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ABSTRACT	
 

Diver Fear Effects and Other Human Alterations of Predation Risk in Marine 

Systems 

 

by		
April	D.	Ridlon	

 

	

Humans	have	altered	the	ocean	on	a	global	scale.		From	large-scale	extractive	

activities	such	as	fishing,	to	the	unintentional	introduction	and	spread	of	invasive	

species	via	shipping	vessels,	human	activities	shape	marine	communities	worldwide,	

having	myriad	effects	on	ecosystem	functions	and	resilience.	Even	recreational	activities	

that	are	assumed	to	have	lesser	impacts,	such	as	SCUBA	diving,	are	intensifying	and	

becoming	increasingly	concentrated	inside	marine	protected	areas.	Research	into	a	

wide	range	of	direct	and	obvious	human	impacts	has	informed	the	effective	

management	of	marine	systems	for	both	conservation	goals	and	human	uses.	However,	

understanding	the	more	nuanced	pathways	for	the	effects	of	human	disturbance	is	

critical,	especially	in	systems	facing	multiple	stressors,	as	they	may	serve	to	tip	the	

balance	between	healthy	ecosystems	and	degraded	ones.	In	particular,	there	is	recent	

and	growing	evidence	that	human	activities	are	altering	predation	risk	in	marine	

systems.	When	humans	change	the	abundance,	distribution,	or	behavior	of	marine	

predators,	whether	through	fishing	or	other	forms	of	disturbance,	those	changes	can	

ripple	through	marine	ecosystems	due	to	the	comparatively	large	effects	that	predators	

have	on	other	trophic	levels.	Predators	exert	both	consumptive	and	non-consumptive	
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effects	on	prey	populations,	and	can	thus	influence	other	species	interactions	and	

trigger	cascades	that	can	result	in	the	fundamental	restructuring	of	marine	systems.	

However,	although	risk	effects	have	been	well	studied	in	terrestrial	systems,	these	

effects	have	been	largely	neglected	in	marine	systems.	In	this	thesis,	I	explore	two	

different	pathways	for	the	effects	of	human	alteration	of	predation	risk.		My	first	two	

chapters	examine	the	non-consumptive,	or	fear	effects	of	recreational	spearfishing,	

diving,	and	snorkeling	to	marine	fish.		My	third	chapter	examines	the	consumptive	

effects	of	an	introduced	predator	on	both	a	native	and	an	invasive	prey	population,	and	

the	dynamics	between	them.			

Chapters One and Two: Diver fear effects 

The	ecology	of	fear	is	based	on	evidence	demonstrating	that	predation	risk	is	a	

strong	 motivating	 factor	 in	 individual	 prey	 behavior,	 and	 has	 consequences	 at	 the	

population,	 community	 and	 ecosystem	 level.	 	 While	 predator	 escape	 theory	 was	

developed	 with	 natural	 predators	 in	 mind,	 humans	 can	 act	 as	 predators	 (e.g.	 while	

fishing)	 or	mimic	 predators	 (e.g.	while	 diving).	 The	 recent	 testing	 of	 predator	 escape	

theory	by	the	measurement	of	 flight	 initiation	distance	(FID)	-	the	distance	at	which	a	

fish	 flees	 from	 approaching	 diver	 -	 represents	 a	 promising	 new	 avenue	 for	 future	

research	on	diver	fear	effects	to	marine	fish	and	in	marine	ecosystems.	My	synthesized	

review	 of	 the	 available	 empirical	 evidence	 suggested	 that	 fish	 react	 to	 divers	 with	

increases	in	vigilance	and	flight	where	they	are	exposed	to	spearfishers	as	compared	to	

areas	 where	 they	 are	 protected	 from	 fishing.	 In	 contrast,	 I	 found	 that	 the	 effects	 of	

recreational	 diving	 on	 the	 flight	 and	 vigilance	 behavior	 of	 fish	 have	 not	 been	 well	

studied	 or	 effectively	 measured	 to	 date.	 In	 order	 to	 explore	 the	 effects	 of	 long-term	
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recreational	 diving	 on	 the	 behavior	 of	 a	 common	 reef	 fish,	 I	 conducted	 a	 series	 of	

experiments	on	reefs	in	the	Cayman	Islands	where	recreational	diving	activity	has	been	

consistent	 and	 spearfishing	 has	 been	 banned	 for	 decades.	 By	measuring	 the	 FID	 and	

vigilance	behavior	of	over	250	individual	Stoplight	Parrotfish	(Sparisoma viride),	I	found	

evidence	for	habituation	to	divers	by	this	species	in	areas	where	recreational	diving	is	

most	concentrated.	The	near	lack	of	a	flight	response	in	fish	exposed	to	chronic	diving	

activity	represents	the	lowest	FID	recorded	for	the	species	in	either	protected	or	fished	

areas	 elsewhere	 in	 the	 world.	 The	 significant	 decrease	 in	 flight	 and	 vigilance	 in	

individuals	in	the	highly	dived	area	in	comparison	to	those	in	less	frequently	dived	areas	

also	 suggests	 that	 the	 frequency	 of	 diving	 activity	 drives	 this	 response.	 However,	

significant	 declines	 in	 the	 bite	 rates	 and	 frequency	 of	 cleaning	 interactions	 of	

individuals	 in	 the	 immediate	 presence	 of	 a	 diver	 also	 suggested	 that	 there	 may	 be	

fitness	 costs	associated	with	 recreational	diver	encounters,	 even	 for	habituated	 fish.	 I	

therefore	used	 these	decreased	bite	 rates	 to	estimate	 a	 cumulative	 cost	 of	 daily	diver	

encounters	 to	 an	 individual	 fish	 in	 terms	 of	 lost	 feeding.	Where	habituation	 to	divers	

was	extreme	at	my	study	site,	estimated	feeding	loss	for	an	individual	fish	was	low.	For	

scenarios	 in	 which	 I	 simulated	 lower	 levels	 of	 fish	 habituation	 and	 different	 diver	

behavior,	 estimated	 feeding	 loss	 due	 to	 diver	 encounters	 were	 much	 higher.	 This	

suggests	that	the	cumulative	costs	of	recreational	diver	encounters	may	be	significant	if,	

for	example,	larger	flight	distances	must	be	maintained	due	to	the	occasional	or	nearby	

presence	 of	 spearfishers.	 Based	 on	 my	 findings,	 I	 make	 recommendations	 for	 future	

research	 into	 the	 behavioral	 effects	 of	 spearfishing,	 recreational	 diving,	 and	 the	

potential	 interaction	 of	 these	 two	 activities	 on	 the	 behavior	 of	 marine	 fish.	 I	 also	
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recommend	 the	 incorporation	of	 these	behavioral	effects	 into	marine	spatial	planning	

and	 management	 for	 multiple	 human	 uses,	 particularly	 where	 spearfishing	 and	

recreational	diving	co-occur.			

Chapter Three: Predation effects of an introduced predator 	

As	multiple	invasions	accumulate	in	marine	systems,	identifying	the	species	

traits	and	interactions	that	affect	invasion	success	is	critical	for	predicting	the	outcomes	

of	multiple	species	introductions.			Facilitation	is	a	major	mechanism	for	invasion	

success	that	can	increase	the	magnitude	of	impact	of	an	existing	invasion.		Marine	

predators	can	facilitate	invasions	and	may	be	more	likely	to	tip	the	balance	of	dynamics	

between	species	in	an	invaded	system	via	top-down	effects.	I	examined	the	effect	of	

predation	by	an	introduced	crab,	Carcinus maenas, on	the	native	snail	Cerithidea 

californica	and	the	invasive	snail	Ilyanassa obsoleta. These	two	common	snail	species	

co-occur	in	the	San	Francisco	Bay	estuary,	where	there	is	evidence	for	the	competitive	

displacement	of	the	native	snail	by	the	invasive.		Laboratory	experiments	revealed	that	

Carcinus maenas	predation	was	strongly	and	significantly	greater	on	the	native	species	

as	compared	to	the	invasive.		While	the	frequency	of	crab	attacks	was	not	significantly	

different	between	snail	species,	the	predator	was	5.45	times	more	successful	at	killing	

the	native	C. californica than	the	invasive	I. obsoleta	given	an	attack.			This	differential	

predation	success	drives	the	higher	overall	mortality	in	native	snails.			In	light	of	the	

competitive	displacement	of	the	native	snail	by	the	invasive	in	this	system,these	results	

demonstrate	that	the	introduced	predator	C. maenas	can	have	both	direct	negative	

impacts	on	native	species	and	indirect	positive	impacts	on	other	invaders	via	

facilitation.		My	results	provide	unique	information	about	a	predator’s	potential	to	
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indirectly	influence	the	success	of	an	invasion,	and	contribute	to	our	understanding	of	

the	role	of	introduced	predators	in	influencing	the	dynamics	of	multiple	invasions	in	

marine	systems.
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Abstract 

The	number	of	recreational	divers	is	on	the	rise	globally,	and	their	activities	are	

becoming	 increasingly	 concentrated	 inside	 marine	 protected	 areas	 (Dowling,	 2008;	

Gonson	 et	 al.,	 2015).	 Little	 is	 currently	 known	 about	 the	 effects	 of	 spearfishing	 or	

recreational	 diving,	 two	 of	 the	 most	 common	 marine	 recreational	 activities,	 on	 the	

behavior	of	fish	or	the	ecosystems	that	are	shaped	by	their	behavior.	There	is	growing	

evidence	 that	 as	 human	 activities	 alter	 risk	 landscapes	 in	 marine	 systems,	 resulting	

behavioral	effects	are	occurring	(Larson	et	al.,	2016;	Madin	et	al.,	2016)	potentially	at	a	

greater	magnitude	than	consumptive	effects	(Preisser	et	al.,	2005),	and	with	the	strong	

potential	 to	 trigger	 cascades	 in	marine	 ecosystems	 (Madin	 et	 al.,	 2010;	Mumby	et	 al.,	

2012).	 The	 testing	 of	 optimal	 predator	 escape	 theory	 by	 the	 measurement	 of	 flight	

initiation	distance	(FID)-	the	distance	at	which	fish	flee	from	approaching	divers	-	under		

different	scenarios	represents	a	promising	new	avenue	for	future	research	that	informs	

an	understanding	of	 fear	effects	to	marine	species	and	their	potential	to	affect	marine	
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ecosystems.	In	this	article,	we	provide	an	overview	of	the	current	status,	opportunities,	

and	future	directions	of	research	into	diver	fear	effects.	Using	FID	theory	as	the	basis	for	

testing	 the	 impacts	 of	 human	 activity	 on	 fish,	 we	 draw	 upon	 the	 current	 available	

evidence,	and	make	predictions	driven	by	both	theory	and	existing	empirical	data.	We	

provide	specific	recommendations	for	using	standardized	methods	in	future	research	to	

address	chronic	timescales	of	diver	effects	and	to	inform	improvements	in	the	current	

theory.	We	also	discuss	the	need	to	move	beyond	the	current	understanding	of	various	

forms	of	diver	 fear	effects,	and	particularly	 their	 interactions,	by	 linking	 the	effects	of	

diver	 encounters	 to	 fitness	 and	 ecosystem-level	 consequences.	 Specifically,	 future	

studies	 should	 include	 the	 simultaneous	 measurement	 of	 FID	 and	 relevant	 fitness	

components	 (e.g.	 increased	 metabolic	 rate,	 reduced	 growth	 rate)	 to	 quantify	 the	

cumulative	 fitness	 costs	of	 diver	encounters	 to	 fish.	Finally,	 future	 research	 into	diver	

fear	 effects	 should	 include	 encounter	 rate	with	divers	 as	 a	mechanism	 for	 changes	 in	

FID	 to	 account	 for	 the	 discrepancies	 between	 current	 theory	 and	 empirical	 findings,	

which	may	result	in	part	from	the	unique	nature	of	human	predators.	

	

Introduction 

Humans	 are	 unique	 as	marine	 predators	 in	 the	 breadth	 and	magnitude	 of	 the	

predation	pressure	we	exert,	the	selective	forces	we	apply	on	prey	populations,	and	the	

changes	we	cause	to	natural	predation	risk	via	fishing	(Darimont	et	al.,	2015,	2009;	Diaz	

Pauli	 and	 Sih,	 2017;	 Madin	 et	 al.,	 2016).	 Likewise,	 as	 SCUBA	 diving	 and	 snorkeling	

continue	to	gain	popularity,	physical	disturbances	unique	to	these	human	activities	are	

intensifying	 (Hasler	 and	 Ott,	 2008;	 Zakai	 and	 Chadwick-Furman,	 2002),	 particularly	
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inside	marine	protected	areas	(MPAs;	Gonson	et	al.	2015).		While	comparatively	less	is	

known	 about	 the	 behavioral	 effects	 of	 human	 activities	 in	 marine	 systems,	 both	

spearfishing	 and	 recreational	 SCUBA	 diving	 and	 snorkeling	 (hereafter	 recreational	

diving)	 have	 the	 potential	 to	 cause	 widespread	 ecological	 changes	 via	 fear	 effects	

analogous	 to	 those	 operating	 in	 terrestrial	 systems	 (Brown	 et	 al.,	 1999;	 Brown	 and	

Kotler,	2004;	Ciuti	et	al.,	2012a;	Ripple	and	Beschta,	2004)	by	triggering	anti-predator	

reactions	in	fish,	including	increased	wariness	and	flight	(Frid	and	Dill,	2002).		In	fact,	as	

humans	alter	risk	 landscapes	 in	marine	systems	at	a	rapid	pace	and	on	a	broad	scale,	

there	is	growing	evidence	that	resulting	behavioral	effects	are	occurring	(Larson	et	al.,	

2016;	Madin	et	al.,	2016),	potentially	at	a	greater	magnitude	than	consumptive	effects	

(Preisser	 et	 al.	 2005)	 and	 with	 the	 strong	 potential	 to	 trigger	 cascades	 in	 marine	

ecosystems	 (Madin	 et	 al.	 2010,	 Mumby	 et	 al.	 2012).	 The	 impacts	 of	 the	 behavioral	

effects	of	divers	on	marine	systems	may	even	undermine	conservation	efforts	to	protect	

species	by	altering	the	spatial	distribution	of	herbivore	grazing,	thereby	affecting	coral	

settlement	and	recruitment	(Mumby,	2006),	and/or	the	distribution	of	natural	marine	

predators	within	an	MPA	(Jiao	et	al.,	2016).	

The	 predicted	 behavioral	 effects	 of	 consumptive	 and	 non-consumptive	 human	

activities	 share	 a	 common	 theoretical	 framework,	 based	 on	 the	 idea	 that	 animals	

respond	 to	encounters	with	people	according	 to	 the	 risk	 they	associate	with	humans.		

Assessing	 this	 risk,	 and	 adjusting	 their	 anti-predator	 responses	 accordingly,	 enables	

animals	to	trade	off	the	ultimate	cost	of	being	preyed	upon	against	the	energy	spent	on	

predator	 defense	 and	 the	 loss	 of	 opportunities	 to	 engage	 in	 other	 fitness-enhancing	

activities,	 including	 feeding,	 mating,	 and	 territorial	 defense	 (Cooper	 and	 Frederick,	
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2007;	Helfman,	1989;	Lima,	1998;	Lima	and	Bednekoff,	1999).	The	distance	at	which	an	

animal	 flees	 from	 the	 approach	 of	 a	 potential	 predator,	 the	 flight	 initiation	 distance	

(FID),	is	a	standard	metric	commonly	used	to	indicate	an	animal’s	perception	of	risk	and	

to	 predict	 the	 energetic	 costs	 of	 responding	 to	 both	 lethal	 and	 non-lethal	 human	

activities	(Côté	et	al.,	2014;	Gotanda	et	al.,	2009;	Taylor	and	Knight,	2003).		According	to	

optimal	FID	theory	(Cooper	and	Frederick,	2010a,	2007)	animals	flee	from	predators	at	

the	distance	that	maximizes	their	lifetime	fitness	after	an	encounter,	trading	off	between	

the	 probability	 of	 death	 based	 on	 the	 lethality	 of	 the	 predator	 encountered	 and	 the	

energetic	costs	of	flight	and	lost	opportunities	due	to	fleeing.		The	predictions	of	optimal	

FID	have	been	well	supported	in	terrestrial	systems	(Blumstein,	2016,	2010;	McLeod	et	

al.,	 2013;	Stankowich,	2008;	Stankowich	and	Blumstein,	2005),	 and	marine	ecologists	

have	recently	undertaken	experiments	to	understand	how	fear	effects	may	alter	FID	in	

marine	fish.		

The	 testing	 of	 predator	 escape	 theory	 via	 the	measurement	 of	 optimal	 FID	 in	

marine	 systems,	 particularly	 via	 the	 emergent	 research	 into	 the	 behavioral	 effects	 of	

spearfishing	 (e.g.	 Januchowski-Hartley	et	 al.	 2011;	Feary	et	 al.	 2011;	Côté	 et	 al.	 2014;	

Alós	 et	 al.	 2015;	 Goetze	 et	 al.	 2017),	 represents	 a	 promising	 new	 avenue	 for	 future	

research	that	informs	a	fundamental	understanding	of	risk	effects	to	marine	species	and	

the	 ecosystems	 that	 are	 affected	 by	 their	 behavior.	 However,	 we	 lack	 a	 parallel	

understanding	of	behavioral	effects	of	recreational	activities	in	marine	systems,	which,	

like	other	non-consumptive	human	impacts,	may	alter	marine	ecosystems	in	important	

ways.		While	some	important	advances	in	the	understanding	of	both	natural	and	human	

induced	risk	effects	have	recently	been	made	 in	marine	systems	(Long	and	Hay,	2012;	
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Madin	et	al.,	2016),	the	mechanisms	for,	and	consequences	of,	these	effects	are	not	well	

understood.	Recreational	divers	in	particular	are	generally	assumed	to	have	no	negative	

effects	on	fish,	especially	where	fish	do	not	show	obvious	avoidance	of	divers,	but	this	

remains	 largely	untested.	With	more	people	engaging	 in	recreational	marine	activities	

than	ever	before,	particularly	 inside	protected	areas	 (Gonson	et	al.,	2015;	Monz	et	al.,	

2010),	 we	 need	 to	 understand	 and	 consider	 the	 potential	 behavioral	 effects	 of	

recreational	 diving	 on	 fish	 populations,	 as	 well	 as	 the	 interactions	 between	 various	

human	activities	(e.g.	spearfishing	and	recreational	diving).		

Moving	beyond	immediate	behaviors	to	understand	the	magnitude	and	potential	

consequences	of	diver-induced	risk	effects	requires	that	the	fitness	costs	of	encounters	

with	 divers	 be	 considered.	 Empirical	 evidence	 for	 persistent	 fitness	 effects	 and	 their	

population-level	 consequences	 for	marine	 species	 that	 routinely	 encounter	 tourists	 is	

limited	(French	et	al.,	2011),	but	highlights	the	potential	for	these	effects	to	be	operating	

in	similar	ways	as	they	are	in	terrestrial	systems.		Predator	escape	theory	incorporates	

changes	in	individual	fitness	of	prey	over	repeated	encounters	with	a	natural	predator	

to	both	predict	flight	responses	and	account	for	the	energetic	and	lost	opportunity	costs	

associated	with	 them	(Lima	and	Bednekoff	1999).	 	However,	 the	conceptual	 literature	

on	predator	 avoidance	 is	 developed	 for	 and	primarily	 tested	on	 the	 effects	 of	 natural	

predators	 that	 have	 co-evolved	with	 their	 prey,	 and	 humans	 are	 comparatively	 “new”	

and	 fundamentally	 different	 predators	 in	 some	 key	 ways.	 Spear	 guns	 increase	 the	

individual	 lethality	 and	 reach	 of	 humans,	 whose	 disproportionate	 targeting	 of	 large,	

adult,	and	predatory	 fish,	have	unique	 implications	not	only	 for	 their	mortality	effects	

(Conover	 et	 al.,	 2009;	Dulvy	 et	 al.,	 2004;	Mumby	et	 al.,	 2012;	 Sutter	 et	 al.,	 2012),	 but	
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potentially	 for	 their	behavioral	effects	as	well	 (Diaz	Pauli	and	Sih,	2017).	 	 In	addition,	

where	spearfishers	and	recreational	divers	make	up	a	population	of	potential	predators	

for	 fish	 to	 respond	 to,	 they	 present	 similar	 visual	 cues	 connected	 to	 vastly	 different	

levels	of	individual	lethality.		How	fish	assess	predation	risk	during	diver	encounters	in	

the	dynamic	scenarios	created	by	human	predation	and	recreation	is	untested,	and	the	

broader	 consequences	 of	 their	 responses	 are	 unknown.	 This	 highlights	 a	 clear	 and	

urgent	need	to	consider	encounter	rate	as	a	mechanism	for	fish	responses	to	divers,	and	

link	 flight	 and	 vigilance	 behaviors	 to	 their	 fitness	 effects	 on	 the	 individual	 and	

population-level,	to	better	understand	the	magnitude	of	behavioral	effects	of	divers	on	

marine	ecosystems.	

In	this	article,	we	provide	an	overview	of	the	current	status,	opportunities,	and	

future	directions	of	research	into	understanding	human	fear	effects	in	marine	systems.	

Using	FID	theory	as	the	basis	for	testing	the	impacts	of	human	activity	on	fish,	we	draw	

upon	 the	 current	 available	 evidence	 and	make	predictions	driven	by	both	 theory	 and	

existing	empirical	data.	We	discuss	the	need	to	move	beyond	the	current	understanding	

of	 various	 forms	of	diver	 fear	effects,	 and	particularly	 their	 interaction,	by	 linking	 the	

effects	 of	 divers	 on	 FID	 to	 fitness	 and	 ecosystem	 consequences.	 To	 that	 end,	 we:	 1)	

review	how	optimal	FID	theory	can	be	used	to	understand	and	disentangle	the	effects	of	

consumptive	and	non-consumptive	human	activities	on	 fish.	We	summarize	and	draw	

upon	 the	 empirical	 evidence	 for	 the	 effects	 of	 spear	 fishing,	 recreational	 diving,	 and	

their	potential	interaction	on	FID	of	marine	fish;	2)	predict	the	potential	fitness	effects	

of	diver	encounters	and	their	consequences	to	marine	fish,	as	well	as	the	potential	 for	

diver-induced	 behavioral	 cascades	 by	 drawing	 upon	 relevant	 examples	 of	 similar	
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research,	 and	 3)	 provide	 specific	 recommendations	 for	 future	 research	 into	 these	

effects,	 including	 suggestions	 for	 standardizing	 the	 methods,	 and	 for	 improving	 the	

current	theory.		We	highlight	the	importance	of	including	encounter	rate	with	divers	as	

a	 mechanism	 for	 changes	 in	 FID	 to	 account	 for	 the	 discrepancies	 between	 current	

theory	and	empirical	findings.		

	

Using Flight Initiation Distance to Understand Diver Fear Effects  

Optimal	 FID	 theory	 can	 be	 used	 to	 understand	 and	 disentangle	 the	 role	 of	

humans	 as	 predators	 (e.g.	 spearfishers)	 from	 humans	 as	 observers	 (e.g.	 recreational	

divers)	in	the	marine	environment.	Spearfishers	are	lethal	predators,	and	encountering	

them	carries	a	true	risk	of	death,	while	encounters	with	recreational	divers	do	not.	FID	

theory	is	predicated	on	an	individual	fish	having	perfect	information	about	the	level	of	

predation	 risk	posed	by	an	approaching	potential	predator,	 in	 this	 case,	being	able	 to	

distinguish	 a	 spearfisher	 from	 a	 recreational	 diver.	 	 Of	 course,	 prey	 rely	 not	 only	 on	

immediate	 cues,	 but	 also	 on	 recent	 previous	 exposure	 to	 predators	 to	 assess	 their	

current	 predation	 risk	 (Lima	 and	 Bednekoff,	 1999).	 The	 observed	 FID	 should	 best	

match	 the	predictions	of	optimal	FID	when	prey	receive	consistent,	reliable	cues	with	

which	to	update	their	assessment	of	predation	risk.		

Thus,	while	 repeated	exposure	 to	 only	 spearfishing	 cues	 should	 reinforce	 anti-

predator	behavior	and	increase	FID,	repeated	exposure	to	only	non-consumptive	human	

recreational	activities,	such	as	recreational	diving,	may	cause	an	animal’s	perception	of	

predation	risk,	and	thus	their	FID,	to	progressively	decrease	(Burger	&	Gochfeld	1990),	

a	learning	process	called	habituation	(Bejder	et	al.,	2009).	Habituating	to	the	non-lethal	
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presence	 of	 humans	 can	 benefit	 animals,	 particularly	when	 the	 level	 of	 encounters	 is	

high,	 by	 cutting	 the	 energetic	 costs	 associated	 with	 flight	 and	 vigilance	 (Blumstein,	

2016;	 Lima	 and	 Bednekoff,	 1999;	 Rodriguez-Prieto	 et	 al.,	 2010)	 and	 providing	 more	

frequent	 opportunities	 to	 increase	 fitness	 (via	 mating,	 feeding,	 etc.).	 However,	

habituating	to	recreational	divers	with	lower	FIDs	may	make	animals	more	vulnerable	

to	a	natural	predator	via	a	mistake	in	risk	assessment	when	they	encounter	one,	so	that	

the	degree	of	optimal	 habituation	depends	on	 the	 level	of	 exposure	 to	 true	predation	

risk	from	both	humans	and	natural	predators	in	the	system.		Most	marine	recreational	

areas	worldwide	allow	for	multiple	human	uses,	creating	a	varied	landscape	of	human-

induced	predation	risk	for	fish,	and	the	costs	and	benefits	associated	with	fleeing	from	

them.	 The	 ratio	 of	 encounters	 between	 fish	 and	 spearfishers	 and	 recreational	 divers	

may	be	particularly	 important	 in	assessing	the	risk	posed	by	human	predators,	which	

are	 unique	 in	 presenting	 similar	 visual	 cues	 connected	 to	 vastly	 different	 levels	 of	

lethality.	 In	order	 to	understand	how	various	human	activities	may	 interact	 to	 impact	

fish	 behavior,	 we	 review	 what	 is	 known	 about	 the	 impacts	 of	 spearfishing	 and	

recreational	diving	on	marine	fish	species.	 In	this	section	we	summarize	the	empirical	

evidence	 for	 the	 effects	 of	 spearfishing,	 recreational	 diving,	 and	 their	 potential	

interaction	 on	 the	 FID	 of	 marine	 fish.	 	 By	 examining	 these	 findings	 in	 light	 of	 the	

predictions	of	optimal	FID	and	predator	escape	theory,	we	highlight	the	unique	role	of	

humans	as	predators	in	marine	systems,	and	gaps	in	the	current	understanding	of	diver	

fear	effects	 that	must	be	addressed	 to	 inform	and	 improve	 fisheries	management	and	

the	conservation	of	marine	species.			
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2.1. Spearfishing 

Insights	 into	 the	 anti-predator	 responses	 of	 marine	 fish	 under	 different	 human-

induced	risk	regimes	can	be	gleaned	by	measuring	FIDs	of	the	same	species	outside	and	

inside	of	a	no-take	MPA	(e.g.	Gotanda	et	al.	2009;	Januchowski-Hartley	et	al.	2011;	Feary	

et	al.	2011;	Benevides	et	al.	2016)	or	by	comparing	the	responses	of	targeted	species	to	

non-targeted	species	in	the	same	location	(e.g.	Feary	et	al.	2011;	Januchowski-Hartley	et	

al.	2014;	Bergseth	et	al.	2016).	Existing	studies	on	 the	 impacts	of	 spearfishing	on	 fish	

behavior	confirm	the	main	prediction	of	optimal	FID	theory:	that	marine	fish	set	their	

FID	according	to	the	lethality	of	the	predator(s)	they	encounter,	increasing	their	FIDs	in	

response	 to	 the	 predation	 risk	 posed	 by	 spearfishers	 (Fig	 1;	 Gotanda	 et	 al.	 2009;	

Januchowski-Hartley	 et	 al.	 2011;	 Feary	 et	 al.	 2011;	 Januchowski-Hartley	 et	 al.	 2012;	

Januchowski-Hartley	et	al.	2014;	Nunes	et	al.	2016;	Bergseth	et	al.	2016).	Significantly	

elevated	 average	 FIDs	 of	 individuals	 in	 fished	 areas	 relative	 to	 protected	 areas	 are	

reported	for	a	wide	range	of	targeted	species,	and	the	average	FIDs	of	targeted	species	

are	significantly	higher	than	those	of	non-targeted	species	in	the	same	location	(Fig	1),	

indicating	 that	 fish	 set	 their	 FID	 at	 a	 higher	 average	 distance	 than	 that	 dictated	 by	

natural	 predation	 risk	 in	 response	 to	 human	 predators.	 	 Individual	 body	 size	 is	

positively	correlated	with	FID	for	reef	fish	(Gotanda	et	al.,	2009;	Januchowski-Hartley	et	

al.,	 2014;	Miller	 et	 al.,	 2011),	 an	 effect	 that	 has	 also	 been	 found	 in	 hunted	 terrestrial	

species	 (Stankowich,	 2008).	 This	 is	 in	 contrast	 to	 the	 negative	 relationship	 between	

body	size	and	response	 to	natural	predators	 in	marine	 fish.	 	Natural	predation	risk	 is	

higher	for	small-bodied	fish	due	to	the	gape	limitation	of	their	predators	(Scharf	et	al.,	

2000),	 causing	 smaller	 prey	 to	 be	 more	 vulnerable	 to	 both	 a	 greater	 number	 of	
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predators	 in	 a	 given	 population,	 and	 a	 wider	 range	 of	 natural	 predatory	 species.	 	 In	

contrast,	 the	 significantly	higher	FIDs	 in	 larger	 fish	 exposed	 to	 spearfishing	 are	 likely	

driven	by	the	unique	nature	of	human	predation,	specifically	that	larger	individuals	and	

larger	bodied	species	are	often	preferentially	targeted	by	fishers	(Dulvy	et	al.,	2004).	

