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P. Sarangi, M. C. Hücümenoglu and P. Pal, “Single-Snapshot Nested Virtual Array Completion:
Necessary and Sufficient Conditions,” IEEE Signal Processing Letters, vol. 29, pp. 2113-2117,
2022.

P. Sarangi and P. Pal, “Measurement Matrix Design for Sample-Efficient Binary Compressed
Sensing,” IEEE Signal Processing Letters, vol. 29, pp. 1307-1311, 2022.

P. H. L. Nguyen, S. Rubin, P. Sarangi, P. Pal, and Y. Fainman, “SERS-based ssDNA composition
analysis with inhomogeneous peak broadening and reservoir computing,” Appl. Phys. Lett., vol.
120, no. 2, p. 023701, 2022.

S. Shahsavari, P. Sarangi, and P. Pal, “Beamspace esprit for mmwave channel sensing: Perfor-
mance analysis and beamformer design,” Frontiers in Signal Processing 1, p. 20., 2022. [2022
Outstanding Article award (Signal Processing for Communications section), Invited Paper]
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P. Sarangi, M. C. Hücümenoglu and P. Pal, ”Understanding Sample Complexities for Structured
Signal Recovery from Non-Linear Measurements,” IEEE 8th International Workshop on Com-
putational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le gosier, Guadeloupe,
2019, pp. 81-85. [Best Student Paper Award (First Position)]

P. Sarangi and P. Pal, “Robust Sparse Phase Retrieval from Differential Measurements Using
Reweighted L1 Minimization,” IEEE 10th Sensor Array and Multichannel Signal Processing
Workshop (SAM), Sheffield, UK, 2018, pp. 223-227.

P. Sarangi and P. Pal. “Superresolution via bilinear fusion of multimodal imaging data,” In Big
Data: Learning, Analytics, and Applications, volume 10989, pages 128 – 134. International
Society for Optics and Photonics, SPIE, 2019. [Invited Paper]

xv



P. Sarangi, H. Qiao and P. Pal, “On the role of sampling and sparsity in phase retrieval for
optical coherence tomography,” IEEE 7th International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, 2017, pp. 1-5.

xvi



ABSTRACT OF THE DISSERTATION

Super-resolution under Extreme Sampling Constraints: Theory and Algorithms

by

Pulak Sarangi

Doctor of Philosophy in Electrical Engineering
(Signal and Image Processing)

University of California San Diego, 2023

Professor Piya Pal, Chair

High dimensional inverse problems are at the heart of numerous modern signal processing

and machine learning applications, where the goal is to sense the physical environment and infer

parameters of interest residing in a high-dimensional ambient space, from low-dimensional (non)-

linear measurements. Despite the rapid growth in the volume of data that is being generated in

the form of images, videos, and sensors, there are restrictions imposed by the physical constraints

of the sensing system. For instance, in a scanning microscopy system, the frame rate and hence

the temporal resolution is limited by the speed of the scanning mirrors and the size of the field

of view (FOV). Similarly, in the modern hybrid mmWave systems, although a massive number
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of antennas are deployed, the number of Radio Frequency (RF) chains is scarce due to their

high cost and power consumption. Therefore, it is crucial to design sensing paradigms that can

reliably recover the information of interest under such stringent sampling budgets. This requires

leveraging the underlying “low-dimensional” geometry of the signal (known as priors) to enable

reconstruction with relatively few measurements. Over the last two decades, several theoretical

and algorithmic techniques have been developed for tackling these under-determined systems,

the most well-known among them being sparse and low-rank signal/image reconstruction.

In this thesis, we primarily focus on the “ill-posed” inverse problem of super-resolution

with “extreme spatial/temporal sampling constraints” arising from real-world applications in

Neural Spike Deconvolution and Sensor Array Signal Processing. We especially focus on uncon-

ventional regimes where existing approaches based on sparsity, correlation and/or low rank priors

may fail. Broadly, super-resolution is concerned with the reconstruction of temporally/spatially

localized events (or spikes) from samples of their convolution with a low-pass filter. The problem

becomes ill-posed due to systematic attenuation of the high-frequency content of the underlying

spikes. Unlike classical compressed sensing, the under-sampling operation in super-resolution

does not correspond to observing random linear projections of the unknown signal of interest.

This prevents direct application of existing theoretical guarantees developed in the compressed

sensing literature. In contrast to prior works in super-resolution which exploit the role of sparsity

and/or non-negativity priors to solve the resulting ill-posed problem, this thesis explores the

problem of Binary Super-resolution, i.e., when the spike amplitudes are known apriori to be

binary-valued. We demonstrate that enforcing binary priors in under-determined linear inverse

problems can allow exact recovery (in absence of noise) in the non-standard regime where

the sparsity level of the spikes far exceeds the number of acquired measurements — which

henceforth is referred to as “extreme compression” regime. Past works have shown that it is

possible to operate in such a regime by leveraging multiple snapshots and statistical priors. On

the contrary, this thesis shows that multiple measurements may not be necessary to operate

in extreme compression in the face of binary constraints. We also show that standard convex-
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relaxation techniques for the binary constraint, such as box-constraints (that are widely used

in Binary compressed sensing), are inadequate for operating in extreme compression regimes

and they can introduce a certain bias in the support of the recovered spikes. We overcome the

computational challenges of enforcing binary constraints by exploiting the special structure of

the measurements that allow us to reformulate the problem as a binary search.

Despite the ability to recover finite-valued signals from uniformly downsampled measure-

ments for most filters, there might exist certain “adversarial filters” that result in ambiguity upon

uniform downsampling . We exhibit that the additional flexibility of designing the measurement

matrix (beyond uniform-sampling) can mitigate the effects of adversarial filters. We propose a

novel algorithm-measurement co-design framework where the measurement matrix is designed

as a function of the filter. In absence of noise, this framework can provably achieve the optimal

complexity of Ω(1), which is independent of dimension as well as sparsity of the binary signal.

Moreover, the recovery can be performed using a greedy sequential decoding algorithm with low

computational complexity.

The second half of this dissertation studies another class of problems with stringent

requirements on available spatial and temporal measurements. This problem arises in passive

sensing scenarios with sparse sensor arrays, where the goal is to perform source localization

with very few spatial sensors. Sparse array geometries such as nested arrays and co-prime arrays

have gained popularity due to their ability to identify more sources than sensors and offer very

high resolution compared to a uniform array with the same number of physical sensors. The

benefit is attributed to the ability of sparse arrays to exploit certain correlation structures in the

source signals, without increasing the spatial sensing budget. However, it is commonly believed

that sparse arrays inherently require a large number of temporal snapshots to obtain reliable

correlation estimation, and therefore, they may not be preferred in the so-called “sample-starved”

regimes, where the temporal snapshots are scarce. In applications like automotive radar and

mmWave communication systems, the sources/multipaths may be coherent and the environment

is dynamic due to the high mobility of the sources. Motivated by these challenging scenarios,
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it is desirable to identify the sources or multipath components with superior resolution while

using very few temporal snapshots (only a single snapshot in the extreme case). The techniques

developed in these sample-starved scenarios are largely based on heuristics. This thesis debunks

some of the myths associated with sparse arrays in the limited snapshot regime by providing

provable ways to leverage benefits of deterministic sparse arrays (nested arrays) in the following

largely unexplored regimes: (i) with few snapshots (of the order of number of sources) and (ii)

extreme-sample starved scenarios with only a single snapshot.
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Chapter 1

Introduction

1.1 Background and Motivation

An integral part of future wireless systems is the inclusion of sensing capabilities in

the communication network. This introduces many more devices beyond mobile phones into

the wireless network such as smart sensors for automation, as well as intelligent monitoring

systems for manufacturing and healthcare, to name a few. A naive acquisition strategy for

sensing the environment from such a massive number of devices could result in large volumes

of data. Most of these measurements are often used for important downstream tasks such as

obstacle detection, surveillance, or smart monitoring systems in factories. This naturally involves

either communicating or processing these massive amounts of data to make critical decisions

with low-power hardware, and under strict memory and time constraints. The signals that we

expect to encounter in these applications (and beyond) often have a latent low-dimensional

representation. The underlying channel has a low-rank structure due to the sparse scattering

which can be leveraged during channel sensing stage. During the communication stage, it is

common to transmit messages that are typically chosen from a finite constellation, which can be

leveraged for efficient decoding. Therefore, it is possible to deploy clever sensing strategies (such

as sparse arrays) for signal acquisition and extract the information of interest in a fast and efficient

manner by solving an inverse problem, which captures the underlying low-dimensional structure,

described variously in terms of sparsity, low rank, geometric channel model and finite-value
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constraints.

Over the last decade, compressed sensing has become a well-known framework for

reconstruction of high dimensional signals from very few measurements by leveraging suitable

priors. Frequently studied priors include sparsity, non-negativity, and low-rank structure. In

specific applications, the acquisition system itself imposes restrictions on the type of measurement

that can be acquired. This can implicitly constrain both the sensing matrix and the sampling

budget. For example, in the context of hybrid mmWave communication system, it is impractical

to have a dedicated RF chain for each antenna and perform a fully digital processing due to the

large number of antennas and high power consumption of the RF chains. Therefore, an analog

front-end linearly combines the signal received at the antenna array to obtain low-dimensional

measurements that can significantly reduce the hardware constraint associated with the ADCs.

The number of measurements that are available to decode the communication message will be

determined by the number of RF chains. In two-photon calcium imaging (used to detect neural

spiking activity), the available measurements are samples obtained from temporal blurring of the

spiking signal (blurring filter is controlled by the choice of the calcium indicator). In addition,

the temporal sampling rate is determined by the FOV of imaging since the microscope performs

raster scanning. Therefore, the temporal resolution achievable by such an acquisition strategy is

severely limited. However, as we will demonstrate in this thesis, it is possible to overcome the

conventional resolution bottleneck by leveraging binary priors and algorithmic reconstruction.

One of the central themes of this thesis is to provably operate in regimes with stringent

constraints on the sampling budget (spatial or temporal) where existing approaches based on

inappropriately chosen priors may fail. This will be primarily illustrated through the lens of

real-world problems arising in two distinct applications, namely Neural Spike Deconvolution

and Sensor Array Signal Processing with applications in autonomous sensing. An important

consideration in these applications will be the ability to perform either temporal or spatial

super-resolution, i.e., the ability to resolve two closely located spikes (temporal) or targets

(spatial) with limited data. We are interested in both the theory behind these problems and
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the development of efficient algorithms. Depending on the setting, we design computationally

efficient techniques operating with optimal sample complexity by exploiting the measurement

structure and/or co-designing the sensing operator and the algorithm.

1.2 Outline and Summary of Key Contributions in the
Dissertation

We briefly summarize our key contributions in three classes of inverse problems within

the overarching theme of this thesis, and distinguish them from prior work.

The first part of the thesis focuses on underdetermined signal models involving finite-

valued constraints (Binary compressed sensing). It is devoted to development of new lower

bounds on sample complexities, and relaxation-free algorithmic schemes to attain those bounds.

The contributions are summarized below:

Role of Binary Priors in Linear Inverse Problems

• Structured Linear Inverse Problems with Binary Constraints: In Chapter 2, we

provide the first identifiability results for a compressive convolutional model with binary

constraints. We specifically consider structured linear operators which take the form

A = ΦH. The matrix H models the convolution operation with a known filter, whereas Φ

captures the effect of under-sampling, which can be either a dense or uniform sub-sampling

operator. The existing results developed for arbitrary linear operators cannot be trivially

applied to obtain identifiability results for the structured measurement model. One of the

key contributions of our results is to bring out the nuances of the interaction between the

filter and the measurement matrix in determining the overall sample-complexity.

• Sensing of Finite-Valued Signals with Uniform Undersampling: A super-resolution

framework: Sparse signal recovery typically utilizes dense compression/sketching opera-

tor, since in the worst case (in terms of the support of the sparse signal) adopting a uniform

sub-sampling operator fails to capture contribution from certain non-zero elements alto-
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gether. Unlike standard results in compressed sensing, our results are first to demonstrate

that it is possible to exactly recover finite-valued signals even from uniformly downsampled

measurements (Section 2.2 and 2.5) without exploiting any additional structure such as

sparsity. A direct consequence of this is the ability to achieve “super-resolution” where we

can sense/infer signals with features on a much finer scale from measurements that are

sampled at a significantly lower sampling rate. Our analysis leads to new insights into

the interplay between binary/finite-valued priors and the undersampling limit, which is

essentially determined by the length of the filter. In this thesis, neural spike deconvolution

in calcium imaging serves as a prototypical example to illustrate how the theoretical

insights can be applied to achieve super-resolution capability. However, these ideas can be

translated to many other practical problems such as massive MIMO communication, and

detection using DNA microarrays, where the signal of interest is binary.

• Extreme Compression with Binary Priors: We show that binary constraints allow us

to operate in the so-called “extreme compression” regime, where the number of measure-

ments can be significantly smaller than the sparsity level of the signal. The ability to

operate in extreme compression regime has been showcased in the context of the Multiple

Measurement Vector (MMV) model, where it is possible to identify supports of size which

are much larger than the dimension of each measurement vector [1–4]. This feat is made

possible by exploiting multiple measurements along with a statistical priors on the sparse

signals. In contrast to the prior works in MMV setting, we show that it is fundamentally

possible to operate in the extreme compression regime even in the Single Measurement

Vector (SMV) model due to the binary constraint.

• Relaxation-free Algorithms for enforcing Binary Constraints: The strong identifiability

guarantees for recovering a binary vector often do not necessarily translate to computation-

ally efficient algorithms. If the problem is identifiable, one can always perform exhaustive

search to recover the desired binary vector, however, such a solution is impractical. There-
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fore, a major focus of binary compressed sensing has been on developing computationally

efficient algorithms, often by designing relaxations such as box constraints. An inevitable

consequence of this relaxation is an increase in the required sample complexity. One of

the key questions addressed in this thesis is to understand if the benefits of finite-valued

constraints can be maximally leveraged in a computationally efficient manner, avoiding

potentially suboptimal relaxations. Our algorithmic solutions are inspired by the notion of

“β -expansion”, which is concerned with finding the generalized radix representation of

real numbers [5–7].

• Measurement-algorithm co-design: Despite the fact that for a broad class of filters, any

binary vector can be recovered from uniformly downsampled convolutional measurements,

the characteristics of the underlying filter controls recoverability. As we will show, there

could exist “adversarial filters” for which either uniform sub-sampling may introduce

ambiguities or it becomes challenging to guarantee recovery using a low-complexity

decoding algorithm, when uniform sub-sampling is employed. To mitigate these challenges

posed by adversarial filters, Chapter 3 of this thesis investigates the question “Can the

flexibility to design a filter-dependent sampler overcome the challenges posed by an

adversarial filter?” We provide an affirmative answer to this question by proposing an

“algorithm-measurement co-design framework” that can attain optimum sample complexity

with a computationally efficient sequential decoding algorithm.

Harnessing Benefits of Sparse Arrays in Sample-Starved Regime

Structured sparse array geometries are being actively studied due to their superior-

resolution capabilities and ability to identify more sources than sensors. Typically, these benefits

rely on estimating a “virtual coarray covariance matrix” depicting the correlation between the

received signals at different sensors. The number of unknowns in this “virtual coarray covariance

matrix” can grow up to quadratically with the number of physical sensors. Therefore, it is

often believed that reliably estimating the coarray covariance matrix requires large number of
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snapshots. This leads to the impression that the benefits of sparse arrays come at the expense of

additional temporal measurements. A contribution of this thesis is to answer the question: “Is

it possible to harness the benefits offered by sparse arrays with a limited number of snapshots

(in the sample-starved scenarios) if the goal is to identify fewer sources than the number of

sensors with high-resolution?” Our investigation is motivated by contemporary applications such

as autonomous sensing and mmWave channel estimation where identifying more sources than

sensors is not necessary, rather it is crucial to operate under a severe restriction on the number of

snapshots either due to coherent multipaths or a rapidly changing environment. The contributions

specific to this problem are given below:

• Proxy covariance matrix: With only a few snapshots (of the order of the number of

sources), popularly used algorithms for sparse arrays, such as Coarray MUSIC, incurs

large estimation error, which saturates away from zero even as the signal-to-noise ratio

(SNR) tends to infinity. Such a behaviour is undesirable especially when there are fewer

sources than sensors where a Uniform Linear Array (ULA) can succeed. In Chapter 4 of

this thesis, we propose moving away from estimating the coarray covariance matrix when

snapshots are limited, and instead obtaining a biased estimate of the covariance matrix

called a “proxy covariance matrix” (Prox-Cov). (Prox-Cov) aims to identify the coarray

subspace (not the source powers) instead of the entire covariance matrix. We prove that in

the noiseless setting, when the number of sources is of the order of the number of sensors,

it is possible to exactly identify the desired subspace by formulating a convex optimization

problem and thereby, overcoming a key limitation of coarray MUSIC-type algorithms.

• Extreme-Sample Starved Regime: In the extreme scenario, when only a single-snapshot

of measurement is available for DOA estimation, application of subspace based techniques

such as MUSIC or ESPRIT is no longer straightforward. For a ULA, techniques such as

spatial-smoothing can be adopted. However, it is not straightforward to translate these

ideas for sparse arrays. Recently, interpolation techniques have been developed that
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attempt to synthesize a virtual ULA by estimating the missing measurements. The virtual

measurements can be arranged in the form of a low-rank Hankel/Toeplitz matrix, and

the measurements acquired by the sparse array only reveal certain entries of this matrix,

leading to a structured low-rank matrix completion problem. However, existing guarantees

from matrix completion cannot be directly applied for deterministic sparse arrays such as

nested array. Chapter 4 of this thesis provides matching necessary and sufficient conditions

to perfectly interpolate the virtual array of a nested array via rank-minimization, provided

the number of sources is not too large.

Non-Linear Inverse Problems We conclude the thesis by exploring the role of binary con-

straints for blind-deconvolution and sparsity in phase retrieval. These are bilinear and quadratic

inverse problems, respectively, and are often considered as prototypical examples of ill-posed

inverse problems beyond linear measurement models. The contributions are listed below:

• Parametric Blind-Deconvolution: In the binary super-resolution work discussed earlier,

we assumed the underlying filter to be known apriori. However, in practice, only a

parametric representation for the kernel maybe known leading to a “blind” super-resolution

problem. In Chapter 5, we show that if the spikes are generated according to a Bernoulli

model, it is possible to uniquely identify both the signal and the kernel with high probability

from uniformly downsampled measurements.

• Redundancy of Priors in Sparse Phase Retrieval: In Chapter 5, we consider the problem

of recovering a sparse signal from its quadratic measurements also known as sparse phase

retrieval. It can be shown that after applying a well-known linearization technique called

lifting, the sparse phase retrieval problem can be cast as searching for a simultaneously

sparse, low-rank and positive semi-definite matrix that is consistent with the measurements.

However, adopting convex relations that incorporate penalties for both low-rankness and

sparsity result in a sub-optimal sample complexity (scaling quadratically in sparsity). One

of the contributions of this thesis is a modified formulation in the lifted space that can
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exactly recover the signal with an optimal sample complexity (scaling linearly in sparsity).

Our formulation demonstrates that it is possible to only impose positive semi-definite

(PSD) and sparsity constraints on the lifted variable and completely eliminate the need for

trace minimization without sacrificing sample-complexity.
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Chapter 2

Basics of Linear Inverse Problems with
Finite-Valued Priors

In this chapter, we provide a brief overview of the widely studied underdetermined

linear inverse problems, and the different types of priors that are commonly used to make them

well-posed. Consider an underdetermined system of linear equations given by:

y = Ax. (2.1)

where A ∈RM×N and M < N. If we assume rank(A) = M, this system of equations has infinitely

many solutions. In engineering applications, we are interested in recovering a ground-truth signal

with certain desirable properties, which is known as the prior on x. In the standard compressed

sensing problem, the goal is to recover the sparsest solution, i.e., the vector with the smallest

number of non-zero entries. An important property called the Kruskal rank of the measurement

matrix A determines the uniqueness and recoverability of the sparsest solution. A matrix A is

said to have a Kruskal rank of r if any subset of r columns of A are linearly independent and

there exists at least one subset of r+1 columns that are linearly dependent. It is well-known

that the condition krank(A)≥ 2s is necessary and sufficient to recover all sparse signals with

sparsity at most s [8]. Therefore, the number of measurements M required to identify s-sparse

vector scales only linearly with the sparsity level M = Ω(s) and is independent of the ambient

dimension N.
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In this thesis, instead of sparsity, we leverage the prior knowledge that the non-zero

entries of the ground truth x0 take values from a finite-set (A ) of cardinality q:

[x0]i ∈A ⊂ R i = 1,2, · · · ,N where |A |= q.

For instance, the underlying signal can be binary-valued, i.e., q = 2. Binary signals are en-

countered in a diverse set of applications such as neural spike decoding [9–11], communication

systems [12], DNA compressed sensing microarrays [13] and discrete tomography [14, 15].

In neural spike decoding, the neural spiking activity at a fine temporal scale is modeled as

a binary-valued signal (spike or no spike) [9,11]. The neural spiking activity is typically measured

indirectly, and only a limited number of samples are available to decode the underlying activity.

This constraint on the number of samples is imposed by the acquisition hardware. In massive

Multiple-Input and Multiple-Output (MIMO) communication systems, the downlink system

can be “Overloaded MIMO” system, where the number of antennas at the mobile user can be

significantly smaller than the number of antennas at the base station due to size/power constraints

[16, 17]. The decoding problem in such scenarios involves recovering the transmit signals

belonging to a finite alphabet/constellation. Another contemporary application is motivated by

the growing demand for massive machine to machine type communication in Internet of Things

(IoT) applications. In such scenarios, a large number of users transmit data to the same receiver.

Recently, in the “unsourced random access” model multiple users communicate using a shared

codebook [18]. A binary signal can be used to indicate which message from the codebook was

transmitted by one of the active users. The task of the decoder is to identify the binary vector,

which in turn can be mapped to a list of transmitted messages. In single antenna systems, it is

desirable to support a large number of users with very few channel uses. All these applications

give rise to the core mathematical problem of solving an underdetermined linear inverse problem

where the signal of interest comes from a finite set.

One of our central focus is to characterize the identifiability conditions for linear inverse
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problems with such finite-valued priors analogous to the sparse recovery problem. These

identifiability results are complemented by developing computationally efficient algorithms

which can achieve the optimal sample complexity. In this chapter, a special emphasis will be

placed on the problem of “super-resolution” where the measurement matrix is structured (instead

of being a generic linear operator), consisting of the composition of a convolutional operator

followed by uniform down-sampling.

2.1 Prior Works

Early works on super-resolution date back to algebraic/subspace-based techniques such

as Prony’s method, MUSIC [19, 20], ESPRIT [21, 22] and matrix pencil [23, 24]. Following the

seminal work in [25], substantial progress has been made in understanding the role of sparsity as

a prior for super-resolution [26–28]. In recent times, convex optimization-based techniques have

been developed that employ Total Variational (TV) norm and atomic norm regularizers, in order

to promote sparsity [26–30] and/or non-negativity [31–33]. These techniques primarily employ

sampling in the Fourier/frequency domain by assuming the kernel h(t) to be (approximately)

bandlimited. However, selecting the appropriate cut-off frequency is crucial for super-resolution

and needs careful consideration [27, 34]. Unlike subspace-based methods, theoretical guarantees

for these convex algorithms rely on a minimum separation between the spikes, which is also

shown to be necessary even in absence of noise [35]. The finite rate of innovation (FRI)

framework [36–40] also considers the recovery of spikes from measurements acquired using an

exponentially decaying kernel, which includes the AR(1) filter considered in this section. In the

absence of noise, FRI enables the exact recovery of K spikes with arbitrary amplitudes from

M = Ω(K) measurements, without any separation condition [38]. It is to be noted that all of

the above methods require M > K measurements for resolving K spikes. In contrast, we will

show that it is possible to recover K spikes from M≪ K measurements by exploiting the binary

nature of the spiking signal. The above algorithms are designed to handle arbitrary real-valued
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amplitudes and as such, they are oblivious to binary priors. Therefore, they cannot successfully

recover spikes in the regime M < K, which is henceforth referred to as the extreme compression

regime.

The problem of recovering binary signals from underdetermined linear measurements

(with more unknowns than equations/measurements) has been recently studied under the par-

lance of Binary Compressed Sensing (BCS) [41–50]. In BCS, the undersampling operation

employs random (and typically dense) sampling matrices, whereas we consider a deterministic

and structured measurement matrix derived from a filter, followed by uniform downsampling.

Moreover, existing theoretical guarantees for BCS crucially rely on sparsity assumptions that

will be shown to be inadequate for our problem (discussed in Section II-C). Most importantly,

in order to achieve computational tractability, BCS relaxes the binary constraints and solves

continuous-valued optimization problems. Consequently, their theoretical guarantees do not

apply in the extreme compression regime M < K.

One of the motivations for our study is the problem of neural spike deconvolution

arising in calcium imaging [10, 11, 38, 51–54]. A majority of the existing spike deconvolution

techniques [11, 51, 53] infer the spiking activity at the same (low) rate at which the fluorescence

signal is sampled, and a single estimate such as spike counts or rates are obtained over a temporal

bin equal to the resolution of the imaging rate. Although sequential Monte-Carlo based techniques

have been proposed that generate spikes at a rate higher than the calcium frame rate [10], no

theoretical guarantees are available that prove that these methods can indeed uniquely identify

the high-rate spiking activity. Algorithms that rely on sparsity and non-negativity [51, 53] alone

are ineffective for inferring the neural spiking activity that occurs at a much higher rate than the

calcium sampling rate. On the other hand, at the high-rate, the spiking activity is often assumed

to be binary since the probability of two or more spikes occurring within two time instants on

the fine temporal grid is negligible [9, 55]. Therefore, we propose to exploit the inherent binary

nature of the neural spikes and provide the first theoretical guarantees that it is indeed possible to

resolve the high-rate binary neural spikes from calcium fluorescence signal acquired at a much
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lower rate.

2.2 Convolutional Compressive Model

Consider the problem of recovering a finite-valued signal x ∈ A N from compressed

measurements of its convolution with a known filter:

z = ΦHx (2.2)

Here, H is the linear operator associated with the filtering operation whereas Φ is an under-

sampling operator. In this chapter, we analyze the case when Φ denotes a uniform under-sampling

operator.

2.2.1 Identifiability of Finite-Valued Signal: Finite-Impulse Response
Filter

We consider the problem of recovering an unknown unipolar finite-valued signal x =

[x0,x1, · · · ,xN−1]
T whose entries xi’s take values from the set of integers A = {0,1, · · · ,q−1}

and q > 0. Our goal is to recover x from undersampled measurements of its convolution with

a known finite impulse response filter h = [h0,h1, · · · ,hL−1]
T ∈ RL (L < N). The measurement

model is

z = DΩ Hx︸︷︷︸
y

(2.3)
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Here H ∈ RP×N is a Toeplitz matrix with P = N +L−1 that represents the discrete convolution

operation:

H =



h0 0 0 · · · 0 0

h1 h0 0 · · · 0 0
... . . . . . . . . . . . . ...

0 0 0 · · · hL−1 hL−2

0 0 0 · · · 0 hL−1


and DΩ ∈ RM×P (where |Ω|= M) denotes a uniform downsampling operator given by:

[DΩ]i, j =


1, if j = Ωi

0, otherwise

A special case of this model involves binary valued signals (i.e. q = 2) and such binary valued

signals, shapes or images have been considered in [42, 44, 48]. However, they relax the binary

constraint to recover x using convex optimization, and theoretical guarantees are limited to

random sampling. The recovery of finite-valued signal x from undersampled measurements

is potentially an ill posed problem when M ≪ N. Most existing approaches utilize sparsity

constraints and tools from compressed sensing to solve this problem [41, 42, 44, 45, 48]. How-

ever, these approaches end up relaxing the finite-valued (binary) constraint to develop convex

relaxations of the original non-convex problem. In this section, we will take a different approach

and directly enforce the finite-value constraint. As shown later, this will enable us to recover

x from undersampled measurements without having to explicitly enforce sparsity promoting

penalties. We begin by developing conditions on the filter h,M and N under which the following
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linear map Φ : A N → RM is injective:

Φ(x) := DΩHx (2.4)

Theorem 1. Let DΩ be a uniform subsampling operator where the index set is given by:

Ω = {0,m,2m, · · · ,(M−1)m} (2.5)

and M = ⌊N/m⌋. Suppose the filter h is a random vector drawn from a distribution which is

absolutely continuous with respect to the Lebesgue measure over RL. Then with probability 1,

x ∈A N is the unique solution of (2.3) if

M >
N
L
.

Conversely, if M ≤ N
L then the map Φ : A N → RM is non-injective for every h.

Proof. First assume M > N/L. Notice,

zk = h⊤x̃k, k ≥ 1

where x̃k ∈A L+1 is given by

[x̃k] j =


xmk− j, j ≤ mk

0, else
,0≤ j ≤ L (2.6)

It is easy to see that Φ : A N → RM is injective if the map fh : A L+1 → R, fh(x) = h⊤x is

injective. Define:

B = {h ∈ RL,∃ x,y ∈A L+1,x ̸= y s. t. hT (x−y) = 0}

15



Therefore, fh(x) is injective if h ̸∈ B. Note that if x,y ∈ A L then x−y ∈ S̄L where S̄ =

{−(q−1),−(q−2), · · · ,0, · · · ,(q−2),(q−1)} and |S̄L|= (2q−1)L. For every v ∈ S̄L, define

Bv = {h ∈ RL|hT v = 0}

Then, it is easy to see that B =
⋃

v∈S̄L\0
Bv. Notice that B is a union of (2q−1)L sets. If h is a

random vector generated from a continuous distribution over RL, for any fixed v ∈ RL we have

P(h ∈Bv) = P(hT v = 0) = 0.

Therefore,

P(h ∈B) = P(h ∈
⋃

v∈S̄L\0
Bv)≤ (2q−1)LP(h ∈Bv) = 0

Hence, h ̸∈B with probability 1, implying that Φ is injective.

Now, suppose M ≤ N/L. We will show that there exists x′ ∈ A L(̸= x) that satisfies

z = Φ(x) = Φ(x′). Let m = L+1 then we have

z0 = h0x0,zk := yk(L+1) =
L−1

∑
j=0

h jxk(L+1)− j, 1≤ k ≤M

It is clear that none of the measurements {zk}M−1
k=0 is a function of x1. Therefore, we can construct

a signal x′ ∈A N as follows which satisfy z = Φ(x) = Φ(x′):

x′i = xi ∀ i ̸= 1 and x′1 ̸= x1

Remark 1. Theorem 1 shows that it is possible to downsample the output of the filter h by a

factor of L and yet uniquely identify a finite-valued input to the filter. In contrast to existing
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approaches [42,44,48], this show that the finite valued constraint alone ensures injectivity of the

overall map and it is not necessary to impose any additional sparsity constraint.

2.2.2 Computationally Efficient Decoding Algorithm and Theoretical
Guarantees

Since the map Φ : A N → RM is injective with probability 1, it is always possible to

design an exhaustive search decoder that searches over all (D+ 1)N possible signals in A N

to uniquely recover x. However, this is obviously computationally intractable. In this section,

we present an efficient decoding algorithm whose complexity is O(ML+L2) that can provably

recover x under a mild decay condition on the filter. This decoding is inspired by the notion of

β -expansion introduced in [5] and further studied in [6, 56]. However, our approach significantly

departs from β -expansion as the filter coefficients maybe arbitrary and may not necessarily be

exponents of a single positive real β .

