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ABSTRACT OF THE DISSERTATION

Proximate Sensing: Geographic Knowledge Discovery in On-line Photo
Collections

by

Chi Yan Daniel Leung

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced, 2013

Professor Shawn Newsam, Chair

On-line photo sharing websites such as Flickr1 not only allow users to share their pre-

cious memories with others, they also act as a repository of all kinds of information

carried by their photos and tags. As geo-tagged photos can be easily created with the

help of global position systems (GPS), we contend that the hundreds of millions of

these geo-referenced images being acquired by millions of citizen sensors are a valuable

1http://flickr.com
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source of geographic information. The objective of this dissertation is to perform ge-

ographic knowledge discovery using community-contributed geo-referenced photo col-

lections such as available at Flickr. We present a novel knowledge discovery paradigm

termed proximate sensing and demonstrate how it can be used to perform land cover and

land use classification using widely applied image features in computer vision as well

as text associated with the photos.

For land cover classification, a case study is performed using a supervised classification

framework. More than one million photos are collected from two on-line photo sharing

websites over a 100x100 km study region in the United Kingdom. The study region is

further divided into 10,000 sub-regions, where each sub-region is classified into devel-

oped or undeveloped regions by analyzing the ground-level photos. The classification

results are then compared based on the image features used as well as the source of the

photos.

A case study of land use classification is conducted to further validate the concept of

proximate sensing. More than 16,000 images are collected from Flickr over two univer-

sity campuses. The images are classified into academic, sports, and residential facili-

ties; a land use map of each campus is generated according to the classification results.

Furthermore, we explore the idea of extracting geographic information semantically by

applying state-of-the art object and concept detectors directly to the photo collections.

Maps of object distributions are generated according to the detection results of different

object detectors. The spatial analysis performed on these object maps suggests that it

is possible to extract useful geographic information using these object detectors, and an

experiment of land use classification is conducted to validate this finding.

xvi



Chapter 1

Introduction

1.1 Volunteered Geographic Information

Volunteered geographic information (VGI) has become a fast growing phenomenon in

the Internet, where individuals can provide geographically relevant information freely.

Termed by geographer Goodchild [Goo07], VGI describes how individuals act like a

network of sensors to record geographic information. A successful example of a VGI

oriented project is OpenStreetMap1, which allows any registered user to contribute ge-

ographic data within a map interface. Other projects such as the Audubon Society’s

Christmas Bird Count2 and Pop-versus-Soda3 illustrate the observation of nature and

human preferences across difference geographic areas.

In the VGI examples mentioned above, the objective of using the geographic informa-

tion in each project is specific and unique. Users do not contribute non-map information

such as events happening at a certain location to OpenStreetMap, or report non-bird

wildlife observations to the bird count project. Social media websites such as Flickr,

Facebook4, and Twitter5 on the other hand serve users with a wide variety of interests.

1http://www.openstreetmap.org
2http://birds.audubon.org/christmas-bird-count
3http://popvssoda.com
4http://www.facebook.com
5http://twitter.com

1



2

Although contributing geographic information is not the main goal of the users of these

social media websites, the content they post whether as an image, blog, or tweet may

be related to any place on the Earth. As a result, we argue that geo-referenced6 social

media can also be considered as a form of VGI.

1.2 Proximate Sensing

In remote sensing, geographic information is extracted from overhead, distant images

such as taken from airplanes or satellites. These overhead images often provide good

visual cues to classify different types of land cover; however, they are not conveniently

accessible to the public due to copyright and other commercial issues. Moreover, ge-

ographic information conveyed by these images may not be reliable over time because

most of them are not updated frequently. In contrast, ground-level images provide a dif-

ferent visual perspective of what-is-where. They also represent the “people’s perspec-

tive” on interpreting the significance of a geographic location since different photogra-

phers can capture different scenes at the same location. Moreover, these ground-level

images often contain indoor scenes that record how a building structure is used. Since

many cameras, especially smartphone cameras, are equipped with global positioning

system (GPS) nowadays, photos taken by these devices are stamped with time and loca-

tion information. Internet users frequently contribute these geo-referenced photos, along

with textual description or tags, to social media networks. Flickr alone has a collection

of hundreds of millions of geo-referenced photos and millions of photos are added each

month. With such a large amount of frequently updated geo-referenced photo collec-

tions freely available in the public domain, we ask the question whether they can be

used to perform geographic analysis instead of using overhead images. Take, for exam-

ple, the four photos referenced on the map in figure 1.1. The content of these photos

provides rich geographic information about the locations at which they were taken. In

this respect, we proposed the term proximate sensing [LN09, LN10, NL13] to refer to

geographic discovery using ground-level images of nearby objects and scenes.

6We use the term geo-referenced to indicate that a multimedia object has least approximate location

metadata associated with it.
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Figure 1.1: We conjecture that the visual content of georeferenced images can be used

to derive maps of what-is-where on the surface of the earth.

Proximate sensing has a great potential to facilitate a broad variety of applications. One

of the popular applications is Street View from Google Maps7, which allows users to

view the surrounding scene of a location in a street level. Besides displaying what-is-

where on the surface of the earth, proximate sensing can also be applied in scientific

analysis such as monitoring the effects of climate or geological change where ground-

level images taken over a period of time can be compared. Furthermore, proximate

sensing can assist existing remote sensing techniques to enhance the performance of

many geographic analyses such as land cover and land use classification.

1.3 Related Work

There is a growing body of research on analyzing geo-referenced community con-

tributed photo collections. Methods have been developed which leverage the collec-

tions to 1) annotate novel images; 2) annotate geographic locations; and 3) perform

geographic knowledge discovery. Proximate sensing is an example of this last class.

7http://www.maps.google.com/streetview



4

Leveraging Collections to Annotate Novel Images

Automated annotation is essential for managing large image collections. Methods have

been developed that leverage large sets of geo-referenced images to semantically an-

notate novel images whose location is known. This is particularly useful for images

captured using GPS enabled cameras as the system generated annotation allows the im-

ages to be organized and searched at a more meaningful way than with low-level image

descriptors such as color or texture. Methods have been developed for suggesting tags

such as “surfer”, “wave”, and “Santa Barbara” for a photograph of someone surfing in

Santa Barbara, California [MKM08]; for assigning a constrained set of event/activity la-

bels such as “a visit to the beach” or “wedding” [JL08]; for annotating groups of images

at the event (“skiing”) or scene (“coast”) level [CLK08]; for annotating the identities of

people appearing in an image [NYG05]; and for linking images, such as a photograph

of the Arc de Triomphe, to relevant Wikipedia articles [QLV08].

Collections of geo-referenced images have also been used to annotate the locations of

novel images–that is, to estimate where in the world the photo was taken. Methods have

been developed to geo-locate Web cameras distributed around the United States based

on image variations relating to the diurnal cycle and weather [JSR07]; to geo-locate

a single image using only its visual content [HE08] as well as textual tags [GJY09]

by performing similarity search against a reference collection; and to estimate coarse

image location by first clustering a reference collection and then indexing the novel

image based on its visual content and textual tags [CYL09, CBH09, CPC08].

Leveraging Collections to Annotate Geographic Locations

Collections of geo-referenced images have also been used to annotate geographic lo-

cations, a task in which on-line photo collections are considered more explicitly as

VGI as the objective is more in line with the problem of determining what-is-where

on the surface of the Earth. Methods have been developed for visually annotating

prominent landmarks with representative images at the city [CBH09] and world-wide

[ZZS09] scales; to suggest representative tags as well as images for geographic loca-
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tions [KN08, KNA07, NYG05]; and to automatically generate tourist maps showing

popular landmarks as vectorized icons [CBG09].

Leveraging Collections for Geographic Knowledge Discovery

The Mirriam-Webster dictionary describes geography as “a science that deals with the

description, distribution, and interaction of the diverse physical, biological, and cultural

features of the Earth’s surface”. Accordingly, we consider geographic knowledge dis-

covery to be a process that derives knowledge about what-is-where on the surface of the

Earth in the broad sense of the term “what”. Simply put, it can be used to generate maps

not only of the physical aspects of our world, such as the terrain, but also of the abstract

aspects, such as culture and natural or man-made behavior, of the world. While there

has been relatively little work on using geo-referenced on-line photos for geographic

knowledge discovery, we feel it has significant potential for realizing the full worth of

geo-referenced on-line photos as VGI, particularly as an alternate to traditional means

of geographic knowledge inquiry.

Examples of work in this area include using large collections of geo-referenced images

to discover spatially varying (visual) cultural differences among concepts such as “wed-

ding cake” [YYQ09]; to discover interesting properties about popular cities and land-

marks such as the most photographed locations [CBH09]; to estimate weather satellite

images using widely distributed Web cameras [JSR07]; and to create a map-like parti-

tioning of a country-sized region into geographically coherent subregions [CPC08].

Our work on proximate sensing as applied to geo-referenced on-line photo collections,

however, represents a more comprehensive framework for geographic knowledge dis-

covery particularly of phenomena often not observable through other means.
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1.4 Land Cover and Land Use Classification

Land cover and land use classification, and their changes, are two fundamental geo-

graphic tasks. While land cover and land use are related and often overlap, their distinc-

tions are important. Land cover “is the physical material at the surface of the earth. It is

the material that we see and which directly interacts with electromagnetic radiation and

causes the level of reflected energy that we observe as the tone or the digital number at

a location in an aerial photograph or satellite image. Land covers include grass, asphalt,

trees, bare ground, water, etc. ... Land use, by contrast, is a description of how people

use the land. Urban and agricultural land uses are two of the most commonly recog-

nised high-level classes of use. Institutional land, sports grounds, residential land, etc.

are also all land uses” [FCW05]. The scope of this dissertation will focus on these two

geographic tasks.

1.5 Image Content Analysis

Effective image content analysis is key to the goal of using on-line photo collections for

geographic discovery. This section describes the range of analysis methods that can be

brought to bear on this problem.

1.5.1 Low-level Analysis

Much progress has been made over the past several decades on extracting so-called

low-level features from images and videos. Standard low-level features include color

histograms which summarize the distribution of pixels in an image in a (typically) three-

dimensional color space, and texture features which characterize the spatial distribution

of pixel intensities, typically by applying spatial filters tuned to different scales and

orientations. These features are usually extracted globally from an image and thus do

not contain information about the spatial layout of an image. In Chapter 2, we will see
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how low-level features such as edge and color histograms will assist us in performing

land cover classification.

Local analysis based on low-level features extracted from perceptually salient regions

has advanced a number of image analysis tasks over the last decade. Local invariant fea-

tures avoid the challenging problem of segmentation and instead focus on image patches

which can be reliably detected and characterized independent of a range of image trans-

formations, including geometric transformations such as rotation and scaling, as well

as photometric transformations that result from changes in illumination, etc. The most

popular of these features is David Lowe’s Scale Invariant Feature Transform (SIFT)

[Low99, Low04]. The invariance provided by these features stands to be critical for

analyzing on-line photos since the images in these collections exhibit great diversity not

only in content but also viewpoint and environment. We will SIFT features to perform

land use classification in Chapter 3.

1.5.2 Mid-level Analysis

It is well known that low-level features do not characterize an image at a semantic level.

They will therefore be limited in their capacity to extract geographically relevant infor-

mation from on-line photos. Mid-level analysis potentially offers richer representations

which, while not at the level of objects, concepts, events, and activities, still helps to

narrow the semantic gap.

Of particular interest is the work by Oliva and Torralba [OT01] on modeling the shape

of the scene in an image using so-called gist features. This method bypasses the seg-

mentation and processing of individual objects or regions and instead uses the spatial

envelope of an image to assign a set of perceptual dimensions such as naturalness, open-

ness, roughness, expansion, and ruggedness that represent the dominant spatial structure

of a scene. Such dimensions could clearly be informative for geographic discovery. The

authors indeed show their approach generates a multidimensional space in which scenes

sharing membership in semantic categories (e.g., streets, highways, coasts) are projected

close together. We will discuss the effectiveness of this feature on land cover classifica-
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tion in Chapter 2.

1.5.3 High-level Analysis: Object and Concept Detection in Images

and Videos

Automated object and concept detection can clearly facilitate geographic discovery in

social multimedia. While such semantic-level understanding remains a challenging

problem, significant progress has been made in computer vision research over the past

decade on generic object and concept detection. This progress is in large part a result of

image analysis based on local invariant features which, besides the invariance proper-

ties mentioned above, are robust to occlusion, a major challenge in object detection. A

good survey on state-of-the-art techniques in object and concept detection can be found

in [PHS06]. The other development that has advanced the field is the availability of

standard training and evaluation datasets such as Caltech-256 [GHP07] which contains

over 30,000 images of 256 object classes and the MIT CSAIL Database of Objects and

Scenes [TMF04] which contains over 72,000 images of 107 object classes.

Fortunately, a wide range of pre-trained object and concept detectors for images have

recently been made available. Ready-to-be-applied detectors include:

• MediaMill 101 - Born out of the TRECVID video retrieval competition, Medi-

aMill [SWG06] provides trained classifier models for 101 concepts such as ani-

mal, dog, basketball, sports, food, and many others which are likely to be relevant

to performing geographic discovery. Local color-texture features are used.

• Columbia-374, VIREO-374, CU-VIREO374 - Columbia-374 [YCK07] also emerged

out of TRECVID. It provides pre-trained detectors for 374 concepts. The Colum-

bia-374 detectors utilize three visual features: edge direction histograms, Gabor

texture features, and grid color moments. VIREO-374 [JYN10] provides pre-

trained detectors for the same concepts as Columbia-374. However, it utilizes

local invariant features. CU-VIREO374 [JYC08] fuses the global features of

Columbia-374 with the local features of VIREO-374.
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• VIREO-WEB81 - VIREO-WEB81 [ZWN10] provides detectors for 81 concepts.

