branco & Häusser, 2011; 

Palmer et al., 2014; Smith et al., 2013). However, the long electrotonic distances between 

these compartments indicate the possibility of partial local control; robust prestimulus 

modulation of apical dendritic excitability may have only minor impacts on axo-somatic 

spike output, yet greatly impact dendritic integration and plasticity in response to sensory 

inputs. Recent studies have identified specific dis-inhibitory neural circuits that control 

the excitability of apical dendrites (Fu et al., 2015; Soohyun Lee et al., 2013; Pi et al., 

2013). Future studies, recording specifically from these interneuron populations, are 

needed to further assess this possibility. 
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Figures and Legends 

Figure 3.1: Predictions and Experimental Design for Testing Impacts of Prestimulus 

Activity on Sensory Detection and Discrimination  
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(A-D) Potential mechanisms of task-relevant prestimulus activity. (E-G) Experimental 
design. (E). Head-fixed mice are trained to discriminate between target whisker 
deflections (purple) and distractor whisker deflections (green), within opposite whisker 
fields. Mice report detection by licking a central lickport. The orange rectangle reflects the 
widefield Ca2+ imaging window. The inset below is a sample imaging frame, demarcating 
neocortical regions of interest in bilateral frontal and parietal cortices. (F) Classification of 
trial types and outcomes. Task performance is quantified by discrimination d’ as the 
separation between hit and false alarm rates. z, inverse cumulative function of the normal 
distribution. G. Trial structure, including a variable inter-trial interval, 1 s prestimulus 
window, 0.2 s stimulus and lockout (delay) window, and 1 s response window. The 
prestimulus window of interest in this study is the last 1 s of the inter-trial interval (blue 
shade), immediately before stimulus onset. Spont, spontaneous responses during the 
prestimulus window; Preme, premature responses during the lockout window. Scale bar 
in (E) is 1 mm. 
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Figure 3.2: Sliding Window Normalized Grand Average Fluorescence Activity (dF/F)  

 

Data are averages across all mice and all sessions (n=38 sessions). Activity in specific 
imaging frames is aligned to the stimulus onset (left, purple and green arrows for target 
and distractor stimuli, respectively) or response onset (black frame, black arrows, in rows 
A, B, and C). Warmer colors indicate higher activity. The pink arrowheads specify stimulus 
aligned whisker regions of S1, whereas the white arrowheads specify limb regions of S1 
(see atlas in leftmost panel in row C). The last prestimulus frame is shown in the first 
column (blue shade). Shown are hit trials (A), false alarm trials (B), spontaneous trials (C), 
miss trials (D), and correct rejection trials (E). Note the low (negative due to normalization) 
dF/F prestimulus activity in response trials (hit and false alarm), compared to the high dF/F 
prestimulus activity in miss trials. Scale bar in (C) is 1 mm. 
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Figure 3.3: Prestimulus Neuronal Activity Differences between Response and No 

Response Trials and Correlations with Reaction Time 
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(A) Grand average of prestimulus dF/F for miss minus hit trials. All pixel values within 
neocortex are greater than 0, indicating higher global activity preceding miss trials. (B) 
Similar to [A], except that the individual session dF/F signals were further indexed (μ/σ) to 
normalize for differences in fluorescence fluctuations. (C) Significance map for the data in 
[A]. Significance threshold with Bonferroni correction for multiple comparisons is indicated 
by the arrow (Bonf). For target trials, higher activity preceding no response trials is 
statistically significant throughout dorsal cortex. (D-F) Same structure as [A-C], except for 
CR minus FA trials. Note the more restricted range of scale bars in each panel, compared 
to target data. For distractor trials, higher activity preceding no response trials is 
marginally significant, most prominent in the S1 limb regions. Scale bar in (A) is 1 mm. (G) 
An example session showing a positive correlation between prestimulus activity (dF/F) and 
reaction time for individual Hit trials (slope=3.34, R2=0.10, dotted line is the linear 
regression). (H) Regression analyses across all sessions for Hit trials. The red data point is 
the example session in [G], the black data reflect the mean ± standard deviation across 
sessions (n=30 sessions). (I) FA trials in an example session, with a non-significant negative 
correlation between prestimulus activity and reaction time (slope=-1.6, R2=0.006). (J) 
Same as H but for FA trials (n=32 sessions).  
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Figure 3.4: Quantification of Stimulus Encoding for Each Trial Type 

 

(A-F) Neurometric d’ values were calculated for each pixel during the last frame of the 
lockout: after stimulus presentation and before the allowed response window. Data are 
grand average d’ maps from all sessions, showing all target trials (A), hit trials (B), miss 
trials (C), all distractor trials (D), FA trials (E), and CR trials (F). Note the larger stimulus 
encoding in response trials (B and E compared to C and F). Significance maps of the data 
in [A-F], respectively. Significance threshold with Bonferroni correction for multiple 
comparisons is indicated by the arrow (Bonf). For all trial types there is significant stimulus 
encoding in the stimulus aligned S1 whisker region. Scale bar in (A) is 1 mm. 
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Figure 3.5: Prestimulus and Post-Stimulus Whisker Movements in Each Trial Type 

 

(A) Peristimulus whisker motion energy (WME) on target trials in an example session, hits 
(purple) and misses (orange). On hits trials there was a dramatic increase in WME post-
stimulus and during the response window. Prestimulus, however, WME on hits trials was 
reduced compared to miss trials. (B) Quantification of data in [A], comparing prestimulus 
(pre) and post-stimulus WME for hit and miss trials. (C) Prestimulus WME values for each 
trial in the example session. (D) Summary data for all sessions (n=9). Note the reduced 
WME preceding hit compared to miss trials. (E-H) Same as above, but for distractor trials. 
While this example session shows moderately reduced WME preceding false alarm trials 
(E-G), this trend was not statistically significant across the full dataset (H). Data are 
presented as mean +/- STD, *p<0.05, **p<0.005. 
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Figure 3.6: Spatial Dimensionality Reduction for Single Trial Analyses 
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(A) Methodology for using principal component analysis (PCA) to reduce spatial 
dimensionality. Left, full images were parsed into 8 regional masks. Average dF/F within 
each mask for all trials and all sessions were appended into a single matrix, upon which 
PCA was performed. Right, frames with different trial outcomes were back projected to 
the first principal component (PC1) and plotted against their projection onto the second 
principal component (PC2). Transformed samples are colored based on their frame index: 
prestimulus (blue to white), post-stimulus and pre-response (yellow and orange), response 
(red to pink). (B) Original dataset, each data point represents a sample frame ROI-specific 
average, plotted against its change in fluorescence (dF/F) between target (x-axis) and 
distractor (y-axis) hemispheres. Black arrows represent the first two principal vectors. (C) 
Transformed dataset, each data point represents a sample frame plotted against its 
projection onto PC1 and PC2. (D) PCA scree plot. PCs are plotted according to their rank in 
variance, with accumulated variance plotted in red. The first two PCs were chosen for 
further analysis as they explain >95% variance of the untransformed dataset (PC1, 91%, 
PC2, 6%). (E) PCA biplot. Samples plotted against their normalized projection onto PC1 and 
PC2, with vectors representing individual ROIs according to their loadings. 
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Figure 3.7: Single Trial Analyses of Prestimulus Subspace Variance and Position 

According to Trial Outcomes 
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All data presented are from the last 500 ms of the prestimulus window (frames 6 to 10 of 
Figure 3.6A). (A) Prestimulus activity in PC space for hit (purple) and miss (yellow) trials of 
two example sessions. Each data point represents a single prestimulus frame. Overlaid are 
covariance ellipses for both trial outcome types (major radius, 1σ along PC1; minor radius, 
1σ along PC2). Note the reduced area and distinct position of the covariance ellipses for 
hit compared to miss trials. (B) Comparison of the ellipse area, as a measure of variability, 
across all sessions. (C and D) Same as [A] and [B], except for FA (green) and CR (gray) trials. 
Response trials (hit and FA) are preceded by less variable prestimulus activity compared 
to no response trials (miss and CR). (E) Centroid positions of the covariance ellipses in PC 
space for all sessions, for hit and miss trials (same color designation as above). Each data 
point represents the hit or miss centroid from one session. (F) Quantification of centroid 
positions on axes PC1 (left) and PC2 (right). (G and H) Same as [E] and [F], except for FA 
and CR trials. Prestimulus activity occupies distinct subspaces for response and no 
response trials, along both PC1 and PC2 for target trials and along PC 1 for distractor trials. 
*p<0. 01; **p<0.001; ***p<0.0001; n.s., non-significant. 
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Figure 3.8: Distribution of Prestimulus Choice Probability, Post-Stimulus Sensory, and 

Pre-Response Motor Encoding across Single Units in S1, wMC and ALM  

 

(A) Plots of sensory encoding (d’) versus choice probability (%) for single units in target 
aligned S1 (left), wMC (center), and ALM (right). Asterisks above box plots reflect 
comparisons of individual measures to chance (d’=0 and choice probability=50%). Scatter 
plots include linear fits of the single unit data. Single units in each of these three cortical 
regions show below chance prestimulus choice probability (tending yet not significant for 
ALM (p=0.06), significant for S1 and wMC) and positive post-stimulus sensory encoding. 
(B) 95% confidence bounds of the linear regression slope values. (C and D) Same as [A] and 
[B], but for pre-response motor encoding. The significant negative slope values indicate 
an overlap between the single units with lower than chance prestimulus choice probability 
and positive post-stimulus sensory encoding (for S1) and pre-response motor encoding (for 
S1, wMC, and ALM). *p<0.05; **p<0.005; n.s., non-significant. 
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Figure 3.9: Lack of differences in LFP power and spike triggered average LFP power 

preceding hit compared to miss trials  

 

(A-D) Power spectra for local field potentials (LFPs) recorded from layer 5 across target 
aligned regions combined (A) and separately calculated for (B) wS1, (C) wMC, and (D) 
ALM. Bars above plots reflect significance using paired t-test (p<0.01) for each frequency. 
Color of bar indicates direction of difference between LFP traces (purple for hits larger 
than miss, yellow for miss larger than hits). (E, F, G, and H) Same as in [A, B, C, and D], 
except for power spectra calculated from spike triggered average (STA) LFPs. 
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Supplementary Figures 

Supplemental Figure 3.1, Related to Methods, Figures 3.1-3: Sliding Window 

Normalization Method and Robustness of Window Size 
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(A) Depiction of response trials (red), no response trials (black) and sliding window (green) 
used for an example session. This session consisted of 304 trials over 43.4 minutes. Each 
sliding window segment included an average of 46 trials. (B) Rundown in raw fluorescence 
per frame and mean subtracted raw fluorescence per frame acquired across example 
session. (C) Different sliding windows considered for optimization of method used in this 
study. Top row: dF/F using a sliding window every 2s; 2s half-width (far left), 100s half-
width (center left), 200s half-width (center right), 1000s half-width (far right). Bottom row: 
Mean to Hits difference using sliding window indicated in top row. This normalization 
method is robust to a range of sliding window sizes, between 50s to 200s. If the window 
is too small (left) single trial differences are normalized out. If the window is too large 
(right) fluorescence rundown is not corrected. (D) Sliding window method (200s) applied 
to prestimulus frames only and applied to prestimulus frames with spontaneous trials 
removed. Left to right: dF/F per frame across prestimulus frames in example session (far 
left), Miss to Hits difference using only prestimulus frames (left center), dF/F per frame 
across prestimulus frames, spontaneous trials removed, in example session (right center), 
Miss to Hits difference using prestimulus frames, spontaneous trials removed (far right). 
Excluding post-stimulus frames and spontaneous trials does not impact our sliding 
window prestimulus analyses.  
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Supplemental Figure 3.2, Related to Figure 3.2:  Prestimulus mean and standard 

deviation is larger for no response trials compared to response trials 

 