Algorithm 1. Sequential Decoding with Filter Sorting
Input: Measurement z, Filter h, Subsampling operator Ω,
Output: Estimate x̂ ∈A N

SORTING STEP
[h′,Π]← SORT(h,‘ascend’) //Sorted filt. and perm. map

SEQUENTIAL BLOCK-WISE DECODING
i← 0
Repeat

r← zi
j← L−1
Repeat

x̂b
i j← ⌊r/h′j⌋ //Divide and Round

r← r− x̂b
i jh
′
j //Update the residual

j← j−1
until j >= 0

PERMUTATION STEP
x̂b

i ← PERM(x̂b
i ,Π) //Block perm. using sorted index

i← i+1
until i <= M
x̂←MERGE({x̂b

i }M
i=0) //Merge decoded blocks
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2.2.3 Sequential Decoding with Sorted Filters

We present our decoding algorithm in the form of Algorithm 1. Our algorithm includes a

non-trivial sorting step where the filter coefficients are first sorted in an ascending order. Using

these sorted coefficients, the decoding step sequentially recovers blocks of length L using a single

measurement per block. Finally, the algorithm requires unscrambling to recover the correct

representation.

Lemma 1. The decoding complexity of Algorithm 1 is O(ML+L2).

Proof. The first step involving sorting incurs a complexity of O(L2) snice the length of the filter h

is L. Subsequent decoding of each block requires L operations of division, rounding, subtraction.

This is repeated for each of the M blocks leading to an overall complexity of O(ML+L2).

We next provide sufficient conditions on the kernel h for our algorithm to succeed. To

this end, we introduce the notion of kernel decay.

Definition 1. (Kernel Decay) Suppose h ∈ RL
+ is a filter with non-negative coefficients where

{hi}L−1
i=0 are distinct. Let h′ ∈ RL+1 be the sorted coefficients of the filter h ∈ RL+1

+ such that:

0 < h′0 < h′1 < · · ·< h′L

The kernel decay parameter is defined as the maximum ratio

ρ(h) = max
1≤i≤L

h′i−1

h′i
(2.7)

Note that the kernel decay satisfies 0 < ρ(h)< 1.

Theorem 2. Consider the measurement model (2.3) where Ω is given by (2.5). The output of the

proposed Algorithm 1 coincides with the ground truth x if

ρ(h)≤ 1
2D

and M ≥ N
L
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Proof. Recall that zk can be represented as zk = hT x̃k, where x̃k ∈A L is defined in (2.6). We

will now establish that for each k, Algorithm 1 can exactly recover the block x̃k from a single

measurement zk. Let h′ = [hi0,hi1, · · · ,hiL−1]
T be the sorted filter coefficients (in ascending order).

We define a permutation Π : [L]→ [L] as

Π(i j) = j, 0≤ j ≤ L−1

. Using this permutation, for 0≤ j ≤ L−1 we have

h′j = hΠ(i j), pk
j = [x̃k]Π(i j)

where pk is a permuted block of x̃k. The measurements can be written as:

zk =
L−1

∑
j=0

h′j p
k
j =

L−1

∑
j=0

hΠ(i j)[x̃k]Π(i j)

Our proof proceeds by induction. For step P = 1, we observe that

zk

h′L−1
=

L−2

∑
j=0

pk
j

h′j
h′L−1

+ pk
L−1

As a result of the decay assumption hL−1
hL−1−i

≤ 1
(2D)i we have

L−2

∑
j=0

pk
j

h′j
h′L−1

< 1

Therefore,

pk
L−1 ≤

zk

h′L−1
< pk

L−1 +1⇒
⌊ zk

h′L−1

⌋
= pk

L−1

and pk
L−1 is correctly recovered in the first step. We now assume that after P < L iterations we
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have correctly identified pk
L−1, pk

L−2, · · · , pk
L−P. The residual is given by:

r =
L−P−2

∑
j=0

pk
jh
′
j +h′L−P−1 pk

L−P−1

Since ∑
L−P−2
j=0 pk

j
h′j

h′L−P−1
< 1, we can show that

⌊r/h′L−P−1⌋= pk
L−P−1

Therefore, we can correctly identify pk
L−P−1. The proof therefore follows by induction.

Remark 2. Sample Complexity: Theorem 2 shows that if the decay condition is satisfied, then

Algorithm 1 only requires around N/L measurements to succeed, irrespective of the sparsity

level of x (even if ∥x∥0 ≥ N/L). Therefore, Algorithm 1 operates at the optimal subsampling

regime determined by our injectivity result in Theorem 1.

Remark 3. Decay condition: For binary signals (D = 1), it can be shown that the decay

condition ρ(h)≤ 1
2 can be satisfied by commonly used kernels such as Gaussian and exponential

kernels by suitably choosing the sampling step and variance of the kernel.

Uniform vs Non-uniform Sampling: In contrast to [48], we develop recovery guarantees

for uniform downsampling and our sample complexity does not depend on kernel incoherence

parameter [48] or sparsity of the signal.

2.3 Simulations

In the first experiment, we consider recovering a sparse binary signal x with N = 500

and the filter h is assumed to be a (truncated) 1−D Gaussian filter of length 5 and variance

1. We evaluate the performance using the normalized error ∥x̂−x∥2
∥x∥2

. Figure 2.1 (a) shows the

average normalized error (over 100 Monte Carlo runs) for M between 135 to 500. We compare
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Figure 2.1. (a) Normalized Error vs. M (Number of Measurements) for binary signal recovery
using relaxed l1 minimization and the proposed algorithm (b) Normalized Error vs. Size of edge
set (s) for piece-wise constant signal recovery using relaxed TV norm and proposed algorithm

the proposed algorithm against a relaxed l1 minimization approach as used in [41, 42].

min
u
∥u∥1 s.t Φu = z, 0≤ u≤ 1

As predicted by our theorem, the proposed algorithm can exactly identify the signal with

maximum sparsity with only M = 125 measurements. However, the relaxation fails to operate in

this regime as there are no guarantees for it to succeed with uniform subsampling. In Figure 2.2

(a), we display the recovered binary signals of length N = 100 with sparsity s = 10 recovered by

both algorithms. It is clear that l1 norm often predicts two spikes of smaller amplitude instead of a

single spike with unit amplitude as a result of the relaxation. In the next experiment, we consider

the case when x is a bi-level discrete piece-wise constant signal and the convolutional kernel is a

1−D Gaussian filter with length 7 and variance 1. We compare the recovery performance of a

relaxed discrete Total variational (TV) norm approach [57, 58] where the binary constraint is

relaxed as 0≤ x≤ 1. The observation in Figure 2.1 (b) is consistent with our theoretical results

as the proposed algorithm successfully recovers (with zero error) the piece-wise signal (binary)

with only M = 125 measurements irrespective of the size of the edge set.
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Figure 2.2. (a)(Top) Blurred binary signal using Gaussian kernel (Bottom) Recovered binary
signal from l1 norm and proposed algorithm (b)(Top) Blurred piece-wise signal using Gaussian
kernel (Bottom) Recovered signal using TV norm and proposed algorithm

2.4 Binary Super-resolution: Infinite Impulse Response

The problem of super-resolution is concerned with the reconstruction of temporally or

spatially localized events (or spikes) from samples of their convolution with a low-pass filter.

Distinct from prior works which exploit sparsity in appropriate domains in order to solve the

resulting ill-posed problem, this chapter explores the role of binary priors in super-resolution,

where the spike (or source) amplitudes are assumed to be binary-valued. Our study is inspired

by the problem of neural spike deconvolution, but also applies to other applications such as

symbol detection in hybrid millimeter wave communication systems. This chapter makes
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several theoretical and algorithmic contributions to enable binary super-resolution with very

few measurements. Our results show that binary constraints offer much stronger identifiability

guarantees than sparsity, allowing us to operate in “extreme compression” regimes, where the

number of measurements can be significantly smaller than the sparsity level of the spikes. To

ensure exact recovery in this ”extreme compression” regime, it becomes necessary to design

algorithms that exactly enforce binary constraints without relaxation. In order to overcome

the ensuing computational challenges, we consider a first order auto-regressive filter (which

appears in neural spike deconvolution), and exploit its special structure. This results in a novel

formulation of the super-resolution binary spike recovery in terms of binary search in one

dimension. We perform numerical experiments that validate our theory and also show the

benefits of binary constraints in neural spike deconvolution from real calcium imaging datasets.

2.4.1 Fundamental Sample Complexity Of Binary Super-Resolution

Let yhi[n] be the output of a stable first-order Autoregressive AR(1) filter with parameter

α , 0 < α < 1, driven by an unknown binary-valued input signal xhi[n] ∈ {0,A}, A > 0:

yhi[n] = αyhi[n−1]+ xhi[n] (2.8)

In this section, we consider a super-resolution setting where we do not directly observe yhi[n],

and instead acquire M measurements {ylo[n]}M−1
n=0 at a lower-rate by uniformly subsampling

yhi[n] by a factor of D:

ylo[n] = yhi[Dn], n = 0,1, · · · ,M−1, (2.9)

The signal ylo[n] corresponds to a filtered and downsampled version of the signal xhi[n] where

the filter is an infinite impulse response (IIR) filter with a single pole at α . Let ylo ∈ RM be a
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vector obtained by stacking the low-rate measurements {ylo[n]}M−1
n=0 :

ylo = [ylo[0],ylo[1], · · · ,ylo[M−1]]⊤

Since (2.8) represents a causal filtering operation, the low rate signal ylo only depends on

the present and past high-rate binary signal. Denote L := (M− 1)D+ 1. The M low-rate

measurements in ylo are a function of L samples of the high rate binary input signal {xhi[n]}L−1
n=0 .

These L samples are given by the following vector xhi ∈ {0,A}L:

xhi := [xhi[0],xhi[1], · · · ,xhi[L−1]]⊤.

Assuming the system to be initially at rest, i.e., yhi[n] = 0,n < 0, we can represent the M samples

from (2.9) in a compact matrix-vector form as:

ylo := SDyhi = SDGαxhi (2.10)

where Gα ∈ RL×L is a Toeplitz matrix given by:

Gα =



1 0 · · · 0

α 1 · · · 0
...

... . . . ...

αL−1 αL−2 · · · 1


(2.11)

and SD ∈ RM×L is defined as:

[SD]i, j =


1, j = (i−1)D+1

0, else
.

The matrix SD represents the D−fold downsampling operation. Our goal is to infer the unknown

high-rate binary input signal xhi[n] from the low-rate measurements ylo[n]. This is essentially a
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“super-resolution” problem because the AR(1) filter first attenuates the high-frequency compo-

nents of xhi[n], and the uniform downsampling operation systematically discards measurements.

As a result, it may seem that the spiking activity {xhi[(n−1)D+ k]}D
k=1 occurring “in-between”

two low-rate measurements ylo[n−1] and ylo[n] is apparently lost. One can potentially interpolate

arbitrarily, making the problem hopeless. In the next section, we will show that surprisingly, xhi

still remains identifiable from ylo in the absence of noise, due to the binary nature of xhi and

“infinite memory” of the AR(1) filter.

Identifiability Conditions for Binary super-resolution

Consider the following partition of xhi into M disjoint blocks, where the first block is

a scalar and the remaining M−1 blocks are of length D, xhi = [xhi
(0),xhi

(1)⊤, . . . ,xhi
(M−1)⊤]⊤.

Here, xhi
(0) = xhi[0] and xhi

(n) ∈ {0,A}D is given by:

[xhi
(n)]k = xhi[(n−1)D+ k], 1≤ n≤M−1 (2.12)

The sub-vectors xhi
(n), and xhi

(n−1) (n≥ 1) represent consecutive and disjoint blocks (of length

D) of the high-rate binary spike signal. In order to study the identifiability of xhi from ylo, we first

introduce an alternative (but equivalent) representation for (2.10), by constructing a sequence

c[n] as follows c[0] = ylo[0],

c[n] = ylo[n]−α
Dylo[n−1], 1≤ n≤M−1 (2.13)

Given the high rate AR(1) model defined in (2.8), it is possible to recursively represent yhi[Dn]

in terms of yhi[Dn−1], which in turn, can be represented in terms of yhi[Dn−2], and so on. By

this recursive relation, we can represent yhi[Dn−1] in terms of yhi[Dn−D] and {xhi[Dn− i]}D−1
i=0

25



and re-write ylo[n] as

ylo[n] = yhi[Dn] = αyhi[Dn−1]+ xhi[Dn]

= α
Dyhi[Dn−D]+α

D−1xhi[D(n−1)+1]+ · · ·+αxhi[Dn−1]+ xhi[Dn],

ylo[n]−α
Dylo[n−1] = α

D−1xhi[D(n−1)+1]+ · · ·+αxhi[Dn−1]+ xhi[Dn] (2.14)

The last equality holds due to the fact that ylo[n−1] = yhi[Dn−D]. Combining (2.13) and (2.14),

the sequence c[n] can be re-written as c[0] = ylo[0] = xhi
(0), and for 1≤ n≤M−1

c[n] =
D

∑
i=1

α
D−ixhi[(n−1)D+ i] = hT

αxhi
(n) (2.15)

where hα = [αD−1,αD−2, . . . ,α,1]T ∈ RD. This implies that c[n] depends only on the block

xhi
(n). Denote c := [c[0],c[1], . . . ,c[M−1]]⊤ ∈ RM. For any D, (2.15) can be compactly repre-

sented as:

c = HD(α)xhi (2.16)

where HD(α) ∈ RM×L is given by:

HD(α) =



1 0⊤ 0⊤ · · · 0⊤

0 h⊤α 0⊤ · · · 0⊤

0 0⊤ h⊤α · · · 0⊤

...
...

... . . . ...

0 0⊤ 0⊤ · · · h⊤α


The following Lemma establishes the equivalence between (2.10) and (2.16).

Lemma 2. Given ylo, construct c following (2.13). Then, there is a unique binary xhi ∈ {0,A}L

satisfying (2.10) if and only if xhi is a unique binary vector satisfying (2.16).
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Proof. First suppose that there is a unique binary xhi ∈ {0,A}L satisfying (2.10) but (2.16) has a

non-unique binary solution, i.e., there exists xhi
′ ∈ {0,A}L, xhi

′ ̸= xhi, such that

c = HD(α)xhi = HD(α)xhi
′ (2.17)

Define yhi
′ := Gαxhi

′ whose entries are given by:

yhi
′[n] =

n

∑
k=0

α
n−kxhi

′[k], 0≤ n≤ L−1 (2.18)

Notice that (2.13) can be re-written as

ylo[0] = c[0] = xhi[0],ylo[1] = c[1]+α
Dylo[0] = c[1]+α

Dc[0]

ylo[2] = c[2]+α
Dylo[1] = c[2]+α

Dc[1]+α
2Dc[0]

...

Following this recursive relation, and using (2.15) and (2.17), we can further re-write ylo[n] as:

ylo[n] =
n

∑
i=0

α
(n−i)Dc[i] = α

nDx′hi
(0)+

n

∑
i=1

α
(n−i)Dh⊤α xhi

′(i)

= α
nDx′hi

(0)+
n

∑
i=1

D

∑
j=1

α
nD−(i−1)D− jx′hi[(i−1)D+ j]

(a)
=

nD

∑
k=0

α
nD−kx′hi[k]

(b)
= y′hi[nD] (2.19)

The equality (a) follows by a re-indexing of the summation into a single sum, and (b) follows

from (2.18). By arranging (2.19) in a matrix form we obtain the following relation:

ylo = SDGαxhi
′

However from (2.10), we have ylo = SDGαxhi. This contradicts the supposition that (2.10) has a
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unique binary solution.

Next, suppose that (2.16) has a unique binary solution but the binary solution to (2.10) is

non-unique, i.e., there exists xhi
′ ∈ {0,A}L, xhi

′ ̸= xhi such that

ylo = SDGαxhi
′ = SDGαxhi

By following (2.13) and (2.16), we also have c = HD(α)xhi
′ = HD(α)xhi which contradicts the

assumption that solution of (2.16) is unique.

Lemma 2 assures that a binary xhi is uniquely identifiable from measurements ylo if

and only if there is a unique binary solution xhi ∈ {0,A}L to (2.16). From (2.15), it can be

seen that c[n] and c[n− 1] have contributions from only disjoint blocks of high rate spikes

xhi
(n), and xhi

(n−1). Hence effectively, we only have a single scalar measurement c[n] to decode

an entire block xhi
(n) of length D, regardless of how sparse it is. The task of decoding xhi

(n)

from a single measurement seems like a hopelessly “ill-posed” problem, caused by the uniform

downsampling operation. But this is precisely where the binary nature of xhi can be used as a

powerful prior to make the problem well-posed. Theorem 3 specifies conditions under which it

is possible to do so.

Theorem 3. (Identifiability) For any α ∈ (0,1), with the possible exception of α belonging to

a set of Lebesgue measure zero, there is a unique xhi ∈ {0,A}L that satisfies (2.16) for every

D≥ 1.

Proof. In Appendix A.

Using Lemma 2 and Theorem 3, we can conclude that xhi is uniquely identifiable from

ylo for almost all α ∈ (0,1). It can be verified that for α = 1 the mapping is non-injective.

Theorem 3 establishes that it is fundamentally possible to decode each block xhi
(n) of length

D, from effectively a single measurement c[n]. Since xhi
(n) can take 2D possible values, in

principle, one can always perform an exhaustive search over these 2D possible binary sequences
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and by Theorem 3, only one of them will satisfy c[n] = h⊤α xhi
(n). Since exhaustive search is

computationally prohibitive, this leads to the natural question regarding alternative solutions.

In Section 2.4.2, we will develop an alternative algorithm that leverages the trade-off between

memory and computation to achieve a significantly lower run-time decoding complexity.

Comparison with Finite Rate of Innovation Approach

In a related line of work [36–38,40], the FRI framework has been developed to reconstruct

spikes from the measurement model considered here. However, in the general FRI framework,

there is no assumption on the amplitude of the spikes, and there are a total of 2D real valued

unknowns corresponding to the locations and amplitudes of D spikes. In [38], it was shown that

by leveraging the property of exponentially reproducing kernels, it is possible to recover arbitrary

amplitudes and spike locations using Prony-type algorithms, provided at least 2D+ 1(> D)

low-rate measurements are available. However, since we exploit the binary nature of spiking

activity, we can operate at a much smaller sample complexity than FRI. In fact, Theorem 3

shows that when we exploit the fact that the spikes occur on a high-resolution grid with binary

amplitudes, M = Ω(1) measurements suffice to identify D spikes regardless of how large D is.

A direct application of the FRI approach cannot succeed in this regime, since the number of

spikes is larger than the number of measurements. That being said, with enough measurements,

FRI techniques are powerful, and they can also identify off-grid spikes. In future, it would be

interesting to combine the two approaches by incorporating binary priors to FRI based techniques

and remove the grid assumptions.

Curse of Uniform Downsampling: Inadequacy of sparsity and non-negativity

By virtue of being a binary signal, xhi is naturally sparse and non-negative. Therefore, one

may ask if sparsity and/or non-negativity are sufficient to uniquely identify xhi from c, without

the need for imposing any binary constraints. In particular, we would like to understand if the

solution to the following problem that seeks the sparsest non-negative vector in RL satisfying
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(2.16) indeed coincides with the true xhi ∈ {0,A}L

min
x∈RL

∥x∥0 subject to c = HD(α)x, x≥ 0 (P0)

Lemma 3. For every xhi ∈ {0,A}L (except xhi = Ae1), and c ∈ RM satisfying (2.16), the follow-

ing are true

(i) There exists a solution x⋆ ̸= xhi to (P0) satisfying

∥x⋆∥0 ≤ ∥xhi∥0 (2.20)

(ii) The inequality in (2.20) is strict as long as there exists an integer n0 ≥ 1 such that the block

x(n0)
hi of xhi (defined in (2.12)) satisfies ∥x(n0)

hi ∥0 ≥ 2.

Proof. The proof is in Appendix B.

Lemma 3 shows there exist other non-binary solution(s) to (2.16) (different from xhi)

that have the same or smaller sparsity as the binary signal xhi ∈ {0,A}L. Furthermore, there exist

problem instances where the sparsest solution to (P0) is strictly sparser than xhi. Hence, sparsity

and/or non-negativity are inadequate to identify the ground truth xhi uniquely.

Implicit Bias of Relaxation: The optimization problem (P0) is non-convex and the

binary constraints are not enforced. However, for computational tractability, it is common to

instead solve the following relaxed optimization problem that seeks a non-negative vector in RL

with the smallest l1 norm (instead of l0 norm) satisfying c = HD(α)xhi indeed deviates from the

true xhi ∈ {0,A}L and has a special property as characterized by lemma 4.

min
x∈RL

∥x∥1 subject to c = HD(α)x, x≥ 0 (PL1)
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Lemma 4. For every xhi ∈ {0,A}L, and c ∈ RM satisfying c = HD(α)xhi, the solution x⋆ to

(PL1) satisfies the following:

∥x⋆∥1 ≤ ∥xhi∥1 (2.21)

and the support of the optimal solution S ∗ obeys:

S ∗ ⊆ {1,D+1,2D+1, · · · ,(M−1)D+1}. (2.22)

Proof. We will construct a vector v∈RL with support of the form (2.22), that is feasible for (PL1)

and prove that it has the smallest l1 norm. Consider the vector v = [v(0),v(1)⊤, · · · ,v(M−1)⊤]⊤,

with the blocks v(n) constructed as follows:

v(0) = c[0], [v(n)]k =


c[n], if k = D

0, else

It is easy to verify that c[n] = h⊤α v(n) for all n ≥ 1 and ∥v∥1 = ∑
M−1
k=0 c[k]. Let v f ∈ RL be any

feasible point of (PL1) which must be of the form:

v(0)f = c[0], v(n)f = v(n)+ r(n)

where r(n) ∈N (h⊤α ) is a vector in the null-space of h⊤α . It can be verified that for 1≤ t ≤ D−1

the vectors wt ∈ RD form a basis for N (h⊤α ) where:

[wt ]k =


1, k = t

−α, k = t +1

0, else
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Therefore, there exists {β (n)
i }

D−1
i=1 such that r(n) =∑

D−1
j=1 β

(n)
i wt . The vector v(n)f has the following

structure:

[v(n)f ]k =


β
(n)
k , k = 1

−αβ
(n)
k−1 +β

(n)
k , 2≤ k ≤ D−1

c[n]−αβ
(n)
k−1. k = D

To ensure v(n)f is a non-negative vector (feasible point of (PL1)), the following must hold:

β
(n)
1 ≥ 0, β

(n)
k ≥ αβ

(n)
k−1 for 2≤ k ≤ D−1

which implies β
(n)
k ≥ 0 for all k as β

(n)
1 ≥ 0. Since v(n)f is a non-negative vector:

∥v(n)f ∥1 =
D

∑
k=1

[v(n)f ]k = c[n]+
D−1

∑
k=1

(1−α)β
(n)
k = ∥v(n)∥1 +

D−1

∑
k=1

(1−α)β
(n)
k︸ ︷︷ ︸

≥0

We used the fact that ∑
D
k=1 ∑

D−1
t=1 β

(n)
t [wt ]k = ∑

D−1
t=1 (1−α)β

(n)
t . Therefore, for any v(n)f ̸= v(n),

i.e., at least some β
(n)
k ̸= 0 and we can conclude that

∥v(n)f ∥1 > ∥v(n)∥1.

Therefore, the vector v constructed with the support (2.22) has the minimum l1 norm among all

possible feasible points of (PL1).

This result provides a mathematical justification for why l1 minimization (with non-

negativity) is not suitable for the super-resolution spike reconstruction problem at hand. It reveals

an interesting bias introduced of the minimum l1 norm solution is always biased to contain spikes

that are restricted to the low-resolution grid.
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The aforementioned relaxation does not account for the binary constraints, we now take

a look at a different class of relaxation designed for binary constraints. In binary compressed

sensing [41, 42], it is common to relax the binary constraints using box-constraint and l0 norm is

relaxed to l1 norm in the following manner:

min
x∈RL

∥x∥1 subject to c = HD(α)x, 0≤ x≤ A1 (P1-B)

In the following Lemma, we show that there is an implicit bias introduced to the solution of

(P1-B).

Lemma 5. For every xhi ∈ {0,A}L, and c ∈ RM satisfying (2.16). There exists a solution x⋆ to

(P1-B) satisfying

∥x⋆∥1 ≤ ∥xhi∥1. (2.23)

Moreover, for all n≥ 1, the blocks x(n)⋆∈RD of x⋆ satisfy:

supp(x(n)⋆) = {D,D−1, · · · ,D− jn}, if c[n] ̸= 0 (2.24)

for some 0≤ jn ≤ D−1 and x(n)⋆ = 0 if c[n] = 0, irrespective of the support of xhi.

Proof. The proof is in Appendix B.

Lemma 5 shows that even in the noiseless setting, introducing the box-constraint as a

means of relaxing the binary constraint introduces a bias in the support of the recovered spikes.

The optimal solution always results in spikes with support clustered towards the end of each block

of length D, irrespective of the ground truth spiking pattern xhi that generated the measurements.

This bias is a consequence of the nature of relaxation, as well as the specific structure of the

measurement matrix HD(α) arising in the problem.
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Role of Memory in Super-resolution: IIR vs. FIR filters

The ability to identify the high-rate binary signal xhi ∈ {0,A}L from D−fold under-

sampled measurements ylo (for arbitrarily large D) in the absence of noise, is in parts also

due to the “infinite memory” or infinite impulse response of the AR(1) filter. Indeed, for an

Finite Impulse Response (FIR) filter, there is a limit to downsampling without losing iden-

tifiability. This was recently studied in our earlier work [46] where we showed that the un-

dersampling limit is determined by the length of the FIR filter. To see this, consider the

convolution of a binary valued signal xhi with a FIR filter u = [u[0],u[1], · · · ,u[r−1]]T ∈ Rr of

length r: z f [n] = ∑
r−1
i=0 u[r−1− i]xhi[n+ i]. These samples are represented in the vector form as

z f := u⋆xhi ∈ RL (by suitable zero padding). Suppose, as before, we only observe a D−fold

downsampling of the output zD[n] = z f [Dn]. Two consecutive samples zD[p],zD[p+ 1] of the

low-rate observation are given by:

zD[p] =
r−1

∑
i=0

u[r−1− i]xhi[Dp+ i],

zD[p+1] =
r−1

∑
i=0

u[r−1− i]xhi[D(p+1)+ i]

If D > r, notice that none of the measurements is a function of the samples xhi[Dp+ r],xhi[Dp+

r+ 1], · · · ,xhi[D(p+ 1)− 1]. Hence, it is possible to assign them arbitrary binary values and

yet be consistent with the low-rate measurements zD[n]. This makes it impossible to exactly

recover xhi (even if it is known to be binary valued) if the decimation is larger than the filter

length (D > r). The following lemma summarizes this result.

Lemma 6. For every FIR filter u ∈ Rr, if the undersampling factor exceeds the filter length, i.e.

D > r, there exist x0,x1 ∈ {0,A}L, x0 ̸= x1 such that SD(u⋆x0) = SD(u⋆x1).

This shows that the identifiability result presented in Theorem 1 is not merely a conse-

quence of binary priors but the infinite memory of the autoregressive process is also critical in

allowing arbitrary undersampling D > 1 in absence of noise. For such IIR filters, the memory of
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all past (binary) spiking activity is encoded (with suitable weighting) into every measurement

captured after the spike, which would not be the case for a finite impulse response filter.

2.4.2 Efficient Binary Super-Resolution Using Binary Search with
Structured Measurements

By Theorem 3, we already know that it is possible to uniquely identify xhi from c

(or equivalently, each block xhi
(n) from a single measurement c[n]) by exhaustive search. We

now demonstrate how this exhaustive search can be avoided by formulating the decoding

problem in terms of “binary search” over an appropriate set, and thereby attaining computational

efficiency. We begin by introducing some notations and definitions. Given a non-negative integer

k,0 ≤ k ≤ 2D− 1, let (b1(k),b2(k), · · · ,bD(k)) be the unique D-bit binary representation of k:

k = ∑
D
d=1 2D−dbd(k), bd(k) ∈ {0,1} ∀ 1≤ d ≤ D. Here b1(k) is the most significant bit and

bD(k) is the least significant bit. Using this notation, we define the following set:

Sall := {v0,v1,v2, · · · ,v2D−1}, (2.25)

where each vk ∈ {0,A}D is a binary vector given by

[vk]d = Abd(k). 1≤ d ≤ D (2.26)

In other words, the binary vector 1
Avk is the D-bit binary representation of its index k. Using this

convention, v0 = 0 (i.e., a binary sequence of all 0′s) and v2D−1 = A1 (i.e., a binary sequence of

all A′s). Recall the partition of xhi defined in (2.12), where each block xhi
(n) (n≥ 1) is a binary

vector of length D and xhi
(0) ∈ {0,A} is a scalar. It is easy to see that (2.25) comprises of all

possible values that each block xhi
(n) can assume. According to (2.15) each scalar measurement

c[n] can be written as: c[0] = x(0), c[n] = hα
⊤xhi

(n), 1≤ n≤M−1. For every α , we define
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the following set:

Θα := {θ0,θ1, · · · ,θ2D−1}, where θk := h⊤α vk (2.27)

Observe that every measurement c[n] = ∑
D
i=1 αD−ixhi[(n− 1)D+ i] takes values from this set

Θα , depending on the value taken by the underlying block of spiking pattern from Sall. Our goal

is to recover the spikes {xhi[(n−1)D+ i]}D
i=1 from c[n].

In the following, we show that this problem is equivalent to finding the representation

of a real number over an arbitrary radix, which is known as “β -expansion” [5]. Given a real

(potentially non-integer) number β > 1, the representation of another real number p≥ 0 of the

form:

p =
∞

∑
n=1

anβ
−n, where 0≤ an < ⌊β⌋ (2.28)

is referred to as a β -expansion of p. The coefficients 0 ≤ an < ⌊β⌋ are integers. This is a

generalization of the representation of numbers beyond integer-radix to a system where the radix

can be chosen as an arbitrary real number. This notion of representation over arbitrary radix was

first introduced by Renyi in [5], and since then has been extensively studied [6, 7, 56]. There is a

direct connection between β -expansion and the binary super-resolution problem considered here.

In the problem at hand, any element θk ∈Θα can be written as:

θk = h⊤α vk =
D

∑
i=1

α
D−i[vk]i

When 1/2 < α < 1, by letting β = 1/α , we see that the coefficients in (2.28) must satisfy

0≤ an < ⌊1/α⌋< 2, i.e., they are restricted to be binary valued an ∈ {0,1}. Therefore, decoding

the spikes vk from the observation θk is equivalent to finding a D−bit representation for the

number θk/A over the non-integer radix β = 1/α . Questions regarding the existence of β -

expansion, and finding the coefficients of a finite β−expansion (whenever it exists) has been an
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active topic of research [6, 7, 56, 59]. When β ≥ 2 (equivalently, 0 < α ≤ 1/2), it is possible to

find the coefficients using a greedy algorithm which proceeds in a fashion similar to finding the

D-bit binary representation of an integer [7, 59]. However, the regime β ∈ (1,2) (equivalently

1/2 < α < 1), is significantly more complicated and is of continued research interest [6, 7, 56].

To the best of our knowledge, there are no known computationally efficient ways to find the

finite β -expansion when 1/2 < α < 1 (if it exists) [N. Sidorov, personal communication, May

24, 2022]. In practice, we encounter filter values α (= 1/β ) that are much closer to 1, and

hence, we need an alternative approach to find this finite β -radix representation for θk. In the

next section, we show that by performing a suitable preprocessing, finite β -radix representation

can be formulated as a binary search problem which is guaranteed to succeed for all values of β

that permit unique finite β−expansions.