It differs from the TRECVID-based detectors above in that it is trained using ap-

proximately 260K Flickr images manually annotated with 81 concepts. It includes

concepts such as book, cat, computer, dancing, food, person, running, and sports.

The detectors utilize quantized local features and grid-based color moment and

wavelet texture features.

In Chapter 4, we will explore the possibility of using object detectors to solve land use

classification problems.

1.6 Overview of Dissertation

This dissertation focuses on two examples of using proximate sensing for geographic

knowledge discovery: it demonstrates how proximate sensing can be use to perform

land cover and land use classification. In the following chapter, a case study of us-

ing proximate sensing to perform land cover classification is presented. Although land

cover classification is often possible using remote sensing techniques, we choose this

application as a proof of concept experiment due to the availability of ground truth data.

We also investigate the effects of different image features as well as the source of the

images have on the classification performance. A case study of using proximate sens-

ing to perform land use classification is presented in Chapter 3, where we evaluate how

ground-level images can help distinguish different types of land use. We further inves-

tigate the application of land use classification by exploring the idea of using different

object detectors in Chapter 4. We demonstrate how this top-down image understanding

approach can benefit land use classification. The last chapter concludes this dissertation

with a summary as well as a discussion on the future direction of this work.

1.7 Summary of Contributions

The contributions of this dissertation are summarized as follows:
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• The conjecture that large collections of geo-referenced photo collections can be

used to derive maps of what-is-where on the surface of the Earth.

• The first work to use the geo-referenced on-line photo collections to infer what-

is-where on the surface of the Earth on a large scale.

• A novel framework for using state-of-the-art techniques in multimedia content

analysis, in particular automated image understanding and statistical text analysis,

to perform geographic knowledge discovery in large collections of on-line photos.

• The use of proximate sensing to complement the shortcoming of remote sensing

for land use classification.

• The first investigation into using object detectors for geographic knowledge dis-

covery.



Chapter 2

Land Cover Classification

This chapter describes a case study in which geo-referenced community contributed

images are used to perform land cover classification into developed and undeveloped

regions. Although land cover classification can often be obtained through analysis of

satellite images, we focus on this problem as a case study to establish the validity of

proximate sensing for geographic knowledge discovery. This is also a problem for which

there is ground truth data to facilitate the evaluation. As we will discuss in the next chap-

ter, we do not propose proximate sensing as a replacement for traditional remote sensing

but as a complementary technique especially for phenomena not easily observable from

above.

In this chapter, we introduce a series of experiments to validate the concept of using

proximate sensing to perform land cover classification. We first create a small dataset of

5000 geo-referenced photos and train a binary classifier using edge histograms as image

features. With the successful validation of our concept, we then extend our experiment

to a larger pair of datasets consisting of almost 1 million photos and with a larger ge-

ographical coverage. In this experiment, we focus on how the quality of different data

sources as well as different image features affect the performance of classification. We

finally present an experiment on removing images that are not geographically informa-

tive in an attempt to improve quality the of the dataset for classification.

11
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The work presented in this chapter was published as a peer-reviewed workshop paper at

the International Workshop on Location Based Social Networks in 2009 [LN09] and as

an oral paper in the IEEE Conference on Computer Vision and Pattern Recognition in

2010 [LN10]. An extended journal version of the work is current being prepared.

2.1 The Initial Experiment

To validate our hypothesis that land cover classification is possible using ground-level

images, we perform land cover classification into developed and undeveloped regions as

an initial test bed. We choose our study area as an approximately 33x42km section of

California between and partly encompassing the cities of San Jose and Santa Cruz. We

chose this region because 1) it encompasses a wide diversity of land cover types and 2)

it contains a large number of geo-referenced Flickr images due to its proximity to the

technology-savvy populace of Silicon Valley. Figure 2.1 contains a map downloaded

from The National Map of the United States Geological Survey of this region indicating

the distribution of the National Land Cover Database (NLCD) classes. The southern

part of San Jose is visible in the top section of this image and Santa Cruz is visible in

the middle lower section.

The 15 NLCD classes in the study area can naturally be divided into developed–21,

22, 23, and 24–and undeveloped superclasses–11, 31, 41, 42, 43, 52, 71, 81, 82, 90,

and 95. This binary partitioning results in the developed/undeveloped map shown in

Figure 2.3(a). The goal of this work is to estimate these superclasses using ground-level

images.

We used the Flickr application programming interface (API) to download geo-referenced

images for the study region. We downloaded the medium sized versions of the images

which have a maximum dimension of 500 pixels. In order to localize the analysis, we

partitioned the region into 3x3km tiles and downloaded a maximum of 50 Flickr images

per tile. This tile size was chosen as a tradeoff between localizing the analysis and en-

suring that most of the tiles contained enough images for the analysis to be meaningful.
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Figure 2.1: The study region consists of an approximately 33x42km section of Cal-

ifornia between and partly encompassing the cities of San Jose and Santa Cruz. The

southern part of San Jose is visible in the top section of this NLCD map and Santa Cruz

is visible in the middle lower section.

A total of 5509 images were downloaded for the 14x11=154 tiles for an average of 35.8

images/tile. There were 10 tiles which contained no images. Figure 2.2 illustrates a

mosaic of sample images used in this experiment across the study region. We can see

the diversity of images collected from Flickr. Figure 2.3(b) shows the distribution of

Flickr images for the study region. Overlaid on this figure is a smoothed outline of the

larger developed regions from the NLCD map. This outline serves as a landmark for

comparing results and was machine generated by applying a Gaussian smoothing filter

to the binary map in Figure 2.3(a), thresholding the result and using an edge detector to

determine the resulting boundary.

Since the analysis using the Flickr images is performed at the 3x3km tile scale, we

derived two ground truth items from the NLCD map at the same scale and grid. The first

indicates the ratio of developed to total land cover in each of the tiles and is computed in

a straightforward manner from the NLCD binary map. It is termed the NLCD ratio map

and is shown using a heatmap in Figure 2.4(a). The second ground truth item is a binary

classification of each tile as developed or undeveloped and is computed by applying a

threshold of 0.5 to the NLCD ratio map. It is termed the NLCD binary classification map

and is shown in Figure 2.4(b). The following sections explore how well these ground
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Figure 2.2: A mosaic of sample images used in this experiment.
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(a) (b)

Figure 2.3: (a) The 15 NLCD classes in the study region naturally divide into developed

and undeveloped regions shown in black and white respectively. (b) The distribution of

Flickr images for the study region. No images were available for 10 of the tiles. Overlaid

on this figure is a smoothed outline of the larger developed regions from the NLCD map

to serve as a landmark for comparing results.

truth maps can be estimated using the geo-referenced Flickr images.

2.1.1 Results: Manually Labeled Images

This experiment explores how well land cover classes can be predicted using geo-

referenced ground level images which have been manually labeled. Specifically, we

evaluate how accurately the ground truth NLCD ratio and binary classification maps

can be estimated from a manually labeled set of Flickr images. Since the goal is to

determine whether a geographic location is developed or undeveloped, we use the same

binary labels for the images. Two “users” viewed the 5509 images and independently

labeled them as developed if they depicted scenes containing constructed materials such

as used in houses, buildings, etc., and labeled them as undeveloped if they were of open

areas and/or contained mostly trees and vegetation. These criteria will of course re-

sult in “incorrectly” labeled images which will limit the approach. For example, indoor

scenes will always be classified as being “developed” even though they might have been

taken inside isolated homes in rural regions. Nonetheless, the results below show even

this simple labelling is effective for estimating the ground truth NLCD ratio and binary

classification maps. Figure 2.5 shows examples of labeled Flickr images.
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Figure 2.4: Ground truth data derived from the NLCD binary map. (a) NLCD ratio

map indicating the ratio of developed to total land cover for each of the tiles. (b) NLCD

binary classification map with tiles labeled as developed (white) or undeveloped (black).

(a) Developed. (b) Developed. (c) Undeveloped. (d) Undeveloped.

Figure 2.5: Examples of Flickr images manually labeled as developed or undeveloped.
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Figure 2.6: Results for manual labelling of Flickr images for user 1. (a) Ratio map

indicating the ratio of Flickr images labeled as developed to the total number of images

per tile. (b) Binary classification map indicating tiles labeled as developed (white) or

undeveloped (black).

We derived ratio maps from the labeled Flickr images by computing the ratio of images

labeled as developed to the total number of images in each tile. Figures 2.6(a) and

2.7(a) show the ratio maps corresponding to manual labelling performed by users 1

and 2. These maps are quite similar to the ground truth NLCD map in Figure 2.4(a)

indicating that labeled, geo-referenced ground level images can be used to predict land

cover information.

We derived binary classification maps from the user ratio maps the same way the NLCD

binary classification map was produced: tiles whose ratio was greater than 0.5 were clas-

sified as developed and the remainder were classified as undeveloped. Figures 2.6(b) and

2.7(b) show the binary classification maps corresponding to manual labelling performed

by users 1 and 2. Again note the similarity between these maps and the ground truth

NLCD binary classification map in Figure 2.4(b).

We quantitatively evaluated the similarity between the NLCD and user ratio maps by

calculating the correlation coefficient between the tile ratio values taken as observations

of random variables. Specifically, if random variables X and Y represent the ground

truth NLCD and user tile ratio values respectively then the correlation coefficient for

the user ratio map is computed as ρXY = cov(X, Y )/σXσY where cov(X, Y ) is the

covariance of X and Y and σX (σY ) is the standard deviation of X (Y ). ρXY ranges

from -1 to 1 with a value of 0 indicating no correlation, and values of -1 and 1 indicating
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Figure 2.7: Results for manual labelling of Flickr images for user 2. (a) Ratio map

indicating the ratio of Flickr images labeled as developed to the total number of images

per tile. (b) Binary classification map indicating tiles labeled as developed (white) or

undeveloped (black).

Table 2.1: Quantitative evaluation of how well land cover can be estimated using manu-
ally labeled, geo-referenced ground level images. The first data row gives the correlation

coefficient between the ground truth NLCD ratio map and the ratio map derived from

the labeled images. The second data row gives the percent of tiles that have the same

label in the NLCD binary classification map and the classification map derived from

the labeled images. Columns user 1 and user 2 correspond to the manually labeled

Flickr images. Random corresponds to a random labelling of the images. The other two

columns correspond to labellings in which all the images are labeled as developed or

undeveloped.

User 1 User 2 Random All labeled dev. All labeled undev.
Correlation coefficient (ρ) 0.651 0.604 0.186 N/A N/A

% with same label 73.4% 69.5% 55.6% 37.0% 63.0%

strong negative and positive correlation respectively.

We quantitatively evaluated the similarity between the NLCD and user binary classifi-

cation maps by calculating the percentage of tiles with the same label.

Table 2.1 shows the correlation coefficient between the NLCD and user ratio maps, and

the percent agreement between the NLCD and user binary classification maps. Values

are also given for control cases including a random labelling of the Flickr images as well

as the cases where all the Flickr images are labeled as developed or undeveloped.
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2.1.2 Results: Automatically Labeled Images

This experiment explores how well land cover classes can be predicted using geo-

referenced ground level images which have been automatically labeled. The ratio and

binary classification maps are now derived using Flickr images which have been labeled

as developed or undeveloped using a trained classifier.

The dimensionality of the raw Flickr image space is too high for performing effective

classification so instead we represent the images using compact descriptors. We choose

edge histogram descriptors which quantify the distribution of edges at different orien-

tations. This is motivated by the observation that images of developed scenes typically

have a higher proportion of horizontal and vertical edges than images of undeveloped

scenes. This is evident in the edge images in Figure 2.8 corresponding to the example

Flickr images. Following the method outlined in [MOV98], we apply a set of five 2x2

linear filters to detect edges at roughly horizontal, vertical, 45◦ diagonal, 135◦ diagonal,

and isotropic (non-orientation specific) directions. A threshold is applied to the outputs

of these filters and the ratios of edges in various directions are summarized in a five bin

L1 normalized histogram. In summary, each Flickr image is represented by a five di-

mensional edge histogram feature vector. The caption for each subfigure in 2.8 provides

these vectors for the sample Flickr images.

We chose a support vector machine (SVM) as the classifier as it has proven effective as

a general purpose classifier. We divide the 5509 Flickr image dataset into two similarly

sized sets: a training set which is used to train the classifier and a test set which is used to

produce the ratio and binary classification maps. The training/test partitioning is done at

the tile level–half of the images for each tile are grouped into a single training set and the

other half are kept with the tile for the evaluation. The training set contains 2740 images,

833 labeled as developed and 1907 labeled as undeveloped. An SVM classifier with a

radial basis function kernel is trained on this set using five fold cross validation and a

grid search for parameter selection. A separate classifier is trained for the user 1 and user

2 labeled datasets. The user 1 SVM achieves a validation classification rate of 72.2%

(on the training data) and a classification rate of 70.2% on the held-out test images. The
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(a) (0.20 0.08 0.18 0.41

0.13)

(b) (0.12 0.22 0.15

0.36 0.15)

(c) (0.09 0.14 0.12 0.17

0.47)

(d) (0.17 0.09 0.13 0.29

0.33)

Figure 2.8: Edge images corresponding to example Flickr images in Figure 2.5. The

captions under each subfigure contain the five dimensional edge histogram feature vec-

tors. The components of these vectors indicate the relative strength of edges in the hor-

izontal, vertical, 45◦ diagonal, 135◦ diagonal, and isotropic (non-orientation specific)

directions.

user 2 SVM achieves a validation classification rate of 68.9% and a classification rate

of 69.0% on the held-out test images. An SVM trained using randomly labeled images

achieves a validation classification rate of 50.7% and a classification rate of 49.2% on

the held-out test images as expected.

