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Summary. Two-sample multiple testing has a wide range of applications. The conventional
practice first reduces the original observations to a vector of p-values and then chooses a cut-
off to adjust for multiplicity. However, this data reduction step could cause significant loss of
information and thus lead to suboptimal testing procedures. We introduce a new framework for
two-sample multiple testing by incorporating a carefully constructed auxiliary variable in infer-
ence to improve the power. A data-driven multiple-testing procedure is developed by employing
a covariate-assisted ranking and screening (CARS) approach that optimally combines the in-
formation from both the primary and the auxiliary variables. The proposed CARS procedure
is shown to be asymptotically valid and optimal for false discovery rate control. The procedure
is implemented in the R package CARS. Numerical results confirm the effectiveness of CARS
in false discovery rate control and show that it achieves substantial power gain over existing
methods. CARS is also illustrated through an application to the analysis of a satellite imaging
data set for supernova detection.

Keywords: Compound decision theory; False discovery rate; Logically correlated tests;
Multiple testing with covariates; Uncorrelated screening

1. Introduction

A common goal in modern scientific studies is to identify features that exhibit differential levels
across two or more conditions. The task becomes difficult in large-scale comparative exper-
iments, where differential features are sparse among thousands or even millions of features
being investigated. The conventional practice is first to reduce the original samples to a vector
of p-values and then to choose a cut-off to adjust for multiplicity. However, the first step of
data reduction could cause significant loss of information and thus lead to suboptimal testing
procedures. This paper proposes new strategies to extract structural information in the sam-
ple by using an auxiliary covariate sequence and develops optimal covariate-assisted inference
procedures for large-scale two-sample multiple-testing problems.

We focus on a setting where both mean vectors are individually sparse. Such a setting arises
naturally in many modern scientific applications. For example, the detection of sequentially
activated genes in time course microarray experiments, which is considered in section B.7 in
the on-line supplementary material, involves identifying varied effect sizes across different time
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points (Calvano et al., 2005; Sun and Wei, 2011). Since only a small fraction of genes are differ-
entially expressed from the baseline, the problem of identifying varied levels over time essentially
reduces to a multiple-testing problem with several high dimensional sparse vectors (after remov-
ing the baseline effects). The second example arises from the detection of supernova explosions
that is considered in Section 5.5. The potential locations can be identified by testing sudden
changes in brightness in satellite images taken over a period of time. After the measurements
have been converted into greyscale images and vectorized, multiple tests are conducted to com-
pare the intensity levels between two sparse vectors. Another case in point is the analysis of
differential networks, where the goal is to detect discrepancies between two or more networks
with possibly sparse edges.

We first describe the conventional framework for two-sample inference and then discuss
its limitations. Let X and Y be two random vectors recording the measurement levels of the
same m features under two experimental conditions. The population mean vectors are given
by μx = E.X/ = .μx1, : : : , μxm/T and μy = E.Y/ = .μy1, : : : , μym/T. A classical formulation for
identifying differential features is to carry out m two-sample tests:

Hi,0 :μxi =μyi versus Hi,1 :μxi �=μyi, 1 � i � m: .1:1/

Suppose that we have collected two random samples {X1, : : : , Xn1} and {Y1, : : : , Yn2} as in-
dependent copies of X and Y respectively. The standard practice starts with a data reduction
step: a two-sample t-statistic Ti is computed to compare the two conditions for feature i; then
Ti is converted to a p-value or z-value. Finally a significance threshold is chosen to control the
multiplicity. However, this conventional practice, which utilizes only a vector of p-values, may
suffer from substantial loss of information.

This paper proposes a new testing framework that involves two steps. In the first step, besides
the usual primary test statistics, an auxiliary covariate sequence is constructed from the original
data to capture important structural information that is discarded by conventional practice.
In the second step, the auxiliary covariates are combined with the primary test statistics to
construct a multiple-testing procedure that improves the accuracy in inference. Our idea is
that the hypotheses become ‘unequal’ in light of the auxiliary sequence. A key step in our
methodological development is to incorporate the heterogeneity by recasting the problem in the
framework of multiple testing with a covariate sequence. This requires a carefully constructed
pair of statistics that lead to a simple bivariate model and an easily implementable methodology.
Section 2 discusses strategies for constructing the pair of primary and auxiliary variables. Then
we develop oracle and data-driven multiple-testing procedures for the consequent bivariate
model in Section 3. The method proposed employs a covariate-assisted ranking and screening
(CARS) approach that simultaneously incorporates the primary and auxiliary information in
multiple testing. We show that the CARS procedure controls the false discovery rate at the
nominal level and outperforms existing methods in power.

We mention two related strategies in the literature: testing following screening and testing
following grouping. In the first strategy, the hypotheses are formed and tested hierarchically
via a screen-and-clean method (Zehetmayer et al., 2005, 2008; Reiner-Benaim et al., 2007;
Wasserman and Roeder, 2009; Bourgon et al., 2010). Following that strategy, we can first inspect
the sample to identify the union support of μx and μy, and then conduct two-sample tests
on the narrowed subset to eliminate further the null locations with no differential levels. The
screen-and-clean approach requires sample splitting to ensure the independence between the
screening and testing stages to avoid selection bias (Rubin et al., 2006). However, even the
screening stage can significantly narrow down the focus; sample splitting often leads to loss
of power. For example, the empirical studies in Skol et al. (2006) concluded that a two-stage
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analysis is in general inferior compared with a naive joint analysis that combines the data from
both stages. The second strategy (Liu, 2014) can be described as testing following grouping,
i.e. the hypotheses are analysed in groups via a divide-and-test method. Liu (2014) developed
an uncorrelated screening (US) method, which first divides the hypotheses into two groups
according to a screening statistic and then applies multiple-testing procedures to the groups
separately to identify non-null cases. It was shown in Liu (2014) that US controls the error rate
at the nominal level and outperforms competitive methods in power.

Our approach marks a clear departure from existing methods. Both the screen-and-clean
and the divide-and-test strategies involve dichotomizing a continuous variable, which fails to
utilize the auxiliary information fully. By contrast, our proposed CARS procedure models
the screening covariate as a continuous variable and employs a novel ranking and selection
procedure that optimally integrates the information from both the primary and the auxiliary
variables. In Section 4, we develop further results on a general bivariate model; our study
reveals the connections between existing methods and provides insights on the advantage of the
proposed CARS procedure. Simulation results in Section 5 demonstrate that CARS controls
the false discovery rate in finite samples and uniformly dominates all existing methods. The
gain in power is substantial in many settings. We illustrate our method to analyse a time course
satellite image data set in Section 5.5. The application shows improved sensitivity of the proposed
method in identifying changes between images taken over time. Section 6 further discusses
related issues and open problems. The proofs are provided in Appendix A and the on-line
appendix A. Additional numerical results are given in the on-line appendix B.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets

2. Extracting structural information by using an auxiliary sequence

Suppose that {Xij : 1 � j � nx} and {Yik : 1 � k � ny}, i=1, : : : , m, are repeated measurements
of generic independent random variables Xi and Yi respectively. Let β0 = .β0i : 1 � i � m/ be
a latent baseline vector which itself is sparse (including the special case where β0i =0 for all i).
Consider the hierarchical model

Xij =β0i +μÅ
xi + εxij,

Yik =β0i +μÅ
yi + εyik,

.2:1/

with corresponding population means given by μxi =β0i +μÅ
xi and μyi =β0i +μÅ

yi. For ease of
presentation, we focus on the Gaussian model for the error terms εxij ∼IID N.0, σ2

xi/ and εyij ∼IID

N.0, σ2
yi/: More general settings will be discussed in Section 3.6. We assume that μÅ

xi and μÅ
yi,

which can be viewed as random perturbations from the baseline, satisfy μÅ
xi ∼ .1 − πx/δ0 +

πxgμx .·/ and μÅ
yi ∼ .1 −πy/δ0 +πygμy .·/, where δ0 is the Dirac delta function, and gμx and gμy

are unspecified densities of non-zero effects.

Remark 1. Model (2.1) can be applied to scenarios with non-sparse μx and μy when some
baseline measurements are available. See section A.8 in the on-line appendix for further details.
The methodology proposed only requires X̄i and Ȳ i to be normal. In practical situations where
nx and ny are large, our method works well without the normality assumption. Numerical results
with non-Gaussian errors are provided in Section 5.3.
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Let n = nx + ny. Denote γx = nx=n and γy = ny=n. The population means μxi and μyi are
estimated by X̄i =n−1

x Σnx

j=1Xij and Ȳ i =n−1
y Σny

k=1Yik respectively.
The two-sample inference problem is concerned with the simultaneous testing of m hypotheses

Hi,0 : μxi =μyi versus Hi,1 : μxi �=μyi, i= 1, : : : , m. Let I.·/ be an indicator function. Let T1i and
T2i be summary statistics that contain the information about θ1i = I.μxi �=μyi/ (support of mean
difference) and θ2i = I.μxi �=0 or μyi �=0/ (union support) respectively. T1i is the primary statistic
in inference and T2i is an auxiliary covariate. The term ‘auxiliary’ indicates that we do not use
T2i to make inference on θ1i directly. Instead, we aim to incorporate T2i in inference to support
(indirectly) the evidence that is provided in the primary variable T1i. The intuition is that, since
the union support is sparse if both μx and μy are sparse, exploiting this structural information
would improve the efficiency of tests. To see this, note that the continuity of μxi and μyi implies
that, with probability 1, θ1i and θ2i obey the logical relationship

θ1i =0 if θ2i =0: .2:2/

Hence the auxiliary sequence can be utilized to assist inference by providing supplementary
evidence on whether a hypothesis is promising.

We first discuss how to construct the primary and auxiliary statistics from the original data and
then introduce a bivariate random mixture model to describe their joint distribution. Finally,
we formulate a decision theoretic framework for two-sample simultaneous inference with an
auxiliary covariate.

2.1. Constructing the primary and auxiliary statistics
A key step in our formulation is to construct a pair of statistics .T1i, T2i/ such that

(a) the pair extracts information from the data effectively and
(b) the pair leads to a simple bivariate model via which the logical relationship (2.2) can be

exploited.

To focus on the main ideas, we first discuss the Gaussian case with known variances. Exten-
sions to two-sample tests with non-Gaussian errors and unknown variances are discussed in
Section 3.6.

The general strategies for constructing the pair .T1i, T2i/ can be described as follows. First,
T1i is used to capture the information on θ1i; hence X̄i − Ȳ i should be incorporated in its ex-
pression. Second, to capture the information on the union support θ2i, we propose to use the
weighted sum X̄i +κiȲ i, where κi >0 is the weight to be specified later. Under the normality as-
sumption, the covariance of X̄i − Ȳ i and X̄i +κiȲ i is given by σ2

xi=nx −κiσ
2
yi=ny. This motivates

us to choose the weight κÅ
i =γyσ

2
xi=.γxσ

2
yi/, which leads to zero correlation, which is a crucial

property for simplifying the model and facilitating the methodological development. Finally,
the difference and weighted sum are standardized to make the statistics comparable across tests.
Combining these considerations, we propose to use the following pair of statistics to summarize
the information in the data:

.T1i, T2i/=
√(

nxny

n

)(
X̄i − Ȳ i

σpi
,
X̄i +κÅ

i Ȳ i√
κÅ

i σpi

)
, .2:3/

where σ2
pi =γyσ

2
xi +γxσ

2
yi. Denote T1 = .T1i : 1 � i � m/ and T2 = .T2i : 1 � i � m/.

2.2. A bivariate random-mixture model
We develop a bivariate model to describe the joint distribution of T1i and T2i. Let θi = .θ1i, θ2i/.



Covariate-assisted Two-sample Inference 191

Assume that θi are independent and identically distributed bivariate random vectors that take
values in the Cartesian product space {0, 1}2 ={.0, 0/, .0, 1/, .1, 0/, .1, 1/}. For each combination
θi = .j, k/, .T1i, T2i/ are jointly distributed with conditional density f.t1i, t2i|θ1i = j, θ2i = k/.
Denote πjk =P.θ1i = j, θ2i =k/. In practice, we do not know .θ1i, θ2i/ but observe only .T1i, T2i/

from a mixture model

f.t1i, t2i/= ∑
.j,k/∈{0,1}2

πjkf.t1i, t2i|θ1i = j, θ2i =k/: .2:4/

Denote πj = P.θji = 1/, j = 1, 2. Assume that π1 > 0. The goal is to determine the value of θ1i

based on pairs {.T1i, T2i/ : 1 � i � m}.
The mixture model (2.4) is difficult to analyse. However, if T1i and T2i are carefully constructed

as done in Section 2.1, then several simplifications can be made. First, the logical relationship
(2.2) implies that π10 =0; thus we have only three terms in equation (2.4). Second, according to
our construction (2.3), T1i and T2i are conditionally independent:

f.t1i, t2i|μxi, μyi/=f.t1i|μxi, μyi/f.t2i|μxi, μyi/: .2:5/

The following proposition utilizes equation (2.5) to simplify the model further.

Proposition 1. The conditional independence (2.5) implies that

f.t1i, t2i|θ1i =0, θ2i =0/=f.t1i|θ1i =0/f.t2i|θ2i =0/,

f.t1i, t2i|θ1i =0, θ2i =1/=f.t1i|θ1i =0/f.t2i|θ1i =0, θ2i =1/,

f.t1i, t2i|θ1i =0/=f.t1i|θ1i =0/f.t2i|θ1i =0/:

⎫⎪⎬
⎪⎭ .2:6/

The last equation shows that T1i and T2i are independent under the null hypothesis Hi0 :θ1i =0.
This is a critical result for our later methodological and theoretical developments. The joint
density is given by

f.t1i, t2i/=π00f.t1i|θ1i =0/f.t2i|θ2i =0/+π01f.t1i|θ1i =0/f.t2i|θ1i =0, θ2i =1/

+π11f.t1i, t2i|θ1i =1, θ2i =1/: .2:7/

2.3. Problem formulation
Our goal is to make inference on θ1i = I.μxi �= μyi/, 1 � i � m, by simultaneously testing m

hypotheses Hi,0 : θ1i = 0 versus Hi,1 : θ1i = 1. Compared with conventional approaches, we aim
to develop methods utilizing m pairs {.T1i, T2i/ : 1 � i � m} instead of a single vector {T1i : 1 �
i � m}. This new problem can be recast and solved in the framework of multiple testing with a
covariate: T1i is viewed as the primary statistic for assessing significance, and T2i is viewed as a
covariate to assist inference by providing supporting information.

The concepts of error rate and power are similar to those in the conventional settings. A
multiple-testing procedure is represented by a thresholding rule of the form

δ ={δi = I.Si < t/ : i=1, : : : , m}∈{0, 1}m, .2:8/

where δi = 1 if we reject hypothesis i and δi = 0 otherwise. Here Si is a significance index that
ranks the hypotheses from the most significant to least significant, and t is a threshold.

In large-scale testing problems, the false discovery rate FDR (Benjamini and Hochberg,
1995) has been widely used to control the inflation of type I errors. For a given decision rule
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δ = .δi : 1 � i � m/ of the form (2.8), FDR is defined as

FDRδ =E

⎧⎪⎪⎨
⎪⎪⎩

m∑
i=1

.1−θ1i/δi(
m∑

i=1
δi

)
∨1

⎫⎪⎪⎬
⎪⎪⎭, .2:9/

where x ∨ y = max.x, y/. A closely related concept is the marginal false discovery rate mFDR,
which is defined by

mFDRδ =
E

{
m∑

i=1
.1−θ1i/δi

}

E

(
m∑

i=1
δi

) : .2:10/

Genovese and Wasserman (2002) showed that mFDR=FDR+O.m−1=2/ when the Benjamini
and Hochberg (1995) procedure is applied to m independent tests. We use mFDR mainly for
technical considerations to obtain the optimality result. Proposition 7 in Appendix A.2 gives
sufficient conditions under which mFDR and FDR are asymptotically equivalent and shows
that the conditions are fulfilled by our proposed method.

Define the expected number of true positive results ETPδ =E.Σm
i=1θ1iδi/. Other related power

measures include the missed discovery rate (Taylor et al., 2005), the average power (Efron,
2007) and false non-discovery or false negative rate (Genovese and Wasserman, 2002; Sarkar,
2002). Our optimality result is developed based on mFDR and ETP. We call a multiple-testing
procedure valid if it controls mFDR at the nominal level and optimal if it has the largest ETP
among all valid mFDR-procedures.