Formulation as a Binary Search Problem

Before describing the algorithm, we first introduce the notion of a collision-free set.

Definition 2 (Collision Free set). Given an undersampling factor D, define a class of “collision

free” AR(1) filters as:

GD = {α ∈ (0,1) s.t. h⊤α vi ̸= h⊤α v j ∀ i ̸= j,vi,v j ∈Sall}

The set GD denotes permissible values of the AR(1) filter parameter α such that each

of the 2D binary sequences in Sall maps to a unique element in the set Θα . In other words,

every θk ∈Θα has a unique D−bit expansion for all α ∈ GD. This naturally raises the question

“How large is the set GD?”. Theorem 3 already provided the answer to this question, where the

identifiability result implies that for every D, almost all α ∈ (0,1) belong to this set GD (with

the possible exception of a measure zero set). Hence, Theorem 3 ensures that there are infinite

choices for collision-free filter parameters.
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Lemma 7. For every α ∈ GD, the mapping Φα(.) : Sall→ Θα , Φα(v) = h⊤α v forms a bijection

between Sall and Θα .

Proof. Since α ∈ GD, from the definition of the set GD, it is clear that for any vi,v j ∈ Sall,

vi ̸= v j we have hα
⊤vi ̸= hα

⊤v j. Therefore, the mapping is injective. Furthermore, from (2.27)

we also have |Θα | ≤ |Sall| = 2D. Since Φα(·) is injective, we must also have |Θα | = 2D and

hence the mapping Φα(.) forms a bijection between Sall and Θα .

When α ∈ GD, Lemma 7 states that the finite beta expansion for every θk ∈Θα is unique.

Lemma 7 provides a way to avoid exhaustive search over Sall, and yet identify xhi
(n) from

c[n] in a computationally efficient way. From Lemma 7, we know that each of the 2D spiking

patterns in Sall maps to a unique element in Θα , and each element in Θα has a corresponding

spiking pattern. Hence instead of searching Sall, we can equivalently search the set Θα in order

to determine the unknown spiking pattern. Since Θα permits “ordering”, searching Θα has a

distinct computational advantage over searching Sall. This ordering enables us to employ binary

search over (an ordered) Θα and find the desired element in a computationally efficient manner.

To do this, we first sort the set Θα (in ascending order) and arrange the corresponding elements

of Sall in the same order. Given Θα as an input, the function SORT(·) returns a sorted list Θsort
α ,

and an index set I = {i0, i1, · · · , i2D−1} containing the indices of the sorted elements in the list

Θα .

Θ
sort
α ,I ← SORT(Θα)

Let us denote the elements of the sorted lists as Θsort
α = {θ̃0, · · · , θ̃2D−1}, and

S sort
all = {ṽ0, · · · , ṽ2D−1} where:

θ̃0 < θ̃1 < · · ·< θ̃2D−1 and θ̃ j = θi j , ṽ j = vi j ∀ j.

It is important to note that this sorting step does not depend on the measurements c, and can

therefore be part of a pre-processing pipeline that can be performed offline. However, it does
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require memory to store the sorted lists. In the noiseless setting, we know that every scalar

Algorithm 2. Noiseless Spike Recovery

1: Input: Measurement c[n], Sorted list Θsort
α and the corresponding (ordered) spike patterns

S sort
all

2: Output: Decoded spike block x̂hi
(n)

3: i⋆← BINSEARCH(Θsort
α ,c[n])

4: Return x̂hi
(n)← ṽi⋆

measurement c[n] = h⊤α xhi
(n) belongs to the set Θsort

α . Therefore, if we identify its index, say

i⋆, then we can successfully recover xhi
(n) by returning the corresponding binary vector ṽi⋆

from S sort
all . Therefore, we can formulate the decoding problem as searching for the input c[n]

in the sorted list Θsort
α . This can be efficiently done by using “Binary Search”. The noiseless

spike decoding procedure is summarized as Algorithm 2. Since the complexity of performing a

binary search over an ordered list of N elements is O(logN), the complexity of Algorithm 2 is

logarithmic in the cardinality of Θsort
α , which results in a complexity of O(log(2D)) = O(D). We

summarize this result in the following Lemma.

Lemma 8. Assume α ∈ GD. Given the ordered set Θsort
α , and an input c[n] = h⊤α xhi

(n), Algo-

rithm 2 terminates in O(D) steps and its output x̂hi
(n) satisfies x̂hi

(n) = xhi
(n).

Noisy Measurements and 1- D Nearest Neighbor Search

We demonstrate how binary search can still be useful in presence of noise by formu-

lating noisy spike detection as a one dimensional nearest neighbor search problem. Suppose

{zlo[n]}M−1
n=0 denote noisy D-fold decimated filter output

zlo[n] = ylo[n]+w[n], 0≤ n≤M−1 (2.29)
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Here w[n] represents the additive noise term that corrupts the (noiseless) low-rate measurements

ylo[n]. Similar to (2.13), we compute ce[n] from zlo[n] as follows:

ce[n] = zlo[n]−α
Dzlo[n−1] (2.30)

=
D

∑
i=1

α
D−ixhi[(n−1)D+ i]+ e[n]= c[n]+ e[n] (2.31)

where c[n] = h⊤α xhi
(n) ∈ Θsort

α , and e[n] = w[n]− αDw[n− 1]. We can interpret ce[n] as a

noisy/perturbed version of an element c[n] ∈ Θsort
α , with e[n] representing the noise. This

perturbed signal may no longer belong to Θsort
α (i.e. ce[n] ̸∈ Θsort

α ) and hence, we cannot find

an exact match in the set Θsort
α . Instead, we aim to find the closest element in Θsort

α (the nearest

neighbor of ce[n]) by solving the following problem:

x̂hi
(n) = arg min

v∈S sort
all

|ce[n]−h⊤α v| (2.32)

Solving (2.32) is equivalent to finding the spike sequence ṽ ∈S sort
all that maps to the nearest

neighbor of ce[n] in the set Θsort
α . By leveraging the sorted list Θsort

α , it is no longer necessary

to parse the list sequentially (which would incur O(2D) complexity), instead we can perform

a modified binary search as summarized in Algorithm 3, that keeps track of additional indices

compared to the vanilla binary search. Finally, we return the unique spiking pattern from S sort
α

that gets mapped to the nearest neighbor of the noisy measurement ce[n]. It is well-known that

the nearest neighbor for any query could be found in O(log(2D)) = O(D) steps, instead of the

linear complexity of O(2D). This guarantees a computationally efficient decoding of spikes by

solving (2.32).

Next, we characterize the error events that lead to erroneous detection of a block of

spikes. Recall that the set Θsort
α is sorted, and its elements satisfy the ordering:

0 = θ̃0 < θ̃1 < · · ·< θ̃lD = 1+α + · · ·+α
D−1
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where lD := 2D−1. We also have θ̃k = h⊤α ṽk, where ṽk ∈S sort
all is a binary spiking sequence of

length D.

For each ṽk and each n, we will determine the error event x̂hi
(n) ̸= xhi

(n), when xhi
(n) = ṽk.

First, consider the scenario when xhi
(n) = ṽk for some 0 < k < lD (excluding ṽ0, ṽlD). The corre-

sponding noiseless measurement is c[n] = θ̃k = h⊤α ṽk which satisfies θ̃k−1 < c[n] = θ̃k < θ̃k+1.

Since Θsort
α is sorted, it can be easily verified that the nearest neighbor of ce[n] will be θ̃k, if and

only if ce[n] satisfies the following condition:

(θ̃k−1 + θ̃k)/2≤ ce[n]≤ (θ̃k+1 + θ̃k)/2 (2.33)

Since θ̃k = h⊤α ṽk, the solution to (2.32) is attained at ṽk ∈S sort
all , and the decoding is successful.

Therefore Algorithm 3 produces an erroneous estimate of ṽk if and only if ce[n] violates (2.33).

The event ce[n] ̸∈ [
θ̃k−1+θ̃k

2 ,
θ̃k+1+θ̃k

2 ] is equivalent to e[n] ∈ Ek (e[n] is defined earlier in (2.31)),

where

Ek = {e[n]<−
θ̃k− θ̃k−1

2
, or e[n]>

θ̃k+1− θ̃k

2
} (2.34)

Finally, we characterize the error events for k = 0, lD. The error events for c[n] = θ0 = 0 or

c[n] = θlD are given by:

E0 = {e[n]≥ θ̃1/2}, ElD = {e[n]≤−(θ̃lD− θ̃lD−1)/2} (2.35)

Define the “minimum distance” between points in Θsort
α :

∆θmin(α,D) = min
1≤k≤lD

|θ̃k− θ̃k−1|.

This minimum distance depends on A,α and D. From (2.34), (2.35) it can be verified that if

2|w[n]| < ∆θmin(α,D)/2 (which would imply |e[n]| < ∆θmin(α,D)/2) for all n, then x̂hi
(n) =

41



xhi
(n). As summarized in Theorem 4, Algorithm 3 can exactly recover the ground truth spikes

from measurements corrupted by bounded adversarial noise, the extent of the robustness is

determined by the parameters A,α,D.

Algorithm 3. Noisy Spike Recovery

1: Input: Measurement ce[n], Sorted list Θsort
α and the corresponding (ordered) spike patterns

S sort
all

2: Output: Decoded spike block x̂hi
(n)

3: Set l← 0,u← 2D−1
4: while u− l > 1
5: Set m← l + ⌊(u− l)/2⌋
6: if θ̃m > ce[n] then
7: u← m
8: else
9: l← m

10: end if
11: end while
12: Find the nearest neighbor i⋆ = argmini∈{l,u}(ce[n]− θ̃i)

2

13: Return x̂hi
(n)← ṽi⋆

Theorem 4. Assume α ∈ GD. Given the ordered set Θsort
α , the output of Algorithm 3 with input

ce[n] exactly coincides with the solution of the optimization problem (2.32) in at most O(D)

steps. Furthermore, if for all n, |w[n]|< ∆θmin(α,D)/4, then the output of Algorithm 3 satisfies

x̂hi
(n) = xhi

(n).

From Theorem 4, it is evident that ∆θmin(α,D) plays an important role in characterizing

the upper bound on noise. We attempt to gain insight into how ∆θmin(α,D) varies as a function

of α when D is held fixed.

Lemma 9. Given D, ∆θmin(α,D) = AαD−1 for α ∈ (0,0.5].

Proof. The proof for A = 1 is in Appendix C and it can be scaled to obtain the desired bound.

When α ∈ (0,0.5], ∆θmin(α,D) is monotonically increasing with α . However, for

α > 0.5 the trend fluctuates with α differently for different D, and becomes quite challenging
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to predict. This is also confirmed by the empirical plot in Figure 2.3. A refined analysis of

∆θmin(α,D) to gain insight into desirable filter parameters α is an interesting direction for future

work.

Trade-off between memory and computational complexity

A crucial aspect of Algorithms 2 and 3 is that they achieve efficient run-time complexity

by leveraging the off-line construction of the sorted list Θsort
α and S sort

all . These lists, each with

2D elements, need to be stored in memory and made available during run-time. Since there is no

free lunch, the resulting computational efficiency of O(D) at run-time is attained at the expense

of the additional memory that is required to store the sorted lists Θsort
α ,S sort

all .

Parallelizable Implementation

Algorithm 3 (also Algorithm 2) only takes ce[n](c[n]) as input and returns x̂hi
(n), and

is completely de-coupled from any other x̂hi
(n′), n′ ̸= n. Recall that in reality, we are provided

with measurements zlo[n](ylo[n]), and ce[n](respectively c[n]) needs to be computed. Due to

this de-coupling, we can compute ce[n]′s in parallel using two consecutive low-rate samples

zlo[n],zlo[n−1] and perform a nearest neighbor search without waiting for any previously decoded

spikes. Therefore, the total decoding complexity can be further improved depending on the

available parallel computing resources.

2.4.3 Error Analysis for Gaussian Noise

Algorithm 3 solves (2.32) without requiring any knowledge of the noise statistics. How-

ever, in order to analyze its performance, we will make the following (standard) assumptions on

the statistics of the high-rate spiking signal xhi and the measurement noise w[n] as follows:

• (A1) The entries of the binary vector xhi ∈ {0,A}L are i.i.d random variables distributed as

xhi[n]∼ ABern(p).
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• (A2) The additive noise w[n],0 ≤ n ≤M−1 is independent of xhi[n], and distributed as

w[n]∼N (0,σ2)

Probability of Erroneous Decoding

Under assumption (A2), the ML estimate of xhi is given by the solution to the following

problem:

x̂ML = arg min
v∈{0,A}L

∥zlo−SDGαv∥2 (PNN)

The proposed Algorithm 3 does not attempt to solve (PNN), which is computationally intractable.

Instead, it solves a set of M−1 one dimensional nearest neighbor search problems, by finding

the nearest neighbor of ce[n] for each n = 1,2, · · · ,M−1. This scalar nearest neighbor search

is implemented in a computationally efficient manner by using parallel binary search on a

pre-sorted list. Notice that by the operation (2.30), the variance of the equivalent noise term

e[n] gets amplified by a factor of at most (1+α2D)< 2. This can be thought of as a price paid

to achieve computational efficiency and parallelizability. The following theorem characterizes

the dependence of certain key quantities of interest, such as the signal-to-noise ratio (SNR),

undersampling factor D, and filter’s frequency response (controlled by α) on the performance of

Algorithm 3.

Theorem 5. Suppose α ∈ GD and assumptions (A1-A2) hold. Given δ > 0, if the following

condition is satisfied:

∆θ
2
min(α,D)/σ

2 ≥ 4ln(2M/δ ) (2.36)

then Algorithm 3 can exactly recover the binary signal xhi with probability at least 1−δ .

Proof. The proof follows standard arguments for computing the probability of error for symbol

detection in Gaussian noise, followed by certain simplifications and is included in Appendix D

for completeness.

In Figure 2.3, we plot ∆θmin(α,D) as a function of D for different values of α . As

expected, ∆θmin(α,D) decays as the D increases. Understandably, for a fixed α , as D increases,
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it becomes harder to recover the spikes exactly, and higher SNR is needed to compensate for the

lower sampling rate. This can be interpreted as the price paid for super-resolution in presence of

noise. This phenomenon is also reminiscent of the noise amplification effect in super-resolution,

where the ability to super-resolve point sources becomes more severely hindered by noise as the

target resolution grid becomes finer [25]. In Figure 2.3, we plot ∆θmin(α,D) as a function of α

and as predicted by Lemma 9, it monotonically increases upto 0.5, but for α > 0.5, the behavior

becomes much more erratic and a precise characterization becomes challenging. It is to be noted

that in Theorem 5, we aim to exactly recover xhi. The SNR requirement can be relaxed if our

goal is to recover only spike counts instead of the true spikes as discussed in the next subsection.

One can define other notions of approximate recovery, the analysis of which will be a topic of

future research.

2.4.4 Relaxed Spike reconstruction: Count Estimation

As shown in Theorem 4, exact recovery of spikes is possible under somewhat restrictive

condition on the noise in terms of ∆θmin(α,D), which becomes quite small as D increases. This

naturally calls for other relaxed notions of recovery which can handle larger noise levels. In

neuroscience, it is believed that information is encoded as either the spike timing (temporal code)

or the firing rates (rate coding) of individual neurons in the brain. Therefore, the spike counts

over an interval can be informative to understand neural functions, even when it is impossible

to temporally localize the neural spikes. For example, neurons in the visual cortex encode

stimulus orientations as their firing rates [60]. We will therefore focus on spike count as an

approximate recovery metric, which concerns estimating the number of spikes occurring between

two consecutive low-rate measurements instead of resolving the individual spiking activity at a

higher resolution.

Let γ[n] denote the total number of spikes occurring between two consecutive low-rate

samples zlo[n] and zlo[n−1]. Since xhi and its estimate x̂hi are both binary valued (amplitude A),

the true spike count (γ[n]) and estimated count (γ̂[n]) are given by: γ[n] = ∥xhi
(n)∥0, γ̂[n] =
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∥x̂(n)hi ∥0, n = 1, · · · ,M−1, γ[0] = xhi[0]/A and γ̂[0] = x̂hi[0]/A since the first block is of size 1

as described in (2.12). Define a set C D
k as:

C D
k := {v ∈ {0,A}D,∥v∥0 = k}, 0≤ k ≤ D

It is a collection of all binary vectors (of length D) with spike count k. The ground truth spike

block belongs to C D
γ[n]. Any element from C D

γ[n] will give the true spike count. Hence, exact

recovery of count can be possible even when spikes cannot be recovered.

For a fixed D, we define a set of α denoted by FD:

FD := {α ∈ (0,1)|αD−α
D−k0−1−α

k0 +1 < 0} (2.37)

where k0 = ⌊D/2⌋. We will obtain a sufficient condition for robust spike count estimation when

α ∈FD. It can be shown that for any D, FD will always be non-empty. Define

θ
k
min := min

u∈C D
k

h⊤α u θ
k
max := max

u∈C D
k

h⊤α u (2.38)

Observe that if

θ
k+1
min > θ

k
max,k = 0,1, · · · ,D−1 (2.39)

then all spike patterns ui ∈C D
k (with the same spike count k) are clustered together when mapped

on to the real line by the transformation h⊤α u as shown in Figure 2.4. When (2.39) holds, we

can define a “cluster-restricted minimum distance” as:

∆
c
min(α,D) := min

0≤k≤D−1
θ

k+1
min −θ

k
max (2.40)

Given a noisy observation ce[n] = h⊤α xhi
(n)+ e[n], the solution to the nearest neighbor problem

(2.32) may return an incorrect neighbor θ j ̸= h⊤α xhi
(n). However, when (2.39) holds and if the
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noisy observation satisfies the following conditions:

(θ
γ[n]
min +θ

γ[n]−1
max )/2 < ce[n]< (θ

γ[n]+1
min +θ

γ[n]
max)/2 (2.41)

then the nearest-neighbor decision rule in Algorithm 3 will still ensure that θ j ∈ C D
γ[n]. This has

also been visualized in Figure 2.4 where each colored band represents the “safe-zone” for each

count and the black dotted-line denotes the boundary. This will result in correct identification

of the spike count but will incur error in terms of spiking pattern. We formally summarize this

in the following Theorem that provides robustness guarantee for exact count recovery from

measurements corrupted by adversarial noise (similar to Theorem 4 for spike recovery).

Theorem 6. Assume α ∈FD. Given the ordered set Θsort
α , let γ̂[n] be the estimated spike count

obtained from Algorithm 3 with input ce[n]. If for all n, |w[n]|< ∆c
min(α,D)/4, then the count

can be exactly recovered, i.e., γ̂[n] = γ[n].

Proof. Proof is in Appendix E.

It is clear that when (2.39) holds, ∆c
min(α,D) is no smaller than ∆θmin(α,D), since the

former is computed over neighboring elements of the cluster whereas ∆θmin(D,α) computes the

minimum distance over all consecutive elements (both inter-cluster as well as intra-cluster) in

Θsort
α . This essentially suggests that estimation of counts (for this range of α and D) can be more

robust compared to inferring the individual spiking patterns. We also illustrate this numerically

in Figure 2.3 (top), where we plot both ∆c
min and ∆θmin as a function of α and the start of the

interval FD (computed numerically) is denoted using dotted lines. For both values of D, we can

see that ∆c
min > ∆θmin and the gap grows as α increases.

2.5 Numerical Experiments

We conduct numerical experiments to evaluate the performance of the proposed super-

resolution spike decoding algorithm on both synthetic and real calcium imaging datasets.
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Figure 2.4. Visualization of the sets C D
k for D = 3. In this scenario, the spiking patterns

corresponding to the same count are clustered together and hence, are favorable for robust count
estimation.

2.5.1 Synthetic Data Generation and Evaluation Metrics

We create a synthetic dataset by generating high-rate binary spike sequence xhi ∈ {0,1}L

(A = 1 and L = 1000) that satisfies assumption (A1). The spiking probability p controls the

average sparsity level given by s := E[∥xhi∥0] = Lp. We aim to reconstruct xhi from M ≈ L/D

low-rate measurements zlo[n] defined in (2.29). Notice that we operate in a regime where the

expected sparsity is greater than the total number of low-rate measurements, i.e., s > M. We

employ the widely-used F-score metric to evaluate the accuracy of spike detection [11, 32]. The

F-score is computed by first matching the estimated and ground truth spikes. An estimated spike

is considered a “match” to a ground truth spike if it is within a distance of t0 of the ground truth

(many-to-one matching is not allowed) [11,32]. Let K and K′ be the total number of ground truth

and estimated spikes, respectively. The number of spikes declared as true positives is denoted

by Tp. After the matching procedure, we compute the recall (R =
Tp
K ) which is defined as the

ratio of true positives (Tp) and the total number of ground truth spikes (K). Precision (P =
Tp
K′ )

measures the fraction of the total detected spikes which were correct. Finally, the F-score is

given by the harmonic mean of recall and precision F-score = 2PR/(P+R).

Noiseless Recovery: Role of Binary priors and memory

We first consider the noiseless setting (w[n] = 0 in (2.29)). We compare the performance

of Algorithm 3 against box-constrained l1 minimization method [41, 42], where we solve:

min
x∈RL

∥x∥1 s.t. ∥ylo−SDGαx∥2 ≤ ε,0≤ x≤ A1 (P1)
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Figure 2.5. (Top) Quantitative comparison of Algorithm 3 against box-constrained l1 mini-
mization method with noiseless measurements (with tolerance t0 = 0). (Bottom) (Role of Filter
Memory): Average F-score vs. D for FIR and IIR (AR(1)) filters. Each dotted line indicates the
corresponding theoretical transition point (D = r).

For synthetic data, ε is chosen using the norm of the noise term ∥w∥2. This oracle choice

ensures most favorable parameter tuning for the (P1), although a more realistic choice would

be to set ε =
√

Mσ according to the noise power (σ ). In the noiseless setting, we choose

ε = 0. The problem (P1) is a standard convex relaxation of (P0) which promotes sparsity as well

as tries to impose the binary constraint via the box-relaxation (introduced in Section II-C). In

Figure 2.5 (Top), we plot the F-score (t0 = 0) as a function of D. As can be observed, Algorithm 3

consistently achieves an F-score of 1, whereas the F-score of l1 minimization shows a decay

as D increases. This confirms Lemma 5 that for D > 1, using box-constraints with l1 norm

minimization is not enough to enable exact recovery from low rate measurements. In absence
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Figure 2.6. Qualitative comparison of Algorithm 3 and box-constrained l1 minimization on
simulated data. For each simulation noisy measurements are generated with α = 0.9 such that
the noise realization (Top) obeys the bound |w[n]| ≤ ∆θmin (from Theorem 4) and (Bottom)
violates the bound. For larger noise (Bottom), the spike recovery is imperfect but the spike count
can still be exactly recovered using Algorithm 3.

of noise, the performance of Algorithm 3 is not affected by the filter parameter α as shown in

Figure 2.5 (Top).

Next, we compare the reconstruction from the decimated output of (i) an AR(1) filter

and (ii) an FIR filter of length r driven by the same input xhi ∈ {0,1}1000. We choose the FIR

filter h = [1,α, · · · ,αr−1]⊤ (truncation of the IIR filter) with α = 0.5. Algorithm 3 is applied to

the low-rate AR(1) measurements, whereas the algorithm proposed in [46] is used for the FIR

case. The algorithm applied for the FIR case can provably operate with the optimal number of

measurements when α = 0.5 and hence, we chose this specific value for the filter parameter. In

Figure 2.5 (Bottom), we again compare the average F-score as a function of D, averaged over

10000 Monte Carlo runs, for p = 0.5. As predicted by Lemma 6, despite utilizing binary priors,

the error for the FIR filter shows a phase transition when D > r. This demonstrates the critical

role played by the infinite memory of the AR(1) filter in achieving exact recovery with arbitrary
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D.

Performance of noisy spike decoding

We generate noisy measurements of the form (2.29), where w[n] and xhi[n] satisfy assump-

tions (A1-A2). We illustrate some representative examples of recovered spikes on synthetic data.

In Figure 2.6, we display the recovered super-resolution estimates on synthetically generated

measurements for two undersampling factors D = 5 (left),10 (right). For each D, the top plots

show the spikes recovered using Algorithm 3 and l1 minimization with box-constraint where

the noise realization obeys the bound in Theorem 4, while the bottom plots show the same

for noise realization violating the bound. The output of l1 minimization with box-constraint is

inaccurate, and the spikes are clustered towards the end of each block of length D. This bias

is consistent with the prediction made by our theoretical results in Lemma 5. When the noise

is small enough (top), Algorithm 3 exactly decodes the spikes, including the ones occurring

between two consecutive low-rate samples as predicted by Theorem 4. In presence of larger

noise (violating the bound), the spikes estimated using l1 minimization continue to be biased

to be clustered towards the end of the block. Although the spikes recovered using Algorithm 3

are not exact, most of the detected spikes are within a tolerance window of ground truth spikes.

In fact, the spike count estimation is perfect as predicted by Theorem 6. We next quantitatively

evaluate the performance in presence of noise, where the metrics are computed with t0 = 2. In

Figure 2.7 (Top), we plot the F-score as a function of D for different values of α . For a fixed α ,

the F-score of both methods decays with increasing D, but Algorithm 3 consistently attains a

higher F-score compared to l1 minimization. We observe that α = 0.5 leads to a higher F-score

potentially due to having a larger ∆θmin(α,D) compared to α = 0.9. Next, in Figure 2.9, we

study the behavior of spike detection as a function of the spiking probability p, while keeping D

fixed at D = 5. When σ is fixed, the performance trend is not significantly affected by the spiking

probability. At first, this may seem surprising as the expected sparsity is growing while the

number of measurements is unchanged. However, since our algorithm exploits the binary nature
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Figure 2.7. Spike detection performance with noisy measurements. (Top) F-score vs. D for
different filter parameters α (σ = 0.01). Here, L = 1000 and expected sparsity s = 350 where
we operate in the regime s > M. The F-score is computed with a tolerance of t0 = 2.

of the spikes (and not just sparsity), it can handle larger sparsity levels. The spikes reconstructed

using l1 minimization achieve a much lower F-score than Algorithm 3 since the former fails to

succeed when the sparsity is large. As expected, smaller σ leads to higher F-scores.

In Figure 2.10, we study the probability of erroneous spike detection as a function of

D and validate the upper bound derived in Theorem 5. Recall that the decoding is considered

successful if “every” spike is detected correctly. Therefore, it becomes more challenging to

“exactly super-resolve” all the spikes in presence of noise as the desired resolution becomes

finer. We calculate the empirical probability of error and overlay the corresponding theoretical

bound. As shown in Figure 2.10, the empirical probability of error is indeed upper bounded by

the bound computed by our analysis. The empirical probability of error increases as a function

of undersampling factor D.

Finally, we evaluate the noise tolerance of the proposed methodology by comparing

the average F-score as a function of the noise level σ , while keeping the spiking rate and

undersampling factor fixed at p = 0.35 and D = 5, respectively. As seen in Figure 2.8 (Top), the

performance of both algorithms degrades with increasing noise level and this is also consistent

with the intuition that it becomes harder to super-resolve spikes with more noise. However, for

both filter parameters considered in this experiment Algorithm 3 has a higher F-score compared
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Figure 2.8. Spike detection performance with noisy measurements for different filter parameters
α . (Top) F-score vs. noise level (σ ) (Bottom) Count estimation error vs. noise level. Here,
L = 1000 and expected sparsity is fixed at s = 350 where we operate in the regime s > M. The
F-score is computed with a tolerance of t0 = 2.

to box-constrained l1 minimization. For large noise levels (comparable to spike amplitude A = 1),

the performance gap decreases for α = 0.9 but Algorithm 3 achieves a much higher F-score for

α = 0.5 at all noise levels.

As discussed in Section 2.4.4, we next study a relaxed notion of spike recovery which

focuses on the spike counts occurring between two consecutive low-rate samples. Let Γ =

[γ[0], · · · ,γ[M−1]]⊤ be the vector of counts and Γ̂ be its estimate. In Figure 2.8 (Bottom) we

plot the average l1 distance ∥Γ− Γ̂∥1 as a function of the noise level. We observe that for α = 0.9

(it can be verified from Figure 2.3 (Top) that 0.9 ∈F5), it is possible to exactly recover the

spike counts at higher noise even though the F-score (for timing recovery) has dropped below 1.
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However, this is not the case for α = 0.5, since 0.5 ̸∈F5. This is consistent with the conclusion

of Theorem 6 which states that when α ∈FD, the noise tolerance for exact count recovery can

be much larger than exact spike recovery since ∆c
min(α,D)> ∆θmin(α,D).
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Figure 2.9. Spike detection performance with noisy measurements. F-score vs. spiking
probability (p) for different noise levels σ (fix α = 0.9, D = 5,L = 1000) in the extreme
compression regime s > M.
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of the undersampling factor D. Theoretical upper bounds are overlaid using dotted lines. Here,
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Spike Deconvolution from Real Calcium Imaging Datasets

We now discuss how the mathematical framework developed in this chapter can be used

for super-resolution spike deconvolution in calcium imaging. Two-photon calcium imaging is
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a widely used imaging technique for large scale recording of neural activity with high spatial

but poor temporal resolution. In calcium imaging, the signal xhi corresponds to the underlying

neural spikes which is modeled to be binary valued on a finer temporal scale [9, 55]. Each neural

spike results in a sharp rise in Ca2+ concentration followed by a slow exponential decay, leading

to superposition of the responses from nearby spiking events [9–11]. This calcium transient can

be modeled by the first order autoregressive model introduced in Section 2.4.1. The decay time

constant depends on the calcium indicator and essentially determines the filter parameter α . The

signal yhi[n] is an unobserved signal corresponding to sampling the calcium fluorescence at a

high sampling rate (at the same rate as the underlying spikes). The observed calcium signal ylo[n]

corresponds to downsampling yhi[n] at an interval determined by the frame rate of the microscope.

The frame rate of a typical scanning microscopy system (that captures the changes in the calcium

fluorescence) is determined by the amount of time required to spatially scan the desired field of

view, which makes it significantly slower compared to the temporal scale of the neural spiking

activity. We model this discrepancy by the downsampling operation (by a factor D). Therefore,

the mathematical framework developed in this chapter can be directly applied to reconstruct the

underlying spiking activity at a temporal scale finer than the sampling rate of the calcium signal.

Using real calcium imaging data, we demonstrate a way to fuse our algorithm with a popular

spike deconvolution algorithm called OASIS [51]. OASIS solves an l1 minimization problem

similar to (P1) with only the non-negativity constraint, in order to exploit the sparse nature of the

spiking activity. Unlike our approach where we wish to obtain spikes representation on a finer

temporal scale, OASIS returns the spike estimates on the low-resolution grid. This is typically

used to infer the spiking rate over a temporal bin equal to the sampling interval. We demonstrate

that our proposed framework can be integrated with OASIS and improve its performance. As we

saw in the synthetic experiments, the noise level is an important consideration. By augmenting

Algorithm 3 with OASIS, referred as “B-OASIS”, the denoising power of l1 minimization can

be leveraged.Let x̂l1 ∈ RM be the estimate obtained on a low-resolution grid by solving the

l1 minimization problem such as the one implemented in OASIS. We can obtain an estimate
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of the denoised calcium signal as ŷlo[n] = αDŷlo[n]+ x̂l1[n],n ≥ 1 and ŷlo[0] = x̂l1[0]. We can

now utilize the denoised calcium signal ŷlo[n] generated by OASIS to obtain the estimate ce[n]

indirectly. Due to the non-linear processing done by OASIS, it is difficult to obtain the resulting

noise statistics. An important advantage of Algorithm 3 is that it does not rely on the knowledge

of the noise statistics. Hence, we can directly apply Algorithm 3 on ĉe[n] = ŷlo[n]−αDŷlo[n−1]

(instead of ce[n]) to obtain a binary “fused super-resolution spike estimate”.
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Figure 2.11. Spike detection performance of OASIS and B-OASIS on GCaMP6f dataset sampled
at (Left) 60 Hz and (Right) 30 Hz. We compare the average F-score of data points where the
F-score of OASIS is < 0.5. Standard deviation is depicted using the error bars.