Within	species	targeted	by	spearfishers,	there	is	variability	in	the	magnitude	of	the	

flight	 response	 to	 fishing,	 and	 in	 the	 species’	 ability	 to	 effectively	 escape	 human	

predators	by	increasing	this	distance	(Gotanda	et	al.	2009;	Nunes	et	al.	2016;	Fig	1)	For	

example,	 the	 average	 FIDs	 for	 both	 S. trispinosus	 and	 S. vetula in	 fished	 areas,	 while	

significantly	 higher	 than	 in	 protected	 areas, are	 still	 well	 below	 the	 average	 effective	

range	 of	 spear	 guns	 (310	 cm:	 Feary	 et	 al. 2011;	 Fig	 1).	 	 In	 addition,	 while	 the	 two	

families	of	predatory	fishes	for	which	there	are	data	show	a	trend	of	 increasing	FID	in	

fished	areas,	this	is	only	significant	for	one	species	(P. leopardus),	and	only	individuals	in	

the	 Lutjanidae	 family	 increased	 their	 average	 FID	 beyond	 the	 range	 of	 spear	 guns	

(Januchowski-Hartley	et	al.	2011;	Bergseth	et	al.	2016;	Fig	1).		

Studies	 that	 compare	 changes	 in	 FID	 over	 space	 and	 time	 in	 response	 to	 varying	

intensity	in	fishing	pressure	provide	additional	insights	into	the	mechanisms	controlling	

optimal	 FID	 in	 response	 to	 the	 risk	 of	 predation	 from	 spearfishers.	 Specifically,	 flight	

responses	 of	 fish	 that	 vary	 over	 spatial	 and	 temporal	 gradients	 in	 fishing	 pressure	

reveal	 the	 importance	 of	 the	 encounter	 rate	 with	 the	 predator	 in	 determining	 an	

optimal	 FID	 (Fraser	 A	 Januchowski-Hartley	 et	 al.,	 2011;	 Januchowski-Hartley	 et	 al.,	

2014).	 For	 example,	 Januchoswki-Hartley	 et	 al.	 (2011)	 compared	 FIDs	 from	 areas	 of	

differential	 fishing	 pressure	 (i.e.	 areas	 with	 different	 rates	 of	 encounter	 with	 a	

potentially	 lethal	human	predator)	and	 found	 that	 as	 the	 intensity	of	 fishing	pressure	
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increased,	 average	 FID	 significantly	 and	 incrementally	 increased	 for	 species	 in	 the	

Scaridae	and	Mullidae	families,	a	trend	that	is	apparent	for	a	range	of	other	fish	species	

as	 well	 (Figs	 3a;	 Fig	 1	 within	 Januchowski-Hartley	 et	 al.	 2011a).	 Since	 spearfishers	

presumably	 maintain	 a	 relatively	 constant	 average	 level	 of	 lethality,	 the	 incremental	

nature	 of	 the	 increase	 in	 FID	 in	 areas	 of	 different	 overall	 fishing	 pressure	 provides	

support	 for	 the	 idea	 that	 the	 encounter	 rate	 with	 the	 predator	 is	 an	 important	

mechanism	 for	 this	 response.	 	 Theory	 predicts	 that	 fish	 are	 also	 experiencing	 higher	

cumulative	 costs	 associated	with	 repeated	 flight	 in	 high-encounter	 scenarios,	 and	 yet	

the	rise	in	FID	suggests	that	the	ultimate	risk	of	death	via	predation	outweighs	the	costs	

of	fleeing,	at	least	at	the	observed	levels	of	fishing	pressure.	

It	is	important	to	note	that	these	empirical	results	reflect	population-level	responses	

to	spearfishing	in	the	form	of	average	FIDs,	and	not	changes	in	the	FID	of	an	individual	

fish	 over	 time.	 	 This	 mismatch	 between	 the	 predictions	 from	 theory,	 which	 were	

developed	 to	 describe	 an	 individual	 animal’s	 response	 to	 predation	 risk,	 and	

interpretations	 of	 empirical	 data	 makes	 it	 necessary	 to	 use	 caution	 in	 inferring	 the	

mechanisms	of	changing	FIDs	 from	empirical	 results.	 	However,	 the	evidence	suggests	

two	likely	mechanisms	by	which	average	FID	of	a	fish	population	increases	in	response	

to	 spearfishing:	 direct	 mortality	 effects	 and	 adaptive	 learning.	 As	 the	 encounter	 rate	

between	spearfishers	and	fish	increases,	the	cumulative	risk	of	predation	and	the	rate	at	

which	 individuals	are	culled	 from	the	population	 increases.	 	Since	 individual	 fish	with	

lower	 FIDs	 are	 more	 easily	 caught	 by	 spearfishers,	 they	 are	 likely	 culled	 from	 the	

population	 first	 (Conrad	 2011),	 leaving	 more	 individuals	 with	 higher	 FIDs	 -	 which	

enable	 them	 to	more	 effectively	 escape	 fishers	 -	 in	 the	 population.	 At	 the	 same	 time,	
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increased	 encounter	 rate	 facilitates	more	 frequent	 opportunities	 for	 individual	 fish	 to	

learn	about	 the	 lethality	of	 the	predator	and	 increase	 their	FID	accordingly.	 In	higher	

encounter	scenarios,	fish	can	more	rapidly	gather	information	about	current	predation	

risk	 from	 sensory	 cues	 in	 the	 system	 (e.g.	 olfactory	 cues	 from	 speared	 conspecifics;	

Brown	 2003;	 Brown	 et	 al.	 2011),	 through	 social	 learning	 by	 seeing	 the	 reactions	 of	

nearby	 conspecifics	 to	 approaching	 threats	 (Brown	 and	 Laland,	 2003;	 Manassa	 and	

McCormick,	2012),	and	by	assessing	the	lethality	of	a	predator	from	injury	and	escape	

from	 non-lethal	 encounters	 (Kelley	 and	 Magurran,	 2003;	 Kieffer	 and	 Colgan,	 1992).	

Though	it	is	difficult	to	disentangle	the	role	of	each	as	separate	mechanisms	from	these	

results,	previous	studies	on	the	behavioral	effects	of	spearfishing	using	other	methods	

confirm	 that,	 in	 addition	 to	 the	 loss	 of	 individuals	 via	 mortality,	 some	 individuals	

respond	behaviorally	by	moving	out	of	an	area	that	is	opened	to	fishing	(Jupiter,	2012).		

Finally,	like	most	fishers,	spearfishers	exert	a	fundamentally	different	predation	risk	

than	natural	marine	predators	 for	 two	reasons.	First,	 spearfishers	often	preferentially	

target	predatory	fish	species,	and	second,	they	do	so	with	the	help	of	gear	that	enables	

them	 to	outpace	 the	 capabilities	 and	 success	 rates	 (i.e.	 lethality)	 of	 natural	 predators	

(Darimont	et	al.,	2015).		Although	not	yet	tested	within	the	spearfishing	literature,	it	is	

possible	 that	 the	 comparatively	 low	 level	 of	 natural	 predation	 risk	 experienced	 by	

marine	predators	predisposes	them	to	a	 lower	magnitude	of	response	to	spearfishers,	

just	 as	 a	 variety	 of	 natural	 history	 characteristics	 including	 high	 site	 fidelity,	 low	

motility,	 and	 boldness	 have	 been	 shown	 to	 increase	 the	 vulnerability	 of	 fish	 to	 other	

fishing	methods	 (e.g.	 Alos	 et	 al.	 2012,	 Sutter	 et	 al.	 2012).	 The	 combination	 of	 certain	

natural	history	characteristics	and	selective	pressures	unique	to	human	predation	may	
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result	 in	 some	 species	 -	 like	 the	 large-boded,	 slow	moving,	 predatory	 species	 of	 the	

Serranidae	 family,	 for	example	-	being	more	vulnerable	 to	spearfishing	predation	than	

others.	 Further	 research	 into	 the	 effect	 of	 natural	 history	 characteristics	 on	 the	 anti-

predator	responses	of	marine	fish	to	spearfishing	is	needed.	

	 	

2.2. Recreational diving  

Studies	specifically	designed	to	test	the	behavioral	effects	of	recreational	diving	and	

snorkeling	on	marine	fish	are	rare,	and	the	majority	of	these	do	not	measure	the	FID	of	

fish	 (but	 see	 Miller	 et	 al.	 2011;	 Bergseth	 et	 al.	 2016;	 Ridlon,	 chapter	 2).	 Instead,	

response	 variables	 such	 as	 presence,	 abundance,	 and/or	 community	 composition,	 or	

the	interruption	of	other	daily	behaviors	such	as	feeding	are	used	to	infer	anti-predator	

behavior	 in	 fish,	 and	 thus	avoidance	or	 tolerance	 to	divers.	Existing	research	has	also	

primarily	been	conducted	in	places	where	multiple	human	recreational	activities	occur,	

without	 isolation	 of	 diver	 effects	 from	 the	 effects	 of	 spearfishers	 or	 fish	 feeding	 by	

humans,	both	of	which	are	known	to	strongly	affect	 fish	behavior	(reviewed	in	Burgin	

and	 Hardiman	 2015;	 Gallagher	 et	 al.	 2015).	 In	 addition,	 the	 nature	 of	 long-term	 or	

previous	 contact	 with	 divers	 is	 not	 considered,	 making	 it	 difficult	 to	 interpret	

immediate	 responses	of	 fish	 in	 the	 context	of	 chronic	exposure	 to	humans.	Even	data	

from	 long-established	MPAs	 are	 limited	 in	 their	 ability	 to	 lend	 insight	 into	 persistent	

behavioral	 effects	 to	 fish	 without	 measuring	 the	 frequency	 of	 recreational	 diving	

occurring	 within	 the	 protected	 area,	 which	 has	 not	 yet	 been	 incorporated	 into	 any	

research	into	these	effects	to	date.			

The	 conflicting	 empirical	 data	 on	 diving	 effects	 to	 date	 suggest	 two	 competing	
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hypotheses	for	the	way	that	marine	fish	respond	to	divers:	that	recreational	divers,	like	

spearfishers	and	natural	predators,	elicit	anti-predator	behavior	in	marine	fish,	or	that	

they	can	be	recognized	as	a	non-lethal	disturbance	to	which	fish	can	habituate	(Fig	2).	

The	first	clear	tests	of	these	hypotheses	provide	evidence	for	habituation	of	marine	fish	

to	divers	 in	 the	 form	of	 significantly	decreased	FIDs	 in	 areas	 of	 high	 recreational	 use	

that	 have	been	 strictly	protected	 from	 spearfishing	 for	decades	 (Bergseth	 et	 al.	 2016,	

Ridlon	 chapter	 2;	 Figs	 3b&	 4).	 Although	 the	 measurement	 of	 FID	 requires	 an	

approaching	observer,	and	thus	cannot	be	measured	in	the	complete	absence	of	divers,	

the	 inclusion	 of	 “diver-free”	 areas	 in	 the	 methods	 of	 these	 studies	 is	 an	 important	

advancement,	because	it	enables	the	comparison	of	the	behavior	of	fish	who	have	been	

exposed	to	divers	to	places	where	they	have	not,	something	that	is	missing	from	the	FID	

data	taken	inside	MPAs	in	spearfishing	studies.		

In	 isolating	 recreational	 diving	 from	 spearfishing	 and	 including	 observations	 of	

locations	where	fish	have	not	been	exposed	(or	are	rarely	exposed)	to	divers,	Bergseth	

et	al. (2016)	and	Ridlon	(chapter	2)	uniquely	capture	the	cumulative	effect	of	repeated	

encounters	with	divers	over	time,	and	compare	it	to	a	baseline	anti-predator	response	

in	the	long-term	absence	of	human	disturbance.	Ridlon (chapter	2)	explicitly	measured	

FID	over	a	gradient	in	chronic	visitation	of	divers	and	found	evidence	for	habituation	to	

divers	in	the	stoplight	parrotfish,	S. viride:	the	average	FID	of	fish	in	a	frequently	dived	

area	was	significantly	lower	than	those	in	less	dived	and	“undived”	areas	(Fig	3b,	4).		In	

addition,	the	median	FID	of	habituated	fish	in	the	highly	dived	areas	was	0,	suggesting	

that	 long-term,	consistent	exposure	to	recreational	diving	 in	an	area	strictly	protected	

from	 fishing	 can	 result	 in	 the	 nearly	 complete	 loss	 of	 flight	 response	 in	 at	 least	 one	
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species	of	marine	fish.	Likewise,	Bergseth	et al. (2016)	found	significantly	lower	average	

FIDs	of	the	coral	trout	Plectropomus leopardus	 in	dived	zones	with	“higher	numbers	of	

recreational	 divers	 and	 tourists”	 compared	 with	 no-entry	 zones,	 suggesting	 that	

frequent	contact	with	non-lethal	divers	also	leads	to	habituation	in	this	mesopredator.	

This	 collective	 evidence	 for	 habituation	 to	 recreational	 divers	 confirms	 the	 main	

prediction	of	optimal	FID:	when	the	lethality	of	the	predator	is	zero,	the	ultimate	benefit	

of	 flight	 is	 eliminated	 while	 the	 costs	 associated	 with	 it	 and	 the	 benefits	 offered	 by	

engaging	in	other	activities	remain,	resulting	in	a	lower	optimal	FID.	Where	divers	pose	

no	 predation	 risk,	 the	 average	 FID	 instead	 presumably	 reflects	 the	 level	 of	 natural	

predation	risk	in	the	system,	since	natural	predators	still	impose	a	cost	to	total	loss	of	a	

flight	response.	The	 level	of	natural	predation	risk	 in	 these	systems	was	not	reported,	

and	future	studies	will	benefit	from	including	this	information.		

The	 flight	responses	of	 fish	to	divers	 in	 the	 long-term	absence	of	spearfishing	also	

suggest	that	the	degree	to	which	fish	habituate	is	driven	not	only	by	the	lethality	of	the	

diver,	 but	 by	 the	 encounter	 rates	 between	 divers	 and	 fish,	 confirming	 the	 role	 of	

repeated	 encounters	 in	 the	 process	 of	 habituation	 (Bejder	 et	 al.,	 2009;	 Burger	 and	

Gochfeld,	 1990).	 The	 lowest	 average	 FIDs	 are	 those	 recorded	 in	 areas	 where	 the	

encounter	 rate	 with,	 and	 thus	 cumulative	 costs	 of	 repeated	 flight	 from	 recreational	

divers	is	highest,	while	fish	retain	higher	FIDs	where	they	rarely	encounter	divers	(Fig	

3a,	 4;	 Bergseth	 et	 al.	 2016;	 Ridlon,	 chapter	 2).	 	 In	 high	 encounter	 scenarios,	 fish	

maximize	 their	 fitness	 by	 reducing	 costly	 flight	 from	 non-lethal	 divers,	 while	 in	 low	

encounter	 scenarios,	 the	 potential	 benefit	 of	 avoiding	 natural	 predation	 presumably	

outweighs	 the	 cost	 of	 occasional	 unnecessary	 flight	 from	 non-lethal	 divers.	 These	
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findings	provide	more	support	 for	 the	 idea	 that	 individual	 fish	are	 learning	about	 the	

risk	 posed	 by	 divers	 through	 repeated	 and	 frequent	 encounters	 with	 them,	 and	 are	

adjusting	 their	 FIDs	 accordingly,	 due	 to	 the	 absence	 of	 the	 simultaneous	 mortality	

effects	 and	 learning	 opportunities	 posed	 by	 encounters	 with	 spearfishers.	 In	 places	

where	fish	encounter	only	recreational	divers,	the	importance	of	learning	via	repeated	

encounters	as	a	mechanism	 for	 the	changes	 in	FIDs	 is	 reflected	by	not	only	 the	 lower	

FIDs	 in	 places	 of	 high	 diver	 encounters,	 but	 also	 the	 higher	 FIDs	 in	 places	 of	 low	

encounter	 rate,	 where	 fish	 have	 fewer	 opportunities	 to	 learn	 about	 the	 lethality	 of	

divers	(Bergseth	et	al.	2016;	Ridlon,	chapter	2).		

As	 with	 spearfishers,	 the	 responses	 of	 marine	 species	 to	 recreational	 divers	 are	

likely	to	be	influenced	by	their	natural	history	and	trophic	level	(Fig	1	b	and	c).	Although	

FID	is	not	a	metric	that	can	be	used	with	highly	mobile	predatory	fish	species,	there	is	

evidence	to	suggest	that	many	marine	predators	and	large	bodied	fish	do	not	respond	to	

recreational	divers	with	flight	or	increased	wariness.		For	example,	reef	sharks	to	do	not	

avoid	areas	of	regular	SCUBA	diver	visitation	in	comparison	to	places	where	divers	are	

absent.:	Bradley	et	al.	(2017)	found	no	significant	differences	in	abundance,	behavior,	or	

residency	 patterns	 between	 heavily	 dived	 and	 undived	 locations.	 This	 result	 is	 in	

contrast	 to	 other	 evidence	 of	 shark	 avoidance	 of	 divers	 (Cubero-Pardo	 et	 al.,	 2011;	

Quiros,	2007),	gleaned	from	the	immediate	responses	of	sharks	to	divers,	and	highlights	

the	 importance	 of	 examining	 these	 effects	 in	 the	 context	 of	 chronic	 diver	 exposure.		

Grouper,	 snapper,	 and	 jacks	 also	 do	 not	 significantly	 interrupt	 spawning	 behavior	 in	

response	 to	 approaches	 by	 recreational	 divers,	 although	 whale	 sharks	 in	 these	

aggregations	do	(Heyman	et	al.,	2011).		Of	course,	measuring	the	reactions	of	species	at	
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a	time	when	the	cost	of	fleeing	is	potentially	much	larger	than	normal	(i.e.	due	to	a	lost	

mating	opportunity)	 is	 likely	 to	affect	 their	 reactions	 to	divers	 relative	 to	 times	when	

they	are	engaged	in	other	behaviors.	Future	experiments	with	better	standardization	of	

body	 condition,	 and	 done	 under	more	 neutral	 conditions	with	 respect	 to	 the	 relative	

costs	 of	 fleeing,	 are	 needed	 to	 further	 determine	 predator	 responses	 to	 recreational	

divers.		

	

2.3. Interactions between spear fishing and recreational diving effects 

Most	 marine	 recreational	 areas	 worldwide	 allow	 for	 both	 consumptive	 and	 non-

consumptive	diving,	creating	a	varied	spatial	and	temporal	landscape	of	human-induced	

predation	 risk	 for	 fish.	 How	 fish	 respond	 to	 human	 encounters	 under	 these	 dynamic	

risk	scenarios	 is	unknown.	The	empirical	data	 from	places	where	consistent,	 frequent	

spearfishing	 or	 recreational	 diving	 activities	 take	 place	 in	 isolation	 from	 one	 another	

show	 that	 these	 two	 activities	 have	 opposing	 effects	 on	 the	 FID	 of	 marine	 fish,	

supporting	 the	 main	 the	 prediction	 of	 optimal	 FID	 theory	 (e.g.	 Miller	 et	 al.	 2011;	

Januchowski-Hartley	et	al.	2012;	Januchowski-Hartley	et	al.	2014,	Benevides	et	al.	2016;	

Fig.	1	&	3	and	references	therein).	In	those	scenarios,	spearfishers	are	similar	to	natural	

predators	in	that	their	lethality	remains	relatively	constant,	although	potentially	higher	

than	that	of	natural	predators	based	on	the	range	of	their	spears	(J.	Cinner	et	al.,	2005;	

Feary	et	al.,	2011).	However,	where	spearfishing	and	recreational	diving	co-occur,	 fish	

encounter	 a	 population	 of	 divers	 that,	 unlike	 most	 natural	 predators,	 are	 unique	 in	

presenting	nearly	identical	visual	cues	connected	to	vastly	different	levels	of	individual	

lethality,	 introducing	a	higher	level	of	uncertainty	about	the	probability	of	death	given	
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any	 one	 encounter	with	 a	 diver.	 These	 fundamental	 differences	 in	 the	 predation	 risk	

created	 by	 spearfishers,	 and	 the	 high	 uncertainty	 associated	 with	 potential	 predator	

populations	 created	 by	 the	 mixture	 of	 spearfishers	 and	 recreational	 divers,	 may	 be	

driving	 important	 differences	 between	 the	 response	 predicted	 by	 optimal	 FID	 theory	

and	 the	 seemingly	 high	 sensitivity	 of	 average	 FID	 values	 to	 any	 level	 of	 contact	with	

spearfishers	reflected	by	the	empirical	data	(e.g.	Januchowski-Hartley	et	al.	2015;	Fig	5).		

Spatially	 explicit	 observations	 of	 FIDs	 inside	 versus	 outside	 of	MPAs,	 for	 example,	

provide	evidence	for	the	bidirectional	“spill	over”	of	fear	effects	across	MPA	boundaries:	

both	increased	wariness	from	fished	areas	and	naivete	to	fishers	from	protected	areas	

(Januchowski-Hartley	 et	 al.,	 2015,	 2013).	 	 Fish	 living	 within	 and	 around	 MPAs	

experience	 spatial	 differences	 in	 fishing	pressure	 that	 remain	 relatively	 constant	 over	

time,	assuming	no	poaching	occurs	inside	the	areas	closed	to	fishing.	There	is	evidence	

that	where	fishing	occurs	outside	of	protected	areas,	the	effects	of	even	a	small	level	of	

exposure	to	this	human	predation	can	be	transmitted	inside	via	the	movement	of	 fish,	

and	 that	 as	 fishing	 pressure	 outside	 increases,	 the	 average	 FIDs	 of	 some	 targeted	

species	inside	the	protected	area	also	significantly	increase	(Januchowski-Hartley	et	al.	

2015;	Fig	5b).		

Likewise,	changes	in	the	FID	of	fish	experiencing	pulse	fishing	events	offer	insights	

into	 the	 timing	and	nature	of	 anti-predator	 responses	 to	 spearfishers.	Customary	and	

periodically	harvested	closures	(PHCs)	are	temporal	fisheries	management	techniques	

in	which	an	area	 is	closed	 to	 fishing	 for	a	known	period	of	 time,	often	 for	 the	explicit	

purpose	of	restoring	naıv̈e	behavior	in,	and	thus	increased	catchability	of	reef	fish	(J.	E.	

Cinner	et	al.,	2005;	Feary	et	al.,	2011;	Januchowski-Hartley	et	al.,	2014;	Macintyre	and	
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Foale,	 2007).	Measuring	 the	 effect	 of	 pulse	 fishing	 events	 in	 PHCs	 demonstrates	 how	

quickly	 population-level	 changes	 in	 behavior	 take	 place	 in	 response	 to	 spear-fishing,	

which	 may	 serve	 as	 evidence	 for	 the	 comparative	 strength	 of	 exposure	 to	 human	

predation	 in	 setting	 FID,	 versus	 the	 benefits	 of	 habituation	 to	 recreational	 divers.	

Average	 FIDs	 significantly	 increased	 in	within	 three	 days	 of	 an	 area	 being	 opened	 to	

fishing	 (Goetze	 et	 al.,	 2016;	 Januchowski-Hartley	 et	 al.,	 2014),	 confirming	 relatively	

rapid	population-level	shifts	in	behavior	towards	predatory	divers.	In	contrast,	the	FID	

of	 marine	 fish	 can	 take	 much	 longer	 to	 be	 “restored”	 to	 pre-fishing	 levels	 (e.g.	 six	

months	after	the	area	was	closed	to	fishing	again,	Januchowski-Hartley	et	al.	2014),	and	

this	retention	of	“wariness”	in	fish	due	to	pulse	fishing	has	led	to	recommendations	to	

keep	periodic	closures	in	place	for	a	minimum	of	three	years	to	provide	adequate	time	

for	flight	responses	to	decrease	(Goetze	et	al.,	2016).		It	is	possible	that	this	discrepancy	

in	 the	 speed	with	 which	 average	 FIDs	 change	 indicates	 that	 fish	 retain	 a	 higher	 FID	

based	on	 long-ago	encounters	with	predators	 (fishers)	even	 in	 the	absence	of	current	

fishing.	Alternatively,	 the	observed	 finding	 could	be	 the	 result	of	 fish	having	had	very	

few	 total	 human	 encounters	 once	 the	 area	was	 closed,	 preventing	 an	 opportunity	 for	

learning	about	the	lethality	of	divers	or	an	incentive	for	reducing	FID.		

In	these	dynamic	risk	scenarios,	the	ratio	of	lethal	divers	to	non-lethal	divers	that	a	

fish	encounters	represents	the	true	level	of	predation	risk	that	a	fish	is	under	from	the	

population	of	“predators”;	as	the	proportion	of	 lethal	divers	increases,	theory	predicts	

that	 optimal	 FID	 should	 also	 increase	 (Fig	 5a).	 Thus,	 the	 encounter	 rate	 of	 fish	with	

divers	may	be	a	particularly	important	in	these	mixed	diver	populations	as	a	mechanism	

with	which	fish	learn	about	both	the	lethality	of	divers	as	a	potential	predator	and	the	
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cumulative	costs	and	benefits	associated	with	fleeing	from	them.		If	fish	could	perfectly	

distinguish	between	lethal	and	non-lethal	divers,	they	could	adjust	their	FID	accordingly	

with	 each	 encounter.	 However,	 the	 visual	 cues	 associated	 with	 spearfishers	 and	

recreational	divers	are	 similar,	 given	 that	 fishers	also	use	both	 snorkeling	and	SCUBA	

gear.	The	few	studies	that	test	the	effects	of	different	types	of	gear	on	the	FID	of	marine	

fish	do	not	provide	support	for	the	idea	that	fish	can	distinguish	between	spearfishers	

and	recreational	divers,	showing	no	significant	difference	in	the	FIDs	of	fish	approached	

by	 a	 SCUBA	 diver	 or	 snorkeler,	 or	 between	 those	 with	 or	 without	 a	 spear	 in	 hand	

(Januchowski-Hartley	et	al.	2012;	Bergseth	et	al.	2016;	but	see	Tran	et	al.	2016).		To	the	

degree	 that	 fish	 are	 unable	 to	 assess	 lethality	 of	 an	 individual	 diver,	 either	 because	

humans	present	identical	visual	cues	or	because	they	can	kill	fish	from	further	distances	

than	visual	cues	are	useful	via	spear	guns,	we	predict	that	they	a)	rely	more	heavily	on	

information	gained	from	their	past	encounters	with	that	predator	and/or	b)	potentially	

retain	 a	 higher	 FID	 to	 conservatively	 avoid	 the	 ultimate	 loss	 of	 lifetime	 fitness	 (i.e.	

death).	 This	 should	 especially	 hold	 true	 in	 places	 where	 the	 encounter	 rate	 with	 all	

divers	 is	 low,	 due	 to	 both	 the	 limited	 information	 the	 fish	 has	 and	 the	 low	 costs	

associated	with	occasional	flight.			