3. Oracle and data-driven procedures

The basic framework of our methodological developments is explained as follows. We first
consider an ideal situation where an oracle knows all parameters in model (2.7). Section 3.1
derives an oracle procedure. Sections 3.2 and 3.3 discuss an approximation strategy and related
estimation methods, with a refinement given in Section 3.4. The data-driven procedure and
extensions are presented in Sections 3.5 and 3.6.

3.1. Oracle procedure with pairs of observations
The marginal density function for Tji is defined as fj· = .1−πj/fj0 +πjfj1, where πj =P.θji =1/

and fj0 =f.tji|θji = 0/ and fj1 =f.tji|θji = 1/ are the conditional densities for Tji respectively.
Conventional FDR-procedures, which are developed based on a vector of p-values or z-values,
are essentially univariate inference procedures that utilize only the information of T1i. Define the
local false discovery rate Lfdr (Efron et al., 2001) as

Lfdr1.t1/= .1−π1/f10.t1/

f1·.t1/
, .3:1/

where subscript ‘1’ indicates a quantity that is associated with T1i. It was shown in Sun and Cai
(2007) that the optimal univariate mFDR-procedure is a thresholding rule of the form

δ.Lfdr1, c/= [I{Lfdr1.t1i/<c} : 1 � i � m], .3:2/
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where 0 � c � 1 is a cut-off. Denote QLF.c/ the mFDR-level of δ.Lfdr1, c/. Let cÅ = sup{c :
QLF.c/ � α} be the largest cut-off under the mFDR-constraint. Then δÅ = δ.Lfdr1, cÅ/ is
optimal among all univariate mFDR procedures in the sense that it has the largest ETP subject
to mFDR � α.

The following theorem derives an oracle procedure for mFDR-control when the pairs .T1i, T2i/

are given. We shall see that the performance of δÅ, the optimal univariate procedure, can be
greatly improved by exploiting the information in T2i. The oracle procedure under the bivariate
model (2.7) has two important components: an oracle statistic T i

OR that optimally pools infor-
mation from both T1i and T2i, and an oracle threshold tOR that controls the mFDR with the
largest ETP.

Theorem 1. Suppose that .T1i, T2i/ follow model (2.7). Let

qÅ.t2/= .1−π1/f.t2 | θ1i =0/: .3:3/

Define the oracle statistic

T i
OR.t1, t2/=P.θ1i =0|T1i = t1, T2i = t2/= qÅ.t2/f10.t1/

f.t1, t2/
, .3:4/

where f.t1, t2/ is the joint density given by equation (2.7). Then we have the following results.

(a) For 0 <λ � 1, let QOR.λ/ be the mFDR-level of testing rule {I.T i
OR <λ/ : 1 � i � m}.

Then QOR.λ/<λ and QOR.λ/ is non-decreasing in λ.
(b) Suppose that we choose α < ᾱ ≡ QOR.1/. Then the oracle threshold λOR = sup{λ :

QOR.λ/ � α} exists uniquely and QOR.λOR/ = α. Furthermore, define oracle rule
δOR = .δi

OR : i=1, : : : , m/, where

δi
OR = I.T i

OR <λOR/: .3:5/

Then δOR is optimal in the sense that ETPδ � ETPδOR for any δ in Dα, where Dα is
the collection of all testing rules based on T1 and T2 such that mFDRδ � α.

Remark 2. The oracle statistic T i
OR is the posterior probability that Hi,0 is true given the pair

of primary and auxiliary statistics. It serves as a significance index providing evidence against the
null. Section 3.2 gives a detailed discussion of qÅ.t2/ and explains that it roughly describes how
frequently T2i from the null distribution would fall into the neighbourhood of t2. The estimation
of TOR and qÅ.t2/ is discussed in Section 3.3.

Remark 3. Theorem 1 indicates that pooling auxiliary information would not result in
efficiency loss, provided that T2i are carefully constructed according to the principles that
were described in Section 2.1. Consider the ‘worst-case scenario’ where T2i is completely non-
informative: nx = ny, σ2

xi = σ2
yi and μxi = −μyi. In section A.9 of the on-line supplementary

material, we show that under the above conditions T i
OR reduces to the Lfdr-statistic (3.1), and

the oracle (bivariate) procedure would coincide with the optimal univariate rule (3.2). Contrary
to the intuition that incorporating T2i might negatively affect the performance, theorem 1 in-
dicates that the power will unlikely be decreased by pooling the auxiliary information in T2i.
Further numerical evidence is provided in Section 5.4.

The oracle rule (3.5) motivates us to consider a stepwise procedure that operates in two steps:
ranking and thresholding. The ranking step orders all hypotheses from the most significant to
the least significant according to TOR, and the thresholding step identifies the largest threshold
along the ranking subject to the constraint on FDR. Specifically, denote T

.1/
OR � : : : � T

.m/
OR
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the ordered oracle statistics and H.1/, : : : , H.m/ the corresponding hypotheses. The stepwise
procedure operates as follows:

let k =max
{

j : j−1
j∑

i=1
T

.i/
OR � α

}
; reject H.1/, : : : , H.k/: .3:6/

The moving average of the top j ordered statistics gives an estimate of FDR (see Sun and Cai
(2007)). Thus the stepwise algorithm (3.6) identifies the largest threshold subject to the FDR-
constraint.

3.2. Approximating TOR via screening
The oracle statistic T i

OR is unknown and needs to be estimated. However, standard methods
do not work well for the bivariate model. For example, the popular expectation–maximization
algorithm usually requires the specification of a parametric form of the non-null distribution; this
is often impractical in large-scale studies where little is known about the alternative. Moreover,
existing estimators often suffer from low accuracy and convergence issues when signals are
sparse. To overcome the difficulties in estimation, we propose a new test statistic T

τ ,i
OR that

involves only quantities that can be well estimated from data. The new statistic provides a good
approximation to T i

OR and guarantees the FDR-control.
In definition (3.4), the null density f10 is known by construction. The bivariate density f.t1, t2/

can be well estimated by using a standard kernel method (Silverman, 1986; Wand and Jones,
1995). Hence we shall focus on the quantity qÅ.t2/. Suppose that we are interested in counting
how frequently T2i from the null distribution (i.e. θ1i = 0) would fall into an interval in the
neighbourhood of t2: QÅ.t2, h/ = #{i : T2i ∈ [t2 − h=2, t2 + h=2] and θ1i = 0}=m: The quantity is
relevant because qÅ.t2/ = limh→0 E{QÅ.t2, h/}=h: The counting task is difficult as we do not
know the value of θ1i. Our idea is first to apply a screening method to select the nulls (i.e.
θ1i =0), and then to construct an estimator based on selected cases.

Denote Pi the p-value that is associated with T1i = t1i. For a large τ , say τ = 0:9, we would
reasonably predict that θ1i = 0 if Pi > τ , as most likely large p-values should be from the null.
Hence we may count those T2i with large p-values:

Qτ .t2, h/= #{i : T2i ∈ [t2 −h=2, t2 +h=2] and Pi > τ}
m.1− τ /

: .3:7/

The adjustment 1−τ in the denominator comes from the fact that we have utilized only 100.1−
τ /% of the data while counting the frequency. Let Aτ denote the set of possible t1i such that
Pi > τ . Using Qτ to replace QÅ, a sensible approximation of qÅ.t2/ would be

qτ .t2/= lim
h→0

E{Qτ .t2, h/}
h

=

∫
Aτ

f.t1, t2/dt1

1− τ
: .3:8/

Intuitively, a large τ would yield a sample that is close to a sample that is generated from a
‘pure’ null distribution and thus reduce the bias qτ .t2/−qÅ.t2/. Our theory reveals that the bias
is always positive (proposition 2) and would decrease in τ (proposition 4). However, a larger τ
would increase the variability of our proposed estimator (as we have fewer samples to construct
the estimator), affecting the testing procedure adversely. The bias–variance trade-off is further
discussed in Section 3.4.
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Substituting qτ .t2/ in place of qÅ.t2/, we obtain the following approximation of T i
OR:

T
τ ,i
OR.t1, t2/= qτ .t2/f10.t1/

f.t1, t2/
: .3:9/

Some important properties of approximation (3.9) are summarized in the next proposition,
which shows that T

τ ,i
OR always overestimates T i

OR. Hence if we substitute T
τ ,i
OR in place of T i

OR
in procedure (3.6), then fewer rejections will be made, leading to a conservative FDR-level.

Proposition 2.

(a) T i
OR.t1, t2/ � T

τ , i
OR.t1, t2/ for all τ .

(b) Let δτ
OR be a decision rule that substitutes T

τ ,i
OR in place of T i

OR in procedure (3.6). Then
both the FDR- and the mFDR-levels of δτ

OR are controlled below level α.

3.3. Estimation of the test statistic
We now turn to the estimation of T

τ ,i
OR. By our construction, the null density f10.t1/ is known.

The bivariate density f.t1, t2/ can be estimated by using a kernel method (Silverman, 1986; Wand
and Jones, 1995):

f̂ .t1, t2/=m−1
m∑

i=1
Kh1.t1 − t1i/Kh2.t2 − t2i/, .3:10/

where K.t/ is a kernel function, and h1 and h2 are the bandwidths, with Kh.t/=h−1K.t=h/. To
estimate qτ .t2/, we first carry out a screening procedure to obtain sample T .τ / = {i : P1i > τ}
and then apply kernel smoothing to the selected observations:

q̂τ .t2/=
∑

i∈T .τ / Kh2 .t2 − t2i/

m.1− τ /
: .3:11/

The next proposition shows that q̂τ .·/ converges to qτ .·/ in L2-norm.

Proposition 3. Consider q̂τ and qτ respectively defined in equations (3.8) and (3.11). Assume
that

(a) qτ .·/ is bounded and has continuous first and second derivatives;
(b) the kernel K is a positive, bounded and symmetric function satisfying

∫
K.t/=1,

∫
tK.t/dt

=0 and
∫

t2K.t/dt<∞, and
(c) f

.2/
2· .t2|τ /= ∫

t1∈Aτ

∫
f

.2/
2· .t2|t1/f1·.t1/dt1 is square integrable, where f2·.t2|t1/ is the condi-

tional density of T2 given T1.

Then, with the common choice of bandwidth h∼m−1=6, we have

E‖q̂τ −qτ‖2 =E

[∫
{q̂τ .x/−qτ .x/}2

]
dx→0:

Combining these results, we propose to estimate T τ
OR by the statistic

T̂ τ
OR.t1, t2/= q̂τ .t2/f10.t1/

f̂ .t1, t2/
∧1, .3:12/

where q̂τ .t2/ and f̂ .t1, t2/ are respectively given in equations (3.11) and (3.10), and x ∧ y =
min.x, y/.

Remark 4. In our proposed estimator, the same bandwidth h2 has been used for the kernels
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in both equation (3.10) and equation (3.11). Utilizing the same bandwidth across the numerator
and denominator of equation (3.12) has no effect on the theory but is beneficial for increasing
the stability of our estimator. More practical guidelines are provided in Section 5.1.

3.4. A refined estimator
This section develops a consistent estimator of qÅ.t2/. The estimator proposed is important
for the optimality theory in Section 3.5. However, it is computationally intensive and requires
much stronger assumptions which should be scrutinized in practice. The power gain tends to be
limited. In practice we still recommend the simple estimator (3.11). This section may be skipped
for readers who are mainly interested in methodology.

We state in the next proposition some theoretical properties for the approximation error
qτ .t2/ − qÅ.t2/; these properties are helpful to motivate the new estimator and to prove its
consistency. Let the cumulative distribution function of the p-value that is associated with T1i

be G.τ / = .1 − π1/τ + π1G1.τ /, where G1 is the alternative cumulative distribution function.
Denote g and g1 the corresponding density functions.

Proposition 4. Consider T τ
OR defined in equation (3.9).

(a) Denote Bq.τ / = ∫ |qτ .t2/ − qÅ.t2/|dt2 the total approximation error. If G1.·/ is concave,
then Bq.τ / decreases in τ .

(b) If limx↑1 g1.x/=0, then limτ↑1 qτ .t2/=qÅ.t2/.

Remark 5. The concavity assumption (or the more general monotone likelihood ratio condi-
tion) has been commonly used in the literature (Storey, 2002; Genovese and Wasserman, 2002;
Sun and Cai, 2007); the monotone likelihood ratio condition should be treated with caution
(Cao et al., 2013). Assumption (b) is also a typical condition (Genovese and Wasserman, 2004),
which requires that the null cases are dominant on the right of the p-value histogram. The con-
dition holds for one-sided p-values but can be violated by two-sided p-values (Neuvial, 2013).
It would be desirable to develop a more general condition in future work.

It follows from proposition 4 that a large τ is helpful to reduce the bias and the bias converges
to 0 when τ → 1. However, a large τ would increase the variance of our estimator (3.11),
which is constructed by using the sample T .τ / = {i : P1i > τ}. To address the bias–variance
trade-off, we propose first to obtain q̂τ for a range of τs, say {τ1, : : : , τk}, and then to use
a smoothing method to obtain the limiting value of q̂τ when τ → 1. This approach aims to
borrow strength from the entire sample to minimize the bias without blowing up the variance.
Specifically, let τ0 < τ1 < : : : < τk be ordered and equally spaced points in the interval .0, 1/.
Denote q̂τj .t2/ the estimates from equation (3.11), j = 1, : : : , k. We propose to obtain the local
linear kernel estimator q̂Å.t2/ ≡ q̂{τ = 1; q̂τ1.t2/, : : : , q̂τk .t2/} as the height of the fit β̂0, where
.β̂0, β̂1/ minimizes the weighted kernel least squares Σk

j=1.q̂τj −β0 −β1τj/2Khτ .τj − τk/: For a
given integer r, denote ŝr = k−1Σk

j=1.τj −1/rKhτ .τj − τk/. It can be shown that (e.g. Wand and
Jones (1995), page 119)

q̂Å.t2/=k−1
k∑

j=1

{ŝ2 − ŝ1.τj − τk/}Khτ .τj − τk/q̂τj

ŝ2ŝ0 − ŝ2
1

: .3:13/

The next proposition shows that q̂Å.t2/ is a consistent estimator for qÅ.t2/.

Proposition 5. Consider q̂τ and q̂Å that are respectively defined in equations (3.11) and (3.13).
Denote qτk ,.2/.t2/= .d=dτ /2qτ ,.2/.t2/|τ=τk

. Assume that the following conditions hold:
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(a) qτk ,.2/.t2/ is square integrable,
(b) K.·/ is symmetric about zero and is supported on [−1, 1] and
(c) the bandwidth hτ is a sequence satisfying hτ →0 and khτ →∞ as k →∞.

Moreover, assume that conditions (a)–(c) in proposition 3 and condition (b) in proposition 4
hold. We have

E‖q̂Å −qÅ‖2 =E

[∫
{q̂Å.x/−qÅ.x/}2dx

]
→0 when .m, k/→0: .3:14/

3.5. The covariate-assisted ranking and screening procedure
The estimated statistics T̂

τ ,i
OR will be used as a significance index to rank the relative importance

of all hypotheses. Motivated by the stepwise algorithm (3.6), we propose the following CARS
procedure (procedure 1).

Consider model (2.7) and estimated statistics T̂
τ ,i
OR (3.12). Denote T̂

τ ,.1/
OR � : : :� T̂

τ , .m/
OR

the ordered statistics and H.1/, : : : , H.m/ the corresponding hypotheses. Let k =
max{j : j−1Σj

i=1T̂
τ ,.i/
OR � α}: Then reject H.1/, : : : , H.k/.

To ensure good performance of the data-driven procedure, we require the following conditions
for estimated quantities.

Condition 1. E‖q̂τ −qτ‖2 →0.

Condition 1′. E‖q̂Å −qÅ‖2 →0.

Condition 2. E‖f̂ −f‖2 =E
[ ∫ ∫

{f̂ .t1, t2/−f.t1, t2/}2dt1dt2
]→0.

Remark 6. Proposition 3 shows that condition 1 is satisfied by the proposed estimator (3.11).
Proposition 5 shows that condition 1′ is satisfied by the smoothing estimator (3.14) under
stronger assumptions. Finally, condition 2 is satisfied by the standard choice of bandwidth
ht1 ∼m−1=6 and ht2 ∼m−1=6; see, for example, page 111 in Wand and Jones (1995) for a proof.

The asymptotic properties of the CARS procedure are established by the next theorem.

Theorem 2 (asymptotic validity and optimality of CARS).

(a) If conditions 1 and 2 hold, then both the mFDR and the FDR of the CARS procedure
are controlled at level α+o.1/.

(b) If conditions 1′ and 2 hold, and we substitute q̂Å (3.14) in place of q̂τ in equation
(3.12) to compute T̂ τ

OR, then the FDR-level of the CARS procedure is α+o.1/. More-
over, denote ETPCARS and ETPOR the ETP-levels of CARS and the oracle procedure
respectively. Then we have ETPCARS=ETPOR =1+o.1/.