(A) Trialwise prestimulus average across full prestimulus window (1s), across all mice, all 
sessions (n=38 sessions). Prestimulus mean is shown aligned to the stimulus onset (left, 
purple for target stimuli and right, green for distractor stimuli). First row includes no 
response trials (Miss and CR), second row includes response trials (Hits and FA). (B) 
Trialwise prestimulus standard deviation across full prestimulus window as in [A]. (C) No 
response minus response prestimulus mean for target (left) and distractor (right) trials. 
(D) No response minus response prestimulus standard deviation for target (left) and 
distractor (right) trials. (E) Significance maps for data in [C]. (F) Significance maps for data 
in [D]. Significance threshold with Bonferroni correction for multiple comparisons is 
indicated by the arrow (Bonf). Prestimulus fluorescence amplitude and variability are 
larger preceding no response compared to response trials, which is broadly significant for 
target trials and more focused on the limb S1 regions for distractor trials. Wire frames 
(dotted white) in top left of each subpanel indicate regions of interest as in Figure 3.2. 
Scale bar is 1 mm for all maps. 
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Supplemental Figure 3.3, Related to Figure 3.3: Prestimulus fluorescence activity 

differences in parietal cortices are larger than in frontal cortices for hit versus miss trials 
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(A) Distribution of prestimulus fluorescence activity (dF/F) for Hits-Miss across target and 
distractor regions of interest (ROIs). Note that negative Hits-Miss indicates higher dF/F for 
no response trial. Outliers (+) in red. Defined ROIs are significantly different from zero (one-
sample t-test, p<0.01) and significantly different across regions (one-way ANOVA, p<0.01). 
Table lists ROIs by corresponding number [A-C]. (B) Example multiple comparison (Tukey-
Kramer) test on example ROI (target ALM). (C) Multiple comparison (Tukey-Kramer) test 
across ROIs shows that bilateral dF/F Hit-Miss differences in frontal cortical regions (wMC 
and ALM) are significantly smaller (as shown in A) than parietal cortical regions (wS1, RSP, 
and limb S1). ROI selected for comparison (blue); ROIs significantly different from selected 
ROI (red); ROIs not significantly different from selected ROI (gray). 
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Supplemental Figure 3.4, Related to Figure 3.3: Absence of regional differences in 

correlations between prestimulus fluorescence activity and reaction times 

 

Prestimulus fluorescence activity (dF/F) versus reaction time (RT) slopes are calculated 
based on linear regression of each region of interest (ROI) across sessions for Hits (left) 
and FA (right). Hit trials across sessions show that all target aligned ROIs have significantly 
positive slopes (one-sample t-test) but not different slopes (one-way ANOVA), indicating 
a lack of regional differences in the relationships between prestimulus dF/F and post-
stimulus RT. In contrast, for FA trials, none of the distractor aligned ROIs demonstrated 
significant correlations between prestimulus dF/F and post-stimulus RT. 
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Supplemental Figure 3.5, Related to Figure 3.3:  Long-range spatial correlations 

preceding no response trials are larger and more widespread than preceding response 

trials 

 

(A) Seed regions of interest are marked and labeled according to target (T) or distractor 
(D) stimulus alignment: wS1, wMC, ALM, RSP, and limb S1 seed rectangles (black). First 
row is no response target trials (miss), second row is response target trials (hits), third row 
is difference in correlation between no response and response trial types, fourth row is 
significance map for data in third row. (B) Same structure as [A], except for CR and FA 
trials. 
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Supplemental Figure 3.6, Related to Figure 3.8: Relationship between Spike Rate and 

Prestimulus Choice Probability and Post-Stimulus Sensory and Pre-Response Motor 

Encoding across Single Units in S1, wMC and ALM 

 



 155 

(A) Plots of sensory encoding (d’) versus spike rate (Hz) for single units in target aligned S1 
(left), wMC (center), and ALM (right). Scatter plots include linear fits of the single unit 
data. Single units in each of these three cortical regions show a positive relationship 
between spike rate and post-stimulus sensory encoding. (B and C) Same as [A], but for pre-
response motor encoding (B) and prestimulus choice probability (C). (D) 95% confidence 
bounds of the linear regression slope values for all scatter plots. These data identify spike 
rate as a common factor that correlates with both post-stimulus sensory and motor 
encoding (positive correlation) and prestimulus choice probability (negative correlation). 
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Supplemental Figure 3.7, Related to Figure 3.9:  Lack of differences in LFP power and 

spike triggered average LFP power preceding FA compared to CR trials 

 

(A-D) Power spectra for local field potentials (LFPs) recorded from layer 5 across target 
aligned regions combined (A) and separately calculated for (B) wS1, (C) wMC and (D) ALM. 
Bars above plots reflect significance using paired t-test (p<0.01) for each frequency. Color 
of bar indicates direction of difference between LFP traces (green for FA larger than CR, 
black for CR larger than FA). (E, F, G, and H) Same as in [A, B, C, and D], except for power 
spectra calculated from spike triggered average (STA) LFPs. 
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Chapter 4: Multiple Object-Based and Temporal Strategies Across Learning  

Most of the previous work investigated expert performing mice (as defined by a threshold 

of discrimination between target and distractor stimulus greater than one for three days 

in a row). The discrimination threshold was crucial in standardizing lab wide 

interpretations of decision making behavior in mice, and therefore neural correlates of 

their behavior. However, especially when presenting widefield imaging results, we were 

often asked about behavior and neuronal investigation into both learning and sex 

specificity. This working manuscript addresses learning strategies as observed in behavior 

readouts for a selective detection task. We took a longitudinal dataset and investigated 

not only discrimination, but multiple alternate and/or hybrid strategies that mice could 

employ across learning. We also further explored potential sex differences in these 

learning strategies. 

 Here, we establish learning behavior of mice as they transition from naïve to 

expert status for the selective detection task. Importantly, the consideration of both 

object-based and temporal features in learning allows us to interpret mouse behavior 

more comprehensively. By identifying multiple strategy transitions and how they play out 

across learning, we set a stage to further investigate complex strategy formation for 

decision making paradigms.  

Minor changes to this adapted chapter include ongoing edits as part of the pre-

published work. Note: this manuscript has not yet been peer-reviewed. 
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Abstract 

Goal-directed behavior paradigms inevitably involve temporal processes, such as 

anticipation, expectation, timing, waiting, and withholding. And yet, amongst the vast use 

of object-based task paradigms, characterizations of temporal features are often 

neglected. Here, we longitudinally analyzed mice from naïve to expert performance in a 

somatosensory selective detection task. In addition to tracking standard measures from 

signal detection theory, we also characterized learning of temporal features. We find that 

mice transition from general sampling strategies to stimulus detection and stimulus 

discrimination. During these transitions, mice learn to wait as they anticipate an expected 

stimulus presentation and to time their response after a stimulus presentation. By 

establishing and implementing standardized measures, we show that the development of 

waiting and timing in the task overlaps with learning of stimulus detection and 

discrimination. We also investigated sex differences in temporal and object-based 

trajectories of learning, finding that males learn strategies idiosyncratically and that 

females learn strategies more sequentially and stereotypically. Overall, our findings 

emphasize multiple temporal strategies in learning for an object-based task and highlight 

the importance of considering diverse temporal and object-based features when 

characterizing behavioral and neuronal aspects of learning. 

Goal-directed behavior paradigms inevitably involve temporal processes, such as 

anticipation, expectation, timing, waiting, and withholding. And yet, amongst the vast use 

of object-based task paradigms, characterizations of temporal features are often 
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neglected. Here, we longitudinally analyzed mice from naïve to expert performance in a 

somatosensory selective detection task. In addition to tracking standard measures from 

signal detection theory, we also characterized learning of temporal features. We find that 

mice transition from general sampling strategies to stimulus detection and stimulus 

discrimination. During these transitions, mice learn to wait as they anticipate an expected 

stimulus presentation and to time their response after a stimulus presentation. By 

establishing and implementing standardized measures, we show that the development of 

waiting and timing in the task overlaps with learning of stimulus detection and 

discrimination. We also investigated sex differences in temporal and object-based 

trajectories of learning, finding that males learn strategies idiosyncratically and that 

females learn strategies more sequentially and stereotypically. Overall, our findings 

emphasize multiple temporal strategies in learning for an object-based task and highlight 

the importance of considering diverse temporal and object-based features when 

characterizing behavioral and neuronal aspects of learning. 
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Introduction 

All behavior operates within a temporal structure. Moreover, temporal processes, 

such as anticipation, expectation, timing, waiting, and withholding, significantly impact 

performance on object-based tasks (Cravo et al., 2017; Grabenhorst et al., 2019; Guo et 

al., 2014). And yet, object-based versus temporal processes in behavioral tasks are often 

investigated in isolation from each other (Buhusi & Meck, 2005; Dent & Neill, 2012; 

Murakami et al., 2017; Narayanan et al., 2012; Paton & Buonomano, 2018; Richter & von 

Kortzfleisch, 2020; Womelsdorf & Fries, 2007).  Understanding temporal processes may 

be particularly important in the study of neuropsychiatric disease. In disorders such as 

autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), learning 

disorders, and schizophrenia, greater disparities are observed across temporal (interval 

estimation, perception) compared to object-based (frequency, localization, 

categorization, orientation, spatial) features (F. Bayard et al., 2020; Carroll et al., 2009; 

Eden et al., 1995; Lee et al., 2009; Meilleur et al., 2020; Pardey et al., 2009; Rubia et al., 

2009; Toplak et al., 2006). For example, in a study of ADHD versus control children, deficits 

were not found in reporting visual stimulus detection. Rather, deficits were found in 

fixation and countermanding: ADHD children tended to demonstrate larger and more 

frequent breaks in visual fixation and increased errors, faster responses to go signals, and 

slower responses to stop signals (Hanisch et al., 2006).  