What	is	completely	untested	empirically	is	how	the	FID	of	fish	changes	as	both	the	

ratio	of	spearfishers	to	recreational	divers	changes,	and	as	a	fish’s	encounter	rate	with	

divers	 changes.	Consider,	 for	example,	 that	 a	 fish	encounters	 twenty	divers	a	day,	 and	

that	ten	of	them	are	spear	fishers,	creating	a	50%	probability	of	death	given	encounter,	

assuming	 spearfishers	 are	 completely	 efficient	 predators.	 	 At	 that	 level,	 one	 would	

predict	that	the	risk	of	predation	is	sufficient,	and	the	cost	of	flight	low	enough,	for	fish	
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to	 flee	 from	all	encounters	with	divers.	Conversely,	 if	 fish	encounter	200	divers	a	day,	

and	 only	 ten	 of	 them	 are	 spear	 fishers,	 the	 probability	 of	 death	 given	 encounter	 is	

reduced	to	5%,	and	FID	theory	would	predict	that	they	reduce	their	FID	considerably	to	

cut	 the	high	costs	of	 frequent	 flight	 from	non-lethal	divers.	These	are	examples	of	 the	

effect	of	the	lethality	of	the	predator	(via	the	ratio	of	lethal	divers	to	non-lethal	divers)	

on	the	FID	of	fish.	However,	given	the	same	probability	of	death	from	our	first	example	

but	a	higher	rate	of	encounter	with	all	divers	–	e.g.	fish	meet	200	divers	a	day,	and	100	of	

them	 are	 spear	 fishers	 --	 the	 costs	 of	 fleeing	 will	 increase	 enormously,	 and	 a	 fish	 is	

expected	to	reduce	its	FID	only	once	the	cost	of	fleeing	outweighs	the	risk	of	not	fleeing	

(i.e.	>50%	probability	of	dying).	For	example,	we	would	expect	FID	 to	decrease	when	

the	 frequency	 of	 flight	 prevents	 a	 fish	 from	 eating	 and	 engaging	 in	 other	 fitness-

enhancing	activities	to	such	an	extent	that	overall	body	condition	is	so	low	that	they	are	

forced	 to	 take	 greater	 risks	 (as	 predicted	 by	 risk	 allocation	 hypothesis;	 Lima	 and	

Bednekoff	 1999,	 and	 seen	 with	 marine	 fish	 and	 other	 species	 responding	 to	 natural	

predators;	reviewed	in	Ferrari	et	al.	2009).	How	the	ratio	of	lethal	to	non-lethal	divers	

and	the	encounter	rates	with	each	influence	the	FID	of	marine	fish	is	currently	untested.		

However,	empirical	evidence	from	the	Scaridae	family	(Januchowski-Hartley	et	al.	2011;	

Ridlon,	chapter	2;	Fig	4)	suggests	that	at	low	levels	of	encounter	rate	with	spearfishers	

or	recreational	divers	in	isolation,	the	change	in	FID	does	not	appear	to	be	different:	all	

diver	encounters	are	met	with	essentially	the	same	flight	response	(Fig	4,	middle	panel).	

In	 addition,	 the	 level	 of	 encounters	 at	 which	 average	 FIDs	 significantly	 increase	 in	

response	 to	 spearfishers	 is	 lower	 than	 that	 required	 to	 drive	 a	 decrease	 in	 FID	with	

exposure	to	only	recreational	divers.		This	is	further	evidence	that	encounter	rate	drives	
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relative	 changes	 in	 FID,	 and	 that	 fish	 FID	 may	 be	 more	 sensitive	 to	 the	 number	 of	

spearfishers	 they	 encounter	 in	 proportion	 to	 recreational	 divers.	 However,	 it	 is	

important	to	test	these	hypotheses	explicitly	with	quantification	of	the	ratio	of	lethal	to	

non-lethal	divers	and	the	frequency	with	which	fish	encounter	them,	as	it	is	relevant	to	

understanding	 the	 ecological	 consequences	 of	 spearfishing	 and	 recreational	 diving	

where	these	activities	co-occur	and	how	management	interventions	can	address	these	

impacts.		

	Existing	empirical	 results	provide	support	 for	 the	 idea	 that	exposure	 to	predation	

risk	 from	 spearfishers	 may	 have	 a	 stronger	 influence	 on	 the	 average	 FID	 of	 fish	

populations	than	repeated	encounters	with	non-lethal	divers.	However,	the	evidence	for	

habituation	to	solely	recreational	diver	encounters	illustrates	that	the	cumulative	costs	

of	 unnecessary	 flight	 are	 sufficient	 enough	 to	 drive	 reductions	 in	 FID	 where	 the	

frequency	of	 incurring	that	cost	 is	high	(high	diver	encounters).	Thus,	the	retention	of	

higher	 FIDs	 within	 MPAs	 may	 be	 driven	 by	 either	 the	 comparatively	 higher	 cost	

associated	with	mistaking	a	spear-fisher	 for	a	recreational	diver	(death)	given	a	spear	

fisher’s	 reach	 and	 the	 uncertainty	 of	 diver	 lethality,	 or	 an	 overall	 low	 encounter	 rate	

with	 divers	 inside	 the	 MPA.	 	 How	 we	 interpret	 existing	 empirical	 findings	 relies	 on	

quantification	 of	 the	 ratio	 of	 lethal	 versus	 non-lethal	 divers	 and	 the	 encounter	 rate	

between	divers	and	fish.	Future	studies	need	to	distinguish	between	these	possibilities	

in	order	to	understand	the	interaction	between	the	two	activities	where	they	co-occur. 

	

Beyond Behavior: Linking Diver Fear Effects to Fitness and Ecosystems  

	 The	emergent	 research	 into	diver	 fear	effects	 has	not	yet	developed	 to	 include	



	

 23

direct	 measurements	 of	 the	 potential	 consequences	 (e.g.	 fitness	 consequences	 and	

ecosystem	 level	 impacts)	 of	 changes	 in	 the	 FID	 or	 other	 anti-predator	 behaviors	 of	

marine	 fish.	 	 However,	 empirical	 evidence	 from	 marine	 systems	 suggests	 that	 the	

magnitude	of	 fear	 effects	 can	 exceed	 that	 of	mortality	 effects	 on	 the	population	 level,	

because	 fear	 of	 predation	 can	 be	 transmitted	 simultaneously	 to	 all	 members	 of	 the	

population	and	persist	over	time	(Preisser	et	al.,	2005).	Natural	predators	thus	set	risk	

regimes	that	affect	not	only	the	individual	fitness	of	prey	species	and	their	populations,	

but	also	 trigger	behaviorally-mediated	 cascades	 that	have	broader	 impacts	on	marine	

ecosystems	 (Heithaus	 et	 al.,	 2008;	 Preisser	 et	 al.,	 2005;	 Werner	 and	 Peacor,	 2003;	

Wirsing	et	al.,	2008).	 	Based	on	 the	compelling	evidence	herein	 that	diver	 fear	effects	

are	operating	 in	marine	 systems,	we	predict	 that	 spearfishing	and	 recreational	diving	

have	the	potential	 to	similarly	affect	 the	 fitness	of	marine	 fish,	resulting	 in	population	

effects,	 and	 to	 trigger	 behaviorally-mediated	 cascades.	 The	 behavioral	 effects	 of	

spearfishing	in	particular	may	operate	on	a	broader	scale	and	at	a	faster	rate	than	those	

induced	by	natural	predators,	due	to	 the	use	of	gear	 that	enables	human	predators	 to	

outpace	the	capabilities	and	success	of	natural	predators	(Darimont	et	al.,	2015,	2009).	

These	 effects	 may	 also	 be	 differentially	 distributed	 to	 predatory	 fish	 species,	 which	

fishers	 often	preferentially	 target	 (Estes	 et	 al.,	 2011),	 and	whose	behavior	 is	 likely	 to	

impact	entire	food	webs	via	their	influence	on	lower	trophic	levels	(Dulvy	et	al.,	2004;	

Mumby	et	al.,	2006).		

In	 order	 to	 better	 understand	 ecosystem-level	 impacts	 of	 interactions	 with	

divers,	a	 first	step	will	be	to	quantify	the	fitness	consequences	of	changes	in	FID	from	

both	 spearfishing	 and	 recreational	 diving	 to	 marine	 fish.	 Although	 FID	 was	 not	
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measured,	 Barnett	 et	 al.	 (2016)	 showed	 that	 sharks	 attracted	 to	 recreational	 diver	

groups	(via	provisioning)	experienced	a	significant	increase	in	their	metabolic	rate	and	

daily	 energy	 expenditure	 through	 increases	 in	 their	 daily	 activity	 level	 on	 days	when	

they	 interacted	with	 divers.	 Likewise,	 California	 Sea	 Lions	with	 frequent	 exposure	 to	

tourists	 did	 not	 avoid	 them,	 but	 exposure	 to	 humans	 resulted	 in	 lower	 reproductive	

rates,	 from	which	 authors	 predicted	 reduced	 long-term	 population	 growth	 rates	 that	

could	lead	to	population	declines	for	the	species	(French	2011).	In	addition,	boat	noise	

has	been	shown	to	impact	fitness	via	increased	cortisol	levels,	decreased	rates	of	post-

larval	settlement,	and	suppressed	feeding	rates	in	a	range	of	marine	and	freshwater	fish	

(Wysocki	et	al.	2006;	Bracciali	et	al.	2012;	Holles	et	al.	2013;	Berthe	and	Lecchini	2016),	

and	 has	 been	 directly	 linked	 to	 decreased	 survival	 of	 young	 due	 to	 reduced	 parental	

care	in	a	species	of	reef	fish	(Nedelec	et	al.,	2017).	These	studies	illustrate	the	potential	

pathways	 for	and	consequences	of	diver-induced	behavioral	effects.	However,	 in	order	

to	 determine	 the	 prevalence	 and	 magnitude	 of	 these	 effects	 to	 marine	 fish,	 it	 is	

necessary	 to	 simultaneously	 measure	 FID	 and	 relevant	 fitness	 components	 (e.g.	

increased	metabolic	rate,	reduced	growth	rate)	to	quantify	the	cumulative	fitness	costs	

of	their	flight	behavior.	Directly	measuring	the	accumulation	of	an	effect	on	components	

of	 individual	 fitness	 through	 repeated	 encounters	 with	 divers	 will	 identify	 any	

persistent	effects,	and	give	a	basis	of	data	from	which	to	predict	their	consequences	to	

fish	populations.				

The	potential	for	cascades	due	to	diver-fish	encounters	has	also	yet	to	be	studied	

in	marine	systems.	However,	multiple	lines	of	evidence	suggest	that	cascades	from	diver	

impacts	 are	 likely	 to	 occur	 where	 encounters	 with	 humans	 change	 the	 behavior	 of	
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predators	and	herbivores,	in	particular.	Marine	herbivores	respond	to	natural	predation	

by	changing	the	spatial	distribution	and	intensity	of	grazing	activities	(Rizzari	2014)	or	

by	 switching	 diets	 (e.g.	 dugongs	 with	 sharks;	 Wirsing	 et	 al.,	 2007).	 For	 example,	

bottlenose	dolphins	(Tursiops	 cf.	aduncus),	dugongs	(Dugong dugon),	green	sea	turtles	

(Chelonia mydas),	and	pied	cormorants	(Phalacrocorax varius)	all	modify	their	behavior	

in	response	to	variation	in	chronic	predation	risk	from	tiger	sharks	(Galeocerdo cuvier),	

in	Shark	Bay,	Australia.	Subsequent	changes	in	the	distribution	and	intensity	of	foraging	

behavior	 of	 some	 of	 these	 species	 appear	 to	 drive	 the	 spatial	 pattern	 of	 seagrass	

abundance	and	community	composition,	and	thus	alter	the	abundance	and	composition	

of	teleost	communities	(Burkholder	et	al.,	2013;	Heithaus	et	al.,	2012,	2007).	Similarly,	

where	humans	alter	natural	predation	risk	via	fishing,	there	is	evidence	for	risk-induced	

behavioral	cascades	(Byrnes	et	al.,	2006;	Madin	et	al.,	2016,	2011).	For	example,	Madin	

et	al.	(2010)	found	the	removal	of	or	avoidance	of	fishers	by	marine	predators	created	

differences	in	natural	predation	risk	that	altered	herbivore	foraging	behavior,	and	led	to	

changes	in	macroalgal	distribution	on	a	coral	reef.			

Given	the	evidence	for	changes	in	the	feeding	behavior	of	marine	fish	in	response	

to	fear	effects,	it	stands	to	reason	that	diving	could	similarly	trigger	ecosystem	cascades	

via	this	behavioral	pathway.	Although	habituated	fish	may	not	experience	large	feeding	

losses	 due	 to	 encounters	 with	 recreational	 divers,	 (Ridlon,	 chapter	 2),	 the	 effects	 of	

spearfishers	 on	 the	 feeding	 behavior	 of	 fish	 are	 unknown.	 	 Fear	 effects	 from	

spearfishers	 are	 likely	 to	 mimic	 natural	 predation	 risk	 in	 re-distributing	 herbivore	

effort,	and	deserve	further	attention.	Further,	the	effects	of	any	reduction	in	feeding	due	

to	 diver	 encounters	 may	 be	 especially	 crucial	 in	 ecosystems	 that	 are	 already	 at	 a	
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“tipping	point”	(Mumby,	2006;	Mumby	et	al.,	2007).	If	there	are	limited	fish	in	an	area,	

or	algae	have	reached	a	critical	abundance	 in	proportion	 to	coral,	 for	example,	 then	a	

reduction	 in	 the	 feeding	 rate	 or	 spatial	 distribution	 of	 herbivores	 could	 have	 large	

negative	impacts	on	an	already	imperiled	system.	Additionally,	where	shifts	in	behavior	

due	to	diver	encounters	impact	species	interactions	-	as	with	cleaning,	competition,	and	

predation	 -	 there	 is	 the	 strong	 potential	 for	 secondary	 ecosystem-level	 effects.	While	

these	have	not	often	been	demonstrated	in	marine	systems,	changes	in	the	nature	and	

duration	 of	 species	 interactions	 of	 the	 kind	 that	 are	 known	 to	 have	 knock-on	 effects	

have	been	recorded	in	marine	fish.	For	example,	cleaning	rates	of	fish	were	suppressed	

by	 50%	 in	 the	 immediate	 presence	 of	 a	 diver,	 even	 on	 reefs	 that	 have	 been	 visited	

regularly	by	divers	for	decades	in	a	protected	recreational	area,	showing	a	community-

level	 response	 and	 the	 potential	 for	 diver	 presence	 to	 interfere	 with	 an	 important	

ecosystem	function	in	marine	systems	(Titus	et	al.,	2015).	In	addition,	diver	encounters	

can	 increase	natural	predation	 risk	 for	 some	marine	 fish	 (Di	Franco	et	 al.,	 2013),	 and	

significantly	alter	the	diel	behavior/	time	budget	of	fish	(Côté	et	al.	2014;	Ridlon	chapter	

2)	 .	This	collective	evidence	suggests	that	diver	risk	effects	may	be	influencing	marine	

fish	 through	 a	 number	 of	 behavioral	 pathways,	 each	 with	 potentially	 unique	 fitness	

consequences,	 and	 highlights	 the	 need	 to	 determine	 both	 the	 direct	 and	 persistent	

fitness	 effects	 of	 diver-induced	 changes	 in	 FID,	 and	 to	 explore	 the	 effects	 of	 diver	

encounters	 on	 other	 behaviors	 in	 marine	 fish	 that	 could	 have	 community-level	 and	

ecosystem	consequences.	
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Management Implications of Diver-Induced Fear in Fish  

As	 the	 number	 of	 recreational	 divers	 within	 marine	 reserves	 increases	

worldwide	(Gonson	et	al.,	2015),	the	ability	of	some	marine	fish	to	habituate	to	divers	is	

an	important	consideration	to	incorporate	into	our	understanding	of	both	the	ecological	

dynamics	 and	 management	 of	 marine	 reserves.	 Specifically,	 where	 habituation	 to	

recreational	 divers	 and	 snorkelers	 occurs	 in	 isolation	 to	 spearfishing,	 it	 represents	 a	

potential	 win-win	 scenario	 for	 marine	 fish	 and	 recreational	 divers.	 Habituated	 fish	

reduce	the	time	and	energy	spent	on	vigilance	and	flight,	and	experience	less	disruption	

in	opportunities	to	feed	or	mate	due	to	diver	encounters.	Divers	 likewise	benefit	 from	

engaging	 in	 close	 range	 observation	 and	 photography	 of	 habituated	 fish,	which	 likely	

increases	diver	satisfaction	(e.g.	as	found	with	whale	watching	(Valentine	et	al.,	2004)).	

While	the	generalizable	nature	of	these	results	is	limited	by	a	current	lack	of	data	from	a	

range	 of	 species,	 similar	 habituation	 to	 chronic	 encounters	 with	 divers	 has	 been	

suggested	 for	 some	marine	 species	 (Ayling	 and	 Choat,	 2008;	 Titus	 et	 al.,	 2015),	 and	

there	 is	 evidence	 that	 marine	 fish	 can	 habituate	 to	 other	 recreational	 disturbances	

through	 repeated	 exposure	 over	 time,	 including	 boat	 noise	 (Nedelec	 et	 al.,	 2016;	

Radford	et	al.,	2016).	This	evidence	for	habituation	suggests	that	these	findings	may	be	

more	 broadly	 applicable	 both	 to	 a	 range	 of	marine	 species	 and	 to	 a	number	 of	 other	

human	 recreational	 activities,	 particularly	 in	MPAs.	 If	 the	 result	 of	 habituation	 under	

increased	 levels	of	 recreational	diving	holds	 true	 for	many	marine	species,	 it	 suggests	

that	concentrating	diver	activity	into	one	area	on	the	reef,	and	keeping	another	area	as	a	

complete	 no-entry	 zone	 would	 minimize	 behavioral	 effects	 of	 diving	 both	 to	 the	

populations	 of	 reef	 fish	 (who	 have	 a	 true	 refuge	 elsewhere)	 and	 the	 reef	 itself	 (left	
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untouched	by	divers	except	in	the	highly	dived	area).		

However,	 the	 lack	 of	 data	 on	 these	 effects	 may	 be	 hindering	 the	 effective	

management	and	zonation	of	marine	systems,	many	of	which	are	simultaneously	being	

identified	 as	 needing	 protection	 from	 consumptive	 human	 activities,	 and	 attracting	

increasing	levels	of	recreational	users.	For	example,	Reed	et	al	(2008)	found	that	hiking,	

an	activity	similar	to	recreational	diving	in	many	ways,	 led	to	a	five-fold	decline	in	the	

density	 of	 native	 carnivores	 and	 a	 substantial	 shift	 in	 community	 composition	 from	

native	to	nonnative	species	inside	a	terrestrial	protected	area.	This	comparatively	large	

gap	in	our	understanding	of	the	role	of	human-induced	behavioral	effects	in	ecosystem-

level	 consequences,	 or	 in	 affecting	 the	 resilience	 of	 marine	 ecosystems,	 is	 stark	 in	

comparison	with	what	 is	 known	 about	 the	 effects	 of	 similar	 recreational	 activities	 in	

terrestrial	systems.	

There	 are	 several	 unique	 management	 implications	 of	 the	 spatially-explicit	

responses	 of	 average	 FID	 to	 spearfishing.	 First,	 fish	 not	 exposed	 to	 spearfishing	 cues	

reduce	 their	 FIDs,	 and	 the	 empirical	 evidence	 for	 the	 “spillover”	 of	 naıv̈e	 fish	 with	

shorter	FIDs	from	protected	areas	into	fished	areas	or	after	a	period	of	closure	(Jupiter	

et	al.	2012;	Januchowski-Hartley	et	al.	2013;	Januchowski-Hartley	et	al.	2015)	illustrate	

how	an	understanding	of	behavioral	effects	of	spearfishing	and	recreational	diving	can	

be	 used	 to	 leverage	 fisheries	 benefits,	 including	 higher	 catchability	 of	 fish.	 The	

behavioral	effects	of	spearing	can	likewise	“spill	in”	to	protected	areas,	to	the	detriment	

of	both	the	fish	and	recreational	users.	The	sensitivity	of	average	FID	to	even	low	levels	

of	 exposure	 to	 nearby	 spearfishing	 highlights	 the	 importance	 of	 the	 effective	

enforcement	of	no	take	areas	for	the	management	of	diver	fear	effects.		In	contrast	to	the	
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mortality	 effects	 of	 poaching,	 this	 evidence	 suggests	 that	 fear	 effects	 from	 non-lethal	

exposure	 to	 spearing	 can	 be	 transmitted	 to	many	more	 individuals	 in	 the	 population	

(Januchowski-Hartley	 et	 al.,	 2015),	 having	 a	 comparatively	 larger	 effect	 than	 the	

removal	of	fish,	especially	at	low	levels	of	poaching.	In	addition	to	strict	enforcement	of	

no	take	areas,	buffer	zones	between	areas	that	allow	for	spearing	and	those	that	allow	

for	 recreational	 diving	 could	 serve	 to	 dampen	 the	 spatial	 extent	 to	which	 behavioral	

effects	of	spearing	are	transmitted	into	protected	areas.	Buffer	zones	prohibiting	diving	

activities,	 but	 allowing	 for	 hook-and-line	 fishing	 and	 boating	 recreation,	 for	 example,	

offer	fish	a	refuge	from	all	diver	encounters	in	places	directly	adjacent	to	fished	areas.	

Similar	 buffer	 zones	 have	 had	 success	 in	 reducing	 behavioral	 effects	 of	 human	

disturbances	on	 land,	particularly	 for	birds	 (Beale	and	Monaghan,	2004;	Blumstein	et	

al.,	2003;	Carney	and	Sydeman,	1999).	 	Finally,	areas	 free	 from	all	human	disturbance	

within	 marine	 protected	 areas,	 where	 no	 diving	 or	 other	 recreational	 activities	 are	

allowed,	 may	 provide	 a	more	 complete	 refuge	 for	 fish	 from	 the	 behavioral	 effects	 of	

divers.	 	 This	 type	 of	 zonation-	 “no	 go”	 zones,	 buffered	 from	 fishing	 effects	 by	

surrounding	 recreational	 diving	 areas-	 is	 already	 employed	 in	 the	 Great	 Barrier	 Reef	

MPA.	 	 The	 broader	 implementation	 of	 such	 zonation	 could	 help	 further	 reduce	 the	

extent	to	which	diver	fear	effects	are	transmitted	inside	protected	areas.		

The	incorporation	of	an	understanding	of	diver	fear	effects	into	the	management	of	

marine	 systems	 may	 prove	 critical	 in	 advancing	 the	 multiple	 goals	 of	 MPAs,	 where	

consumptive	and	non-consumptive	diving	often	take	place	in	tandem.	 	Collectively,	the	

evidence	 for	 diver-induced	 behavioral	 changes	 in	 fish	 suggests	 that	 reducing	 the	

behavioral	 effects	 of	 fishing	 on	 targeted	 species	 may	 result	 in	 the	 spillover	 of	 both	
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increased	 biomass	 and	 more	 easily	 caught	 fish	 to	 fished	 areas,	 and	 provide	

opportunities	 for	 closer	 encounters	 between	 fish	 and	 recreational	 divers	 within	

protected	 areas.	 However,	 a	 better	 understanding	 of	 the	 effect	 of	 the	 ratio	 between	

spearfishers	 and	 recreational	 divers	 that	 fish	 encounter	 on	 their	 flight	 behavior	 is	

needed.	 	 The	 empirical	 evidence	 presented	 here	 suggests	 that	 the	 FID	 of	marine	 fish	

may	be	more	sensitive	to	human	predation	than	natural	predation,	and	that	fish	are	not	

entirely	 protected	 from	 the	 behavioral	 effects	 of	 fishing	 activity,	 even	where	 they	 are	

protected	from	mortality	effects	via	MPAs.	 	To	the	degree	that	any	level	of	exposure	to	

spearfishers	can	be	transmitted	inside	protected	areas,	the	behavioral	effects	of	fishing	

can	be	magnified	via	encounters	with	non-predatory	divers,	and	elevated	anti-predator	

responses	 of	 fish	within	 protected	 areas	 has	 the	 strong	 potential	 to	 undermine	 both	

fisheries	and	recreational	goals.	In	particular,	exposure	to	spearfishers	may	cause	fish	to	

incur	higher	energetic	 costs	 than	 they	would	 if	 they	habituated	 to	 recreational	divers	

alone.	At	 the	 same	 time,	 “wary”	behavior	 in	 response	 to	divers	will	 likely	make	 them	

both	more	difficult	to	catch	outside	the	MPA,	and	more	likely	to	flee	or	stay	away	from	

recreational	 divers	 inside	 the	 MPA.	 	 Recommendations	 for	 the	 simultaneous	

management	 of	 spearfishing	 and	 recreational	 diving	 could	 be	 further	 improved	 by	

studying	 the	 influence	 of	 species	 motility	 and	 home	 range,	 MPA	 size,	 the	 degree	 of	

poaching,	 and	 the	 ratio	 of	 recreational	 diver	 versus	 spear	 fisher	 encounter	 rates	 on	

these	behavior	spillover	effects	and	optimal	FID.			

	

Conclusion & Recommendations for Future Research  

The	 testing	 of	 optimal	 FID	 theory	 in	 marine	 systems,	 in	 the	 context	 of	 diver	
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effects	 on	 fish,	 provides	 the	 most	 complete	 and	 comparable	 data	 on	 the	 behavioral	

effects	of	human	recreational	activities	in	marine	systems	to	date.	From	existing	studies,	

patterns	are	emerging	to	suggest	the	influences	of	divers	on	the	behavior	of	marine	fish:	

in	 isolation,	spearfishing	and	recreational	activities	have	clear	and	opposing	effects	on	

the	 flight	behavior	of	marine	 fish,	as	 is	predicted	by	optimal	FID	theory.	 	However,	we	

provide	 evidence	 that	 the	 encounter	 rate	 between	 fish	 and	 divers	 drives	 relative	

increases	and	decreases	in	FID,	and	may	be	a	particularly	important	mechanism	for	fish	

to	 assess	 the	 predation	 risk	 posed	 by	 humans.	 	 Further,	 in	 order	 to	 understand	 the	

broader	implications	of	the	effects	of	divers	on	the	FID	of	marine	fish,	future	research	is	

needed	to	determine	both	the	cumulative	 fitness	effects	and	potential	ecosystem-level	

consequences	of	diving	activities	in	marine	systems.	The	recent	research	into	the	effects	

of	 both	 spearfishers	 and	 recreational	 divers	 on	 the	 FID	 of	 marine	 fish	 therefore	

represents	 a	 promising	 area	 of	 future	 research	 into	 behavioral	 effects	 of	 human	

recreation	 in	 marine	 systems	 on	 which	 to	 build.	 Here,	 we	 make	 specific	

recommendations	for	moving	the	field	forward	to	ensure	that	studies	are	comparable,	

findings	 are	 generalizable,	 and	 results	 can	 be	 used	 to	 directly	 test	 fitness	 and	

ecosystem-level	effects.			

	

5.1 Standardizing the methods		

The	lack	of	standardized	data	collection	methods	and	response	variables	used	to	

test	recreational	diving	effects	makes	direct	comparisons	between	studies	difficult,	and	

broader	patterns	 in	 these	effects	hard	 to	detect.	Thus,	while	 these	data	provide	 some	

useful	 insights	 into	 the	 anti-predator	 responses	 of	 a	 broad	 range	 of	 marine	 fish	 to	
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recreational	 divers,	 it	 is	 difficult	 to	 draw	 generalizable	 conclusions	 from	 them.	 The	

measurement	of	FID	in	marine	fish	is	both	simple	and	informative,	and	its	usefulness	in	

testing	 and	 improving	 upon	 predator	 escape	 theory	 by	 quantifying	 a	 behavioral	

response	to	divers	is	already	clear.	It	is	important	that	future	research	employs	standard	

empirical	methods	from	which	to	build,	ensuring	that	comparisons	among	and	between	

the	effects	of	consumptive	and	non-consumptive	diving	can	be	made	across	species	and	

locations.		