3.6. Case with unknown variances and non-Gaussian errors
For two-sample tests with unknown and unequal variances, we can estimate σ2

xi and σ2
yi by S2

xi =
.nx/−1Σnx

j=1.Xij − X̄i/
2 and S2

yi = .ny/−1Σny

j=1.Yij − Ȳ i/
2 respectively. Let κ̂Å

i =γyS2
xi=.γxS2

yi/ and
S2

pi =γyS2
xi +γxS2

yi: The following pair will be used to summarize the information in the sample:

.T1i, T2i/=
√(

nxny

n

)(
X̄i − Ȳ i

Spi
,
X̄i + κ̂Å

i Ȳ i√
κ̂Å

i Spi

)
: .3:15/

For the case with unknown but equal variances (e.g. σ2
xi =σ2

yi), we modify equation (3.15) as fol-
lows. First, κ̂Å

i is replaced by κÅ =γy=γx. Second, S2
pi is instead estimated by S2

pi =γxS2
xi +γyS2

yi:
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Finally T1i and T2i are plugged into equation (3.12) to compute the CARS statistic, which is
further employed to implement procedure 1.

T1i and T2i are not strictly independent when estimated variances are used. The following
proposition shows that T1i and T2i are asymptotically independent under the null.

Proposition 6. Consider model (2.1). Assume that the error terms (possibly non-Gaussian)
of Xij and Yij have symmetric distributions and finite fourth moments. Then .T1i, T2i/ defined
in equation (3.15) are asymptotically independent when Hi,0 :μxi =μyi is true.

The expression for the asymptotic variance–covariance matrix, which is given in section A.6
of the on-line supplementary material, reveals that the asymptotic independence holds for non-
Gaussian errors as long as the error distributions are symmetric. Our simulation results in
Section 5.3 confirm that unknown variances and non-Gaussian errors have almost no effect
on the performance of CARS. Therefore the plug-in methods are recommended for practical
applications. The case with a skewed distribution requires further research, and a full theoretical
justification of CARS methodology is still an open question.

4. Extensions and connections with existing work

This section considers the extension of our theory to a general bivariate model. The results in
the general model provide a unified theoretical framework for understanding different testing
strategies, which helps to gain insights on the connections between existing methods.

We substitute .Ti, Si/ in place of .T1i, T2i/ in this section. This change reflects a more flexible
view of the auxiliary covariate: Si can be either continuous or discrete, from either internal or
external data, and we do not explicitly estimate the joint density of Ti and Si as done in previous
sections. Sections 4.1–4.5 assume that Ti follow a continuous distribution with a known density
under the null; the case with unknown null density is discussed in Section 4.6. We allow Si to be
either continuous or categorical and hence eliminate the notation θ2i. (Previously θ2i denoted
the union support, which is needed only when T2i has a density with a point mass at 0.) As a
result, the subscript ‘1’ in θ1i is suppressed for notational convenience, where θi = 0 and θi = 1
stand for a null and a non-null case respectively.

4.1. A general bivariate model
Suppose that Ti and Si follow a joint distribution Fi.t, s/. The optimal (oracle) testing rule is
given by the next theorem, which can be proved similarly to theorem 1.

Theorem 3. Define the oracle statistic under the general model

T G
OR.t, s/=P.θi =0|Ti = t, Si = s/: .4:1/

Denote QG
OR.λ/ the mFDR-level of δ.T G

OR, λ/, where δ.T G
OR, λ/ = {I{T G

OR.t, s/ < λ} : 1 � i

� m}. Let λOR = sup{λ ∈ .0, 1/ : QG
OR.λ/ � α}: Define the oracle mFDR-procedure under

the general model as δG
OR = δ.T G

OR, λOR/. Then δG
OR is optimal in the sense that, for any δ

such that mFDRδ � α, we always have ETPδ � ETPδG
OR

.

Theorem 1 can be viewed as a special case of theorem 3. However, theorem 3 is of less practical
importance as the ‘best’ data-driven solution to theorem 3 may depend on various factors such as

(a) whether the auxiliary statistic is categorical or continuous,
(b) whether the null distribution of Ti is fixed and known and
(c) whether Si and Ti are independent etc.
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The key issue is that estimating T
G, i
OR is very difficult in a general bivariate model. Under some

special cases, T G
OR can be approximated well. For example, T τ

OR provides a good approximation
to T G

OR under bivariate model (2.4) and the conditional independence assumption (2.6). When
Si is categorical, the oracle procedure can also be approximated well. This important special
case is discussed next.

4.2. Discrete case: multiple testing with groups
We now consider a special case where the auxiliary covariate Si is categorical. A concrete scenario
is the multigroup random-mixture model that was first introduced in Efron (2008). See also Cai
and Sun (2009). The model is useful to handle large-scale testing problems where data are
collected from heterogeneous sources. Correspondingly, the m hypotheses may be divided into,
say, K groups that exhibit different characteristics. Let Si denote the group membership. Assume
that Si takes values in {1, : : : , K} with prior probabilities {π1, : : : , πK}. Consider the conditional
distributions

.Ti|Si =k/∼f k
1 = .1−πk

1/f k
10 +πk

1f k
11, .4:2/

for k = 1, : : : , K, where πk
1 is the proportion of non-null cases in group k, f k

10 and f k
11 are the

null and non-null densities of Ti and f k
1 = .1 − πk

1/f k
10 + πk

1f k
11 is the mixture density for all

observations in group k. The model allows the conditional distributions in expression (4.2) to
vary across groups; this is desirable in practice when groups are heterogeneous.

Remark 7. In section A.10 in the on-line supplement, we present a simple example to show
that Ti is not sufficient (as insightfully pointed out by a reviewer), whereas .Ti, Si/ is sufficient.
Si is ancillary in the sense that its value is determined by an external process independent from
the main parameter. Contrary to the common intuition that Si is ‘useless’ for inference, our
analysis reveals that Si can be informative. The phenomenon is referred to as the ancillarity
paradox because, to quote Lehmann (Lehmann and Casella (2006), page 420),

‘the distribution of the ancillary, which should not affect the estimation of the main parameter, has an
enormous effect on the properties of the standard estimator’.

A related phenomenon in the estimation context was discussed by Foster and George (1996).
See also the seminal work by Brown (1990) for a paradox in multiple regression.

The problem of multiple testing with groups and related problems have received substantial
attention in the literature (Efron, 2008; Ferkingstad et al., 2008; Cai and Sun, 2009; Hu et al.,
2010; Liu et al., 2016; Barber and Ramdas, 2017). It can be shown that, under model (4.2),
the oracle statistic (4.1) is reduced to the conditional local false discovery rate CLfdr (Cai and
Sun, 2009) CLfdri = .1−πk

1/f k
10.ti/=f k

1 .ti/ for Si = k, k = 1, : : : , K. The CLfdr-statistic can be
accurately estimated from data when the number of tests is large in separate groups. However, the
CLfdr-statistic cannot be well estimated when the number of groups is large, or when Si becomes
a continuous variable. Important recent progress for exploiting the grouping and hierarchical
structures among hypotheses under more generic settings has been made in Liu et al. (2016),
wherein an interesting decomposition of the oracle statistic was derived:

T i
OR.t, s/=1−{1−P.θ2i =0|t, s/}{1−P.θ1i =0|t, s, θ2i =1/}:

The decomposition explicitly shows how the auxiliary statistic can be used to adjust the Lfdr-
statistic, and provides insights on how the grouping effects Si and individual effects Ti interplay
in simultaneous testing. The logical correlation (2.2) can be conceptualized as a hierarchical
constraint and exploited more efficiently (Sarkar and Zhao, 2017).
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The result on multiple testing with groups motivates an interesting strategy to approximate
the oracle rule. For a continuous auxiliary covariate Si, we can first discretize Si, then divide the
hypotheses into groups according to the discrete variable and finally apply groupwise multiple-
testing procedures. This idea is closely related to the US method in Liu (2014); the connection
is discussed next.

4.3. Discretization and uncorrelated screening
The idea in Liu (2014) involves discretizing a continuous Si as a binary variable. Define index sets
G1 ={1 � i � m : Si >λ} and G2 ={1 � i � m : Si � λ}, where the tuning parameter λ divides
t1is into two groups: T1.G1/={ti : i∈G1} and T1.G2/={ti : i∈G2}: The US method (Liu, 2014)
operates in two steps. First, the Benjamini and Hochberg (1995) method is applied at level α to
the two groups separately, and then the rejected hypotheses from two groups are combined as
the final output. The tuning parameter λ is chosen in a way such that it yields the largest number
of rejections (two groups combined). US is closely related to the separate analysis strategy that
was proposed in Efron (2008). The key difference is that the groups were known a priori in
Efron (2008), whereas the groups were chosen adaptively in Liu (2014). The main merit of US is
that the screening statistic is constructed to be uncorrelated with the test statistic, which ensures
that the selection bias issue can be avoided. Moreover, the divide-and-test strategy combines
the results in both groups; this is different from conventional independent filtering approaches
(Bourgon et al., 2010), in which one group is completely filtered out.

We now compare different methods under a unified framework. Both US and CARS can
be viewed as approximations of the oracle rule (4.1). The goal is to borrow information from
the external covariate Si to improve the efficiency of simultaneous inference. US adopts the
divide-and-test strategy and only models Si as a binary variable. It suffers from information
loss in the discretization step. Specifically, the auxiliary variables Si can be used to reveal other
useful data structures in addition to sparsity. Consider a toy example where the cases on the
union support can be divided into two types, characterized by low and high baseline activities;
and among the more active types a larger proportion would exhibit differential levels between
the two conditions. Intuitively the auxiliary statistics can be used to identify three groups,
with no, low and high activities. Hence the two-group strategy that is utilized by US can be
potentially outperformed by a three-group strategy that captures the underlying data structure
more effectively. In practice, the data structure can be complex and finding the ‘best’ grouping
is tricky; this sheds light on the superiority of CARS, for it fully utilizes the auxiliary data by
modelling Si as a continuous variable.

The general framework suggests several directions in which US may be improved. First, the
information of Si may be better exploited, e.g. by creating more groups. However, it remains
unknown how to choose the optimal number of groups. Second, US tests the hypotheses at FDR-
level α for both groups. However, Cai and Sun (2009) showed that the choice of identical FDR-
levels across groups can be suboptimal. To maximize the overall power, different groupwise
FDR-levels should be chosen. However, no matter how smart a divide-and-test strategy may
be, discretizing a continuous covariate would inevitably result in information loss and hence
will be outperformed by CARS.

4.4. The ‘pooling-within’ strategy for information integration
Tukey (1994) coined two terms to advocate some of his favourite information integration strate-
gies: borrowing strength and pooling within. The idea of borrowing strength, which was in-
vestigated extensively and systematically by researchers in both simultaneous estimation and
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multiple-testing fields, has led to some impactful theories and methodologies exemplified by
the James–Stein estimator (James and Stein, 1961) and local false discovery rate methodology
(Efron et al., 2001). By contrast, the direction of ‘pooling within’ has been less explored. Tukey
described it, in a very different scenario from ours, as a two-step strategy that involves first
gathering quantitative indications from ‘within’ different parts of the data, and then ‘pooling’
these indications into a single overall index (Tukey (1994), page 278). Our work formalizes a
theoretical framework for the pooling-within idea in the context of two-sample multiple testing:
first constructing multiple indications from within the data (i.e. independent and comparable
pairs), and second deriving an overall index (i.e. the oracle statistic) that optimally combines
the evidence that is exhibited from both statistics.

Our work differs in several ways from existing works on multiple testing with covariates (Fer-
kingstad et al., 2008; Zablocki et al., 2014; Scott et al., 2015). First, the covariate in other works
is collected externally from other data sources, whereas the auxiliary information in our work is
gathered internally within the primary data set. Second, in other works it has been assumed that
the null density would not be affected by the external covariate. However, the assumption should
be scrutinized in practice as it may not always hold. Under our testing framework, the require-
ment of a fixed null density is formalized as the conditional independence between the primary
and auxiliary statistics. The conditional independence is proposed as a principle for information
extraction and is automatically fulfilled by our approach to constructing the auxiliary sequence.

CARS makes several new methodological and theoretical contributions. First, under a deci-
sion theoretic framework, the oracle CARS procedure is shown to be optimal for information
pooling. Second, existing methodologies on testing with covariate are mostly developed un-
der the Bayesian computational framework and lack theoretical justifications. By contrast, our
data-driven CARS procedure is a non-parametric method and enjoys nice asymptotic prop-
erties. Such FDR theories, as far as we know, are new in the literature. Third, the screening
approach that is employed by CARS reveals interesting connections between sparsity estima-
tion and multiple testing with covariates, which is elaborated next.

4.5. Capturing sparsity information via screening
A celebrated finding in the FDR-literature is that incorporating the estimated proportion of
non-nulls (π1 =P.θi =1/) can improve the power (Benjamini and Hochberg, 2000; Storey, 2002;
Genovese and Wasserman, 2002). In light of Si, the proportion becomes heterogeneous; hence
it is desirable to utilize the conditional proportions π1.s/=P.θi =1|Si = s/ to improve the power
of existing methods (Zablocki et al., 2014; Scott et al., 2015; Li and Barber, 2016). In a similar
vein, earlier works on multiple testing with groups (or discrete Si) reveal that varied sparsity
levels across groups can be exploited to construct more powerful methods (Ferkingstad et al.,
2008; Cai and Sun, 2009; Hu et al., 2010). Estimating π1.s/ with a continuous covariate is
a challenging problem. Most existing works (Zablocki et al., 2014; Scott et al., 2015) employ
Bayesian computational algorithms that do not provide theoretical guarantees. Notable progress
has been made by Boca and Leek (2017). However, their theory requires a correct specification
of the underlying regression model, which cannot be checked in practice. Next we discuss how
the screening idea in Sections 3.3 and 3.4 can be extended to derive a simple and elegant non-
parametric estimator of π1.s/.

Fig. 1 gives a graphical illustration of the estimator proposed. We generate m=105 tests with
X̄i ∼N.0, 1/ and Ȳ i ∼0:8N.0, 1/+0:2N.2, 1/; hence Ti = .1=

√
2/.X̄i − Ȳ i/ and Si = .1=

√
2/.X̄i +

Ȳ i/. Suppose that we are interested in counting how many Si would fall into the interval [t2 −
h, t2 + h] with t2 = 2 and h = 0:3. The counts are represented by vertical bars in Fig. 1(a) for
each p-value interval. As shown in proposition 1, Ti and Si are independent under the null
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Fig. 1. Graphical illustration of the smoothing estimator (4.3): (a) the counts of Si are uniformly dis-
tributed on the right, the bias decreases and the variability increases when τ increases; (b) histogram of
all p-values—similarly, the p-values are approximately uniformly distributed on the right
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(see equation (2.6)). Therefore we can see that the counts of Si are roughly uniformly distributed
when the p-value of Ti is large. Expanding the interval [t2 − h, t2 + h] to the entire real line
(which actually corresponds to discarding the information in Si), we obtain the histogram of all
p-values (Fig. 1(b)).

We start with a description of a classical estimator (Schweder and Spjøtvoll, 1982; Storey,
2002) for π1; see Langaas et al. (2005) for an detailed discussion of various extensions. Let
Q.τ /=#{Pi > τ}; then, by Fig. 1(b), the expected counts covered by light grey bars to the right
of the threshold τ can be approximated as E{Q.τ /}= m.1 −π1/.1 − τ /. Setting the expected
and actual counts equal, we obtain π̂τ

1 =1−Q.τ /={m.1− τ /}:

Next we consider the conditional proportion π1.s/=P.θi =1|Si = s/. Assume that π1.s/ and
f.s/, the density of Si, are constants in a small neighbourhood [s − h=2, s + h=2]. Then the
expected counts of the p-values from the null distribution in the interval [s −h=2, s +h=2] can
be approximated by Qτ .s, h/ ≈ {1 − π1.s/}f.s/h: The other way of counting can be done by
using equation (3.7) in Section 3.2. In obtaining equation (3.7), we exploit the fact that the
counts Si are roughly uniformly distributed to the right of the threshold τ . Taking the limit,
we obtain π1.s/=1−f.s/−1 limh→0 Qτ .s, h/=h=1−qτ .s/=f.s/: Finally, utilizing the screening
approach (3.11), we propose the following non-parametric smoothing estimator

π̂τ
1.s/=1−

∑
i∈T .τ /

Kh .s− si/

.1− τ /
m∑

i=1
Kh.s− si/

: .4:3/

Choosing tuning parameter τ is an important issue but has gone beyond the scope of the current
work; see Storey (2002) and Langaas et al. (2005) for further discussions.