For training in any object-based task, learning must occur for both object-based 

and temporal features. Object-based paradigms such as detection (Huber et al., 2012), 
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discrimination (Erlich et al., 2011; Pai et al., 2011; Rudebeck & Murray, 2008; Song et al., 

2020), categorization (Freedman et al., 2003; Reinert et al., 2021), and sequencing (Jin & 

Costa, 2010; Smits-Bandstra & De Nil, 2007) require learning of temporal features such as 

anticipation (Chen et al., 2017; McClure et al., 2003), evidence accumulation (Churchland 

et al., 2011; Erlich et al., 2015; Roitman & Shadlen, 2002), impulse control (Peterson et 

al., 1999; Robbins & Dalley, 2017; Winstanley et al., 2004), reward discounting (Kable & 

Glimcher, 2007; Mar et al., 2011; Mobini et al., 2002), starting and stopping (Bari & 

Robbins, 2013; Hanisch et al., 2006), and temporal uncertainty (Daw et al., 2005; Fiorillo 

et al., 2003; Lawson et al., 2021; Mendonça et al., 2020). Moreover, learning may not 

track along a single continuum from naïve to expert but may involve transitions between 

intermediate strategies. For instance, just as optimal temporal strategies are learned, 

such as fast reaction times for a detection paradigm (Baunez & Robbins, 1997, 1999), 

suboptimal strategies must be unlearned, such as fast reaction times for a waiting 

paradigm (Narayanan et al., 2006; Reyes et al., 2020).  

This investigation explores the relationship between learning of temporal and 

object-based features from naïve to expert performance for a selective sensory detection 

task in mice. Along with traditional measures of sensory detection, we address two 

specific temporal processes, waiting and timing, which are not typically studied in object-

based tasks (Komiyama et al., 2010; McBurney-Lin et al., 2020; Ruff & Cohen, 2019; Xiong 

et al., 2015; Yang et al., 2019) and vice versa (Bakhurin et al., 2017; Droit-Volet et al., 

2007; Kawai et al., 2015; Lak et al., 2014; Namboodiri et al., 2015; Shuler & Bear, 2006). 
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1) Sampling versus Waiting: naïve behavior involves high sampling and low waiting before 

stimulus presentation (Dickinson & Balleine, 1994; O'Doherty et al., 2003; Schoenbaum & 

Roesch, 2005). The null hypothesis predicts that sampling behavior and waiting behavior 

do not change while learning sensory detection and discrimination. An alternative 

hypothesis predicts that sampling behavior decreases and waiting behavior increases as 

performance improves. 2) Reacting versus Timing: due to response sampling, post-

stimulus reaction times in naïve behavior are long and broadly distributed (Laubach et al., 

2000; van Maanen et al., 2012). A reactive hypothesis predicts that with learning of 

sensory detection, reaction times decrease towards a biophysical response limit (Duan et 

al., 2015; Romo & Schultz, 1990; Schultz et al., 1993). An alternative timing hypothesis 

predicts the convergence of reaction times to a task-specific optimal response latency. 

Additional questions addressed in this study focus on learning trajectories. During 

learning of a sensory detection task, do mice transition in stages of intermediate 

strategies? Do mice learn temporal features before, after, or in tandem with object-based 

features? Are there sex-specific transitions, intermediates, or orders of learning? By 

addressing these questions, we strive to better understand the temporal and object-

based features that mice learn during different phases of training. With this knowledge, 

we will be better equipped to determine the neural mechanisms underlying temporal and 

object-based learning.  

Here, we use temporal and object-based measures to track learning for a whisker-

based selective detection task, with target or distractor whisker stimuli presented in 
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individual trials. We find transitions from suboptimal sampling to optimal waiting before 

a stimulus and to optimal timing after a stimulus. Additionally, we identify learning 

trajectories in which temporal and object-based feature learning overlap. Lastly, we 

identify sex-based differences in the order of learning, transition magnitudes, and 

intermediate strategies. These findings emphasize the importance of tracking multiple 

measures through learning, for a more comprehensive understanding of both learning 

behavior and its neural mechanisms.  
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Materials and Methods 

Animals 

Animal subjects 

Experimental protocols have been approved by the IACUC of University of California, 

Riverside. The dataset used here include behavioral studies that have been previously 

reported (Aruljothi et al., 2020; Marrero et al., 2022; Zareian et al., 2023; Zareian et al., 

2021; Zhang & Zagha, 2022). A wide variety of wild type and transgenic mice were 

considered for behavioral learning data. Male and female, wild type (C57BL/6J, JAX 

#000664; BALB/cByJ, JAX #001026), transgenic (Snap25-2A-GCaMP6s-D, JAX #025111; 

Thy1-ChR2-YFP, JAX #007612; VGAT-ChR2-EYFP, JAX #014548), and virus-injected adult 

mice were used (Arenkiel et al., 2007; Zhao et al., 2011). Mice were not under transgenic 

manipulation (e.g., optogenetic activation or Ca2+-sensor imaging) during behavioral 

training. Mice were maintained in a 12-h light/dark cycle and animal behavior occurred 

during the light cycle. Mice were head-fixed before behavioral training began, as 

previously reported (Aruljothi et al., 2020; Zareian et al., 2021; Zhang & Zagha, 2022). 

Mice started behavioral training after a minimum of a 4-day recovery period from surgery. 

Animal behavior 

Training stages, metrics of learning, and criterion for expert performance in the Go/NoGo 

selective whisker detection task were as previously reported (Aruljothi et al., 2020). 

Briefly, head-fixed and water deprived mice learned on customized behavioral rigs. 

Behavioral data was collected using Arduino and custom MATLAB scripts (MathWorks, 
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MA). Target and distractor paddles were positioned symmetrically within the mouse 

whisker fields bilaterally. Mice reported stimulus detection by licking a centrally located 

lick port, positioned under the snout. Mice progress through classical conditioning (2-5 

days) and operant conditioning (2-5 days) stages before entering the full task (Figure 4.1, 

see Aruljothi et al., 2020 for details). Data presented in this paper are exclusively from the 

full task, in which the task structure did not change through training.  

In the full task, we implemented a variable intertrial interval (ITI) before a stimulus 

presentation to discourage spontaneous sampling. Lick bouts within the ITI were 

punished by ending the trial and beginning the next trial with a new ITI, randomly selected 

from a negative exponential distribution between 5.5 and 9.5 s. Target stimuli and 

distractor stimuli were presented on a probabilistic schedule, 20% and 80% respectively. 

Following the correct rejection of a distractor stimulus, the next ITI was randomly selected 

from a negative exponential between 0.2 and 1.9 s. We also implemented a short lockout 

period (200-300 ms) after a stimulus presentation to isolate sensory versus response-

related activity. Responding during the lockout ended the current trial and initiated a full 

ITI. Lick bouts, reaction times, stimulus types, and trial outcome types were recorded 

throughout the task. Lick bouts were considered spontaneous (sampling) if they occurred 

within the ITI. Post-stimulus licking responses were considered hits if they occurred after 

a target whisker stimulus and during the response window (after the lockout). Post-

stimulus licking responses were considered false alarms (FA) or premature (Preme) if they 

occurred after a distractor whisker stimulus or during the lockout window, respectively. 
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Hits (responses to target stimuli) were rewarded with ∼5 μL of water, correct rejections 

(not responding to distractor stimuli) and correct withholdings (not responding during the 

catch trial) were rewarded with a shortened intertrial-interval (ITI) and a subsequent 

target trial. Only trials of task engagement periods within sessions were analyzed, with 

‘task engagement’ defined as a minimum block of 10 minutes without a pause in licking 

greater than 60 seconds. If more than one engagement period was identified within a 

session, the longest engagement period was chosen for the subsequent analyses. 

Spontaneous rates per session were calculated as the percentage of trial types in which 

the mouse responded within 1 second before an impending stimulus. Response rates per 

session were calculated as the percentage of response trial outcome types across all 

stimulus trials.  Measures based on signal detection theory were calculated, 

𝑑′
𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑧𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑅𝑎𝑡𝑒  −  1.2 ∗ (𝑧𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑎𝑡𝑒) 

𝑑′
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  𝑧𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 −  𝑧𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒  

𝑑′
𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑧𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 −  𝑧𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑎𝑡𝑒  

𝑑′
𝐷𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑧𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 −  𝑧𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑎𝑡𝑒  

𝑑′
𝑃𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑧𝑃𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 −  0.2 ∗ (𝑧𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑎𝑡𝑒) 

𝐶𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝐵𝑖𝑎𝑠 =  −0.5 ∗ (𝑧𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 +  𝑧𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒) 
Signal Detection - Equations 10-15 

where z is the inverse normal distribution function. 

Data inclusion criteria 

We examined 120 mice with potential learning data but included only the 52 mice who 

met all criteria described below. First, mice were included if they learned the task, as 

defined by discrimination performance (d’ between hit rate and false alarm rate) greater 

than one for three consecutive days. Second, mice were included if they learned 
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progressively: from naïve to expert performance in less than three weeks of training. 

Third, the data required a minimum of seven training sessions with a maximum 7-day gap 

between sessions. No more than seven sessions of consecutive expert behavior were 

analyzed.  

For tercile and quintile learning data per mouse, each session was binned 

according to the exclusive integer value of total sessions divided by three and five, 

respectively. For performance learning data per mouse, each session was defined as naïve 

(d’<0.8), intermediate (0.8<d’<1.2), and expert (d’>1.2). The intermediate performance 

was considered because it highlighted performance near our learning threshold. This 

allowed for comparison of time in training (tercile or quintile) versus learning stage 

(performance), with the potential of identifying intermediate behavioral strategies. Sex-

specificity in learning was studied according to available data on the sex of each mouse 

(available for 48 of the 52 total mice).  

Behavioral learning analyses 

Analyses were performed using standard MATLAB scripts. Linear regression analyses 

were used to determine slopes of behavioral outcome measures across sessions per 

mouse (Figures 4.2, 4.3, and Supplementary 4.1, 4.2). If linear slopes across mice were 

significantly positive, the transition was identified as ‘increasing’; if linear slopes across 

mice were significantly negative, the transition was identified as ‘decreasing’.  

For individual trajectory analyses (Figures 4.4 and 4.5), interquintiles of maximum 

change were determined as the differential slopes across quintiles (ΔTrajectory/Δquintile) per 
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mouse. Interquintiles were then binned categorically for interquintile analysis. Order of 

learning was specified by ordering the mean interquintiles across mice per measure.  

Behavioral measures with non-redundant dynamics (Figure 4.6) were identified by 

correlation analyses (MATLAB function corrcoef) for measures across quintiles per mouse, 

and then averaged across mice. We considered the absolute value of the correlations to 

determine magnitude of correlation (or anticorrelation). High correlations indicated 

measures with similar dynamics; low correlations indicated measures with unique 

dynamics and were therefore included in pairwise trajectory analyses.  

For pairwise trajectory analyses (Figures 4.6 and 4.7), innerquintile curvature was 

determined by first rectifying quintile points such that quintiles increased by the absolute 

value of consecutive interquintile changes, +abs(ΔTrajectory); rectified quintile points were 

then scaled to the interval [0 1]. Then, pairwise transition quintiles were plotted against 

each other. Innerquintile curvature was defined as the mean distance of pairwise quintile 

points 2, 3, and 4 to the line segment between pairwise quintile points 1 and 5 per mouse.  

Strategies in Figure 4.8 were identified as combinations of individual measures, 

based on assessments of both individual and pairwise trajectory analyses. 