	 The	measurement	 of	 FID	 in	marine	 systems	 is	 straight	 forward:	 a	 focal	 fish	 is	

approached	at	a	steady	swimming	speed	by	an	observer,	who	drops	a	marker	when	the	

fish	begins	to	flee,	and	then	places	a	second	marker	at	the	location	from	which	the	fish	

fled.	The	distance	(cm)	between	markers	is	then	measured	to	obtain	FID	(e.g.	Gotanda	

et	al.	2009;	Januchowski-Hartley	et	al.	2011).		Agreement	on	the	method	for	measuring	

FID	 is	 generally	 good	within	 spearfishing	 studies	but	 there	 remains	a	need	 to	 further	

standardize	 the	 collection	 of	 FID	 data.	 For	 example,	 methods	 in	 spearfishing	 studies	

vary	in	whether	fishing	behavior	is	mimicked	or	spears	are	carried	during	approaches,	

what	 gear	 types	 are	 used	 by	 observers	 (SCUBA	 or	 snorkel	 cf.	 Gotanda	 et	 al.	 2009;	

Benevides	et	al.	2016;	Bergseth	et	al.	2016),	and	even	the	end	points	from	which	FID	is	

measured	(e.g.	 from	the	 tip	of	 spear	sensu	Nunes	et	al.	2016	vs.	head	of	 the	observer	

sensu	Gotanda	et	al.	2009;	Januchowski-Hartley	et	al.	2011).	Each	of	these	implications	

for	 accurate	 and	 comparable	 data.	 In	 addition,	 the	 distance	 from	which	 an	 observer	

begins	 a	 trial,	 start	 distance,	 has	 been	 shown	 to	 influence	 FID	 in	 animals	 reacting	 to	

humans	(Blumstein,	2010;	Chamaillé-Jammes	and	Blumstein,	2012)	including	reef	fish	

(Tran	et	al.,	2016),	and	should	also	be	standardized	or	controlled	for.	The	type	of	spears	
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used	 in	 the	study	area	(and	by	the	observer	 if	appropriate)	and	their	range	should	be	

reported	as	well,	 because	 this	directly	 influences	 the	optimal	distance	at	which	a	 fish	

should	flee	from	humans.	As	alternative	methods	and	metrics	of	anti-predator	behavior,	

minimum	approach	distances	(MAD)	taken	by	diver-operated	video	seem	promising	in	

offering	 automated	 and	 potentially	 more	 precise	 FID	 data	 (e.g.	 Lindfield	 et	 al.	 2014;	

Goetze	 et	 al.	 2017)	 but	 there	 is	 a	 need	 to	 confirm	 their	 comparability	 to	 human	

observers	 taking	 these	data,	 both	 for	 future	 comparisons	 and	because	 these	methods	

require	 expensive	 equipment.	 In	 the	 absence	 of	 the	 use	 of	 these	 technologies,	

measuring	FIDs	by	divers	is	relatively	easy	to	do	with	minimal	training	and	at	low	cost,	

making	it	accessible	to	managers	and	scientists	in	remote	areas	alike,	so	it	is	likely	that	

diver-generated	data	will	 continue	 to	be	an	 important	source	of	our	understanding	of	

these	effects.	

Next,	future	research	will	benefit	from	experimental	designs	including	“control”	

treatments	that	more	accurately	reflect	or	simulate	the	absence	of	human	presence	with	

which	 to	 compare	 the	 effects	 of	 both	 consumptive	 and	 non-consumptive	 diving	

activities.	For	example,	while	the	behavioral	responses	of	fish	to	divers	inside	protected	

areas	is	often	used	as	a	“no	spearing”	control	treatment,	the	level	of	recreational	diving	

happening	 inside	the	MPA	is	rarely	quantified,	or	even	given	consideration.	 	Given	the	

evidence	for	spearing	effects	to	be	transmitted	via	fish	movement	and	recreational	diver	

encounters	inside	protected	areas,	these	areas	likely	do	not	offer	a	true	baseline	for	fish	

behavior	where	 humans	 are	 not	 present.	 In	 lieu	 of	 a	 “diver	 free”	 area,	which	may	 be	

absent	 from	many	 protected	 areas,	 sites	 that	 experience	 temporal	 variation	 in	 diving	

activities	(as	in	the	“off”	season	for	diving	tourists,	or	as	has	been	done	with	temporary	
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fisheries	 closures)	 can	 be	 used.	 	 In	 all	 cases,	 quantification	 of	 recreational	 use	 inside	

MPAs	and	the	duration	of	time	an	MPA	has	been	in	place	will	allow	for	a	more	accurate	

interpretation	of	the	behavioral	responses	of	fish	to	divers	within	and	outside	of	MPAs.	

In	 addition,	 experimental	 designs	 should	 ensure	 the	 isolation	 of	 confounding	 factors,	

especially	 fishing	 and	 fish	 feeding,	 from	 the	 measurement	 of	 effects	 of	 recreational	

divers	to	fish	behavior.		  

	

5.2 Determining the mechanisms: the inclusion of encounter rate 

Further	 investigation	 is	 needed	 into	 whether	 fish	 can	 distinguish	 between	

spearfishers	 and	 recreational	 divers	 and	 the	 threats	 they	 pose.	 Spearfishers	 report	

anecdotally	that	fish	act	differently	when	they	carry	a	spear	versus	when	they	snorkel	

or	dive	without	 one,	 suggesting	 that	 the	 fish	use	 the	 spear	as	 a	 visual	 cue	 for	human	

predation	(personal	interviews,	Ridlon)	but	initial	data	comparing	the	reaction	of	fish	to	

the	presence	of	spears	in	diver	approaches	does	not	support	this	(Januchowski-Hartley	

et	al.	2012;	Bergseth	et	al.	2016	but	see	Tran	et	al.	2016).	Since	fish	respond	to	the	body	

size,	 approach	angle,	 and	 speed	of	natural	predators	 (Domenici,	2002),	 they	may	also	

use	the	swimming	behavior	of	divers	to	assess	their	risk,	but	this	is	untested.		In	lieu	of	

direct	mechanistic	experiments,	measurements	of	the	FID	of	a	species	across	separate	

gradients	in	consumptive	and	non-consumptive	recreational	activities	where	consistent	

levels	of	diver	visitation	occurs	(sensu	 Januchowski-Hartley	et	al.	2011;	Bergseth	et	al.	

2016;	Ridlon	chapter	2)	will	help	to	further	explain	the	role	of	diver-fish	encounter	rate	

on	the	sensitization	and	habituation	of	fish	to	divers.	Empirical	tests	of	the	interaction	

between	consumptive	and	non-consumptive	diving	with	spatially	explicit	FID	data	that	
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includes	 the	quantification	of	 the	ratio	of	 spear	 fishers	 to	recreational	divers	 that	 fish	

encounter	will	explore	the	relative	 importance	of	 the	 lethality	of	 the	predator	and	the	

encounter	 rate	 with	 divers	 in	 driving	 the	 FID	 of	 marine	 fish.	 This	 is	 a	 priority	

particularly	 for	species	 targeted	by	 fishers	and	with	the	potential	 to	drive	cascades	or	

other	 secondary	 effects	 in	 the	 system,	 such	 as	 predators	 and	 herbivores.	 These	

empirical	data	can	then	be	used	to	update	optimal	FID	theory	to	explicitly	 include	the	

encounter	 rate	 between	 fish	 and	 divers	 and	 incorporate	 the	 nuances	 of	 humans	 as	

predators,	namely	their	 increased	lethality	compared	with	natural	predators	and	their	

wide	variability	in	individual	lethality	(spearfishers	vs.	recreational	divers).		

	

5.3 Beyond Behavior: Fitness and Ecosystem effects  

It	 is	 essential	 to	 gain	 a	more	 thorough	understanding	of	 how	 the	 consumptive	

and	 non-consumptive	 recreational	 activity	 of	 humans	 is	 affecting	 marine	 ecosystems	

through	changes	in	fish	behavior.	While	the	quantification	of	 immediate,	anti-predator	

responses	of	fish	to	divers	is	a	good	basis	for	understanding	these	effects,	there	is	also	a	

need	 to	 quantify	 individual	 fitness	 effects	 to	 marine	 fish	 and	 look	 for	 evidence	 of	

cascades	 triggered	 by	 these	 very	 common	 human	 activities	 to	 better	 understand	 the	

magnitude	and	breadth	of	these	effects	in	marine	systems.	

	 In	 order	 to	 determine	 whether	 persistent	 fitness	 effects	 result	 from	 diver	

encounters	 for	 fish,	 it	 will	 be	 necessary	 to	 link	 the	 measurement	 of	 FID	 to	 the	

cumulative	 fitness	 costs	 of	 their	 flight	 behavior.	 The	 clearest	 way	 to	 determine	 the	

fitness	costs	associated	with	diver	encounters	is	through	direct	individual	measures	of	

fitness	such	as	body	condition,	growth	rate,	and	reproductive	output	in	relationship	to	
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different	 levels	 of	 exposure	 to	 divers.	 The	 inclusion	 of	 direct	 fitness	 measures	 into	

future	studies	could	be	especially	useful	in	revealing	whether	fitness	effects	accumulate	

with	 higher	 recreational	 diver	 encounters,	 even	 for	 habituated	 fish.	 These	 individual	

measurements	could	then	be	used	to	predict	the	population-level	consequences	of	diver	

risk	effects	(e.g.	sensu	sea	lion	population	declines,	French	et	al.	2011;	increased	energy	

expenditures	and	reduced	breeding	success	in	penguins	exposed	to	tourists,	Ellenberg	

et	 al.	 2006).	 The	 inclusion	 of	 alert	 distance	 (AD,	 the	 distance	 at	 which	 an	 animal	

becomes	 vigilant	 to	 a	 potential	 predator)	 and	 other	 pre-flight	 behaviors	 of	 fish	 into	

future	 research	 would	 add	 further	 insights	 into	 risk	 assessment	 in	 and	 the	 costs	

associated	with	vigilance	for	marine	fish.	The	consideration	of	vigilance	costs	is	critical	

to	 include	 in	 future	studies,	because	 it	allows	for	more	thorough	cost-benefit	analyses	

and	optimality	approaches	to	understanding	the	fitness	effects	of	diver	encounters	for	

fish.	 	 Standardized	 measurements	 of	 fitness	 enhancing	 behaviors	 in	 the	 presence	 of	

divers	 including	 feeding	 (bite	 rates),	 cleaning,	mating,	 and	 territory	 defense	will	 also	

increase	 our	 understanding	 of	 the	 broader	 behavioral	 effects	 of	 recreational	 diving,	

especially	 when	 considered	 in	 the	 context	 of	 the	 long-term	 frequency	 of	 diver	

encounters	 for	 fish	 populations.	 The	 potential	 effects	 of	 the	 natural	 history	 of	 a	 fish	

species	 on	 their	 response	 to	 the	 risks	 posed	 by	 divers,	 particularly	 divers	 acting	 as	

predators,	are	still	very	limited.	Predators	and	herbivores	are	promising	focal	species	on	

which	to	focus	future	research	due	to	their	strong	potential	to	trigger	cascades.		

	

In	comparison	to	what	is	known	in	terrestrial	systems,	and	for	natural	predators,	

evidence	 for	 and	 research	 into	 the	 ecosystem-level	 effects	 of	 recreational	 activities	 of	
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humans	 in	marine	 systems	 is	 sorely	 lacking.	 	 Currently,	we	 can	 only	 draw	 inferences	

about	 the	 broader	 implications	 of	 diver-induced	 behavioral	 effects	 on	 fish	 to	marine	

communities	 and	 ecosystems	 based	 on	 findings	 from	 related	 areas	 of	 research	 (e.g.	

human	 effects	 in	 terrestrial	 systems,	 natural	 predation	 studies).	 This	 is	 problematic,	

because	marine	systems	are	different	from	terrestrial	systems	in	many	fundamental	and	

important	 ways,	 and	 behavioral	 effects	 may	 therefore	 operate	 differently	 in	 each	

system.	Likewise,	humans	represent	unique	predators,	and	therefore	may	influence	fish	

behavior	differently	 than	natural	predators	 in	ways	 that	must	be	directly	assessed.	 In	

particular,	the	isolation	of	different	human	activities	in	space,	especially	in	highly	dived	

areas,	 may	 be	 more	 critical	 to	 managing	 the	 behavioral	 effects	 of	 fishing	 than	 its	

mortality	effects.	The	measurement	of	FID	 in	marine	 fish	 is	an	exciting	and	 important	

new	avenue	for	research	into	behavioral	effects	in	marine	systems	that	has	the	potential	

to	advance	our	understanding	of	 the	 impacts	humans	have	on	 the	 function,	 structure,	

and	 resilience	 of	 marine	 ecosystems	 through	 non-consumptive	 effects	 of	 common	

recreational	activities,	and	to	inform	their	effective	management.			
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Figures	

 

 
Fig 1.	a)	Optimal	FID	theory	predicts	that	targeted marine	fish	will	set	their	FID	higher	
in	 areas	 where	 they	 are	 exposed	 to	 spear-fishers	 (green	 bars	 in	 all	 panels)	 than	 in	
places	protected	 from	 them	(purple	bars	 in	all	panels),	 and	base	 that	distance	on	 the	
lethality	of	the	predators	they	encounter	(top	line	represents	recorded	spear	gun	range,	
dotted	line	is	a	hypothetical	FID	set	by	the	lethality	of	natural	predators	in	the	system).	
Empirical	data	(Gotanda	et	al.	2009;	Feary	et	al.	2011;	Januchowski-Hartley	et	al.,	2011;	
Bergseth	et	al.	2016;	Nunes	et	al.	2016)	confirm	that	protection	from	fishing	results	in	
significantly	lower	FIDs	for	a	number	of	targeted	species	of	marine	fish	within	reserves	
(b	 and	 d),	 as	 compared	 to	 non-target	 species	 (c).	 Recorded	 FIDs	 are	 species-specific,	
and	predatory	species	in	particular	may	not	significantly	adjust	their	FIDs	in	response	
to	human	predation	 (d).	Chaetodon	 spp.	 a	 are	 those	 reported	 in	Bergseth	 et	 al.	 2016,	
Chaetodon	 spp.	 b	 are	 those	 reported	 in	 Januchowski-Hartley	 et	 al.,	 2011.	 Species	 are	
ordered	 by	 maximum	 body	 size	 (FishBase,	 Froese,	 R.	 and	 D.	 Pauly	 eds.,	 2017).	 Note	
difference	in	x-axis	scales.			
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Fig 2:	Potential	pathways	for	behavioral	effects	(dashed	arrows)	of	recreational	divers	
to	marine	fish.	 	Fish	of	different	species	and	at	different	trophic	levels	may	respond	to	
diver	 stimuli	with	neutral	 (a),	 attractive	 (b),	 or	 repellent	 behavior	 (c),	 as	 shown	here	
with	predatory	 fish,	potentially	creating	cascading	effects	 in	marine	systems.	 	Existing	
studies	 report	 mostly	 neutral	 (a)	 and	 aversive	 (c)	 responses	 to	 divers,	 but	 little	 is	
known	about	the	prevalence	or	magnitude	of	recreational	diver	effects	due	to	a	current	
lack	of	empirical	data.	Figure	modified	from	Fig	1,	in	Madin	et	al.,	2010.		
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Fig 3.		(a)	Spearfishing	(green)	and	recreational	diving	(blue)	are	predicted	by	theory	to	
have	opposing	effects	on	FID	 in	marine	 fish.	 (b)	Empirical	FID	data	 from	the	Scaridae	
family	(Ridlon	et	al	in	prep;	Januchowski-Hartley,	2011)	show	that	when	each	activity	is	
consistently	done	in	isolation,	FID	increases	in	response	to	spear	fishers	and	decreases	
in	 response	 to	 recreational	 divers	 as	 the	 encounter	 rate	 between	 divers	 and	 fish	
increases.	
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Fig 4.	 Scarid	 FIDs	 across	 separate	 gradients	 in	 intensity	 of	 recreational	 diving	 (left,	
blue)	 and	 spear	 fishing	 (right,	 green)	 show	 habituation	 to	 recreational	 divers	 and	
sensitization	to	spear	fishers	at	high	levels	of	encounter,	but	average	FIDs	at	low	levels	
of	 exposure	 to	 either	 activity	 are	 similar	 to	 one	 another.	 	 Data	 are	 average	 S. viride	
response	 to	 diver	 approaches	 in	 places	 of	 recreational	 diving	 only	 (first	 4	 bars	 from	
Ridlon	 et	 al.,	 in	 prep);	 and	 for	 individuals	 from	 the	 Scaridae	 family	 in	 places	 where	
spearing	takes	place	(Januchowski-Hartley,	2011).	The	center	grey	bar	is	the	averaged	
value	 resulting	 from	 the	 average	 FID	 of	 S. viride	 from	 a	 reef	 that	 is	 protected	 from	
fishing	and	virtually	undived	 (220	cm;	Ridlon	et	 al.,	 in	prep),	 and	 the	average	FID	 for	
Scaridae	individuals	inside	a	no-take	area	protected	from	fishing	(200	cm;	Januchowski-
Hartley,	 2011).	 Significance	 indicators	 refer	 to	 differences	 between	 recreational	
visitation	 frequency	 (Ridlon	 et	 al.,	 in	 prep,	 blue	 bars)	 and	 fishing	 intensity	 levels	
(Januchowski-Hartley,	 2011,	 green	 bars),	 and	 as	 compared	 to	 the	 “no	 exposure”	 FID	
within	each	respective	study.		
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Fig 5.	 Empirical	data	 from	Scaridae	 species	 show	significant	 increases	 in	average	FID	
inside	protected	 areas	 (lower	blue	 line)	 as	 both	nearby	 fishing	pressure,	 and	 average	
FID	 (upper	 green	 line),	 increases	 in	 adjacent	 fished	 areas	 (redrawn	 from	 Fig.	 2,	
Januchowski-Hartley	et	al.,	2015;	x	axis	was	originally	given	in	fishers/km).		This	shows	
the	effect	of	occasional	exposure	to	spearfishing	(via	fish	movement	between	areas)	on	
the	flight	behavior	of	fish,	and	demonstrates	the	effect	of	the	ratio	of	lethal	versus	non-
lethal	diver	encounters	on	the	FID	of	marine	fish.	The	uncertainty	of	individual	lethality	
involved	 with	 diver	 encounters	 could	 drive	 this	 increase,	 by	 causing	 fish	 to	 react	 to	
recreational	divers	as	predators,	where	spearfishing	and	recreational	diving	are	done	in	
tandem	or	nearby	one	another.	
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Abstract 

The	number	of	SCUBA	divers	is	on	the	rise	globally	(Dowling,	2008),	and	their	activity	is	

becoming	especially	concentrated	inside	marine	protected	areas	(Gonson	et	al.,	2015).	

While	there	is	growing	evidence	that	fish	react	to	divers	with	increases	in	wariness	and	

flight	 where	 they	 are	 exposed	 to	 spear	 fishers	 (Gotanda	 et	 al.,	 2009;	 Fraser	 A.	

Januchowski-Hartley	 et	 al.,	 2011;	 Januchowski-Hartley	 et	 al.,	 2015),	 the	 effects	 of	

recreational	diving	on	the	anti-predatory	behavior	of	fish	in	the	absence	of	spear	fishing	

have	not	been	well	 studied	or	effectively	demonstrated.	 	By	measuring	 two	 important	

components	 of	 anti-predator	 behavior	 -	 flight	 initiation	 distance	 (FID)	 and	 alert	

distance	(AD)	-	we	found	evidence	in	the	Cayman	Islands	for	habituation	by	a	common	

Caribbean	 coral	 reef	 fish	 (Stoplight	 Parrotfish, Sparisoma viride)	 to	 divers	 where	

recreational	 activity	 has	 been	 concentrated	 for	 decades	 and	 reef-wide	 bans	 on	

spearfishing	have	been	well-enforced.	The	near	 lack	of	 a	 flight	 response	 found	 in	 fish	

exposed	to	higher	levels	of	chronic	diving	activity	not	only	contrasts	with	the	responses	

of	fish	in	less	frequently	visited	areas	on	this	protected	reef,	but	represents	the	lowest	

FID	recorded	for	the	species	in	either	protected	or	fished	areas	elsewhere	in	the	world.	
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However,	significant	declines	in	the	bite	rates	and	frequency	of	cleaning	interactions	of	

individuals	in	the	immediate	presence	of	a	diver	suggest	that	there	may	be	fitness	costs	

associated	with	recreational	diver	encounters,	even	for	habituated	fish.		We	use	feeding	

data	to	estimate	the	cumulative	cost	of	daily	diver	encounters	to	an	individual	fish,	and	

use	 these	 estimations	 as	 a	 framework	 to	 discuss	 the	 potential	 persistence	 of	 fitness	

effects	 of	 diver	 encounters	 on	 marine	 fish.	 We	 also	 discuss	 the	 management	

implications	of	our	results	for	marine	ecosystems,	which	are	affected	by	the	behavior	of	

herbivorous	fish,	particularly	where	multiple	human	uses	occur.						

 

Introduction 

As	 non-extractive,	 recreational	 activities	 such	 as	 SCUBA	 diving	 steadily	 gain	

popularity	 (Dowling,	 2008),	 so	 too	 do	 the	 number	 of	 recreational	 users,	 especially	

inside	marine	protected	areas	(Gonson	et	al.,	2015).		Current	design	and	management	of	

marine	 protected	 areas	 on	 coral	 reefs	 and	 other	 marine	 ecosystems	 broadly	 assume	

negligible	effects	of	this	increased	human	activity	in	places	that	have	been	identified	as	

needing	 protection	 from	 extractive	 activities,	 despite	 evidence	 that	 these	 areas	 may	

have	 a	 “carrying	 capacity”	 for	 recreational	 divers	 (Davis	 and	 Tisdell,	 1995).	 	 In	 fact,	

while	 many	 physical	 effects	 of	 SCUBA	 divers	 and	 snorkelers	 on	 reefs	 have	 been	

documented	(e.g.,	increased	coral	breakage,	sedimentation,	(Guzner	et	al.,	2010;	Hasler	

and	 Ott,	 2008)),	 we	 know	 very	 little	 about	 the	 effects	 of	 SCUBA	 diving	 via	 altered	

behaviors	of	marine	life,	including	fishes.		This	lack	of	knowledge	is	a	critical	gap	in	our	

ecological	 understanding	 of	 indirect	 effects	 on	 coral	 reef	 systems	 and	 may	 be	
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undermining	 the	 goals	 of	 current	 management	 of	 these	 systems	 for	 multiple	 human	

uses.				

On	 land,	 similar,	 seemingly	 unobtrusive	 recreational	 activities	 such	 as	 hiking	 can	

reduce	the	effectiveness	of	protected	areas	(Reed	and	Merenlender,	2008)	by	triggering	

behaviorally-mediated	 cascades.	 These	 can	 result	 in	 a	 dramatic	 restructuring	 of	 the	

community	 by	 altering	 per	 capita	 foraging	 rates	 and/or	 the	 spatial	 distribution	 of	

herbivore	effort	(Creel	and	Christianson,	2009;	Ripple	and	Beschta,	2004;	Schmitz	et	al.,	

2004).	 	 Indeed,	where	 people	 engaged	 in	 recreation	 elicit	 anti-predator	 responses	by	

terrestrial	 species,	 the	magnitude	 of	 human-induced	 fear	 effects	 can	 exceed	 those	 of	

natural	predation	(Beale	and	Monaghan,	2004;	Ciuti	et	al.,	2012b;	Frid	and	Dill,	2002).		

Likewise,	 in	marine	 systems	 the	magnitude	 of	 behavioral	 effects	 on	 prey	 species	 and	

their	resources	have	been	shown	to	exceed	the	consumptive	effects	of	natural	predators	

(Preisser	et	al.,	2005),	and	human	alteration	of	predation	risk	is	widespread	(Madin	et	

al.,	 2016).	 	 While	 fewer	 definitive	 examples	 of	 human-induced	 cascades	 in	 marine	

systems	exist,	human	presence	can	alter	 foraging	behavior	 in	marine	 fish	(Berthe	and	

Lecchini,	2016;	Bracciali	et	al.,	2012),	and	recent	studies	of	marine	herbivores	suggest	

the	 potential	 for	 human-induced	 behaviorally	 mediated	 cascades	 via	 analogous	 fear	

effects	(Madin	et	al.,	2010;	Madin	et	al.,	2011;	Wirsing	et	al.,	2007).				

		 Although	 behavioral	 responses	 of	 marine	 species	 to	 divers	 have	 long	 been	

recognized	by	the	recreational	and	scientific	diving	communities	(Chapman	et	al.,	1974;	

Kulbicki,	 1998;	 Seifert,	 2013),	 consistent	patterns	 in	 the	direction	of	 these	 effects	 are	

not	well	established,	and	evidence	for	the	mechanisms	is	 lacking.	 	Studies	designed	to	

test	 the	 accuracy	 of	 underwater	 data	 collection	 find	 a	 range	 of	 fish	 responses	 to	 the	
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immediate	presence	of	a	diver.		This	research	provides	evidence	that	behavioral	effects	

of	 divers	 can	 bias	 monitoring	 data,	 affecting	 both	 our	 understanding	 of	 marine	

community	 dynamics	 and	 our	 assessments	 of	 management	 tools	 including	 marine	

protected	areas	(Bozec	et	al.,	2011;	Dickens	et	al.,	2011;	Lindfield	et	al.,	2014;	Watson	

and	 Harvey,	 2007).	 	 The	 methods	 used	 in	 these	 studies	 limit	 their	 applicability	 to	

recreational	 diving	 effects	 for	 two	 reasons.	 First,	 recreational	 divers	 often	 behave	

differently	 than	 scientific	 divers	 (e.g.,	 approach	 fish	directly	 and	 at	 close	 range,	 hover	

over	 them	 for	 photographs).	 Second,	 these	 studies	 typically	 do	 not	 measure	 the	

frequency	or	 intensity	of	diving,	 thus	precluding	any	measure	of	 the	chronic	effects	of	

the	disturbance.	The	few	studies	that	have	explicitly	examined	the	effects	of	recreational	

divers	 and	 snorkelers	 on	 fish	 behavior	 provide	 evidence	 of	 increased	 avoidance,	

vigilance	behaviors	and	evasion	in	many	species	in	the	presence	of	recreational	divers	

(Albuquerque	 et	 al.,	 2015;	 Hawkins	 et	 al.,	 1999;	 Kulbicki,	 1998).	 However,	 acute	

responses	of	fish	to	divers	cannot	be	used	to	infer	anything	about	the	effects	of	chronic	

recreational	diving	activity	without	also	considering	the	frequency	or	intensity	of	diving	

activities	in	these	studies.		In	addition,	nearly	all	studies	that	measure	the	responses	of	

fish	to	divers	fail	 to	 isolate	the	effects	of	different	diver	types,	such	as	spear	fishers	or	

those	 engaged	 in	 fish	 feeding,	 and	 thus	 confound	 the	 cues	 to	 which	 the	 fish	 are	

responding.	 	Fish	respond	 to	exposure	 to	spear	 fishing	with	 flight	and	 increased	anti-

predator	 responses,	 even	 inside	protected	 areas	 if	 fishing	occurs	nearby	 (Feary	 et	 al.,	

2011;	 Gotanda	 et	 al.,	 2009;	 Fraser	 A.	 Januchowski-Hartley	 et	 al.,	 2011;	 Januchowski-

Hartley	et	al.,	2015),	and	fish	feeding	is	known	to	result	in	attraction	in	some	species	of	

marine	fish	(Corcoran	et	al.,	2013;	Di	Franco	et	al.,	2013;	Feitosa	et	al.,	2012).		



	

 53

This	 is	 the	 first	 study	 to	 quantify	 the	 behavioral	 effects	 of	 long-term	 recreational	

diving	activity	on	a	coral	reef	fish	in	a	system	where	spear	fishing	and	fish	feeding	are	

absent.		To	test	the	assumption	that	long-term	SCUBA	diving	activity	has	no	effect	on	the	

behavior	 of	 a	 coral	 reef	 fish,	 we	 conducted	 our	 experiments	 on	 a	 reef	 	 where	

recreational	diving	is	popular,	especially	 inside	a	well-enforced	marine	protected	area,	

and	spearfishing	has	been	prohibited	for	decades.	 	We	chose	a	common	grazer	and	an	

important	 bioeroder,	 Sparisoma viride	 (Stoplight	 Parrotfish),	 as	 our	 focal	 species.		