After the classifiers have been applied to the test images for the tiles, we use the same

approach as in Section 2.1.1 to generate the ratio and binary classification maps. The

tiles in the SVM ratio maps indicate the ratio of images classified as developed by the

SVMs to the total number of images in the tile. The tiles in the SVM binary classification

maps indicate whether a majority of the tiles are classified as developed. These maps are

shown in figures 2.9 and 2.10. We also quantitatively evaluate the results by computing

the correlation coefficient and percent agreement with the ground truth NLCD maps.

These results are listed in table 2.2. We also show results for an SVM trained using a

randomly labeled image set.
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Figure 2.9: Results for automatic labelling of Flickr images using classifier trained us-

ing user 1 labeled images. (a) Ratio map indicating the ratio of Flickr images labeled as

developed to the total number of images per tile. (b) Binary classification map indicating

tiles labeled as developed (white) or undeveloped (black).
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Figure 2.10: Results for automatic labelling of Flickr images using classifier trained us-

ing user 2 labeled images. (a) Ratio map indicating the ratio of Flickr images labeled as

developed to the total number of images per tile. (b) Binary classification map indicating

tiles labeled as developed (white) or undeveloped (black).

Table 2.2: Quantitative evaluation of how well land cover can be estimated using au-
tomatically labeled, geo-referenced ground level images. The first data row gives the

correlation coefficient between the ground truth NLCD ratio map and the ratio map

derived from images labeled using an SVM classifier. The second data row gives the

percent of tiles that have the same label in the NLCD binary classification map and the

classification map derived from the classified images. Columns SVM 1 and SVM 2 cor-

respond to SVMs trained using the Flickr images labeled by user 1 and user 2. Random

corresponds to an SVM trained using a randomly labeled set of images.

SVM 1 SVM 2 Random
Correlation coefficient (ρ) 0.559 0.509 0.022

% with same label 77.3% 71.4% 35.7%
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2.1.3 Discussion

Even though the proposed method represents an initial, straightforward approach to us-

ing geo-referenced community contributed photos for land cover estimation, the results

are significant. The user and SVM generated ratio and binary classification maps are

similar both in terms of levels and spatial distribution to the ground truth NLCD data.

The maps derived from the Flickr images tend to overestimate how developed a region

is. This makes sense since photos will frequently depict “developed” scenes even when

taken in relatively remote locations–images taken indoors are a prime example. The

correlation coefficients between the user and SVM generated ratio maps and the ground

truth NLCD data average 0.628 and 0.534 respectively. This indicates a high amount of

correlation. And, the percentage of similarly classified tiles between the user and SVM

generated binary classification maps and the ground truth NLCD data average 71.45%

and 74.35%. This latter value is especially significant since the maps are derived in a

completely automated fashion.

It is interesting that the user generated ratio maps are more similar to the ground truth

than the SVM ratio maps while the opposite is true for the binary classification maps.

A possible explanation for this is that while humans can manually classify individual

Flickr images as developed or undeveloped more accurately than the SVM classifiers

since they incorporate a higher-level understanding of the images, such as their context,

into their decision, the SVM classifiers produce better results when the individually

labeled images are aggregated to derive a binary classification since they are better at

learning the overall distributions of the two classes.

2.2 Larger Scale Experiments

We extend our initial experiment to a larger pair of datasets consisting of almost 1 mil-

lion photos. We also expand the geographical coverage of our study region. The objec-

tive of this experiment is to answer the following questions:



23

• Can existing geographic knowledge be used to provide labeled training data in

a weakly-supervised manner? Since we have the ground truth data, we want to

investigate the possibility of labeling the training data using this ground truth data.

• What is the effect of the photographer’s intent when he or she captures the photo-

graph? As the photo collections come from two social media that serve users with

different purposes, we would like to find out how a photographer’s intent affects

the integrity of the geographic information in both datasets.

• Does it help to filter out uninformative images? Since not all on-line photos are

geographically informative, we will investigate if removing these uninformative

images will improve the classification performance.

2.2.1 Datasets

The study area is the 100x100 km of Great Britain corresponding to the TQ square in

the British national grid system. This region encompasses the London metropolitan area

and thus includes a range of developed and undeveloped land cover classes. Figure 2.11

shows the location of the study region in correspondence to the map of Great Britain.

We use the publicly accessible Countryside Information System (CIS) to download the

Land Cover Map 2000 (LCM2000) of the United Kingdom’s Centre for Ecology &

Hydrology for the TQ study region. We focus on the LCM2000 Aggregate Class (AC)

data which provides the percentages of ten land cover classes at the 1x1 km scale. Figure

2.12 shows the dominant classes for the TQ region.

We focus on binary classification into developed and undeveloped regions so the ten

land cover classes are further aggregated into a developed superclass consisting of LCM

AC:7 Built up areas and gardens, and an undeveloped superclass consisting of the re-

maining nine classes. We derive two ground truth datasets, one which indicates the

fraction developed for each of the 10K 1x1 km tiles in the TQ region and another which

simply indicates a binary label for each tile by applying a threshold of 0.5 to the frac-
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Figure 2.11: Location of TQ square in correspondence to the map of Great Britain.

Figure 2.12: The dominant Land Cover Map 2000 Aggregate Classes (AC) for the TQ

study area. This area measures 100x100 km and encompasses the London metropolitan

area which appears towards the north-west.
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Figure 2.13: Ground truth derived from the LCM 2000 AC data. (a) Map of fraction

developed values for each 1x1 km tile. (b) Map of binary labels in which red and green

are used to indicate developed and undeveloped tiles respectively. The binary labels are

derived from the fraction values by applying a threshold of 0.5.

tion developed. We refer to the first dataset as the ground truth fraction values1 and the

second as the ground truth binary labels. Figure 2.13 shows the ground truth datasets as

maps.

We compile two geo-referenced image collections for the study area. First, we use the

Flickr application programming interface (API) to download approximately 920K Flickr

images located within the TQ region. The longitude and latitude information provided

by the Flickr API is then used to assign each image to a 1x1 km tile. Figure 2.14(a)

shows the distribution of the Flickr images. While Flickr contains a large collection of

geo-referenced images, its spatial coverage is not uniform. For our study area, 5,420

of the 10K 1x1 km tiles do not contain any Flickr images. The 4,580 tiles with images

contain an average of 200.7, a median of 10, and a maximum of 53,840 images.

We download a second set of potentially more geographically informative images from

the Geograph Britain and Ireland (GBI) project whose aim is to “collect geographically

representative photographs and information for every square kilometre of Great Britain

and Ireland”. This project contains over two million photos contributed by over 10K

users and allows us to investigate the effect of photographer intent. We use the GBI API

to download approximately 120K Geograph images for the study area. While there are

1These fraction values are the same as the ratio values in the previous experiment.
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Figure 2.14: The distribution of images for the TQ study region in the (a) Flickr and (b)

Geograph datasets. On a base-10 logarithmic scale.

fewer Geograph images, they are more uniformly distributed than the Flickr images as

shown in Figure 2.14(b). Now, only 614 of the 10K tiles do not contain any Geograph

images and all but a few of these correspond to ocean. The remaining 9,386 tiles contain

an average of 12.9, a median of 5, and a maximum of 1,458 images.

In order to investigate whether the Geograph or Flickr images are better for binary land

cover classification, we use a common evaluation dataset consisting of the 4,441 tiles

which contain images from both datasets. These tiles contain over 90K Geograph and

over 900K Flickr images. This evaluation dataset is split into disjoint training and test

sets with 400 and 4,041 tiles respectively.

Figure 2.15 shows sample images from the Flickr and Geograph datasets. Pairs of

even/odd rows show Flickr/Geograph images for the same 1x1 km tiles. The top two

pairs of rows are for tiles with a developed fraction of 1.0 while the bottom two pairs of

rows are for tiles with a developed fraction of 0. The Geograph images tend to be more

geographically informative although both support land cover classification as demon-

strated in the experiments below.
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(a) Sample Flickr images from a 1x1 km tile with a developed fraction of 1.0.

(b) Sample Geograph images from the same tile as above.

(c) Sample Flickr images from a 1x1 km tile with a developed fraction of 1.0.

(d) Sample Geograph images from the same tile as above.

(e) Sample Flickr images from a 1x1 km tile with a developed fraction of 0.

(f) Sample Geograph images from the same tile as above.

(g) Sample Flickr images from a 1x1 km tile with a developed fraction of 0.

(h) Sample Geograph images from the same tile as above.

Figure 2.15: Sample images from the Flickr and Geograph datasets.



28

2.2.2 Experiments

The goal in all experiments is to investigate how well the visual feature based classifica-

tion of individual geo-referenced images can be used to create developed/undeveloped

land cover maps similar to the ground truth maps. We constrain the labels of the images

to the same developed and undeveloped superclasses–that is each image is labeled as

depicting a developed or undeveloped scene. The (developed) fraction assigned to a 1x1

km tile is then simply the ratio of the images with the label developed to the total num-

ber of images in the tile. Different approaches for labelling the images are compared

based on how well the image generated fraction maps match the ground truth fraction

map. Different quantitative measures of similarity are considered. We compute the

correlation coefficient between the tile fraction values taken as observations of random

variables as as described in Section 2.1.1. We also compute the mean absolute differ-

ence (MAD) and the root mean squared difference (RMSD) between the ground truth

and image generated tile fraction values.

The binary label (developed or undeveloped) assigned to a 1x1 km tile is determined

by applying a threshold to the image generated fraction for that tile. The similarity

between the ground truth and an image generated binary classification map is measured

in two ways. First, the overall classification rate is computed as the percentage of tiles

with the same label. We also compute the average classification rate of the two classes

(developed and undeveloped).

We deliberately choose simple features to characterize the visual content of the images.

We annotate the geo-referenced images using edge histogram descriptors which quantify

the distribution of edges at different orientations. These are the same features used in

the previous experiment as described in Section 2.1.2.

We use a support vector machine (SVM) classifier to label individual images based on

their edge histogram descriptors. Given a labeled training set, an SVM classifier with a

Gaussian radial basis function kernel is trained using five fold cross validation and grid

search for optimal parameter selection. Once trained, the classifier is used to label a set

of target images which in all cases is disjoint from the training set. These labels are
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then used to generate fraction and binary classification maps which are compared with

the ground truth maps. The framework of the this experiment is illustrated in Figure

2.16. Even though the experiments below consider different training and target sets,

the ground truth comparison is always based on the 4,553 tiles for which there are both

Flickr and Geograph images. 38.9% of these tiles are developed in the ground truth

so that the chance overall binary classification rate is 61.1% achievable by labelling all

images and therefore all tiles an undeveloped.

Manually Labeled Training Set

Here, the training set contains 2,740 Flickr images which have been manually labeled.

A non-expert labeled an image as developed if it depicts a scene containing constructed

materials such as used in houses, buildings, etc., and labeled it as undeveloped if it is

of open areas and/or contains mostly trees and vegetation. These criteria will of course

result in “incorrectly” labeled images such as indoor scenes always being labeled as

“developed” even though they might have been taken inside isolated homes in rural

regions. The SVM trained with the manually labeled training set is then used to classify

a target set consisting of the remaining images from the 920K Flickr image set. The

individual image labels are used to generate the fraction and binary classification maps

shown in Figure 2.17. Notice the similarity between these maps and the ground truth

maps in Figure 2.13.

Line 1 of table 2.3 shows the quantitative similarity between the ground truth and image

generated maps. The columns titled Fixed Threshold indicate the agreement between

the binary classification maps when a fixed threshold of 0.5 is applied to the fraction

values of the image generated fraction map to generate the binary classification map.

Prior Information

The threshold used to derive the binary classification map can be adjusted so that the

fraction of developed tiles matches that of the ground truth if such prior information is
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Figure 2.16: An overview of using the visual content of ground-level images to map

developed and undeveloped regions.
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Figure 2.17: Land cover maps automatically generated using an SVM classifier trained

with manually labeled Flickr images. The target set is also Flickr images. (a) Fraction

map indicating the percent developed for each 1x1 km tile. (b) Binary classification map

indicating the tiles labeled as developed (white) or undeveloped (black). Compare with

the ground truth maps in Figure 2.13
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known. The columns titled Adaptive Threshold give the performance when the fraction

of developed tiles in the image generated binary classification matches the 38.9% of

the ground truth. For the manually labeled Flickr training set it results in decreased

performance; subsequent experiments show that it can result in significant improvement.

Weakly-supervised Training

This experiment investigates the performance of a classifier trained in a weakly-supervised

manner. The training set is constructed without any manual labelling by selecting two

images at random from each 1x1 km tile and labelling them with the majority class of

the tile. Selection is limited to tiles with four or more images so that at least two im-

ages remain in the disjoint target set. For the Flickr dataset, this results in a training set

termed “Flickr-small” containing 5,872 images. Line 2 of table 2.3 shows the results for

the Flickr-small classifier when applied to the Flickr dataset. The performance is shown

to be better than that of the classifier trained with the manually labeled dataset, an inter-

esting and significant result indicating that training sets can be generated from regions

for which maps exists and then used to train classifiers for mapping unmapped regions.