4.6. Heterogeneity, correlation and empirical null
Conventional FDR-analyses treat all hypotheses exchangeably. However, the hypotheses become
‘unequal’ in light of Si, and it is desirable to incorporate, for example, the varied conditional
proportions in a testing procedure to improve the efficiency. This section further discusses the
case where the heterogeneity is reflected by disparate null densities.

A key principle in our construction is that the primary and auxiliary statistics are conditionally
independent under the null. However, in many applications where the auxiliary information is
collected from external data, Si may be correlated with Ti. Then the FDR-procedure may become
invalid if Si is incorporated inappropriately. For example, if the grouping variable Si is correlated
with the p-value, then applying Benjamini and Hochberg’s procedure BH to hypotheses in
separate groups would be problematic because the null distributions of the p-values in some
groups may no longer be uniform. A partial solution to resolve the issue is to estimate the
empirical null distributions (Efron, 2004; Jin and Cai, 2007) for different groups, instead of
using the theoretical null directly. The theory and methodology in Efron (2008) and Cai and
Sun (2009), which allow the use of varied empirical nulls across different groups, can be applied to
control FDR. However, as we previously mentioned, discretizing a continuous Si fails to utilize
the auxiliary information fully. The estimation of the empirical null with a continuous Si is an
interesting problem for future research. The non-parametric smoothing idea in estimator (4.3)
might be helpful but additional difficulties may arise. The limitations of the current methodology
and open questions will be discussed in Section 6.

5. Numerical results

This section investigates the numerical performance of CARS by using both simulated and
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real data. We compare the oracle and data-driven CARS procedures, respectively denoted
by OR and DD, with existing methods, including the Benjamini–Hochberg procedure BH
(Benjamini and Hochberg, 1995), the adaptive z-value procedure AZ (Sun and Cai, 2007) and
the US procedure (Liu, 2014). We first describe the implementation of CARS in Section 5.1.
Sections 5.2 and 5.3 respectively consider

(a) the case with known and unequal variances and
(b) the case with estimated variances and non-Gaussian errors.

Section 5.4 provides numerical evidence to show the merit of CARS when the two means have
opposite signs. An application to supernova detection is discussed in Section 5.5. Additional nu-
merical results including the non-informative case, completely informative case and dependent
tests are provided in sections B.2, B.3 and B.6 respectively in the on-line supplementary material.

5.1. The implementation and R package CARS
The R package CARS has been developed to implement the method proposed. This section
describes implementation details and some practical guidelines.

The bivariate density estimator f̂ .t1, t2/ can become unstable in very sparse settings, which may
lead to slightly elevated FDR-levels (see Fig. 2(a)). To increase the stability of CARS in the ex-
tremely sparse setting where the non-null proportion is vanishingly small, the CARS package has
included a ‘sparse’ option, which implements a conservative but more stable density estimator

f̂
υ
.t1, t2/= .1− π̂2/f10.t1/f20.t2/+G.υ/{1− ̂FDR2.υ/}f̂ .t1, t2|L̂fdr2 <υ/: .5:1/

Here G.υ/ = m−1Σm
i=1I{Lfdr2.t2i < υ/} is an empirical cumulative distribution function,

̂FDR2.υ/ is the estimated FDR-level and υ is the screening level. The first term on the right-hand
side of equation (5.1) is based on known densities, which stabilizes the bivariate density estimate
in regions with few observations. Our numerical studies in the on-line appendix section B.3 show
that the choice of υ has little effect in the range 0.1–0.3; the default choice in the CARS package
is υ = 0:1. To estimate the bivariate density f.t1, t2|Lfdr2 <υ/, we apply the R package ash to
the sample T = {t2i : L̂fdr.t2i/ < υ}. We explain in the on-line appendix section A.11 that the
screening step would underestimate f.t1, t2/ and hence lead to conservative FDR-control. The
performance of the modified density estimator is investigated in Section 5.3 for the extremely
sparse case (including k =0). For the global null case, we may consider a hybrid strategy as done
in Durand (2017) that includes a global testing step (Donoho and Jin, 2004; Cai and Wu, 2014)
to test the hypothesis that all effects are zero; run CARS if the global null is rejected.

In estimating expression (3.11), the CARS package uses Lfdr as the screening statistic (as
opposed to the p-values). A correction factor similar to 1 − τ is needed and can be easily
computed from data. Related formulae and computational details are described in section A.12
in the on-line supplement. Although the p-values lead to simpler and more intuitive descriptions
of the methodology, we found that screening via Lfdr leads to improved stability in tuning for
finite samples. The intuition is that Lfdr, which contains information about the sparsity and
non-null density, provides a testing rule that is more adaptive to the data. Section B.3 in the
supplement investigates the choice of the tuning parameter τ when Lfdr is used. In general as τ
increases, FDR is closer to the nominal level but the stability decreases. The default choice in
our package is τ =0:9, which has been used in all our simulations.

The R package np is used to choose the bandwidths h1 and h2 in equation (3.10). We have
adopted two strategies to improve the performance. First, the bandwidths h1 and h2 are chosen
based on the normal reference rule restricted to the samples with Lfdr1 < 0:5. The restriction
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leads to more informative bandwidths as this subset is the more relevant part of the sample
for the multiple-testing problem. Second, the same h2 has been used in expression (3.11) to
obtain the numerator of expression (3.12). This strategy is helpful to increase the stability of
the estimator (see remark 4). Finally we note that these strategies are only practical guidelines
in finite samples; the asymptotic theories are not affected.

5.2. Simulation I: known variances
Consider model (2.1). Denote μx,i1:i2 = .μx, i1 , : : : , μx,i2/ and μy,i1:i2 = .μy,i1 , : : : , μy,i2/ the vec-
tors of consecutive observations from i1 to i2. The two original samples are denoted {x1, : : : , xnx}
and {y1, : : : , yny}, with corresponding means μx and μy. Let σxi =1, σyi =2, nx =50 and ny =60.
Our simulations use m=5000 and FDR-level α=0:05. We consider the following three settings,
where different methods are applied to simulated data and the results are averaged over 500
replications. The FDR and average power (proportion of differential effects that are correctly
identified) are plotted as functions of various parameter values and displayed in Fig. 2.

(a) Setting 1: we set μx,1:k = 5=
√

30, μx,.k+1/:.2k/ = 4=
√

30, μx,.2k+1/:m = 0, μy,1:k = 2=
√

30,
μy,.k+1/:.2k/ =4=

√
30 and μy,.2k+1/:m =0. Here k denotes the sparsity level: the proportion

of locations with differential effects is k=m, and the proportion of non-zero locations is
2k=m. We vary k from 100 to 1000 to investigate the effect of sparsity.

(b) Setting 2: we use k1 and k2 to denote the number of non-zero locations and the number of
locations with differential effects respectively. Let μx,1:k2

= 5=
√

30, μx,.k2+1/:k1
= 4=

√
30

μx,.k1+1/:m =0, μy,1:k2
=2=

√
30, μy,.k2+1/:k1

=4=
√

30 and μy,.k1+1/:m =0. We fix k1 =2000
and vary k2 from 100 to 1000. This setting investigates how the informativeness of the
auxiliary covariate would affect the performance of different methods. Note that, as k2
increases, the conditional probability π1|1 =P.θ1i =1|θ2i =1/ also increases, and the aux-
iliary covariate becomes more informative.

(c) Setting 3: we fix k = 750 and set μx, 1:k =μ0=
√

30, μx,.k+1/:.2k/ = 3=
√

30, μx,.2k+1/:m = 0,
μy,1:k = 2=

√
30 and μy,.k+1/:.2k/ = 3=

√
30 and μy,.2k+1/:m = 0. To investigate the effect of

the effect sizes, we vary μ0 from 3.5 to 5.

We can see that the CARS procedure is more powerful than conventional univariate methods
such BH and AZ, and is superior to US which only partially utilizes the auxiliary information.
A more detailed description of simulation results is given below.

(a) All methods control FDR at the nominal level 0.05 approximately. BH is slightly conser-
vative and US is very conservative.

(b) Univariate methods (BH and AZ) are improved by bivariate methods (US and CARS) in
most settings. This shows that exploiting the auxiliary information is helpful.

(c) US is uniformly dominated by CARS. This is expected because US models T2i as only a
binary variable whereas CARS fully utilizes the information in T2i.

(d) DD has a similar performance to that of OR in most settings. However, DD can be
conservative in FDR control in some settings and hence has less power compared with OR
(see setting 3, bottom row of Fig. 2). This has been predicted by our theory (proposition 5).

(e) Setting 1 shows that the gain in efficiency (of bivariate methods over univariate methods)
decreases as k (or the sparsity level) increases.

(f) Setting 2 shows that the gain in efficiency of CARS increases when k2 increases. Note that
k2 is proportional to π1|1 (the informativeness of the auxiliary covariate).

(g) Setting 3 shows that the gain in efficiency of CARS increases as the signal strength de-
creases (note that a smaller μ0 corresponds to a larger difference in effect sizes).
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Fig. 2. Two-sample tests with known variances: FDR and average power (ETP divided by the number of
non-nulls) are plotted against (a), (b) varied non-null proportions (setting 1), (c), (d) conditional proportions
(setting 2) and (e), (f) effect sizes (setting 3) ( , DD; , BH; , OR; , AZ; , US)

5.3. Simulation II: estimated variances and non-Gaussian errors
We consider similar simulation settings to those in the previous section with three modifications.
First, we substitute the estimated variances in place of known variances. Second, to investigate
the performance of our method with non-Gaussian errors, we modify setting 3 slightly by gen-
erating εxij and εyik from a t-distribution with degrees of freedom df=4 and df=5 respectively.
Finally, we vary k from 1 to 200 to investigate the performance of CARS under various sparsity
regimes. The modified density estimator f̂

υ
.t1, t2/, which is defined in equation (5.1), has been

used in all settings. The simulation results are summarized in Fig. 3.
The patterns are very similar to those in simulation I; our conclusions on the comparison of

various methods remain the same. We mention the following points.

(a) Settings 1 and 2 show that CARS works well with estimated variances.
(b) Setting 3 shows that CARS is robust to the Gaussian assumption.
(c) Under the very sparse setting, the modified CARS procedure is conservative for FDR-

control but still outperforms competitive methods.
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Fig. 3. Two-sample tests with unknown variances and non-Gaussian errors: FDR and MDR are plotted
against (a), (b) varied non-null proportions (setting 1), (c), (d) conditional proportions and (e), (f) effect sizes
(setting 3) ( , DD; , BH; , OR; , AZ; , US)

5.4. Simulation III: means with opposite signs
Our testing framework utilizes T2i as auxiliary statistics to assist inference. It is possible that
T2i may be non-informative but this auxiliary information cannot hurt. This important point has
been explained by remark 3; see also section A.9 in the on-line supplementary material. Here
we provide numerical evidence to support the claim.

Consider a setting in which the two means have opposite signs. We shall see that CARS
outperforms univariate methods as long as the two means do not cancel each other precisely.
This confirms our claim that CARS, which benefits from an enhanced signal-to-noise ratio by
exploiting the auxiliary data, always dominates the univariate methods.

Let εxij ∼N.0, 1/ and εyik ∼N.0, 1/ be independent and identically distributed noise. Set nx =
ny =50. In our simulation, the number of tests is m=10000. The two mean vectors are
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Fig. 4. Comparison of BH ( ), DD ( ) and OR ( ) when the non-zero means have opposite signs

μx,1:500 =3=
√

50, μx,501:1000 =4=
√

50, μx,1001:m =0

and

μy,1:500 =3c=
√

50, μy,501:1000 =4=
√

50, μy,1001:m =0:

We vary c from −1 to 0, where c =−1 corresponds to the least favourable situation where the
two means cancel out precisely. We apply the Benjamini–Hochberg procedure BH, oracle CARS
procedure OR and data-driven CARS procedure DD to the simulated data sets. The FDR and
power are obtained based on 200 replications. The simulation results are summarized by Fig. 4.
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We can see that, when c =−1, all methods have similar power. As c increases to 0, the power
gain of CARS become more pronounced.

5.5. Application in supernova detection
This section applies CARS for analysis of time course satellite imaging data. Fig. 5 shows the
time course g-band images of galaxy M101 collected by the Palomar Transient Factory survey
(Law et al., 2009). The images indicate the appearance of SN 2011fe, which is one of the brightest
supernovas known to date (Nugent et al., 2011). A major goal of our analysis is to detect the
discrepancies between images taken over time so that we can narrow down the potential locations
for supernova explosions. More accurate measurements and further investigations will then be
carried out on the narrowed subset of potential locations.

The satellite data are recorded and converted into greyscale images of size 516 × 831
(or m = 428796 pixels). Each pixel corresponds to a value ranging from 0 to 1 that indi-
cates the intensity level of the influx from stars. We use image 1 as the baseline. Its greyscale
pixel values are subtracted from those in images 2 and 3. These differences are then vector-
ized as x = .x1, : : : , xm/ and y = .y1, : : : , ym/ (respectively representing ‘image 2 − image 1’ and
‘image 3− image 1’).

We plot the histograms and find that the null distributions of x and y are different. This
can be explained by the lapse in times at which these images are taken (the brightness of these
g-band images changes gradually over time). The supernova data have a significant amount
of background noise in each image, and the average magnitudes of the background noise vary
considerably from image to image. To remove the image-specific background noise, we first
estimate the empirical null distributions based on the centre part of the histograms. The variances
of observations are assumed to be homoscedastic and are estimated by using all pixels. For x
and y, we have N.0:0028, 0:0023/ and N.0:044, 0:0027/ respectively. We then standardize the
observations as xst and yst, which are used in our analysis. We do not take the difference x −y
directly as it would create many false signals due to the varied magnitudes of the background
noise. The standardized measurements xst and yst from the two images seem to be comparable
as most of the pairs .xst

i , yst
i / have similar values.

Next we carry out m = 428796 two-sample tests with known variances. For standardized
observations xst and yst the variances are known to be 1. Then t1i = .xst

i − yst
i /=

√
2 and t2i =

.xst
i +yst

i /=
√

2. We apply BH, AZ, US and CARS at FDR-levels 0.01%, 1% and 5%. Fig. 12 in
the on-line supplementary material shows the rejected pixels in the 516 × 831 layout for each
method under various FDR-levels. The estimated sparsity levels for t1 and t2 are respectively
1.47% and 49.5%. The corresponding estimated support size at τ = 0:5 is 6285. We report the
thresholds of various testing procedures in Table 1.

We can see that more information can be harvested from the data by using auxiliary informa-
tion. In particular, at FDR-level 0.01%, the supernova is missed by BH and AZ but detected by

Table 1. Thresholds and total number of rejections (in parentheses) of various testing procedures

FDR level BH procedure Adaptive z-procedure US (2 thresholds) CARS

10−4 3:66×10−10 (4) 2:75×10−4 (5) 3:24, 5:46 (22) 4:38×10−4 (35)
0.01 9:91×10−7 (22) 3:37×10−2 (24) 2:51, 4:87 (38) 9:25×10−2 (58)
0.05 7:38×10−6 (64) 0.39 (69) 1:92, 4:42 (80) 0.26 (109)
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CARS. To quantify our procedure’s superiority further, we count the total number of rejections
in Table 1 (the numbers in parentheses). We can see that CARS consistently detects more signals
from the satellite images than do the competing methods.

6. Discussion

Covariate-assisted multiple testing can be viewed as a special case of a much broader class of
problems under the theoretical framework of integrative simultaneous inference, which covers
a range of topics including multiple testing with external or prior domain knowledge (Ben-
jamini and Hochberg, 1997; Basu et al., 2018), partial conjunction tests and setwise inference
(Benjamini and Heller, 2008; Sun and Wei, 2011; Du and Zhang, 2014) and replicability anal-
ysis (Heller et al., 2014; Heller and Yekutieli, 2014). A coherent theme in these problems is to
combine the information from multiple sources to make more informative decisions. Tukey’s
pooling-within strategy provides a promising approach in such scenarios where quantitative
indications might be hidden in various parts of massive data sets.

The current formulations and methodologies in integrative data analysis differ substantially. A
general theory and methodology are yet to be developed for handling various types of problem in
a unified framework. For instance, in weighted FDR-analysis (Benjamini and Hochberg, 1997),
the external domain knowledge is incorporated as the weights in modified FDR- and power
definitions to reflect the varied gains and losses in decisions. By contrast, covariate-assisted
multiple testing still utilizes unweighted FDR- and power definitions. The connection of CARS
to theories on optimal weights is still an open issue (Roeder and Wasserman, 2009; Roquain
and Van De Wiel, 2009). Moreover, in partial conjunction tests and replicability analysis, the
summary statistics from different studies are of equal importance, which marks a key difference
from covariate-assisted inference where some statistics are primary whereas others are secondary.