Widespread	 throughout	 the	 Caribbean, S. viride	 has	 the	 potential	 to	 trigger	 a	 trophic	

cascade	via	changes	in	its	spatial	foraging	behavior	(Adam	et	al.,	2015;	Bellwood	et	al.,	

2012)	 and	 is	 commonly	 targeted	 by	 spear	 fisherman	 in	 other	 areas.	 Human-induced	

changes	to	an	animal’s	time	budget	can	affect	both	the	individual	fitness	of	the	animal	

and	create	secondary	effects	in	the	system,	including	cascades	(Nevin	and	Gilbert,	2005;	

Ordiz	 et	 al.,	 2012;	 Stensland	 and	 Berggren,	 2007;	 Symons	 et	 al.,	 2014).	 	 Thus,	 we	

measured	 two	 anti-predator	 responses	 of	S. viride	 to	 diver	 approaches	with	 standard	

measurements	 that	 indicate	a	 fish’s	perception	of	 threat	and	are	often	used	to	predict	

the	 energetic	 costs	 of	 animals	 responding	 to	 human	 disturbance(Côté	 et	 al.,	 2014;	

Gotanda	 et	 al.,	 2009;	 Taylor	 and	 Knight,	 2003).	 We	 measured	 alert	 distance	 (AD),	

defined	as	 the	distance	between	a	 focal	 individual	and	a	disturbance	when	the	animal	

becomes	visibly	alert	(Côté	et	al.,	2014;	Taylor	and	Knight,	2003),	and	 	 flight	 initiation	

distance	(FID),	defined	as	the	distance	at	which	an	animal	begins	to	flee	in	response	to	

an	 approaching	 threat	 [31,43,51].	 We	 also	 tested	 for	 an	 effect	 of	 diver	 presence	 on	

fitness-enhancing	activities,	including	feeding	and	cleaning	interactions	in	vigilant	fish.	

We	 use	 the	 behavioral	 responses	 to	 recreational	 diver	 activity	 to	 estimate	 a	 cost	 to	
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individual	 fish	 of	 diver	 encounters	 under	 different	 fish	 habituation	 levels	 and	 diver	

behavior	 scenarios,	 providing	 a	 framework	 to	 explore	 the	 potential	 effects	 of	

recreational	 SCUBA	 diving	 on	 other	 marine	 species.	 	 We	 also	 examine	 interactions	

between	recreational	diving	and	spear	fishing	by	comparing	our	results	in	the	absence	

of	spear	fishing	to	the	behavioral	responses	of	the	same	species	from	other	studies	on	

reefs	where	both	consumptive	and	recreational	diving	are	allowed.	Finally,	we	consider	

the	broader	ecological	and	management	implications	of	our	findings.		

 

Methods	

Location	&	Site	Selection		

Little	Cayman	is	 the	smallest	of	 the	Cayman	Islands	(17	x	2	km),	situated	between	

Grand	Cayman	and	Cayman	Brac,	145	km	southwest	of	Cuba.		Little	Cayman	is	an	ideal	

site	to	isolate	the	effects	of	SCUBA	activity	from	other	consumptive	human	recreation	on	

coral	reef	 fish	in	the	Caribbean	due	to	the	presence	of	a	well-enforced	no-take	marine	

protected	 area	 created	 in	 the	 late	 1980’s,	 and	 island-wide	 regulations	 prohibiting	

spearfishingi	and	hook-and-line	fishing	directly	on	the	reef.	 	The	fishing	regulations	on	

Little	 Cayman	 are	 enforced	 with	 regular	 patrols	 of	 the	 reefs	 by	 Cayman	 Islands	

Department	 of	 the	 Environment	 (DOE)	 staff,	 and	 the	 small	 residential	 community	 (~	

200	year-round	residents)	has	strong	incentives	for	stewardship	of	the	reef,	because	the	

economy	of	 the	 island	 is	 almost	 solely	dependent	upon	diver-centered	 tourism.	Thus,	

voluntary	 compliance	 with	 fishing	 bans	 and	 other	 regulations	 is	 high	 (DOE	 staff,	

personal	communication).		

Little	Cayman	also	provides	a	setting	with	consistent,	long-term	spatial	variability	in	
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recreational	diving,	due	in	part	to	the	concentration	of	diving	within	Bloody	Bay	Marine	

Park	which	is	the	primary	attraction	for	diving	tourists.	The	decades	of	consistency	in	

differences	 in	 diving	 frequency	 allowed	 us	 to	 quantify	 both	 the	 chronic	 effects	 of	

recreational	 diving	 activity	 on	 fish	 behavior	 and	 the	 extent	 of	 habituation	 of	 fish	 to	

divers.	Overall	diving	activity	on	the	reefs	surrounding	Little	Cayman	is	low	relative	to	

many	 other	 tourist	 destinations	 worldwide.	 The	 maximum	 number	 of	 divers	 is	

constrained	by	the	relatively	low	capacity	on	island	(maximum	capacity	~150	divers	d-1;	

~6300	y-1	;	versus	>30,000	dives	y−1	for	example	in	the	Red	Sea)(Hasler	and	Ott,	2008).	

Even	 the	most	 frequently	visited	 site	 inside	 the	marine	park	 (~3600	dives	 y-1)	 is	 still	

visited	 well	 below	 the	 limit	 recommended	 for	 sustainable	 recreational	 diving	

considering	physical	damage	to	corals	 incurred	by	recreational	divers	(5000-6000	per	

site	per	year	 (Hawkins,	1997)).	SCUBA	operators	on	Little	Cayman	also	observe	strict	

diving	regulations	and	promote	best	diving	practices	 for	 low	impacts	 to	 the	reefs	(e.g.	

regulations	limiting	the	number	of	divers	at	a	site	to	20,	no	fish	feeding,	no	wearing	of	

gloves,	pre-dive	briefings	and	supervision	underwater).	These	factors	have	been	linked	

to	 lower	 recreational	 diver	 impacts	 to	 coral	 reefs	 (Barker	 and	Roberts,	 2004;	Krieger	

and	Chadwick,	2013).		

	

Chronic	Diver	Visitation	Rates		

Informal	 interviews	with	and	diver	visitation	 logs	 from	the	 four	 tour	operators	on	

Little	Cayman	established	both	historical	and	current	patterns	of	spatial	use	of	reefs	by	

recreational	 divers.	 	 We	 identified	 four	 areas	 of	 the	 reef	 that	 vary	 in	 their	 average	

visitation	rate	(divers	per	day	for	the	period	of	May-July)	from	High	=	273	to	Medium	=	
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52	to	Light	=	3	to	Low	=	0.3)	on	the	northern	side	of	the	island	(Fig.	1).	At	the	extremes,	

Bloody	Bay	Marine	Park	 is	 the	most	highly	visited	area	on	 the	 reef,	while	 sites	 in	 the	

northeast	(our	“Low”	treatment)	have	not	been	visited	by	recreational	divers	for	at	least	

3	 years	 (based	on	dive	 records	 and	personal	 communication	with	 staff	 of	 the	Central	

Caribbean	Marine	 Institute	and	Cayman	 Islands	Department	of	 the	Environment)	and	

serve	as	our	“no	diver”	control	treatment.	To	minimize	confounding	effects	other	than	

diver	densities,	we	used	historical	benthic	habitat	characterization,	fish	abundance,	and	

community	composition	data	taken	over	a	 ten	year	period	via	Atlantic	and	Gulf	Rapid	

Reef	 Assessment	 (AGGRA)	 surveys	 to	 identify	 sites	 within	 each	 region	 with	 similar	

physical	relief,	algal	and	coral	abundances,	and	abundance	of	focal	species	(unpublished	

data,	Central	Caribbean	Marine	Institute).		

		

Focal	Species		

Sparisoma viride	 (Stoplight	 Parrotfish)	 is	 one	 of	 the	 most	 common,	 ecologically	

important	 herbivorous	 reef	 fish	 in	 the	 Caribbean.	 	 An	 excavating	 herbivore,	 S. viride 

targets	endolithic	algae	associated	with	dead	coral.	It	plays	a	crucial	role	in	bioerosion,	

contributing	to	the	removal	of	algae	from	reefs	and	providing	new	surfaces	for	settling	

coral	 recruits(Adam	et	 al.,	 2015;	Bruggemann	et	 al.,	 1994).	Changes	 in	 the	amount	of	

time	 S. viride	 invest	 in	 grazing	 relative	 to	 other	 activities,	 including	 anti-predator	

responses,	 have	 the	 potential	 to	 affect	 the	 degree	 to	 which	 this	 species	 serves	 its	

multiple	functions	on	the	reef.			

S. viride	 are	protogynous	 sequential	hermaphrodites.	All	 focal	 individuals	 included	

in	 this	 study	 were	 in	 the	 initial	 phase	 (IP),	 which	 includes	 both	 sexes	 but	 in	 which	
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females	predominate	(Robertson	and	Warner,	1978).		Initial	phase	individuals	were	far	

more	abundant	at	our	study	sites	than	terminal	phase	fish.	They	spent	the	majority	of	

their	 time	grazing,	 and	generally	 inhabited	 the	 reef	 crest	where	divers	also	 spend	 the	

majority	 of	 their	 dives.	 	 Terminal	 phase	 males	 were	 not	 included	 in	 our	 analysis,	

because	they	maintain	territories	at	depth	and	ascend	to	shallower	habitat	primarily	to	

chase	IP	conspecifics	(Mumby	and	Wabnitz,	2002;	van	Rooij	et	al.,	1996).		

Body	size	is	positively	correlated	with	anti-predator	behaviors	in	S. viride	and	other	

parrotfish	 species	 (Gotanda	 et	 al.,	 2009).	 Thus	 we	 chose	 only	 mature	 (>15	 cm,	 (van	

Rooij	et	al.,	1996))	individuals	between	19	and	37	centimeters	total	length	[TL].		Since	

individuals	maintain	relatively	stable	home	ranges	of	typically	less	than	500	m2	(Mumby	

and	Wabnitz,	2002;	van	Rooij	et	al.,	1996),	we	were	confident	that	individuals	were	not	

traveling	between	study	sites	of	differing	diving	visitation	frequency.				

Finally,	S. viride	are	widely	targeted	by	spear	fishers	throughout	the	Caribbean,	and	

where	they	are	fished,	increase	their	flight	initiation	distances	relative	to	areas	in	which	

they	are	being	protected	from	fishing	(Gotanda	et	al.,	2009).		This	makes	them	an	ideal	

species	 for	 this	 study	 and	 future	 related	 studies	 regarding	 the	 combined	 effects	 of	

recreational	diving	and	spearfishing.		

	

Flight	and	Vigilance	

To	quantify	the	anti-predator	responses	of	S. viride	to	an	approaching	SCUBA	diver,	

we	measured	AD	and	FID	of	over	300	focal	individuals.		

To	find	focal	individuals,	divers	swam	a	few	meters	apart	along	the	edge	of	the	reef	

(on	wall	sites),	in	a	search	pattern	over	the	middle	of	a	spur	(at	spur-and-groove	sites),	
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or	in	a	haphazard	fashion	at	sites	with	a	combination	of	walls	and	patch	reefs.	 	Search	

patterns	were	always	determined	before	entering	the	water,	and	careful	notes	and	site	

maps	were	maintained	to	ensure	that	no	part	of	a	dive	site	was	sampled	more	than	once	

to	 avoid	 resampling	 individuals.	 	 Focal	 individuals	 that	 were	 foraging,	 resting,	 being	

cleaned,	 and	 otherwise	 not	 engaged	 in	 interactions	 with	 other	 species	 were	 chosen	

from	approximately	ten	meters	away	based	on	methods	used	in	behavioral	studies	of	S. 

viride	 and	 other	 parrotfish	 species	 in	 fished	 areas	 (Feary	 et	 al.,	 2011;	 Gotanda	 et	 al.,	

2009).	 	The	 first	diver	 (always	A.	Ridlon)	estimated	 the	 individual’s	 size,	 took	note	of	

benthic	features	to	identify	the	fish’s	start	position.	 	She	then	dropped	a	small	 flagged	

weight	 to	mark	 her	 own	 start	 position,	 since	 start	 distance	 of	 the	 observer	 has	 been	

shown	to	affect	fluctuations	in	FID	in	terrestrial	studies	(Cooper,	Jr.,	2005).	Swimming	at	

a	 steady	 speed,	 directly	 towards	 and	 at	 approximately	 the	 same	 depth	 as	 the	 focal	

individual,	the	first	diver	took	note	of	the	behavioral	responses	and	positions	of	the	fish,	

while	the	second	diver	observed	the	trial	from	a	greater	distance,	sometimes	recording	

it	 via	video.	 	At	 the	 first	 sign	of	 alert	behavior	displayed	 (S2),	 the	 first	diver	dropped	

another	flagged	weight	onto	the	seafloor,	mentally	noting	the	focal	individual’s	location.	

When	 the	 fish	 fled	 (S2),	 the	 first	diver	 likewise	dropped	a	weight	on	 the	seafloor	and	

estimated	the	fish’s	position.		After	the	fish	fled,	its	final	position	before	fleeing,	as	well	

as	all	other	locations	of	the	fish	during	the	trial	(if	applicable)	were	also	marked	with	a	

flagged	weight.	 	 The	distances	 (in	 cm)	between	 the	approaching	diver’s	body	and	 the	

focal	 individual	 were	 then	measured	 and	 recorded	 by	 the	 second	 diver	 using	 a	 tape	

measure	to	obtain	AD	and	FID.		
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Feeding	and	Time	Budget	

	 To	 determine	 whether	 the	 immediate	 presence	 of	 divers	 influenced	 the	 time	

vigilant	 S. viride	 spent	 on	 other	 behaviors,	 we	 conducted	 bite	 rate	 and	 time	 budget	

experiments	approximately	one	month	after	the	end	of	our	approach	trials.	We	assumed	

that	the	acute	effects	of	our	prior	scientific	diver	approaches	were	eliminated	after	this	

time	period.		Focal	individuals	were	selected	as	described	above.		Using	the	average	AD	

measured	for	fish	at	each	diver	visitation	area	as	a	guide,	divers	initially	stayed	outside	

of	a	focal	individual’s	alert	zone	to	record	their	behaviors	in	the	absence	of	diver	effects	

(our	 treatment	 control).	Then	 the	 first	diver	 (always	A.	Ridlon)	moved	 just	 inside	 the	

alert	zone,	so	that	the	fish	became	alert	but	did	not	flee.	To	quantify	fish	behaviors,	the	

second	diver	recorded	the	bite	rate	of	the	focal	fish	for	a	three-minute	period,	while	the	

first	 diver	 timed	 all	 other	 behaviors,	 including	 cleaning,	 aggressive	 interactions,	 and	

defecation	(see	S2	for	descriptions	of	all	behaviors).	Paired	estimates	of	bite	rates	and	

time	budgets	were	thus	recorded	for	the	same	fish	first	under	baseline	conditions	(with	

both	divers	outside	of	 the	 individual’s	AD)	and	then	while	 the	 fish	was	vigilant	due	to	

the	presence	of	 a	diver	 (one	diver	 inside	 the	AD,	one	outside).	 	 If	 at	 any	point	during	

these	 trials,	 the	 focal	 fish	 swam	away	 from	 the	 diver	 in	 a	manner	 similar	 to	 flight	 as	

described	above,	the	trial	was	aborted.			

	

Statistical Analysis 

All	 data	 were	 analyzed	 using	 R	 version	 3.3.3	 	 (©2017	 The	 R	 Foundation	 for	

Statistical	 Computing.	 	 Anti-predator	 behavior	 data	 (FID	 and	 AD,	 n=	 252	 trials)	were	
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analyzed	 using	 a	 Poisson	 generalized	 linear	 model	 (GLM),	 and	 multiple	 pairwise	

comparisons	between	areas	of	different	diver	visitation	frequency	were	examined	using	

general	linear	hypotheses	via	the	multcomp	package.		Explanatory	variables	included	for	

model	selection	were:	diver	visitation	frequency,	observer	start	distance,	habitat	relief,	

depth,	time	of	day,	body	size,	and	date.	Model	selection	for	the	generalized	linear	models	

was	based	on	minimization	of	corrected	Akaike's	Information	Criterion	(AICc),	using	the	

MuMIn	package.	All	models	within	2	delta	AIC	where	examined,	and	the	best	fit	model	

(lowest	AIC	value)	was	used.		

Linear	mixed	effects	models	were	used	to	examine	the	effect	of	diver	visitation	

frequency	and	vigilance	state	(yes/no)	of	the	fish	on	bite	rates	and	all	other	time	budget	

behavior	 data	 via	 the	 lme4	 package.	 Impact	 of	 fixed	 factors	 was	 compared	 using	

likelihood	ratio	tests	conducted	on	models	fit	using	maximum	likelihood	(Crawley	2007,	

Zurr	2009).	

	

Results 

Flight	and	Vigilance	

For	FID	and	AD,	the	model	with	the	lowest	AIC	value,	thus	indicating	best	fit,	 included	

diver	visitation	frequency	and	observer	start	distance	as	explanatory	variables	but	did	

not	include	habitat	relief,	depth,	time	of	day,	body	size,	or	date	(n=	252	trials).	The	effect	

of	 diver	 visitation	 frequency	 and	observer	 start	 distance	were	 significant	 in	 the	main	

general	linear	models	for	both	AD	and	FID	(AD	high	diver	density:	SE=	24.32,	t	=	-3.294,	

p<	.001;	observer	start	distance:	SE	=	0.054,	t=	10.75,	p	<	.001;	FID	high	diver	density	SE	

=	.184,	t=	-5.57,	p<	.001;	observer	start	distance:	SE	=	0.0003,	t	=	4.394,	p	<	.001).		The	
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significant	effect	of	diver	visitation	frequency	was	driven	by	significantly	lower	average	

AD	and	FID	at	the	sites	with	the	highest	chronic	diver	visitation	(mean	AD	=	212	cm,	SE	

=	24.3,	t	=	-3.29,	p	<	.001;	mean	FID	=	65	cm,	SE	=	22.8,	t	=	-5.46,	p<	.001;	Table	1;	Figs.	2	

and	3),	with	no	significant	differences	among	sites	in	other	diving	visitation	categories.	

Notably,	many	fish	within	the	highly	dived	area	responded	to	the	direct,	relatively	rapid	

approach	of	a	SCUBA	diver	by	 failing	 to	 flee	 (median	FID	=	0).	 	Although	average	ADs	

and	 FIDs	 decreased	 in	 response	 to	 increased	 diver	 visitation,	 some	 individuals	

maintained	 larger	 flight	and	alert	distances,	even	 in	 the	highly	dived	area.	 In	addition,	

the	 relatively	 higher	 average	 ADs	 in	 the	 less	 dived	 areas,	 and	 the	 high	 variability	 in	

individual	 responses	 in	 FID	 in	 the	medium	 diver	 visitation	 area	 (Fig.	 2)	 reveals	 that	

some	individuals	retained	elevated	anti-predator	responses	despite	long-term	exposure	

to	 non-predatory	 diver	 encounters.	 These	 conserved	 anti-predator	 responses	 were	

found	in	adult	 fish,	indicating	that	these	behaviors	were	not	an	artifact	of	juvenile	fish	

still	learning	that	divers	do	not	pose	a	real	predation	risk.		

	

Feeding		

	Data	on	the	feeding	behavior	of	fish	are	repeated	measures	from	individuals	over	time	

(n=	 104	 trials,	 208	 paired),	 and	 included	 identity	 of	 the	 focal	 individual	 as	 a	 random	

effect.	 	Baseline	bite	 rates	 taken	when	divers	 stayed	outside	of	 the	 fish’s	AD	were	not	

significantly	different	among	sites	with	different	diver	visitation	rates.	Vigilance	had	a	

significant	effect	on	bite	rates,	which	decreased	by	an	average	of	24%	(mean	baseline	

bite	 rate	=	7.5	bm-1,	mean	vigilant	bite	 rate	=	5.7	bm-1,	 Fig.	4)	with	 the	presence	of	 a	

diver	within	the	fish’s	AD	(SE=	0.803,	t=	 -	6.73,	Chisq	=	41.164,	df	=	1,	p	<	 .001).	 	The	
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decrease	in	bite	rates	of	vigilant	fish	did	not	differ	significantly	across	areas	of	chronic	

variation	in	average	diver	visitation	levels.			

	

Time	Budget	

All	 behavior	 data	 taken	 as	 a	 part	 of	 the	 time	 budget	 are	 repeated	 measures	 from	

individuals	 over	 time	 (n=	 104	 trials,	 208	 paired),	 and	 included	 identity	 of	 the	 focal	

individual	 as	 a	 random	effect.	 	 For	 all	models,	 vigilance	was	 a	 significant	 fixed	 effect,	

while	dive	intensity	was	not.	Fish	became	significantly	less	active	(all	behaviors	pooled)	

with	 the	presence	of	a	diver	within	 their	alert	distance	 (SE=	1.723,	 t=	 -4.138,	Chisq	=	

15.97,	df	=	1,	p	<	0.001)	with	a	33%	decrease	in	all	recorded	activities.		

The	 total	 amount	 of	 time	 spent	 engaged	 in	 all	 cleaning-related	 behaviors	 (pooled)	

significantly	and	greatly	decreased	in	the	immediate	presence	of	a	diver	(SE=	1.774,	t=	-

4.082,	Chisq	=	15.592,	df	=	1,	p	<	0.001),	spending	on	average	less	than	half	the	time	on	

cleaning	 behaviors	 with	 divers	 present	 (vigilant	 mean=	 5.3	 seconds	 vs.	 non-vigilant	

mean	=	12.6	 sec;	Table	3).	 Likewise,	when	 analyzed	 separately,	 focal	 fish	 significantly	

reduced	the	time	they	spent	asking	to	be	cleaned	by	32%	(SE=	1.349,	t	=		-3.566,	Chisq	=	

12.13,	df	=	1		p	<	.001;	Table	3,	Fig.	5)	reduced	the	the	time	they	spent	being	cleaned	by	

54%	with	a	diver	within	their	AD	(SE	=	1.164		t	=	-2.09,	Chisq	=	4.318,	df	=	1,	p	<	0.05;	

Table	3).		

In	contrast,	the	incidence	of	defecation	increased	by	22.6%	in	the	immediate	presence	

of	a	diver	(SE=	0.077,	t	=	2.962,	Chisq	=	8.515,	df	=	1,	p	<	0.01;	Table	3).		Finally,	there	

were	 no	 significant	 differences	 in	 aggressive	 interactions,	 either	 initiated	 by	 the	 focal	

(“Chase”:	 SE=	 0.07,	 t	 =	 0.693,	 Chisq	 =	 0.484,	 df	 =	 1,	 p	 =	 0.487)	 or	 by	 another	 fish	
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(“Chased	by”:	SE=	0.186,	t=		-	.878,		Chisq	=	0.777.	df	=	1,	p	=	0.378)	in	the	presence	of	a	

diver	(Table	3).		

	

Discussion 

Flight	and	Vigilance	

Flight	is	a	costly	behavior,	and	should	not	be	maintained	in	places	where	false	cues	

repeatedly	 cause	 undue	 expenditures	 of	 energy	 (Frid	 and	Dill,	 2002;	 Stankowich	 and	

Blumstein,	2005),	as	 is	 the	case	 in	areas	where	 frequent	encounters	with	recreational	

divers	 carry	 no	 predation	 risk	 for	 fish.	 Through	 repeated	 exposure	 to	 only	 non-

consumptive	 human	 recreational	 activities,	 an	 animal’s	 perception	 of	 predation	 risk,	

and	thus	their	FID,	can	progressively	decrease	(Burger	and	Gochfeld,	1990),	a	learning	

process	called	habituation	(Bejder	et	al.,	2009).	The	near	absence	of	a	 flight	 response	

(median	 FID=	 0)	 to	 the	 direct,	 rapid	 approach	 of	 a	 SCUBA	 diver	 in	 so	many	 S. viride	

individuals	within	Bloody	Bay	Marine	Park,	provides	strong	evidence	that	this	reef	fish	

can	 become	 habituated	 to	 the	 presence	 of	 recreational	 divers.	 	 In	 addition,	 the	

significant	reduction	in	average	FID	in	the	park	relative	to	less	dived	areas	demonstrates	

that	where	SCUBA	diving	activity	has	been	concentrated	 for	decades,	and	 in	 the	 long-

term	absence	of	 fishing,	 fish	 can	habituate	much	more	 fully	 to	diver	 approaches	 than	

was	 previously	 assumed.	 Average	 FID	 at	 sites	within	 the	 park	 are	 nearly	 50%	 lower	

than	the	lowest	average	FID	previously	recorded	for	this	species	inside	a	protected	area	

(65	cm	vs.	116	cm,	Gotanda	et	al.,	2009).		

Like	fleeing,	engaging	in	vigilant	behavior	precludes	or	reduces	the	time	an	animal	

spends	engaged	in	other	fitness-enhancing	activities	(Brown	and	Kotler,	2004;	Lima	and	
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Bednekoff,	1999),	as	demonstrated	by	the	reductions	in	feeding	and	cleaning	behaviors	

we	measured	in	vigilant	fish.	By	decreasing	the	distance	at	which	they	become	alert	to	

divers	in	places	where	they	are	more	frequently	encountering	them,	S. viride	individuals	

reduce	 the	 time	 they	 spend,	 and	 thus	 the	 costs	associated	with,	maintaining	vigilance	

due	to	diver	encounters	in	these	areas.	The	significant	reduction	in	both	average	AD	and	

FID	of	 fish	in	response	to	more	frequent	diver	encounters	provides	new	evidence	that	

reef	 fish,	 like	 other	marine	 species,	weigh	 the	 costs	 and	 benefits	 of	 engaging	 in	 anti-

predator	behaviors	depending	upon	differences	in	perceived	predation	risk	(Semeniuk,	

2004).	 	 Other	 studies	 have	demonstrated	 that	where	 the	 risk	 of	 predation	by	natural	

predators	 and	 humans	 is	 low,	 habituation	 reduces	 the	 costs	 incurred	 by	 fleeing	 or	

maintaining	 vigilance	 in	 response	 to	 a	 non-predatory	 cues	 (Lima,	 1998;	 Lima	 and	

Bednekoff,	1999),	but	 this	 evidence	 is	 very	 limited	 in	marine	 systems,	 especially	with	

fish.	 	 Our	 results	 demonstrate	 that	 not	 only	 can	 habituation	 to	 divers	 occur	 in	 the	

absence	of	 fishing,	but	also	that	the	degree	to	which	fish	habituate	is	dependent	upon	

the	frequency	of	encounters	that	they	have	with	recreational	divers.		

The	near	lack	of	a	flight	response	in	fish	in	the	most	highly	dived	areas	of	our	study,	

in	 contrast	 to	 the	 responses	 in	 less	 frequently	 dived	 areas,	 suggests	 that	 consistently	

concentrating	recreational	diving	activity	over	long	time	periods	in	one	place	can	drive	

habituation	to	divers	in	fish.		Knowing	more	about	the	process	of	habituation	in	fish,	for	

example	how	many	divers	a	fish	encounters	before	attenuating	its	flight	response	as	S. 

viride	 has	 within	 the	 highly	 dived	 areas,	 could	 inform	 management	 strategies	 for	

recreational	 diving	 activities.	 For	 example,	 the	 significant	 decreases	 we	 observed	 in	

anti-predator	behavior	 only	 in	 the	most	 frequently	dived	 areas	 on	Little	Cayman	may	
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indicate	a	stepwise	function	in	the	response	of	fish	to	the	frequency	of	false	predation	

cues,	where	after	a	certain	number	of	diver	encounters,	the	risk	of	predation	attributed	

to	 divers	 is	 low	 enough	 and	 the	 cost	 of	 vigilance	 and	 flight	 high	 enough	 that	 flight	

responses	are	reduced.	This	would	suggest	that	concentrating	divers	in	one	area	may	be	

a	practical	management	tool	to	drive	habituation	in	fish,	keeping	the	behavioral	effects	

of	recreational	diving	activity	spatially	constrained.	At	our	study	site,	diving	activity	 is	

highly	 concentrated	 within	 the	 marine	 park,	 and	 the	 diver	 visitation	 frequencies	

between	 the	 other	 sites	 are	 not	 evenly	 spread,	 so	 we	 are	 not	 able	 to	 determine	 the	

shape	 of	 the	 habituation	 curve	 as	 diver	 frequency	 increases	 using	 these	 data.	 Pairing	

accurate	and	more	finely	scaled	data	on	diver	visitation	frequencies	over	time	with	data	

on	the	flight	and	vigilance	behavior	of	fish	in	future	studies	would	not	only	add	insight	

into	 the	nature	of	 habituation	 to	 recreational	divers	 over	 time,	 but	provide	managers	

with	better	information	with	which	to	make	decisions	about	the	spatial	distribution	of	

divers	in	protected	areas.		

Unlike	 our	 study	 sites,	 most	 marine	 protected	 areas	 worldwide	 allow	 both	

recreational	 diving	 and	 spear	 fishing	 to	be	done	 in	 tandem	or	nearby	 to	 one	 another.	