That the results are better than the manual case suggests that the automatically generated

training set more accurately characterizes the differences between images from devel-

oped and undeveloped regions than the intuition humans use when labelling images.

Photographer Intent

This experiment investigates the effect photographer intent has on the image gener-

ated maps. The training and target sets are now selected from the Geograph dataset

which contains images captured by photographers who intend their photographs to be

geographically representative. We again train the classifier with a weakly-supervised

dataset which now has 10,576 images as there are more tiles with four or more Geo-

graph images than tiles with four or more Flickr images. Line 3 of table 2.3 shows the

result of applying this Geograph-small classifier to a held out Geograph target set. The

maps generated from the Geograph dataset are significantly better than those generated
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Figure 2.18: Land cover maps automatically generated using an SVM classifier trained

with a large set of Geograph images labeled in a weakly-supervised manner. The target

set is also Geograph images. (a) Fraction map indicating the percent developed for

each 1x1 km tile. (b) Binary classification map indicating the tiles labeled as developed

(white) or undeveloped (black). Compare with the ground truth maps in Figure 2.13

from the Flickr dataset indicating that photographer intent is a significant factor. We

comment more on the implication of this result this in the Discussion section below.

Training Set Size

This experiment investigates the effect of the size of the weakly-supervised training set.

We construct a 11,465 Flickr-large training set by selecting five images from tiles that

contain more than ten Flickr images. Line 4 of table 2.3 shows the results of using this

training set. The performance is worse than that of the Flickr-small training set likely

because of a bias present in the smaller number of tiles with more than ten images.

These tiles are more likely to be of developed regions as confirmed by the higher ratio of

images labeled developed in the training set (indicated in parenthesis in the column titled

Training Set Size in table 2.3). A Geograph-large training set is also constructed and

shown to perform better than the Geograph-small set (see line 5 of the table). Figure 2.18

shows the maps generated using a classifier trained with the Geograph-large training set.
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Training Set Quality

This experiment investigates the effect of the quality of the weakly-supervised training

set. We now select training images from tiles that have very high or very low developed

fractions according to the ground truth map. The intuition here is that such tiles should

result in more accurate training sets. Lines 6 and 7 of table 2.3 show that these Flickr-

good and Geograph-good training sets do not result in improved performance. This

finding indicates that it is not necessary to constrain the weakly-supervised training sets

in this way.

Relative Importance of Training and Target Sets

The results above clearly indicate that the Geograph dataset is more effective than the

Flickr dataset. This experiment investigates whether this improvement is due to the

training or target set. Lines 8 through 14 in table 2.3 list the results when the training

and target sets are from different image collections. These results make it clear that

photographer intent is more important for the target set than the training set. While this

finding is somewhat unfortunate since the overall (worldwide) coverage of the Flickr

dataset is broader than that of the Geograph dataset, it does identify some interesting

research challenges which will be discussed in the Discussion section below.

Filtering Images With Faces

This experiment investigates whether removing images with faces improves the results.

The motivation here is that photographs of people are less likely to be geographically

informative, especially close-in portraits. The fact that few of the Geograph images

contain people empirically suggests this is true. We used a standard face detection

algorithm [VJ01, LM02] to filter Flickr images containing one or more faces. We then

repeated a set of experiments using this face-free target set. Unfortunately, as lines 15

through 17 in table 2.3 show, this did not provide any improvement over the target set

with faces.
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Table 2.3: The experimental results. The number in parenthesis in the Training Set Size

column indicates the fraction of images labeled as developed in the training set. Please

see the text for other details.
Binary Maps

Overall Class. Rate Avg. Class. Rate

Fixed Adaptive Fixed Adaptive

Training Set Threshold Threshold Threshold Threshold Fraction Maps

Training Set Target Set Size % % % % ρ MAD RMSD

1 Manual (Flickr) Flickr 2740 (0.51) 66.4 64.9 68.8 63.0 0.374 0.287 0.383

2 Flickr small Flickr 5872 (0.52) 67.2 66.9 68.7 65.2 0.380 0.279 0.373

3 Geograph small Geograph 10576 (0.26) 68.2 74.0 60.8 72.6 0.520 0.271 0.358

4 Flickr large Flickr 11465 (0.56) 57.7 61.5 64.0 59.6 0.372 0.336 0.441

5 Geograph large Geograph 13374 (0.36) 73.8 74.7 70.2 73.2 0.552 0.235 0.313

6 Flickr good Flickr 5070 (0.49) 67.0 68.1 67.4 66.6 0.329 0.285 0.374

7 Geograph good Geograph 5603 (0.47) 74.2 74.6 71.5 73.1 0.551 0.231 0.308
8 Geograph small Flickr 10576 (0.26) 60.0 72.3 49.8 70.9 0.230 0.354 0.457

9 Geograph large Flickr 13374 (0.36) 60.0 68.7 51.4 66.9 0.301 0.312 0.404

10 Geograph good Flickr 5603 (0.47) 60.7 68.3 53.8 66.6 0.330 0.294 0.381

11 Manual (Flickr) Geograph 2740 (0.51) 66.1 73.5 70.1 72.0 0.531 0.273 0.356

12 Flickr small Geograph 5872 (0.52) 67.8 74.1 70.8 72.3 0.526 0.264 0.345

13 Flickr large Geograph 11465 (0.56) 56.3 72.6 63.3 71.2 0.486 0.340 0.428

14 Flickr good Geograph 5070 (0.49) 69.9 73.1 71.5 71.7 0.496 0.2545 0.3310

15 Flickr small Flickr (no faces) 5872 (0.52) 66.8 66.7 66.8 64.2 0.367 0.301 0.414

16 Geograph small Flickr (no faces) 10576 (0.26) 59.8 72.2 49.0 69.7 0.225 0.377 0.493

17 Geograph good Flickr (no faces) 5603 (0.47) 59.9 68.0 52.0 65.2 0.312 0.321 0.428

2.3 Aditional Features

Thus far, we have only considered simple edge histograms as the image feature to per-

form land cover classification. In this section, we study the effect of other features on

classification performance. The features considered include color histogram, gist, and

textual features derived from the annotations associates with the images. We follow an

experimental setting similar to those mentioned above along with the same datasets and

use edge histogram features as a baseline measurement.

Color histogram

In order to investigate whether color is a discriminating feature for our two-class prob-

lem, we extract color histogram descriptors from each image. We transform the images

to the hue-lightness-saturation (HLS) colorspace and quantize each dimension into 4

bins for a total feature vector length of 64. The histograms are normalized to have an

L1 norm of one to account for different image sizes.
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Gist

The final visual features we consider are gist descriptors described in Section 1.5.2. Gist

features are similar to texture features extracted using Gabor filters [WMN00] in that

they characterize the spectral energy of an image using Gaussian shaped filters tuned

to different scales and orientations. A prefilter for normalizing the local contrast with

respect to luminance variance is applied before gist features are extracted. A visualiza-

tion of gist features extracted from two sample images obtained from the two land cover

classes is shown in Figure 2.19. It is clear to see that the gist features are distinctive

between the different land cover classes. We extract 60 dimensional gist feature vectors

from each image.

The experiments below compare the performance of the three visual features which, to

summarize, include: a 64 dimensional color histogram feature, a five dimensional edge

histogram feature, and a 60 dimensional gist feature for each image.

Text

Flickr and Geograph images commonly have user-supplied text associated with them.

In the case of the Flickr images, this includes the image titles, descriptions, and tags.

For example, the left-most image in Figure 2.15(a) is titled “Roosting dragon”; has the

description “Or it might be a vampire bat? In Chancery Lane. Originally uploaded

for Guess Where London.”; and, is tagged with: “gwl, Guess Where London, stucco,

dragon, Guessed by Citymuso, 115A, Chancery Lane, WC2, Holborn, Camden, Lon-

don, England”. The Geograph images have titles, descriptions, and categories. The

left-most image in Figure 2.15(b) is titled “The Old Bailey, London”; has the comment

“The Central Criminal Court, home of justice in England and Wales.”; and is categorized

as “Building of civic importance”. We therefore investigate whether this user-supplied

text is effective for land cover classification.

The text analysis is performed at the tile level since there is typically not enough text

associated with the individual images for effective classification. Each of the text com-
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(a)

(b)

Figure 2.19: Visualization of gist features of two sample images obtained from (a) an

undeveloped region (b) a developed region. The plots indicate the responses of Gabor

filters in 60 directions and scales.
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ponents associated with an image obtained within each 1x1 km tile region is parsed into

a set of terms (words) which are then pooled among terms from other images within the

same tile. At the moment, all terms are given equal weight although different weightings

based on the relative importance of the components would be an interesting extension.

It is unlikely that classification at the term level would be effective due to the sparse

appearance of terms among the dictionary, so we apply a latent semantic approach from

text document analysis in which a hidden topic z ∈ Z = {z1, ..., zK} is associated

with the observed occurrence of a word w ∈ W = {w1, ..., wM} in a document (tile)

d ∈ D = {d1, ..., dN}. This latent layer also helps overcome the problems of synonymy

and polysemy.

We use a generative probabilistic technique termed probabilistic latent semantic analysis

(pLSA) [Hof99, Hof01] to learn the hidden topics. A pLSA model can be expressed as

P (w|d) =
∑

z∈Z
P (w|z)P (z|d),

where P (w|d) is the observed word distributions over documents.

To learn the distribution of words over hidden topics, we use Expectation Maximization

(EM) algorithm. In E-step, the posterior probabilities for the hidden topics are evaluated:

P (z|d, w) = P (z)P (d|z)P (w|z)∑
z′ P (z′)P (d|z′)P (w|z′) ,

while in M-step the parameters of E-step are estimated based on the result of E-steps:

P (w|z) =
∑

d n(d, w)P (z|d, w)∑
d,w′ n(d, w′)P (z|d, w′)

,

P (d|z) =
∑

w n(d, w)P (z|d, w)∑
d′,w n(d′, w)P (z|d′, w) ,

P (z) =
1

R

∑

d,w

n(d, w)P (z|d, w), R ≡
∑

d,w

n(d, w).

Instead of defining the number of hidden topics as the number of ground truth classes as
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most classifications using pLSA approach usually do, we use pLSA as a tool to reduce

the dimensionality of the term histogram of each tile by computing the distributions

of hidden topics over the tiles, P (z|d). In our experiment, we show that distributions

of hidden topics provide an explicit representation of the tiles that is more robust than

distributions over terms. To evaluate the hidden topic distribution of a novel tile, the EM

algorithm is applied with fixed P (w|z) learned from the training step.

We first determine reasonably sized term-dictionaries for each of the datasets. After

applying stopping and stemming, a total of 106,213 unique terms result from the over

900K Flickr images in the 4,441 tiles with Flickr and Geograph images that have text,

and 31,056 unique terms result from the over 90K Geograph images from the same

tiles. The dictionary for the Flickr dataset is selected as the 2,708 most frequent Flickr

terms, and the dictionary for the Geograph dataset is selected as the 2,702 most frequent

Geograph terms.

A term histogram is computed for each tile based on the terms from all the images in the

tile. The histograms for 200 training tiles are combined into a term-document matrix

and pLSA is used to learn the term-topic distributions for a 60 topic model (this number

was chosen empirically based on performance). Finally, a topic distribution is computed

for each of the 4,041 tiles in the test set using the pLSA machinery.

To summarize, each tile is represented with a 60 dimensional text feature vector that

consists of the distribution over the latent topics.

2.3.1 Experiments

The goal of the experiments is to use the geo-referenced images as represented by their

visual or text features to produce developed/undeveloped land cover maps. We for-

mulate this as a supervised classification problem in which support vector machines

(SVMs) are trained on a labeled subset of the data and then used to assign labels to a

disjoint held-out set. We compare applying the SVMs 1) at the image level, in which

case the image labels (developed and undeveloped) are aggregated to produce the final
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tile level fraction values and binary labels, and 2) applying them directly at the tile level.

These two modes are described in sections 2.3.1 and 2.3.1 below. Performance is eval-

uated by comparing the predicted maps to the ground truth maps derived from the Land

Cover Map 2000.

The SVMs are implemented using the LIBSVM package [CL01]. We use radial basis

function (RBF) kernels and determine optimal values for the two parameters, the penalty

term C and the kernel width γ, through grid-search on a random partitioning of the

training set.

Image Level Classification

In this set of experiments, the SVMs are used to classify individual images as being de-

veloped or undeveloped. These labels are then aggregated to determine the tile fraction

values and binary labels for comparison with the ground truth.

Training the SVMs requires a set of images labeled as developed or undeveloped. We

construct a weakly labeled training set by propagating the tile labels to the images as

follows. First, we identify the 100 most developed and the 300 least developed tiles

according to the ground truth fraction values. These are training tiles. We use 300 least

developed tiles because the least developed tiles generally contain fewer images than

the most developed tiles. We then randomly sample approximately 2,500 images from

the 100 most developed tiles and label them as developed. We similarly sample and

label as undeveloped approximately 2,500 images from the 300 least developed tiles.

This results in labeled training sets containing 5,031 and 5,026 images for the Flickr

and Geograph datasets respectively.

Such a weakly labeled training set has two important advantages over a manually la-

beled one. First, it requires very little human effort. Second, it avoids the subjective

interpretation of what is meant by developed at the image level. Indeed, we showed in

the previous experiments above that a weakly labeled training set outperforms one in

which the labels are assigned manually in a binary land cover classification problem.