Results on Real Data

We evaluate the algorithms on the publicly available GENIE dataset [61, 62] which

consists of simultaneous calcium imaging and in vivo cell-attached recording from the mouse

visual cortex using genetically encoded GCaMP6f calcium indicator GCaMP6f [61, 62]. The

calcium images were acquired at a frame rate of 60 Hz and the ground truth electrophysiology

signal was digitized at 10 KHz and synchronized with the calcium frames. In addition to using

the original data, we also synthetically downsample it to emulate the effect of a lower frame rate

of 30 Hz, and evaluate how the performance changes by this downsampling operation.
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Figure 2.12. Example of spike reconstruction on GENIE dataset (GCaMP6f indicator) using
OASIS and B-OASIS (binary augmented) with calcium signal sampled at 30Hz.

In Figure 2.12, we extract an interval of ∼ 2 sec (from the neuron 1 of the GCaMP6f

indicator dataset) and qualitatively compare the detected spikes with the ground truth. We

downsample the data by a factor of 2 to emulate frame rate of 30 Hz, the low-rate grid becomes

coarser. As a result of which, we observe an offset between ground truth spikes and estimate

produced by OASIS. However, with the help of binary priors (B-OASIS), we can output spikes

that are not restricted to be on the coarser scale, and this mitigates the offset observed in the raw

estimates obtained by OASIS.

We quantify the improvement in the performance by comparing the F-scores of OASIS

and B-OASIS at both sampling rates (60 and 30 Hz). Since the output of OASIS is non-binary,

the estimated spikes are binarized by thresholding. To ensure a fair comparison, we select

the threshold by a 80− 20 cross-validation scheme that maximizes the average F-score on a

held-out validation set (averaged over 3-random selections of the validation set). The tolerance

for the F-score was set at 100 ms. The dataset consisted of 34 traces of length ∼ 234 s. The

OASIS algorithm has an automated routine to estimate the parameter α , which we utilize for our

experiments. The amplitude A is estimated using the procedure described in Appendix F. We use

D = 12 to obtain the spike representation for B-OASIS. In order to quantify the performance

boost achieved by augmentation, we isolate the traces where the F−score of OASIS drops below

0.5 and compare the average F-score and recall for these data points. As shown in Figure 2.11, at
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both sampling rates, we see a significant improvement in the average F-score of B-OASIS over

OASIS, attributed to an increase in recall while keeping the precision unchanged. Additionally,

despite downsampling, the spike detection performance is not significantly degraded with binary

priors, although the detection criteria were unchanged.

2.6 Conclusion

In the first part of this chapter, we addressed the problem of identifying a finite-valued

input from uniformly downsampled measurements at the output of a known finite length filter.

We established that the overall linear map remains injective over the set of finite-valued signals

provided the number of measurements exceed N/L. Under a certain decay condition on the filter,

we show that it is possible to design a computationally efficient sequential decoding algorithm

that leverages the finite-valued constraint instead of relaxing these conditions. The proposed

algorithm can recover signals with sparsity larger than N/L with only O(N/L) measurements

which is also supported by our numerical simulations. Our results establish that it is indeed

possible to develop computationally efficient approaches without relaxation and thereby avoid

the performance degradation incurred due to relaxation.

In the second part of this chapter, we theoretically established the benefits of binary priors

in super-resolution, and showed that it is possible to achieve significant reduction in sample

complexity over sparsity-based techniques. Using an AR(1) model, we developed and analyzed

an efficient algorithm that can operate in the extreme compression regime ( M≪K) by exploiting

the special structure of measurements and trading memory for computational efficiency at run-

time. We also demonstrated that binary priors can be used to boost the performance of existing

neural spike deconvolution algorithms. In the future, we will develop algorithmic frameworks for

incorporating binary priors into different neural spike deconvolution pipelines and evaluate the

performance gain on diverse datasets. The extension of this binary framework for higher-order

AR filters is another exciting future direction.
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2.7 Appendices

2.7.1 Appendix A: Proof of Theorem 3

Proof. We show that for any α in 0 < α < 1, except possibly for a set consisting of only a

finite number of points, (2.16) always has a unique binary solution. Consider all possible

D−dimensional ternary vectors with their entries chosen from {−1,0,1}, and denote them as

v(i) = [v(i)1 ,v(i)2 , · · · ,v(i)D ]T ∈ {−1,0,1}D,0≤ i≤ 3D−1. We use the convention that v(0) = 0. For

every i > 0, we define a set Zv(i) determined by v(i) as Zv(i) :=
{

x ∈ (0,1)
∣∣∑

D
k=1 v(i)k xD−k = 0

}
.

Notice that pi(x) := ∑
D
k=1 v(i)k xD−k denotes a polynomial (in x) of degree at most D−1, whose

coefficients are given by the ternary vector v(i). The set Zv(i) denotes the set of zeros of pi(x)

that are contained in (0,1). Since the degree of pi(x) is at most D−1, Zv(i) is a finite set with

cardinality at most D−1.

Now suppose that the binary solution of (2.16) is non-unique, i.e., there exist u,w ∈

{0,A}L, u ̸= w, such that

HD(α)u = HD(α)w⇒HD(α)u−HD(α)w = 0 (2.42)

By partitioning u,w into blocks u(n),w(n) in the same way as in (2.12), we can re-write (2.42) as
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u(0) = w(0) and

D

∑
i=1

1
A
([u( j)]i− [w( j)]i)α

D−i = 0, 1≤ j ≤M−1 (2.43)

Since u ̸= w, they differ at least at one block, i.e., there exists some j0,1 ≤ j0 ≤M− 1 such

that u( j0) ̸= w( j0). Define b := 1
A(u

( j0)−w( j0)). Then, b is a non-zero ternary vector, i.e.,

b ∈ {−1,0,1}D. Now from (2.43), we have

D

∑
i=1

[b]iαD−i = 0, (2.44)

which implies that α ∈Zb. Since b can be any one of the 3D− 1 ternary vectors {v(i)}3D−1
i=1 ,

(2.44) holds if and only if α ∈ S :=
⋃3D−1

i=1 Zv(i) , i.e., α is a root of at least one of the polynomials

pi(x) defined by the vectors v(i) as their coefficients. For each v(i), since the cardinality of Zv(i) is

at most D−1, S is a finite set (of cardinality at most (D−1)(3D−1)), and therefore its Lebesgue

measure is 0. This implies that (2.16) has a non-unique binary solution only if α belongs to the

measure zero set S, thereby proving the theorem.

2.7.2 Appendix B: Proof of Lemma 3 and Lemma 5

Proof. (i) Let sn denote the sparsity (number of non-zero elements) of the nth block xhi
(n) of

xhi. Then, the total sparsity is ∥xhi∥0 = ∑
M−1
n=0 sn. We will construct a vector v ∈ RL, v ̸= xhi

that satisfies c = HD(α)v and ∥xhi∥0 ≥ ∥v∥0. Following (2.12), consider the partition of v

v = [v(0),v(1)⊤, · · · ,v(M−1)⊤]⊤. Firstly, we assign v(0) = c[0] = xhi
(0). We construct v(n) as

follows. For each n≥ 1, there are three cases:

Case I: sn = 0. In this case, xhi
(n) = 0 and hence c[n] = 0. Therefore, we assign

v(n) = xhi
(n) = 0.

Case II: sn = 1. First suppose that [xhi
(n)]D = 0. We construct v(n) as follows:

[v(n)]k =


c[n], if k = D

0, else
. (2.45)
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Next suppose that [xhi
(n)]D ̸= 0. Since sn = 1, this implies that [xhi

(n)]k = 0,k = 1, · · · ,D−1. In

this case, we construct v(n) as follows:

[v(n)]k =


c[n]/α, if k = D−1

0, else
. (2.46)

Notice that both (2.45) and (2.46) ensure that v(n) ̸= xhi
(n) and c[n] = hT

αv(n). Moreover,

∥v(n)∥0 = sn.

Case III: sn ≥ 2. In this case, we follow the same construction as (2.45). As before v(n)

satisfies c[n] = h⊤α v(n). Since ∥xhi
(n)∥0 ≥ 2 and ∥v(n)∥0 = 1, we automatically have v(n) ̸= xhi

(n),

and ∥v(n)∥0 < sn. Therefore, combining the three cases, we can construct the desired vector v

that satisfies v ̸= xhi, c = HD(α)v, and ∥v∥0 ≤ ∑
M−1
n=0 sn = ∥xhi

(n)∥0. Therefore, the solution x⋆

to (P0) satisfies ∥x⋆∥0 ≤ ∥v∥0 ≤ ∥xhi
(n)∥0.

(ii) In this case, we construct v(n0) according to Case III. Since ∥v(n0)∥0 < sn0 , and

∥v(n)∥0 ≤ sn,n ̸= n0, we have ∥v∥0 < ∥xhi∥0, implying ∥x⋆∥0 ≤ ∥v∥0 < ∥xhi∥0.

2.7.3 Proof of Lemma 5

Proof. We will construct a vector v ∈ RL whose support is of the form (2.24), that is feasible

for (P1-B), and we will prove that it has the smallest l1 norm. Using the block structure given

by (2.12), we choose v(0) = c[0]. For each n≥ 1, we construct v(n) based on the following two

cases:

Case I: c[n]≥ A. Let kn be the largest integer such that the following holds: µ[n] := A(1+α +

· · ·+αkn−1)≤ c[n], where 1≤ kn ≤ D. Note that kn = 1 always produces a valid lower bound.

However, we are interested in the largest lower bound on c[n] of the above form. We choose

[v(n)]k =


A, if D− kn +1≤ k ≤ D

(c[n]−µ[n])/αkn , if k = D− kn

0, else
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It is easy to verify that h⊤α v(n) = c[n]. From the definition of kn, it follows that µ[n]≤ c[n]<

µ[n]+Aαkn and hence, 0≤ (c[n]−µ[n])/αkn <A, which ensures that v obeys the box-constraints

in (P1-B). Now, let v f ∈ RL be any feasible point of (P1-B) which must be of the form

v(0)f = c[0],v(n)f = v(n)+ r(n), where r(n) ∈N (h⊤α ) is a vector in the null-space of h⊤α . It can be

verified that the following vectors {wt}D−1
t=1 form a basis for N (h⊤α ):

[wt ]k =


1, k = t

−α, k = t +1

0, else

,

Therefore, ∃ {β (n)
t }D−1

t=1 such that r(n) = ∑
D−1
t=1 β

(n)
t wt .

We further consider two scenarios: (i) 1≤ kn ≤ D−2. In this case [v(n)]1 = 0, and for

k = 1,2, · · ·D, [v(n)f ]k satisfies 1

[v(n)f ]k =



β
(n)
k , if k = 1

β
(n)
k −αβ

(n)
k−1, if 2≤ k ≤ D− kn−1

[v(n)]k +β
(n)
k −αβ

(n)
k−1, if k = D− kn

A+β
(n)
k −αβ

(n)
k−1, if D− kn +1≤ k ≤ D−1

A−αβ
(n)
k−1, if k = D

To ensure v(n)f is a feasible point for (P1-B), the following must hold: 0 ≤ β
(n)
D−1 ≤ A/α and

0 ≤ β
(n)
1 ≤ A. For 2 ≤ k ≤ D− kn−1, the constraint [v(n)f ]k ≥ 0 implies β

(n)
k ≥ αβ

(n)
k−1. Since

β
(n)
1 ≥ 0, it follows that β

(n)
k ≥ 0 for all 2 ≤ k ≤ D− kn− 1. For D− kn + 1 ≤ k ≤ D− 1, the

constraint [v(n)f ]k ≤ A implies β
(n)
k−1 ≥ β

(n)
k /α . Since β

(n)
D−1 ≥ 0, it follows that β

(n)
k ≥ 0 for all

1In the definition of v(n)f , an assignment will be ignored if the specified interval for k is empty.
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D− kn ≤ k ≤ D−1. (ii) kn ∈ {D−1,D}. In this case, for k = 1,2, · · · ,D, [v(n)f ]k satisfies

[v(n)f ]k =


[v(n)]1 +β

(n)
1 , if k = 1

A+β
(n)
k −αβ

(n)
k−1, if 2≤ k ≤ D−1

A−αβ
(n)
k−1, if k = D

For 2 ≤ k ≤ D− 1, the box-constraint [v(n)f ]k ≤ A implies β
(n)
k−1 ≥ β

(n)
k /α . Since β

(n)
D−1 ≥ 0, it

follows that β
(n)
k ≥ 0 for all 1≤ k ≤ D−1. Summarizing, we have established that β

(n)
i ≥ 0,∀i.

Case II: c[n] < A. In this case, v(n) is constructed following (2.45), and hence v(n)f has the

following structure:

[v(n)f ]k =


β
(n)
k , if k = 1

−αβ
(n)
k−1 +β

(n)
k , if 2≤ k ≤ D−1

c[n]−αβ
(n)
k−1, if k = D

To ensure v(n)f is a feasible point, it must hold that β
(n)
1 ≥ 0,β (n)

k ≥ αβ
(n)
k−1 ≥ 0 for 2≤ k≤D−1.

Hence, in both Cases I and II, we established that β
(n)
k ≥ 0. For each case, since v(n)f is a

non-negative vector ∀n, it can be verified that

∥v f ∥1 =
M−1

∑
n=0
∥v(n)f ∥1 = v(0)f +

M−1

∑
n=1

D

∑
k=1

[v(n)f ]k

= c[0]+
M−1

∑
n=1

D

∑
k=1

[v(n)]k︸ ︷︷ ︸
∥v∥1

+
M−1

∑
n=1

D−1

∑
k=1

(1−α)β
(n)
k

We used the fact that ∑
D
k=1 ∑

D−1
t=1 β

(n)
t [wt ]k = ∑

D−1
t=1 (1−α)β

(n)
t . If v f ̸= v, we must have β

(n)
k ̸= 0

for some k and n > 0. This implies that ∥v f ∥1 > ∥v∥1. It is easy to see that the support of the

constructed vector is of the form (2.24). Moreover, based on the above argument, v is the only
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vector that has the minimum l1 norm among all possible feasible points of (P1-B).

2.7.4 Appendix C: Proof of Lemma 9

Proof. For any 0 < α ≤ 0.5, we begin by showing that for an integer p ≥ 1 the following

inequality holds:

p

∑
k=1

α
D−k = α

D−p−1
(

1−α p

1/α−1

)
< α

D−p−1 (2.47)

since 1/α−1≥ 1 and 1−α p < 1 in the regime 0 < α ≤ 0.5. Let S1 = {0,αD−1,αD−2,αD−1+

αD−2}. Notice that the elements of S1 are sorted in ascending order for any α and D. Now, we

recursively define the sets Si as follows:

Si := {Si−1,Si−1 +α
D−1−i}, 2≤ i≤ D−1 (2.48)

Our hypothesis is that for every 2≤ i≤ D−1 α ∈ (0,0.5] and D, the set Si as defined in (2.48),

is automatically sorted in ascending order. We prove this via induction. For i = 2, the sets S1

and S1 +αD−3 are individually sorted. Moreover from (2.47), we can show that: maxa∈S1 a =

αD−1 +αD−2 < αD−3 = minb∈S1+αD−3 b. This shows that S2 is ordered, establishing the the

base case of our induction. Now, assume Si is ordered for some 2≤ i≤D−2. We need to show

that Si+1 is also ordered. As a result of the induction hypothesis, both Si and Si +αD−2−i

are ordered. Using the ordering of Si, we have: maxa∈Si a = ∑
i+1
j=1 αD− j,minb∈Si+αD−2−i b =

αD−(i+1)−1. From (2.47), we can conclude that maxa∈Si a < minb∈Si+αD−2−i b and hence, Si+1

is also ordered. This completes the induction proof. Also, note that for α ∈ (0,0.5], we have

Θsort
α = SD−1.

Let ∆min(Si) be the min. distance between the elements of the set Si. It is easy to see that
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∆min(Si) = ∆min(Si +αD−2−i). Since Si is sorted for α ∈ (0,0.5], ∆min(Si) is given by:

∆min(Si) = min(∆min(Si−1), min
x∈Si−1+αD−1−i

x− max
y∈Si−1

y)

= min{∆min(Si−1),α
D−i−1−

i

∑
j=1

α
D− j}. (2.49)

Now, we use induction to establish the following conjecture:

∆min(Si) = α
D−1, 1≤ i≤ D−1 (2.50)

For the base case i = 1, ∆min(S1) = min(αD−1,αD−2−αD−1) = αD−1, where the last equality

holds since α ∈ (0,0.5]⇒αD−1(1/α−1)≥αD−1. Suppose (2.50) holds for some 1≤ i≤D−2.

From the definition of ∆min(Si+1) and the induction hypothesis that ∆min(Si) = αD−1, it

follows that ∆min(Si+1) = min{αD−1,αD−(i+1)−1−∑
i+1
j=1 αD− j}. Again, from the definition

of ∆min(Si) in (2.49), and the induction hypothesis we also have αD−i−1 −∑
i
j=1 αD− j ≥

∆min(Si) = αD−1. Using this and the fact that α ≤ 0.5, we can show:

α
D−i−2−αD−i−1−∑

i
j=1 αD− j ≥ αD−i−2−2αD−i−1 +αD−1≥ αD−1 +αD−i−1(1/α−2)≥ αD−1

Therefore ∆min(Si+1)=min{αD−1,αD−i−2−∑
i+1
j=1 αD− j}= αD−1. Thus, we can conclude that

∆min(α,D)=∆min(SD−1)=αD−1.

2.7.5 Appendix D: Proof of Theorem 5

Proof. The probability of incorrectly identifying xhi
(n) from a single measurement ce[n] is given

by

pe := P(x̂hi
(n) ̸= xhi

(n)) =
lD

∑
k=0

P(x̂hi
(n) ̸= xhi

(n)|xhi
(n) = ṽk)P(xhi

(n) = ṽk)
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Given a binary vector z ∈ {0,1}D, define the function ψ(z) := ∑
D
k=1 zk, which denotes the count

of ones in z. Since the noisy observations are given by ce[n] = c[n]+ e[n], where e[n] = w[n]−

αDw[n−1], it follows from assumption (A2) that e[n] ∼N (0,σ2
1 ) where σ2

1 = (1+α2D)σ2.

From (2.35), we obtain P(x̂hi
(n) ̸= xhi

(n)|xhi
(n) = ṽ0) = P(e[n] ∈ E0) = Q(αD−1/(2σ1)). Simi-

larly, P(x̂hi
(n) ̸= xhi

(n)|xhi
(n) = ṽlD) = P(e[n] ∈ ElD) = Q((θ̃lD− θ̃lD−1)/(2σ1))

= Q(αD−1/(2σ1)). The last equality follows from the fact that θ̃lD − θ̃lD−1 = αD−1. Finally,

when conditioned on xhi
(n) = ṽk for 0 < k < lD, from (2.34), we obtain P(x̂(n) ̸= xhi

(n)|xhi
(n) =

ṽk) = P(e[n] ∈ Ek) = Q(
θ̃k−θ̃k−1

2σ1
) + Q(

θ̃k+1−θ̃k
2σ1

). Due to Assumption (A1) on xhi, we have

P(xhi
(n) = ṽk) = pψ(ṽk)(1− p)D−ψ(ṽk). Therefore, pe is given by

pe = Q(αD−1/(2σ1))(1− p)D +Q(αD−1/(2σ1))pD+

lD−1

∑
k=1

(
Q(

θ̃k− θ̃k−1

2σ1
)+Q(

θ̃k+1− θ̃k

2σ1
)

)
pψ(vk)(1− p)D−ψ(vk) (2.51)

The spike train xhi is incorrectly decoded if at least one of the blocks are decoded incorrectly,

hence, the total probability of error is given by:

P(
M−1⋃
n=0

x̂(n) ̸= xhi
(n))≤

M−1

∑
n=0

P(x̂(n) ̸= xhi
(n)) = Mpe

(a)
≤ 2MQ(∆θmin(α,D)/(2σ1))

D

∑
j=0

p j(1− p)D− j
(

D
j

)
(b)
≤ 2M exp(−∆θ

2
min(α,D)/(4σ

2
1 )) (2.52)

where the first inequality follows from union bound and second equality is a consequence of

(2.51). The inequality (a) follows from the monotonically decreasing property of Q(.) function

and the sum can be re-written by grouping all terms with the same count, i.e., ψ(vk) = j. The

inequality (b) follows from the inequality Q(x)≤ exp(−x2/2) for x > 0. If the SNR condition

(2.36) holds then from (2.52) the total probability of error is bounded by δ .
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2.7.6 Appendix E: Proof of Theorem 6

Proof. We first begin by showing that α ∈FD implies that (2.39) holds and hence the mapping

of spikes with the same counts are clustered. Notice that for k = 0, θ k
max = θ k

min = 0. For

k ≥ 1, it is easy to verify that θ k
max and θ k

min are attained by the spiking patterns 00...1111

(with k consecutive spikes at the indices D− k + 1 to D) and 111...000 (with consecutive

spikes at the indices 1 to k), which allows us to simplify (2.39) as αD−1 > 0 for k = 0 and

∑
k+1
i=1 αD−i > ∑

k−1
j=0 α j, k = 1, · · · ,D−1. The values of α that satisfy each of these relations can

be described by the following sets:

G0 = {α ∈ (0,1)|αD−1 > 0},Gk = {α ∈ (0,1)|rk(α)< 0},

where rk(α) =αD−αD−k−1−αk+1 for 1≤ k≤D−1. It is easy to see that FD =Gk0 . Observe

that the relations are symmetric, i.e., Gk = GD−k−1. Furthermore, for 1≤ k ≤ D/2, we show that

Gk ⊆ Gk−1 as follows. Trivially, G1 ⊂ G0. For 2 ≤ k ≤ D/2, observe that rk(α)− rk−1(α) =

αD−k(1−1/α)−αk(1−1/α) = (1/α−1)(αk−αD−k)≥ 0. Therefore, α ∈ Gk⇒ α ∈ Gk−1,

k = 1,2 · · · ,k0. Moreover, since Gk = GD−k−1, it follows that FD = Gk0 = ∩
D−1
k=0 Gk. Hence,

α ∈FD⇒ α ∈ Gi for all 0≤ i≤D−1, which implies that (2.39) holds. If the noise perturbation

satisfies |w[n]| < ∆c
min(α,D)/4, it implies |e[n]| < ∆c

min(α,D)/2. For any block xhi
(n) ∈ C D

k ,

θ k
min ≤ h⊤α xhi

(n) ≤ θ k
max. If |e[n]|< ∆c

min(α,D)/2, we have

h⊤α xhi
(n)+ e[n]< θ

k
max +

∆c
min(α,D)

2
< θ

k
max +

θ
k+1
min −θ k

max

2

h⊤α xhi
(n)+ e[n]> θ

k
min−

∆c
min(α,D)

2
> θ

k
min−

θ k
min−θ k−1

max

2

This shows that whenever α ∈FD, the condition |e[n]|< ∆c
min(α,D)/2 is sufficient for (2.41)

to hold ∀ γ[n] and hence the spike count can be exactly recovered.
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2.7.7 Appendix F: Amplitude Estimation

We suggest a procedure to estimate the binary amplitude A, if it is unknown. We first

evaluate the signal c[n] from different time instants n= 1,2, · · · ,M−1. For some 1≤ n0≤M−1,

we estimate a set A = {Ak} of candidate amplitudes: Ak := c[n0]/hT
αvk where vk ∈Sall. Only

a certain amplitudes can generate c[n0] from a valid binary spiking pattern vk ∈Sall. Our goal

is to prune A by sequentially eliminating certain candidate amplitudes from the set based on a

consistency test across the remaining measurements c[n]. At the t th stage (t = 2,3, · · · ), for every

remaining candidate amplitude Ak ∈A , we perform the following consistency test with c[n], to

identify if a candidate amplitude can potentially generate the corresponding measurement c[n].

Suppose there exists a spiking pattern vl ∈Sall such that

c[n] = AkhT
αvl (2.53)

then Ak remains a valid candidate. If we cannot find a corresponding vl ∈Sall for an amplitude

Ak, we remove it, A = A \Ak. In presence of noise, (2.53) can be modified to allow a tolerance

γ as we may not find an exact match. The tolerance γ is chosen to be 0.5 in the experiments on

the GENIE dataset. This procedure prunes out possible values for the amplitude by leveraging

the shared amplitude across multiple measurements c[n].
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Chapter 3

Measurement-Algorithm Co-Design: Ex-
act Recovery of Binary Signals from finite-
memory filtered measurements

In this chapter, we continue to investigate the problem of recovering a binary-valued

signal from compressed measurements of its convolution with a known finite impulse response

filter. However, the compression matrix is no longer restricted to be a uniform sub-sampling

operator. We show that it is possible to attain optimum sample complexity for exact recovery

(in absence of noise) with a computationally efficient algorithm. We achieve this by adopting

an algorithm-measurement co-design strategy where the measurement matrix is designed as a

function of the filter, such that the recovery of binary signals with arbitrary sparsity is possible

using sequential decoding. Such a filter-dependent sampler design overcomes the computational

challenges associated with enforcing binary constraints, and enables us to operate in “extreme

compression” regimes, where the number of measurements can be much smaller than the sparsity

level (M < s).

3.1 Prior Works

In this chapter, we re-visit the special class of the binary compressed sensing problem,

where we observe compressive measurements of the convolution of a binary signal with a

known finite impulse response (FIR) filter. Recovering binary signals from such compressive
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convolutional measurements is of interest to several applications such as neural spike detec-

tion from fluorescence measurements [9], medical imaging [63], binary shape recovery from

blurred images [48, 64], image segmentation [65], and discrete tomography [14, 15]. A con-

crete application is in millimeter-wave communication, where the goal is to decode binary (or

finite alphabet) symbols from low-dimensional measurements obtained by a compressive spatial

filtering/beamforming.

As discussed in [49, 50], there exist measurement matrices such that the linear mapping

between the unknown binary vectors and the real valued compressive measurement is injective

even with a single (scalar) measurement. In this case, the desired binary vector can be recovered

via exhaustive search, however, it is computationally prohibitive to do so. Therefore, a major

focus of binary compressed sensing has been on algorithmic developments (often via relaxations)

that are computationally efficient, and at the same time, exploit additional structure such as spar-

sity of the binary signal [41, 42, 44, 45, 66, 67]. A common approach is to relax the (non-convex)

binary constraints with box-constraints, and formulate various continuous valued optimization

problems for recovering the binary vectors. These include l1/l∞-norm minimization [41, 42, 68],

and semidefinite relaxation [44]. Theoretical guarantees for l1/l∞ minimization have been es-

tablished in [41, 42, 68], but the results are mostly applicable to random measurement matrices

(drawn from suitable centered distributions). Recently, the benefit of using a biased measurement

matrix was established in [43], which allows recovery of binary signals simply by solving a least

squares problem with box-constraints, and thereby eliminating the need for l1/l∞ minimization.

Alternative lines of work that modify classical sparse recovery algorithms to exploit finite-valued

structure include greedy orthogonal matching pursuit (OMP) algorithm [66,69], Bayesian formu-

lations [45, 70], graph-based decoding techniques [67], and iterative reweighting techniques [71].

A common feature of all the aforementioned approaches is that their theoretical guarantees

(whenever they exist) are applicable when the number of measurements (M) is larger than the

sparsity (s), similar to standard results in compressed sensing. To the best of our knowledge,

exact recovery guarantees for these techniques are unavailable when M < s < N/2 (where N is
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the signal dimension).

In a recent work [46], we moved away from relaxation-based techniques and showed

that it is possible to exactly recover binary signals from uniformly downsampled measurements

of the filter output, without imposing any sparsity constraints. Specifically, we developed a

new computationally efficient decoding algorithm that was inspired by successive cancellation

(SC) or decision feedback decoding [70, 72] used in multiuser detection, and decoding of

polar codes [73, 74]. We showed that M > N/L (L being the filter length) measurements are

necessary for exact recovery of any binary vector from uniformly downsampled convolutional

measurements, and the algorithm was able to attain this under a certain decay condition on the

filter.

Summary of contributions: We establish that by appropriately designing the measurement

matrix (beyond uniform downsamplers), it is possible to achieve a sample complexity of M ≥ 1

for the exact recovery of binary signals.1 We achieve this by (i) developing a modified version of

the sequential decoding algorithm from [46], and (ii) proposing compressive measurement design

techniques that are dependent on the filter. This algorithm-measurement co-design strategy

achieves the optimal sample complexity of M ≥ 1 (for any sparsity level), without requiring

any strong decay assumptions on the filter. The measurement matrix itself can be designed

in a computationally efficient manner, by solving a linear program. Notations: For a matrix

A, N (A) denotes its null-space, and IN is the N×N identity matrix. For an integer n, define

[n] := {1,2, · · · ,n}.
1In [44], it was noted that M = 1 may be achievable provided the SDP returned a rank 1 solution. However,

conditions under which the SDP solution is guaranteed to be rank one with M = 1 measurement, are currently
unavailable.
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3.2 Motivation for Measurement-Design

Recall the convolutional compressive measurement model (introduced in Chapter 2):

z = ΦHx0 (3.1)

where H = [h1, · · · ,hN ] ∈ RP×N is a Toeplitz matrix with P = N +L−1, L is the filter length,

Φ ∈ RM×P,M < P is a compressive measurement matrix and Hx0 is the output of the filter.

In Chapter 2, we constrained Φ ∈ {0,1}M×P to be a structured binary matrix, which models

the uniform downsampling of the filter output. In Theorem 1, we showed that for almost all

filters h, it is possible to exactly recover any binary signal from the uniformly downsampled

measurements of the filter output, without imposing any sparsity constraints, provided M ≥ N/L.

This bring us to the question “What are the benefits of designing the measurement matrix Φ

(without being restricted to uniform downsampling)?”

We motivate the need for measurement design through an illustrative example. Consider

the FIR filter to be a moving average filter with L = 5, i.e., h = [1,1,1,1,1]T and N = 15. In

Figure 3.1, we consider two different binary ground truth signals (top row) and plot the output

of the convolution with the moving average filter (bottom row). The final observation after

downsampling by a factor of 5 is shown in Figure 3.1 (middle row). From Figure 3.1, it is evident

that two distinct binary signals can result in identical under-sampled measurements. Hence, this

moving average filter h is an example of an adversarial filter which does not permit uniformly

downsampling the output of the convolution. Note that this example does not contradict our

previous result Theorem 1, since the event of sampling such a FIR filter h = [1,1,1,1,1]T has

zero probability under the probabilistic model considered in Theorem 1 . By moving away from

uniform downsampling and instead adopting a dense compression matrix Φ, we can overcome

the challenge posed by such an adversarial filter. This simple example motivates exploring the

notion of a filter-dependent measurement design.
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Figure 3.1. Example of an adversarial filter that results in ambiguous binary solutions with
uniform sub-sampling operation. (Top) Ground Truth binary signal (Middle) Measurements after
under-sampling by a factor of 5 (Bottom) Output of convolution of the ground truth binary signal
with a moving average filter of length L = 5.

3.3 Measurement-Algorithm Co-Design

It has been shown that a linear map A : {0,1}N → RM can be injective (over {0,1}N)

even when M = 1 [49, 50]. 2 The linear map of interest to us has a specific structure A = ΦH.