Our	 results	 underscore	 the	 importance	 of	 the	 absence	 of	 a	 predation	 risk	 associated	

with	 humans	 in	 driving	 habituation.	 Exposure	 to	 spear	 fishing,	 a	 clear	 and	 true	

predation	 cue,	 increases	 the	 FIDs	 and	 changes	 the	 types	 of	 anti-predator	 responses	

employed	 in	a	wide	 range	of	coral	 reef	 fish	species,	 including	S. viride	 (Gotanda	et	al.,	

2009;	Guidetti	et	al.,	2008;	Januchowski-Hartley	et	al.,	2015).	The	average	FIDs	that	we	

measured	 in	 the	absence	of	 exposure	 to	 fishing	are	one	 third	 to	one	 fifth	 the	average	

distance	 of	 flight	 recorded	 for	 this	 and	 other	 scarid	 species	 in	 places	where	 spearing	
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takes	place	 in	 tandem	with	recreational	diving	or	even	on	adjacent	reefs	(average	FID	

~350	 cm	 in	 fished	 areas	 (Gotanda	 et	 al.,	 2009;	 Fraser	 A.	 Januchowski-Hartley	 et	 al.,	

2011)).	 The	 elevated	 wariness	 of	 coral	 reef	 fish	 inside	 protected	 areas	 where	 spear	

fishing	 intensity	 is	 high	 just	 outside	 the	 borders	 (Januchowski-Hartley	 et	 al.,	 2015)	

further	 supports	 the	 idea	 that	 even	 infrequent	 exposure	 to	 this	 predation	 cue	 (which	

can	 result	 from	 fish	 swimming	between	boundaries	 or	with	occasional	 poaching)	 can	

cause	fish	to	respond	to	all	divers	with	elevated	anti-predator	responses	(Bregnballe	et	

al.,	 2004;	 Lima	 and	 Bednekoff,	 1999;	 Sirot,	 2010).	 	 Where	 this	 happens,	 fish	

encountering	 recreational	 divers	 inside	 a	 protected	 area	 are	 not	 experiencing	 a	 true	

refuge	 from	 the	 behavioral	 effects	 of	 fishing.	 	 Based	 on	 this	 empirical	 evidence,	 the	

potential	 for	 any	 exposure	 to	 fishing	 cues	 to	 increase	 the	 costs	 and	 consequences	 of	

encounters	with	recreational	divers	within	marine	protected	areas	is	clear.	A	synergistic	

interaction	between	consumptive	and	non-consumptive	diving	activities	also	has	clear	

implications	for	the	ecological	understanding	and	management	of	marine	areas.	Taken	

with	the	evidence	above,	our	results	suggest	 that	more	 fully	separating	extractive	and	

recreational	diving	in	space,	with	full-reef	bans	like	the	one	in	place	on	Little	Cayman,	

by	the	use	of	buffer	zones	between	areas	of	different	uses	(Blumstein	et	al.,	2003),	or	

with	larger	marine	protected	areas	that	allow	for	a	more	complete	refuge	from	fishing	

effects,	can	result	in	a	higher	degree	of	habituation	of	reef	fish	to	recreational	divers.		

	

Feeding	and	Costs	of	Diver	Encounters	

Maintaining	 vigilance	 to	human	presence	 can	preclude	or	 reduce	 the	 time	marine	

animals	 spend	 feeding	 or	 engaged	 in	 other	 activities	 that	 enhance	 their	 individual	
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fitness	and	affect	population	growth(Berthe	and	Lecchini,	2016;	Bracciali	et	al.,	2012;	

French	 et	 al.,	 2011;	 Lima	 and	Bednekoff,	 1999).	 The	 significant	decrease	we	 found	 in	

overall	activity	in	the	immediate	presence	of	a	diver,	including	significant	reductions	in	

bite	rates,	indicate	that	vigilant	fish	alter	a	number	of	behaviors	that	can	have	a	direct	

effect	on	the	fitness	of	the	individual.	Any	changes	in	the	foraging	behavior	of	herbivores	

are	of	particular	 importance,	because	 in	addition	 to	reductions	 in	daily	 intake	of	 food	

being	 directly	 correlated	 to	 reduced	 fitness	 for	 the	 individual,	 vigilant	 animals	 have	

been	shown	to	induce	cascades	and	alter	the	structure	and	function	of	the	surrounding	

ecosystem	 in	 response	 to	 real	 or	 perceived	 predation	 risk	 over	 time	 (Creel	 and	

Christianson,	2009;	Schmitz	et	al.,	2004).		We	found	a	nearly	24%	reduction	in	average	

bite	 rates	 in	 vigilant	 fish,	which	was	 not	 significantly	 different	 across	 diver	 visitation	

frequency	 (Fig.	 4),	 indicating	 that	 even	where	 fish	 repeatedly	 encounter	 divers,	 they	

respond	to	each	diver	encounter	by	reducing	their	feeding	by	the	same	amount.	The	fact	

that	 these	 reductions	 in	 feeding	 were	 significant	 across	 all	 diver	 activity	 levels,	

including	the	area	with	decades	of	consistent	exposure	to	diving	activity,	highlights	the	

fixed	 nature	 of	 this	 trade-off	 (vigilance	 in	 place	 of	 another	 activity)	 during	 a	 diver	

encounter.	However,	evidence	of	a	reduction	in	 feeding	or	any	other	fitness-enhancing	

behavior	 in	 response	 to	 the	 immediate	 presence	 of	 a	 diver	 cannot,	 by	 itself,	 be	

accurately	used	to	infer	persistent	fitness	costs	associated	with	human	activity,	although	

it	sometimes	is	used	in	this	context.	In	order	to	estimate	the	magnitude	of	these	effects,	

one	 must	 consider	 the	 frequency	 with	 which	 animals	 incur	 the	 costs	 of	 vigilance	 or	

flight	 in	 response	 to	 encounters	 with	 humans.	 	 For	 example,	 the	 degree	 to	 which	 a	

reduction	 in	 feeding	 affects	 the	 fitness	 of	 an	 individual	 fish,	 or	 affects	 changes	 in	 its	
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resource	 base,	 depends	 upon	 how	much	 time	 a	 fish	 spends	 being	 vigilant	 or	 fleeing	

instead	 of	 eating.	 	 By	 calculating	 the	 proportion	 of	 daily	 intake	 of	 food	 that	 is	 lost	 to	

vigilance,	we	 can	 estimate	both	 a	 fitness-related	 cost	 to	 an	 individual	 fish,	 and	better	

understand	a	potential	consequence	of	 these	encounters	 to	 the	coral-algae	balance	on	

the	reef.	With	this	in	mind,	we	used	our	data	on	reduced	bite	rates	and	diver	visitation	

frequencies	to	estimate	the	proportion	of	total	feeding	loss	for	an	individual	in	S. viride	

resulting	 from	 daily	 encounters	 with	 divers	 at	 the	 most	 popular	 dive	 site	 on	 Little	

Cayman.	Using	the	methods	outlined	in	the	supplemental	text,	we	developed	this	simple	

heuristic	 model	 to	 estimate	 the	 potential	 cost	 of	 encounters	 with	 respect	 to	 one	

behavior	that	impacts	fitness,	and	to	explore	the	factors	that	drive	these	costs,	including	

diver-fish	encounter	rates,	fish	behavior,	and	diver	behavior.			

	Using	 the	 24%	 reduction	 in	 feeding	 we	 observed	 in	 vigilant	 fish,	 and	 diver-fish	

encounter	 rates	 based	 on	 average	 visitation	 at	 the	 most	 highly	 dived	 site,	 our	

estimations	show	a	negligible	cumulative	 loss	of	 feeding	 to	S. viride	 on	Little	Cayman:	

the	average	proportion	of	daily	feeding	lost	to	diver	encounters	is	only	0.5%	(S1).	This	

result	is	driven	by	both	the	low	frequency	and	short	length	of	diver	encounters	even	on	

the	most	dived	site	on	the	reef,	and	the	comparatively	high	total	time	available	for	a	fish	

to	feed	over	the	course	of	a	day.		Although	we	estimate	an	average	of	87	divers	visit	the	

site	 per	 day,	 based	 on	 a	 random	 distribution	 of	 fish	 across	 the	 site	 and	 random	

swimming	 patterns	 for	 the	 divers,	 an	 individual	 fish	 has	 on	 average	 only	 20	 diver	

encounters	a	day.	On	average,	six	of	these	encounters	cause	the	fish	to	flee,	totaling	just	

under	4	minutes	of	combined	vigilance	and	flight	per	day.		Since	parrotfish	graze	nearly	

continuously	 over	most	 daylight	 hours,	 this	 level	 of	 interruption	 in	 feeding	 is	 clearly	
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negligible	as	a	loss	from	its	total	daily	food	intake.	This	result	suggests	that	currently	the	

population	of	S. viride	is	not	accruing	large	feeding	costs	due	to	encounters	with	divers.	

Moreover,	since	we	used	diver	visitation	estimates	from	the	high	season	(our	sampling	

period),	at	the	most	popular	dive	site	within	the	park,	we	predict	the	cumulative	feeding	

losses	to	be	even	lower	at	slower	times	of	the	year	and	at	less	popular	sites.	Given	the	

relatively	 limited	 maximum	 capacity	 on	 each	 dive	 site	 on	 Little	 Cayman	 under	 their	

current	 regulations,	 these	effects	are	also	not	 likely	 to	 increase	on	 these	reefs.	 In	 fact,	

based	on	these	estimations,	diver	visitation	at	this	site	would	have	to	increase	to	around	

400	 divers	 per	 day	 to	 incur	 an	 average	 daily	 loss	 of	 10%	 of	 an	 individual	 fish’s	 total	

feeding.		

These	 estimations	 also	 give	 us	 a	 useful	 framework	 for	 considering	 the	 conditions	

under	which	the	cumulative	effect	of	diver	encounters	on	fitness-enhancing	behaviors,	

including	 feeding,	 may	 be	 of	 greater	 magnitude	 than	 those	 we	 found	 on	 the	 Little	

Cayman	reefs.	For	example,	a	higher	overall	cost	of	diver	encounters	may	occur	for	fish	

species	 that	 do	 not	 attenuate	 anti-predator	 behaviors	 in	 response	 to	 exposure	 to	

recreational	divers,	as	 is	seen	with	so-called	“shy”	species	(Conrad	et	al.,	2011),	or	for	

the	range	of	reef	fish	species	that	respond	to	divers	with	elevated	FIDs	due	to	exposure	

to	spear	fishing	cues,	including	S. viride	and	other	parrotfish	(Feary	et	al.,	2011;	Gotanda	

et	 al.,	 2009;	 Fraser	 A	 Januchowski-Hartley	 et	 al.,	 2011).	 To	 estimate	 a	 cost	 of	 diver	

encounters	 to	 fish	 that	 have	 not	 habituated	 to	 diver	 presence,	 we	 used	 the	 average	

values	for	AD	and	FID	from	our	sites	of	lowest	diver	visitation.		To	simulate	a	high	influx	

of	 recreational	divers	 into	 the	undived	area,	we	used	 the	maximum	capacity	of	divers	

currently	possible	on	these	reefs.	Under	these	conditions,	proportional	feeding	loss	rose	
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to	2.3%.	 	Although	 the	overall	 loss	 is	 still	 relatively	small,	 the	 increase	 in	 feeding	 loss	

relative	to	that	in	habituated	fish	demonstrates	the	benefit	of	habituating.		Fish	that	do	

not	 habituate	 incur	 higher	 cumulative	 costs	 due	 to	 diver	 encounters.	 Finally,	 diver	

behaviors	also	determine	the	frequency	and	length	of	encounters	with	fish,	and	thus	can	

influence	the	magnitude	of	their	effects.	When	divers	seek	out	and	remain	near	species	

of	interest,	not	only	are	encounters	longer	and	more	numerous,	but	also	diver	behavior	

is	 less	 careful,	 and	 contact	with	 these	 species	 has	 been	 shown	 to	 result	 in	 increased	

damage	to	the	surrounding	reef	(Uyarra	and	Côté,	2007).		To	simulate	this	scenario,	we	

assumed	that	all	divers	encounter	the	fish	(100%	encounter	rate,	average	diver	density	

=	 87	 divers	 a	 day),	 and	 spend	 two-minutes	within	 its	 alert	 distance.	We	 estimated	 a	

9.9%	 total	 daily	 feeding	 loss	 with	 these	 changes	 in	 diver	 behavior.	 	 This	 estimated	

feeding	loss	is	equivalent	to	the	effect	of	an	increase	in	diver	density	to	400	divers	(as	

above),	highlighting	the	importance	of	encounter	frequency	and	length	in	driving	these	

costs.	Particularly	for	sought-after	species	that	are	site-attached,	and	thus	both	easier	to	

locate	and	 less	motile	 (e.g.,	 seahorses,	 frogfish),	our	estimations	suggest	 that	a	higher	

contact	rate	and	more	lengthy	encounters	with	divers	could	result	in	the	accumulation	

of	 high	 fitness	 costs	 even	 at	 relatively	 low	 diver	 densities.	 Indeed,	 these	 types	 of	

prolonged	 and	 close-range	 diver	 encounters	 are	 likely	 to	 occur	 for	 an	 increasingly	

broader	 range	 of	 species	 as	 underwater	 photography	 becomes	 commonplace	 among	

recreational	divers	(Barker	and	Roberts,	2004;	Rouphael	and	Inglis,	2001).	

	

Cleaning	and	Species	Interactions	

Although	 feeding	 loss	 is	not	 large	 in	 the	population	of	 the	 reef	 fish	 species	we	
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studied,	 the	significant	reductions	 in	other	behaviors	warrant	 further	 investigation,	as	

they	also	represent	fitness	costs	in	the	immediate	presence	of	a	diver.		Changes	in	time	

budgets	due	to	vigilance	in	the	presence	of	humans	of	the	kind	we	recorded	in	S. viride	

have	 been	 correlated	 to	 persistent	 fitness	 effects	 via	 increased	 energy	 expenditures,	

reduced	 reproductive	 output,	 and	 slowed	 population	 growth	 in	 other	marine	 species	

(French	 et	 al.,	 2011;	 Stensland	 and	 Berggren,	 2007;	 Symons	 et	 al.,	 2014).	 	 Likewise,	

changes	 in	 the	 amount	 of	 time	 spent	 engaged	 in	 interactions	 with	 conspecifics	 (e.g.,	

mating,	competition)	and	other	species	(e.g.,	cleaning	interactions)	can	have	effects	on	

community	dynamics	and	transmit	the	costs	and	consequences	of	maintaining	vigilance	

to	 other	 species	 (Cheney	 and	Cote,	 2003;	 French	 et	 al.,	 2011).	 	 In	particular,	 cleaning	

interactions,	 due	 to	 their	 potential	 to	 influence	 the	 individual	 fitness	 of	 other	 species	

and	alter	an	important	ecosystem	function,	are	a	ripe	area	for	future	research	into	the	

nature	and	magnitude	of	diver	effects	 (Grutter,	1999;	Grutter	et	 al.,	2017;	Titus	et	 al.,	

2015).	 Cleaning	 significantly	 decreases	 parasite	 abundance	 on	 the	 host	 and	 provides	

food	for	 the	cleaner	 fish,	contributing	to	 the	 individual	 fitness	of	both	(Grutter,	1999).	

Cleaning	is	a	service	that	attracts	fish	to	particular	areas,	and	can	drive	increases	in	local	

fish	diversity	on	coral	reefs	(Grutter	et	al.,	2017).		We	found	that	S. viride	spent	42%	less	

time	engaging	 in	cleaning	behaviors	 in	 the	presence	of	divers,	and	 this	 reduction	was	

significant	 even	 in	 places	 where	 diver	 visitation	 had	 consistently	 been	 high	 (Fig.	 5).		

Similar	 decreases	 in	 cleaning	 behavior	 due	 to	 diver	 presence	 were	 shown	 to	

significantly	depress	cleaning	for	all	species	at	stations	on	another	intensely	dived	coral	

reef	(Titus	et	al.,	2015),	and	these	changes	 in	cleaning	were	highlighted	as	a	potential	

mechanism	 for	 lowered	 fitness	 for	 fish	 populations	 and	 an	 interruption	 of	 ecosystem	
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services	due	to	chronic	recreational	diving	activity.		The	potential	for	reduced	cleaning	

to	result	 in	persistent	fitness	effects	and	community-level	consequences	highlights	the	

need	for	future	studies	to	include	direct	measures	of	fitness	for	marine	fish	responding	

to	 diver	 encounters.	 	 Metrics	 such	 as	 growth	 rate,	 body	 condition,	 and	 reproductive	

output,	 for	example,	when	considered	in	the	context	of	diver	encounter	frequency	and	

length,	can	be	used	to	estimate	the	cumulative	costs	of	reductions	in	cleaning	and	other	

species	interactions	in	the	presence	of	divers.		 

 

Conclusion 

As	 the	number	of	 recreational	 divers	within	marine	 reserves	 increases	worldwide	

(Gonson	et	 al.,	 2015),	 the	ability	of	marine	 fish	 to	habituate	 to	divers	 is	 an	 important	

consideration	 to	 incorporate	 into	 our	 understanding	 of	 both	 the	 ecological	 dynamics	

and	 management	 of	 marine	 reserves.	 Where	 habituation	 to	 recreational	 divers	 and	

snorkelers	 occurs	 in	 isolation	 from	 spearfishing,	 it	 represents	 a	 potential	 win-win	

scenario	 for	marine	 fish	 and	 recreational	 divers.	Habituated	 fish	 reduce	 the	 time	 and	

energy	spent	on	vigilance	and	flight,	and	experience	less	disruption	in	opportunities	to	

feed	or	mate	due	 to	diver	encounters.	Divers	 likewise	benefit	 from	engaging	 in	 close-

range	 observation	 and	 photography	 of	 habituated	 fish,	 which	 increases	 diver	

satisfaction	(Valentine	et	al.,	2004).	Our	data	from	within	the	park,	where	diver	density	

is	highest,	and	our	estimations	of	a	cumulative	cost	of	those	diver	encounters	illustrate	

the	 importance	 of	 considering	 encounter	 rate	 and	 length,	 as	 well	 as	 fish	 and	 diver	

behaviors,	 in	understanding	 the	nature	and	magnitude	of	 these	effects.	 	While	we	did	

not	directly	measure	fitness	effects	of	diver	encounters	to	S. viride,	future	research	into	
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diver	 effects	would	 greatly	 benefit	 from	 the	 inclusion	 of	 direct	measures	 such	 as	 the	

body	condition	or	reproductive	output	of	fish,	particularly	for	sought-after	species	that	

divers	may	spend	more	time	interacting	with.		Future	research	should	also	incorporate	

both	more	precise	quantifications	of	 the	encounter	rates	between	divers	and	fish,	and	

link	 those	 to	direct	measures	 of	 the	 fitness	 costs	 associated	with	 diver	 encounters	 to	

better	 inform	 our	 understanding	 of	 the	 mechanisms,	 ecological	 consequences,	 and	

management	implications	of	habituation	to	divers	in	marine	fish.				

Our	 evidence	 for	 habituation	 to	 encounters	 with	 recreational	 divers	 for	 Stoplight	

Parrotfish	comes	from	reefs	where	spear	fishing	is	almost	completely	absent,	and	where	

the	 long-term	diving	activity	 is	well	managed	 and	 low	 impact	 in	 comparison	 to	many	

other	diving	destinations.	Growing	empirical	evidence	of	the	flight	responses	of	marine	

fish	suggest	that	habituation	to	divers	can	be	constrained	by	the	nature	and	frequency	

of	human	activities	happening	within	and	around	MPAs,	especially	spear	fishing.	While	

the	applicability	of	these	results	to	other	species	of	marine	fish	is	 limited	by	a	current	

lack	of	 data,	 evidence	 for	neutral	 behavior	 in	 response	 to	 encounters	with	divers	 has	

been	 found	 a	 range	 of	marine	 fish	 species	 (Bradley	 et	 al.,	 2017;	 Claudet	 et	 al.,	 2010;	

Dearden	 et	 al.,	 2010;	Heyman	et	 al.,	 2011).	 It	 is	 therefore	 critical	 to	 test	 these	 effects	

under	different	diver	activity	regimes	and	for	different	fish	species.		

Bloody	Bay	Wall	Marine	Park	represents	a	case	study	in	the	potential	consequences	

of	increasing	diving	activity	on	coral	reefs	worldwide,	and	our	findings	underscore	the	

importance	of	incorporating	a	more	thorough	understanding	of	the	behavioral	effects	of	

diver	presence	on	marine	life	in	the	design	and	management	of	marine	protected	areas	

in	particular.		
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Figures  

 

Main	Figures		
Fig.	1:	Sites,	Little	Cayman		
Fig.	2:	FID	
Fig.	3:	AD	
Fig.	4:	Bite	Rates	
Fig.	5:	Clean	&	Clean	Ask	(main	effects)	
		
Main	Tables	
T1:	AD	and	FID	pairwise	comparisons	by	dive	visitation	
T2:	Cleaning	activity	by	dive	intensity,	detailed	results		
T3:	Time	budget	behaviors	for	vigilant	versus	non-vigilant	fish			
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Fig.	 1:	 Study	 sites	were	 located	 on	 the	 reef	 along	 north	 side	 of	 Little	 Cayman,	where	Bloody	Bay	Marine	 Park	
(black	box)	is	located.	Text	indicates	the	four	areas	of	chronic	diver	visitation	frequency	(diver	density),	based	on	
average	daily	visitation	data	for	the	period	of	May-July	as	follows:	High	=	273	divers/day,	Medium	=	52,	Light	=3,	
and	Low	=	0.33	divers/day.		Multiple	dive	sites	were	sampled	within	each	diver	visitation	area.  
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Fig.	2:	Average	(black	diamonds)	and	median	(bar)	flight	initiation	distance	(FID)	in	centimeters	for	S. viride	at	sites	of	differing	
frequency	of	recreational	SCUBA	activity.	 	FID	decreases	significantly	(*)	at	sites	with	most	frequently	visited	by	recreational	
divers	(mean	FID	=	65	cm,	p	<	.001).		Boxplots	display	minimum	and	maximum	“whiskers”,	points	are	outliers.			
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Fig.	 3:	 Average	 (black	 diamonds)	 and	 median	 (bar)	 alert	 distance	 (AD)	 in	 centimeters	 for	 S. viride	 at	 sites	 of	 differing	
frequencies	of	recreational	SCUBA	activity.		AD	decreases	significantly	(*)	at	sites	most	frequently	visited	by	recreational	divers	
(mean	AD	=	212	cm,	p	<	.001).	Boxplots	display	minimum	and	maximum	“whiskers”,	points	are	outliers.			
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Fig.	4:	Average	(black	dots)	and	median	(bar)	bite	rates	for	S. viride	at	sites	with	differing	frequencies	of	recreational	SCUBA	
activity.	 	Light	bars	represent	baseline	bite	rate	(bites/min),	while	darker	bars	represent	bite	rates	of	vigilant	fish.	 	Bite	rate	
decreases	 significantly	 and	 uniformly	 at	 all	 sites	 in	 response	 to	 the	 immediate	 presence	 of	 a	 diver,	 regardless	 of	 chronic	
exposure	to	diving	activity	(mean	baseline	=	7.5	bites	m-1,	mean	vigilant	=	5.7	bites	m-1,	p	<	.001).	Boxplots	display	minimum	
and	maximum	“whiskers”,	points	are	outliers.			
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Fig.	 5:	 Average	 (±	 SEM)	 time	 fish	 spent	 engaged	 in	 cleaning	 behaviors	 during	 observations	 of	 vigilant	 (dark	 bars)	 or	 non-
vigilant	(lighter	bars)	fish	(diver	areas	pooled).		S. viride	spent	32%	less	time	asking	to	be	cleaned	and	(p	<	.001)	and	54%	less	
time	being	cleaned	while	in	the	presence	of	a	diver	(p	<	.05)	
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Table	1:	Multiple	pairwise	comparisons	(Tukey	HSD)	by	diver	visitation	frequency	areas	for	average	alert		
distances	(AD)	and	flight	initiation	distances	(FID).		Probabilities	in	bold	indicate	a	significant	difference.		
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dive Frequency  AD    FID  

 SE z  p  SE z  p 

Low: Light 24.052 0.176 0.998  0.133 -1.409 0.488 

Low: Med 25.614 -0.803 0.852  0.143 -1.401 0.493 

Low: High 24.316 -3.294 < 0.01  0.184 -5.574 < .001 
Light: Med 25.312 -0.980 0.760  0.144 -0.090 0.999 

Light: High 23.090 -3.652 < 0.01  0.179 -4.681 < .001 
Med: High 25.701 -2.316 0.094  0.191 -4.312 < .001 
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Chronic Diver 

Visitation 

Vigilant Total 

Activity 

(sec) 

p Cleaned 

(sec) 

 

p Clean 

Ask 

(sec) 

p 

High No 11.5  5.6  4.0  

 Yes 5.5 <0.05 1.2 <0.05 1.9 0.22 

Med No 15.9  4.8  9.4  

 Yes 9.1 0.17 4.9 0.98 2.4 0.1 

Light No 17.6  5.3  10.8  

 Yes 4.6 <0.001 0.9 <0.05 2.1 <0.01 

Low No 13.2  4.7  6.2  

 Yes 10.7 0.59 5.1 0.92 4.9 0.51 

Total No 14.3  5.2  7.3  

 Yes 7.20 <0.001 2.8 <0.05 2.5 <0.001 

 

Table	 2: Average	 time	 (sec)	 spent	 in	 each	 behavior	while	 fish	were	 vigilant	 (diver	 observing	 from	
within	the	alert	distance	of	the	fish)	and	not	(diver	well	outside	the	alert	distance).	Total	activity	and	
time	spent	engaged	 in	cleaning	behaviors	decreased	significantly	 in	 the	presence	of	a	diver,	but	do	
not	 follow	 a	 consistent	 pattern	 based	 on	 chronic	 diver	 visitation.	 Probabilities	 in	 bold	 indicate	 a	
significant	difference. 
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Behavior Chi-squared 

value 

d.f. p 

Clean	Ask	 12.3	 7	 <0.001 

Clean	 4.317	 7	 0.038 

Chase	 0.488	 7	 0.48	

Chased	by	 0.789	 7	 0.374	

Defecated	 8.52	 7	 0.004 

 

Table	3:	Chi-squared	results	for	time	budget	behaviors	of	S. viride.	P-	values	in	bold	indicate	
a	significant	difference	for	the	frequency	of	the	behavior	observed	in	vigilant	fish	(diver		
obsereving	from	within	the	AD)	versus	non-vigilant	(diver	outside	the	AD).	
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Supplemental Materials 

Text:	Estimating	the	Cost	of	Diver	Encounters		
S1:Diver	encounter	cost	estimations	
S2:	Anti-predator	behavior	descriptions	
S2:	Time	budget	behavior	descriptions		
	
	

Supplemental Text 

Estimating	the	cost	of	diver	encounters	 

To	 estimate	 the	 expected	 number	 of	 daily	 encounters	 an	 individual	 fish	 has	 with	

divers	at	 the	most	popular	site	within	the	park,	we	assumed	a	random	distribution	of	

fish	 on	 the	 reef	 and	 random	movement	 of	 the	diver	 independent	 of	 other	divers.	 The	

diver	swims	at	a	constant	speed	(.05	m/s)	without	retracing	her	path	for	the	duration	of	

a	45	minute	dive,	giving	a	linear	random	path	of	movement	of	the	diver,	Dd.	The	average	

alert	distance	between	the	fish	and	the	diver	is	then	incorporated	as	one	alert	distance	

to	 either	 side	 of	 the	 diver	 (2Da)	 which	 moves	 with	 the	 diver	 as	 she	 swims.	 	 The	

probability	of	encounter	between	a	single	 fish	and	any	diver	during	a	dive,	Pe,	 is	 then	

calculated	by	dividing	the	alert	area	of	the	diver	by	the	total	area	of	the	reef	at	the	dive	

site	(As):		

	

�� =  2 (�� �	)�� 	

	 	 	 	 	 	 	 	 	 	 	 (1)	

	

and	the	expected	number	of	daily	encounters	with	a	diver		
� 	is	the	average	number	of	

divers	on	that	site	per	day,	
� ,	multiplied	by	the	probability	of	a	fish	encountering	any	
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given	diver	during	a	dive	��:	
	

	


� = (��
�)	
	 	 	 	 	 	 	 	 	 	 	 (2)	

	

The	distance	between	the	fish	and	the	diver	during	the	encounter	will	either	cause	the	

fish	 to	 be	 vigilant,	 when	 the	 diver	 is	 moving	 within	 the	 alert	 distance	 of	 the	 fish,	 or	

result	in	the	fish	fleeing,	when	the	diver	moves	within	the	flight	initiation	distance	of	the	

fish,	notated	here	as	the	distance	between	the	diver	and	the	fish	that	triggers	flight	(Df).		