We now select the labeled images from the 100 most and least developed tiles.
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The SVMs are trained using the visual features and labels of the 5K+ training images.

They are then used to label each of the images in the 4,041 test tiles that remain after the

400 training tiles have been removed (thus the training and test sets are distinct). These

labels are aggregated to compute two tile level values: a fraction developed which is

simply the fraction of images in the tile labeled as developed by the SVM; and a binary

label which is determined by applying a threshold to the fraction developed. We explore

using a threshold fixed at 0.5 as well as an adaptive threshold that is chosen so that the

ratio of developed to undeveloped tiles in the predicted set matches that of the ground

truth (this ratio thus represents prior knowledge of the problem).

Tile Level Classification

In this set of experiments, the SVMs are used to label the tiles directly. A single visual

feature is computed for each tile by averaging the features from all the images located

in that tile. This has the simple interpretation of a tile level histogram for the edge and

color features. For the gist features, it is the average over all the images of the spectral

energy in each of the frequency channels corresponding to the Gabor filters. The text

features are already computed at the tile level so no aggregation is needed.

The training set is the 100 features (visual or text) corresponding to the 100 most devel-

oped tiles and the 100 features corresponding to the 100 least developed tiles. These 200

training tiles are a subset of the 400 training tiles used in the image level classification

above.

Once trained, the SVMs are used to label each of the 4,041 test tiles as developed or

undeveloped again using a single feature. Note that this results in only a binary label for

each tile; the fraction developed value is not estimated when the SVM labelling is done

at the tile level (we have not yet considered using the classifier margin for this).
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(a) (b)

Figure 2.20: Ground truth data for the 4,041 tiles in the test set. (a) Fraction map

indicating the percent developed for each 1x1 km tile. (b) Binary map indicating the

tiles labeled as developed (red) or undeveloped (green).

2.3.2 Results

The results are evaluated by comparing the predicted fraction values and binary labels

to that of the ground truth for the 4,041 tiles in the test set. The ground truth fraction

values and binary labels for the test set are shown in Figure 2.20.

Similar to the previous experiments above, the predicted fraction values are evaluated

based on their correlation with the ground truth values. The binary labels are evalu-

ated using classification rates. The overall classification rate is the percentage of tiles

assigned the same label–developed or undeveloped–as the ground truth.

As mentioned earlier, when the SVM labelling is performed at the image level, the

tile labels are determined by applying either a fixed or an adaptive threshold to the

aggregated image labels. In the fixed case, a tile is labeled as developed if the fraction

value is greater than 0.5 (i.e., more than 50% of its images are labeled as developed).

The adaptive threshold is chosen (through brute force) so that the resulting ratio of

developed to undeveloped tiles matches that of the ground truth. This prior knowledge

helps compensate for systematic biases in the predicted image labels.

Since 2,386 of the 4,041 test tiles are undeveloped in the ground truth, labelling all

images or all tiles as undeveloped results in a “chance” classification rate of 59.0%.
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Table 2.4: The results of the image level classification.

Binary Prediction

Overall Class. Rate

Fixed Adaptive Fraction

Threshold Threshold Prediction

Dataset Visual Feature % % ρ
Geograph Color 70.9 73.0 0.519

Geograph Edge 70.7 73.1 0.528

Geograph Gist 75.0 75.0 0.614
Flickr Color 63.5 64.3 0.317

Flickr Edge 65.6 65.1 0.376

Flickr Gist 68.8 69.2 0.425

(a) (b)

Figure 2.21: The predicted fraction values (a) and binary labels (b) that result from

using gist features to classify Geograph images as developed or undeveloped. Compare

with the ground truth in Figure 2.20.

Results of the Image Level Classification

Table 2.4 summarizes the results when the SVM classification is performed at the image

level. The predicted fraction values and binary labels for the best case corresponding

to Geograph images classified using gist features are shown visually in Figure 2.21.

Compare this with the ground truth values and labels in Figure 2.20.

Based on these results, we conclude the following about the case when the classifiers

are applied at the image level:

• The Geograph dataset outperforms the Flickr dataset.



43

Table 2.5: The results of the tile level classification.

Binary Prediction

Dataset Feature Overall Class. Rate (%)

Geograph Color 68.8

Geograph Edge 72.2

Geograph Gist 74.0

Geograph Text 74.2

Flickr Color 70.5

Flickr Edge 69.7

Flickr Gist 68.0

Flickr Text 49.4

• The gist features perform best overall. The edge histogram features perform better

than the color histogram features. This ordering is true for both datasets.

• The adaptive threshold improves the overall classification rate in most cases.

Results of the Tile Level Classification

Table 2.5 summarizes the results when the SVM classification is performed at the tile

level. Based on these results, we conclude the following about this case:

• The Geograph dataset outperforms the Flickr dataset except when using the color

histogram features.

• The relative performance of the visual features depends on the dataset. For the

Geograph dataset, the ordering is the same as for the image level classification

with the gist features performing best overall followed by the edge histogram

features. This ordering is reversed for the Flickr dataset.

• The text features perform better than the visual features for the Geograph dataset

but much worse for the Flickr dataset.

When comparing the tile level to the image level classification, we conclude:

• Aggregating the color and edge histogram features at the tile level results in worse

performance for the Geograph dataset but significantly better performance for the
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Table 2.6: Detailed classification results. The first column indicates the dataset. The

second column indicates whether the classification is performed at the image or tile

level. The third column indicates the feature. The fourth column indicates whether a

fixed or adaptive threshold is used to derive the binary label from the fraction value.

Columns five through eight indicate the true-positive, true-negative, false-positive, and

false-negative rates in terms of the number number of tiles and the percentage. The test

dataset contains 4,041 tiles of which 1,655 have positive labels (labeled as developed in

the ground truth).

Data. Lev. Fea. Thresh. TP TN FP FN

Geo. Im. Col. Fix. 1235 (74.6%) 1632 (68.4%) 754 (31.6%) 420 (25.4%)

Geo. Im. Col. Ad. 1089 (65.8%) 1860 (78.0%) 526 (22.0%) 566 (34.2%)

Geo. Im. Edge Fix. 1310 (79.2%) 1549 (64.9%) 837 (35.1%) 345 (20.8%)

Geo. Im. Edge Ad. 1094 (66.1%) 1859 (77.9%) 527 (22.1%) 561 (33.9%)

Geo. Im. Gist Fix. 1228 (74.2%) 1804 (75.6%) 582 (24.4%) 427 (25.8%)

Geo. Im. Gist Ad. 1228 (74.2%) 1804 (75.6%) 582 (24.4%) 427 (25.8%)

Fli. Im. Col. Fix. 1277 (77.2%) 1291 (54.1%) 1095 (45.9%) 378 (22.8%)

Fli. Im. Col. Ad. 933 (56.4%) 1664 (69.7%) 722 (30.3%) 722 (43.6%)

Fli. Im. Edge Fix. 1358 (82.1%) 1292 (54.1%) 1094 (45.9%) 297 (17.9%)

Fli. Im. Edge Ad. 976 (59.0%) 1656 (69.4%) 730 (30.6%) 679 (41.0%)

Fli. Im. Gist Fix. 1258 (76.0%) 1524 (63.9%) 862 (36.1%) 397 (24.0%)

Fli. Im. Gist Ad. 1031 (62.3%) 1764 (73.9%) 622 (26.1%) 624 (37.7%)

Geo. Tile Col. NA 1305 (78.9%) 1475 (61.8%) 911 (38.2%) 350 (21.1%)

Geo. Tile Edge NA 1302 (78.7%) 1614 (67.6%) 772 (32.4%) 353 (21.3%)

Geo. Tile Gist NA 1208 (73.0%) 1784 (74.7%) 602 (25.2%) 447 (27.0%)

Geo. Tile Text NA 1061 (64.1%) 1936 (81.1%) 450 (18.9%) 594 (35.9%)

Fli. Tile Col. NA 1055 (63.7%) 1794 (75.2%) 592 (24.5%) 600 (36.3%)

Fli. Tile Edge NA 1026 (62.0%) 1792 (75.1%) 594 (24.9%) 629 (28.0%)

Fli. Tile Gist NA 1228 (74.2%) 1518 (63.6%) 868 (36.4%) 427 (25.8%)

Fli. Tile Text NA 1012 (61.1%) 986 (41.3%) 1400 (58.7%) 643 (38.9%)

Flickr dataset.

• Aggregating the gist features at the tile level results in reduced performance for

both datasets.

Detailed Results

Finally, table 2.6 presents detailed results in the form of the true-positive, true-negative,

false-positive, and false-negative counts and rates for each of the experimental configu-

rations. We make the following conclusions based on these results:
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• The image level SVM classifiers appear to overclassify the images as being de-

veloped. This bias is evident in the fact that the threshold applied to the fraction

values in order for the the ratio of the developed to undeveloped tiles in the pre-

dicted set to match that of the ground truth is always greater than 0.5. The optimal

threshold (not shown) ranges from 0.51 for the Geograph-color case to 0.66 for

the Flickr-edge case. The one exception is the Geograph-gist case for which a

threshold of 0.5 is optimal.

• The edge histogram features result in the highest image level overclassification,

followed by the color histogram features.

• The tile level SVM classifiers have mixed biases. With regard to the visual fea-

tures, the Geograph-color, Geograph-edge, and Flickr-gist appear to be biased

towards the developed class in that they have higher false-positive than false-

negative rates. The Geograph-gist, Flickr-color, and Flickr-edge are biased to-

wards the undeveloped class. The text features are heavily biased towards the

undeveloped class for the Geograph dataset but heavily biased towards the devel-

oped class for the Flickr dataset.

2.3.3 Discussion

The experiments above demonstrate that large collections of geo-referenced community

contributed photos can be used to derive maps of what-is-where on the surface of the

Earth. Binary land cover maps produced in an automated fashion using the visual and

text features of the images were shown to be qualitatively and quantitatively similar to

a ground truth dataset. We now discuss further insights into the proposed framework.

We showed that image level classifiers could be learned in a weakly supervised manner

by propagating the tile level labels to individual images located in those tiles. This has

clear benefits in terms of the manual effort required to train the classifiers. While our

training and test datasets are disjoint, they come from the same 100 × 100 km region.

We plan to explore how well classifiers trained on one region generalize to other regions
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especially for which land cover maps are not available or are out-of-date.

The Geograph dataset was shown to outperform the Flickr dataset demonstrating that

photographer intent is important for treating community contributed photos as VGI. This

is not an unexpected result since the Geograph images are contributed by users whose

goal is to collect geographically representative photographs. Since non-specialized col-

lections such as Flickr have better coverage, this finding raises the interesting research

question of how to use one dataset to improve another. Specifically, can the Geograph

dataset be used to derive filters or other mechanisms for improving the Flickr dataset.

We envision both top-down approaches such as removing images with faces which are

generally less geographically informative, as well as bottom-up approaches based on the

statistics of low-level image features.

The gist features were shown to outperform the color and edge histogram features for

classifying individual images as developed or undeveloped. This is in agreement with

other studies on using gist features for scene classification. The visual features are

complementary so combining them should result in improved performance.

While aggregating gist features at the tile level proved to be ineffective, using tile level

color and edge histograms was surprisingly effective especially for the Flickr dataset

in which the tile level labeling significantly outperforms the image level labeling. This

is interesting because it indicates that the aggregation helps remove the noise in non-

specialized datasets such as Flickr. We plan to explore richer representations of the

aggregate features such as Gaussian mixture or non-parametric kernel density models.

The text based analysis was shown to be effective for the Geograph but not the Flickr

dataset. This shows that photographer intent, here in terms of how individual images

are described and tagged, seems to have even more of an effect on the text associated

with the images than their visual content. Put differently, the fact that visual aspect of

the photo collections appears to be less affected by contributor intent suggests that it is

preferable over textual forms as a source of VGI.
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2.4 Removal of Geographically Uninformative Images

From the previous experiments, we show that learning models created using the Flickr

collection perform worse than the models created using the Geograph collection in land

cover classification. It is clear that not all images in Flickr are geographically infor-

mative because users of Flickr do not necessary share photos with the same intention

as Geograph’s users do. Our limited experimental results discussed in Section 2.2.2

suggest that removing photos containing human faces does not improve the overall clas-

sification results.

In this section, we focus on improving the fidelity of geographic information extracted

from a collection of Flickr photos, which will be used to train a land cover classifier.

When constructing the training samples for the classification, photos that are not geo-

graphically informative are automatically filtered out based on the physical properties

of the cameras recorded in their metadata. These properties include the model of the

cameras and the use of camera flash.

To be able to analyze a photo with visual features, the image quality of the photo must

be good. We assume that most photos taken by stand-alone cameras will produce better

quality than those taken by cameras in most mobile phones due to the less advanced

camera components used in mobile phones. As a result, we remove any photos taken by

cameras in mobile phones from the training data.

We also try to avoid photos taken indoors because they contain less information in regard

to whether the locations of where they are taken belong to developed or undeveloped

regions. Since most cameras fire their flash when taking indoor scenes, we remove any

photos taken when the camera flash is on from the training data. Even though cameras

may fire their flash when taking outdoor scenes, these photos usually capture close-

by objects under low-light conditions. Therefore, this type of outdoor photo is not as

informative and thus can be discarded as well.
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Table 2.7: Image level classification results on Flickr dataset using edge histogram

features.