We begin by showing that for any filter h, there exist infinite choices of real-valued sensing

matrices Φ ∈ RM×P such that the map A is injective for every M ≥ 1.

Theorem 7. Assume rank(H) = N. Let Φ ∈ RM×P be a random matrix whose rows {φ m}M
m=1

are drawn independently from a distribution which is absolutely continuous with respect to the

Lebesgue measure over RP. With probability 1, x0 is the unique binary vector that satisfies

z = ΦHx for every M ≥ 1, where z is given by (2.3).

Proof. Suppose there exist x,y∈ {0,1}N(x ̸= y) such that ΦHx = ΦHy⇒ΦH(x−y) = 0. This

means that there is a non-zero ternary vector x−y ∈A N , S := {−1,0,1}, that belongs to the

null space of ΦH. We will show that this will happen with zero probability. Notice that the

cardinality of A N is 3N . We denote each vector in A N as {vk}3N−1
k=0 , with the convention v0 = 0

2In [50], it is shown that A can be linearly dependent over R, but linearly independent over {0,1}, and [49]
shows the existence of such a rational A.
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for notational ease. Let E =
{

Φ |N (ΦH)
⋂

A N ̸= {0}
}

. Then,

P(Φ ∈ E ) = P
(
∃ v ∈A N\{0}, s.t. ΦHv = 0

)
= P

(3N−1⋃
k=1

{
ΦHvk = 0

})
=
(a)

P
(3N−1⋃

k=1

M⋂
i=1

{
φ i ∈N (vT

k HT )
})

≤
(b)

3N−1

∑
k=1

M

∏
i=1

P
(
φ i ∈N (vT

k HT )
)

(3.2)

where (a) follows from the fact that ΦHvk = 0 if and only if φ i ∈N (vT
k HT ) for all i ∈ [M].

The inequality (b) follows from union bound, and the independence assumption on the rows of

Φ. Rank(H) = N implies that vT
k HT ̸= 0 for non-zero vk, and therefore N (vT

k HT ) is a P−1

dimensional subspace of RP whose Lebesgue measure is zero. Since φ i is generated from a

distribution that is absolutely continuous with respect to the Lebesgue measure over RP, we have

P(φ i ∈N (vT
k HT )) = 0. Using (3.2), we can conclude that P(Φ ∈ E ) = 0.

Relaxation-based techniques succeed in a regime where M is larger than the sparsity of

x0, and exact recovery may not be possible with M = Ω(1) measurements. We now present a

simple and computationally efficient algorithm that sequentially decodes the binary entries of

x0. We further show that by using the idea of filter-dependent sampler design, it is possible to

achieve M = Ω(1) with this algorithm.

3.3.1 Sequential Block-Wise Decoding and Performance Guarantees

The proposed Sequential Block-wise Decoding Algorithm is summarized as Algorithm 4.

The main idea is to partition the entries of x0 into b = ⌈N/M⌉ disjoint blocks, one corresponding

to each scalar measurement zm, and decode the entries of a block sequentially. For the mth block,

suppose that the first k < b indices within the block, denoted by the set Jm,k =
{
(m−1)b+ i

}k
i=1

have already been decoded. The sequential decoding algorithm computes a residual r = zm−

∑i∈Jm,k
Am,ix̂i, and compares it against a suitable threshold determined by ε(≥ 0), in order to

estimate the (k+1)th element. The estimate is given as x̂(m−1)b+k+1 = 1{r/Am,(m−1)b+k+1≥(1−ε)}
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Algorithm 4. Sequential Block-wise Decoding Algorithm

1: Input: Measurement z, Sensing matrix Φ ∈ RM×P, Filter H, Tolerance ε ≥ 0.
2: Output: x̂ ∈ {0,1}N //Estimate of x0
3: A←ΦH,b← ⌈N/M⌉,m← 1, x̂← 0 //Initialization
4: Repeat
5: l← 1, r← zm//Reset Residual
6: Repeat
7: if r/Am,(m−1)b+l ≥ 1− ε //Detection threshold
8: x̂(m−1)b+l ← 1
9: end

10: r← r− x̂(m−1)b+lAm,(m−1)b+l , l← l +1 //Update residual
11: until l ≤ b or (m−1)b+ l ≤ N
12: m← m+1
13: until m≤M

where 1{x≥γ} : R→{0,1} denotes an indicator function defined as

1{x≥γ} =


1, if x≥ γ

0, else
.

It is important to note that the residual computation subtracts only the elements that have been

decoded within the current block. The previous blocks that have already been decoded, are

not subtracted out. This algorithmic choice has been made to avoid error propagation between

blocks. Such disjoint decoding can be especially beneficial in presence of noise. Decoding each

block requires O(b) operations, resulting in a total computational complexity of O(Mb) = O(N)

for decoding all M blocks.

Given integers m ∈ [M], and l ∈ [b] we define η(m, l) := (m−1)b+ l. For ease of expo-

sition, we assume that N/M is an integer. The following theorem specifies sufficient conditions

on A = ΦH under which Algorithm 4 exactly recovers x0 from noiseless measurements (2.3).

Theorem 8. Let A := ΦH and ε = 0. For any M ≥ 1, Algorithm 4 recovers x0, if for each

m ∈ [M], the following holds

Am,l > 0,∀ l ∈ [N], Am,η(m,l) >
N

∑
k=1

k ̸∈Jm,l

Am,k,∀ l ∈ [b−1] (3.3)
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Proof. Condition (3.3) implies that for any binary x ∈ {0,1}N and l ∈ [b−1],

xη(m,l) ≤ ∑
k ̸∈Jm,l

xk
Am,k

Am,η(m,l)
+ xη(m,l) < 1+ xη(m,l) (3.4)

We now show that for every m, we can decode the indices of x0 given by {η(m, l)}b
l=1. Fix

m. Our proof proceeds via induction on l. For l = 1, we have r = zm = ∑k ̸∈Jm,1 xkAm,k +

xη(m,1)Am,η(m,1) (Line 5 of Algorithm 4). Hence from (3.4) we have xη(m,1) ≤ r/Am,η(m,1) <

xη(m,1) + 1. Since x̂η(m,1) = 1{r/Am,η(m,1)≥1}, it follows that x̂η(m,1) = 1 if xη(m,1) = 1, and 0

otherwise, implying x̂η(m,1) = xη(m,1). Next assume that after l− 1 < b iterations we have

correctly decoded {xη(m,k)}l−1
k=1. The residual satisfies:

r/Am,η(m,l) =
(
zm− ∑

k∈Jm,l−1

x̂kAm,k
)
/Am,η(m,l)

(a)
= ∑

k ̸∈Jm,l

xk
Am,k

Am,η(m,l)
+ xη(m,l) (3.5)

where (a) holds due to the induction hypothesis. Using a similar argument as l = 1, from (3.4),

(3.5) we can again show that x̂η(m,l) = 1{r/Am,η(m,l)≥1} = xη(m,l), which concludes the proof.

The success of Algorithm 4 therefore depends on condition (3.3), which reveals the

dependence of the sampler Φ on the filter h, and implicitly governs the sample complexity. If

the entries of Φ are drawn randomly, agnostic to h, the condition (3.3) may not be satisfied with

high probability. Therefore, it becomes essential to explicitly tune the design of sampler Φ to the

structure of the filter h.
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3.3.2 Filter-Dependent Sampler Design via Linear Program

It can be verified that condition in (3.3) is satisfied if and only if for every m ∈ [M], φ m

belongs to the following set

F
(m)
h =

{
φ ∈ RP | φ T hi > 0, i = 1,2, · · · ,N,

φ
T (h(m−1)b+ j−

N

∑
k=1

k ̸∈Jm, j

hk)> 0,1≤ j ≤ b−1
}

Notice that F
(m)
h is a polyhedral set, whose geometry depends on the choice of the filter h.

Hence the sampling operators φ m can be designed to satisfy (3.3), by solving the following linear

program for every m:

find φ m subject to φ m ∈F
(m)
h (LPH)

For any φ ∈F
(m)
h , the scaled vector αφ for any α > 0 is also a valid solution, i.e., αφ ∈F

(m)
h .

Therefore, the sensing matrix can always be scaled to avoid solutions close to 0, as well as meet

any desired power constraint. The following lemma, whose proof is in the Appendix, ensures

that F
(m)
h is non-empty under mild conditions on h.

Lemma 10. For any h ∈ RL satisfying rank(H) = N and M ≥ 1, the set F
(m)
h is non-empty for

every m ∈ [M].

We obtain the following exact recovery guarantee for Algorithm 4 by combining Theorem

8 and Lemma 10.

Theorem 9. Let Φ
⋆ be a sensing matrix whose mth row is a solution to (LPH), m∈ [M]. Consider

noiseless measurements z∈RM acquired using Φ
⋆ as z = Φ

∗Hx0, where x0 ∈ {0,1}N . For every

M ≥ 1, Algorithm 4 recovers x0, regardless of its sparsity.
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3.3.3 Remarks on Noise Resilience and Sampler Design

The main objective of this chapter was to achieve optimum sample complexity for exact

recovery of binary signals in absence of noise with a computationally efficient algorithm. In

presence of noise, the threshold ε in Algorithm 4 should be optimized based on the noise level.

Increasing M increases the number of blocks which is also important to promote noise resilience,

since Algorithm 4 prevents error propagation from one block to another. Another important,

but perhaps less obvious consideration is the effect of block length on the dynamic range of the

sampler. By decreasing b (increasing M), measurement matrices with smaller dynamic range can

be designed, which leads to better numerical stability and more reliable decoding. Determining

the optimal choices of b and ε based on the noise level and dynamic range considerations will be

of future interest. Other directions will be to design Φ by using a suitable optimization criterion

over the set F
(m)
h (instead of a simple feasibility search), and explore adaptive filter-dependent

sensing strategies.
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Figure 3.2. Noiseless recovery performance of different methods (Left) versus s for different M,
and (Right) versus M for s = 5,15.
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3.4 Simulations

We consider binary signals of dimension N = 100, and FIR filters of length L = 5. The

filter coefficients are generated independently as product of two independent random variables

hi = sidi where di ∼ U [1,2], and si is a Rademacher random variable, and these coefficients

are kept fixed throughout the experiments. We compare the performance of Algorithm 4

and the filter-dependent sampler design strategy (LPH) against two recent binary compressed

sensing algorithms (i) SDP relaxation [44] and (ii) box-constrained least squares with biased

measurement (LS-Bias) [43]. We generate noiseless measurements of the form z = Ax0. For

our approach, A = ΦH where Φ is obtained by solving (LPH). For SDP relaxation, the entries

of A are generated i.i.d as Ai, j ∼N (0,1). For LS-Bias, following [43], the entries of A are

generated i.i.d as Ai, j ∼N (1,1), where the non-zero mean of 1 acts as the bias. In the first

experiment, we study the noiseless performance of each technique as a function of sparsity s.

The probability of exact recovery, i.e., number of times x̂ = x0 over 100 Monte Carlo runs, is

used as the performance metric. Figure 3.2 shows that the proposed strategy exactly recovers x0

regardless of the sparsity level (even when M < s), whereas SDP relaxation and LS-Bias, the

probability of exact recovery falls below 0.5 when s exceed M/2.

In the next experiment, we study the performance of SDP relaxation and LS-Bias as a

function of M, keeping the sparsity fixed at s = 5 and 15. For the proposed strategy, we keep M

fixed at M = 10 (b = 10). Figure 3.2 (b) shows SDP and LS-Bias require M = 25 (for s = 5) and

M = 45 (for s = 15) to exactly recover x0 whereas the proposed strategy is able to do so with

only M = 10 filter-dependent measurements.

Next, we evaluate the performance of the proposed strategy in presence of noise. We

generate noisy measurements of the form z = Ax0 +n, where the additive noise n is distributed

as n ∼N (0,σ2
n IM). The signal-to-noise ratio (SNR) for each sensing strategy is defined as

10log10

(
∥Ax0∥2

2
Mσ2

n

)
. To ensure a consistent SNR across different approaches, we normalize the

measurement matrices (in our case, we normalize Φ) such that ∥Ax0∥2 is the same for each
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Figure 3.3. (Left) Noisy Reconstruction: Normalized l2 error vs. sparsity s, for different
SNR. Here M = 25 and threshold is fixed at ε = 0.1. (Right) Comparison of runtime versus N
(M = ⌈0.2N⌉, s = 5)

method, and σn is chosen according to the desired SNR. In Figure 3.3 (a), we plot the l2 error

averaged over 100 Monte Carlo runs for each sparsity level. The proposed algorithm achieves

a significantly smaller error especially when the sparsity increases. We operate in the regime

s < M to ensure sufficient measurements for all algorithms.

Finally, in Figure 3.3 (b) we compare the average run-time (averaged over 10 runs) of

all three algorithms as a function of N. We choose s = 5, and M = ⌈0.2N⌉. The run-time of

Algorithm 4 is significantly smaller than the others, which were implemented using off-the-shelf

convex solver (CVX) [75].

3.5 Conclusion

We proposed a measurement matrix design framework for recovery of binary-valued

signals from compressed convolutional measurements. The filter-dependent sensing matrix

design guarantees exact recovery in absence of noise, using a computationally efficient sequential

block-wise decoding algorithm. The overall strategy achieves an optimal sample complexity of

M ≥ 1. The proposed framework also paves way for several interesting future directions such

as optimizing the algorithm and measurement design parameters using the knowledge of noise
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level, and extending the strategy to more general alphabets and different classes of filters.

Chapter 3, in part, is a reprint of the material as it appears in P. Sarangi and P. Pal,

“Measurement Matrix Design for Sample-Efficient Binary Compressed Sensing,” in IEEE Signal

Processing Letters, vol. 29, pp. 1307-1311, 2022.

The dissertation author was the primary investigator and author of these papers.

3.6 Appendix

3.6.1 Proof of Lemma 10

Proof. We will first establish that if F
(1)
h is non-empty then F

(m)
h is also non-empty for every

m ∈ [M]. For each m, we define a permutation matrix Πm ∈ RN×N as follows:

[Πmx] j =


x(m−1)b+ j, 1≤ j ≤ b

x j−(m−1)b, (m−1)b+1≤ j ≤ mb

x j, otherwise

This permutation swaps the first and mth block (of size b) of the vector x. The set F
(m)
h is

described by N+b−1 inequalities, which can be compactly represented as BΠmHT φ ≻ 0. Here,

≻ denotes element-wise inequality constraints, and B = [IN , B̃T ]T is a (N +b−1)×N matrix,

with B̃i, j = 1 if i = j, B̃i, j =−1 if i < j, and 0 otherwise. If F
(1)
h is non-empty, then ∃ φ 1 such

that BHT φ 1 ≻ 0 (since Π1 = IN). Since rank(H) = N, we can always find φ̃ ∈ RP satisfying

HT φ̃ = Π
T
mHT φ 1. Such a vector φ̃ also satisfies BΠmHT φ̃ = BΠmΠ

T
mHT φ 1

(a)
= BHT φ 1 ≻ 0,

since Πm is a permutation matrix with ΠmΠ
T
m = IN . Therefore, φ̃ ∈F

(m)
h , whenever F

(1)
h is

non-empty.

We now establish that F
(1)
h is indeed non-empty, i.e., ∃ φ ∈ RP, such that:

φ
T hi > 0 ∀ i, φ

T (h j−
N

∑
k= j+1

hk)> 0, j ∈ [b−1] (3.6)
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Define u j := h j−∑
N
k= j+1 hk, j ∈ [b−1]. Let S = {h1,h2 · · · ,hN ,u1,u2 · · · ,ub−1}, and consider

its convex hull AH := conv(S ) which is a (closed) polyhedral set. Observe that there exists a

φ ∈ RP satisfying (3.6) if there exists a hyperplane φ
T x = c (c > 0), which strictly separates

the point 0 from AH, i.e., φ
T x > 0 for all x ∈AH. Since AH is a closed convex set, the strict

hyperplane separation theorem will guarantee existence of the desired φ provided 0 ̸∈ AH

[76, Prop 1.5.3]. We show 0 ̸∈ AH by contradiction. Suppose 0 ∈ AH. Then ∃ αi,β j ≥

0 satisfying ∑
N
i=1 αi +∑

b−1
j=1 β j = 1, and ∑

N
i=1 αihi +∑

b−1
j=1 β ju j = 0 which can rearranged as

(α1 +β1)h1 +∑
b−1
i=2 (αi +βi−∑

i−1
j=1 β j)hi +∑

N
i=b(αi−∑

b−1
j=1 β j)hi = 0. Since rank(H) = N, we

must have

α1 +β1 = 0, (αi +βi−
i−1

∑
j=1

β j) = 0, 2≤ i≤ b−1,

(αi−
b−1

∑
j=1

β j) = 0, b≤ i≤ N. (3.7)

Since αi,βi are also non-negative, it can be easily verified that (3.7) holds only if αi = 0,β j = 0

for all i, j. This contradicts the fact that ∑
N
i=1 αi +∑

b−1
j=1 β j = 1. Hence 0 ̸∈AH, completing the

proof.
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Chapter 4

Harnessing The Benefits of Sparse Arrays
in Sample-Starved Regime

In this chapter, we continue our investigation of sensing under stringent sampling budgets

where the data exhibits spatio-temporal structure. A prominent example of such spatio-temporal

data arises in array signal processing, where we sense the environment by placing multiple

sensors/antennas in a certain geometry, and collect measurements over time. In recent times,

antenna arrays with sparse geometry are being employed in automotive radars for enabling ad-

vanced driving assistance features [77–79]. They also feature in Massive MIMO communication

systems for enabling low-complexity architectures that can form highly reliable directional links

by hybrid beamforming at mmWave frequencies [80–83]. One of the most desirable properties of

such antenna arrays is achieving higher resolution capabilities, without using additional sensing

elements. A key question, therefore, is to design sparse array geometries (by non-uniform

placement of sensors) that can provably enhance resolution using significantly fewer sensors,

while also incurring minimal temporal sampling overhead.

Sparse array geometries such as nested arrays [84], and coprime arrays [85] have shown

significant performance benefits over uniform linear arrays (ULAs) in terms of their ability to

identify K = O(P2) uncorrelated sources with only P sensors [2, 84–90], their reduced Cramér-

Rao lower bound (CRB) and higher resolution [86, 91, 92]. The enhanced spatial degrees of

freedom (DOF) of sparse array is attributed to their large difference coarray, which can be of size
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Θ(P2). In the passive setting, these benefits are harnessed by computing the correlation between

the received signal at different sensors. This has led to the belief that sparse arrays require

a large number of temporal measurements to reliably estimate parameters of interest (DOAs)

from these correlations, and therefore they may not be suitable in the sample-starved regime.

Sample-starved regimes are typically encountered in automotive radar and joint communication

and radar sensing applications, where the environment can be highly dynamic or the source

signals may be coherent. As a result, the number of snapshots available for DOA estimation can

be very scarce, in the extreme case, only one snapshot might be available. Therefore, there is a

need for developing techniques that can harness the resolution benefits of sparse arrays while

operating in the sample-starved regime.

In this chapter, we propose a new framework for leveraging the degrees of freedom in

the difference set of a nested array in two different snapshot-limited regimes, where (i) few

snapshots (of the order of the number of sources) are available and (ii) only a single snapshot

(extreme-sample starved regime).

4.1 Prior Works

The enhanced DOF of sparse arrays is realized by obtaining an unbiased estimate of

the coarray covariance matrix [84, 86, 93, 94] with a finite number of temporal snapshots. It

becomes possible to directly apply subspace algorithms such as MUSIC, either on the contiguous

ULA segment of the coarray [84–86, 93] or on an interpolated coarray [94–97]. Alternatively,

estimators based on suitable regularization techniques that employ sparsity promoting l1 norm

[1, 2, 87, 98, 99], atomic norm [97, 100, 101], nuclear norm [102], and positive semidefinite

constraints [89] have also been developed. However, these methods often require careful tuning

of the regularization parameter. Furthermore, atomic norm-based methods require a strict

separation condition on the source locations to ensure exact recovery in absence of noise [30,35].

Coarray-based techniques typically require a large number (L) of temporal snapshots
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to accurately estimate the coarray covariance matrix. Hence, existing performance guarantees

for coarray MUSIC-type algorithms on sparse arrays are primarily asymptotic in L [86, 103].

When the number of snapshots is limited, the performance of coarray based algorithms degrades

significantly. It has been proved that when K ≥ P, the CRB of sparse arrays saturates away from

zero as SNR→ ∞ [86, 91]. It is also empirically observed (but not theoretically proven) that the

MSE of coarray MUSIC exhibits a similar saturation when 1 < K < P [86, 88, 91]. 1 This raises

the question: “Is it possible to harness the benefits offered by the difference coarray of nested

arrays with a limited number of snapshots (L≥ K), while also avoiding saturation when K < P?”

Summary of Contributions We first prove that even for K = 2 sources and in absence of noise,

coarray MUSIC will fail to recover the coarray subspace of nested arrays, unless the source

signals are temporally orthogonal. In order to remedy this weakness of coarray MUSIC, we

propose an alternative method (based on convex optimization) for coarray subspace estimation,

called “Proxy Covariance” (Prox-Cov) estimation that does not aim to estimate the true coarray

covariance matrix, but only the coarray subspace. We prove that (Prox-Cov) can exactly recover

the coarray subspace in absence of noise with very few snapshots when there are fewer sources

than sensors, thereby overcoming the saturation effect exhibited by coarray MUSIC in this

regime. Our numerical results demonstrate the superior performance of (Prox-Cov) with limited

snapshots when the number of sources exceeds the number of sensors, as well as when it is

fewer.

4.1.1 Signal Model and Problem Formulation

Consider K far-field narrowband sources (with wavelength λ ) impinging from directions

θ1,θ2, · · · ,θK on a one-dimensional nested array with P = 2M sensors located at nλ/2, n ∈ Snst,

where Snst is an integer set given by

Snst =
{

m−1
}M

m=1

⋃{
m(M+1)−1

}M
m=1.

1Only for K = 1, the MSE of coarray MUSIC provably decays to zero with SNR.
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The signal received at the nested array is given by:

Y = ASnst(ω)X+N (4.1)

Here, Y = [y1, . . . ,yL]∈CP×L, and X = [x1, . . . ,xK]
T ∈CK×L denote L snapshots of the received

signal, and K unknown source signals respectively, and N ∈ CP×L represents the additive noise.

The normalized spatial frequencies are denoted by ω = [ω1,ω2, · · · ,ωK]
T where ωi = π sin(θi).

The nested array manifold matrix is given by ASnst(ω) = [aSnst(ω1),aSnst(ω2), . . . ,aSnst(ωK)] ∈

CP×K where aSnst(ωi) is the steering vector corresponding to the normalized spatial frequency

ωi, and its elements are given by [aSnst(ωi)]k = e jωidk ,dk ∈ Snst. The difference coarray of Snst is

defined as DSnst := {n−m,m,n ∈ Snst}. For a nested array, it can be verified that [84]

DSnst =
{

0,±1,±2, . . . ,±(N−1)
}
, N = M(M+1).

Let ADSnst
(ω) =

[
aDSnst

(ω1), · · · ,aDSnst
(ωK)

]
∈ CN×K be the array manifold of a virtual ULA

with N elements, whose sensor locations are given by the non-negative elements of the coar-

ray DSnst . Assume that the source signals and noise are zero-mean random vectors and sat-

isfying E[xlxH
l ] = diag(p), E[nlnH

l ] = σ2
n IP, E[nlxH

m ] = 0 for all l and m. The vector p =

[p1, p2, · · · , pK]
T denotes the source powers. It can be verified that the covariance matrix of the

measurements, Ryy := E[yyH ] satisfies [84]

Ryy = ASnst(ω)diag(p)AH
Snst

(ω)+σ
2
n IP = SnstTST

nst

where Snst ∈ RP×N is a (row) selection matrix which emulates the sensor locations of a nested

array as follows:

[Snst]i, j =


1, if di +1 = j,di ∈ Snst

0, otherwise
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The matrix T ∈CN×N is Toeplitz and represents the coarray covariance matrix corresponding to

the virtual coarray:

T = ADSnst
(ω)diag(p)AH

DSnst
(ω)+σ

2
n IN (4.2)

It is well-known that it is possible to uniquely identify T from Ryy [104]. Coarray DOA

estimation algorithms (such as coarray MUSIC [84–86, 93]) extract T from Ryy, and then apply

standard subspace-based techniques on T to estimate ω , thereby leveraging the additional DOF

provided by DSnst .

4.1.2 Inadequacy of Coarray MUSIC with Limited Snapshots

In practice, the ideal covariance matrix Ryy is unavailable, and coarray based algorithms

typically use the sample covariance matrix R̂yy =
1
LYYH as its estimate. An estimate of T is

obtained from R̂yy as [84, 86, 93, 98]

T̂ = T
(

Fvec
(

R̂yy

))
∈ CN×N . (4.3)

Here, F ∈ R(2N−1)×P2
is a redundancy averaging matrix whose mth row (1 ≤ m ≤ 2N − 1)

averages the elements of R̂yy corresponding to a lag of m−N ∈DSnst , with a weight of Ω(|m−N|)

denoting the number of pairs (dk,dl) with dk− dl = m−N [84, 86]. Note that lags n and −n

have the same weight, given by Ω(|n|). By construction, u := Fvec(R̂yy) ∈ C2N−1 is a conjugate

symmetric vector (i.e. ui = u∗2N−i,1≤ i≤ N), and the operator T (·) returns a Toeplitz Hermitian

matrix T (u) with [T (u)]i, j = uN+(i− j). Let U := [u1,u2, . . . ,uK,uK+1, . . . ,uN ] be a unitary

matrix whose columns are eigenvectors of T̂, where U1 := [u1,u2, . . . ,uK] are the eigenvectors

corresponding to K eigenvalues with largest magnitude (including repetitions, if any). Then

S := R(U1)
2 is used as an estimate of the coarray subspace, which is subsequently utilized by

subspace-based algorithms (such as coarray MUSIC) for DOA estimation.

2R(X) denotes the range space of a matrix X.
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Theorem 10. Consider the measurement model (4.1) with K = 2 sources where X = [x1,x2]
T ∈

R2×L denotes the source signals. Suppose xT
1 x2 ̸= 0, ω1−ω2 ̸= 2mπ

N+M−1 for any integer m, and

M ≥ 5. Then, even in absence of noise (N = 0), the coarray subspace cannot be identified from

S , i.e.

S ̸= R(ADSnst
(ω)) (4.4)

Proof. We establish (4.4) by contradiction. Suppose (4.4) does not hold, then we must have

R(U1) = R(ADSnst
(ω)). Denote U2 := [uK+1,uK+2, . . . ,uN ]. Since U is unitary, R(U2) is

orthogonal to R(U1), and we have

UH
2 T̂ADSnst

(ω) = 0 (4.5)

Denote vec(XXH) = [σ2
1 ,σ12,σ12,σ

2
2 ]

T where σ2
i = ∥xi∥2

2, and σ12 = xT
1 x2. We can decompose

T̂ as:

T̂ =
1
L
T

(
F
((

A∗Snst
(ω)⊗ASnst(ω)

)
vec(XXH)

))
=

1
L

(
ADSnst

(ω)diag([σ2
1 ,σ

2
2 ])A

H
DSnst

(ω)+σ12T (v)
)
.

Here v = F(a∗Snst
(ω1)⊗aSnst(ω2)+a∗Snst

(ω2)⊗aSnst(ω1)). Since σ12 ̸= 0, (4.5) is equivalent to

UH
2 T (v)ADSnst

(ω) = 0. Let the elements of the conjugate symmetric vector v be denoted by

v = [v∗N−1, v∗N−2, . . . ,v0 , . . . , vN−2,vN−1]
T , with

vr =
1

Ω(r) ∑
dk,dl∈Snst
r=dk−dl

(e j(dkω2−dlω1)+ e j(dkω1−dlω2)) (4.6)

Now, UH
2 T (v)ADSnst

(ω) = 0 if and only if there exists C = [c,c′] ∈ C2×2 such that
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T (v)ADSnst
(ω) = ADSnst

(ω)C. In particular, we have T (v)aDSnst
(ω1) = ADSnst

(ω)c. Define

αk := e− jω1[T (v)aDSnst
(ω1)]k− [T (v)aDSnst

(ω1)]k−1

= e− jω1vk−1− e jω1(N−1)v∗N−k+1, N ≥ k ≥ 2

We will choose an integer k0 such that there exist two consecutive lags k0−1,k0 ∈ DSnst whose

weights satisfy (i) Ω(k0−1) = Ω(k0) = 1 and (ii) Ω(N− k0 +1) = Ω(N− k0) = 1. Using the

geometry of nested array, it can be seen that k0 = M+5 will satisfy these conditions. Using (4.6)

we have

αM+5 = e− jω1[e jω2(2M+1)e− jω1(M−3)+ e jω1(2M+1)e− jω2(M−3)]

− e jω1(N−1)[e− j(M2−2)ω2e j2ω1 + e− j(M2−2)ω1e j2ω2] (4.7)

αM+6 = e− jω1[e jω2(2M+1)e− jω1(M−4)+ e jω1(2M+1)e− jω2(M−4)]

− e jω1(N−1)[e− j(M2−2)ω2e j3ω1 + e− j(M2−2)ω1e j3ω2 ] (4.8)

We also define βk := e− jω1 [ADSnst
(ω)c]k− [ADSnst

(ω)c]k−1, which can be simplified to βk =

c2e j(k−2)ω2(e j(ω2−ω1)− 1) where c = [c1,c2]
T . It is clear that e jω2βk− βk+1 = 0. From def-

inition of αk,βk and due to the fact that T (v)aDSnst
(ω1) = ADSnst

(ω)c, it is also clear that

αk = βk. Therefore, we have e jω2αk−αk+1 = 0. By substituting the values of αM+5,αM+6 from

(4.7),(4.8),

e jω2αM+5−αM+6 = 0 ⇐⇒ (e jω2(2M+1)e− jω1(M−3)−

e− jω2(M2−2)e jω1(N+2))× (e j(ω2−ω1)−1) = 0

Since N = M(M+1) and ω1 ̸= ω2, this implies that e jω2(N+M−1) = e jω1(N+M−1) which can only

happen if ω2−ω1 =
2mπ

N+M−1 for some integer m. This contradicts the assumptions of Theorem 10,

thereby proving our result.
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Theorem 10 proves that for non-orthogonal source signals (i.e. xT
1 x2 ̸= 0), coarray

MUSIC will fail to identify the true coarray signal subspace R(ADSnst
(ω)) in absence of noise,

even when there are K = 2 sources. It provides the first theoretical validation of the empirical

observation that with finite L, the MSE of coarray MUSIC always saturates away from 0 as

SNR→ ∞, even when 1 < K < P. In contrast, in absence of noise, direct MUSIC on a ULA

can exactly recover the true signal subspace with only L≥ K snapshots if K < P. This naturally

leads to the question: “With limited snapshots (L≥ K), can we harness the difference coarray of

a nested array, while also ensuring exact recovery of the coarray signal subspace R(ADSnst
(ω))

in absence of noise, when K ≤M?” In the next section, we provide a new algorithm for coarray

subspace estimation that resolves this question.

4.1.3 Harnessing the Benefits of Virtual Coarray with Finite Snapshots

We present an alternative algorithm for coarray subspace estimation in the sample-starved

regime, without sacrificing the enhanced DOF of nested arrays. We achieve this by deviating

away from existing methods for coarray subspace estimation [84, 86, 93], which primarily rely

on the sample covariance matrix 1
LYYH .