We conclude our discussion with a few more open issues.

(a) Are there better ways to construct the auxiliary sequence? Our theory shows only that
CARS is optimal when the pairs are given. How to construct an optimal pair from data is
still an open question. For instance, in situations where two means have opposite signs,
the sum of absolute values may better capture the sparsity information but would give
rise to a correlated pair, which cannot be handled by the current testing framework.

(b) How can we deal with multiple-testing dependence? The CARS method cannot be applied
to dependent tests as it assumes that Ti are independent. Our simulation studies show
that CARS controls FDR under weak dependence. However, the result is based on very
limited empirical studies, which lack theoretical support. An important direction is to
develop new theory and methodology for the dependent case.

(c) How can we generalize the idea to settings where the null distribution is unknown? This
important situation may arise from the classical two-sample tests where the null distri-
bution is calibrated with permutations. We conjecture that the CARS procedure, which
requires an explicit form of the null density, may be tailored by using a different, probably
more ad hoc, approximation. For example, informative weights may be derived from the
auxiliary data and incorporated into the permutation-based p-values via some grouping
and weighting strategy.

(d) How can we construct the auxiliary sequence in more general settings? This paper focuses on
the two-sample tests. It would be of interest to extend the methodology to simultaneous
analysis-of-variance tests. Moreover, CARS provides a useful strategy for extracting the
sparsity structure from data. There are other important structures in the data such as
heteroscedasticity, hierarchy and dependence, which may also be captured by an auxiliary
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sequence. It remains an open question on how to extract and incorporate such structural
information effectively to improve the power of a testing procedure.

(e) How can we summarize the auxiliary information in high dimensional settings? The proposed
CARS methodology requires the joint modelling of the primary and auxiliary statistics,
which cannot handle many covariate sequences because the joint density estimator would
greatly suffer from high dimensionality. A fundamental issue is to develop new principles
for information pooling, or optimal dimension reduction, in multiple testing with high
dimensional covariates.

(f) How can we make inference with multiple sequences? In partial conjunction tests and
replicability analysis, an important feature is that the means (of summary statistics) from
separate studies are individually sparse. We expect that similar strategies for extracting and
sharing sparsity information among multiple sequences would improve the accuracy of
simultaneous inference. However, as opposed to covariate-assisted inference where there
is a sequence of primary statistics, in partial conjunction tests and replicability analysis all
sequences are of equal importance, which poses new challenges for problem formulation
and methodological development.
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Appendix A: Proofs of main theorems

This section proves the main theorems. The proofs of other propositions are provided in the on-line
supplementary material.

A.1. Proof of theorem 1
We first show that the two expressions of T i

OR in equation (3.4) are equivalent. Recall that qÅ.t2/ = .1 −
π1/f.t2|θ1i =0/. Applying Bayes theorem and using the conditional independence between T1i and T2i under
the null θ1i =0 (proposition 1), we obtain

T i
OR.t1, t2/= P.θ1i =0/f.t1, t2|θ1i =0/

f.t1, t2/
= qÅ.t2/f10.t1/

f.t1, t2/
:

A.1.1. Proof of part (a)
Let QOR.t/=αt . We first show that αt < t. According to the definition of mFDR

E.T1,T2/

{
m∑

i=1
.T i

OR −αt /I.T i
OR <t/

}
=0, .A:1/

where the subscript .T1, T2/ indicates that the expectation is taken over the joint distribution of .T1, T2/.
Equation (A.1) implies that αt < t; otherwise all terms in the summation on its left-hand side would be
either 0 or negative.
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Next we show that QOR.t/ is monotone in t. Let QOR.tj/=αj for j =1, 2. We need to show only that, if
t1 <t2, then α1 � α2. We argue by contradiction. If α1 >α2, then

.T i
OR −α2/I.T i

OR <t2/= .T i
OR −α2/I.T i

OR <t1/+ .T i
OR −α2/I.t1 � T i

OR <t2/

� .T i
OR −α1/I.T i

OR <t1/+ .α1 −α2/I.T i
OR <t1/+ .T i

OR −α1/I.t1 � T i
OR <t2/:

Next take expectations on both sides and sum over all i. We claim that

ET1,T2

{
m∑

i=1
.T i

OR −α2/I.T i
OR <t2/

}
> 0: .A:2/

This inequality holds since

(a) ET1,T2{Σm
i=1.T

i
OR −α1/I.T i

OR <t1/}=0,
(b) ET1,T2{Σm

i=1.α1 −α2/I.T i
OR <t1/}> 0 and

(c) ET1,T2{Σm
i=1.T

i
OR −α1/I.t1 � T i

OR <t2/}> 0,

which are respectively due to equation (A.1), the assumption that α1 >α2 and the fact that α1 <t1. However,
inequality (A.2) is a contradiction to our definition of α2, which implies that ET1,T2{Σm

i=1.T
i
OR −α2/I.T i

OR <
t2/}=0: Hence we must have α1 � α2.

A.1.2. Proof of part (b)
The oracle threshold is defined as tOR = supt{t ∈ .0, 1/ : QOR.t/ � α}: We want to show that, at tOR, the
mFDR-level is attained precisely. Let ᾱ=QOR.1/. Part (a) shows that the continuous function QOR.t/ is
non-decreasing. Then we always have QOR.tOR/=α if α< ᾱ. Define δOR ={I.T i

OR <tOR/ : 1 � i � m}. Let
δÅ = .δ1

Å, : : : , δm
Å/ be an arbitrary decision rule such that mFDR.δÅ/ � α: It follows that

ET1,T2

{
m∑

i=1
.T i

OR −α/δi
OR

}
=0,

ET1,T2

{
m∑

i=1
.T i

OR −α/δi
Å

}
� 0:

.A:3/

Combining the two results in expression (A.3) we conclude that

ET1,T2

{
m∑

i=1
.δi

OR − δi
Å/.T i

OR −α/

}
�0: .A:4/

Next, consider a monotonic transformation of the oracle decision rule δi
OR = I.T i

OR < tOR/ via f.x/ =
.x−α/=.1−x/ (note that the derivative ḟ .x/= .1−α/=.1−x/2 > 0). The oracle decision rule is equivalent
to

δi
OR = I

(
T i

OR −α

1−T i
OR

<λOR

)
,

where λOR = .tOR −α/=.1− tOR/: A useful fact is that α<tOR < 1. Hence λOR > 0.
Note that

(a) T i
OR −α−λOR.1−T i

OR/< 0 if δi
OR > δi

Å and
(b) T i

OR −α−λOR.1−T i
OR/> 0 if δi

OR < δi
Å.

Combining (a) and (b), we conclude that the following inequality holds for all i: .δi
OR − δi

Å/{T i
OR −α −

λOR.1−T i
OR/} � 0: Summing over i and taking expectations, we have

ET1,T2

[
m∑

i=1
.δi

OR − δi
Å/{T i

OR −α−λOR.1−T i
OR/}

]
� 0: .A:5/

Combining inequalities (A.4) and (A.5) we have

λOR ET1,T2

{
m∑

i=1
.δi

OR − δi
Å/.1−T i

OR/

}
� ET1,T2

{
m∑

i=1
.δi

OR − δi
Å/.T i

OR −α/

}
� 0:
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Finally, noting that λOR > 0 and that ETP for a decision rule δ = .δ1, : : : , δm/ is given by ET1,T2{Σm
i=1δi.1−

T i
OR/}, we conclude that ETP.δOR/ � ETP.δÅ/:

A.2. Proof of theorem 2
We first provide a summary of useful notation.

(a) Qτ .t/=m−1Σm
i=1.T

τ , i
OR −α/I.T

τ , i
OR <t/.

(b) Q̂τ .t/=m−1Σm
i=1.T̂

τ , i
OR −α/I.T̂

τ , i
OR <t/.

(c) Qτ
∞.t/=E{.T τ

OR −α/I.T τ
OR <t/}, where T τ

OR is a generic member from {T i
OR : 1 � i � m}.

Note that Qτ .t/ and Q̂τ .t/ are non-decreasing and right continuous. We can further define

tτ∞ = sup{t ∈ .0, 1/ : Qτ
∞.t/ � 0}:

A.2.1. Proof of part (a)
In proposition 5, we show that δτ

OR is conservative in mFDR-control. To establish the desired property in
mFDR-control, we need to show only that mFDR.δDD/=mFDR.δτ

OR/+o.1/:
Define a continuous version of Qτ .t/ as follows. For T

τ ,.k/
OR <t � T

τ ,.k+1/
OR , let

Qτ
C.t/= t −T

τ ,.k/
OR

T
τ ,.k+1/
OR −T

τ ,.k/
OR

Qτ
k + T

τ ,.k+1/
OR − t

T
τ ,.k+1/
OR −T

τ ,.k/
OR

Qτ
k+1, .A:6/

where Qτ
k =Qτ.T

τ ,.k/
OR /. It is easy to see that Qτ

C.t/ is continuous and monotone. Hence the inverse of Qτ
C.t/,

which is denoted Q
τ ,−1
C , is well defined. Moreover, Q

τ ,−1
C is continuous and monotone. We can similarly

define a continuous version of Q̂τ .t/, which is denoted by Q̂τ
C.t/. Q̂τ

C.t/ is continuous and monotone; so is
its inverse Q̂

τ ,−1
C .·/. By construction, we have δτ

OR = [I{T
τ , i
OR � Q

τ ,−1
C .0/} : 1 � i � m] and δτ

DD = [I{T̂
τ , i
OR �

Q̂
τ ,−1
C .0/} : 1 � i � m]: We shall show that

Q
τ ,−1
C .0/

p→ tτ∞, .A:7a/

Q̂
τ ,−1
C .0/

p→ tτ∞: .A:7b/

To show result (A.7a), note that the continuity of Q
τ ,−1
C .·/ implies that, for any ε> 0, we can find η > 0

such that |Qτ ,−1
C .0/−Q

τ ,−1
C {Qτ

C.tτ∞/}|< ε if |Qτ
C.tτ∞/|<η. Hence

P{|Qτ
C.tτ∞/−α|>η}�P [|Qτ ,−1

C .α/−Q
τ ,−1
C {Qτ

C.tτ∞/}|> ε]:

Next, by the weak law of large numbers Qτ
C.t/→p Qτ

∞.t/: Noting that Qτ
∞.tτ∞/=α, we have P{|Qτ .tτ∞/−

α|>η}→0. By the Markov inequality, we conclude that Q
τ ,−1
C .α/→p Q

τ ,−1
C {Qτ

C.tτ∞/}= tτ∞:
Next we show result (A.7b). By inspecting the proof of result (A.7a), we need to show only that

Q̂τ
C.t/→p Qτ

∞.t/. Denote a variable without index i (e.g. T̂ τ
OR and T τ

OR) as a generic member from the
sample. It follows from condition 2 and the continuous mapping theorem that T̂ τ

OR →p T τ
OR: Note that

both T τ
OR and T̂ τ

OR are bounded above by 1. It follows that E.T̂ τ
OR −T τ

OR/2 →0:
Let Ui = T

τ , i
ORI.T

τ , i
OR < t/ and Ûi = T̂

τ , i
ORI.T̂

τ , i
OR < t/. We shall show that E.Ûi − Ui/

2 = o.1/: To see this,
consider the decomposition

.Ûi −Ui/
2 = .T̂ τ

OR −T τ
OR/2I.T̂ τ

OR � t, T τ
OR � t/+ .T̂ τ

OR/2I.T̂ τ
OR � t, T τ

OR >t/+ .T τ
OR/2I.T̂ τ

OR >t, T τ
OR � t/

= I+ II+ III:

The first term I equals o.1/ because E.T̂ τ
OR −T τ

OR/2 →0. Let η >0. Noting that T τ
OR is continuous and that

T̂ τ
OR →p T τ

OR, we have

P.T̂ τ
OR � t, T τ

OR >t/ � P{T τ
OR ∈ .t, t +η/}+P.|T̂ τ

OR −T τ
OR|>η/→0:

Since T̂ τ
OR is bounded, we conclude that the second term II equals o.1/. Similarly we can show that term

III equals o.1/. Therefore E.Ûi −Ui/
2 =o.1/:
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Next we show that Q̂τ .t/→p Qτ
∞.t/. Noting that Qτ .t/→p Qτ

∞.t/, we need to show only that Q̂τ .t/→p

Qτ .t/. The dependence among Ûi in the expression Q̂τ .t/ = m−1ΣiÛi creates some complications. The
idea is to apply some standard techniques for the limit of triangular arrays that do not require indepen-
dence between variables. Consider Sn =Σm

i=1.Ûi −Ui/. Then E.Sn/=m{E.Ûi/−E.Ui/}. Applying standard
inequalities such as the Cauchy–Schwarz inequality, we have E{.Ûi −Ui/.Ûj −Uj/}=o.1/: It follows that

m−2var.Sn/ � m−1E.Ûi −Ui/
2 +{1+o.1/}E{.Ûi −Ui/.Ûj −Uj/}=o.1/:

Therefore E{Sn −E.Sn/=n}2 →0. Applying Chebyshev’s inequality, we obtain

m−1{Sn −E.Sn/}= Q̂τ .t/−Qτ .t/
p→0:

Therefore Q̂τ .t/→p Qτ
∞.t/. By definition, |Q̂τ

C.t/−Q̂τ .t/| � m−1. We claim that Q̂τ
C.t/→p Qτ

∞.t/ and result
(A.7b) follows.

According to results (A.7a) and (A.7b), Q̂
τ , −1
C .0/=Q

τ ,−1
C .0/+oP.1/. The mFDR-levels of the testing

procedures are

mFDR.δτ
OR/= PH0{T

τ , i
OR <Q

τ ,−1
C .α/}

P{T
τ , i
OR <Q

τ ,−1
C .α/}

and

mFDR.δDD/= PH0{T̂
τ , i
OR <Q̂

τ ,−1
C .α/}

P{T̂
τ , i
OR <Q̂

τ ,−1
C .α/} :

The operation of our testing procedure implies that Q
τ ,−1
C .α/ � α. It follows that P{T

τ , i
OR < Q

τ ,−1
C .α/} is

bounded away from zero. We conclude that mFDR.δDD/=mFDR.δτ
OR/+o.1/.

The result on mFDR-control can be extended to FDR-control. The next proposition, which is proved in
the on-line supplementary material, first gives sufficient conditions under which the definitions of mFDR
and FDR are asymptotically equivalent and then verifies that these conditions are fulfilled by the CARS
procedure δτ

DD. It follows from proposition 7 that CARS controls FDR at level α+o.1/.

Proposition 7.

(a) Consider a general decision rule δ. Let Y =m−1Σm
i=1δi. Then mFDR.δ/=FDR.δ/+o.1/ if

(i) E.Y/ � η for some η > 0 and
(ii) var.Y/=o.1/:

(b) Conditions (i) and (ii) are fulfilled by the CARS procedure δτ
DD.

A.2.2. Proof of part (b)
The CARS procedure utilizes q̂Å, and the corresponding test statistic is T̂

Å, i
OR. It follows from conditions 1′

and 2, and the continuous mapping theorem that T̂ Å
OR →p TOR. Denote QOR.t/ the oracle mFDR-function

and tOR the oracle threshold. Then

QOR.t/=E{.TOR −α/I.TOR <t/},

tOR = sup{t ∈ .0, 1/ : QOR.t/ � 0}:

Define Q̂Å.t/=m−1Σm
i=1T̂

Å, i
ORI.T̂

Å, i
OR <t/: Similarly to equation (A.6) we define a continuous version of Q̂Å.t/

and denote it by Q̂Å
C.t/. It can be shown that Q̂Å

C.t/ is continuous and monotone; so is its inverse Q̂
Å,−1
C .t/.