Training Set Overall Class. Rate (%)

Flickr 65.6

Flickr Camera 65.7

Flickr Flash off 66.1

Flickr Flash on 64.8

2.4.1 Emperiments

To extract the camera properties, we use Flickr API to obtain the EXIF metadata of

each photo in the training set. We construct the Camera training set where photos taken

by cameras in mobile phones are removed based on the camera models listed in the

metadata. We also construct the Flash off training set in a similar fashion.

We follow the same experimental setup described in Section 2.3.1 to evaluate the qual-

ity of the training data. Edge histograms are used as the image features. We expect the

results will stay true to other image and textual features discussed in this chapter. Clas-

sifiers are trained according to the refined sets mentioned above. They are then applied

to the original whole test set.

From table 2.7, we see that removing photos taken by cameras in mobile phones or taken

when camera flash is off results in better classification performances. To validate our

hypothesis on camera flash usage, we also construct a training set (Flash on) containing

only photos taken when camera flash is fired. We can see that this training data performs

worse than the original training data.

Although the performance gain from removing geographic uninformative information

from the training data is subtle, our experiments illustrate that, with a more detailed

analysis, metadata from the photo collections can provide information that is useful to

the applications of proximate sensing.
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2.5 Summary

In this chapter, we propose a framework of using geo-referenced on-line photo col-

lections to perform a binary land cover classification into developed and undeveloped

regions as an example of proximate sensing. By comparing different sources of photo

collections as well as different features extracted from these photos and their metadata,

we have demonstrated that it is possible although challenging to extract geographic in-

formation from these on-line photo collections. This sets the course of our next inves-

tigation into using proximate sensing in land use classification, which will be discussed

in the following chapter.



Chapter 3

Land Use Classification

In traditional remote sensing, overhead images are used to distinguish between different

types of land cover such as vegetation, structures, or other features that cover the land;

however, it much more difficult to determine the type of land use a certain land cover

class belongs to. For example it is easy to locate a region with large buildings and

parking lots in the satellite view mode in Google Maps, but it is much more challenging

to use the satellite view to determine whether the region belongs to a shopping center or

a warehouse. To find out the answer, one can switch to the Street View mode and see

the images of nearby objects and scenes taken from the ground level. Although we do

not use images from Google’s StreetView in our experiments due to the limited visual

perspectives of the scenes the images capture, they serve as a good example of how

ground-level images can assist us in determining the land use of a location.

The Standard Land Use Coding Manual [Sta65] of the Urban Renewal Administra-

tion in the US Department of Commerce defines the following eight top-level land use

classes: residential; manufacturing; transportation, communications, and utilities; trade;

services; cultural, entertainment, and recreational; resource production and extraction;

and undeveloped land and water areas. While some of these classes might be recog-

nizable using remote sensed imagery, their subclasses are much more difficult. Trade

is partitioned into several subclasses including building materials, hardware, and farm

equipment; food; automotive; apparel and accessories; furniture; and eating and drink-

50
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ing. Services is partitioned into finance, insurance, and real estate; personal; repair;

professional (which is further partitioned into medical, dental, etc.); governmental; and

educational.

In this chapter, we use proximate sensing to establish a framework that uses ground-

level images of nearby objects and scenes to perform land use classification. We begin

with an experiment of classifying land use on two university campuses. SIFT features

are extracted from the photos collected according to the locations on the campuses, and

they are used to train classifiers to identify three types of land use: academic buildings,

residential buildings, and sports facilities. A land use map is created according to the

classification results from each campus.

We then extend our experiments to a larger dataset with eight urban land use classes.

The scope of this experiment is to highlight the benefit of using proximate sensing in

land use classification. Eight classifiers are trained using gist features extracted from

training images collected from the whole Great Britain area. These classifiers are then

applied to photos collected from the TQ square region, and we evaluate their classifica-

tion performance as well as create land use maps according to the results.

A portion of the work presented in this chapter was published as a peer-reviewed work-

shop paper at the Workshop on Geotagging and Its Applications in Multimedia in 2012

[LN12b]. The more recent work on eight urban classes is being prepared for conference

submission.

3.1 Land use Classification in University Campuses

In this section, a case study is conducted to validate the concept of applying proximate

sensing in land use classification on university campuses. We focus on land use classi-

fication on university campuses for three reasons: 1) these regions exhibit a variety of

land use classes in a compact geographic region; 2) ground-truth maps can be derived

from campus maps; and 3) there tends to be excellent social multimedia coverage due

to the technical savvy of students, educators, and researchers.
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Figure 3.1: Sample Flickr images for the University of California, Berkeley campus.

These are the actual locations of the images. These images clearly provide evidence on

how different parts of the campus are used.

Consider the set of Flickr images geolocated on the University of California, Berkeley

campus in Figure 3.1. These images clearly provide evidence on how different parts

of the campus are used. While the content of these images could be used to identify a

wide range of land uses such as libraries, classrooms, different kinds of sports facilities,

laboratories, office space, entertainment venues, etc., we first focus on labeling regions

as belonging to one of the three coarse classes: academic, residential, and sports.

The novel contribution of this work is to use proximate sensing to complement the short-

coming of remote sensing for land use classification.

3.1.1 Dataset

Two university campuses (University of California, Berkeley and Stanford University)

are selected as our study areas to learn the land use classification models. We use

the Flickr application programming interface (API) to download Flickr images located

within the campus regions. For each campus, a land use map is derived manually ac-

cording to its campus map. Three land use classes are considered: academic buildings,



53

residential buildings, and sports facilities. Each downloaded image is then assigned a

land use class label according to its geographic location on the map. Figure 3.2 shows

sample images from each class.

Table 3.1: Datasets Used in Visual Image Level Classification

Academic Sports Residence Total
Berkeley Training 5029 2153 463 7645

Berkeley Test 2000 1500 50 3550

Stanford Training 1524 2772 747 5043

Stanford Test 200 200 100 500

Table 3.2: Datasets Used in Visual Group Level Classification

Academic Sports Residence Total
Berkeley Training 1517 365 122 2004

Berkeley Test 200 50 30 280

Stanford Training 504 204 186 894

Stanford Test 50 30 30 110

Table 3.3: Datasets Used in Textual Group Level Classification

Academic Sports Residence Total
Berkeley Training 1425 348 123 1896

Berkeley Test 150 30 20 200

Stanford Training 421 193 141 755

Stanford Test 50 20 20 90

Besides training the classifiers at the image level, we also train the classifiers at the group

of images level. Since the content of user contributed photos as well as the distribution of

user contributions are very diverse, many photos contributed by the same user may bias

the training data. As a result, we split the dataset into groups based on users (owners of

photos), geographic locations, and the time when the photos are taken. For each campus,

we first split all images into 20 sub-regions based on their geographic locations using k-

means clustering. These sub-regions are independent from the land use classes. Finally,

within each sub-region we group all the images taken by the same user on the same day.

Our grouping methodology is based on the assumption that same user takes photos of

similar scenes in a nearby location within a short period of time. Tables 3.1-3.3 provides

the details of the two campus datasets.



54

(a) Sample Academic Images

(b) Sample Sports Images

(c) Sample Residence Images

Figure 3.2: Sample images from the university land use datasets.

3.1.2 Features

Bag of Visual Words

We extract a bag of visual words (BOVW) feature with soft-weighing scheme [JNY07]

from each image. BOVW builds upon the local invariant features described in Section

1.5.1 by quantizing the features into visual words and then summarizing their distri-

bution in an image using a histogram. Instead of assigning a visual word nearest to a

keypoint detected, the soft-weighing scheme assigns 4 nearest visual words to a detected

keypoint. A dictionary of 500 visual words is used in our implementation.

Text

Since Flickr images commonly have user-supplied text associated with them, we also

study the effectiveness of this text for land use classification. To obtain the text features,

we create a dictionary of terms based on the words extracted from the image title, de-

scriptions, and tags associated with each image. After applying stopping and stemming,

a total of 2457 unique terms are recorded, and out of these, the 1949 most frequent terms
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are selected as the dictionary.

The text analysis is performed at the group level since there is typically not enough text

associated with the individual images for effective classification. We follow the same

pLSA scheme described in Chapter 2 to extract the text features.

3.1.3 Experiments

The goal of the experiments is to use the geo-referenced on-line photos as represented

by their visual or text features to perform land use classification. We formulate this as a

supervised classification problem in which support vector machines (SVMs) are trained

on a labeled subset of the data and then used to assign labels to a disjoint held-out set.

We compare applying the SVMs 1) at the image level and 2) applying them at the group

level. These two modes are described in the following subsections. Performance is

evaluated at two levels. First at the image or group level, and the second by comparing

the predicted land use maps to the ground truth maps derived manually from the campus

maps. The workflow of the experiments is illustrated in Figure 3.3.

The SVMs are implemented using radial basis function (RBF) kernels. We determine

optimal values for the two parameters, the penalty term and the kernel width, through

grid-search on a random partitioning of the training set.

Image Level Classification

In this set of experiments, the SVMs are used to classify individual images as being

academic, sports, or residential. We use a one-versus-all approach to train the SVMs

for each campus and class. To generate a predicted land use map, we first divide each

campus into a map of 50x50 regions (tiles). The trained SVMs are then used to label

each of the test images within each tile. As a result, each tile is represented by three

ratios of images being classified into the three respective classes–e.g., academic versus

other. We use the label of the highest ratio to assign a land use label to each tile for

comparison with the ground truth maps.
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Figure 3.3: Framework of the proposed approach.

Table 3.4: Visual image level classification accuracy

Berkeley Test Sets Stanford Test Sets
Training Sets Academic Sports Residential Academic Sports Residential

Berkeley Academic 82 17 36 62 27 39

Berkeley Sports 18 84 68 42 72 65

Berkeley Residential 44 57 97 59 59 80
Stanford Academic 64 36 69 75 31 58

Stanford Sports 28 73 54 28 85 44

Stanford Residential 44 57 96 55 54 84

Group Level Classification

In this set of experiments, the SVMs are used to label the groups directly. A single visual

feature is computed for each group by averaging the features from all the images within

the group. The text features are already computed at the group level so no aggregation

is needed. Due to the fact that not all images have accompanying text, the size of the

training sets for the text features is slightly reduced from that of the image features.
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(a) (b)

Figure 3.4: Land use classification of the Berkeley campus. (a) Ground truth map. (b)

Predicted map using classifiers trained on the Stanford dataset. Academic, sports, and

residential are denoted by red, green, and blue.

(a) (b)

Figure 3.5: Land use classification of the Stanford campus. (a) Ground truth map. (b)

Predicted map using classifiers trained on the Berkeley dataset. Academic, Sports, and

Residential are denoted by red, green, and blue.

Table 3.5: Visual group level classification accuracy

Berkeley Test Sets Stanford Test Sets
Training Sets Academic Sports Residential Academic Sports Residential

Berkeley Academic 74 19 18 58 24 33

Berkeley Sports 25 86 84 46 78 67

Berkeley Residential 28 82 90 55 73 73
Stanford Academic 60 36 39 68 30 45

Stanford Sports 29 81 76 40 84 60

Stanford Residential 29 82 89 55 73 73



58

Table 3.6: Textual group level classification accuracy

Berkeley Test Sets Stanford Test Sets
Training Sets Academic Sports Residential Academic Sports Residential

Berkeley Academic 80 12 16 66 21 28

Berkeley Sports 21 88 85 39 81 70

Berkeley Residential 25 85 90 44 78 78
Stanford Academic 66 33 37 72 23 46

Stanford Sports 22 87 82 37 83 70

Stanford Residential 25 85 90 44 78 78

Table 3.7: Precision and recall rates
Visual Image Visual Group Textual Group

Training Sets Test Sets Precision Recall Precision Recall Precision Recall
Berkeley Academic Berkeley Academic 0.80 0.92 0.76 0.94 0.80 0.98

Berkeley Sports Berkeley Sports 0.92 0.67 0.81 0.26 0.75 0.30

Berkeley Residential Berkeley Residential 0.13 0.14 1.0 0.03 0 0

Berkeley Academic Stanford Academic 0.52 0.93 0.52 0.98 0.62 0.96

Berkeley Sports Stanford Sports 0.79 0.41 0.80 0.27 0.67 0.30

Berkeley Residential Stanford Residential 0.50 0.05 0 0 0 0

Stanford Academic Berkeley Academic 0.83 0.46 0.74 0.68 0.82 0.70

Stanford Sports Berkeley Sports 0.67 0.71 0.48 0.38 0.61 0.37

Stanford Residential Berkeley Residential 0.03 0.06 0 0 0 0

Stanford Academic Stanford Academic 0.72 0.63 0.62 0.78 0.74 0.78

Stanford Sports Stanford Sports 0.79 0.85 0.83 0.50 0.78 0.38

Stanford Residential Stanford Residential 0.84 0.25 0 0 0 0

3.1.4 Results

The different approaches are evaluated based on their accuracy, precision, and recall.

Accuracy is the number of correctly predicted labels (both positive and negative) for a

particular classifier normalized by the size of the particular test set. It is reported as

a percentage. For example, if the binary classifier trained on the Berkeley Academic

dataset classifies 320 of the 500 images in the Stanford test set correctly then the ac-

curacy is 60%. An “accuracy” value can also be computed when a classifier is used

to detect a class other than the one it is trained for. For example, the binary classifier

trained on the Berkeley Academic dataset can be applied to the Stanford test with the

sports images as the positive labels. In this case, a low accuracy value would be a good

result. Precision is the fraction of images that are assigned a particular class that actu-

ally have that class and recall is the fraction of the images with a particular class that are

assigned that class.
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Table 3.4 summarizes the visual image level classification accuracy of each classifier

trained using one class and applied to detect another class for both the intra- and inter-

campus cases. These results clearly demonstrate that the classifiers are learning discrim-

inating visual features for the three different land use classes. Classifiers trained on a

particular class are always more likely to detect that class than another. As might be

expected, the intra-campus results are better than the inter-campus ones. However, the

approach is seen to generalize quite well from one campus to another. The high values

for the residential class can be explained by the relatively few images in this test set

especially for the Berkeley campus.