(T̂ca,Ŵ) = argmin
Tca,W

∥∥YWYH−SnstTcaSH
nst
∥∥2

F (Prox-Cov)

subject to Tca ⪰ 0,Tca is Toeplitz, W⪰ εIL

The main new idea here is to jointly estimate a positive definite matrix W and a PSD Toeplitz

matrix Tca such that SnstTcaSH
nst best fits a weighted data covariance matrix YWYH . The

constraint W ⪰ εIL for ε > 0 ensures that (Prox-Cov) does not return trivial solutions for

(T̂ca,Ŵ). Since we do not employ the sample covariance matrix 1
LYYH , T̂ca may no longer be

an unbiased estimate of the true coarray covariance matrix, unlike the estimate T̂ in (4.3) used

by coarray MUSIC. We call T̂ca as a “Proxy-Covariance” matrix, and the optimization problem

as (Prox-Cov). Owing to the additional freedom available to design W, and self regularization
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property of the PSD constraint Tca ⪰ 0 [2, 89], (Proxy-Cov) will provide a superior estimate

of the coarray subspace, especially with limited snapshots and low SNR (as will be shown in

simulations). Most importantly, it overcomes a key drawback of coarray MUSIC (stated in

Theorem 10) by ensuring exact recovery of coarray signal subspace in absence of noise, as long

as K ≤min(M,L). The following theorem formally proves this.

Theorem 11. Consider the measurement model (4.1) with N = 0. Assume K ≤min(M,L) and

let rank(X) = K. Then, for any ε > 0, every optimal solution T̂ca of the problem (Prox-Cov)

satisfies, R(T̂ca) = R(ADSnst
(ω)).

Proof. Since N = 0, Y = ASnst(ω)X. For any ε > 0, there exists α > 0 such that the pair

(T∗,W∗) = (αADSnst
(ω)AH

DSnst
(ω),αX†X†H) 3 is feasible, and attains the optimal value 0.

Hence, any globally optimal solution of (Prox-Cov) must also attain the optimal value 0 and

therefore satisfy

YŴYH = SnstT̂caSH
nst. (4.9)

Due to the geometry of nested array, we can partition aSnst(ω) as aSnst(ω) = [aT
in(ω),aT

out(ω)]T

where ain ∈ CM+1 and aout ∈ CM−1 are steering vectors corresponding to the inner and outer

uniform linear subarrays of a nested array. Let Ain(ω) = [ain(ω1), . . . ,ain(ωK)] be the array

manifold corresponding to the inner ULA. Then Ain(ω) is a Vandermonde matrix with rank K

(since K ≤M). Since the rows of Ain(ω) coincide with first M+1 rows of ASnst(ω), we have

rank(ASnst(ω)) = rank(Ain(ω)) = K. On the other hand, since rank(X) = K and Ŵ ≻ 0, the

following is true:

rank(YŴYH) = rank(Y) = rank(ASnst(ω)X) = K (4.10)

Now, since T̂ca is a PSD Toeplitz matrix, it has the following decomposition due to

3X† denotes a right inverse of X, which exists since rank(X) = K.
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Caratheodory’s Theorem, [105]

T̂ca = ADSnst
(ω ′)ΛAH

DSnst
(ω ′)

where K′ = rank(T̂ca), Λ is a diagonal matrix with positive entries and

ADSnst
(ω ′) = [aDSnst

(ω ′1), . . . ,aDSnst
(ω ′K′)] ∈ CN×K′

. From (4.9),(4.10), we must have K′ ≥ K. We now show that K′ = K and ω = ω ′, which will

imply the desired result R(T̂ca) = R(ADSnst
(ω)). Suppose ω ′i ̸∈ {ω1, . . . ,ωK} for some i. Now

from (4.9), we must have

aSnst(ω
′
i ) ∈R(Y) = R(ASnst(ω))⇒ ain(ω

′
i ) ∈R(Ain(ω))

This implies that Ā = [Ain(ω),ain(ω
′
i )] ∈ C(M+1)×(K+1) is a column rank deficient matrix.

However, Ā is a Vandermonde matrix with K +1≤M+1 columns, and ω1, . . . ,ωK,ω
′
i are all

distinct. Hence rank(Ā) = K + 1, which leads to a contradiction. Therefore, we must have

ω ′i ∈ {ω1, . . . ,ωK} for every i. Since K′ ≥ K, this can only happen if ω = ω ′.

Remark 4. Theorem 11 ensures that in absence of noise, (Prox-Cov) can exactly recover the

coarray signal subspace R(ADSnst
(ω)) with only L≥ K snapshots. Moreover, Theorem 11 also

shows that unlike coarray MUSIC, (Prox-Cov) does not require the sources to be uncorrelated.4

One can now employ any subspace based DOA estimation algorithm on the estimate

T̂ca produced by (Prox-Cov) and harness the benefits of using the full coarray aperture, while

ensuring that the MSE does not saturate any more with SNR as long as K ≤ M. Moreover,

our simulations suggest that by moving away from sample covariance matrix, (Prox-Cov) can

identify more sources than sensors with higher accuracy than coarray MUSIC, especially with

4Our proof uses the geometry of nested arrays and it is non-trivial to extend it to other sparse arrays.
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limited snapshots.
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Figure 4.1. MUSIC spectra for (Left) (Prox-Cov) and coarray MUSIC at SNR = 20dB with 12
sensors and L = 15 snapshots, and (Right) (Prox-Cov) and Direct-MUSIC at SNR=5dB with 12
sensors and L = 5 snapshots. The true source locations are represented using red vertical dashed
lines.

4.1.4 Simulations

Notice that (Prox-Cov) is a convex (specifically, conic) optimization problem. We

implemented (Prox-Cov) using the SDPT3 solver in CVX package. In Figure 4.1, we compare the

MUSIC spectrum generated using the output T̂ca of (Prox-Cov) against coarray MUSIC [84, 93],

Direct MUSIC on nested array [106, 107] and MUSIC on ULA, all with 12 sensors. We define

normalized DOAs θ̄ = ω

2π
∈ [0,1) [93]. The sources are assumed to be of unit power and the

SNR is defined as SNR = 10log10
(
1/σ2

n
)
. We consider two scenarios: (i) K = 15(K > P) and

(ii) K = 5(K < P). In each case, we consider only L = K snapshots. In both cases, (Prox-Cov)

produces a sharper MUSIC spectrum where all sources are discernible. In Figure 4.1 (a), coarray

MUSIC5 fails to recover all the sources with only L = 15 snapshots. In Figure 4.1 (b), when

K < M, direct MUSIC produces several small spurious peaks (for nested) and a flatter spectrum

(for ULA).

In order to conduct a fair comparison of statistical performance of these algorithms against

5Recall that direct MUSIC on both nested and ULA fails when K ≥ P
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(Prox-Cov) in limited snapshot and/or low SNR regimes, we chose ”fraction of successfully

recovered sources” as a more reliable metric [108]. We first generate K DOA estimates using

root-MUSIC for the respective algorithms. Next, we choose a tolerance r > 0, and declare a

source with DOA θ̄ to be successfully recovered if there exists an estimate θ̂ with |θ̂ − θ̄ |< r.

We denote Pr as the fraction of successfully resolved sources. This metric also ensures that the

MSE of the resolved sources is no larger than r. In Figure 4.2 (a), we consider K = 15(K > P)

sources located at θ̄n = 0.2+0.6(n−1)/14,n = 1, . . . ,15 and compare (Prox-Cov) and coarray

MUSIC. In this setting, coarray MUSIC requires almost twice the number of snapshots (L = 30)

to achieve P0.0086 > 0.9 while (Prox-Cov) achieves with merely L = 15. On the other hand, for

K = 5(K < M) sources (with locations given by Figure 4.1 (b)), (Prox-Cov) can recover a larger

fraction of sources with an error smaller than r = 5×10−3, especially when SNR is low. As

predicted by Theorem 11, in Figure 4.2 (c), the MSE curve for (Prox-Cov) decreases sharply

with SNR (similar to Direct MUSIC on ULA [109]), while coarray MUSIC saturates with SNR

at different levels (depending on L). Overall, Figure 4.2 demonstrates that when L is small,

(Prox-Cov) applied on nested arrays can recover more sources than sensors with higher accuracy

than coarray MUSIC, while not exhibiting any saturation with respect to SNR when K < M.
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Figure 4.2. Comparative study of DOA estimation performance of (Prox-Cov), coarray MUSIC
and Direct MUSIC with 12 sensors. (a) Pr vs. L for K = 15 uncorrelated sources, SNR = 20
dB, r = 8.6×10−3. (b) Pr vs. SNR for K = 5 uncorrelated sources, L = 5 and r = 5×10−3 (c)
Corresponding MSE for coarray MUSIC saturates with SNR, while MSE of (Prox-Cov) and
ULA-MUSIC monotonically decay.

Finally in Figure 4.3, we compare the resolution of (Prox-Cov) and several state-of-the-art
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Figure 4.3. Comparison of resolution of (Prox-Cov) against gridless algorithms (Left) Probability
of Resolution versus Separation for K = 2 sources in absence of noise with 12 sensors and L = 2
snapshots (Right) Comparison of DOA estimation of ANM-MMV, (Prox-Cov) and Coarray-
ANM in absence of noise with K = 2 uncorrelated sources separated by ∆ = 5×10−3 and L = 2
snapshots
gridless DOA estimation algorithms such as ANM-MMV [100], Toeplitz PSD [89], Structured

Covariance [100], and Coarray-ANM [97], for resolving 2 sources with an angular separation of

∆ in absence of noise. The sources are declared to be successfully resolved when the estimated

DOAs satisfy maxi |θ̂i− θ̄i| ≤ ∆/2.

As can be seen, when the separation is small (∆ = 5× 10−3), ANM-MMV [100] and

Coarray-ANM [97] (which use atomic-norm based regularizers) fail to resolve the sources,

confirming the well-known fact that atomic-norm based methods can fail to resolve two sources

even in absence of noise, if ∆ violates the so-called “separation condition” [30, 35]. However,

(Prox-Cov) succeeds for all values of ∆, which agrees with Theorem 11 where no restriction on

the separation is imposed.

4.2 Resolving Coherent Sources with Sparse Arrays: An
Interpolation Perspective

As discussed earlier, the large contiguous difference coarray of a well-designed sparse

array is typically “synthesized” in the correlation domain, where the unobserved correlation

values corresponding to missing sensors get implicitly interpolated by computing cross correla-

tions between all pairs of sensor measurements. In the development of (Prox-Cov), although
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the number of snapshots is limited, it still leverages multiple snapshots generated by linearly

independent source signals. However, this may still pose a challenge in applications where the

sources/multi paths may be coherent and/or only a single snapshot might be available for source

localization [110, 111].

In order to exploit the enhanced resolution of sparse arrays in sample-starved regimes,

several algorithms have been developed for DOA estimation with a single (or limited) snapshot(s),

using both off-grid and grid-based approaches [87, 110–119]. Another body of work aims at

“completing a virtual ULA” with the same aperture as the sparse array, by estimating/interpolating

the missing measurements with a single snapshot [115]. The virtual measurements can then

be used for diverse tasks such as beamforming and source localization, aided by the enhanced

resolution of the filled aperture of the virtual ULA [97, 110, 112, 115, 120]. A popular approach

is to synthesize the virtual ULA measurements by using low-rank Toeplitz or Hankel matrix

completion [112, 117, 120]. Indeed, the virtual measurements can be arranged in the form

of a low-rank Hankel/Toeplitz matrix, and the measurements acquired by the sparse array

only reveal certain entries of this matrix. In practice, for computational tractability, the rank

constraint is often relaxed to a suitable convex surrogate, such as the nuclear norm or atomic

norm [110,112,117,120]. Although the aforementioned algorithms can also be applied for nested

virtual array completion with only one snapshot, there is currently a disconnect between theory

and practice. Existing guarantees for deterministic sparse array completion using nuclear norm

minimization involve certain coherence conditions on the virtual Toeplitz/Hankel matrix and

utilize specific graph-based array designs [110, 112] . On the other hand, theoretical guarantees

for atomic norm minimization typically assume randomized sparse arrays, and require the source

locations to satisfy a certain minimum separation even in the absence of noise [26, 35, 115].

These results therefore do not apply to deterministic spatial samplers such as nested arrays.

Moreover, tight necessary and sufficient conditions remain an open question for single-snapshot

virtual array completion via rank minimization.

Summary of our contributions: We address these open questions by providing the first

97



necessary and sufficient conditions for rank-minimization to succeed in synthesizing the virtual

array of a nested array with a single snapshot (Theorem 12). Since we consider the original

rank-minimization framework, our results also reveal fundamental performance limits of any

subsequent relaxation/approximation of the rank function. We guarantee exact interpolation

(in absence of noise) regardless of the separation between sources, or coherence of the virtual

Toeplitz matrix. Our converse results (necessary conditions) utilize the geometry of nested

arrays in order to establish the existence of “ambiguous” source configurations (which we

explicitly construct) for which rank-minimization will provably fail. Notations: Given a vector

z ∈ CL, the operator TL(z) returns a L×L Hermitian Toeplitz matrix whose first column is

given by z. R(A) represents the range space of a given matrix A. We denote AS(ω) =

[aS(ω1),aS(ω2), . . . ,aS(ωK)] ∈ CP×K as the array manifold matrix of an array with sensors

located at nλ/2,n ∈ S= {d1,d2, · · · ,dP} (with source wavelength λ ), and source frequencies

are given by the set ω = {ω1,ω2, · · · ,ωK}, with [aS(ωk)]m = e jωkdm . We use [v]i1:i2 to denote a

vector whose entries are given by those at indices i1, i1 +1, .., i2 of the vector v.

4.2.1 Problem Formulation

Consider K far-field narrowband sources impinging from directions {θi}K
i=1 on a one-

dimensional nested array with P = 2M sensors whose locations are given by Snst, where Snst :=

S1∪S2 is the union of integer sets S1 = {m−1
}M+1

m=1 and S2 = {m(M+1)−1
}M

m=2. The signal

received at the nested array is given by:

ynest = ASnst(ω)x+n, (4.11)

where x ∈RK denotes real-valued 6 (deterministic) source signals and n is an additive noise term.

The normalized spatial frequencies are denoted by ω = {ωk}K
k=1, with ωi = π sin(θi).

The difference set DSnest of Snst is defined as DSnest := {m− n|m,n ∈ Snest}. It is well

6A similar setting with real source signals has been considered in [116]. In future, we will extend our theoretical
results for the complex case.
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known that the set of non-negative elements in DSnest are given by U := {0,1, · · · ,N−1} where

N=M(M+1) [84]. In the absence of noise, we can rewrite (4.11) as

ynest = Snestyfull, yfull := AU(ω)x, (4.12)

where Snest ∈ RP×N is a row-selection matrix given by:

[Snest]i, j =


1, if di +1 = j,di ∈ Snst

0, otherwise

The vector yfull is a “virtual measurement”, received by the virtual array U, with identical source

configurations (same DOAs ω and source signal x).

Key Question: We are interested in the problem of “sparse array interpolation” with only a

single snapshot, where the goal is to estimate yfull from ynest. As discussed earlier, theoretical

guarantees for matrix-completion or atomic norm mimimization based virtual array synthesis do

not readily extend to nested arrays. This raises the open question: What are the necessary and

sufficient conditions under which rank-minimization with nested arrays leads to exact virtual

array completion?

Consider the noiseless measurement model (4.11) with n = 0. From (4.12), it can be

seen that when x is real, the matrix TN(yfull) admits the following Vandermonde decomposition:

TN(yfull) = AU(ω)diag(x)AH
U(ω). (4.13)

Consider the rank-minimization problem

min
u∈CN

rank[TN(u)] subject to Snestu = ynest. (P1)

The following theorem provides necessary and sufficient conditions under which perfect interpo-
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lation is possible (in absence of noise) by solving (P1).

Theorem 12. Consider the measurement model (4.11) with n = 0. If K ≤M, then (P1) has a

unique solution u⋆ satisfying u⋆ = yfull = AU(ω)x, for every ω and x. Conversely if K > M,

there exist source configurations with K source angles ω0 ∈ [−π,π)K , and amplitudes x0 ∈ RK ,

such that one can find a vector ŷ, with ŷ ̸= yfull (where yfull = AU(ω0)x0), satisfying

Snestŷ = Snestyfull, rank(TN(ŷ))≤ K (4.14)

Proof. We first show that there exists no feasible point ỹ∈CN of (P1) such that rank(TN(ỹ))<K.

Consider a feasible point ỹ ∈ CN and the following block partitioning of the matrix TN(ỹ):

TN(ỹ) =

T1 T2

X Z

, (4.15)

where T1 ∈C(M+1)×(M+1),T2 ∈CM+1×(N−M−1). We also define a partitioning of the inner ULA

manifold AS1(ω) as:

AS1(ω) =

 1⊤

B(ω)

, (4.16)

where B(ω)∈CM×K is also a Vandermonde matrix due to the structure of the nested array. Since

ỹ is feasible, we have Snestỹ = ynest, which implies

T1 = TM+1([ỹ]1:M+1) = TM+1([ynest]1:M+1) = TM+1(yS1).

where yS1 = AS1(ω)x. Since S1 is a ULA, from (4.13), we have

TM+1(yS1) = AS1(ω)diag(x)AH
S1
(ω). (4.17)

Since K ≤M, rank(TM+1(yS1))=K. Hence, rank(TN(ỹ))≥K, i.e., there exists no feasible point
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with rank strictly smaller than K.

Suppose rank(TN(ỹ)) = K. We show that ỹ = yfull is the only feasible solution satisfying

this property and this will prove that yfull is the unique solution to (P1). We need to show that

[ỹ]i = [yfull]i for all 1≤ i≤ N. In other words, for every j′ = M+1,M+2, · · · ,N, we will show

that

[ỹ]i = [yfull]i, ∀ i≤ j′. (4.18)

We establish this by induction on j′. The base case j′ = M + 1 follows because ỹ is feasible

and due to the structure of nested array, we also have [ỹ]i = [yS1]i = [yfull]i, 1 ≤ i ≤ M + 1.

Next, suppose (4.18) holds for j′ = j0 ( j0 ≥M+1), and we will show that (4.18) also holds for

j0 +1. Due to the induction hypothesis, showing (4.18) holds for j′ = j0 +1 is equivalent to

showing [ỹ] j0+1 = [yfull] j0+1. Denote T̄ := [T1 T2] ∈ CM+1×N . Due to the Toeplitz structure,

the ( j0 +1)th column of T̄ is given by:

t̄ j0+1 =
[
[ỹ]∗j0+1, [ỹ]

∗
j0, . . . , [ỹ]

∗
j0−M+1

]⊤(a)
=
[
[ỹ]∗j0+1, v̄

⊤
]⊤

, (4.19)

where v̄ = [[yfull]
∗
j0, · · · , [yfull]

∗
j0−M+1]

⊤ and (a) follows from the induction hypothesis. From

(4.12), for i = 1,2, · · · ,M:

[v̄]i =
K

∑
k=1

e− jωk( j0−i)xk =
K

∑
k=1

e jωkie− jωk j0xk, (4.20)

Define x̃ ∈ CK as [x̃]k = e− jωk j0xk. From (4.16), we obtain

v̄ = B(ω)x̃. (4.21)

Now, we use the fact that rank(TN(ỹ)) = K = rank(T1) which implies that rank(T̄) = K. There-

fore, the ( j0 +1)th column of T̄ (t̄ j0+1) satisfies t̄ j0+1 ∈R(T1). From the Vandermonde decom-
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position (4.17), it can be seen that AS1(ω) is a basis for R(T1), and hence there exists c ∈ CK

such that

t̄ j0+1 = AS1(ω)c =

 1⊤

B(ω)

c. (4.22)

By combining (4.19), (4.21), and (4.22) we have the following:

t̄ j0+1 =

[ỹ]∗j0+1

v̄

=

 1⊤c

B(ω)c

 (a)
=

 1⊤c

B(ω)x̃

 . (4.23)

From the equality (a), we have B(ω)c = B(ω)x̃. Since K ≤M, B(ω) is a Vandermonde matrix

with full column rank and thus c = x̃. The proof is complete by plugging c = x̃ in (4.23) [ỹ]∗j0+1 =

∑
K
k=1[x̃]k = ∑

K
k=1 e− jωk j0xk = [yfull]

∗
j0+1. For the converse results, we will show the existence of

ω0,x0 and ŷ with the desired properties by considering two cases (1) 2M+1≤ K ≤ N/2 and (2)

M < K ≤ 2M:

1) (2M + 1 ≤ K ≤ N/2): Consider any 2K distinct source angles denoted by the set Ω2K :=

{ω1,ω2, · · · ,ω2K}. We define a concatenated matrix M(Ω2K) ∈ R4M×2K:

M(Ω2K) =

[
Re(ASnst(Ω2K))

⊤ Im(ASnst(Ω2K))
⊤
]⊤

.

Since K ≥ 2M+1, M(Ω2K) has a non-trivial null space, i.e., there exists v ∈ R2K,v ̸= 0 such

that

M(Ω2K)v = 0. (4.24)

Suppose v has L ≤ 2K non-zero entries, and without loss of generality, let the indices of the

non-zero elements be {1,2, · · · ,L} 7. We select ω0 as ω0 = {ω1,ω2, · · · ,ωK}. Now, there can

be two possibilities: either L > K, or L≤ K. Suppose L > K. In this case, let x0 =−[v]1:K ∈RK

and construct ŷ as follows. Define ω̄ := {ωK+1, · · · ,ωL} and x̄ := [v](K+1):L. Let ŷ be given

7The elements of the set Ω2K can always be permuted to ensure this.
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by ŷ = AU(ω̄)x̄. In this case, since [AU(ω̄),AU(ω0)] is a Vandermonde matrix with L distinct

columns, it has full column-rank, since L≤ 2K ≤ N. This implies that AU(ω̄)x̄ ̸= AU(ω0)x0 for

non-zero x0, x̄, and therefore ŷ ̸= yfull Next consider the case L≤ K. In this case, let x0 be given

by x0=[[v]⊤1:L,1
⊤
K−L]

⊤ (where 1K−L ∈RK−L is a vector of all 1’s), ω̄ := [ωL+1, · · · ,ωK], x̄=1K−L,

and again construct ŷ as ŷ = AU(ω̄)x̄. Once again, it can be verified that yfull ̸= ŷ, otherwise

it would imply (from the constructions of x0, x̄ and ω̄) that ∑
L
i=1 aU(ωi)[x0]i = 0. This cannot

happen since {aU(ωi)}L
i=1 are L distinct columns of a N×L Vandermonde matrix (with L≤ N),

and are therefore linearly independent. Therefore, for each construction of ŷ, we have yfull ̸= ŷ,

and (4.24) also implies that Snestyfull = ASnst(ω0)x0 = ASnst(ω̄)x̄ = SnestAU(ω̄)x̄ = Snestŷ. Since

ŷ = AU(ω̄)x̄, it also holds that rank(TN(ŷ)) = rank
(
AU(ω̄)diag(x̄)AH

U(ω̄)
)
= |K−L| ≤ K, as

L≤ 2K.

2) (M < K ≤ 2M): We begin by proving the following fact about the nested array. For every K in

the range M < K ≤ 2M, there is at most one i ∈ {2, · · · ,2M} (i.e. excluding the sensor at 0) such

that di satisfies mod (di,K) = 0. Suppose there exist two sensor locations dl and dm for which

mod (dl,K)= mod (dm,K) = 0. Since M < K < 2M+1, and di = (i−1),di ∈ S1, this would

imply that dl,dm ∈ S2. Therefore, there exist integers z1,z2 and k1,k2 ∈ {2, · · · ,M}, such that

k1(M +1)−1 = z1K and k2(M +1)−1 = z2K, which implies that (k2− k1)/K = z2k1− z1k2.

Since 2 ≤ k1,k2 ≤M, we have −(M−2) ≤ k2− k1 ≤M−2. But we also have M < K ≤ 2M.

Hence, (k2− k1)/K ∈ Z can be satisfied only if k1 = k2. This implies that dl = dm, and the

statement is proved.

We now construct ω0 as ω0 = {2π
k
K}

K−1
k=0

8 and let ω̄ = ω0 +2π
α

K , where α is chosen

as follows. If there exists an integer i0 ∈ {2,3, · · ·2M} such that the sensor location di0 = zK

for some positive integer z > 0, then we choose α = 1
z . Else, α is chosen as an arbitrary real

number satisfying 0<α < 1. Redefine Ω2K as Ω2K :=ω0∪ ω̄. We construct w∈R2K as follows:

[w]i = 1, [w]K+i = −1, 1 ≤ i ≤ K. Clearly, [w]i ̸= 0 for all i. We will show that w satisfies

8Note that each ωi = π sinθi maps to a unique angle in [−π,π), which can again be uniquely mapped to
ωi ∈ [0,2π).
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M(Ω2K)w = 0. Since the first sensor in nested array is assumed to be at the origin (i.e. d1 = 0),

we have [M(Ω2K)w]1 = 1⊤w = 0, and [M(Ω2K)w]2M+1 = 0⊤w = 0. Consider any i in the range

2≤ i≤ 2M. First assume that the sensor location di satisfies mod (di,K) ̸= 0, implying that

sin(πdi
K ) ̸= 0. Then,

[M(Ω2K)w]i =
K−1

∑
k=0

cos(di
2πk
K

)−
K−1

∑
k=0

cos(di
2π(k+α)

K
)

=
sin(πdi)

sin(πdi
K )

[cos(
π

K
di(K−1))− cos(

π

K
di(K−1+2α))] = 0

since sin(πdi) = 0 for integer di. Similarly,

[M(Ω2K)w]2M+i =
K−1

∑
k=0

sin(di
2πk
K

)−
K−1

∑
k=0

sin(di
2π(k+α)

K
)

=
sin(πdi)

sin( π

K di)
[sin(

π

K
di(K−1))− sin(

π

K
di(K−1+2α))] = 0.

Finally, suppose there exists i0 such that di0=zK. 9 Then, with the aforementioned choice of

α = 1
z , we have cos(di0

2πk
K ) = cos(2πkz) = 1 and cos(di0

2π(k+α)
K ) = cos(2πkz+2π) = 1. This

implies that [M(Ω2K)w]i0 = 0, as ∑i[w]i = 0. Similarly, we have sin(di0
2πk
K ) = sin(2πkz) = 0

and sin(di0
2π(k+α)

K ) = sin(2πkz+ 2π) = 0, which implies that [M(Ω2K)w]i0+2M = 0 as well.

Combining the above results, we showed that M(Ω2K)w = 0. Let x0, x̄ ∈ RK be defined as

[x0]i =−[w]i, [x̄]i = [w]K+i,1≤ i≤ K. As before, construct ŷ = AU(ω̄)x̄. Since M(Ω2K)w = 0,

we again have Snestyfull = ASnst(ω0)x0 = ASnst(ω̄)x̄ = SnestAU(ω̄)x̄ = Snestŷ. Since K ≤ N/2,

using a similar argument as the previous case, it can again be shown that ŷ ̸= yfull. Furthermore,

rank(TN(ŷ)) = rank
(
AU(ω̄)diag(x̄)AH

U(ω̄)
)
= K. This concludes the proof.

Theorem 12 guarantees that when K ≤ M, it is possible to perfectly interpolate the

missing sensors in a nested array, by solving the rank-minimization problem (P1) regardless of

the separation between the sources. In fact, it can be shown that the sufficient condition broadly

9From our previous argument, there can be at most one such sensor.
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applies to any sparse array with a ULA segment of length at least K. It also shows that, even

with a single snapshot, a nested array can identify O(M) sources (by applying any subspace

based technique on the output of (P1)). While an ULA can also identify K ≤M sources using

single-snapshot MUSIC (SS-MUSIC) [20], an interpolated nested array can resolve sources with

much smaller separation, especially in presence of noise. This is demonstrated in Figure 4.5. In

the future, we will analyze how the outer ULA S2 controls this noisy interpolation error.

Theoretical conditions under which nested arrays will provably fail to identify sources

with one snapshot were also unavailable.10 An important contribution of Theorem 12 is to

settle this question by showing that the sufficient condition is also necessary. This is done by

constructing ambiguous source configurations that exploit the nested geometry.

4.2.2 Simulations

We solve a relaxed version of (P1) by replacing the rank with nuclear norm11 and the

equality constraint by a norm constraint ∥Snestu−ynest∥2 ≤ ε , assuming that the noise is bounded

as ∥n∥2 ≤ ε . We call this approach Toeplitz Completion (TC). We first show the benefits of

interpolation in beamforming with nested arrays using a single snapshot. We consider noiseless

measurements acquired by a nested array with P = 14 sensors, comprised of three sources with

amplitudes x = [1,−1,1]. In Figure 4.4, we plot the beam pattern obtained by interpolating the

nested array measurements using TC, and then beamforming with the interpolated measurements

for two different DOA configurations. For comparison, we plot the beam pattern obtained

from beamforming with the physical nested array (without interpolation). We also perform

interpolation with Atomic Norm Minimization (ANM) [115] and plot the resulting beam pattern

in Figure 4.4 (last row). Due to large side lobes of the nested array, the source locations are not

distinguishable when using the physical measurements. On the other hand, using the interpolated

signal produced by TC, we can identify three closely spaced sources. Beamforming with the

10Most existing works focus on the multi-snapshot setting [84, 103, 119]
11Nuclear norm is just one among many approaches to replace “rank” by a suitable surrogate in order to attain

computational tractability.
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Figure 4.4. Comparison of beamforming on the nested array and interpolated virtual array
with K = 3 sources located at (left) ω = {0.0,0.1,0.2} and (right) ω = {0.0,0.2,0.4}. The
total number of sensors is P = 14 and the interpolation was performed up to N = 56 sensors
corresponding to the aperture of the nested array.
interpolated measurements using ANM fails to resolve sources with small separation (left),

and succeeds only when the separation is large enough (right). We next study the DOA
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Figure 4.5. (Left) MSE in DOA vs. SNR for K = 5 sources with a nested array with P = 12
sensors and ULA (with P = 12 and P = 42). (Right) Normalized interpolation error vs. SNR for
interpolating up to N = 42 sensors corresponding to the aperture of the P = 12 sensor nested
array.

estimation error and the interpolation error in presence of noise. We consider a nested array with

P = 12 sensors and K = 5 sources with spatial frequencies ω = {π/20+0.1k}4
k=0, and fixed

amplitudes x = [1,−1,1,1,−1]⊤. The additive noise is generated as n∼U (−σ/2,σ/2) and
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the SNR=10log(1/σ2) is controlled by varying σ . In Figure 4.5 (left) we plot the MSE of DOA

estimates (computed over 200 trials) as a function of SNR, by performing Root-MUSIC [121]

on the output of TC. We also compare against Successive cancellation beamforming (SC-

Beam) [113], ANM [29], and Hankel Completion (HC) [112], all of which permit single-

snapshot DOA estimation with (arbitrary) sparse arrays, although their performances vary. We

also compare the performance of SS-MUSIC on ULA (with 12 and 42 sensors). The 12-element

nested array outperforms the ULA with 12 sensors and comes close to the performance of the

42-element ULA.

In Figure 4.5 (right) we also plot the interpolation error ∥ŷfull−yfull∥2/N versus SNR

where ŷfull is the estimated virtual measurement. For algorithms such as SC-Beam that does

not perform explicit interpolation, we generate the interpolated signal using the DOA and

source amplitude estimates as ŷfull = AU(ω̂)x̂. In both plots, we observe that the MSE of TC

decays sharply with SNR while the other algorithms exhibit saturation. It is to be noted that the

theoretical guarantees for these algorithms (if available) do not necessarily apply to deterministic

sampling patterns such as nested arrays. Therefore, these techniques may fail to correctly identify

all K sources (especially with small separation) with nested arrays, leading to saturation. The

steady decay in the MSE of TC with increasing SNR is consistent with Theorem 12, which

guarantees that exact interpolation is possible with nested arrays with K ≤M sources by seeking

low-rank solutions.