Statistical analyses  

Reproducibility of learning data 

Session performance was reported for all learning sessions per mouse, jittered only for 

visualization and not for quantification. For interlick interval (ILI) analysis, the term 

‘sampling’ was defined by the percent area under the histogram curve of spontaneous 
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lick bouts between zero and the minimum ITI per session. For most sessions, this was 

between zero and 5.5 seconds.  The term ‘waiting’ was defined by the percent area under 

the histogram curve of stimulus responses between the minimum ITI per session and the 

maximum possible wait time for engaged behavior per session. For most sessions, this 

was between 5.5 and 14.6 seconds (9.5 s maximum ITI for distractor stimulus, 2.2 s for 

subsequent correct rejection trial, 1.9 s for maximum shortened ITI, 1 s for prestimulus 

trial window preceding a target stimulus). For rection time analyses, reaction times in 

premature trials were defined by the lockout period per session. For most mice, this was 

0.2 seconds (0.3 seconds for 3 mice). Stimulus response trials were determined by 

reaction times greater than the lockout period and during the 1 second response window. 

Data are reported as mean ± standard error of the mean (SEM) unless otherwise noted. 

Cumulative probabilities per session, per tercile, per tercile per mouse, and by 

performance level were determined by cumulative distribution functions (CDFs), the 

normalized cumulative sum under ILI or RT distributions. Because interlick and reaction 

time distributions were not gaussian, the median values (instead of means) are reported. 

To report spread in reaction time distributions, the spread of ±34.1% from the median 

was used to emulate one standard deviation in the nongaussian distribution.  

Statistics for learning data 

All analyses, including statistics, were performed using standard and custom MATLAB 

scripts and visualized using CorelDRAW. One sample t-tests were used to determine if 

slopes across mice were significantly different from zero (MATLAB function ttest). 
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Nonparametric (interquintile of maximum change in trajectory) data were analyzed using 

the chi-square (χ2) Kruskal-Wallis rank sum test (MATLAB function kruskalwallis) across 

all measures for all mice, male mice, and female mice. For the waiting measure specified 

by sex, Kruskal-Wallis rank sum was performed on the nonparametric waiting data for all 

males versus all females. Cross correlation analyses were performed for interquintiles of 

maximum change across all mice, across male mice, and across female mice, separately, 

by determining the correlation coefficient (MATLAB function corrcoef). Reported 

correlations are calculated from the mean correlation. One sample t-test was used for 

analyses of innerquintile curvature across all mice to test significant curvature difference 

from zero, Bonferroni corrected for multiple comparisons. For analysis of variance 

(ANOVA) statistical tests (balanced and unbalanced one-way ANOVA, two-way ANOVA, 

and longitudinal RANOVA), Tukey-Kramer post-hoc multiple comparisons were generated 

using function multcompare in MATLAB. Significance was assigned according to p-values 

<0.05. For visualization, asterisks are shown according to orders of p-values: *p<0.05, 

**p<0.005, ***p<0.0005.    



 172 

Results 

Learning strategies for a selective detection task. We used an object-based selective 

detection paradigm to investigate concurrent temporal strategies across learning in mice 

(Figure 4.1A). In this task, water-restricted mice learn to selectively respond to target 

paddle deflections in one whisker field (hit, rewarded with water delivery) and ignore 

distractor paddle deflections in the opposite whisker field (correct rejection). We impose 

a variable intertrial interval (ITI) between 5.5 and 9.5 s, chosen to reduce spontaneous 

sampling before stimulus presentation. Target and distractor stimuli were presented 

probabilistically; the correct rejection of a distractor stimulus initiated the next trial, a 

target trial preceded by a shortened 0.2 to 1.9 s ITI. Overall, mice must wait (withhold 

licking) across a duration of minimum 5.5 s (ITImin) to maximum 14.6 s (ITImax) to be 

presented with a target stimulus and opportunity for reward (Figure 4.1B). Prepotent 

responses during the ITI were defined as spontaneous sampling (Spont) and resulted in a 

resetting of the ITI. Additionally, we implemented a minimum 200 ms lockout period after 

a stimulus presentation. Therefore, mice were required to respond on target trials after 

this lockout period to trigger a reward. In our previous studies of this task, expert 

performance was determined solely by target and distractor stimulus discrimination. 

Given the temporal structures described above, here, we additionally test a waiting 

strategy by exploring interlick interval (ILI) distributions for all lick responses and we test 

a timing strategy by exploring reaction time (RT) distributions for responses to stimuli 

(Figure 4.1C). 
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In this study we present longitudinal data from 52 mice. An increase in discrimination 

(separation of hit rate and false alarm rate) across terciles of training sessions indicated a 

learning trajectory from naïve to expert performance (Figure 4.1D, unbalanced one-way 

ANOVAd’TercDiscrim F(2,573)=167.49, p<0.0005). Across the same training sessions, we also 

observed a decrease in criterion bias, indicating an increased tendency to respond across 

target and distractor trials (Figure 4.1E, unbalanced one-way ANOVATercCriterion 

F(2,573)=59.47, p<0.0005).  

Transition in waiting behavior. We next investigated the temporal strategy of sampling 

versus waiting across learning. We tested the hypothesis that, due to the variable ITI 

imposition, suboptimal sampling behavior (ILI shorter than ITImin) decreases while optimal 

waiting behavior (ILI longer than ITImin and shorter than ITImax) increases across learning. 

These analyses address a temporal phenotype before target stimulus presentation. The 

null hypothesis is that mice do not change their sampling and waiting behavior across 

learning (Figure 4.2A). Alternatively, we expect a divergence in sampling and waiting 

behavior across learning (Figure 4.2B), indicating an improvement in waiting.  

We identified sampling and waiting by defining a sampling criterion (spontaneous 

responding within the minimum ITI before a stimulus) and a waiting criterion (responding 

after successfully waiting for a stimulus). We investigated sampling versus waiting 

behavior across sessions binned as early, middle, and late tercile stages of training (Figure 

4.2C-E). For ‘all responses’ (Figure 4.2C, including sampling and waiting), we note that 

early and late tercile counts of all lick responses are not significantly different; however, 



 174 

responses increased significantly from early to middle terciles (Figure 4.2C, unbalanced 

one-way ANOVATercILICount F(2,573)=4.45, p=0.0121). Sampling responses (ILI<ITImin) 

significantly decreased from middle to late terciles with a nonsignificant increase 

between early and middle terciles (Figure 4.2D, unbalanced one-way ANOVATercSampCount 

F(2,573)=3.72, p=0.0249). Waiting responses (ITImin<ILI<ITImax) increased significantly 

from early to middle terciles and remained elevated, with a nonsignificant increase from 

middle to late terciles (Figure 4.2E, unbalanced one-way ANOVATercWaitCount 

F(2,573)=22.20, p<0.0005). Thus, all response distributions increased from early to middle 

terciles; sampling responses then decreased while waiting responses remained high from 

middle to late terciles. 

To quantify sampling and waiting distributions, we calculated the area under the sampling 

curve and the area under the waiting curve and normalized by the total area under the 

‘all response’ curve. This analysis generated sampling % AUC values and waiting % AUC 

values (Figure 4.2F). Sampling % AUC decreased significantly across all terciles 

(unbalanced one-way ANOVATercSamp%AUC F(2,573)=24.19, p<0.0005) and waiting % AUC 

increased significantly across all terciles (unbalanced one-way ANOVATercWait%AUC 

F(2,573)=42.15, p<0.0005). We also quantified waiting strategies per mouse by plotting 

% AUC for each session across learning and determining the slopes of a linear fit (Figure 

4.2F). We found that sampling % AUC decreased significantly across sessions per mouse 

(one sample t-test μmSamp%AUC=-2.003±0.386, p<0.0005, n=52 mice) and that waiting % 

AUC increased significantly across sessions per mouse (one sample t-test 
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μmWait%AUC=2.248±0.353, p<0.0005, n=52 mice). Overall, these analyses demonstrate 

robust changes in prestimulus behavior, with progressive decreases in sampling and 

increases in waiting. 

As waiting behavior improves, we would expect the ILI distribution to shift towards longer 

intervals (Figure 4.2G). We investigated the ILI cumulative distribution function (CDF) and 

found that it shifted rightward towards longer ILIs (plotted for all sessions across mice, 

averaged terciles for all mice, and averaged terciles across mice, Figure 4.2H-J, 

respectively). In addition to simply considering sessions (by terciles) in training, we also 

plotted these CDFs according to target-distractor stimulus discrimination performance, 

for naïve (d’<0.8), intermediate (0.8<d’<1.2), and expert (d’>1.2) behavior. Interestingly, 

we found that CDF curves during naïve and intermediate performance were similar, and 

markedly different from CDF curves during expert performance (Figure 4.2K). We 

quantified the shift in CDF curves by the median ILI across terciles and across performance 

(Figure 4.2L, unbalanced one-way ANOVATercMedSessILI F(2,573)=14.87, p<0.0005; balanced 

one-way ANOVATercMedMiceILI F(2,153)=7.34, p=0.0009; unbalanced one-way 

ANOVAPerfMedSessILI F(2,573)=20.34, p<0.0005; balanced one-way ANOVAPerfMedMiceILI 

F(2,141)=9.92, p<0.0005). These analyses indicate that mice do show improvements in 

waiting, but only during expert target-distractor discrimination performance. These 

comparisons of waiting and discrimination indicate potentially non-uniform learning 

trajectories for different task features, which we explore further below. 
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Transition in timing behavior. Next, we investigated the temporal strategy of reacting 

versus timing across learning. We test the hypothesis that, due to the post-stimulus 

lockout window, mice will transition from broad RT distributions to optimal timing 

behavior that aligns with the lockout duration. This addresses a temporal phenotype after 

a stimulus presentation. The null hypothesis predicts that mice learn to respond to a 

stimulus with the fastest RT distribution possible (reactive strategy, Figure 4.3A). 

Alternatively, we predict RT distributions to cluster at the lockout duration with 

decreased variance across learning (Figure 4.3B), indicating an improvement in timing.  

We investigated reactive versus timing behavior by analyzing RT distributions across 

sessions and across tercile stages of training. We compared RT distributions for all 

stimulus responses (Figure 4.3C), for target premature responses (Figure 4.3D), and for 

target hit responses (Figure 4.3E). First, we describe response counts across training. 

Stimulus responses increased across training for all three distributions. For all stimulus 

responses, this was significant across all terciles (Figure 4.3C, unbalanced one-way 

ANOVATercStimResp F(2,573)=52.42, p<0.0005; unbalanced one-way ANOVATercStimRT 

F(2,573)=51.11, p<0.0005). Target premature responses increased significantly from early 

to middle terciles with a nonsignificant increase from middle to late terciles (Figure 4.3D, 

unbalanced one-way ANOVATercPremeTResp F(2,573)=9.90, p<0.0005). Target hit responses 

increased across terciles as well (Figure 4.3E, unbalanced one-way ANOVATercHitsResp 

F(2,573)=105.66, p<0.0005). Second, we note the timing of these distributions. All three 

response types increased their peak RT distribution at the 200 ms lockout restriction 
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across terciles. To quantify this, we measured the mean reaction time across sessions and 

terciles (Figure 4.3F). As predicted by both the reactive and timing hypotheses, hits RTs 

significantly decreased across terciles (unbalanced one-way ANOVATercHitsRT 

F(2,569)=100.51, p<0.0005). As uniquely predicted by the timing hypothesis, target 

premature RTs significantly increased from early to late terciles (unbalanced one-way 

ANOVATercPremeTRT F(2,545)=5.09, p=0.0065). We also quantified timing per mouse by 

plotting outcome-based RT for each session across learning and determining the slopes 

of a linear fit (Figure 4.3F). We found that target premature RTs significantly increased 

while target hit RTs significantly decreased across sessions per mouse (one sample t-test 

μmPremeTRT=0.003±0.001, p=0.0008; μmHitsRT=-0.023±0.002, p<0.0005, n=52 mice). 