Table 3.5 summarizes the visual group level accuracy. The classification performance

at the visual group level is comparable to that at the visual image level. This is signif-

icant since grouping the images results in smaller number of training samples, greatly

reducing the computational cost of the SVM learning.

Table 3.6 summarizes the textual group level classification accuracy. We can see that

despite the diversity of text accompanying the images, pLSA is able to extract sufficient

discriminating semantic information to distinguish the classes.

Table 3.7 summarizes the precision and recall rates for each approach. These results

corroborate those of the accuracy results: the classifiers are able to distinguish between

different classes; the intra-campus results are better than the inter-campus but the gener-

alization is still good; and that the visual group and textual group results are comparable

to that of the visual image. The poor precision and recall values for the Berkeley resi-

dential class are again a result of there being too few images in this dataset.

Finally, we produce land use maps using the visual image classifications. We first di-

vide the test images into a map of 50x50 regions (tiles) according to their geographic

locations. The trained SVMs are then used to label each of the test images. As a result,

each tile is represented by three ratios of images being classified as the three respective

classes. We use the label of the highest ratio to assign a land use label to each tile label.

Figures 3.4 and 3.5 show the classification maps compared to the ground truth maps of

each campus. Since there are not enough test images to generate a map for each campus,
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we use the cross-campus classifiers to classify the entire image set of each campus. We

note that most of the academic class regions are correctly identified due to the strong

performance of this classifier. The Stanford sports classifier is also able to locate a sig-

nificant amount of the sports class regions correctly on the Berkeley campus. On the

other hand, we can see that many labels of the residential class are missing due to the

failure of this classifier.

3.1.5 Discussion

The work in this section represents a proof-of-concept of land use classification using

geo-referenced on-line photos. Of course, land use maps at least in the form of campus

maps already exist for university campuses. We expect our approach to generalize to

other areas for which land use maps are not available. However, the ground truth for

these regions will be more difficult to derive which is part of the reason we focused on

university campuses here. In the following section, we will extend our work to creating

land use maps of different urban land use classes in a larger dataset.

3.2 Mapping Urban Land Use in Great Britain

In the previous section, we have presented an example of how to use geo-referenced on-

line photos to perform land use classification. We assume all the photos taken within a

region belong to a same land use class. Due to the small study area and errors introduced

during manual labeling using existing maps however, the accuracy of the location where

each photo is taken cannot be verified. As a result, photos belonging to a specific class

may be misplaced in a wrong region and thus weakening the classification performance.

In this section, we will overcome this problem by hand-picking the training sets and

enlarging our study area. The objective of our experiment presented in this section is to

locate eight types of land use classes in a large study region in Great Britain.
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3.2.1 Dataset

The study area is the same TQ square of Great Britain we have used in Chapter 2, and

we use photos from the Geograph dataset in our experiment. Since land use information

is not available for our study area, we construct our training sets manually. Instead of

assigning a class label to all the photos within a specific region, we use the Geograph

API to perform keyword search to collect relevant photos for each training set. As a

result, the photos collected can better represent their corresponding training classes.

Since our goal is to map land use classes in the TQ region, we use photos collected

from outside the TQ region as the training sets. Eight land use classes are considered:

church (specified by church interior), clock tower, fast-food outlet, ferry, fire station,

flat, lighthouse, and memorial. The reason of choosing these eight types of land use

classes is to illustrate the strength of proximate sensing. Most of these classes can be

found in urban areas where they are difficult to be distinguished from overhead images.

By using ground-level images, we expect that these classes can be identified. Figure 3.6

shows the sample photos from each of the eight classes. To evaluate the classification

performance, a test set for each class is constructed by using keyword search to collect

photos within the TQ region. Therefore, the training and test sets are mutually exclusive.

Table 3.8 lists the number of photos used in this experiment.

Table 3.8: Data used in urban land use classification

Class Training Test
Church interior 2000 1373

Clock tower 894 232

Fast-food outlet 461 76

Ferry 1913 51

Fire station 2000 294

Flats 1969 1186

Lighthouse 2000 36

Memorial 1263 86

Background 17600 NA
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(a) Church Interior (b) Church Interior (c) Ferry (d) Ferry

(e) Fast-food Outlet (f) Fast-food Outlet (g) Clock Tower (h) Clock Tower

(i) Fire Station (j) Fire Station (k) Flats (l) Flats

(m) Lighthouse (n) Lighthouse (o) Memorial (p) Memorial

Figure 3.6: Sample photos of the eight urban land use classes.
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3.2.2 Experiments

We set up this experiment as a supervised multi-class classification problem with one-

versus-all approach. A binary support vector machine (SVM) is trained for each class.

The training set of each class is constructed such that the ratio between positive and

negative samples is 1 to 2, where the negative samples are evenly selected from the

rest of the classes as well as from the background photos. After the training stage, the

resulting class models are then used to predict labels of the photos from each test set.

The SVMs are implemented using radial basis function (RBF) kernels. We determine

the optimal values for the two parameters, the penalty and the kernel width, through

grid-search on a random partitioning of the training set.

We use gist as the input features of the SVMs due to their superior performance over

other image features as observed in Chapter 2.

To create land use maps, we apply classifiers trained for the eight classes to all the

photos collected within the TQ region. The TQ region is subdivided into 10,000 tiles

and the label of each tile is the number of photos that are classified as belonging to a

certain land use class. In an other word, each map of a certain land use class displays

the spatial distribution of positive classifications across the TQ region. There are about

120,000 test photos in the TQ region.

Soft classification is used to produce soft-margin results instead of binary results in cre-

ating the land use maps. These soft-margin results represent how confident a classifier is

when it assigns a label to a test photo. A higher positive value means a positive label is

predicted with a higher confidence. To reduce the amount of false positive classification,

we only consider a result with a margin higher than 1.0 to be a positive prediction. Each

test photo is tested against all eight classifiers, and the class of that photo is determined

by the class of the classifier producing the highest soft-margin result. As a result, each

test photo is labeled as one of the eight land use classes.
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3.2.3 Results

Figure 3.7 shows examples of test photos that are correctly classified into the eight land

use classes. The classification results are listed in Table 3.9. We can see that the classifier

of each class performs best when tested against its own class. In an other word, these

classifiers are able to distinguish land use classes from each other. From the results,

we also see that some classifiers have a higher false positive rate when tested against

photos of certain classes. For example the model of fast-food outlet performs worst in

fire station’s test data, and the model of clock tower performs worst in lighthouse’s test

data. This may be due to the lack of positive training samples as well as the similarities

between the classes. However, with sufficient amount of training samples, models of fire

station and lighthouse perform much better when tested against photos from the other

classes.

We also notice that the model of church interior performs very well even when it is tested

against the photos from other classes. Although churches may have similar structural

parts as clock towers and memorials, photos of church interior distinguish churches

from the other two structures. This illustrates that using photos taken from inside a

building can provide additional information and assist proximate sensing in land use

classification.

Furthermore, we observe that some classifiers are able to provide information about the

spatial relationship between certain land use classes. The model of lighthouse has a

higher false positive rate when tested against photos from the ferry class (similar result

is observed vice versa). This suggests that the two classes are spatially correlated. In

fact, photos from the two classes usually contain similar scenes: water, land, and sky,

and both classes sometimes appear in the same photo. Even though the classification

performance of those two class models is not high, the false positive rates among those

two classes can be further exploited to provide extra spatial information that will be

useful to enhance the performance of land use classification.

The land use maps of the eight land use classes are displayed in Figure 3.8. The yellow

lines indicate the shoreline of the study region. Since the land use data of the region
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is not available, we cannot perform any quantitative analysis to verify the accuracy of

the maps. We can only assume the accuracy of each map according to the accuracy of

each classifier. For the classifiers with high accuracy such as church interior, we see

that the spatial distribution of the class is more centralized toward certain areas. For the

classifiers with low accuracy on the other hand, the spatial distribution becomes more

scattered due to the high false positive rate.

From the land use maps, we can see that most of the positively identified photos appear

to be located in the urban areas of the study region (the bright area at the top left-hand

corner is the greater London metropolitan area). Furthermore, the maps of ferry and

lighthouse classes are able to locate the shoreline of the study region as well as the river

front of the River Thames, which is located at the top of the map. Once again these two

maps show the spatial correlation between the two classes.

Table 3.9: Results of urban land use classification. Each row represents the results of

one class model tested against test set of different classes.
Church interior Clock tower Fast-food outlet Ferry Fire station Flats Lighthouse Memorial

Church interior 87.18 14.66 11.84 11.76 9.52 10.54 0 15.12

Clock tower 19.67 45.69 11.84 25.49 19.39 14.84 22.22 15.12

Fast-food outlet 22.36 21.12 75 15.69 41.16 31.7 16.67 9.3

Ferry 2.84 10.78 11.84 45.1 5.1 9.78 27.78 9.3

Fire station 5.54 12.93 14.47 9.8 54.76 15.68 25 9.3

Flats 8.59 27.16 36.84 16.69 37.42 58.01 0 11.63

Lighthouse 2.55 16.81 2.63 23.53 3.06 3.37 52.78 13.95

Memorial 6.05 14.22 1.31 13.73 1.7 6.66 5.56 20.93

3.3 Summary

In this chapter, we have illustrated that land use classification can be performed using

proximate sensing. Although large scale public land use data is not available to use as

ground truth, we are able to validate our hypothesis by using the two datasets we have

created. We hope that further studies on this topic will eventually assist in creating more

diverse and accurate land use data.

Thus far we have used low- and mid-level image features to help us extract geographic

information for land use classification. We will explore the idea of using object detectors

as high-level features to tackle this problem in the next chapter.
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(a) Church Interior (b) Church Interior (c) Ferry (d) Ferry

(e) Fast-food Outlet (f) Fast-food

Outlet

(g) Clock Tower (h) Clock

Tower

(i) Fire Station (j) Fire Station (k) Flats (l) Flats

(m) Lighthouse (n) Lighthouse (o) Memorial (p) Memorial

Figure 3.7: Correctly classified test photos of the eight urban land use classes.
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(a) Church Interior (b) Ferry (c) Fast-food Outlet

(d) Clock Tower (e) Fire Station (f) Flats

(g) Lighthouse (h) Memorial

Figure 3.8: Land use maps of the eight urban land use classes generated using gist

features. Each subregion is represented by the number of positively labeled photos in

log scale.



Chapter 4

Object Detection for Land Use

Classification

On-line photo sharing websites such as Flickr and Picasa have become popular channels

for people to share their precious memories with one another. Although these photo

collections capture many memories, they also contain other information that may be

interesting particularly in different contexts. We usually think of the 5 W’s and 1 H

(Who, What, Where, When, Why, and How) when we read literature, but each of the

photos in the collections can also provide us with some of these six types of information.

Therefore, we can say that these online photo sharing websites act as a repository of

all kinds of information. This allows individuals to perform knowledge discovery by

crowdsourcing of information through these photo collections. With more than 200

million geo-referenced photos available from Flickr, our goal is to map what-is-where

on the surface of the Earth using the “What” and “Where” aspects of the information.

In particular, we explore the idea of extracting geographic information semantically for

land use classification by applying object detectors directly to the photo collections.

In the previous chapters, our experiments show that low- and mid-level image visual fea-

tures extracted from the geo-referenced on-line photos enable us to perform geographic

knowledge discovery. However, these features do not characterize the image at a seman-

tic level. As we have mentioned the 5 W’s and 1 H at the beginning, it is very difficult
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to extract these types of semantic information by using the pixel values of the photos.

As a result, a high-level or top-down approach to solve the problem is considered.

In this chapter, we will study if off-the-shelf (pre-trained) object detectors can be used to

extract useful geographic information to perform land use classification. We propose a

novel framework of using state-of-the-art object detectors to perform geographic knowl-

edge discovery in large collections of geo-referenced on-line photos. This framework

can be applied to any land use classes, especially classes that cannot be discerned by

using overhead images.

A portion of the work presented in this chapter was published as a peer-reviewed work-

shop paper at the International Workshop on Location Based Social Networks in 2012

[LN12a].

4.1 Experiment

Our focus in this work is to investigate whether object detectors can extract geographic

information that is useful for land use classification from the geo-referenced photo col-

lections. As a first step, we explore whether the object detectors can produce maps of

objects with distinctive spatial distributions within a study region.

Our study region is the 10x11km center of metropolitan London, Great Britain. This

region includes commercial, residential, as well as recreational areas. We divide the

study region into 110 1x1km sub-regions (tiles) and collect photos according to the

coordinates of each tile using the Flickr API. We then apply detectors of 177 objects to

these photos. Table 4.1 shows a list of objects detectors used in this experiment.

The object detectors we apply in this work are the Object Bank representation developed

by Li et al. [LSX10]. It is an implementation of the latent SVM detectors [FMR08] and

texture classifiers [HEH05] for 177 objects in different scales and spatial pyramid levels.