4.3 Conclusion

In the first half of the chapter, we proposed a new convex optimization framework called

(Prox-Cov) to estimate the virtual coarray subspace of nested arrays with limited snapshots.

When K ≤min(M,L), (Prox-Cov) provably recovers the true coarray subspace in the noiseless

setting, while coarray MUSIC provably fails to do so. In numerical simulations, (Prox-Cov)

outperforms coarray MUSIC as well as state-of-the-art gridless DOA estimation algorithms.
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Extending the guarantees of (Prox-Cov) for other kinds of sparse arrays, and analyzing the

performance of subspace algorithms [86, 103, 122] on the output of (Prox-Cov), are promising

directions for future research.

In the later half of the chapter, we provided necessary and sufficient conditions for rank-

minimization based techniques to successfully complete the virtual array of nested arrays from

a single snapshot in the absence of noise. We showed that if K ≤M, one can exactly recover

the missing measurements (and synthesize the virtual array) for any source configuration, by

solving a Toeplitz matrix completion problem via rank-minimization. In contrast, when K > M,

there exist source configurations (which depend on the nested geometry) where the recovery

will provably fail. Our results indicate that the unique geometry of the nested array allows it to

leverage the enhanced resolution of the virtual coarray (via non-linear interpolation), even with a

single snapshot. In numerical simulations, the Toeplitz completion approach is observed to be

robust to noise and outperforms other single snapshot source localization methods with nested

arrays.

Chapter 4, in part, is a reprint of the material as it appears in the following papers:

• P. Sarangi, M. C. Hücümenoglu and P. Pal, “Beyond Coarray MUSIC: Harnessing the

Difference Sets of Nested Arrays With Limited Snapshots,” in IEEE Signal Processing

Letters, vol. 28, pp. 2172-2176, 2021.

• P. Sarangi, M. C. Hücümenoglu and P. Pal, “Single-Snapshot Nested Virtual Array Com-

pletion: Necessary and Sufficient Conditions,” IEEE Signal Processing Letters, vol. 29,

pp. 2113-2117, 2022.

The dissertation author was one of the primary investigator and author of these papers.
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Chapter 5

Bi-Linear and Quadratic Inverse Prob-
lems

5.1 Introduction: Non-Linear Inverse Problems

In Chapters 2 and 3, we focused on linear inverse problem. However, in many applications,

the acquired measurements are non-linear functions of the parameters of interest. For example in

optical imaging, CCD detectors are capable of only capturing the intensity and cannot record the

phase information [123]. Consequently, recently efforts have been geared towards understanding

the identifiability properties of certain classes of non-linear inverse problems, and developing

algorithms with provable guarantees. In the first part of this chapter, we study a type of

underdetermined bilinear inverse problem called blind deconvolution, where the measurements

are a bilinear function of two unknown inputs. In the second part, we study a quadratic inverse

problem known as phase retrieval, where we are interested in recovering the underlying structured

signal from the magnitude of its linear/affine transformation (with a known operator). The results

are developed for two kinds of compressive measurement operators. These problems are of great

interest in signal processing and machine learning, as they are considered prototypical problems

for understanding non-convex optimization.
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5.2 Non-Negative Parametric Blind Deconvolution

The problem of recovering an unknown signal from its convolution with an unknown

kernel (or filter) is known as blind deconvolution and it arises in a wide range of applications

such as fluorescence microscopy, image deblurring, seismic imaging, neural spike detection,

and communication [124–126]. Blind deconvolution is an inherently ill-posed bilinear inverse

problem. However, it is possible to identify the signals (upto trivial scaling ambiguities) when

suitable structural priors such as non-negativity, sparsity and subspace constraints are imposed

on the underlying signals [127–129].

Blind deconvolution has received significant attention in recent times, largely because

it is possible to develop probabilistic guarantees using convex and non-convex algorithms

[127, 130–132]. Majority of these works typically assume the signal and/or kernel belong to

low-dimensional subspaces [127, 130], exhibit sparsity over random dictionaries [128, 129], or

consider deterministic short kernels being convolved with long and sparse signals [133, 134]. A

common feature of these lines of work is that the unknown kernel is finite-length (or FIR filter)

often with additional constraints.

The widely used assumptions for obtaining guarantees in blind deconvolution such as ran-

dom subspace or sparsity over a random dictionary are often not applicable to naturally occurring

signals. Instead, in several practical scenarios, it is possible to obtain a parametric representation

for the kernel. One motivating example is the problem of neural spike deconvolution from

calcium imaging data, which is already introduced in Chapter 2. As discussed earlier, in this

problem, the underlying kernel is exponential decaying and can be well approximated by a stable

first order autoregressive (AR(1)) process [10, 11, 135–137]. In contrast to recent works, the

unknown kernel in this case is an infinite impulse response (IIR) filter and not bandlimited. In the

neuroscience community, there have been several approaches to tackle this spike deconvolution

problem problem such as template matching [52], probabilistic methods [10, 11, 135], convex

formulations with imposition of priors such as sparsity, non-negativity [136–138] and using finite

110



rate of innovation approach [38]. However,these algorithms either assume the kernel (model)

parameters to be known apriori or separately estimated. None of these algorithms study the

effect of subsampling on the kernel parameter and spike estimation which naturally originates

in the problem. Estimation of Autoregressive parameter is a classical problem which has been

studied in [139–141] using higher order moments and empirical spectral methods. However,

these classical techniques do not consider undersampled measurements, or use of explicit priors

such as non-negativity and sparsity for parameter estimation, and therefore cannot provide finite

sample probabilistic bounds.

Summary of Contributions: In this chapter, we consider the problem of blind deconvolution of

sparse signals using an unknown AR(1) kernel. We will specifically consider the case of uniform

subsampling instead of randomized compressive sampling, since the former is more practical in

the context of calcium imaging. However, obtaining guarantees for blind deconvolution from

such uniformly subsampled measurements is also considerably more challenging. In [142], the

authors show that certain deterministic compressive samplers for wide sense stationary signals

can outperform randomized samplers by exploiting positivity constraint and Toeplitz structure.

One of the key contribution of this chapter is to show that it is possible to uniquely recover the

sparse input signal (representing neural spikes) from its subsampled convolution by exploiting

the structure of the autoregressive model and by imposing non-negative constraints on the signal

and the kernel. Assuming that the underlying sparse signal is generated by a Bernoulli model,

we show that it is possible to uniquely recover the sparse signal and the AR(1) parameter with

O(s) (s being the expected sparsity) measurements with very high probability.

5.2.1 Problem Formulation

Let yn represent the output of a first-order Autoregressive AR(1) filter with parameter α ,

0 < α < 1, driven by the input signal sn

yn = αyn−1 + sn (5.1)
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Assuming that system to be at rest initially, i.e. yn = 0,n < 0, we can rewrite N +1 consecutive

samples of (5.1) in matrix-vector form as

y = Gαs (5.2)

where y = [y0,y1, · · · ,yN ]
T ,s = [s0,s1, · · · ,sN ]

T and Gα ∈ R(N+1)×(N+1) is a Toeplitz matrix

given by:

Gα =



1 0 · · · 0

α 1 · · · 0
...

... . . . ...

αN αN−1 · · · 1


The input signal s is assumed to be sparse with ∥s∥0≪ N +1 non-zero elements. In this chapter,

we consider acquiring compressive measurements zm by uniformly subsampling y by a factor of P,

i.e. zm = ymP. Defining M = ⌈N+1
P ⌉, and z = [z0,z1, · · · ,zM−1]

T we obtain our main measurement

model

z = Dy = DGαs (5.3)

where D∈RM×(N+1) is a row-selection matrix representing the uniform downsampling operation

described above. In this chapter, we assume that both α and the sparse input s are unknown

quantities, and our goal is to perform blind deconvolution and identify α,s from the uniformly

subsampled measurements z.

Ambiguities in Blind AR(1) deconvolution: If α is known, and in absence of downsampling

(i.e. P = 1, equivalently D = I), it is easy to see that s can be exactly recovered from z since

Gα is invertible. However, when α is unknown, the problem of recovering s from z is ill-posed,

even in absence of downsampling. Specifically, even when P = 1, any input s̄ = [s̄0, · · · , s̄N ]
T
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constructed as

s̄0 = s0, s̄i = si +β zi−1, i = 1,2, · · · ,N−1

satisfies z = Gᾱ s̄ with ᾱ = α−β (choose β such that ᾱ < 1). The problem becomes severely

ill-posed with downsampled measurements (P > 1). This necessitates imposing appropriate

constraints on s to uniquely identify it. In the following section, we will assume that s is a

non-negative sparse signal and exploit its non-negativity to obtain exact recovery guarantees. 1

5.2.2 Identification of AR(1) Parameter and Sparse Signal

We begin by reformulating our measurements zm by using the AR(1) model for yn. First

notice that using (5.1), for any m≥ 1, ymP can be written as

ymP = α
Py(m−1)P +

P

∑
i=1

α
P−is(m−1)P+i

. This implies that zm satisfies

z0 = s0

zm = α
Pzm−1 + cm,1≤ m≤M−1

where cm := ∑
P
i=1 αP−is(m−1)P+i for 1≤ m≤M−1. These M equations can be re-arranged to

obtain

Az

 c

αP

= z (5.4)

1The non-negativity of s is a natural assumption in applications such as neural spike deconvolution [11, 135]
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where c = [s0,c1,c2, · · · ,cM−1]
T and Az ∈ RM×(M+1) is given by Az =

[
IM zs

]
and zs =

[0,z0, · · · ,zM−2]
T . Notice that c is related to the underlying sparse signal s via

c = H(α)s (5.5)

where H(α) ∈ RM×(N+1) is given by

[H(α)]m,n =


αmP−n, m≥ 1,(m−1)P+1≤ n≤ mP,

1, m = 0,n = 0

0, otherwise

We first aim to recover α by solving the linear system of equations (5.4). Notice that the matrix

Az also depends on the measurements z. Moreover, it is easily seen that the dimension of null

space of Az is 1 and hence (5.4) has many solutions. We propose to seek a non negative solution

with minimum l1 norm by solving the following convex problem

{c⋆,κ⋆}= arg min
v∈RM ,κ∈R

∥v∥1 (P1)

subject to Az

v

κ

= z,

v

κ

≥ 0

Using the estimates c⋆ and κ⋆ in (5.5), one may attempt to solve for the true spike signal s. We

develop conditions under which the true s can be the only solution to (5.5). In order to obtain our

guarantees, we assume that the sparse signal s is generated according to a Bernoulli distribution

(which naturally promotes sparsity [134, 135]) with parameter θ . Specifically, we assume that si

are i.i.d Bernoulli variable with

P(si = 1) = θ
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It is easy to see that the expected sparsity of s is (N +1)θ , i.e., E (∥s∥0) = (N +1)θ . Our main

result is given by the following theorem.

Theorem 13. Suppose si,0 ≤ i ≤ N are i.i.d Bernoulli random variables with P(si = 1) = θ .

Let θ ′ = 1− (1−θ)P then for almost all α in the range 0 < α < 1 (except when α belongs to

subsets of measure 0), the following hold with probability at least 1− pe

pe = (1−θ)
(1−θ ′)M−1−θ ′M−1

1−2θ ′
θ
′+θθ

′M−1

(i) The solution to (P1) satisfies c⋆ = c and κ⋆ = αP

(ii) The true signal s is the only vector in {0,1}N+1 that is solution to the following system of

equations in x:

c⋆ = H(α⋆)x

Proof. Let us define a partition for a signal x ∈ RN+1

x = [x̃0, x̃T
1 , · · · , x̃T

M−1, x̃
T
r ]

T (5.6)

where x̃i ∈ RP, x̃0 ∈ R and x̃r ∈ RN−(M−1)P. Based on this partition we define a set of signals:

A =
{

x ∈ RN+1|∃i 0≤ i≤M−2 s.t x̃i ̸= 0 and x̃i+1 = 0
}

Step 1: Recovery of α and s: We first show that if the true input signal s ∈A , then the solution

to (P1) satisfies c⋆ = c and κ⋆ = αP. Since s ∈A , it can be verified that there exists a k such

that ck > 0 and ck+1 = 0. Let the support of c and c⋆ be S0 and S∗ respectively. We show that

S∗ ⊆ S0. Suppose this is not true and ∃ i≥ 1, i ∈ S⋆ and i /∈ S0. Let

ν = β [0,z0,z1, · · · ,zM−1,−1]T
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be the null space vector of Az for some β . Since zi−1 > 0 we have:

c⋆i = ci +νi > 0⇒ β > 0

⇒ ν j = β z j−1 ≥ 0 ∀ 1≤ j ≤M−1, j ̸= i and νi > 0

The value of the objective at the optimal c⋆ is given by:

∥c⋆∥1 = ∥c∥1 +
M−1

∑
i=0

νi > ∥c∥1

This contradicts the fact that c⋆ minimizes (P1) and therefore S∗ ⊆ S0. For any j /∈ S0, it implies

c⋆j = c j +ν j = 0

Recall since s∈A , ∃k such that ck > 0 and ck+1 = 0 which implies k+1 /∈ S0 and zk > 0.

For any c⋆ we have

c⋆k+1 = ck+1 +β zk = 0⇒ β = 0

Therefore, c⋆ = c and κ∗ = αP are the optimal solution of (P1) provided the ground truth s ∈A .

Step 2: Unique Reconstruction of Spike:

Now, we show that (ii) holds for almost all α in 0 < α < 1 except for the measure zero set

defined as S=
⋃3P

i=1 Zi where the set Zi is given by

Zi = {x|
P

∑
k=1

v(i)k xP−k = 0}.

Each set Zi is defined by a unique vector v(i) ∈ RP where v(i)k ∈ {−1,0,1} ∀k 1≤ k ≤ P. It can

be verified that |S| ≤ (P−1)3P.

Consider a fixed α ∈ (0,1). Let u,v ∈ {0,1}N+1 be two distinct vectors (u ̸= v) which
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satisfy H(α)u = H(α)v

H(α)u−H(α)v = 0⇒ (
P

∑
i=1

(ui− vi)α
P−i) = 0. (5.7)

Since, ui−vi ∈ {0,1,−1},1≤ i≤P, equation (5.7) can be satisfied only if α ∈ S. If α ∈ (0,1)\S

then H(α) is one-to-one over the domain {0,1}N+1. The probability P(α ∈ S) = 0 since the set

S is countable with cardinality at most (m−1)3m implying it has measure zero. Therefore, for

almost all α , the mapping H(α) is one-to-one over the domain {0,1}N+1. If we exactly recover

c and α from (P1) and α ∈ (0,1)\S then we can exactly identify s.

Step 3: Probabilistic Characterization:

We have established that for almost all α the event s ∈A is a sufficient condition for (i) and (ii).

Therefore, (i) and (ii) will hold with a probability at least P(s ∈A ). Now, we characterize the

probability that s ∈A under the Bernoulli model. Let Bi,0≤ i≤M−1 be a set defined as:

Bi = {x ∈ RN+1|x̃ j = 0, j < i and x̃ j ̸= 0, j ≥ i}

Then for the complement set A c =
M−1⋃
i=0

Bi the probability is

P(s ∈A c) =
M−1

∑
i=0

P(s ∈ Bi) (5.8)

To calculate P(s ∈ Bi), we first evaluate P(s̃ j = 0), j ≥ 1 as follows:

P(s̃ j = 0) = P(si = 0, ( j−1)P+1≤ i≤ jP)

= (1−θ)P = 1−θ
′
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Based on this, we can now compute the P(s ∈ Bi) as follows:

P(s ∈ Bi) = (1−θ)θ ′(M−i)(1−θ
′)i−1, i≥ 1

P(s ∈ B0) = θθ
′M−1

Now, we can simplify (5.8) as follows:

P(s ∈A c) = θθ
′M−1 +(1−θ)

M−1

∑
i=1

θ
′(M−i)(1−θ

′)i−1

= θθ
′M−1 +(1−θ)

(1−θ ′)M−1−θ ′M−1

1−2θ ′
θ
′

Therefore, we have P(s ∈ A ) = 1−P(s ∈ A c). Finally, we show that when M ≥ (N + 1)θ

then asymptotically as M,N→ ∞ the probability of error goes to 0. It can be verified that when

M ≥ (N +1)θ , both θ ′,(1−θ ′)< 1 and therefore the probability of error:

pe = θθ
′M−1 +(1−θ)

M−1

∑
i=1

θ
′(M−i)(1−θ

′)i−1→ 0

Remark 1. Theorem 13 shows that as long as M ≥ (N +1)θ , it is possible to recover the AR

parameter α with probability ≥ 1−Me−cM, that exponentially increases to 1 in M. Notice that

our sample complexity is proportional to expected sparsity (since E (∥s∥0) = (N + 1)K) and

hence optimal in this regime of sparsity.

Remark 2. Theorem 13 also shows that with the same sample complexity, the true sparse

signal s can be uniquely identified as the only binary solution to (5.5), although we employed a

naive uniform downsampling operation (instead of randomized measurements). This has very

interesting connections to neural spike deconvolution algorithms (such as MLspike [11]) that

treats the unknown spike signal as binary sequences, and develops decoding algorithms inspired
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from Viterbi decoding. Our result can provide performance guarantees for these techniques, and

also lead to design of efficient decoding algorithms for recovering s.
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Figure 5.1. Phase Transition Plots for successful recovery of s and α by solving (P1) (a) with
non-negative constraints (b) without non-negative constraints. White pixels indicate probability
of success being 1 and black pixels denote zero probability of success.

5.2.3 Simulation

In the first experiment, we generate phase transition plots to characterize the empirical

probability of recovering the sparse signal s and parameter α for different values of expected

sparsity (by varying the Bernoulli parameter θ ) and undersampling ratio P. In the phase

transition plot, white color represents exact recovery whereas black denotes complete failure.

We fix N + 1 = 1024, α = 0.9, and generate s according to the Bernoulli model described in

Theorem 13. The estimates α⋆ and c⋆ are obtained by solving (P1). Using α⋆ and c⋆ in (5.5),

we obtain an estimate of s by searching for a binary vector that solves (5.5). Figure 5.1 (a)

shows the phase transition plot whose boundary corresponds to the red curve P = 4/θ . This

agrees with the observation regarding sample complexity made in Remark 1. Figure 5.1 (b)

shows a second phase transition plot which is obtained by solving (P1) without imposing the

non-negative constraint. As can be seen, the performance degrades much quicker, showing the

significance of the non-negative constraint.

119



0 0.2 0.4 0.6 0.8 1
Bernoulli Parameter ( )

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

 o
f 

R
ec

o
ve

ry

P=1 (Empirical)
P=4 (Empirical)
P=8 (Empirical)
P=1 (Theoretical)
P=4 (Theoretical)
P=8 (Theoretical)

Figure 5.2. Comparison of theoretical and empirical probabilities of exact recovery of s and α

(specified in Theorem 13) as a function of the Bernoulli parameters θ .
In the second experiment, we compare the theoretical recovery probability 1− pe speci-

fied in Theorem 13, with its empirically computed value, as a function of sparsity. We consider

identical settings as the first experiment. Figure 5.2 shows the theoretical and empirical probabil-

ity for exact recovery of α and s for different undersampling ratios as the Bernoulli parameter θ

varies. We see that the theoretical and empirical recovery probabilities almost overlay each other,

validating the main result from Theorem 13.

5.3 Sparse Phase Retrieval

In this section, we consider the problem of recovering a signal x0 ∈ Rn from quadratic

measurements of the form

yi = |aT
i x0|2, i = 1,2, · · · ,m. (5.9)

This problem is a generalization of the celebrated “phase retrieval” problem from optical imaging,

and it features widely across a large number of imaging applications [143–145]. The problem has

also been studied to develop efficient algorithms and analytical tools for performance.Beyond

imaging, it is also closely related to other widely-studied non-convex problems such as low-rank
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matrix recovery [146] which are of great interest in machine learning and statistical signal

processing.

It is well-known that an unstructured x0 can be provably recovered from (5.9) with

m = Cn,(C > 1) Gaussian measurements using convex algorithms in either lifted dimension

[147–150] or in the original dimension [151, 152]. Non-convex algorithms are also known

to provide exact recovery guarantees with similar sample complexity [153–156]. However,

real world signals often possess lower-dimensional structure (such as sparsity). It is therefore

crucial to understand how to exploit such structural assumptions to optimally reduce the sample

complexity and yet ensure exact recovery with fewer measurements than the signal dimension n.

In this chapter, we will focus on the sparse phase retrieval problem where x0 is assumed

to be sparse, i.e., it has only a few (s < n) non-zero entries. Lifting based convex relaxations have

been modified to incorporate an additional sparsity promoting penalty, but they require O(s2 logn)

measurements, which is sub-optimal. In fact, the authors in [157, 158] show that such convex

relaxation cannot achieve the desired sample complexity of O(s logn). It has also been shown

that a different convex formulation in the original dimension can attain a sample complexity

of O(s logn/s), provided it is initialized close to the true signal [159, 160]. Another class of

algorithms directly solves the non-convex problem by first designing an initialization scheme,

followed by an iterative minimization of either an intensity or amplitude loss function [161–163].

However, these non-convex algorithms also require O(s2 logn) measurements to ensure exact

recovery. Recently, [164] showed that it is possible to achieve a sample complexity of O(s logn/s)

when optimizing the amplitude loss-function using the idea of projected gradient descent,

provided the algorithm is initialized in the neighbourhood of the ground truth. The best known

initialization scheme currently requires O(s2 logn) measurements [162]. Therefore, for both

convex and non-convex sparse phase retrieval algorithms, there is still a quadratic gap between

the achievable sample complexity and the information theoretic lower limit of m = Ω(s log(n/s))

measurements. 2

2In a separate line of work, the authors in [165,166] have shown that it is possible to achieve a sample complexity
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Summary of Contributions: One of the main contributions of this chapter is to show that

it is possible to attain the optimal sample complexity of Ω(s log(n/s)) for sparse phase retrieval

with Gaussian measurements in the lifted space without imposing any low-rank constraints.

Exact recovery of the sparse signal is possible by only imposing positive semi-definite (PSD)

constraint and sparsity constraints on the lifted variable. Our result is a generalization of a similar

observation made by the authors in [149, 167] regarding unique optimization-free recovery of an

unstructured signal in the lifted space with O(n) measurements. Although our result is primarily

of theoretical importance, it also provided us with crucial insights to develop a reweighted l1

minimization algorithm in the lifted space that empirically outperforms competing sparse phase

retrieval algorithms.

5.3.1 Problem Formulation

The goal of “generalized phase retrieval problem” is to recover a signal x0 ∈ Rn from m

quadratic measurements of the form

yi = |aT
i x0|2, i = 1,2, · · · ,m. (5.10)

When x0 is sparse with ∥x0∥0 = s non-zero elements, it has been shown [157] that if m≥ 4s−1

and ai ∈Rn, i = 1,2, · · ·m are generic measurements vectors, the following problem has a unique

solution (up to global sign ambiguity), coinciding with x0
3

find x, yi = |aT
i x|2,1≤ i≤ m,∥x∥0 = s (5.11)

Several approaches [157, 159–161, 163, 164] have been proposed to solve this sparse phase

retrieval problem. However, to ensure recovery of x0 (with high probability), all these techniques

of O(s logn/s) using an initialization free approach, by restricting the measurement vectors ai’s to belong to a
known subspace. However, these results are not applicable for Gaussian measurements.

3This result was strengthened to show that stable recovery of x0 is also possible with high probability, provided
m > c1s log(en/s)) (c1 being a constant) and ai, j are i.i.d standard Gaussian random variables [168]
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require m=Ω(s2 logn) measurements. This indicates a critical quadratic gap between the number

of measurements needed for exact recovery, and the sample complexity of these techniques [157,

158, 164]. Recent analysis of iterative algorithms such as PhaseMax [159, 160] and amplitude-

based projected gradient descent [164] has shown that they can break the O(s2 log(n)) barrier,

provided one initializes these algorithms carefully. However, the overall sample complexity of

these algorithms still remains unknown (since it is unclear if such careful initialization itself will

require Ω(s2 logn) measurements) [160].

A well-known technique to linearize the quadratic constraints (5.10) on x is to lift the

vector x ∈ Rn to a matrix X ∈ Rn×n [147, 148]. In particular, we solve

min
X

rank(X), A (X) = y,X⪰ 0 (5.12)

Here, A : Rn×n→ Rm is a linear map such that [A (X)]i ≜ aT
i Xai. When x0 is sparse, the lifted

matrix X0 ≜ x0xT
0 is simultaneously sparse and low-rank. Lifting-based convex approaches

for sparse phase retrieval typically aim to recover X0 by simultaneously minimizing a linear

combination of its l1 norm and nuclear norm (which are convex surrogates for sparsity and rank

respectively) [157, 158]

minimize Trace(X)+λ∥vec(X)∥1 (P2)

subject to A (X) = y X⪰ 0

When ai are i.i.d standard normal vectors, the solution of (P2) recovers X0 with high probability,

provided we acquire m≥ c3s2 log(n) measurements, which again points to a quadratic barrier in

sample complexity [157, 158].

Redundancy of Rank/Trace Minimization: A remarkable result in [167] shows that when ai
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are independent vectors distributed uniformly on the unit sphere of Rn, and m≥ c4n logn, the set

F ≜ {X ∈ Rn×n, s.t. X⪰ 0,A (X) = y} (5.13)

is a singleton (containing only X0) with high probability. Hence trace or rank minimization

becomes unnecessary, and it is enough to simply solve a (convex) feasibility problem of the form

“find X,X ∈F ”. Motivated by this result, we investigate an analogous question for sparse phase

retrieval:

(Q): “When x0 is s-sparse, is it still possible to eliminate need for trace minimization in the

lifted space and yet exactly recovery X0 with m = Ω(s log(n/s)) measurements? ”

5.3.2 Sparse phase retrieval With Optimum Sample Complexity via
Lifting

In this chapter, we show that the answer to the above question is affirmative, provided we

impose a suitable sparsity penalty along with the geometry of PSD cone. We begin by stating a

simple property of sparse positive semi-definite matrices.

Lemma 11. If Z ∈ Rn×n is a symmetric positive semi-definite matrix with [Z]ii = 0 for some i

then [Z]i j = 0 and [Z] ji = 0 ∀ j.

Before understanding the implications of Lemma 11, we introduce some notations.

Given an ordered index set T= {i1, i2, · · · , i|T|} ⊂ [n] with (i1 < i2 < · · ·< i|T|), define the map

AT : R|T|×|T|→ Rm as

[AT(Z)]i
∆
= aT

iTZaiT, 1≤ i≤ m (5.14)

where aiT ∈ R|T| denotes the sub-vector of ai indexed by T. Moreover, for any matrix Z ∈ Rn×n,
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we define ZT ∈ R|T|×|T| to be the principal submatrix of Z corresponding to the index set T, i.e.,

[ZT]m,n = [Z]im,in, im, in ∈ T (5.15)

With these notations in place, we have the following result implied by Lemma 11. Suppose S

denotes the set of indices of the non-zero diagonal elements of a positive semi-definite matrix

Z ∈ Rn×n. Lemma 11 then implies that, for all T⊃ S, we have

A (Z) = AS(ZS) = AT(ZT) (5.16)

Main Result

Given any Z ∈ Rn×n, let diag(Z) = [Z1,1, · · · ,Zn,n]
T ∈ Rn be a vector consisting of the

diagonal elements of the matrix Z. Instead of simultaneously minimizing a linear combination

of the rank and sparsity in the lifted space, we propose solving the following problem in order to

recover X0 via lifting,

minX∈Rn×n ∥diag(X)∥0 (5.17)

subject to X⪰ 0, A (X) = A (X0)

Notice that we do not perform rank or trace minimization, but only exploit the fact that X0 is

sparse. However, unlike existing methods that minimize the l0 norm (or l1 norm) of the entire

matrix in the lifted space, we only seek the one with the sparsest diagonal. This specific choice

of sparsity penalty is crucial to prove our main result that overcomes the quadratic barrier in

sample complexity. Notice that since ∥X0∥0 = s, any solution to (5.17) belongs to the following

set

CA = {Z ∈ Rn×n|A (Z) = A (X0),∥diag(Z)∥0 ≤ s,Z⪰ 0}.
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Our main result (stated below) is to show CA is singleton (i.e. CA = {X0}) with high probability,

provided m≥ k1s log(n/s).

Theorem 14. Suppose ai are i.i.d Gaussian vectors with independent N (0,1) entries. There

exist constants c1,c2 such that with probability at least 1− 3e−c1(m−c2s log( ne
2s )), it holds that

CA = {X0}.

Proof. Our proof utilizes the concept of Frobenius-robust Rank Null Space Property (FRRNSP)

of A from [146] along with the fact that CA consists of PSD matrices. We provide a sketch of

proof. We first review the definition of FRRNSP from [146]

Definition 3. We say that A : Cn1×n2 → Cm satisfy the Frobenius-Robust Rank Null Space

Property (FRRNSP) with respect to l2 of order r with constants 0 < ρ < 1 and τ > 0 if for all

M ∈ Cn1×n2 , the singular values of M satisfy

∥Mr∥2 ≤
ρ√

r
∥Mc∥1 + τ∥A (M)∥2.

Here ∥Mr∥2 = (
r
∑

i=1
σ2

i )
1/2 and ∥Mc∥1 =

min(n1,n2)

∑
i=r+1

σi and σi denotes the ith singular value of M.

Given any index set T⊂ [n], we define the set GT as4

GT ={A, s.t. WT
∆
=

1
m

m

∑
j=1

a jTaT
jT ≻ 0, and

AT satisfies FRRNSP with 0 < ρ <
1

κ(WT)
}

where κ(X) denotes the condition number of a matrix X. Next, we define the following sets

G=
⋂
|T|=2s

GT, E= {A, s.t. CA = {X0}}

4A = [a1, · · · ,am] ∈ Rn×m

126



Consider a fixed A ∈G. Suppose Z∗ ∈ CA is a solution to (5.17) with S∗ ∆
= Supp(diag(Z∗)).

Let L⊂ [n] be any set with ∥L∥0 = 2s and S∗∪S0 ⊆ L. Using the fact that A ∈G and Z∗L and

X0L are PSD matrices satisfying (5.16), it can be shown that [146]

∥Z∗L−X0L∥2 ≤ α1∥AL(Z∗L)−AL(X0L)∥= 0

This implies that Z∗ = X0 and hence CA = {X0}. Hence, if A ∈ G, we also have A ∈ E,

implying that G⊂ E. Hence we have

P(CA = {X0}) = P(A ∈ E)≥ P(A ∈G)

≥ 1−∑∥T∥=2sP
(
A ∈Gc

T
)

(5.18)

Using the fact that A has i.i.d standard Normal entries, we can use results from [146] to show

that

P(A ∈Gc
T)≤ 3e−c1m (5.19)

whenever m≥ c′s for some constants c1,c′. Substituting (5.19) into (5.18) finally yields

P(CA = {X0})≥ 1−3e−c1(m−sc2 log( ne
2s ))

A direct consequence of Theorem 14 is that there exist constants k1,k2 such that whenever

m≥ k1s log(n/s), CA = {X0} with probability at least 1− e−k2m. Hence our result shows that

it is possible to attain O(s log(n/s)) sample complexity for sparse phase retrieval in the lifted

dimension even without explicitly enforcing low-rank constraints.
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Iterative Reweighted Algorithm To Solve (5.17)

Theorem 14 shows that (5.17) has a unique solution with high probability if m≥ k1s log(n/s). We

now propose an algorithm to approximate this non-convex l0 minimization problem by solving

a sequence of convex problems. In each iteration, we solve a re-weighted trace minimization

problem (Pw), the details of which is provided in Algorithm 5.

minimize trace(WZ) (Pw)

subject to A (Z) = A (X0),Z⪰ 0

Notice that our weighting scheme is different from [148], where the weights are updated to

Algorithm 5. PhaseLift with Diagonal Sparsity Enforcing Reweighted l1 minimization
Input: Quadratic measurements y ∈ Rm

Output: Estimate x̂ of the sparse signal x0
Initialize with W(0) = I, k← 0, and a sequence of non-increasing numbers {εk} satisfying
lim
k→∞

εk ≥ 0.