The CARS procedure is given by δÅ
DD = [I{T̂

Å, i
OR � Q̂

Å,−1
C .α/} : 1 � i � m]: Following the steps in the proof

of part (a) we can show that

Q̂Å
C.t/

p→QOR.t/,

Q̂
Å,−1
C .t/

p→ tOR:

.A:8/

The operation of CARS implies that Q
Å,−1
C .0/ � α (thus the denominator of mFDR is bounded away from

zero). Note that mFDR.δOR/=α; we have mFDR.δÅ
DD/=α+o.1/: Next, we consider ETP. It follows from

T̂ Å
OR →p TOR and expression (A.8) that
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ETP.δÅ
DD/

ETP.δOR/
= PH1{T̂ Å

OR <Q̂
Å,−1
C .α/}

PH1 .TOR <tOR/
=1+o.1/:
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Discussion on the Paper by Cai, Sun and Wang

Etienne Roquain (Sorbonne Université, Paris)

Introduction
I congratulate Cai, Sun and Wang for this excellent contribution to multiple-testing methodology. This
work shows, in a two-sided setting, that reducing a data set to a column of test statistics is suboptimal and
that the multiple-testing decision can gain much from incorporating side information. In a nutshell the
authors proposed

(a) to find the procedure, called oracle covariate-assisted ranking and screening (CARS), that solves
the problem of maximizing the power while controlling the (marginal) false discovery rate (FDR),

(b) to approximate this optimal procedure by a data-driven version, called CARS, by way of kernel
estimators and

(c) to prove theoretical consistency of CARS when all the parameters are kept fixed and the number
m of nulls grows to ∞.

Many extensions are discussed and a package is implementing CARS, which make this method available
for practitioners.

The purpose of this discussion contribution is to underline the Bayesian flavour of CARS and to discuss
a Cauchy slab version of it. In particular, since the theoretical framework of the paper seems to exclude
the case where the model parameters depend on m, and so exclude sparse signals, we consider the problem
of obtaining a uniform FDR control under sparsity, which can be formulated as

sup
Δ:‖Δ‖0�sm

FDR.Δ/�α, sm=m→0, .1/

where Δ∈Rm is the true mean difference and ‖z‖0 denotes the number of non-zeros in z. Since the original
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995) provides such a guarantee, we may ask
whether procedures improving on the Benjamini–Hochberg procedure also provide expression (1).

Stylized covariate-assisted ranking and screening setting
Briefly, consider the following simplified version of the CARS setting. Let X∼N .μx, Im/ and Y ∼N .μy, Im/
be two independent random vectors, for two Rm mean vectors μx and μy. We consider the problem of testing
simultaneously the nulls H0, i : ‘μx, i =μy, i’ against H1, i : ‘μx, i �=μy, i’. We let

θi =1{μx, i �= μy, i}, 1 � i � m,

the true–false status of the hypotheses. Testing can be done by using the standard test statistics

T1 = .X−Y/=
√

2∼N .Δ, Im/, Δ= .μx −μy/=
√

2:

The idea of CARS is to keep the information of the (independent) covariate T2 = .X+Y/=
√

2 ∼N{.μx +
μy/=

√
2, Im} in the analysis to help in making the decision.

The authors’ model additionally uses some random effects for the mean couple .μx, μy/ ∈ R2m, which
can be interpreted as choosing a particular prior distribution on the true parameters. Let φi = 1{μx, i �=
0 or μy, i �=0}, and generate (θ, φ) as follows: θi ∼IID B.1−π0/;φi|θi =0∼IID B.1−π0|0/;φi =1 if θi =1. Also
let π00 =π0π0|0 the probability that both means are equal to 0. To complete the description of the prior,
the components of (μx, μy) are generated independently as

.μx, i −μy, i/=
√

2∼
{

δ0 if θi =0,
γ if θi =1,

.μx, i −μy, i/=
√

2∼
{

δ0 if φi =0,
γ if φi =1.

At this point, the strategy of CARS is to make the decision by estimating the posterior probability P.θi =
0|T1, i, T2, i/, which can be seen as implicity using a non-parametric estimator of the slab γ.

Cauchy slab covariate-assisted ranking and screening version
We discuss now the possibility of avoiding non-parametric estimation, by fixing γ equal to γ.x/ =
.2π/−1=2{1 −|x|Φ̄.x/=φ.x/}, which is the so-called quasi-Cauchy distribution (Johnstone and Silverman,
2004). Recent studies suggest that such a prior is particularly suitable to obtain posterior distributions
with good frequentist properties; see for example Castillo and Mismer (2008) and references therein. An
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intuitive explanation is that this density has heavy tails, which thus puts mass ’everywhere’ and can thus
account for any true alternative distribution of the test statistics.

We introduce the Cauchy slab version of the CARS procedure, which rejects H0, i as soon as q.T1, i, T2, i/ �
α, for which

q.t1, t2/=P.θi =0||T1, i|� t1, T2, i = t2/= π00Φ̄.t1/φ.t2/+ .π0 −π00/Φ̄.t1/g.t2/

π00Φ̄.t1/φ.t2/+ .π0 −π00/Φ̄.t1/g.t2/+ .1−π0/Ḡ.t1/g.t2/
,

where g.x/= .φÅγ/.x/= .2π/−1=2x−2{1 − exp.−x2=2/} and Ḡ.s/= ∫ ∞
s

g.x/dx. In the equation above, the
only unknown quantities are the hyperparameters π0 and π00. The parameter π0 and π00 can be easily
estimated by marginal maximum likelihood from respectively the sample T1 and T2 (see Johnstone and
Silverman (2004) and the devoted package Johnstone and Silverman (2005)), because the T1, is are indepen-
dent and identically distributed π0φ+ .1 −π0/g and the T2, is are independent and identically distributed
π00φ+ .1−π00/g.

Now, two questions are

(a) does this Cauchy slab version enjoy the uniform FDR control (1) and
(b) does it still improve on the Benjamini–Hochberg procedure in terms of power?

I tend to believe that both answers are positive. First it seems reasonable to think that the uniform FDR
control can be proved by extending the methodology of Castillo and Roquain (2018) to the bivariate case.
Second, even with the uninformative Cauchy slab, the covariate T2 can still help T1 to make the correct de-
cision, as illustrated in Fig. 6. These two facts have been confirmed by unreported numerical computations.
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Fig. 6. Ratio of the posteriors P.θi D0jT1,i , T2,i /=P.θi D0jT1,i / as a function of T1,i , for various values of
T2,i : the prior is computed either from (a) the true mixture density ( , T2,i D 1; , T2,i D 6; ,
T2,i D10) or from (b) the Cauchy slab ( , T2,i D1; , T2,i D2; , T2,i D5); in both cases, small
or large values of T2,i help T1,i to accept or reject the null respectively
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Conclusion
Overall, this discussion puts forward the issue of approaching the oracle version of the CARS procedure
under sparsity. There may be a trade-off in the choice of the complexity of the slab estimator: although
using a non-parametric kernel estimator is ambitious from a power point of view, it might be too unstable
for reliable control of the FDR. Instead, using a simpler Cauchy slab introduces a bias that will stabilize
the FDR, but it does reduce power. Finding a principled trade-off between these two extremes is certainly
an interesting avenue for future research.

To conclude, it is a pleasure for me to propose the vote of thanks.
I also warmly acknowledge Ismael Castillo, Sebastian Dölher and Mark van de Wiel for discussions

that helped while preparing these comments.

Thomas E. Nichols (University of Oxford)
Cai, Sun and Wang (CSW) are to be congratulated on a relevant work that brings modern statistical
methods to bear on the age-old problem of comparing two groups. Their ‘nested sparsity’ setting, where a
sparse difference of two populations is informed by the sparse average of the population, is highly relevant
to functional magnetic resonance imaging (MRI). In this short comment I give a brief background on
functional MRI, provide a reformulation of their method that I think provides even more intuition and
finally provide an illustrative numerical simulation and a functional MRI data analysis to explore the value
of the method.

Just as the colour of blood changes from blue to red as it is exposed to oxygen, the magnetic properties
change, giving rise to the blood oxygenation level dependent (BOLD) effect. The BOLD effect allows
an MRI scanner to be used to track changes in brain activity in response to an experimental task. In
the scanner, the subject alternates between control and active tasks, and the per-subject outcome is an
image of change in the BOLD signal between control and active states. For example, in a working memory
experiment the control task is viewing a sequence of letters, pressing a button when an ‘X’ appears, whereas
in the active task the subject must remember successive letters and detect when a letter is repeated in a
given interval. Subtracting functional MRI data in the control state from the active state should cancel
out irrelevant activity—related to vision and button clicking—and leave only BOLD changes related to
short-term storage and retrieval of letters.

Like genetics, functional MRI comprises a massive multiple-testing problem, where there are m=105–
106 voxels (volume elements) tested. The basic question, detecting voxels with a non-zero change in the
BOLD signal, is typically less interesting than finding regions that differ between groups (e.g. young versus
old) or that vary with a covariate (e.g. age). The essential feature of functional MRI group comparisons
is exactly the nested sparsity setting of the method of CSW—group differences in BOLD activation are
expected to be found in voxels where there is an overall, average BOLD effect. This aspect of functional
MRI data is so well understood that an informal, two-step method is often used for group inference: first
conduct a test for the average BOLD effect, identify significant voxels by some method and then conduct
a test of a differential effect only at the average significant voxels, dramatically reducing the severity of
the multiple-testing problem for the group difference inference (Kriegeskorte et al. (2009), supplementary
text, page 13).

The method of CSW can be seen as a much more nuanced version of this informal functional MRI
method: instead of completely ignoring tests that lack significance for the average effect, inferences are
adjusted according to evidence for the average effect.

What most draws me to the method of CSW is that it can be seen as a direct extension of Efron’s local
false discovery rate (FDR). Retaining CSW’s notation, where the test of the group difference for element
i is T1i and the test of the average is T2i (based on a weighted average constructed to be independent of the
difference), the local FDR for a group difference is

Lfdri.t1/=P.θ1i =0|T1i = t/ .2/

and the covariate-assisted ranking and screening (CARS) statistic is

T i
OR.t1, t1/=P.θ1i =0|T1i = t1, T2i = t2/; .3/

both are for inference on the group difference effect θ1i, but with the CARS statistic information on average
is now considered via additional conditioning on T2i = t2. Moreover, the two definitions can be combined
to show that the CARS statistic is simply the local FDR weighted according to a measure of dependence
of T2 on T1, expressed as a ratio:
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Fig. 7. Illustration of CARS methods on simulated and real functional MRI data: (a), (b) local FDR and CARS
are closely related, here shown as TOR diverging above or below Lfdr depending on the dependence between
T1 and T2; (c)–(h) functional MRI results showing how a group difference effect receives a ‘power boost’ from
the average effect (see the text for a full description); (a) Lfdr- and CARS statistic; (b) CARS/Lfdr ratio—effect of
T2; (c) anatomical reference; (d) T2—average; (e) T1—group difference; (f) � log10(CARS)—group difference;
(g) CARS detections; (h) �log10(CARS/Lfdr)—T2 boost

T i
OR.t1, t2/

Lfdri.t1/
= f.t2|θ1i =0/

f.t2|T1i = t1/
: .4/

This provides a clear intuition for CARS: if t2 is more likely given T1 = t1 than under the state of no
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difference, evidence for a difference is amplified. Although this ratio of null marginal and conditional
densities is not a practical approach to estimating the CARS statistic, once T i

OR has been estimated the
ratio can be computed as T i

OR.t1, t2/=Lfdri.t1/ and used as a diagnostic.
We illustrate this with a variant of CSW’s simulation setting 1. I applied the CARS R package to one

realization of nx =50, ny =60 and m=10000 data, with 2000 elements with a positive mean, of which 1000
elements had group difference, with common means μx =μy =4=

√
30, differential means μx =5=

√
30 and

μy =2=
√

30, and σx =1 and σy =2. This produces three types of effect: no signal at all θ= .0, 0/, an average
but no group difference effect θ = .0, 1/ and both average and group difference effects θ = .1, 1/. Fig. 7(a)
shows that Lfdr (grey) detects some tests (critical T1 = 4:283) but fewer than the Benjamini–Hochberg
(BH) FDR (the vertical line, T1 = 3:709); the CARS statistic, plotted by signal type, shows dramatically
distinct behaviour between complete null tests (θ = .0, 0/; the black curve) and those with a mean effect,
both those without (θ = .0, 1/; red curve) and with a group difference effect (θ = .1, 1/; green curve); the
smallest CARS-detected statistic was T1 =2:369. The diagnostic ratio, TOR/Lfdr (Fig. 7(b)), clearly shows
the amplifying and attenuating effect that information from T2 brings to the inference on T1.

Finally, I examined the effect of intelligence quotient (IQ) on a working memory task functional MRI
data set on 78 unrelated subjects in the Human Connectome Project (Van Essen et al., 2013). I created
low and high IQ groups by using a median split of the fluid intelligence score PMAT_CR, testing high −
low. Figs 7(c)–7(h) show results for one slice with 2930 voxels, with anatomical reference in Fig. 7(c). The
average activation (one-sample t-test; Fig. 7(d)) shows prominent effects in the left and right parietal areas
of the brain, which are thought to be involved in storage (as opposed to retrieval) of information. The group
difference (Fig. 7(e)) is a much weaker effect and neither the Benjamini–Hochberg FDR nor Lfdr finds
any significance at level 0.05. The CARS statistic (Fig. 7(f)) shows a different pattern of effects and finds
42 significant voxels (Fig. 7(g)); the CARS–Lfdr ratio (Fig. 7(h)) specifically records where dependence
between T1 and T2 exists and boosts the effect that would be otherwise missed.

Although I am enthusiastic for the potential of this procedure, a significant limitation is that it can only
work with the two-sample case. As motivated by the functional MRI IQ example, we would ideally be
testing for a linear effect of a covariate while using information on the overall mean. As the sample mean
and centred covariate effects are independent in a Gaussian linear model, it would seem to be a direct
extension of this work. Also additional work needs to be done on the implementation to scale up to truly
large data. The paper’s examples produced an error when scaled up to 100000 tests, and simulations under
increased sparsity also failed (though the sparsity mode that is referenced in the paper, but was unavailable
at the time of the presentation, should address this). Over all, this is an important and outstanding work
and it is my pleasure to offer to second the vote of thanks.

The vote of thanks was passed by acclamation.

Felipe A. Medina (University of Chile, Santiago, and University of Valparaı́so) and Milan Stehlı́k
(Johannes Kepler University in Linz, University of Valparaı́so, and Arizona State University, Tempe)
Our congratulations go to Cai, Sun and Wang for their work on ranking and screening in large-scale
two-sample inference. Here, we point out a potential issue that arises in the context of differential ex-
pression (DE) studies where biological samples are genetically heterogeneous. In particular, consider a
data-generating process corresponding to the following modification of the authors’ model:

Xij =β0i +μÅ
xi +ηxij + εxij ,

Yij =β0i +μÅ
yi +ηyik + εyik

where ηxij and ηyik are fixed effects accounting for the effect of the genetic background of individuals j
and k on the expression level of gene i respectively. These effects vary depending on each gene’s degree
of genomic-dependent variation and every individual’s genetic background variability. This model is then
similar to those used in the analysis of expression quantitative trait loci (see Michaelson et al. (2009)).

It can be shown that under this model the primary test statistic T1i is biased under the null, i.e.

E[T1i|Hi,0 :μÅ
xi =μÅ

yi]=
√(

nxny

n

)
σ−1

pi

(
n−1

x

nx∑
j=1

ηxij −n−1
y

ny∑
k=1

nxik

)
=Δxyi:

This bias is unobserved and can have a substantial effect on the inference of DE studies. First, it shifts the
centre of the empirical null distribution of T1, i from 0 to Δxyi, which in a univariate analysis setting increases
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the empirical type I error rate. Second, this shift can go against the direction of the unstandardized effect
size, μÅ

xi −μÅ
yi, which in a univariate setting reduces empirical power.

Given the increasing need to study multiethnic cohorts and admixed populations, methods for perform-
ing DE analyses in this type of studies need to be able to handle sources of variability like those found
in expression quantitative trait locus studies. We mention some (Michaelson et al., 2009): batch effects,
population (sub)structure and cryptic relatedness. Because of this, we think that adaptation of the method
of Cai, Sun and Wang to consider this issue is an interesting direction for further research.

The following contributions were received in writing after the meeting.

Trambak Banerjee and Gourab Mukherjee (University of Southern California, Los Angeles)
We congratulate Cai, Sun and Wang for developing the highly potent covariate-assisted ranking and
screening (CARS) procedure for two-sample multiple testing of means. In CARS, an auxiliary covariate
sequence that contains additional structural information on the support where the true mean differences
are 0, is combined with the primary test statistic to construct an improved multiple-testing procedure. The
improvement achieved by CARS in multiple-testing frameworks motivated us to study the efficient use of
side information for improving mean-squared error in the estimation of several contrasts.