The	number	of	expected	encounters	that	will	result	in	the	fish	fleeing	Nf,	is	a	proportion	

of	all	expected	encounters	based	on	the	alert	and	flight	distances:	

	


� = ����	 
��	
		 	 	 	 	 	 	 	 	 	 	 (3)	

	

and	the	remaining	number	of	expected	encounters	that	will	result	in	fish	vigilance	Nv		is:	

	


� = 1 − ����	 
��	
	

(4)	
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The	total	time	a	fish	spends	vigilant	to	divers	during	a	single	day	(�� )	is	a	product	of	the	
number	of	expected	encounters	that	result	in	vigilance	(
�)	and	the	the	average	length	
of	 each	 diver	 encounter,	which	 is	 estimated	 by	 using	 the	 average	 chord	 length	 of	 the	

alert	distance	circle	surrounding	a	fish ��	 ��� divided	by	the	diver’s	average	swimming	

speed	(s)	as	she	moves	along	that	length:	

	

	

�� = ��	 �2�  
��	
	 	 	 	 	 	 	 	 	 	 	 (5)	

	 	 	 	 	 	

Thus,	 to	estimate	 the	cumulative	cost	of	vigilance	 to	divers	 in	a	day,	�� ,	we	calculated	
the	 proportion	 of	 total	 daily	 feeding	 lost	 due	 to	 vigilance	 in	 response	 to	 diver	

encounters:		

	

	

�� =   �(� −  ��) �� !"� 	

	 	 	 	 	 	 	 	 	 	 	 (6)	

	

where	the	total	bites	lost	during	a	day	is	the	difference	between	the	bite	rate	(bites	per	

minute,	 bm-1)	 in	 the	 absence	 of	 divers	(�#�$%&'$ �&($�: � )	 and	 the	 number	 of	 bites	

taken	while	the	fish	are	vigilant	to	diver	presence	(*&+&%#'( �&($�: ��)	multiplied	by	the	
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time	spent	vigilant	during	a	day	 ��.	 	Dividing	total	daily	bites	 lost	by	the	average	total	
daily	 bites	 an	 S. viride	 would	 take	 in	 the	 absence	 of	 divers	 (calculated	with	 our	 site-

specific	bite	rate	data	and	species	specific	active	daily	feeding	time	from	Hanley	(1984))	

gives	us	 the	proportion	of	daily	 feeding	 that	a	 fish	 loses	due	 to	vigilance	during	diver	

encounters.	  

 

To	further	determine	the	cost	of	diver	encounters	in	terms	of	the	proportion	of	feeding	

time	 that	 fish	 lose	due	 to	 fleeing	 from	divers,	we	 first	 calculate	 the	 total	 time	per	day	

that	 a	 fish	 spends	 fleeing	 divers (Tf),	 which	 is	 a	 product	 of	 the	 number	 of	 expected	

encounters	that	initiate	flight	(Nf)	and	the	average	time	it	takes	for	a	fish	to	flee	from	the	

diver	and	 then	return	 to	 feeding	behavior	 (Tr)	 (estimated	via	video	observations	of	S. 

viride	by	A.	Ridlon):		

 

�� = ,
��-.	
(7)	

 

The	daily	total	cost	of	fleeing	divers	(Cf	)	in	terms	of	lost	feeding	is	then	a	product	of	the	

time	spent	fleeing	(Tf)	and	the	baseline	bite	rate	(bb)	that	the	fish	would	have	engaged	

in	if	it	were	not	fleeing: 

�� = ��� �  �	
(8)	

 

Finally,	 to	estimate	 the	cumulative	daily	cost	of	diver	encounters	 to	an	 individual	 fish,	
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(�� ) in	 terms	 of	 the	 total	 proportion	 of	 bites	 lost	 during	 all	 diver	 encounters,	 we	

combine	the	daily	costs	of	vigilance (�� ) and	flight (�� ):  

	

�� =  �� + ��  
(9)	

	

Simplifying	Assumptions	

We	made	a	number	of	simplifying	assumptions	about	diver	and	fish	behavior	in	

calculating	feeding	loss:	1)	Fish	distribution	is	random,	2)	Diver	movement	is	random,	

and	 3)	 There	 is	 no	 compensation	 in	 feeding	 behavior	 or	 rate	 when	 divers	 are	 not	

present.	 	We	used	 site-specific	 area	measurements	 and	diver	densities	 from	 the	most	

popular	 dive	 site	 within	 the	 marine	 park	 (“Mixing	 Bowl”).	 We	 do	 not	 consider	 the	

energetic	 costs	of	 flight	or	vigilance,	 and	 instead	use	 solely	 the	 loss	 of	 feeding	during	

these	behaviors	as	one	example	of	a	fitness-related	cost	of	diver	encounters.	

	

Extensions		

We	estimated	the	above	current	average	cost	of	diver-fish	encounters	on	the	reef	

at	average	diver	visitation	 frequency	during	 the	high	season,	using	 the	average	values	

from	 our	 empirical	 data	 where	 appropriate,	 as	 stated	 in	 the	 main	 text.	 We	 then	

estimated	Cd	for	two	other	scenarios	to	explore	how	the	cost	of	diver	encounters	would	

change	under	different	fish	behavior	and	diver	encounter	scenarios.		First,	we	estimated	

the	increase	in	cost	that	that	would	occur	if	divers	suddenly	dove	at	maximum	capacity	

in	 the	 least-dived	 areas	 (“worst	 case	 scenario”)	 using	 the	 average	AD	 from	 the	 least-
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dived	 sites,	 and	 the	 maximum	 diver	 number	 possible	 at	 the	 most	 highly	 dived	 site	

within	the	park	(“Mixing	Bowl”).	Next,	we	estimated	Cd	using	all	the	original	empirical	

values,	 but	 under	 a	 100%	probability	 of	 encounter	with	 divers,	 and	 a	 2	minute	 fixed	

encounter	length	with	divers	inside	the	alert	distance	of	the	fish	to	simulate	longer	and	

more	 frequent	encounters	due	to	changes	 in	diver	behavior	(as	happens	towards	rare	

fish	or	during	photography).	

	

Calculating	the	probability	of	encounter	with	any	diver	(Pe)	

Total	area	of	the	reef	at	the	most	popular	site	=	24,000	m2		

AD	from	the	diver	to	the	fish	(2AD)	=	4	m			

Swimming	at	a	fixed	0.5m/s	for	45	minutes,	a	diver	swims	a	linear	distance	of	1,350	m2	

with	 an	 alert	 “bubble”	 of	 influence	 covering	 5400m2	 in	 a	 dive,	 or	 22.5	%	of	 the	 total	

divable	 area.	 	Assuming	 a	 random	 location,	 an	 individual	 fish	has	 a	 .23	probability	 of	

encountering	any	given	diver.			
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Supplemental Figures	 
 

 

Parameter  Values 

(Per day) 

Current Diving 

Activity 

No 

habituation  

Diver Behavior 

“Targets” fish 

Ave.	chord	length	(c)	 3.33	 5.71	 NA	
Ave.	length	of	encounter	(sec)	(c/s)	 6.66	 11.43	 120	

No.	divers	per	day	(Nd)	 87	 120	 87	
Tot.	no.	expected	encounters	(Ne)	 20.01	 27.60	 87	

No.	expected	encounters	that	result	in	vigilance	(Nv)	 13.87	 10.87	 87	
Vigilance	(min)		(Tv)	 1.54	 5.26	 174	

No.	bites	lost	to	vigilance	 2.77	 9.46	 313.20	
Proportion	bites	lost	to	vigilance	(Cv)	 0.00	 0.00	 0.10	

No.	expected	encounters	that	result	in	flight	(Nf)	 6.14	 16.73	 NA	
Tot.	time	fleeing	(min)	(Tf)	 1.53	 8.36	 NA	

No.	bites	lost	to	flight	 11.50	 62.73	 NA	
Proportion	bites	lost	to	flight	(Cf)	 0.00	 0.02	 NA	

Total	no.	bites	lost	in	a	day	 14.27	 72.19	 313.20	
Proportion	of	daily	feeding	lost	(Cost	of	diver	

encounter	(Cd))	
0.005	 0.023	 0.099	

S1:	 Calculations	 of	 the	 daily	 (unless	 otherwise	 noted)	 parameter	 values	 used	 to	 estimate	 the	 cost	 of	 diver	
encounters	to	fish	in	terms	of	the	proportion	of	daily	feeding	lost	under	three	different	diver	encounter	and	fish	
behavior	scenarios.		
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							S2:	Descriptions	of	the	anti-predator	behaviors	observed	during	diver	approach	trials	
 

 

 

 

 

 

 

 

 

 

 

 

 

 
	

							S3:	Descriptions	of	the	behaviors	observed	and	timed	in	time	budget	trials. 
 

Anti-predator Behavior Description 

Stop Interruption	of	whatever	behavior	fish	was	engaged	in	
at	start	of	trial	

Look Fish	looks	directly	at	diver	
Turn Fish	turns	its	body	toward	or	away	from	diver	
Flick Fish	flicks	its	tail		
Bump Fish	moves,	but	slowly,	and	stops	<1	m	away	
Flight Clear,	directed	motion	away	from	the	diver,	sometimes	

accompanied	 by	 a	 fast-start	 escape	 response	 (sensu 

Domenici	&	Blake	1997)	

Behavior Description 

Bite Rate Fish	bites	substrate	
Clean Fish	is	being	cleaned	by	shrimp	or	cleaner	fish	that	the	diver	

can	 see,	 sometimes	 accompanied	 by	 changes	 in	 color,	 an	 open	
mouth,	and	flared	gills	

Clean Ask Body	 positioned	 vertically	 (perpendicular	 to	 the	 substrate),	
pectoral	 fins	moving,	 sometimes	accompanied	by	an	open	mouth	
and	flared	gills	(sensu “cleaning	invitation”,	Hanley,	1984)	

Chased Fish	clearly	pursues	another	fish	(van	Rooij	et	al.,	1996)		
Chased by Fish	flees	from	an	approach	by	another	fish	
Defecates Fish	defecates	
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1	Four	 individual	 spearing	 licenses	 are	 currently	 issued	 by	 the	 Cayman	 Islands	 Department	 of	 the	
Environment	 to	 Little	 Cayman	 residents	 with	 long	 family	 histories	 of	 residential	 status.	 These	 fishers	
primarily	spear	lobsters	during	the	legal	season,	and	do	not	fish	within	the	marine	park.	Otherwise,	the	
only	spearing	 that	 takes	place	on	 these	 reefs	 is	by	highly	 trained	divers	 from	DOE,	other	 local	agencies	
and	tour	operators,	targeting	the	invasive	lionfish	population	only.		These	culls	take	place	at	dusk,	and	no	
other	 fish	species	has	been	caught	by	spear	during	a	cull	 (DOE	and	Central	Caribbean	Marine	 Institute	
Staff,	personal	communication).		
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CHAPTER THREE 

Differential predation by the invasive predator Carcinus maenas: a potential 

mechanism for facilitating invasions 
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Abstract   

As	multiple	invasions	accumulate	in	marine	systems,	identifying	the	species	traits	and	

interactions	that	affect	invasion	success	is	critical	for	predicting	the	outcomes	of	

multiple	species	introductions.			Facilitation	is	a	major	mechanism	for	invasion	success	

that	can	increase	the	magnitude	of	impact	of	an	existing	invasion.		Marine	predators	can	

facilitate	invasions	and	may	be	more	likely	to	tip	the	balance	of	dynamics	between	

species	in	an	invaded	system	via	top-down	effects.		Here	we	examine	the	effect	of	

predation	by	an	introduced	crab,	Carcinus maenas, on	the	native	snail	Cerithidea 

californica	and	the	invasive	snail	Ilyanassa obsoleta.  Laboratory	experiments	revealed	

that	Carcinus maenas	predation	was	strongly	and	significantly	greater	on	the	native	

species	as	compared	to	the	invasive.		While	the	frequency	of	crab	attacks	was	not	

significantly	different	between	snail	species,	the	predator	was	5.45	times	more	

successful	at	killing	the	native	C. californica than	the	invasive	I. obsoleta	given	an	attack.			

This	differential	predation	success	drives	the	higher	overall	mortality	in	native	snails.			
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Given	the	competitive	displacement	of	the	native	snail	by	the	invasive	in	this	system,	our	

study	demonstrates	that	the	introduced	predator	C. maenas	can	have	both	direct	

negative	impacts	on	native	species	and	indirect	positive	impacts	on	other	invaders	via	

facilitation.		Our	results	provide	unique	information	about	a	predator’s	potential	to	

indirectly	influence	the	success	of	an	invasion,	and	contribute	to	our	understanding	of	

the	role	of	introduced	predators	in	influencing	the	dynamics	of	multiple	invasions	in	

marine	systems. 

Introduction 

Humans	continue	to	introduce	species	to	marine	ecosystems	worldwide,	and	at	an	

accelerating	rate	(Grosholz	and	Ruiz,	1996;	Ruiz	et	al.,	2000,	1997).		Over	500	

nonnative	species	are	considered	established	in	U.S.	coastal	ecosystems	and	some	

marine	systems,	particularly	estuaries,	have	become	so	invaded	that	the	majority	of	

their	biomass	is	comprised	of	non-native	species	(Cohen	and	Carlton,	1998;	Ruiz	et	al.,	

1997).		As	invasions	accumulate,	the	interactions	among	multiple	introduced	species	

and	can	bring	both	unexpected	and	long-lasting	change	to	those	ecosystems.		Although	

much	has	been	learned	about	the	mechanisms	and	consequences	of	single	introduced	

species	in	marine	systems,	ecologists	are	still	trying	to	disentangle	the	complex	

interactions	between	multiple	introduced	species	and	their	subsequent	effects.			Of	

particular	interest	are	the	species	traits	and	ecological	interactions	that	affect	invasion	

success	of	one	or	many	species	when	multiple	introductions	occur.		While	the	enemy	

release	hypothesis	–	the	idea	that	introduced	species	experience	a	decrease	in	

regulation	from	predators	and	other	natural	enemies	and	a	concomitant	rapid	increase	

in	population	abundance	and	distribution-	has	long	been	cited	in	the	successful	
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establishment	of	introduced	species	(Crawley,	1997;	Williamson,	1996),	facilitation	

between	species	is	increasingly	recognized	as	a	major	potential	mechanism	for	invasion	

success	(Bruno	et	al.,	2003).		Facilitation	between	separately	introduced	organisms	

creates	a	positive	feedback	that	increases	the	likelihood	of	survival	for	one	or	both	

species,	or	accelerates	the	rate	of	one	or	both	of	their	invasions,	and	can	operate	by	

increasing	the	magnitude	of	impact	of	an	existing	invasion(s).		These	positive	feedbacks	

between	species	can	have	ecosystem-level	effects,	and	have	been	hypothesized	to	lead	

to	an	accelerating	increase	in	the	number	of	invasions	in	the	system,	causing	an	

“invasional	meltdown”	(Simberloff,	2006;	Simberloff	and	Von	Holle,	1999)	in	which	

invasive	organisms	become	dominant.			Despite	limited	evidence	demonstrating	

“meltdowns”	in	marine	systems,	it	remains	a	useful	framework	for	thinking	about	the	

long-term	consequences	of	multiple	invasions	(Simberloff,	2006).		We	know	that	

functional	replacement	of	native	species	by	invasive	ones	can	drastically	alter	trophic	

structure,	population	and	community	processes,	and	interfere	with	ecosystem	functions	

(O’Dowd	et	al.,	2003;	Ruiz	et	al.,	1999,	1997).		Yet	all	introduced	species	do	not	replace	

native	flora	and	fauna	or	even	have	a	measurable	negative	effect.		Likewise,	the	

interactions	between	introduced	species	do	not	necessarily	result	in	facilitation	

between	invaders.		In	fact,	while	facilitation	among	multiple	invaders	has	been	

demonstrated	in	various	terrestrial	systems,	(Nuñez	et	al.,	2008;	O’Dowd	et	al.,	2003;	

Parker,	2006)	examples	from	marine	systems	are	limited	(Grosholz,	2005;	Levin	et	al.,	

2002).		Identifying	the	ecological	contexts	in	which	facilitation	occurs	between	

introduced	species	in	marine	systems	is	central	to	our	understanding	of	invasion	
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dynamics	in	estuaries	and	coastal	ecosystems,	where	introduced	species	accumulate,	

and	multiple	re-introductions	are	common.	

One	key	factor	in	predicting	the	likelihood	of	invasive	facilitation	may	be	the	relative	

trophic	positions	of	the	interacting	species	(Thomsen	et	al.,	2014).		Considering	the	role	

of	trophic	position	in	the	direction	and	magnitude	of	invasive	species	interactions,	

including	the	potential	for	invasive	facilitation,	is	essential	to	understanding	the	

changing	landscape	of	repeatedly	invaded	systems.		Indeed,	a	meta-analysis	of	

terrestrial	systems	provides	evidence	that	introduced	herbivores	facilitated	increased	

richness	and	abundance	of	introduced	plant	species	through	selective	grazing	on	native	

species,	suggesting	that	as	native	predators	are	replaced	with	invasive	ones,	the	

likelihood	of	invasive	facilitation	and	a	state	of	“meltdown”	increases	(Parker,	2006).		

Likewise,	marine	predators	have	been	shown	to	facilitate	invasions	and	may	be	more	

likely	than	organisms	in	other	tropic	groups	to	tip	an	invaded	system	into	a	state	of	

“meltdown”	(Grosholz,	2005;	Veiga	et	al.,	2011).		As	marine	predators	not	only	continue	

to	be	transported	to	new	habitats	by	human	intervention,	but	experience	range	shifts	

related	to	global	climate	change	(Johnson,	2015;	Kelley	et	al.,	2013),		there	is	an	urgent	

need	to	understand	the	impact	that	their	predation	can	have	on	the	invasions	of	other	

introduced	species.				

Here,	we	examine	the	effects	of	an	introduced	predator, the	European	green	crab	

(Carcinus maenas)	on	two	species	of	consumers	in	San	Francisco	Bay	(SFB):	one	a	

native	snail	and	the	other	an	invasive	snail.		The	San	Francisco	Bay	represents	a	natural	

experiment	in	the	effects	of	multiple	invasions	and	provides	an	opportunity	to	study	the	
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dynamics	between	invasive	species	at	different	trophic	levels.		One	of	the	most	highly	

invaded	marine	systems	in	the	world,	up	to	99%	of	the	biomass	in	some	of	SFB’s	

communities	is	comprised	of	introduced	species	(Cohen	and	Carlton,	1998).		Carcinus 

maenas	has	been	a	resident	in	SFB	since	1989,	where	populations	are	now	well-

established	and	self-sustaining	(Cohen	et	al.,	1995).  An	omnivorous	predator,	C. 

maenas	has	disrupted	native	food	webs	in	nearby	estuaries	by	preying	upon	and	

displacing	a	number	of	native	species, and	in	one	case	by	accelerating	an	existing	

invasion	in	the	system	(Grosholz,	2005;	Grosholz	et	al.,	2000).		Little	is	known	about	its	

impacts	in	SFB,	however,	including	its	potential	to	prey	on	native	consumers	and	its	

interactions	with	the	multitude	of	invasive	species	in	the	system.				

Two	of	the	most	common	snails	in	SFB	are	the	native	California	horn	snail	(Cerithidea 

californica) and	the	invasive	eastern	mud	snail	(Ilyanassa obsoleta).		Cerithidea 

californica populations,	once	highly	abundant	in	some	California	estuaries,	have	

dwindled	drastically	in	recent	years	across	the	species’	range	in	California	(Byers,	2000,	

1999).		In	contrast,	I. obsoleta was	first	reported	in	SFB	in	1907	(Carlton,	1979)	and	has	

since	established	populations	there	that	can	reach	densities	of	>	3000	individuals/m2	in	

some	areas	(max	density,	2009	surveys	=	3345.5	individual/m2;	Weiskel,	unpublished	

data).		The	established	invasion	of	I. obsoleta	in	SFB	has	previously	been	shown	to	have	

negative	impacts	on	the	native	C. californica	through	competitive	interactions,	including	

physical	displacement	and	direct	predation	on	native	eggs	and	juveniles	by	the	invasive	

snail	(Race,	1982;	Weiskel,	2012)	but	nothing	is	known	about	the	potential	impacts	of	

the	more	recently	introduced	predator	C. maenas on	either	population.		



	

 101

To	determine	the	effects	of	the	predatory	crab,	we	used	laboratory	experiments	to	test	

whether	C. maenas	preys	equally	on	the	native	C. californica	and	the	invasive	I. obsoleta.		

Where	the	two	species	co-occur	on	the	east	coast	of	the	United	States,	C. maenas	are	

most	successful	in	preying	on	I. obsoleta	of	smaller	size	classes	(10-15	mm)	by	sheering	

their	spire	or	chipping	away	at	the	lip	of	their	thick	shell	(Ashkenas	and	Atema,	1978).		

Adult	I. obsoleta require	a	comparatively	high	degree	of	force	to	crush	outright	in	

comparison	to	other	local	snail	species	(Tucker	et	al.,	1997).		The	native	snail,	on	the	

other	hand,	has	an	elongated	spire	and	thinner	shell,	both	of	which	are	morphological	

characteristics	that	crab	predators	exploit	by	utilizing	spire	sheering	and	crushing	

techniques	(Vermeij,	1979;	Zisper	and	Vermeij	G	J,	1978).	Based	on	this	evidence	and	

the	obvious	differences	in	morphology	of	the	native	and	introduced	snail	shells	

included	in	our	study,	we	hypothesized	C. maenas	would	exert	greater	predation	

pressure	on	native	snail,	and	greater	pressure	on	smaller	(juvenile)	snails	of	both	

species.			

Based	on	our	results,	we	discuss	whether	a	difference	in	predation	pressure	on	these	

two	prey	species	could	further	facilitate	or	accelerate	the	invasion	of	I. obsoleta 

populations	in	SFB.		We	further	discuss	the	implications	of	our	findings	in	the	context	of	

declining	C. californica	populations	across	its	native	range	and,	more	broadly,	the	

potential	for	introduced	predators	to	facilitate	the	invasions	of	marine	species	through	

differential	predation	on	native	prey.		
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Materials and Methods 	

Collection 

Adult C. maenas	individuals	of	both	sexes	were	collected	with	baited	traps	from	SFB,	

Bodega	Harbor,	and	Bolinas	Lagoon,	California	during	a	two-week	period	in	July	of	

2008.		Responsive,	non-gravid	crabs	with	all	legs	and	both	claws	were	selected	for	use	

in	the	study.	They	were	separated	by	sex	and	size	class	and	housed	in	an	outdoor	flow-

through	seawater	system	at	Bodega	Marine	Lab	in	Bodega	Bay,	CA.		Individuals	were	fed	

squid	and	anchovies	both	as	bait	in	the	traps	and	while	housed	in	the	tanks,	but	each	

was	starved	for	a	minimum	of	24	hours	prior	to	the	start	of	the	trial	in	which	it	was	

used.	

 

Cerithidea californica	and	I. obsoleta individuals	of	both	juvenile	and	reproductive	

(hereafter	adult)	status	were	collected	from	a	mudflat	in	SFB	at	Robert’s	Landing	in	San	

Leandro,	CA	during	the	second	week	of	July	2008.		Active	individuals	with	intact	

opercula	and	shells	were	separated	by	species	and	housed	in	aerated	10-gallon	aquaria	

in	a	static	seawater	system	at	Bodega	Marine	Lab.		To	determine	the	effect,	if	any,	of	size	

and	sex	on	the	predation	behavior	of	C. maenas,	equal	numbers	of	crabs	of	each	sex	

were	separated	into	three	size	categories	based	on	carapace	width	(CW):	small	(30-40	

mm	CW),	medium	(41-60	mm	CW),	and	large	(	>	61	mm	CW).		To	determine	if	C. maenas	

predation	affects	adults	in	each	population	differently	than	juveniles	of	the	same	

species,	snails	were	separated	into	juvenile	(C. californica:	8.5-14.0	mm,	11.5	mm	

average; I. obsoleta:	8.5-15.0,	11.6	mm	average)	and	adult	(C. californica: 15.0-	24.0	mm,	

21.3	mm	average;	I. obsoleta 16.0	–	24.0	mm,	18.8	mm	average)	size	classes	based	on	
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the	length	of	their	shell	from	the	spire	to	the	tip	of	the	lip	(McCloy	1979	and	Race	1981	

for	C. californica;	Curtis	&	Hurd	1983	for	I. obsoleta).		

	

Predation Trials  

Four	trials	were	conducted	using	plastic	Ziploc®	“Large	Rectangle”	containers	(2.25	L	

each;	26	cm	L	x	15	cm	W	x	6.5	cm	H)	with	approximately	1	cm	of	sifted	sediment	from	

Bodega	Harbor	and	approximately	4.5	cm	of	filtered	natural	sea	water	(32	psu)	at	

Bodega	Marine	Lab	from	14	July	to	29	July	2008.		Small	(30	mm),	equally	spaced	holes	

were	drilled	in	the	container	lids	and	approximately	1	cm	of	air	was	left	at	the	top	of	

each	container.		Containers	were	thoroughly	scrubbed	and	new	sediment,	snails,	and	

crabs	were	used	for	each	trial.		Natural	light	conditions	were	simulated	with	sunlight	

spectrum	bulbs	and	a	12-hour	light/dark	cycle	in	order	to	maintain	the	crabs’	circadian	

rhythms.	Each	trial	began	at	7	am,	so	natural	daytime	corresponded	with	the	lighted	12-

hour	period	in	the	lab.		The	trials	therefore	reflect	daytime	predation	behavior	for	C. 

maenas.		

	

In	order	to	test	whether	crab	size	or	sex	had	an	effect	on	crab	predation	on	both	snail	

species,	each	crab	of	a	given	size	class	(small,	medium,	large)	and	sex	was	

simultaneously	offered	five	snails	of	each	species	of	a	uniform	size	class	(e.g.,	10	juvenile	

snails).	This	arrangement	resulted	in	a	fully	crossed	multifactorial	design	with	144	

crabs,	1,440	snails	and	24	replicates	of	the	crab	size	by	snail	size	treatment.		

	

Every	6	hours,	the	containers	were	opened,	the	crab	removed,	and	the	sediment	sifted	
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through	by	hand	to	find	all	living	snails	in	each	container.		The	total	number	of	living	

snails	and	any	shell	fragments	present	were	recorded	for	each	snail	species.		The	

condition	of	each	living	snail’s	shell	was	inspected	for	evidence	of	predation	attempts	

(e.g.,	punctured	shells	and	evidence	of	chipping	on	the	shell)	and	recorded.		All	relevant	

behavior	observed	upon	opening	each	container	(e.g.,	snails	climbing	the	walls	or	a	crab	

grabbing	a	snail	in	its	chela)	was	also	noted.			

To	gain	further	insight	into	whether	the	introduced	predator	selectively	targeted	either	

prey	species	or	snail	size,	we	also	recorded	evidence	of	attacks	on	individual	snails.		Any	

shell	damage	that	was	unambiguously	the	result	of	attempted	predation	by	green	crabs	

was	recorded	as	evidence	of	an	attack.		Using	shell	scarring	as	evidence	of	an	attack	

provides	accurate	data	about	attempted	predation	events,	and	is	a	standard	method	for	

recording	predation	attempts	by	crabs	in	field	experiments	(Yamada	and	Boulding,	

1996;	Zisper	and	Vermeij	G	J,	1978),	although	it	does	not	account	for	multiple	attacks	

on	the	same	individual	over	time.			We	compared	these	results	to	successful	predation	

events.			We	hypothesized	that	where	there	was	a	difference	in	mortality	between	snail	

species	or	size	classes,	it	would	result	from	C. maenas	attacking	more	of	the	most	

vulnerable	snails.				

A	48-hour	control	trial	(no	crabs	present)	was	run	with	identical	conditions	as	those	

described	above	prior	to	the	main	experiment	in	order	to	test	the	lab	set-up	and	

conditions.		In	control	treatments,	no	snail	of	either	species	died	for	up	to	48	hours,	

which	was	four	times	the	length	of	the	experimental	treatments.			