Although false alarm counts increased from early to middle tercile, all other distractor 

counts and RTs showed no difference across sessions or terciles (Supplementary Figure 

4.1, unbalanced one-way ANOVATercFAResp F(2,573)=5.64, p=0.0038). Additionally, 

distractor RTs did not change with training (Supplementary Figure 4.1C). These analyses 

demonstrate robust changes in post-stimulus behavior, with a bidirectional target RT 

change for precise timing as required by the lockout window. 

As timing behavior improves, we would expect an RT distribution to shift towards the 

lockout duration with decreased variance (Figure 4.3G). We investigated the RT CDF and 

found it to shift left and decrease in variance across sessions, across mice, and across 

terciles towards the lockout period (Figure 4.3H-J). As described above, we also plotted 

CDF curves according to target-distractor stimulus discrimination. Interestingly, we found 
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that RT CDF curves during naïve performance differed dramatically from CDF curves 

during intermediate and expert performance (Figure 4.3K). We quantified the shift in CDF 

curves by the median RT for both terciles and performance (Figure 4.3L, unbalanced one-

way ANOVATercMedSessRT F(2,573)=48.44, p<0.0005; balanced one-way ANOVATercMedMiceRT 

F(2,153)=22.77, p<0.0005; unbalanced one-way ANOVAPerfMedSessRT F(2,573)=159.34, 

p<0.0005; balanced one-way ANOVAPerfMedMiceRT F(2,141)=34.35, p<0.0005). We 

quantified the variance in CDF curves by the spread from the median RT for both terciles 

and performance (unbalanced one-way ANOVATercSpreadSessRT F(2,573)=103.59, p<0.0005; 

balanced one-way ANOVATercSpreadMiceRT F(2,153)=44.73, p<0.0005; unbalanced one-way 

ANOVAPerfSpreadSessRT F(2,573)=304.11, p<0.0005; balanced one-way ANOVAPerfSpreadMiceRT 

F(2,141)=68.69, p<0.0005). These analyses indicate that mice do show improvements in 

timing. Unlike waiting behavior, improvements in timing appeared to lead expert target-

distractor discrimination, providing further evidence for potential intermediate stages in 

learning. 

Order of learning for individual transition trajectories. Mice improved through training 

in object-based measures as determined by the slopes of their linear fits across sessions 

(Supplementary Figure 4.2). Hit rates significantly increased across sessions and FA rates 

significantly decreased across sessions (one sample t-test μmHitRate=5.141±0.525, 

p<0.0005; μmFARate=-0.686±0.266, p=0.0128, n=52 mice). As expected, suboptimal 

sampling decreased, as determined by reductions in spontaneous response rates (one 

sample t-test μmSpontRate=-0.448±0.168, p=0.0101, n=52 mice). Additionally, we found that 
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overall target detection significantly increased across sessions (one sample t-test 

μmd’Target=0.178±0.018, p<0.0005; μmTPremed’=0.036±0.020, p=0.0737, n=52 mice). Also 

expected, target-distractor discrimination significantly increased and target-distractor 

criterion bias significantly decreased (one sample t-test μmd’Discrim=0.183±0.016, p<0.0005; 

μmCBias=-0.070±0.012, p<0.0005, n=52 mice).  

While analyzing temporal and object-based measure through training, we noticed that 

different measures displayed distinct learning trajectories across mice (Figure 4.4A). 

Furthermore, some trajectories appeared to lag or lead others; for example, stimulus 

responding increased before waiting with discrimination increasing in between the two 

(Figure 4.4B). We investigated these learning dynamics using two methods. For both 

analyses we segregated training sessions into quintiles. In our first analysis, for individual 

measures per mouse, we determined the interquintile showing the maximum change. For 

example, early learning would be reflected in a maximum change between the first two 

quintiles, late learning between the last two quintiles (Figure 4.4B). Next, we binned the 

interquintile of maximum change for all mice (Figure 4.4C). We found that some 

distributions clustered towards the 1st interquintile (e.g., stimulus response rate), some 

towards the 4th interquintile (e.g., waiting), and others appeared evenly distributed across 

mice (e.g., distractor d’, Figure 4.4C).  

We compared the distributions of interquintiles of maximum change. This analysis yielded 

an ordered learning across our selected measures (Figure 4.4D). We interpret this as 

evidence for sequential transitions in strategy across learning. Maximum increases in 
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stimulus response rates occurred significantly earlier than maximum increases in waiting 

(μRespΔmax=1.98±0.13 versus μWaitΔmax=2.69±0.16, Kruskal-Wallis p=0.03, n=52 mice). 

Maximum increases were not significantly different between other paired trajectories. 

We acknowledge three contributing explanations for the partially overlapping sequence. 

First, a number of these transitions co-fluctuate and may reflect overlapping learning 

strategies (explored further below). Second, different learning strategies may occur in 

overlapping time windows. Notably, the overlapping trajectories include both temporal 

and object-based measures. Third, lack of separation between measures may be due to 

variation in learning transitions across mice. Cross-correlations for interquintiles of 

maximum change demonstrated a statistically significant correlation across mice 

(p=0.0003) but with high variability (μCorrR=0.03, n=52 mice). Overall, this analysis 

demonstrates a partially structured learning sequence across multiple outcome 

measures, well beyond the single measure (target-distractor discrimination) that initially 

motivated this task design.  

The broad distribution in interquintiles of maximum change led us to question whether 

biological differences accounted for learning variability. We therefore performed the 

same analyses as above, but separately for sex and genotype. We observed significant 

differences in interquintile distributions for male versus female mice (Figure 4.5). The 

mean interquintiles of maximum change for males appeared to be substantially clustered 

in comparison with females; females show a progression of learning where stimulus 

responding leads and waiting lags (Figure 4.5A, rank sum Kruskal-WallisMale p=0.949, rank 
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sum Kruskal-WallisFemale p=0.0119). Notably, the interquintile of maximum change for 

waiting differed between males and females (Figure 4.5B, μMaleWaitΔmax=2.39±0.20, 

μFemaleWaitΔmax=3.24±0.26; rank sum Kruskal-WallisWaitMale|Female, p=0.0123). Main sex 

differences were found in stimulus responding, distractor detection, and prestimulus 

waiting (Figure 4.5C, unbalanced two-way ANOVAResp|Sex, p=0.034; ANOVAd’Distract|Sex, 

p=0.0007; ANOVAWait|Sex, p=0.007). Additionally, we observed an interaction effect 

between sex and waiting (Figure 4.5C, bottom right, unbalanced two-way 

ANOVAMaleWait|FemaleWait, p=0.024; longitudinal RANOVASex|Wait, p=0.037), indicating 

different learning trajectories in males versus females for this measure. We recognize that 

the overlapping distributions of male mice could reflect either coincident learning or high 

variability across subjects resulting in broad distributions across the population. We find 

evidence for the latter. Female mice showed a small yet significant correlation in their 

interquintiles of maximum changes (μCorrRFemale=0.104, p=0.0001, n=17 mice), indicating a 

shared learning structure. In contrast, male mice did not have correlated interquintiles of 

maximum change (μCorrRMale=-0.027 p=0.53, n=31 mice), suggesting more variable (and 

idiosyncratic) learning profiles. Analyses of temporal and object-based measures 

identified significant genotype differences in timing, spontaneous response rates, and 

waiting across learning quintiles, but we did not pursue this further (Supplementary 

Figure 4.3, RANOVAGene|Time, p=0.0049, RANOVAGene|Spont, p=0.045, RANOVAGene|Wait, 

p=0.0045). 
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Order of learning for pairwise transition trajectories. Our second method of quantifying 

learning dynamics involved pair-wise comparisons of temporal or object-based measures. 

First, we used pairwise correlation analyses to determine patterns of shared variance 

between measures within individual mice (Figure 4.6A). For further pairwise analyses, we 

selected measures with low shared variance: stimulus responding, discrimination, timing, 

distractor detection, and waiting. For these measures, we determined their relational 

order of learning by plotting their trajectories against each other. Based on the curvature 

of the pairwise comparisons, we could identify leading, lagging, or co-occurring learning 

transitions (Figure 4.6B). We defined an inner (within) quintile distance per mouse by 

calculating the mean of the 2nd, 3rd, and 4th quintile points to the linear fit between the 1st 

and 5th pairwise quintile segment. A significant deviation from zero of innerquintile 

distances would indicate a ‘curvature’ and thereby an order of learning between the 

pairwise measures.  

By summing curvature columns across pairwise comparisons, we could approximate 

orders of learning across mice (Figure 4.6C). Consistent with the binned interquintile 

order of learning, the pairwise curvature analysis ordered stimulus responding before 

waiting (Figure 4.6D, dResp|Wait=-0.25 a.u., p=0.0001). Additionally, this analysis identified 

that stimulus responding leads discrimination and distractor detection, and that waiting 

lags timing (Bonferroni corrected: dResp|Discrim=-0.32 a.u., p<0.0005; dResp|d’Distract=-0.19 

a.u., p=0.011; dTime|Wait=-0.12 a.u., p=0.022). While we do observe some differences in the 

precise ordering of learning, both approaches indicate a learning structure where 
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stimulus responding leads and waiting lags. Accordingly, potential intermediates consist 

of both temporal and object-based measures. 

As with interquintile of maximum change distributions, the broad distribution of 

innerquintile curvature led us to analyze sex-specific differences in learning variability 

(Figure 4.7). Therefore, we conducted the curvature analyses separately for male and 

female mice, and again observed substantial differences in the ordering and clustering of 

the learned measures (Figure 4.7A). For the normalized quintile magnitudes, analyzing 

sex-specific longitudinal trajectories revealed that male mice transitioned their timing, 

distractor detection, and waiting behavior differently in comparison with female mice 

(Figure 4.7B, RANOVASex|Time, p=0.042; RANOVASex|d’Distract, p=0.038; RANOVASex|Wait, 

p=0.0046). Like the interquintile findings, innerquintile curvature analyses showed that 

female mice, but not male mice, increased their stimulus response rates before they 

increased waiting (Figure 4.7C, Bonferroni corrected: dFemaleResp|Wait=-0.13 a.u., p=0.010; 

dMaleResp|Wait=-0.048 a.u., p=0.19; unbalanced two-way ANOVASexResp|Wait, p=0.025). Thus, 

both analytical measures demonstrate structure in ordered learning, with prominent sex 

differences in learning profiles. 
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Discussion  

In this study we have shown changes in multiple temporal and object-based measures 

across learning as mice transition from naïve to expert performance during a whisker-

based selective detection task. Regarding temporal measures, mice learn to both wait for 

a target stimulus and time after a target stimulus (Figure 4.2, Figure 4.3). Using individual 

trajectory (Figure 4.4) and pairwise trajectory (Figure 4.6) analyses, we identify structure 

in the changes of these measures that suggest an order or progression of learning. 