As in CARS, we observe two samples Xi ∼N.μi,1, σ2
i,1/ and Yi ∼N.μi,2, σ2

i,2/ with σi,1 and σi,2 known and
μi,1 and μi,2 unknown for all i=1, : : : , m, and we consider estimating the contrast vector ν =μ1 −μ2 when
ν is sparse. Applying SureShrink (Donoho and Johnstone, 1995) on the observed differences X − Y is a
popular procedure that incorporates sparsity information of ν data-adaptive soft thresholding. Consider
augmenting an auxiliary sequence (AS) Si = |Xi + κiYi| to the primary statistic (PS) X − Y with κi =
σi,1=σi,2, which makes them conditionally independent. Note that the AS contains additional sparsity
information on ν that can be leveraged by combining it with the PS. Perhaps, the easiest combined
procedure is groupwise adaptive thresholding where groups are based on the AS and estimators within
each group is based on the PS (Banerjee et al., 2018). We call it the adaptive sparse estimator using side
information ‘ASUS’ and study its performance compared with competing methods that do not leverage side
information. Fig. 8 and Table 2 demonstrate the risk performance of ASUS where μi,1 and μi,2 are generated
from a sparse mixture model (details are given in Fig. 8). We see that ASUS uses the side information
in S and exhibits superior performance across both scenarios. This corroborates the importance of the
auxiliary covariate sequence in constructing groups with disparate sparsity levels and thereby improving
the overall estimation accuracy.

Over the last decade, tremendous advances in data gathering and sharing facilities have led to the accumu-
lation of huge digital repositories that can be cheaply and readily accessed for collection of supplementary
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Fig. 8. Average risks of various estimators; ASUS ( ), empirical Bayes thresholding ( ) of Johnstone
and Silverman (2004), extended James–Stein estimator ( ) discussed in Brown (2008) and the SureShrink
estimator ( ) in Donoho and Johnstone (1995) (here for i D 1,. . . , m, μi,1 �IID.1 � m�0.6/δ0 C
m�0.6Unif.4, 8/ C 0.1Zi,1,μi,2 �IID.1 � m�0.2/δ0 C m�0.2δ{5} C 0.1Zi,2 and Zi,1, Zi,2 �IIDN.0, 1/; the oracle
estimator ( ) used here is the loss oracle defined in Xie et al. (2012)): (a) scenario 1 wherein σi,1 Dσi,2 D1;
(b) scenario 2 wherein .σ2

1,i ,σ
2
2,i /�IID Unif.0.1, 1.5/



224 Discussion on the paper by Cai, Sun and Wang

Table 2. Risk estimates for ASUS at mD5000†

Method Results for Results for
scenario 1 scenario 2

Oracle 0.404 0.305
ASUS 0.710 0.445
SureShrink 0.878 0.617
EBT 1.355 0.622
EJS 1.374 1.009

†Scenario 1, σi,1 = σi,2 = 1; scenario 2, .σ2
1,i,σ

2
2,i/∼IID Unif.0:1, 1:5/.

information that is pertinent to several inferential problems. In this context, the general idea behind the
CARS or the ASUS procedure of adding auxiliary information to the PS for improved inference is very
useful. However, in situations where there are multiple covariate sequences, it is unclear how to modify the
ASUS or the CARS framework to construct an effective ranking strategy using an auxiliary matrix. An
easily implementable procedure would be to construct a new sequence that represents the ‘optimal use’ of
all available side information and thereafter use ASUS-type estimators.

Marina Bogomolov (Technion—Israel Institute of Technology, Haifa) and Ruth Heller and Daniel
Yekutieli (Tel-Aviv University)
Cai, Sun and Wang provide us with new methodology for testing multiple two-sample problems, which
makes use of a carefully constructed auxiliary statistic for more powerful identification of differential signal.
Thresholding the local false discovery rate (FDR) Lfdr has been shown to be an optimal rejection policy
for mFDR control when the test statistics are assumed to be generated independently from the two-group
model (Cai and Sun, 2017). The authors show that, for the two-sample problem, the performance of the
optimal univariate procedure can be greatly improved by exploiting the information of the standardized
weighted sum of means, in addition to the standardized mean difference. The authors suggest a clever
estimation method of their oracle test statistic and demonstrate its usefulness.

In Heller and Yekutieli (2014) we generalized the two-group model for inference using N>1 independent
studies. Let T1i, : : : , TNi be the test statistics for feature i in the N studies. For θji, the indicator of whether
the association of feature i in study j is non-null, we explicitly compute the conditional probability of
each configuration of θ1i, : : : , θNi given T1i, : : : , TNi. We can thus compute Lfdr, which is the marginal
conditional distribution that θ1i =0. In Heller and Yekutieli (2014) the conditional independence property
of the statistics given the parameters applies since the statistics are from different studies. In this work
the authors cleverly construct conditionally independent statistics from a single study. We think that the
estimation method suggested in covariate-assisted ranking and screening is very promising and can aid,
for example, the identification of genotypes associated with a psychiatric disorder by using the available
studies on associations of genotypes with other (genetically related) psychiatric disorders (Andreassen
et al., 2013).

CARS highlights the potential in using an auxiliary statistic to aid discovery. When the auxiliary statistic
comes from another study examining a similar problem, it can be of interest to infer on the replicability
of signal across studies for each feature. In Bogomolov and Heller (2018) we suggest an approach that
provides FDR control in each study separately as well as on replicability findings across both studies.
When the method is applied at level 2α, the FDR is controlled in each study separately at level α. The
discoveries may differ from those obtained if each study was analysed separately with the Benjamini–
Hochberg procedure at level α, for the reason highlighted by the authors: auxiliary test statistics that tend
to come from non-null hypotheses whenever θ1i �=0 aid in ranking the evidence against the null.

Edgar Dobriban (University of Pennsylvania, Philadelphia)
I congratulate Cai, Sun and Wang for this important contribution. They address the problem of large-scale
two-sample testing, when the effect sizes (i.e. the differences in the effects in the two groups) are sparse.
Often there is additional prior or side information about the effects that can improve power. The authors
propose a general methodology and a concrete algorithm termed covariate-assisted ranking and screening
(CARS) to exploit such information.
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I would like to summarize the key idea as follows (following the notation from Section 4.1, roughly
speaking): given a primary test statistic T (for instance the difference of the means of the two groups)
and an auxiliary (or secondary) test statistic S (for instance a weighted combination of the means of the
two groups), the CARS method estimates the probability P0.T , S/ of the null hypothesis that the effects
are equal, given specific values of S and T. Then an oracle method rejects those hypotheses for which
this probability is small: P0.T , S/ � c. Under a specific mixture model, the authors show how to estimate
everything to make this a practical procedure that controls the false discovery rate and has asymptotically
optimal mean number of true discoveries.

The broad question here is how to improve power in multiple-hypothesis testing. We have contributed
to this area by developing weighted multiple-testing procedures, where the weights are chosen a priori
(Dobriban et al., 2015; Fortney et al., 2015; Dobriban, 2017). The authors mention in their discussion
that ‘The connection of CARS to theories on optimal weights is still an open issue’. We believe that this
direction deserves further investigation. Our non-rigorous intuition is that weighting can sometimes be
viewed as a special case of the class of procedures discussed here. Suppose that w(S) is a weight depending
on the auxiliary variable. If the auxiliary statistic S is independent of T under the null, then a rule of the
form G.T/ � w.S/, where G is a transform of the test statistic, can be viewed as a valid weighting rule.
This is a special case of rules depending on T and S. Hence, heuristically, weights are a special case of the
procedures of the form considered in the paper.

However, in contrast with most existing weighting methods, the optimal rules here must be estimated
from the data at hand, which makes the problem different, and poses significant challenges. The connections
to weighting may deserve more thought.

Jianqing Fan (Princeton University)
Professor Tony Cai, Professor Wenguang Sun and Dr Weinan Wang are wholeheartedly congratulated
for important and stimulating contributions to the beautiful theory and elegant methods for large-scale
two-sample inference with optimality guarantee.

An important contribution of the paper is to recognize that the sample difference T1i = X̄i − Ȳ i is inad-
equate for testing Hi :μÅ

xi =μÅ
yi. This is understandable from the point of view of sufficient statistics. When

we consider the power of the test, we have two mean parameters and sufficient statistics are (X̄i, Ȳ i) when
the data are from normal distributions with known variances. This is equivalent to the authors’ (T1i, T2i)
where T2i = X̄i +κ=Ȳ i .κ �=−1/ and lends further support to their claim that the power can be enhanced
by using the auxiliary variables. However, developing an optimal procedure like covariate-assisted ranking
and screening (CARS) requires creative ideas and a substantial amount of work.

CARS utilizes the very intuitive oracle statistics T i
OR = P.θ1i = 0|T1i = t1, T2i = t2/. This requires inde-

pendent assumptions among m-variate vectors. This assumption can be too strong for high dimensional
applications including genomics and finance. Dependent adjustments of data are necessary before the
applications of CARS. Examples of dependent adjustments are given in Zhou et al. (2018) and Fan et al.
(2018). After dependence adjustments, we can assume that adjusted data are weakly correlated. Can CARS
be applied to weakly dependent data, rather than independent data? How robust is CARS to the weak
dependence among m-variate vectors?

CARS relies on an estimate of qÅ.t/. The authors provide a natural estimator (3.11). This estimator
aggregates test statistics T2i under true nulls. Under the true nulls, the test statistic T2i depends on β0i +μÅ

xi.
When these common means are very different across i, can the CARS procedure still be effective?

The authors use proposition 6 to indicate the applicability of CARS to non-normal data. The finite
fourth-moment assumption is adequate for the asymptotic normality of (T1i, Ti2) but not enough for
uniform convergence of sample means when m is much larger than n. Robustifications such as those in
Zhou et al. (2018) are needed. It will be very interesting to see the full development of CARS in more
realistic settings with non-Gaussian, dependent and possibly heavy tail errors.

Jelle Goeman (Leiden University Medical Center) and Aldo Solari (University of Milano-Bicocca, Milan)
Auxiliary information, independent of all the null p-values but not of the non-null p-values, may be used
to improve the power of multiple-testing procedures. This principle has been used in familywise error
control and false discovery rate (FDR) control, leading to data-driven filtering or weighting (Kropf and
Läuter, 2002; Westfall et al., 2004; Roeder and Wasserman, 2009; Bourgon et al., 2010; Ignatiadis et al.,
2016; Pecanka et al., 2017). The main contribution of Cai, Sun and Wang to this literature is to present
a data-driven procedure, similar to a weighted procedure, that is asymptotically optimal for the doubly
sparse two-sample problem.
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The classical choice of auxiliary information is the total variance. Cai, Sun and Wang chose to use
a weighted sum of group means instead. Surprisingly, the total variance was not explicitly considered
as a competitor, and we wonder why. Perhaps the sparsity assumption or the assumed heterogeneity of
variances makes the use of the total variance unattractive. Heterogeneity, however, may be countered
by per-group standardization as in the data example. An alternative for the total variance in the sparse
case might be total variance around zero, i.e. simply the sum of all squared observations. Such auxiliary
information would fit the general framework, and we are curious to see how it would perform.

The main comparison is with the Benjamini–Hochberg (BH) procedure and we see that CARS rejects
more than that classical method. However, the superior performance comes at a high price. In the first place,
it depends on two strong assumptions: sparsity and independence. Secondly, it replaces the exact FDR
control of the BH method by only asymptotic control, requiring the number of tests to approach ∞. That
CARS does not provide exact control can be seen in the toy example provided with the CARS function. With
200 tests and nominal 5% FDR, we obtain a disappointing 11% FDR. Asymptotic FDR control follows
from consistent estimation of the FDR. To obtain consistent FDR estimation, (near) independence of the
p-values is crucial. If stronger dependence is present, consistency, and therefore asymptotic control, may be
lost since the variance of the estimator may not disappear when the testing problem grows. Independence
or near independence could be appropriate for the astronomy example but is rare in biological data. The
BH method remains one of very few methods that provides exact, rather than asymptotic, FDR control
under realistic dependence and is still powerful.

Joshua Habiger (Oklahoma State University, Stillwater)
The main idea in the covariate-assisted ranking and screening method is that single statistics T1, T2, : : : , Tm

for testing null hypotheses H1,0, H2,0, : : : , Hm,0 may not be sufficient. The optimal oracle bivariate procedure
is based on the local false discovery rate (FDR) or posterior probability

lFDR.ti, si/=Pr.Hi,0 true |Ti = ti, Si = si/= Pr.Hi,0 true /f.ti, si|Hi,0 true/

f.ti, si/
,

where Si is an auxiliary covariate that provides further information regarding the distribution of the data
when the null hypotheses are false through f.ti, si/. It is show that this bivariate procedure dominates its
univariate counterpart that utilizes lFDR.ti/ (Sun and Cai, 2007) instead of lFDR.ti, si/ for each test.

A discrete data example is given in Habiger et al. (2017) for the analysis of next generation sequencing
data. Let Yi = .Yi1, Yi2, : : : , Yin/ be a collection of independent Poisson(μij) random variables, with log.μij/=
β0i +β1ixj for xj a covariate. The goal is to test Hi,0 :β1i =0 for i=1, 2, : : : , m. Motivated by Sun and Cai
(2007) and McCullagh and Nelder (1989), Habiger et al. (2017) proposed a conditional lFDR-procedure
based on

clFDR.yi, si/=Pr.β1i =0|Yi =yi, Si = si/= π0Pr.Yi =yi|Si = si, β1i =0/

Pr.Yi =yi|Si = si/
,

where

Pr.yi =yi|Si = si/=π0Pr.Yi =yi|si, β1i =0/+
K∑

k=1
πkPr.Yi =yi|Si = si, β1i =γk/:

Here, Pr.Yi = yi|Si = si, β1i = γk/ is a multinominal probability mass function with parameters si and
probability vector p.γk/ ∝ .exp.γkx1/, exp.γkx2/, : : : , exp.γkxn//. Mixing proportions π0, π1, : : : , πK and
parameters γ1, γ2, : : : , γK are consistently estimated with the expectation–maximization algorithm, thereby
facilitating a data-driven procedure.

In this example, the sufficient statistics for (β0i, β1i) are .Si, Ti/ = .ΣjYij , ΣjxjYij/, and Ti and Si are
discrete and dependent (even under the null hypothesis). Further discretizing the Sis or ignoring them
would result in efficiency loss, but is the clFDR-statistic above based on (Yi, Si) or even (Ti, Si) efficient?
This seems to be related to the ancillarity paradox in remark 7 and comment 10.

Regarding the discussion in Section 4.6, the above finite mixture model may also facilitate the empirical
null hypothesis (Efron, 2004) by simply relaxing the condition that β1i =0 under the null hypothesis, and
allowing it to be estimated via maximum likelihood. However, it is also not clear how to select K above,
or what to do if γ̂k is approximately 0 for some k when utilizing the theoretical null.

The weighted p-value FDR literature (see Genovese et al. (2006), Roquain and Van De Wiel (2009),
Peña et al. (2011) and Habiger (2017) among others) is similar in spirit to the current paper. For example,
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the Benjamini–Hochberg or adaptive Benjamini–Hochberg procedure (Storey et al., 2004) can be applied
to weighted p-values Qi = Pi=wi. The main disadvantage of weighted p-value procedures is that optimal
weights can be complex. However, an advantage is that a p-value is readily available for most hypothesis
tests, and weights are robust (Habiger, 2017; Genovese et al., 2006) in that, even if optimal oracle weights
are not utilized or well estimated, some gain in power is still expected and FDR control is maintained. For
example, Habiger (2017) showed that this robustness property enables a simple closed form expression for
approximating optimal weights with s1, s2, : : : , sm, and demonstrated that some improvement over regular
p-value procedures is still expected.

Jialiang Li (National University of Singapore) and Weng Kee Wong (University of California at Los
Angeles)
We congratulate Cai, Sun and Wang for their interesting contributions on multiple-testing problems. We
wish to comment on three practical issues related to the proposed development. First, the solution to
the two-sample test problem may be generalized to multiple-group comparisons. In fact, multiclass com-
parison problems can usually be decomposed into a series of two-class comparison problems (one versus
another, or one versus the rest) and then the two-sample Z-test or t-test that is discussed in the paper
can be directly applied to each pair of groups. However, the so-constructed hypotheses may not be all
independent and modelling the data will need to incorporate such latent dependence. This issue is slightly
different from what was addressed in Section 4.2 where the m hypotheses were artificially divided into K
heterogeneous groups. Second, it seems attractive to replace the parametric tests based on the Gaussian
assumption by non-parametric tests for the location shift. In fact, assuming that a massive number of vari-
ables have a symmetric normal distribution can be very restrictive and unrealistic. For low dimensional
problems, Wilcoxon test and other rank-based non-parametric tests are usually preferred as they offer
robust results. We downloaded the microarray time course data which were analysed in section B.7 of the
on-line supplementary file of the paper, and we ran Shapiro–Wilk tests on the m=22283 genes. We noted
that 9940 genes (44.6%) could not satisfy the normality assumption at the significance level 0.05. In the
genetic literature more popular tests include those based on the empirical Bayes methods and moderated
t-test with variance shrinkage. If one insists on using a Z-test or t-test as recommended in this paper,
then our third point is that some normalization transformation may be helpful. In each comparison, only
two distributions are involved and it is fairly easy to find a suitable monotone transformation such as the
Box–Cox power transformation that is introduced in standard textbooks. However, an appropriate trans-
formation for one hypothesis may not be appropriate for another. One therefore may need to find optimal
transformations for the variables before testing all the m hypotheses. How to interpret the transformed
data might also be an open issue.