Although	predation	trials	were	run	for	24	hours,	our	analysis	concentrates	on	the	
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effects	of	predation	up	to	hour	12,	which	is	the	time	at	which	approximately	half	of	the	

prey	were	eaten.	This	value	reflected	the	potential	for	C. maenas	predation	occurring	in	

one	tide	cycle	and	provided	enough	time	for	differences	in	predation	effort	to	become	

apparent,	while	avoiding	predator	satiation	effects	(Wong	et	al.,	2010).		

 

Data Analysis  

All	statistical	analysis	of	the	data	was	performed	in	R	version	R	2.13.2	(R	Development	

Core	Team,	2011).		The	effects	of	snail	species,	snail	size	class,	crab	gender	and	crab	size	

class	on	snail	mortality	(binomial	data)	were	analyzed	using	a	generalized	linear	

regression	model	assuming	a	quasibinomial	distribution	and	fitted	with	all	explanatory	

variables	and	interactions	in	the	lme4	package.		Odds	ratios	(OR)	were	then	calculated	

by	exponentiating	the	log	likelihood	coefficients.		Where	multiple	pairwise	comparisons	

revealed	significant	differences	between	variables,	these	were	corrected	using	Tukey’s	

HSD	test	via	the	Multcomp	package	in	R	and	z	values	are	reported.		Effects	of	the	above	

variables	on	crab	attacks	(shell	damage,	but	not	snail	mortality)	and	successes	

(predation	attempts	resulting	in	snail	mortality)	were	each	likewise	analyzed.	

	

To	determine	the	mechanism	for	the	differential	predation	found	between	crab	size	

classes	and	sexes,	two	metrics	were	calculated	for	each	container:	number	of	attacks	

and	number	of	successful	predation	events	given	an	attack.		Successful	predation	was	

calculated	per	container	by	recording	the	number	of	snail	deaths	from	the	total	number	

of	attacks	in	that	container.		These	calculations	exclude	snails	that	showed	no	evidence	

of	scarring,	and	therefore	no	evidence	of	being	attacked.	In	five	containers,	we	found	no	
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evidence	of	attack	on	any	snails;	for	these	containers,	successful	predation	events	

(which	represent	attacks	that	result	in	predation)	could	not	be	calculated	and	were	not	

included	in	the	analysis	of	successful	predation.	

	

Results 

Predation (mortality) 

In	all	trials,	C. maenas	successfully	preyed	upon	individuals	of	both	species	of	snail.		

Carcinus maenas	predation	was	strongly	and	significantly	greater	on	the	native	snail	as	

compared	to	the	invasive	snail:	C. californica	individuals	were	nearly	five	times	more	

likely	to	be	killed	than	I. obsoleta (OR=		4.98,	t=	6.29,	p<	0.001).			

	

Snail	size	class	

Snail	size	class	was	a	significant	predictor	of	mortality	for	snails	of	both	species.	Overall,	

juvenile	snails	were	3.4	times	more	likely	to	be	preyed	upon	than	adult	snails	(t=	4.99,	

p<	0.001).		However,	this	result	is	strongly	driven	by	the	comparatively	large	difference	

in	mortality	between	juvenile	and	adult	invasive	snails:	I. obsoleta	juveniles	were	nearly	

seven	times	more	likely	to	be	preyed	upon	(OR=	6.7,	t=	4.346,	p<	0.001),	while	juvenile	

C. californica were	2.65	times	more	likely	to	be	killed	than	adults	of	the	same	species	(t=	

3.04,	p=	0.003)	(Fig	1).	Importantly,	there	was	no	difference	in	the	proportion	of	

mortality	between	native	adult	snails	and	juvenile	invasive	snails	(z=	-1.11,	p=	0.67,	

Tukey	HSD).		

	

Crab	size	class	
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Large	C. maenas preyed	most	heavily	on	snails	of	both	species:	large	crabs	were	five	and	

seven	times	more	likely	to	kill	snails	than	medium	or	small	crabs,	respectively	(OR=	

5.04,	z=	5.79,	p<	0.001,	Tukey	HSD	and	OR=	7.01,	z=	6.44,	p<	0.001,	Tukey	HSD).		This	

result	is	driven	disproportionately	by	the	differences	in	large	crab	predation	on	I. 

obsoleta: large	crabs	were	14	times	more	likely	to	inflict	mortality	on	the	invasive	snail	

than	small	crabs	and	12	times	more	likely	than	medium	crabs	(L	to	M	OR=14.3,	z=	4.67,	

p<	0.001,	Tukey	HSD;	L	to	S	OR=	12.17,	z=	4.67,	p<	0.001,	Tukey	HSD)	as	compared	to	

3.5	and	5.4	times	more	likely	to	kill	the	native	snail	(z=	4.26,	p<	0.001	and	z=	3.44,	p<	

0.002,	Tukey	HSD)	(Table	2).		Predation	by	medium	crabs	was	not	significantly	different	

from	small	crabs	for	either	snail	species	(OR=	1.39,	z=	0.99,	p=	0.58,	Tukey	HSD).					

	

Crab	Sex	

Male	C. maenas	caused	more	overall	mortality	in	both	species	of	snail	than	females	(OR=	

1.92,	t=	2.78,	p=	0.006).		This	trend	held	within	species,	and	the	effect	of	crab	sex	on	

mortality	was	significant	for	I. obsoleta	(C. californica	OR=	1.83,	t=	1.92,	p=	0.057;	I. 

obsoleta	OR=	2.14,	t=	2.05,	p=	0.042).		In	fact,	four	individual	male	crabs	were	solely	

responsible	for	all	of	the	adult	I. obsoleta	mortality	in	this	experiment.							

Crab	size	as	measured	by	carapace	width	was	not	correlated	to	crab	sex	for	any	trials	in	

this	experiment	(t=	1.23,	df=	284,	p=	0.22,	Pearsons	product-moment	correlation).				

	

No	 crab	 mortality	 occurred	 during	 the	 12-hour	 experimental	 trials	 and	 all	 snail	

mortality	included	direct	evidence	of	crab	predation	during	all	trials.	 
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Attacks vs. Successful Predation Events 

Evidence	for	unsuccessful	C. maenas	attacks	on	juvenile	and	adult	snails	of	both	species	

was	 found,	 and	 crabs	 attacked	 native	 and	 invasive	 snails	 with	 equal	 frequency	 (OR=	

1.32	t=	1.51	p=	0.132).			Despite	equal	attacks,	crabs	were	5.45	times	more	successful	at	

killing	 the	 native	 C. californica than	 the	 invasive	 I. obsoleta (t=	 6.84,	 p<	 0.001); this	

differential	success	drives	the	higher	overall	mortality	in	native	snails	found	here.		

	

Snail	size	class	

Juvenile	 snails	 were	 6.92	 times	 more	 likely	 to	 be	 attacked	 by	 C. maenas than	

reproductive	 snails	 (t=	 9.86, p<	 0.001),	 and	 once	 they	 attacked,	 crabs	 were	 twice	 as	

successful	at	killing	juveniles	as	compared	to	adult	snails	(OR=	2.09,	t=	2.99,	p=	0.003).	

Importantly,	 this	 difference	 in	 successful	 predation	 with	 juvenile	 snails	 was	 driven	

entirely	 by	 differences	 in	 I. obsoleta	 success;	 there	 was	 no	 difference	 in	 the	 odds	 of	

successful	predation	on	juvenile	versus	adult	C. californica (OR=	1.44,	t=	1.12,	p=	0.267).		

Crabs	 attacked	 native	 juvenile	 snails	 at	 a	 much	 higher	 rate	 than	 adults	 of	 the	 same	

species,	(OR=	8.85,	t=	7.169,	p<	0.001)	but	once	they	attacked	a	native	snail,	they	had	an	

equal	 likelihood	of	killing	 it,	 regardless	of	 its	 size.	 	By	contrast,	crabs	were	5.24	times	

more	likely	to	be	successful	in	preying	upon	juvenile	I. obsoleta	than	adults	(t=	3.946,	p<	

0.001),	 and	 they	 also	 attacked	 the	 invasive	 juveniles	 at	 a	 higher	 frequency	 than	 their	

adult	counterparts	(OR=	5.67,	t=	6.550,	p<	0.001).	

	

Crab	size	class		

Overall,	 large	 crabs	 were	 slightly	more	 likely	 to	 attack	 snails	 than	 either	medium	 or	
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small	 crabs	 (L	 v.	M	OR=	1.74,	z=	2.436,	p=	0.04;	 L	 v	 S	OR	=	1.76,	z=	2.487,	p=	0.034,	

Tukey	HSD);	medium	and	small	crabs	made	an	equal	number	of	attacks	(OR=	1.01,	z=	

0.053	 p=	 0.999,	 Tukey	 HSD).	 	 Medium	 and	 small	 crabs	 also	 showed	 no	 difference	 in	

predation	success	once	they	attacked	a	snail	(OR=	1.46,	z=	1.194,	p=	0.46	Tukey	HSD).		

Large	crabs	were,	however,	much	more	successful	in	preying	upon	snails	once	they	had	

attacked	(L	v.	M		OR=	5.49,	z=	6.128, p<	0.001,	Tukey	HSD;	L	v.	S	OR=		7.98,	z=	6.986,	p<	

0.001,	 Tukey	HSD).	 	 This	 difference	 in	 predation	 success	 relative	 to	 crab	 body	 size	 is	

strongly	driven	by	crab	successes	with	the	invasive	snail:	large	crabs	are	over	15	and	13	

times	more	 likely	 to	be	 successful	 at	preying	upon	 I. obsoleta	 than	medium	and	small	

crabs	respectively	(L	v.	M	OR=	15.43,	z=	5.17,	p<	0.001,	Tukey	HSD;	L	v.	S	OR=	13.29,	z=	

5.17,	p<	0.001,	Tukey	HSD).		By	comparison,	large	crabs	were	3.73	and	6.03	times	more	

likely	 to	 successfully	 prey	 on	 C. californica	 individuals	 than	 their	 medium	 and	 small	

counterparts	(L	v.	M,	z=	3.57,	p=	0.001;	L	v	S	z=	4.59,	p<	0.001, Tukey	HSD)	(Table	1).								

	

Crab	Sex	

Male	crabs	attacked	nearly	twice	as	often	as	female	crabs,	(OR=1.99,	t=	3.76,	p<	0.001),	

and	this	result	is	significant	with	both	native	and	invasive	snail	species.		Overall,	males	

are	also	nearly	twice	as	successful	as	females	at	killing	a	snail	once	they	attack	it	(OR=	

1.82,	t=	2.592,	p=	0.010).	 	However,	this	differential	success	between	crab	sexes	is	not	

significant	for	the	native	C. californica,	(OR=	1.7,	t=	1.7			p=	0.091);	males	simply	attack	

native	snails	nearly	twice	as	often	as	females	(OR=	1.88,	t=	2.339	p=	0.021).		By	contrast,	

males	are	twice	as	likely	as	females	to	kill	the	invasive	I. obsoleta once	an	attack	is	made	

(OR=	2.20,	t=	2.218,	p=	0.028).	
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Discussion	

The	invasive	predator	C. maenas	can	successfully	prey	upon	both	the	native	and	

invasive	snail	species,	and	attacked	individuals	of	both	species	with	roughly	equal	

frequency	in	this	experiment.			However,	C. maenas	predation	was	strongly	and	

significantly	greater	on	the	native	C. californica as	compared	to	the	invasive	I. obsoleta.			

Native	snails were	nearly	five	times	more	likely	to	be	preyed	upon	than	invasive	snails.  

The	source	of	this	highly	differential	predation	on	the	native	snail	was	the	predator’s	

higher	degree	of	success	in	killing	the	C. californica	individuals	they	attacked.		This	

higher	predation	success	with	the	native	snail is	likely	driven	by	the	differences	in	shell	

morphology	between	the	two	species:	C. californica	has	a	comparatively	thin	and	

elongate	shell,	which	likely	makes	for	a	more	easily	handled	and	accessed	prey	item	and	

may	entail	reduced	energetic	costs	for	a	range	of	C. maenas	chela	sizes.			Increases	in	the	

shell	thickness	of	gastropods	in	response	to	chronic	crab	predation	have	been	well	

documented,	including	a	range	of	snail	species	responding	to	C. maenas	predation	

specifically	(Smith,	2004;	Trussell,	1996).		While	C. maenas	has	overlapped	I. obsoleta	

for	decades	on	the	east	coast	of	the	United	States,	allowing	for	potential	co-evolution	of	

these	traits	between	predator	and	prey,	C. californica have	not	co-occurred	with	this	

predator	very	long,	which	may	contribute	to	their	vulnerability	to	the	introduced	

predator.		In	fact,	other	predators	have	been	shown	to	ignore	I. obsoleta as	a	prey	

source	even	where	the	snail	is	more	abundant	than	other	prey,	due	to	the	strength	of	

their	shells	resulting	in	a	high	processing	cost	for	the	predator	(Tucker	et	al.,	1997).		In	

contrast,	while	native	predators	of	C. californica, including	crabs,	demonstrate	size-
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selective	predation	on	the	horn	snail,	(Lorda	et	al.,	n.d.;	Sousa,	1993)	they	do	not	appear	

to	be	excluded	from	preying	upon	even	the	largest	size	classes	of	the	native	snail.	

Additionally,	the	introduced	predator	employs	a	range	of	techniques	in	accessing	prey	

beyond	outright	crushing	a	shell,	including	sheering	the	spire	and	peeling	back	the	lip	in	

order	to	extract	the	soft	body	of	the	animal	(Hughes	and	Elner,	1979)	and	the	native	

snail’s	longer	spire	and	thinner	shell	make	it	more	vulnerable	to	these	techniques	than	

the	thicker,	squatter	invasive	snail.		

	

Given	this	collective	evidence,	it	is	not	surprising	that	C. maenas attacked	juvenile	snails	

of	both	species	more	frequently	than	their	adult	conspecifics,	and	were	more	successful	

at	accessing	only	the	smaller	juvenile	I. obsoleta.		Importantly,	however,	the	invasive	

crab	not	only	exerted	greater	overall	predation	pressure	on	the	native	snail	population,	

but	its	effect	on	snail	mortality	was	equivalent	between	adult	C. californica	and	juvenile	

I. obsoleta (Fig	1),	highlighting	the	absence	of	an	invulnerable	size	class	in	the	native	

snail	population.		Thus,	predation	by	C. maenas	in	SFB	could	result	in	significant	

mortality	for	the	full	range	of	C. californica individuals	in	the	population,	while	its	effect	

is	limited	primarily	to	the	juvenile	individuals	in	the	invasive	snail	population.		The	

comparative	freedom	from	predation	for	the	adult	invasive	snails	has	the	potential	to	

confer	an	obvious	fitness	advantage	in	terms	of	reproductive	output,	and	may	also	

result	in	less	direct	competition	for	resources	with	adult	native	snails	as	they	are	

disproportionately	removed	from	the	system.			

	

Body	size	influenced	the	frequency	of	attack	and	odds	of	successful	predation	for	the	
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invasive	crab	with	both	snail	species,	and	affected	predation	success	much	more	

strongly	with	the	invasive	snail	(Table	2).		Crabs	of	all	sizes	were	able	to	prey	upon	C. 

californica	individuals.		No	medium	crabs	and	only	one	small	individual	preyed	on	adult	

I. obsoleta in	all	trials;	interestingly,	all	of	these	successful	predators	were	male	crabs.		

While	male	C. maenas	are	known	to	reach	larger	body	sizes	than	females	in	natural	

populations	(Young	et	al.,	1999),	carapace	width	was	not	correlated	to	crab	sex	in	this	

experiment.		Although	chela	size	was	not	measured	in	this	study,	male	C. maenas	have	

larger	chelas	than	females	of	the	same	carapace	width	(Juanes	et	al.,	2008),	and	

relatively	larger	or	stronger	claws	could	confer	an	advantage	to	male	crabs	in	breaking	

I. obsoleta	shells	(Bourdeau,	2012;	Moody	and	Aronson,	2012;	Smith,	2004).		In	this	

study,	males	were	twice	as	likely	to	attack	their	prey	as	their	female	counterparts	

irrespective	of	body	size,	which	we	posit	contributes	to	the	difference	in	success	for	

males,	who	repeatedly	attack	the	same	snail	or	are	simply	more	aggressive	in	their	

initial	attack.		These	results	demonstrate	that	only	male,	and	mostly	large	male	(over	70	

cm	CW)	C. maenas	are	effective	predators	of	adult	I. obsoleta,	further	underscoring	the	

limited	vulnerability	of	the	invasive	snail	population	in	SFB	to	this	introduced	predator.	

	

Population	surveys	taken	at	the	time	of	this	experiment	found	that	where	the	two	

species	overlap	in	SFB,	average	I. obsoleta	densities	were	twelve	times	greater	than	

those	of	the	native	C. californica,	(invasive:	612.12	±	546.81	snails/m2,	vs.	native:	45.69	

±	16.07	snails/m2;	Weiskel,	unpublished	data),	and	evidence	for	the	competitive	

displacement	of	the	native	snail	into	higher	marsh	areas	by	the	invasive	snail	were	

found	as	early	as	the	1970s	(Race,	1982).			Taken	with	the	results	of	the	current	study,	
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we	hypothesize	that	concentrated	C. maenas predation	of	the	type	we	report	on	the	

native	snail	population	could	facilitate	the	dominance	of	I. obsoleta	in	SFB.		It	is	worth	

noting	several	challenges	to	discussing	how	these	data	relate	to	the	species	dynamics	

currently	unfolding	in	the	bay,	however.		First,	we	did	not	calculate	a	predation	rate	for	

C. maenas	on	either	snail	species;	our	study	design	did	not	include	the	manipulation	of	

equal	densities	of	snails	throughout	the	experiment.		Instead,	our	data	show	

significantly	higher	overall	predation	on	the	native	snail,	even	as	the	density	of	native	

individuals	relative	to	invasive	snails	decreased	over	time	in	the	containers.		It	is	

therefor	likely	that	any	effect	of	the	decreasing	density	of	native	snails	in	our	

experiment	mirrors	actual	field	conditions,	in	which	C. californica	population	densities	

are	much	lower	than	that	of	I. obsoleta.		Even	so,	a	predation	rate	calculated	from	lab	

experiments	would	not	necessarily	be	directly	transferable	to	true	rates	in	the	bay	for	

other	reasons.		The	distribution	and	movement	of	these	species	within	the	estuary,	

especially	the	highly	mobile	predator,	is	likely	to	influence	the	rate	of	contact	between,	

and	ultimately	the	effect	of	C. maenas	predation	on	these	two	prey	populations.		

Additionally,	C. maenas is	an	omnivorous	predator	(Crothers,	1968),	known	to	prey	on	

other	species	in	California	estuaries	(Grosholz	et	al.,	2000;	Grosholz	and	Ruiz,	1996)	

making	it	difficult	to	assess,	even	via	field	experiments,	what	the	true	rate	of	C. maenas	

predation	on	C. californica	population	currently	is.		However,	a	separate	experiment	in	

which	tethered	C. californica	individuals	were	either	protected	or	exposed	to	predators	

confirmed	that	crab	predation	is	an	important	source	of	mortality	for	C. californica	

populations	in	SFB,	especially	in	the	more	exposed	cobble	and	mudflat	areas	that	C. 

maenas has	the	greatest	access	to	(Weiskel,	2012).		As	the	native	snail	is	competitively	
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displaced	into	higher	marsh	areas,	then,	it	may	also	be	enjoying	a	refuge	from	crab	

predation,	and	therefor	persisting	in	a	limited	range.		More	site-specific	data	are	needed	

to	determine	the	actual	trajectory	of	these	species	interactions	in	the	SFB,	but	our	

results	identify	a	novel	potential	mechanism	for	invasive-invasive	facilitation	both	

within	the	SFB	and	beyond.		

	

Declines	in	C. californica	populations	are	not	limited	to	SFB,	and	have	been	reported	in	

other	California	estuaries	throughout	the	native’s	range:	in	at	least	one	location	this	has	

been	attributed	to	the	effect	of	competitive	interactions	with	another	invasive	snail	

species,	the	Asian	Mudsnail	Batillaria attramentaria	(Byers,	2000,	1999).		Cerithidea 

californica	populations	are	at	risk	of	being	replaced	by	this	other	invasive	snail	in	

marshes	in	its	northernmost	range,	and	the	loss	of	these	populations	is	particularly	

important	both	because	they	represent	a	race	shown	to	be	a	genetically	distinct	from	

southern	California	populations	(Byers,	1999),	and	because	this	may	result	in	the	loss	of	

at	least	ten	other	native	species	that	parasitize	C. californica	and	are	unable	to	use	the	

invasive	snails	as	hosts	(Torchin	et	al.,	2005).		Given	the	scope	and	magnitude	of	C. 

californica	population	declines	and	the	concomitant	loss	of	biodiversity	in	California	

estuaries,	the	current	findings	provide	novel	evidence	for	an	additional	potential	

mechanism	for	the	replacement	of	this	native	species,	and	highlight	a	specific	additional	

stressor	to	local	populations.		

	

Importantly,	the	invasive	predator	C. maenas	is	also	not	confined	to	SFB:	its	current	

range	on	the	west	coast	of	North	America	covers	1600	km	from	Elkhorn	Slough,	
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California	to	Grays	Harbor,	Washington,	and	local	populations	have	been	established	in	

estuaries	including	SF	Bay,	Bolinas	Lagoon,	Tomales	Bay	and	Bodega	Harbor	(Grosholz	

et	al.,	2000;	Grosholz	and	Ruiz,	1995).		We	demonstrate	that	C. maenas	predation	on	I. 

obsoleta	is	limited	primarily	to	only	the	smallest	snails	in	the	SFB	population,	likely	due	

to	the	thickness	of	their	shells,	which	suggests	that	the	invasive	predator	may	prey	

instead	on	other,	more	accessible	species	in	the	bay	in	addition	to	the	native	snail.		

Indeed,	C. maenas	predation	has	been	shown	to	exert	“top-down”	control	in	a	number	of	

other	estuaries,	significantly	decreasing	the	abundances	of	common	native	species	such	

as	clams	(Nutricola tantilla and	Nutricola confusa)	and	shore	crabs	(Hemigrapsus 

oregonensis)	(Grosholz	et	al.,	2000).		Again,	because	it	is	a		highly	mobile,	omnivorous	

predator	(Crothers,	1968)	C. maenas	will	likely	affect	various	populations	of	native	

species	throughout	its	introduced	range	which	have	yet	to	be	identified;	our	results	

shed	light	on	some	of	the	factors	that	lead	to	predation	success	for	C. maenas	with	

native	prey.			

	

The	complexity	inherent	in	multiple	species	interactions	of	the	kind	that	are	occurring	

during	multiple	invasions	poses	a	challenge	to	predicting	their	outcome.		Determining	

the	conditions	under	which	these	species	interactions	lead	to	facilitation	or	acceleration	

of	invasions	remains	a	critical	next	step	in	our	understanding	of	invasion	dynamics	in	

marine	ecosystems.		Few	marine	studies	to	date	have	demonstrated	that	the	

simultaneous	effects	of	multiple	introduced	species	in	a	system	can	result	in	an	invasive	

facilitation	or		“meltdown”	(e.g., Grosholz	2005);	even	fewer	have	explored	the	

mechanisms	underlying	the	displacement	of	native	species	by	introduced	ones	(e.g.,	
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Byers	&	Goldwasser	2001).		The	current	study	provides	clear	evidence	for	differential	

predation	on	a	native	snail	species	by	an	invasive	crab,	and	provides	support	for	the	

idea	that	the	more	recently	introduced	predator	can	facilitate	an	established	invasion	

and	magnify	its	effects	on	a	beleaguered	native	species.			While	we	cannot	conclude	

from	these	results	alone	that	predation	by	the	introduced	crab	will	facilitate	the	

invasion	of	I. obsoleta	in	SFB,	we	provide	several	lines	of	supporting	evidence	that	

suggest	that	this	strongly	differential	predation	pressure	may	be	serving	as	a	tipping	

point	for	the	facilitation	of	the	invasive	snail	in	this	ecosystem.		More	importantly,	our	

results	demonstrate	that	this	marine	predator	can	have	both	direct	negative	impacts	on	

native	species	and	indirect	positive	impacts	on	other	invaders.		The	spread	and	

establishment	of	green	crab populations	thus	has	the	potential	to	accelerate	the	rate	of	

historically	benign	introductions	and	facilitate	future	invasions	through	differential	

predation	on	native	species	(Grosholz,	2005),	and	our	results	provide	unique	

information	about	this	predator’s	potential	to	influence	the	trajectory	of	other	invasions	

in	marine	systems	wherever	it	occurs.	

	

Our	results	also	suggest	that	other	marine	invasive	predators-	with	a	narrower	diet	or	

fewer	choices	in	their	introduced	range,	for	example-	could	be	a	primary	mechanism	for	

facilitation	of	invasions	via	preferential	predation	on	native	species.		Records	of	

introduced	species	that	interact	with	both	native	and	invasive	species	this	way	-	posing	

a	sort	of	double	threat	particularly	in	ecosystems	with	other	established	introduced	

species	-	are	rare,	and	important	to	consider	due	to	their	potential	to	have	broad	

impacts	on	coastal	ecosystems	worldwide.			
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Figures 

Main	Figures		

Fig.	1:	Proportion	Mortality	by	Snail	Species	&	Size	Class		

Fig.	2:	Percent	Mortality	by	Crab	Size	Class			

Fig.	3:	Percent	Mortality	by	Crab	Sex		

	

Main	Tables	

T1:	Odds	Ratios	of	Crab	Attacks	and	Successes	by	Crab	Size	

T2:	Odds	Ratios	of	Crab	Attacks	and	Successes	by	Crab	Sex	&	Snail	Size	Class	

	

 

Fig.	 1	 Effect	 of	 C. maenas	 predation	 on	 the	 native	 C. californica	 (dark	 bars)	 and	 the	
invasive	I. obsoleta	(light	bars)	individuals,	by	size	class.		Bars	represent	the	proportion	
of	 snails	 killed	 out	 of	 the	 total	 available	 to	 the	 crabs.	 	 Letters	 represent	 significant	
differences;	error	bars	represent	standard	error. 
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Fig.	2	Proportion	of	snails	killed	by	large	(>	61	mm	CW,	dark),	medium	(41-60	mm	CW,	
light)	and	small	(30-40	mm	CW,	lightest)	C. maenas, by	snail	species	and	size	class	(C	Juv	
=	C. californica juveniles,	etc.).		Large	crabs	were	the	most	effective	predators,	
particularly	with	adult	invasive	snails.		Letters	represent	significant	differences	for	all	
snail	species/size	class	combination	(although	only	the	first	bar	is	labeled).			
 

 

Fig.	3	Proportion	of	snails	killed	by	female	(light)	versus	male	(dark)	C. maenas, by	snail	
species	and	size	class	(C	Juv	=	C. californica juveniles,	etc.).		Male	crabs	were	responsible	
for	more	overall	snail	mortality	(trend),	and	solely	responsible	for	mortality	in	adult	
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invasive	snails	(*	indicates	significant	difference	from	all	other	combinations). 
 

Table	1.	The	effect	of	crab	size	on	the	odds	of	successful	predation	by	C.maenas	on	the	
native	 C. californica	 and	 the	 invasive	 I. obsoleta once	 an	 attack	 is	 made	 (generalized	
linear	 regression	 model).	 Letters	 refer	 to	 crab	 size	 class	 (L=large,	 M=medium,	 and	
S=small)					
  

Factor Odds Ratio Lower CI 

95% 

Upper CI 

95% 

t p 

Attacks      

F 1     

M 1.99 1.39 2.85 3.76 0.0002 

 

Successes 

     

F 1     

M 1.82 1.16 2.89 2.59 0.01007 
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Table	2.	 	The	effect	of	 crab	sex	on	the	odds	of	attacks	and	successful	predation	
events	by	C. maenas	on	both	snail	species	(generalized	linear	regression	models).		

	
	
	
	
	
	
	
	
 

Factor Odds Ratio Lower CI 

95% 

Upper CI 

95% 

z 

 

p 

C.californica       

M-S 1.62 0.65 4.12 1.21 0.45 

L-S 6.03 2.14 15.10 4.59 <1e-04 

L-M 3.73 1.57 8.85 3.57 0.001 

 

I. obsoleta 

     

M-S 0.86 0.19 4.00 -0.23 0.97 

L-S 13.30 4.15 42.59 5.19 <1e -06 

L-M 15.43 4.49 53.07 5.17 <1e -06 
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