Interestingly, both approaches identify notable sex differences in learning, where females 

show more stereotypic progressions (Figures 4.5 and 4.7).  

Based on our findings, we suggest that mice to not progress uniformly from naïve to 

expert across a single outcome measure (in our task, target-distractor discrimination). 

Instead, our data are more consistent with mice progressing through intermediate 

strategies. Based on our learning trajectory analyses, we propose a structure of learning 

that involves four distinct, yet temporally overlapping, behavior strategies or profiles as 

mice progress from naïve to expert performance (Figure 4.8). The first strategy of “naïve 

sampling” involves a general increase in responding, both before and after stimulus 

presentation. Evidence for this strategy includes an increase in all responding between 

early and middle terciles (Figure 4.2C,D,E) and the consistent finding across analyses of 

increased stimulus responding leading all other measures (Figure 4.4C,D), followed 

closely by criterion bias. From a strategy of “naïve sampling”, mice progress to “stimulus 

timing” (Figure 4.6C). The hallmark of this strategy is an improvement in RT, which 
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ultimately centers around the onset of the response window (Figure 4.3D,E,F). The 

centering of RTs indicates that mice are responding to task-relevant stimuli, even if they 

continue high levels of random sampling. Mice then progress to “object-based 

performance”, indicated by increases in specific responding to target stimuli (Figures 4.4D 

and 4.6C). Relevant measures of this strategy include increases in target detection and 

target-distractor discrimination (Figure 4.4A). Last is the strategy of “waiting and 

withholding”. This stage of learning is evidenced by decreases in distractor detection and 

spontaneous responding and an improvement in waiting, which consistently lags in the 

progression (Figures 4.4C,D and 4.6C,D). In our task design, mice must wait between 5.5 

to 14.6 seconds to receive a target stimulus and opportunity for reward. Therefore, 

waiting (not responding) through this ITI is critical for success in the task. And yet, 

increased waiting is typically the lagging transition in learning. This suggests that mice do 

not abandon a random sampling strategy until they are proficient in stimulus 

discrimination.  

It is currently unclear whether these four strategies are truly discrete processes involving 

different neural mechanisms, and the extent to which these strategies generalize to 

different behavioral tasks. However, our findings strongly encourage taking a broader 

approach to the study of learning than is typically reported in behavioral neuroscience 

investigations. We identify three major reasons for promoting this approach. First, if there 

is an orderly progression of learning, then identifying the learning stages will aid in 

tracking the learning process. Second, and relatedly, mouse models of neuropsychiatric 
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disease show learning deficits in goal-directed tasks (Goel et al., 2018; Hölter et al., 2015; 

Huynh et al., 2009; Remmelink et al., 2016). Are learning deficits due to failed progression 

across a specific stage of learning? Do different disease models fail at different learning 

stages, suggesting process-specific dysfunctions? Third, and perhaps most importantly, a 

growing number of studies are aimed at revealing the neuronal mechanisms underlying 

task learning (Huber et al., 2012; Lacefield et al., 2019; Le Merre et al., 2018; Makino et 

al., 2017; Roy et al., 2021). For example, increased activity in a brain region across learning 

in our task may be interpreted as a mechanism of target-distractor discrimination. 

However, considering this study, we recognize that changes in neuronal activity may also 

be related to general responding, timing, or impulse control (for both spontaneous and 

sensory-evoked responding). In future studies, correlating the trajectories of behavioral 

and neuronal measures may vastly improve our ability to identify the neuronal 

mechanisms underlying specific learning processes, and make more precise predictions 

about the effects of causal neuronal manipulations on learning outcomes. 

Behavior modeling can confirm this potential, tracking task related performance 

processes across learning (Roy et al., 2021). Recent studies have provided great insights 

regarding strategies in expert performance with discrete state analyses (Ashwood et al., 

2022; Pisupati et al., 2021). These types of analyses can be applied to the study of mixed 

(intermediate) states overlapping object-based and temporal strategies in learning. Even 

so, the investigation of learning strategies is often based on models presumed before 

interpretation. In this study, we do not predefine strategies in learning, only what can be 
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inferred by behavior output measures. Our findings are empirical, identifying model-free 

mixed strategies, which may indicate intermediate neural mechanisms. With these 

approaches, considering raw behavioral measures enables impartial identification of 

diverse behavioral strategies across animal models and task paradigms.  

Another insight from this study is the importance of considering temporal processes in 

object-based tasks. Our ITI distributions were meant to reduce temporal expectancy of 

target stimulus delivery (Coull et al., 2011; Fiorillo et al., 2008; Ghose & Maunsell, 2002; 

Nobre et al., 2007; Zariwala et al., 2013). Nevertheless, there remains temporal regularity 

in the structure of all behavioral tasks. Subjects may learn these temporal regularities to 

improve task performance by predicting windows of opportunity in task structure 

(Komiyama et al., 2010). However, subjects may also exploit these temporal regularities 

to solve a task in a way that was unintended (Kawai et al., 2015). By considering temporal 

processes in object-based tasks, researchers may reveal understudied task dimensions 

that are critical for optimal performance and strongly contribute to behavioral 

dysfunctions in neuropsychiatric disease (Emmons et al., 2017; Grondin, 2010; Toplak et 

al., 2006). 

Across mice we recognize high variability in changes in performance measures, suggesting 

high variability in the progression through learning strategies. While expert mice converge 

to the same strategy (high discrimination, improved waiting, improved timing), individual 

mice do vary in their paths to expert performance. We are just beginning to explore the 

reasons for these individual differences. We note sex-based similarities and differences 
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in learning trajectories. In both male and female mice, the strategy of naïve sampling 

tended to lead the other three strategies. For acquisition of the other three strategies, 

male mice were more idiosyncratic resulting in overlapping distributions of outcome 

measures, whereas females displayed more sequential stereotypy (Figure 4.5A, Figure 

4.7A, Figure 4.8). Another interesting difference is a dissociation in two types of impulse 

control; female mice displayed lower distractor detection whereas male mice displayed 

higher ability to wait (Figure 4.5C). We do not know the cause of these sex differences, 

but they may relate to reported differences in novel environment exploration, in which 

females demonstrate more cautious (systematic) versus more risky (exploratory) 

decision-making behavior (Gagnon et al., 2016; Gagnon et al., 2018). 
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Figures and Legends 

Figure 4.1: Trial Structure, Performance Measures, and Training Data 
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A) Mice learn to selectively respond to target whisker deflections (fuchsia) and ignore 
distractor whisker deflections (green). B) Signal detection measures were quantified 
according to response rates: Spontaneous (Spont, red) response during the ITI and before 
stimulus presentation; Hit (fuchsia) response after a target stimulus during the response 
window; False alarm (FA, green) response after a distractor stimulus during the response 
window; Premature (Preme, orange) response after a stimulus during the lockout period. 
C) Strategies were investigated according to interlick intervals (temporal distance 
between consecutive licks) and reaction times (temporal distance between stimulus 
presentation and response). D) (Left) discrimination performance plotted across all 
sessions and all mice, segregated according to duration in training (early, middle, late); 
(right) quantification of tercile means across sessions. E) Same dataset and layout as in D, 
but for criterion bias. Shading denotes progression in training by tercile, dark to bright. 
(Unbalanced one-way ANOVA with post-hoc multiple comparisons *** p<0.0005). 
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Figure 4.2: Mice transition from a sampling to waiting strategy before stimulus 
presentation across learning 
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A) (Left) hypothetical example of response distributions in naïve behavior before learning; 
(right) longitudinal performance if response behavior does not change across learning. B) 
(Left) hypothetical example of response distribution in expert behavior after learning; 
(right) longitudinal performance if response behavior changes across learning. C) Mice 
increase and then decrease all responding across terciles; shading denotes progression in 
training (grey to black).  D) Mice decrease spontaneous prestimulus sampling from middle 
to late terciles. E) Mice increase stimulus responding from early to middle terciles. F) 
Percent area under the curve (%AUC) per session of spontaneous sampling (red) and 
stimulus waiting (blue) with linear fits across sessions per mouse (faint black) and mean 
of linear fits across mice (bold black). G) Expected cumulative distribution function shift if 
waiting behavior changes across learning. H) Cumulative probability distribution function 
(CDF) curves across all sessions. I) CDF curves across terciles per mouse. J) Mean CDF 
curves across tercile sessions. K) Mean CDF curves across performance sessions; inset 
shows overlapping of naïve and intermediate performance CDFs. L) Quantification of 
tercile means across sessions, tercile means across mice, and performance means across 
all sessions. [D-K] Shading denotes progression in training by session, dark to bright. 
(Balanced and unbalanced one-way ANOVA with post-hoc multiple comparisons * p<0.05, 
** p<0.005, *** p<0.0005, n.s. p>0.05). 
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Figure 4.3: Mice transition from a sampling to timing strategy after stimulus 
presentation across learning 
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A) (Left) hypothetical example of RT distribution in mouse behavior before and after 
learning if target RT improves to fastest RT possible; (right) longitudinal performance if 
RTs decrease across learning. B) (Left) hypothetical example of RT distribution in mouse 
behavior after learning if RTs converge to the imposed lockout period (dashed gray line); 
(right) longitudinal performance if RTs converge to the lockout period across learning. C) 
Mice increase stimulus responses across terciles; shading denotes progression in training, 
grey to black. D) Mice increase target premature (orange) RT counts across terciles. E) 
Mice increase target hits RT counts across terciles. For all RT distributions (C-E), the 
maximum increase is at the time of the lockout (vertical line). F) Target stimulus RTs per 
session for hits and target premature trials with linear fits across sessions per mouse (faint 
black) and mean of linear fits across mice (bold black). G) Expected cumulative distribution 
function shift if timing behavior changes across learning. H) Cumulative probability 
distribution function (CDF) curves across all sessions. I) CDF curves across terciles per 
mouse. J) Mean CDF curves across tercile sessions. K) Mean CDF curves across 
performance sessions; inset shows overlapping of naïve and intermediate performance 
CDFs. L) Quantification of tercile means across sessions, tercile means across mice, and 
performance means across sessions. [D-K] Shading denotes progression in training, dark 
to bright. (Balanced and unbalanced ne-way ANOVA with post-hoc multiple comparisons 
* p<0.05, ** p<0.005, *** p<0.0005, n.s. p>0.05). 
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Figure 4.4: Interquintile of maximum change analyses reveal order of learning 
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A) Resampled means of object-based and temporal transition trajectories across mice: 
stimulus response rate (grey); RT (orange); spontaneous rate (yellow); wait AUC (purple); 
target detection (fuchsia); distractor detection (green); discrimination (blue); criterion 
(red); shading denotes progression in learning by resampled sessions, dark to bright. B) 
Normalized increasing trajectories for stimulus responding, discriminating, and waiting; 
example interquintile transitions: early, late, steady transitions. C) Distributions of 
interquintile of maximum change per measure across mice. D) Mean interquintile of 
maximum change (μΔmax ± S.E.M.) sequenced by increasing order (Kruskal Wallis rank sum 
ANOVA * p<0.05).  
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Figure 4.5: Order of learning by interquintile of maximum change exhibits sex specificity 