To detect an object at different sizes, we set the scale level to the maximum of 12 and

select the highest detection rate value among the 12 levels as the detection rate for each
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Table 4.1: List of objects detectors used in this experiment.
shield fruit people fork elephant dog

plate Ferris wheel shoe candle pen room light

television A bottle pup tent baggage mountain boot

keyboard coral hat aircraft roller coaster cat

sky aquarium floor streetlight lion bird

kitchen balloon elevator car computer mouse blind railing

rug soccer ball window propeller table flipper

television B baseball shower curtain dishwasher cupboard mouse

clock bus gravel cow turtle wall

toilet seat motorcycle truck cabinet bathtub saddle

basketnall hoop cesspool tower gallery desk wing

beach jersey pool table human stick drawer

door fence writing desk newspaper horse cloud

vase tree camera blanket bench snake

button clam cross suit duck light

computer screen printer sailboat key backboard ocean

spectacles garage snail computing system bride boat

basketball radio goggles hook aqualung basketball court

helmet bridal gown bed towel bear animal

pot flower bag sail public toilet swing

ball car cell face veil monkey microphone

pool ball filter loudspeaker umbrella rabbit squash racket

buckle curtain drum ship bus stop knife

wheel microwave laptop train telephone grass

seashore building sofa lamp groom rock

desktop computer switch airplane skyscraper bridge glove

mirror French horn rack box oxygen mask faucet

computer monitor mug table-tennis table baseball glove bouquet

stove soil dressing table male horse attire

electric refrigerator bookshelf guitar chair shelf
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object. Since our focus is to detect whether an object appears in a photo or not, the

spatial location of that object is not as relevant and therefore we only consider the first

level of the spatial pyramid. As a result, each photo will be represented by a distribution

of detection rates of the 177 objects. A threshold value is selected for each of the objects

so that a particular object is considered as present in a photo if the detection rate of this

object is higher than the corresponding threshold value. To generate a map of an object,

we count the number of photos labeled as containing the object within each geographic

tile and normalize the counts by the total number of photos within the tile. This forms

a distribution of that object across the tiles, hence the object map. Figure 4.1 shows the

framework of producing object maps.

In order for the results from the object detectors to be geographically informative, maps

of the detected objects should display distinctive spatial distributions. To study this

behavior, we perform spatial co-occurrence analysis on each object map. We treat each

object map as a grayscale image and evaluate its co-occurrence matrix by measuring

the distribution of spatially co-occurring object counts across the study region. We then

calculate the homogeneity of the co-occurrence matrix of each object. Homogeneity is a

measurement of closeness of distribution of the object counts in an object map. It ranges

from 0 to 1, where a 1 indicates that locations with similar number of objects detected

are clustered together. Objects with less homogeneity (or more heterogeneity) suggest

that these objects are not present evenly across the study region.

Besides the distinctiveness of the object distributions, it is interesting to investigate the

spatial correlations between objects since related objects should appear in the same land

use region. To measure the correlation between objects we compute the correlation

coefficients between the 10 objects that are the most heterogeneously distributed in the

study region. The correlation coefficient ranges from -1 to 1, where a 1 (or -1) suggests

that there is positive (or negative) linear relationship between the objects.
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4.2 Results

The 10 most heterogeneously distributed objects are listed in Table 4.2, and their cor-

responding object maps are shown in Figure 4.3. From Figure 4.3, we can see that

these 10 objects have different spatial distributions across the study region and we be-

lieve that these spatially distinctive distributions might provide meaningful geographic

information that could be useful for land use classification.

Table 4.2: The 10 most heterogeneously distributed objects.

Objects Homogeneity
Light 0.78

Sky 0.78

Fence 0.785

Desk 0.79

Gallery 0.79

Soil 0.795

Basketball hoop 0.8

Clock 0.8

Desktop computer 0.8

Boot 0.805

Table 4.3 shows the correlation coefficients for pairs of the 10 most heterogeneously

distributed objects. While we find pairs of objects such as desks and desktop computers,

plates and fruits, that are related logically, we also find some illogical pairs such as clams

and gallery, and plates and basketball hoops. As we further investigate this problem, we

discover that the detectors are often not detecting what they are designed to detect. In

other words, the false positive rate of the detectors is high. Figure 4.2 illustrates some

of the false positives from the detections.

4.3 Discussion

Our experimental results show promising opportunities of performing land use classifi-

cation by detecting objects and concepts from user contributed geo-referenced photos;

challenges clearly remain however.
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Table 4.3: Correlation coefficients for pairs of the 10 most heterogeneously distributed

objects.
Light Sky Fence Desk Gallery Soil Basketball hoop Clock Desktop computer Boot

Light 1.0000 0.2285 0.4196 0.1192 0.2191 0.5729 0.2406 0.2546 0.2438 0.5046

Sky 0.2285 1.0000 0.3861 0.2836 0.0650 0.3893 0.1466 0.1627 0.1838 0.3662

Fence 0.4196 0.3861 1.0000 0.4229 0.5803 0.5456 0.4455 0.4083 0.4369 0.5152

Desk 0.1192 0.2836 0.4229 1.0000 0.4428 0.1274 0.4329 0.3712 0.4853 0.5455

Gallery 0.2191 0.0650 0.5803 0.4428 1.0000 0.1691 0.4537 0.4232 0.6080 0.2406

Soil 0.5729 0.3893 0.5456 0.1274 0.1691 1.0000 0.2323 0.2108 0.1468 0.3750

Basketball hoop 0.2406 0.1466 0.4455 0.4329 0.4537 0.2323 1.0000 0.8988 0.6825 0.4016

Clock 0.2546 0.1627 0.4083 0.3712 0.4232 0.2108 0.8988 1.0000 0.5812 0.3565

Desktop computer 0.2438 0.1838 0.4369 0.4853 0.6080 0.1468 0.6825 0.5812 1.0000 0.5347

Boot 0.5046 0.3662 0.5152 0.5455 0.2406 0.3750 0.4016 0.3565 0.5347 1.0000

Figure 4.1: Framework for producing object maps.

(a) (b)

Figure 4.2: Examples of false detections. (a) A basketball hoop is detected. (b) A boot

is detected.
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(a) Light (b) Sky (c) Fence

(d) Desk (e) Gallery (f) Soil

(g) Basketball hoop (h) Clock (i) Desktop computer

(j) Boot

Figure 4.3: Spatial distributions of the 10 most heterogeneously distributed objects.

Each block corresponds to a 1x1km region in the study area. The intensities of the

blocks indicate the distribution of the detected objects.



75

Noise in datasets

Although the object detectors we applied are considered to be state-of-the-art based

on evaluation using standardized datasets in the computer vision community, they fail

to perform as well in the real-life photo collections that contain many different types

of photos and different styles of photography. This poses a challenge to using user-

contributed photo collections for geographic knowledge discovery because many of

these photos are not geographically informative. One aspect of our future work will

focus on how to pre-process the photo collections so that non-useful photos will be re-

moved from the collections before any image analysis takes place. One way of achieving

this might be to employ image processing techniques to remove photos with poor im-

age quality such as blurred and low-contrast photos. Furthermore, we can analyze the

textual information accompanying the photos and discard photos without any geograph-

ically informative text.

Latent information

Because the semantic information from the photo collections may not be extracted cor-

rectly due to the inaccuracy of the object detectors, we cannot determine the land use

class of any region directly based on the detected object appearances. However, the dis-

tinctiveness of the spatial distributions among objects suggests that the detectors are able

to observe differences across the study region. Although the detected “objects” may not

have any semantic meaning, they can serve as a mid-level, or latent, information that sits

between low-level and high-level image analysis. In our future work, we will investigate

the use of the resulting object distributions within each geographic tile as input features

to perform land use classification in a machine learning framework.
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4.4 Experiments on Land Use Classification Using Ob-

ject Detectors

Since the Object Bank detectors are able to capture the spatial information of different

objects, we use them here to perform the same urban land use classification described in

Chapter 3.2. For each of the photos in both training and test sets, we extract the Object

Bank feature in 12 scales and 3 spatial pyramid levels resulting in a feature of 44604

detection rates of 177 objects. To reduced the size of the feature, we pick the highest

detection rate from the results of each object detector. As a result, a 177 dimensional

feature is constructed as the input of the SVM classifiers. We follow the same framework

as described in Chapter 3.2.2 to train the classifiers and we compare the results to the

classifiers trained using gist features.

Results

Figure 4.4 shows the classification results of the classifiers using Object Bank features.

As expected, classifiers trained using Object Bank features are able to identify photos of

their own classes. In fact, we see that besides fast-food outlet, the classifiers of the rest

of the classes outperform the classifiers trained using gist features as compared to Table

3.9 in Chapter 3.2.

After training the classifiers, we also apply them to the photos taken from the TQ region

to generate land use maps. The land use maps of the eight classes are shown in Figure

4.4. We observe that the spatial distributions of each class is more concise due to the

low false positive rate from the classifiers. From the map of ferry, we can even see the

resemblance of River Thames stretched between the coast and London.
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Table 4.4: Results of urban land use classification using Object Bank features. Each

row represents the results of one class model tested against test set of different classes.
Church interior Clock tower Fast-food outlet Ferry Fire station Flats Lighthouse Memorial

Church interior 89.17 12.07 5.56 2 0.68 2.45 0 16.47

Clock tower 13.65 75.43 9.72 0 4.79 9.63 32.35 22.35

Fast-food outlet 11.7 4.74 56.94 16 49.32 19.17 11.76 4.71

Ferry 1.01 3.02 5.56 56 1.03 5.66 29.41 2.35

Fire station 0.58 0 8.33 2 66.44 10.64 0 3.53

Flats 2.96 8.62 26.39 8 29.8 64.78 0 4.71

Lighthouse 0.79 12.93 1.39 14 1.03 2.62 70.59 10.59

Memorial 11.05 14.22 2.78 4 1.37 2.45 20.59 42.35

(a) Church Interior (b) Ferry (c) Fast-food Outlet

(d) Clock Tower (e) Fire Station (f) Flats

(g) Lighthouse (h) Memorial

Figure 4.4: Land use maps of the eight urban land use classes generated using Object

Bank features. Each subregion is represented by the number of positively labeled photos

in log scale.
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4.5 Summary

In this chapter, we applied off-the-shelf object detectors to a collection of geo-referenced

photos for the purpose of extracting semantic information from the collection. Although

the detectors themselves have high detection errors, the maps they produce indicate a

large range of spatial variation among objects and therefore may be used as a discrim-

inative tool for land use classification. This assumption is further verified by the ex-

perimental results of applying Object Bank detectors to urban land use classification in

Great Britain.



Chapter 5

Conclusion

In the 45 minutes or so it has taken you to read this dissertation, over four thousand

geo-referenced photos have been uploaded to Flickr. These photos along with the other

forms of geo-referenced on-line media contributed during this brief period are a valu-

able source of VGI that contain timely geographic information. The challenge to the

multimedia content analysis and related computer science research communities is how

to make sense of this data.

In this dissertation, we have presented one possible framework based on proximate

sensing and showed how it could be used to perform binary land cover classification

into developed and undeveloped regions based on the visual and textual aspects of geo-

referenced on-line photos. Our extensive studies on land cover classification using more

than a million images show that photographer intent of a photo collection plays a big

role in the capability of extracting geographic information from the collection. As a re-

sult, removing geographic uninformative images while crowdsourcing information from

the on-line photo collections is a major challenge of proximate sensing.

To demonstrate the benefits of proximate sensing, we have presented a framework of

applying it on land use classification, a more challenging problem in remote sensing

due to the limitations of overhead images. Our evaluations on two independent datasets

show that ground-level on-line photos can supplement the overhead images to perform
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land use classification.

The last problem this dissertation addresses is to perform land use classification using

a top-down approach. We apply off-the-shelf object detectors to map different objects

in a study area and perform spatial analysis on these object maps. Our study finds that

although some of these object detectors produce high detection errors individually, the

object maps they have created are actually spatially distinctive. To follow-up with this

finding, we apply these detection results as intermediate features to train the land use

classifiers. Our experiment shows that not only can the object detectors be used in land

use classification, but they also outperform the performance of using low- and mid-level

visual features.

The next step of our future work will be improving the classification performance. Thus

far, we only use generic features and classification algorithms to validate our concept

of proximate sensing in geographic discovery. Although our experiments produce en-

couraging results, we need to fine-tune each step of our framework so that the results

can be applied into real life situations. In terms of image features, both low-level and

high-level have proven to be useful in extracting geographic information from our image

datasets. It will be interesting to see if combinations of these as well as other features

will produce a better result. In terms of classifiers, other algorithms shall be researched

especially when training images are scarce to provide enough data for the SVMs we use.

Another interesting direction is to explore the potential use of the metadata from the im-

ages. Even though our initial experiments on using EXIF data do not indicate the benefit

of using the metadata, we believe further mining of this data with proper tools should

help us extract geographic information more effectively. Finally, we have seen spatial

relationships between land use classes or objects in our experiments. Tobler’s first law

of geography states that all things are related, but nearby things are more related than

distant things [Tob70]. Prior knowledge of the spatial distribution of any land cover or

land use regions could improve the classification performance. There is a wealth of spa-

tial models which could be incorporated into the proximate sensing framework ranging

from linear estimation like kriging to generative probabilistic models based on Markov

random fields. However, it is not clear whether these models will spatially scale-down
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to the granularity of the analysis that is made possible geo-referenced on-line media, or

whether new models are required. This could be an interesting research topic for the

spatial analysis community.

With the experiments presented in this dissertation, we have demonstrated that it is

possible to perform geographic knowledge discovery using geo-referenced ground-level

on-line photo collections. We feel this is a good start to the problem but that many

interesting challenges and opportunities remain ahead.
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