Repeat
1. Obtain X(k+1) as the solution to (Pw) with W = W(k)

2. Update the weights W(k+1)
i, j =

0, i ̸= j
1

X(k+1)
i,i +εk

, i = j

3. k← k+1

until convergence ∥X(k)−X(k−1)∥F < ε̃1
After convergence, let X̂ be the best rank-1 approximation to X(k). Obtain x̂ as the top singular
vector of X̂, i.e. X̂ = x̂x̂T

promote sparsity of the entire matrix. In contrast, we only update the weights to enforce sparsity

of the diagonal entries since the positive semi-definite constraint will implicitly promote sparsity

of the remaining matrix.

128



5.3.3 Simulations

In this section, we demonstrate the effectiveness of the proposed reweighted l1 mini-

mization algorithm inspired by the insights from Theorem 14. We compare our algorithm with

SPARTA [161] and CoPRAM [163], which are effective for sparse phase retrieval with Gaussian

measurements. For each iteration, we generate a sparse signal x0 of length N and sparsity s,

whose non-zero entries are uniformly distributed in the range [1,4]. We evaluate the performance

of each algorithm for a given sparsity s in terms of successful recovery rate computed over 100

iterations. We consider a recovery successful if the relative error in the lifted space satisfies
∥Z−xxT ∥F
∥xxT ∥F

≤ 10−3. In the first set of experiments, we consider two different values of N and plot

the probability of success as a function of sparsity s in Figure 5.3 (a). For N = 64, we provide

m = 64 measurements to both SPARTA and CoPRAM and compare against our algorithm which

is given m = 30 and m = 50 measurements. For N = 128, we test SPARTA and CoPRAM with

m = 100 and m = 128 measurements, whereas we use m = 75 measurements for our algorithm

(shown inFigure 5.3 (b)). In both cases, we see that our algorithm significantly outperforms

SPARTA and CoPRAM even when it uses fewer number of measurements.

In the next experiment, we fix N = 256, s = 5 and compute the probability of success

as a function of the number of measurements. Figure 5.4, shows that the proposed algorithm

requires only 160 measurements to recover the signal with probability 1, whereas the other two

algorithms can only achieve a success rate of 0.5.

5.4 Interferometric Phase Retrieval

Optical Coherence Tomography (OCT) is an interferometic imaging technique which

is widely used for imaging of biological tissues (such as retina, skin and coronary arteries) and

capturing microstructure in materials. The two widely used approaches of performing OCT are

Time Domain OCT (TDOCT) and Frequency Domain OCT (FDOCT) The setup of both are very

similar but FDOCT offers distinct advantages over TDOCT since it allows faster acquisition
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Figure 5.3. Comparison of probability of success versus sparsity. Here (a) N=64 (b) N=128.
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Figure 5.5. Michelson Interferometric Setup for FDOCT

of the entire 1-D image without any mechanical scanning parts, and has better dynamic range

compared to TDOCT [169]. The central goal of FDOCT is to reconstruct the underlying

scattering characteristic of the object only from the magnitude of Fourier measurements recorded

by the FDOCT detector. This makes FDOCT a classical Phase Retrieval (PR) problem which

arises in a wide range of imaging applications such as crystallography [170], holography [171],

and electron microscopy [172]. The problem of phase retrieval originated in optics, and early

works by [173], [174] proposed iterative algorithms to recover the phase by imposing suitable

constraints. There has been growing interest in phase retrieval problems in recent times, driven
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by the success of compressed sensing and sparsity enforcing algorithms. Since phase retrieval is

a non-linear problem, a significant body of work attempts to linearize it by using the so-called

“lifting” technique, and cast it as a low rank matrix recovery problem that can be solved using

Semi-Definite Programming (SDP) [147] [175] [176]. Since lifting increases the dimension of

the problem, the number of measurements are typically suboptimal and one requires O(s2 logN)

measurements to recover an N-dimensional signal with s non-zero elements. On the other

hand, fast algorithms such as GESPAR [177] have been proposed, which use a greedy approach

to solve a quadratic least square problem with sparsity constraints. However, the number of

measurements required by GESPAR for recovering is O(N), which is again suboptimal for

sparse signals. Another popular approach for solving the Fourier phase retrieval problem is

to generate additional sets of measurements using masks [178] [179], optical gratings [180],

oblique illumination [181], and Short Time Fourier Transform (STFT) which allows overlap

between two consecutive windows to be able to recover the signal. However, the measurement

models for these methods cannot be directly applied to FDOCT.

The problem of phase retrieval specific to FDOCT has been studied in [182], [183]. To

further improve the performance of FDOCT, a sparsity driven Fienup-type iterative algorithm

was proposed in [184]. However, there are no theoretical results that specify the number of

measurements needed for this algorithm to succeed.

Summary of Contribution: In this chapter, for the first time, we will develop a sparse phase

retrieval algorithm for FDOCT that provably recovers the desired signal using minimal number

of measurements. Our approach uses the differential FDOCT (or dFDOCT) [185] setup, and

acquires compressive measurements to reduce the number of samples. We then develop and

analyze an l1 minimization based reconstruction algorithm for dFDOCT which allows perfect

recovery of the underlying signal with O(s poly logN) measurements. Simulation results show

that our algorithm outperforms existing sparse Phase Retrieval algorithms even for large signal

length (N) and sparsity (s).
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5.4.1 Review of FDOCT: Measurement Model and Reconstruction
Techniques

Measurement Model

In FDOCT, the measurements are acquired using a Michelson Interferometer as shown

in Figure 5.5 [183]. The interferometer consists of a reference-arm containing a broadband

mirror, and an object-arm which captures light scattered from the object of interest. Light from a

broadband source is split into two beams and channeled towards the reference and object arms.

The light reflected from the mirror serves as the reference signal. It is coupled with the light from

the object arm using a fiber coupler, and the combined signal is analyzed by a spectrometer. The

signal corresponding to the object consists of many elementary waves scattered from different

depths of the object along the z-axis axis [186]. Let a(z) denote the amplitude of the light field

scattered by object as a function of the depth z. The spectrometer measurement I(k), as a function

of the wavenumber k = 2π/λ (where λ is the wavelength), is given by [187]

I(k) = S(k)
∣∣∣aRe j2klr +

∫
∞

−∞

a(z)e j2k(lr+n(z)z)dz
∣∣∣2 (5.20)

Here, S(k) is the power spectrum of the incident light, aR is the amplitude of the light reflected

from the mirror, 2lr is the path length for the reference arm, and n(z) is the refractive index of

the object as a function of depth z. The quantity S(k) is typically known apriori [182]. We can

also assume that aR = 1 without loss of generality, and simplify (5.20) by approximating n(z) as

n(z) = n (also known as a zeroth-order approximation, used for broadband light source) [183].

This yields

I(k) =
∣∣∣1+∫

∞

−∞

a(z)e j2knzdz
∣∣∣2 (5.21)
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Brief Review of Reconstruction Techniques

The central goal in FDOCT is to reconstruct a(z) given the spectral measurements I(k).

Notice that I(k) can be rewritten as I(k) =
∣∣∣1+A(k)

∣∣∣2 where A(k) =
∫

∞

−∞
a(z)e j2knzdz is the

Fourier transform of the scattering amplitude of the object, also known as the Müller fringe.

Traditional techniques attempt to reconstruct a(z) by computing the Fourier transform of I(k),

denoted as Î(z). In this case, Î(z) consists of three terms

Î(z) = δ (z)+a(z)+a∗(−z)+ raa(z)

where raa(z) is the autocorrelation function of a(z). Hence, a direct Fourier inversion creates

artifacts due to superposition of the autocorrelation raa(z) on the signal of interest a(z). To

address this issue, a common assumption used in existing literature is that the light scattered

from the object is sufficiently weaker than the reference. This allows one to effectively ignore

raa(z) and ensure exact reconstruction using different techniques based on homomorphic signal

processing, and finite rate of innovation [183], [182]. Alternatively, the authors in [185] proposed

a differential Fourier domain method, called dFDOCT, which can completely remove the effect

of raa(z) without any assumptions on the strength of a(z).

Differential FDOCT

The key idea in dFDOCT is to acquire an additional set of measurements I′(k) by adding

a phase difference of π in the reference path (e.g. by using a phase modulator). In particular,

I′(k) =
∣∣∣−1+

∫
∞

−∞

a(z)e j2knzdz
∣∣∣2 (5.22)

In a practical scenario, a(z) can safely be assumed to be real valued as it’s the amplitude of

the scattered light field. Hence, In the rest of the chapter we would treat a(z) to be real. After

making a substitution ω =−2kn and subtracting (5.22) from (5.21), we obtain the differential
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measurement

∆I(ω)≜ I(ω)− I′(ω) = 2
(∫

∞

−∞

(
a(z)+a(−z)

)
e− jωzdz

)
(5.23)

It can be readily seen that the ∆I(ω) does not contain the autocorrelation term, and is simply the

scaled Fourier transform of the signal a(z)+a(−z). Since a(z) is causal (i.e. a(z) = 0,z < 0), we

can exactly reconstruct a(z) simply by computing the Inverse Fourier transform of ∆I(ω). Thus,

dFDOCT offers an elegant way to image the object free from autocorrelation-induced artifacts,

without any compromise on accessible depth or resolution requirement [185]. However, the

main disadvantage is that we require twice the number of measurements compared to standard

FDOCT. In this chapter, we will overcome this shortcoming by exploiting sparsity of the desired

image.

5.4.2 Compressive Differential FDOCT with minimal measurements

The role of sparsity in Fourier based phase retrieval is an active area of research. How-

ever, sparsity enforcing algorithms are either sub-optimal in terms of the number of required

measurements, or they require additional assumptions on the signal and measurement system,

which may not be easy to enforce on the signal acquisition setup for FDOCT. On the other

hand, iterative algorithms for reconstructing sparse signals from their FDOCT measurements,

were developed in [184]. However, no guarantees exist in terms of the required number of

measurements.

We will now show how the measurement model for differential FDOCT can be used to

exploit the sparsity of a(z), and develop algorithms that can provably reconstruct it with minimal

number of measurements. Consider discrete measurements ∆I(ω), denoted by ∆I[n] = ∆I(n∆ω)

where ∆ω is the sampling step size. Assuming a(z) is compactly supported, that is, a(z) =
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0 ∀ z < 0 & z > zmax, we can choose ∆ω(≤ π

zmax
) such that

∞

∑
n=−∞

∆I[n]e jz∆ωn = 2ã(z)

where

ã(z) =


2a[0] z = 0

a(z) 0 < z≤ π/∆ω

a(2π/∆ω− z) π/∆ω ≤ z < 2π/∆ω

Consider 2N− 1 samples ∆I[n],n = 0,1, · · · ,2N− 2. The samples of ã(z), denoted by ã[k] =

ã(2πk/((2N−1)∆ω)) are related to ∆I[n] as

2N−2

∑
k=0

2ã[k]e− j2πkn/(2N−1) =
∞

∑
p=−∞

∆I[n+ pN]

Assuming that N is large enough so that ∆I[n] is negligible for n ≥ 2N − 1, we have, for

0≤ n≤ 2N−2,

∆I[n] =
2N−2

∑
k=0

2ã[k]e− j2πkn/(2N−1) (5.24)

Hence, in order to reconstruct N samples of a(z) at a resolution of 2π/∆ω , we need to acquire

2N−1 differential measurements ∆I[n] (which implies a total of 4N−2 spectral measurements),

and only retain the first N values of its IDFT.

136



Compressive d-FDOCT exploiting sparsity of a(z)

Since most images are sparse over suitable basis, it is natural to assume that a =[
a[0],a[1], · · · ,a[N−1]

]T
has a sparse representation over a basis Ψ ∈ CN×N as

a = Ψx0

where x0 ∈ CN is a sparse vector with s0 ≪ N non zero elements. This is a widely used

assumption in sparse phase retrieval [165,177,184] where the object being imaged by the optical

setup can be assumed to have sparse representation over a suitable choice of finite basis (DCT,

Wavelets etc.). Defining 2y =
[
∆I[0],∆I[1], · · · ,∆I[2N−1]

]
, we can rewrite (5.24) as

y = WΨ̄x0 (5.25)

Here W ∈ C(2N−1)×(2N−1) is a (2N−1) point DFT matrix, and Ψ̄ ∈ C(2N−1)×N is given by

Ψ̄ = [2ψ0,ψ1, · · · ,ψN−1,ψN−1,ψN−2, · · ·ψ1]
T

where ψT
m ∈ C1×N denotes the mth row of Ψ. Instead of directly computing the inverse DFT of

y to recover a (which, as shown earlier, would require 2N−1 differential measurements), we

propose to exploit the sparsity of x to significantly reduce the number of differential measure-

ments. We can directly sample the signals I(ω) and I′(ω) at the output of the spectrometer in

differential FDOCT, to obtain 2M measurements I[k],k = 0,1, · · ·M−1 and I′[k] where

I[k] = I(mk2π/∆ω), I′[k] = I′(mk2π/∆ω), k = 0,1, · · · ,M−1

Here, mk denote the sampling locations (using a step size of 2π/∆ω), which are integers

in the range 0 ≤ mk ≤ 2N − 2. Let Ω = {mk,0 ≤ k ≤ M− 1} denote the set of sampling

indices. Using 5.25, the differential measurements ∆I[k],k = 0,1, · · · ,M−1 can be equivalently
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represented as

yΩ = WΩΨ̄x0 (5.26)

where WΩ ∈ CM×(2N−1) represents a subset of M rows of W, indexed by Ω. The goal is to

ensure reconstruction of sparse x with far fewer measurements than its ambient dimension N. To

this end, we propose to recover x0 by solving the following l1 minimization problem

min
x∈RN
∥x∥1 (P1) (5.27)

subject to yΩ = WΩΨ̄x (5.28)

If x∗0 is the solution to (P1), the final reconstructed signal is given by a∗ = Ψx∗0

Exact Recovery with Minimal Number of Measurements

The number of measurements M used in our proposed dFDCT based approach can

indeed be made significantly smaller than N, especially when x is sufficiently sparse, without

compromising the performance. To prove this, we invoke the following theorem from [8]

Theorem 15. Let U ∈ CN×N be a unitary matrix bounded entries satisfying |Um,n| ≤ K/
√

N

where K is a constant independent of N. Let A ∈ CM×N be a submatrix of U obtained by

selecting a subset of M rows uniformly at random. If

M ≥CK2s
(

log(N)
)4

(5.29)

where C is a universal constant, then, with probability at least 1−N−log3(N), every sparse vector

x0 ∈ CN with s non zero elements, is the unique minimizer of the problem:

min
z
∥z∥1, subject to Az = Ax0.
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When the vector a is naturally sparse, i.e. Ψ = I, Theorem 15 can be directly used to

determine the minimum number of measurements that ensures perfect reconstruction with high

probability (that tends to 1 exponentially with N) for our approach. In this case, the problem

(P1) is equivalent to

min
x∈R2N−1

∥x∥1, s. t. Ax̄0 = Ax (P2) (5.30)

where A= 1√
2N−1

WΩ consists of M rows of U= 1√
2N−1

W indexed by Ω. The matrix U is unitary

and satisfies |Um,n| ≤ 1√
2N−1

. The vector x̄0 = [2a0,a1, · · · ,aN−1,aN−1,aN−2, · · · ,a1]
T is sparse

with no more than 2s0 non-zero elements. It is clear that a can be reconstructed once x̄0 has been

recovered by solving (P2) (or equivalently, P1). The following Corollary to Theorem 15 provides

theoretical guarantees for our proposed approach in terms of the number of measurements M:

Corollary 1. Consider the proposed measurement model (5.26) where the entries of Ω are

selected uniformly at random from [0,2N−2], and the signal a is naturally sparse, i.e., Ψ = I. If

M ≥ 2Cs0

(
log(2N−1)

)4

then, with probability at least 1− (2N−1)−log3(2N−1), a can be uniquely recovered by solving

(P1).

The above result has the following implications, both for FDOCT as well as for the more

general problem of sparse phase retrieval:

1. Exact FDOCT with minimal measurements: Our results guarantee exact reconstruction

of the desired image using the FDOCT experimental setup, without any approximations

(such as neglecting the autocorrelation function raa(z)) or introducing an offset of the

zero-phase plane [183]. It also significantly improves the performance of dFDOCT by
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enabling exact reconstruction without doubling the number of measurements. Finally,

unlike many existing FDOCT algorithms, we are able to provide the exact number of

measurements (as a function of N and sparsity s0) that can provably recover the desired

image.

2. Sparse Fourier phase retrieval with O(s poly logN) measurements: Although powerful

algorithms such as GESPAR and those based on convex relaxations (using the idea of

lifting) have proved to be effective for Fourier phase retrieval, they typically require much

larger number of measurements (which can be O(N) or O(s2 logN)) and cannot ensure

perfect reconstruction with O(s logN) measurements. The authors in [165] have shown

that perfect recovery is possible with just O(s log(N/s)) by restricting the measurement

vectors to an incoherent subspace. However, such measurement schemes may not be

physically realizable by an optical setup. Recently, [166] also shows that O(s log(N/s))

measurements are sufficient for PR using an appropriate two-step algorithm. In contrast,

our proposed approach with the differential measurement shows that it is possible to

perform Fourier phase retrieval with O(s poly logN) measurements using l1 minimization

and is also physically realizable with FDOCT experimental setup.

5.4.3 Simulations

In order to show the effectiveness of the proposed algorithm (PA) for Sparse FDOCT, we

compare it with two other sparsity PR algorithms: GESPAR [177] and Max-K algorithm [184]

where the latter was specifically developed for FDOCT. We compare the performance of these

three algorithms in terms of the probability of successful recovery for various sparsity levels,

signal length and also study the effect of exact knowledge of sparsity. In the first experiment,

we generate a k−sparse signal x whose non-zero entries are sampled from a zero mean and unit

variance Gaussian distribution. For each algorithm, we compute the probability of recovering

the sparse signal x. The recovery is declared successful if the normalized mean squared error

(NMSE) satisfies ||x̂−x||2
||x||2 ≤ 0.001. We choose N = 256 and study the probability of successful
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Figure 5.6. Probability of successful recovery vs Sparsity for the PA, GESPAR and Max-K.
Here, N = 256 and both GESPAR and Max-K use M = 2N = 512 measurements.

recovery as a function of the sparsity s. For a fixed sparsity s, we randomly generate a signal x

100 times, each time with a random support and populated by random values. The length of this

signal x is set to N = 256 and we record the number of times this signal is recovered successfully

out of the 100 trials. We use M = 2N = 512 measurements for GESPAR and Max-K, whereas

we test the PA for two values of M : 511 and 100. Figure 5.6 shows the probability of successful

recovery for all the three algorithms. It is clear that the proposed algorithm outperforms the other

two methods. Even when it uses fewer measurements (M = 100) compared to GESPAR and

Max-K (each of which uses M = 512 measurements), the PA allows perfect reconstruction upto

a sparsity of s = 25 whereas the performance of GESPAR and Max-K starts to deteriorate at

s = 17 and 5 respectively. It is to be noted that the exact knowledge of s was provided to both

GESPAR and Max-K algorithms since they are sensitive to the knowledge of sparsity. However,

our algorithm does not require to know s apriori. Also, the solutions of both GESPAR and

Max-K algorithms have trivial ambiguities such circular shift, mirroring and sign reversal. The

NMSE for both algorithms is computed after compensating for these ambiguities by searching

for the minimum NMSE over all possible transformations of the recovered signal. However, our

algorithm is free from such ambiguities and does not require any post-processing.

In the second experiment, we compare the quality of reconstruction of the three algo-

rithms for a 2-D synthetic sparse image which is created following the same approach as [177].

Figure 5.7 shows the images reconstructed by the three algorithms under different settings. It
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Figure 5.7. (Top Left) Ground Truth 2D synthetic image (Top Middle) GESPAR with upper
limit of s = 10 and M = 512 (Top Right) Max-K, with M = 512 (Bottom Left) PA with M = 511
(Bottom Middle) GESPAR with knowledge of exact sparsity (Bottom right) PA with M = 200
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can be seen that both the PA & GESPAR can exactly recover the image but the image recovered

by the Max-K algorithm has some undesirable artifacts. On the other hand, if we only provide

an upper limit on the sparsity s to GESPAR, it also exhibits artifacts which is also evident from

an increase in the NMSE from 2.4×10−4 to 0.3227. However, the most important metric where

the PA significantly outperforms both these algorithms is the number of measurements. In spite

of reducing the number of measurements to only M = 200 the PA still maintains NMSE of

8.45×10−9. GESPAR and Max-K both use 2N = 512 measurements but our algorithm is able

to recover the image with a total of M = 200 measurements, with no deterioration in the quality

of reconstruction.

5.4.4 Conclusion

In the first half of the chapter, we considered the problem of blind deconvolution with

autoregressive filters when we have access to downsampled measurements at the output of the

filter. We leverage positivity constraint on the input signal and the structure of the filter to derive

guarantees for unique identification of the signal and the filter. Our simulations demonstrate

that non-negative constraints can significantly improve the ability to recover signals with larger

sparsity. In future, it will be an interesting direction to extend our analysis for noisy measurements

and use efficient decoding strategies for recovering the spikes after identifying the kernel.

In the second chapter, first we show that it is possible to achieve optimal sample com-

plexity of Ω(s logn/s) for sparse phase retrieval in the lifted space using only sparsity constraint

and eliminating low rank constraint, which is the first result of its kind. Inspired by the power of

the diagonal sparsity constraint, we propose an iterative reweighted algorithm based on Phaselift

which is also initialization free. The numerical experiments demonstrate that our algorithm

significantly outperforms existing algorithms for sparse phase retrieval.

Finally, we proposed and analyzed a new compressive (Fourier) phase retrieval approach

based on differential FDOCT (dFDOCT) that can provably recover sparse signals from phaseless

measurements with minimal number of measurements. Our simulations establish superior
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performance of our algorithm compared to existing sparse phase retrieval techniques such as

GESPAR and Max-K algorithm. Our method also overcomes an apparent drawback of dFDOCT

by posing the recovery problem in a compressed setting, and significantly reducing the number

of required measurements.

Chapter 5, in part, is a reprint of the material as it appears in the following papers:

• P. Sarangi, M. C. Hücümenoglu and P. Pal, “Effect of Undersampling on Non-Negative

Blind Deconvolution with Autoregressive Filters,” ICASSP 2020 - 2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain,

2020, pp. 5725-5729.

• P. Sarangi, M. C. Hücümenoglu and P. Pal, ”Understanding Sample Complexities for

Structured Signal Recovery from Non-Linear Measurements,” 2019 IEEE 8th International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

Le gosier, Guadeloupe, 2019, pp. 81-85.

• P. Sarangi, H. Qiao and P. Pal, “On the role of sampling and sparsity in phase retrieval for

optical coherence tomography,” 2017 IEEE 7th International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, 2017, pp. 1-5.

The dissertation author was one of the primary investigator and author of these papers.
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Chapter 6

Open Questions and Emerging Directions

In this chapter, we discuss connections between the ideas explored in this thesis to

problems in other application domains, and indicate future research directions.

6.1 Binary Super-resolution: Interference Channel Perspec-
tive

An important class of channel model known as the “K-user interference channel” has

been widely studied in wireless communication [188,189]. Mathematically, a K-user interference

channel consisting of K single antenna transmitters and M single antenna receivers is given by:

ym =
K

∑
k=1

hm,kxk +wm, m = 1,2, · · · ,M (6.1)

Here hm,k is the channel between the kth user and mth receiver and wm is an additive noise term. In

communication systems, it is common to restrict the inputs {xk}K
k=1 to finite sets (constellation).

Typically M =K and the kth receiver is interested in only decoding the input xk (from the kth user).

There has been tremendous efforts in understanding the information theoretic properties such as

capacity (by characterizing the DOFs) of these interference channels [188]. The “interference

alignment” scheme has emerged as a practical method that is capable of achieving the available

DOF in the high SNR regime [188, 189].

Recall from Chapter 2 (Section 2.5), the fundamental problem in Binary super-resolution
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is of the form:

ym =
D

∑
k=1

α
D−kxk +wm

This model closely resembles the interference channel introduced earlier, however, the key

distinction lies in the fact that the goal here is to decode (from the single measurement ym) the

messages sent by all D-users, as opposed to only the mth message. Due to the finite-valued

nature of the input, the decoding strategies proposed in this thesis can be useful for decoding all

the messages simultaneously, especially when the number of receivers is significantly smaller

than the number of transmitting users. An interesting future direction would be to explore the

similarities with the interference channel to characterize the information-theoretic properties of

the channel for binary super-resolution. This analysis can reveal insights into channels that are

more benign for the task of super-resolution. In the context of the calcium imaging application

discussed in Chapter 2, this can translate into design of new calcium indicators which determine

the “effective” channel parameters.

6.2 Characterizing Minimum Distance: Diophantine Ap-
proximation Problem

In Chapter 2 (Section 2.4.2), characterizing the robustness performance of the super-

resolution problem involved computing a certain “minimum-distance” (∆θmin(α,D)). A question

that remains to be answered is the full characterization of the behavior of this minimum distance

as a function of the filter parameter α and downsampling factor D. For a fixed D, there are a total

of 3D−1 ternary polynomials pi(α). We can characterize ∆θmin(α,D) by alternatively viewing

it as finding the minimum out of these 3D−1 polynomials (in variable α):

∆θmin(α,D) = min
1≤i≤3D−1

|pi(α)|= min
vi∈{−1,0,1}D\{0}

|h⊤α vi|, where h⊤α = [αD−1,αD−2, · · · ,1]
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Note that for a fixed α , any one of those 3D−1 polynomial can attain the minima, the key challenge

lies in identifying which polynomial pi is the minimizer at a given α . In the regime α ≤ 0.5,

we were able to analytically characterize this minimum distance. It turns out the polynomial

with coefficient vector [1,0,0, · · · ,0] always attains the minima in this regime. However, an

analytical solution for this minimization problem for 0.5 < α ≤ 1 seems to be more challenging.

Instead, we can aim to obtain insightful lower bounds as a function of α,D to analyze the

noise robustness of decoding. It turns out that this question has close ties to the problem of

“Diophantine Approximation”, which deals with the question of approximating real numbers

using rational numbers. A potential tool for addressing this problem is leveraging results in the

Diophantine Approximation literature concerned with characterizing the closeness of points

to rational hyperplanes. Let ψ : N→ R+. Given q ∈ Zn and p ∈ Z, the system of equations

q⊤x = p is a rational hyperplane. A point z ∈ Rn is called “dually ψ-approximable” if the

following inequality

|q⊤z− p|< ψ(∥q∥∞) (6.2)

holds for infinitely many (p,q)∈Z×Zn. The properties of ψ,z under which such approximation

is possible is given by the Khintchine’s theorem [190] and its extension by Groshev [191].

However, in our case, we are not interested in a generic point z, but rather points specifically of

the form z = (1,α,α2, · · · ,αn−1).

6.3 From Measurement-Algorithm Co-Design to Codebook
Design for Unsourced Random Access

The current and future generations of wireless networks are expected to support massive

machine-type communications due to the growing number of Internet of Things (IoT) devices.

This has resulted in the “unsourced massive random access” channel model where a large number

of total users communicate using a single shared codebook and only a subset of the users are
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assumed to be active in a given time-slot [18]. This problem can be modeled as follows:

y =
K

∑
i=1

aiqi +n

where ai ∈ C ⊂ RM is a message from the shared codebook C , qi ∈ {0,1} is a binary signal that

indicates whether the message ai is transmitted by any of the active users and n is an additive

noise term. Given the received signal y, the goal of the decoder is to return a list of messages

(columns of the codebook) that were transmitted from the received signal . This amounts to

recovering a binary vector q from (noisy) observation y. Recently, sparse superposition codes

or sparse regression codes (SPARCs) [192–194] have been used along with either tree-based

algorithms or the Approximate Message Passing (AMP) algorithm. The insights from Chapter 3

can be leveraged to design a shared structured codebook (with a partial convolutional structure)

using the proposed measurement-algorithm co-design framework. Such a codebook would allow

us to deploy a low-complexity sequential decoding algorithm. Furthermore, the ability to operate

in the extreme compression regime directly translates to the ability to support many more users

using a constant number of channel uses, i.e., M = Ω(1).

6.4 Binary Priors for Non-Linear Measurement Model:
Finding Quantized Neural Networks

Deep neural networks have become widely used for a variety of machine intelligence

tasks such as object detection, speech recognition and many more. Deploying neural networks

in low-power hardware platforms, such as mobile devices, has been challenging due to the

large number of parameters and massive number of multiply-accumulate operations required

even in the inference stages. This has led to research on deploying of neural networks using

low-precision parameters without significantly sacrificing performance. Such solutions become

desirable due to their lower memory and computational footprint compared to full-precision

networks. A common approach is to quantize a pre-trained model (with full-precision) followed
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by a refinement stage [195–197]. The benefits of finite-valued priors for linear inverse problems

advocated in this thesis opens up research problems for transferring the recovery techniques

for linear inverse problems to efficiently solve a non-linear inverse problem such as training a

quantized neural network. In the training phase, our goal is to find the parameters θ of the neural

network, which belongs to a finite set A whose cardinality is determined by the desired level of

quantization. Given training data points {xi,yi}M
i=1, the objective is to minimize the following

combinatorial optimization problem:

min
θ∈A K

1
M

M

∑
i=1

(yi− fθ (xi))
2 (6.3)

An interesting question would be to formulate a sequential (greedy) algorithm to solve the above

optimization problem by leveraging structure of the neural network architecture and choice of

non-linearity.

6.5 Biased Subspace Estimation: Data-Starved Regime

In chapter 4, we addressed the problem of DOA estimation using deterministic sparse

arrays when the number of snapshots is limited. The central idea was to move away from using

the sample covariance matrix and instead use the available snapshots to obtain a biased estimate

of the covariance matrix preserving the subspace information. We can generalize this idea to

adopt a data-driven framework that can learn the biased estimate specific to the task and scenario

(SNR and number of snapshots that are available) at hand. This gives rise to several interesting

questions regarding how to formulate the “bias learning” problem in an effective manner. Ideally,

the estimator should also be asymptotically unbiased in the number of snapshots, i.e., the bias

should go to zero as we have more and more snapshots.
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6.6 Robustness Guarantees for Interpolation

In chapter 4, we also provided guarantees for noiseless interpolation using the deter-

ministic nested array. A natural question would be to analyze the robustness properties of this

interpolation framework and characterize the resolution limits. In particular, how the resolution

is affected by the array geometry and the SNR. The considered interpolation framework attempts

to leverage single-snapshot DOA estimation schemes that are already known for the ULA, such

as spatial-smoothing. However, synthesizing the virtual array using rank-minimization based

interpolation can be computationally cumbersome. As a result, an important research direction

that emerges is to explore schemes that have a lower computational complexity. A potential way

to achieve this is by designing algorithms that work on the sparse array measurements directly

and possibly avoid interpolation altogether.
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