 

A) Male versus female mean interquintile of maximum change (μΔmax ± S.E.M.) sequenced 
as in Figure 4.4. B) Male versus female distributions of interquintile of maximum change 
for wait AUC; solid line, all mice mean interquintile; dashed line, male/female mean 
interquintile. C) Transitions of each measure by quintile (top), sex (middle), and quintile X 
sex interactions (bottom); colors: blue – male, pink – female. (Kruskal Wallis rank sum by 
sex * p<0.05; unbalanced two-way ANOVA with post-hoc multiple comparisons * p<0.05, 
** p<0.005, *** p<0.0005; red borders indicate significance). 
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Figure 4.6: Pairwise innerquintile curvature reveals intermediates in the order of 
learning 
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A) Correlations of measures across mice, color scale [-1 1] (left); sorted correlation 
magnitudes across mice, color scale [0 1] (middle); geometric reduction model of sorted 
correlation magnitudes (right). B) Example analyses for innerquintile curvature (dcurve) 
between rectified pairwise measures by quintile (see Methods and Materials). C) Summed 
dcurve across columns in (D); ∑μdcurve ± S.E.M. for learning order approximation. D) Pairwise 
innerquintile curvature and distributions across mice (top-right, mean dcurve across 
pairwise comparisons; bottom-left, dcurve distributions; dashed line, mean dcurve across 
distribution. (One sample t-test, Bonferroni corrected: * p<0.05, *** p<0.0005; red borders 
indicate significant curvature, denoting differences in learning trajectories). 
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Figure 4.7: Order of learning by pairwise innerquintile curvature exhibits sex 
specificity 
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A) Male versus female: summed dcurve across columns in (C); ∑μ dcurve ± S.E.M. for learning 
order approximation.  B) Male versus female normalized learning trajectories across 
quintiles for individual measures; black borders denote statically significant differences 
(repeated measures ANOVA for longitudinal trajectories). C) Pairwise innerquintile 
curvature and distributions by sex (top-right, mean dcurve across pairwise comparisons by 
sex; bottom-left, dcurve distributions by sex; colored dashed lines, mean dcurve across 
distribution by sex; black dashed line, dcurve = 0; colors: blue – male, pink – female. (One 
sample t-test ** p<0.005, *** p<0.0005, border in pink denotes significant curvature in 
female but not male mice, border in purple denotes significant curvature in both male and 
female mice; unbalanced one-way ANOVA * p<0.05, n.s. p<0.10, border in black denotes 
significant difference between male versus female dcurve, dashed border denotes 
nonsignificant but noteworthy comparisons between male versus female dcurve). 
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Figure 4.8: Object-based and temporal transitions overlap, forming intermediate 
behavioral strategies 



 213 

A) General learning strategy framework in which an initial strategy of naïve sampling 
progresses to stimulus timing, object-based performance, and ultimately waiting and 
withholding. B) Learning strategy framework for male mice in which naïve sampling 
overlaps with stimulus timing and waiting and withhold intermediates, following by 
object-based performance. C) Learning strategy framework for female mice in which the 
intermediate strategies are more temporally distinct. 
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Supplementary Figures 

Supplementary Figure 4.1: Mice do not show transitions in timing behavior for 
distractor trials 

 
A) Mice do not increase distractor premature (green) counts across terciles. B) Mice 
increase distractor false alarm counts from early to middle terciles. C) Distractor stimulus 
RTs per session for false alarm and distractor premature trials (circles), with linear fits 
across sessions per mouse (faint black) and mean of linear fits across mice (bold black); 
shading denotes progression in training (dark to bright; one-way ANOVA with post-hoc 
multiple comparisons ** p<0.005). 
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Supplementary Figure 4.2: Transitions in object-based measures 
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Row 1, left to right) Object-based measures in trial rates across learning: hits (fuchsia), 
false alarm (green), target premature (orange), distract premature (purple), spontaneous 
(red), overall lick bout rates (black, in Hz). Row 2, left to right) Resampled means across 
mice; colors as in Row 1. Row 3) Left: session rates from Row 1; right: linear slopes of 
transitions per mouse. Row 4, left to right) Object-based measures from signal detection 
theory across learning: target detection (fuchsia), target premature detection (orange), 
distractor detection (green), distractor premature detection (purple), target-distractor 
discrimination (blue), target-distractor criterion bias (red). Row 5, left to right) Resampled 
means across mice; colors as in Row 4. Row 6) Left: signal detection measures from Row 
4; right: linear slopes of measures per mouse (shading denotes progression in training, 
dark to bright, one sample t-test * p<0.05, *** p<0.0005). 
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Supplementary Figure 4.3: Similar trajectories in object based measures from mice of 
different genotypes. 

 

Top row) Stimulus response rates (left) and spontaneous response rates (right) across 
quintiles. Bottom row) Signal detection measures across quintiles. Transgenic lines: Thy1 
channelrhodopsin (blue), VGAT channelrhodopsin (orange), Thy1 GCaMP6s (green), 
SNAP25 GCaMP6s (fuchsia), Ai32 channelrhodopsin Cre (purple), Ai39 halorhodopsin Cre 
(yellow), wild type (black, repeated measures ANOVA * p<0.05, ** p<0.005; red borders 
indicate significance).  
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Chapter 5: Conclusion, Future Directions, Retrospect  

The investigations here have explored expert behavior, neuronal correlates of expert 

behavior across cortex, longitudinal learning behavior, and potential strategies utilized to 

achieve expert behavior. The outcomes reported here have only initiated more scrutiny 

(in the form of constructive critique), more potential investigations, more inquiries, and 

more awareness of the various aspects of our task. Considering this, an overall 

assessment adds to our retrospective understanding and potential future directions.  

Behavior Paradigms 

Although we have comprehensively approached the decision to selectively respond and 

selectively ignore competing stimuli, we have still only explored a single behavior 

paradigm. The methods of investigating multiple strategies and potential contributions of 

cortical activity across naïve, learning, and expert behavior should be utilized for many 

behavior paradigms. The paradigm of interest will depend on the question investigated. 

Developing a behavior paradigm is extensive. For instance, when first considering a timing 

strategy and a task that would expose timing behavior, we found that longer prestimulus 

wait times predicted shorter reaction times and more timing errors. We essentially 

reproduced the phenotype for ADHD children in a countermanding reaction time task 

(Hanisch et al., 2006). 

We did find that consistent error reporting and audio stimuli further frustrated 

mice as they learned to wait for a stimulus and then respond within a target duration 

(Figure 5.1A versus 5.1B). Additionally, because both waiting and timing were found in 
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the selective detection paradigm, it would be interesting to investigate a paradigm that 

requires only waiting or only timing. In this way, one might be able to tease apart the two 

temporal strategies. 

The target timing paradigm investigates the decision to target a response 

according to a target reward; we could implement such a paradigm to investigate pure 

target timing where different target windows result in different rewards (Figure 5.2A). 

Targeted reaction times would differ in complexity and difficulty compared to habituated 

response or internal representation of temporal windows (Bakhurin et al., 2017; Matell & 

Portugal, 2007; Namboodiri et al., 2015; Toda et al., 2017). Individual preferences would 

certainly vary, but the mouse’s window of choice would become clear across learning. A 

post-stimulus lockout would differentiate between a target temporal strategy and the 

nontemporal reaction strategy. We should concurrently contrast a pure temporal 

strategy against a pure detection strategy (Figure 5.2B). 

As we have found, mice learn to withhold later in training. This was shown in the 

late distractor withholding after a stimulus and the late prepotent response withholding 

before a stimulus. Deliberate exploitation of early sampling behavior may improve speed 

in learning. For example, the binary opportunity for mice to attain reward or lose reward 

based on their timed response seemed to produce more erratic behavior in training than 

expected. For temporal reward association to form earlier in learning, a gradient of 

reward based on a timed response should prove more effective. This becomes a graded 

reaction time task to investigate an ability to withhold a stimulus triggered response for 
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a larger reward (Figure 5.3A). Such a paradigm could be used to investigate reward 

discount behavior in normative versus diseased animal model behavior.  

We also never implemented a pure waiting paradigm to investigate the decision 

to wait longer for a larger reward, but we could implement such a paradigm to investigate 

a self-initiated wait where longer waits ensure larger rewards (Figure 5.3B). A pure 

waiting paradigm removes the stimulus response aspect and focuses on the ability to wait 

for longer temporal windows based solely on prepotent withholding of response.  

Cortical Attenuation and Cortical State 

The investigation into widefield calcium (Ca2+) imaging was initially the most challenging 

(yet exciting) feature of this body of work. As the investigations progressed, developing 

behavior paradigms became the larger challenge. Still, once behavior protocols served 

their purpose (i.e., our paradigm could answer the scientific inquiry and we could indeed 

teach the mice how to perform the task), the widefield imaging results were more 

consistent and more reliable. The recognition that fluorescence (mean grey value, 

baseline normalized, sliding window normalized, or other fluorescence interpretations) 

could merely contribute to qualitative interpretation was impactful.  

The quantitative evaluation for widefield imaging was found in the encoding of 

the fluorescence data. The concept of encoded information in raw data should be 

expanded beyond behavior output and neurometric readouts. In this way, the signal 

detection application continues to enhance our neuroscientific understanding. Embracing 

overall encoding as a quantitative method for neural processes therefore extends to how 
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we think about sensory encoding (stimulus present versus stimulus absent signal), choice 

encoding (response present versus response absent signal), correct encoding (correct 

outcome versus incorrect outcome), or any other binary form of inquiry. Encoding power 

could be the ‘engram’ we so desperately seek to find.  

Encoding was used to detect the presence of a stimulus and the presence of a 

response choice in our attenuation work (stimulus and choice encoding). As mentioned 

in the prestimulus work, a global state that predicts trial outcome should be evident in 

the prestimulus encoding. Because a great deal of effort went into the encoding analysis 

of the prestimulus state, Appendix Figures 2 and 3 are included and can be further 

discussed concerning future directions.  

Models and Modulation, Experimental and in Silico 

Several future directions have not been explored in this body of work with regards to 

animal models of normative versus disordered conditions, potential in Silico work for data 

analyses, and neural correlation, function, and mechanism.  

Animal models for disease and disorder are abundant. The transgenic GCaMP mice 

in our learning investigation had faster reaction times, higher spontaneous response 

rates, and lower wait AUCs. These may indicate deficits regarding attention and/or 

hyperactivity. These three measures, in addition to the distractor detection measure, are 

indicative of the ability to withhold prepotent response in the intertrial interval and the 

ability to target a stimulus response past the lockout of our task. We determined that 

larger sample sizes were required for the transgenic-specific differences across learning.  
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Neuronal mechanisms across disordered animal models are perhaps the most 

fascinating aspects of investigation: behavior task, model type, and treatment (Agster et 

al., 2011; Antoine et al., 2019; Pardey et al., 2009; Pardey et al., 2013; Silverman et al., 

2010). Object-based versus temporal processing in ADHD children is studied across the 

literature, but little is dedicated to learning specifically (Frida Bayard et al., 2020; Eden et 

al., 1995; Hanisch et al., 2006; Jung et al., 2014; Metin et al., 2018; Toplak et al., 2006). 

Autism models are prevalent in human literature, but should be considered carefully 

when investigating comorbid phenotypes of autism, including those relating to ADHD 

(Meilleur et al., 2020; Murat Baldwin et al., 2021). There also exists the discussion on 

whether mouse models versus rat models are even appropriate for studying such 

disorders with social components (Berg et al., 2020; Silverman et al., 2013; Silverman et 

al., 2022; Till et al., 2022). These considerations are important when investigating 

phenotypes of animal models for mental health disorders involving hyperactivity, 

impulsivity, and learning.  

In addition to experimental approaches, computational modeling in behavioral 

neuroscience has advanced due to the multiple disciplinary approach to investigation of 

various processes: attention, context, learning, memory, object-based, state, and 

temporal (Avramiea et al., 2020; Graves et al., 2016; Mante et al., 2013; Ni et al., 2018; 

Perez & Merchant, 2018; Pisupati et al., 2021; Ruff & Cohen, 2019). Recurrent networks, 

intrinsic noise, and elements of ‘chaos’ seem to be required to interpret many 

spatiotemporal processes (Buonomano & Maass, 2009; Sohn et al., 2019) Still, the ability 



 223 

and necessity of in silico work can only contribute and confirm experimental findings. The 

greatest contribution of in silico methods, though, involves great strides in data analytics, 

machine learning, and mathematical insight (Ashwood et al., 2022; Musall et al., 2020).  

The discussion on a ‘brain state’ before or after a stimulus presentation can be 

redirected towards the overall homeostatic, dynamic, or modulatory tone that potentially 

defines the brain state. Because our cortical work relied on a transgenic SNAP25 pan-

neuronal promotor for calcium-related activity, we cannot determine excitatory versus 

inhibitory calcium related activity. Therefore, dynamic fluorescence observed can only 

indicate potential regions of interest for future investigation of task-related function and 

circuitry. Excitatory versus inhibitory transgenic lines have been suggested to explore this 

differentiation. In any case, we would expect that global low activity in the prestimulus 

state and post-stimulus dynamic propagation of signal would rely on a specific (potentially 

learned) neuromodulatory tone.  

After careful review of neuromodulatory influence on function and circuitry, we 

can investigate a global ‘blend’ of monoaminergic pathways responsible for setting a 

correct tone for correct outcomes. These can be manipulated with systemic 

pharmaceuticals, focal drug application, or disordered models in animal subjects.  Some 

discussions of interest include the development of ideal conditions across learning 

through synaptic plasticity, potential cross modulation and receptor dimerization in 

animal disorders, and reward encoding in cortical pathways (Borroto-Escuela et al., 2016; 

Bromberg-Martin et al., 2010; Pedrosa & Clopath, 2017; Roelfsema & Holtmaat, 2018).    
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Reward Association 

The elements of reward processing, reward prediction, and uncertainty have also not 

been explored here. While reward processing is investigated in many behavior paradigms, 

prediction and uncertainty require precise probabilistic consideration. We introduced a 

temporal uncertainty in our task to minimize temporal strategies in our selective 

detection task. However, mice did learn that if they could wait through a temporal 

uncertainty, they would eventually get a target stimulus, an opportunity to respond, and 

a subsequent reward. The oddball paradigm is a consideration for uncertainty, reward 

prediction, and error signaling (Nguyen & Lin, 2014; Nonomura et al., 2018). In the oddball 

design, probabilistic reward or punishment is met with expectation (of a probable 

outcome) or prediction error (after an improbable outcome). This investigates neuronal 

elements of pleasant surprise upon unexpected reward, disappointment upon not 

receiving an expected reward, or or the difference between expected and unexpected 

under conditions of certainty versus uncertainty. Very careful paradigm design would 

exploit temporal certainty, allowing for mice to predict stimuli and reward associated 

outcome before introducing oddball trials.  

A pure waiting paradigm involving no stimulus with a graded reward schedule 

emphasizes reward association with successful waiting. A pure timing paradigm that 

involves a predicted stimulus with targeted temporal windows emphasizes reward 

associations with target reaction times. Temporal windows and multimodal contexts 

could also be utilized to associate reward with target epochs.  
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Still, in any temporal consideration, it is essential to allow for hazard features 

associated with reward expectation in the task (Grabenhorst et al., 2019). Hazard features 

are evident before a stimulus when longer waiting predicts unintended impulse or 

exploratory sampling behavior; both are investigated via spontaneous lick bouts. The 

well-known hazard function establishes that the probability of response increases as 

expectation increases through a delay (Fiorillo et al., 2008; Nobre et al., 2007; Zariwala et 

al., 2013). Hazard features are evident after a stimulus when response behavior exhibits 

delay-dependent speeding, when reaction times to a stimulus decrease for longer delays, 

which is also related to the hazard function (Näätänen, 1970; Narayanan & Laubach, 2009; 

Parker et al., 2014). Hazards have not yet been investigated considering multiple 

strategies across learning for the selective detective task; it would be interesting to 

observe a change in hazard profiles with respect to the choice of strategy. 

It would also be interesting to observe differentials in motivation with respect to 

the choice of strategy. Motivation in normative versus diseased models becomes the 

behavioral proxy via the aspects of the motivation equation: association based on value, 

reward discounting based on delay, and the ability to overcome hazard profiles of 

impulsivity across learning.  

Strategies Across Learning 

The application of our initial investigation into learning presents a new direction of 

hypothetical design. Because learning, even working memory and memory consolidation, 

is so extensive in behavior paradigms, it seems overwhelming. The management of big 
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data, longitudinally systemized and standardized, will be the hurdle to overcome 

(International Brain et al., 2021; Roy et al., 2021). When one considers the course of 

action required for a neural behavior analysis under expert behavior alone, the extension 

into learning seems exponential. The application, of course, reaches beyond any single 

experiment. It pushes the boundaries into understanding how we learn, when we learn, 

what we learn, which learning strategy builds upon another learning strategy, etc. to 

optimize goal-directed behavior.  

 A common understanding of stepwise learning or phasic learning should be 

extended into discrete or overlapping strategy formation with necessary intermediates 

(Ashwood et al., 2022). In this sense, we imagine the stepwise, phasic, discrete, or 

overlapping nature of critical periods throughout development. Case in point, critical 

periods may give notable insight into how we evaluate behavioral learning.  

Final Remarks 

In conclusion, the verdict on whether complex and dynamic spatiotemporal environments 

should be investigated collectively or piecewise is still up for debate. Neither nature nor 

nurture influence our experience and perception in a vacuum. Surely, we appreciate the 

initial motivation of insight into the mental health applications of this work. We should 

first use these findings as insight into how the normative selection process develops 

through learning transitions, how it may require an optimal state, and how it is used to 

maximize performance. We should then use such insight to investigate the selection 

process of the disordered or diseased model of interest. Unquestionably, the notion of 
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whether detection is true detection, whether learning is true learning, whether selection 

is true selection, whether timing is true timing, and whether waiting is true waiting should 

continuously be critiqued. As a final point, though, we must reconcile amongst ourselves 

that under no circumstances are we to answer the question of whether attention is truly 

attention.  
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Figures and Legends 

Figure 5.1: Target Timing with Delay Paradigm 

 

Above) Initial task structure to investigate interval timing with delay and penalty; mice 
performed poorly; auditory cues were adjusted to minimize a startle effect; mice seemed 
most frustrated with the reporting of trial outcome by differential pure tones. Below) 
Revised task structure to investigate interval timing with delay and penalty; mice 
performed better without multiple auditory cues but had difficulty with the penalty during 
the delay due to spontaneous responding.   
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Figure 5.2: Target Timing versus Detection Paradigm  

 

Above) A timing task would include a stimulus presentation followed by a reported 
response with a reaction time readout; preferred target reward per mouse may vary but 
should shift towards preferred target window and become less variable in RT CDF curves 
as mouse improves performance. Below) A detection task also includes a stimulus 
presentation followed by a reported response with a reaction time readout; with no 
penalty and no delay, the RT CDF curves shift towards fastest reaction time possible as 
mouse improves performance.   
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Figure 5.3: Withhold Before versus After Stimulus Paradigm  

 

Above) A stimulus withhold task requires a stimulus where longer reaction times indicate 
reward association with longer withholding; we would expect that the intertrial interval 
influences the hazard effect. Below) A wait withhold task requires no stimulus where 
longer interlick intervals indicate reward association with longer waiting; we would expect 
that the interlick interval influences the hazard effect. 
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APPENDIX 

Appendix Figure 1: Target Choice Probability Maps in the Prestimulus Cortical State 

 

Left) Target response choice probability map; color scale [30% 70%]; lower than chance 
choice probability in the prestimulus epoch for target trials only; additional evidence for 
global, low amplitude, prestimulus cortical state. Right) Significance map for target 
response choice probability; greater significance in lower than chance choice probability 
for distractor aligned regions: whisker motor cortex, anterolateral motor cortex, and 
retrosplenial cortex.   
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Appendix Figure 2: Encoding Maps in the Prestimulus Cortical State 

 

Top Left) Hit response choice encoding map; low encoding indicates low fluorescence 
predicts a hit response outcome versus a miss no response outcome. Top Middle) FA 
response choice encoding map; low encoding indicates low fluorescence predicts a FA 
response outcome versus a CR no response outcome. Top Right) Response choice encoding 
map; low encoding indicates low fluorescence predicts a response outcome versus a no 
response outcome. Bottom Left) Correct response choice encoding map; high encoding 
indicates higher fluorescence predicts a correct response (hit) versus an incorrect response 
(FA). Bottom Middle) Correct no response choice encoding map; low encoding indicates 
lower fluorescence predicts a correct no response (CR) versus an incorrect no response 
(Miss). Bottom Right) Correct state choice encoding map; low encoding indicates lower 
fluorescence predicts a correct state (Hit or CR) versus an incorrect state (Miss or FA; color 
scale for all maps [-0.5% 0.5%]).  
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Appendix Figure 3: Significant Encoding in the Prestimulus Cortical State 

 

Top Left) Hit response choice significance map; focal midline effect predicts hit response 
outcome versus miss no response outcome. Top Middle) FA response choice significance 
map; global effect predicts FA response outcome versus CR no response outcome. Top 
Right) Response choice significance map; global sensory effect predicts response outcome 
versus no response outcome. Bottom Left) Correct response choice significance map; Hit 
response outcomes cannot be differentiated from FA response outcomes. Bottom Middle) 
Correct no response choice significance map; focal midline effect, higher in distractor 
aligned cortices, predicts a CR no response outcome versus a miss no response outcome. 
Bottom Right) Correct state significance map; focal frontal midline effect, with potential 
RSP effect, predicts Hit or CR outcome versus Miss or FA outcome (color scale for all maps 
[0 12], Bonferroni corrected; error indicates threshold for p=0.05 significance with a 
Bonferroni correction). 
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