Nicholas T. Longford (Imperial College London)
While applauding the authors’ innovation in an area that is crowded with attention stimulated by emer-
ging research themes, I want to highlight a profound weakness of the building block in their set-up,
namely, the hypothesis test. After providing sterling service for many decades, the hypothesis test should
be condemned to a statistical museum because it is hopelessly deficient for the needs of modern scientific
endeavour. It is disqualified from purposeful inference by having no means of incorporating the conse-
quences of the two kinds of inappropriate choices that the analyst may make: false discovery and failure to
discover. Focus on one kind of error at the expense of the other is a gross scientific error; in addition to their
minimization, the balance of the two kinds of error that reflects their ramifications is a more appropriate
target.

Associated with this is the false dichotomy of the null hypothesis, with zero (or another ‘special’ value)
pitted against the rest of the real axis. Without the indoctrination by the mechanics of the hypothesis test,
the null hypothesis (1.1) should always be rejected because it is irrational to bet on any specific value of a
parameter against an uncountable set of alternatives, uncountably many of which are arbitrarily close to
the hypothesized value.

The consequences of the two kinds of error are difficult to establish, but the suggestion that they might
be unimportant, and therefore the analysis could be oblivious to them, is difficult to sustain. If we continue
with the practice of ignoring the consequences, our outputs will by definition remain inconsequential or
will require considerable improvisation, or verbal massage, politely referred to as interpretation, to make
them consequential.

The premise of this paper is the difficult calculus of p-values generated by multiple tests. The difficulty
would evaporate if we switched to a framework in which the counterparts of the p-values are additive.
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In decision theory, they are the expected gains or losses. These comments summarize the conclusions of
Longford (2014).

However, I agree with Cai, Sun and Wang that hypothesis tests (and problems of making elementary
decisions) are unequal both a priori and after drawing on auxiliary information.

Aaditya Ramdas (Carnegie Mellon University, Pittsburgh)
I discuss some recent work in the literature that is morally related to covariate-assisted ranking and
screening (CARS). One common thread has been

(a) separate the available information about each hypothesis into two parts that are independent under
the null and

(b) use one part to estimate and control the false discovery rate (FDR), and use the ‘auxiliary infor-
mation’ to rank hypotheses, like a data-dependent prior, to gain power.

Through the lens of selective inference, these procedures can be seen as instances of ‘data carving’ (Fithian
et al., 2014). For example, approaches (a) and (b) can be seen as the spirit behind the knockoffs proce-
dure (Barber and Candès, 2015), where only one bit of information per hypothesis (signs of knockoff
statistics) suffice for FDR control, and the remaining bits (magnitudes of knockoff statistics) are used to
sort hypotheses. The same idea was central in the design of the interactive AdaPT procedure (Lei and
Fithian, 2018), where p-values are split into a single hidden bit h.p/ = I.p > 1

2 / and a masked p-value
g.p/=min{p, 1−p}. Again, the former is used for estimating and controlling the FDR, and, along with
additional covariate information, the latter is used to gain power by guiding the interactions. General con-
structions of data carving functions .h, g/ were employed by the interactive STAR procedure (Lei et al.,
2017) which can additionally maintain any (possibly data-dependent, interactively discovered) structural
constraints on the rejected set while controlling the FDR.

There are naturally numerous differences between CARS and the aforementioned work. CARS applies
to high dimensional two-sample testing, knockoffs to high dimensional regression, and AdaPT and STAR
to structured multiple testing with covariates. STAR and AdaPT carve the p-values themselves and are
agnostic about how they were constructed, whereas CARS and knockoffs work with the raw data from
scratch. (Technically, AdaPT and STAR can both work with knockoff statistics instead of p-values, which
would equalize them all from this perspective.) Another difference is that AdaPT and STAR may use
an assumed generative model, such as a covariate-based two-groups model, to relate the covariates to
the p-values; however, they are robust to misspecification of the said model—if the model is completely
wrong, FDR control still provably holds and only power is hurt. It is possible that CARS cannot (even
asymptotically) control the FDR if the models assumed, like the bivariate random-mixture model, are
wrong. A last technical difference lies in the proof techniques: knockoffs, AdaPT and STAR use martingale
techniques to guarantee non-asymptotic FDR control, whereas the current paper does not use martingales
and guarantees asymptotic FDR control. In fact, unlike CARS, many martingale-based methods like the
above also satisfy strong uniform post hoc false discovery proportion guarantees (Katsevich and Ramdas,
2018).

There are other methods like SABHA (Li and Barber, 2019) that carve the p-values, but for brevity we
do not discuss them. We suspect that we shall see additional use of the (a) plus (b) strategy in the coming
years by using novel data carving techniques and other clever uses of ancillarity or sufficiency like Basu’s
theorem.

Qing Yang and Guang Cheng (Purdue University, West Lafayette)
We congratulate Cai, Sun and Wang for this inspiring work. We would like to evaluate the classification
performance of the proposed covariate-adjusted ranking and screening (CARS) approach. This is in
contrast with the recent studies on using classifiers to do statistical testing especially for high dimensional
data, e.g. Friedman (2004), Ramdas et al. (2016) and Rosenblatt et al. (2016).

Consider two classes Nm.μi, Im/ and Nm.μ2, Im/ with training data Xm×n1 and Ym×n2 . The well-known
Fisher discriminant can perform as poorly as random guessing under high dimensionality (see Bickel and
Levina (2004) and Fan and Fan (2008) among others). Hence, we first apply CARS to do marginal screening
according to procedure 1; then we work only on those locations that reject H0 (say d such positions). A
new observation z is classified to class 1 if and only if

(
zd − x̄d + ȳd

2

)T

diag.Sd/−1. x̄d − Ȳd/> 0, .5/
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where the subscript d indicates the reduced parameters. Here diag.Sd/ is used because this paper considers
independent multiple tests. If we apply Sd in a general situation, an additive term

n1 +n2 −2
n1 +n2 −d −3

(
d

2n1
− d

2n2

)

is suggested to be added in condition (5) for offsetting the dimensionality effect, similarly to the rescaled
terms in Yang and Cheng (2017).

Empirically, we also adopt the Benjamini and Hochberg (1995) procedure to select reduced locations.
The population means μ1 and μ2 are generated as in simulation setting 1 of this paper.

Fig. 9 shows that method (5) enjoys comparable performance with the Bayes method. Moreover,

(a) the more powerful testing method (‘CARS’) leads to better classification performance and
(b) the gap between the two testings’ powers roughly keeps stable, whereas that between the misclassi-

fication rates decreases rapidly to zero.

The positions are selected by controlling both methods at the same false discovery rate level. More posi-
tions are selected by the proposed CARS because of its larger power. Meanwhile, this increases the data
dimension. So, it is not easy to tell which testing method leads to better classification outcomes before
running simulations. To have a further comparison, in Fig. 10, the same number of locations is chosen by
setting different false discovery rate values. It demonstrates a similar pattern, while the decreasing speed of
the Benjamini–Hochberg method is a little faster. All these observations motivate one intriguing research
direction—how do we quantify the relationship between testing power and misclassification rate?; what
kind of statistical testing leads to optimal classification performance? These questions are more subtle for
high dimensional sparse data.

Guo Yu (University of Washington, Seattle), Jacob Bien (University of Southern California, Los
Angeles) and Daniela Witten (University of Washington, Seattle)
In this discussion contribution, we connect the elegant proposal of Cai, Sun and Wang to multiview data,
in which multiple sets of variables (or ‘views’) are measured on the same observations. Using ideas from
Section 4, we show that we can exploit a secondary view to improve power for testing on the first view.

Consider independent and identically distributed observations of m random variables under two con-
ditions. In condition l∈{1, 2}, observation i∈{1, : : : , nl} of variable j ∈{1, : : : , m} is given by (view 1)

Xij.l/=μj.l/+ "ij.l/,
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Fig. 9. (a) Power comparison and (b) empirical misclassification rates for two classes Nm.μ1, Im/ and
Nm.μ2, Im/ based on 500 replications (FDR level α D 0.05I n1 D 50I n2 D 60I m D 1000I μ1,1:k D 5=

p
30;

μ1,.kC1/:.2k/ D 4=
p

30Iμ1,.2kC1/:m D 0Iμ2,1:k D 2=
p

30Iμ2,.kC1/I.2k/ D 4=
p

30Iμ2,.2kC1/:m D 0): , method (5)
based on Benjamini and Hochberg (1995); , method (5) based on CARS; , Bayes rule
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Fig. 10. Empirical misclassification rates when the same amount of locations are chosen for both methods:
, Benjamini and Hochberg (1995); , CARS; , Bayes rule

where "ij.l/ is zero mean, and we suppress the common intercept. The random-mean vectors μ.1/ and
μ.2/ are sparse. Furthermore, for the same individuals, we also observe a second view of m̃ variables
(view 2):

Zik.l/= μ̃k.l/+ "̃ik.l/ for k ∈{1, : : : , m̃}:

The mean vectors μ̃.l/ are sparse, "̃ik.l/ is zero mean and again we suppress the intercept. Suppose that
the two views satisfy a hierarchical sparsity constraint: for j ∈{1, : : : , m} and l∈{1, 2},

μ̃σ.j/.l/=0⇒μj.l/=0, .6/

where σ.j/ maps the jth entry of μ.l/ to its parent in μ̃.l/: Fig. 11.
Concretely, suppose that X.l/ and Z.l/ contain protein and gene expression measurements respectively.

If transcripts that encode the jth protein are absent (i.e. μ̃σ.j/.l/=0), then the jth protein cannot be present
(i.e. μj.l/=0).

Suppose that (μj.1/, μ̃σ.j/.1/) is independent of (μj.2/, μ̃σ.j/.2/). Further assume that the random errors
."ij.l/, "̃iσ.j/.l// are bivariate normal and independent across j, l and i, and independent of μ.l/ and μ̃.l/.

Using the terminology of Cai, Sun and Wang the ‘primary statistic’ for testing H0j :μj.1/=μj.2/ is

Tj =Cj{X̄j.1/− X̄j.2/}
for some constant Cj . We consider a pair of ‘auxiliary statistics’,

Rj =Dj

[
X̄j.1/+ n2var{"ij.1/}

n1var{"ij.2/} X̄j.2/

]
,

Sj =Ej

[
Z̄σ.j/.1/+ n2cov{"ij.1/, "̃iσ.j/.1/}

n1cov{"ij.1/, "̃iσ.j/.2/} Z̄σ.j/.2/

]
,

for some constants Dj and Ej . The statistic Rj is the same as T2j in the paper, whereas Sj is constructed
by using the second data view. A small value of |Sj| provides evidence for μ̃σ.j/.1/= μ̃σ.j/.2/=0, which by
constraint (6) suggests that μj.1/=μj.2/. By analogy with proposition 1 in the paper, the oracle statistic
is

T
.j/
OR.tj , rj , sj/≡Pr.θ1j =0|Tj = tj , Rj = rj , Sj = sj/= f.tj , rj , sj|θ1j =0/Pr.θ1j =0/

f.tj , rj , sj/

= f.tj|θ1j =0/f.rj , sj|θ1j =0/Pr.θ1j =0/

f.tj , rj , sj/
:
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Fig. 11. Schematic diagram of constraint (6) with σ.3/D1

Moreover, T
.j/
OR.tj , rj , sj/ enjoys the properties in theorem 3 of the paper. Detailed proofs are available from

https://hugogogo.github.io/paper/cars_discussion_supplement.pdf. If there is not
a one-to-one mapping between σ.j/ and j, then T

.j/
OR.tj , rj , sj/ must be estimated carefully.

The authors replied later, in writing, as follows.

We thank the discussants for their insightful comments and excellent contributions. It is our great delight
to meet some discussants in London, and we are pleased to participate in further discussions in writing.
The discussions are wide ranging. For brevity, we focus only on some key topics.

Key message: data reduction, information loss and optimality
Data reduction via constructing linear contrasts has long been used as an essential tool for statistical anal-
yses. Examining the process at a high level, the conventional practice involves first dividing raw data into
‘relevant’ and ‘irrelevant’ parts (or data carving, per Professor Ramdas), and then developing inference
procedures based solely on the summary of the relevant part. This practice is widespread in statistical
analysis. A major surprise is that such standard practices in data processing could lead to significant in-
formation loss in large-scale inference. Our work marks a clear departure from the existing work where
auxiliary information is gleaned from external data. We propose new strategies to extract structural infor-
mation within the same sample by using auxiliary covariates. We thank Professor Fan for the comments
on our contributions to the optimality theory in false discovery rate FDR control, which has been lack-
ing in the literature. This is an important direction in large-scale inference, considering that optimality
has been the goal in the development of many fundamental results in statistics including Fisher’s theory
on the asymptotic efficiency of maximum likelihood estimation and the Neyman–Pearson lemma on the
optimality of the likelihood ratio test.

Structural information in high dimensional inference
We appreciate the illuminating comments from Roquain and Nichols on the role of auxiliary data in
amplifying the signals. From a decision theoretic view, classical ideas such as Robbins’s compound decision
theory and the James–Stein shrinkage estimator show that the joint structure of primary statistics can be
exploited to construct more efficient estimation or testing rules. A key message conveyed through this work
is that extra valuable structural information can be extracted from the seemingly irrelevant part of the data.
This point is particularly crucial in high dimensional settings. When the number of parameters is small,
the information loss is inconsequential (since the joint structure cannot be estimated well). However, in
the case with thousands of parameters structural information can be recovered with good precision from
auxiliary statistics, which can play a key role in improving the power.

The sufficiency principle and broad applicability of covariate-assisted ranking and screening
We concur with Fan and Habiger in their insightful comments on sufficient statistics: a fundamental prin-
ciple that seems to have been largely ignored in the FDR-literature. The comments also shed new lights on
the applicability of covariate-assisted ranking and screening (CARS) beyond the case that requires doubly
sparse means. The general idea in CARS works for a broad class of bivariate models (see Section 4.1 and
our remark 7) and the doubly sparse assumption should be viewed as a special setting to explain intuitively
why CARS works. Moreover, violations of the sufficiency principle are common in data processing and
CARS can benefit from a non-sparse auxiliary sequence as long as the covariate encodes useful structural
information. These points have been nicely corroborated by Professor Habiger’s several interesting papers
on heterogeneous discrete data. Professor Habiger’s inspiring discussion also points the way forward for
developing effective data combination strategies across qualitative and quantitative variables.
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Using covariate-assisted ranking and screening in other high dimensional problems
CARS provides a generic tool for inferring sparsity structure by integrating evidence from multiple sources.
The interesting discussions by Bogomolov, Heller and Yekutieli, Yu, Bien and Witten, Yang and Cheng,
Li and Wong, and Banerjee and Mukherjee, among others, show that CARS has considerable potential
for providing better solutions to a wide range of high dimensional problems including large-scale analysis-
of-variance tests, high dimensional replicability analysis, sparse linear discriminant analysis, multiview
analysis, hierarchical inference and sparse compound estimation. It is encouraging to see some preliminary
successes reported by the discussants. We feel that revisiting the fundamental sufficiency principle in
large-scale inference and carefully investigating possible information loss in data reduction would be an
important and fruitful direction for future research. We appreciate the creative ideas and stimulating
comments from the discussants on applying CARS to various high dimensional inference problems. We
very much look forward to further explorations along these lines.

The dependent case and the ‘grouping, adjusting and pooling’ procedure
Fan, Goeman and Solari expressed legitimate concerns on the independence assumption. Although the
robustness of CARS under dependence has been investigated numerically in the on-line appendix B.5, we
take this opportunity to describe briefly our recent work aiming to address the important dependence issue.
Xia et al. (2018) developed a general information pooling framework that involves grouping, adjusting
and pooling (GAP) to leverage the structural information from an auxiliary sequence. GAP is built on the
Benjamini–Hochberg (BH) procedure and utilizes weighted p-values to capture the heterogeneity among
hypotheses. We generalize the weighted multiple-testing theory in Genovese et al. (2006) to show that GAP
controls FDR under a range of dependence structures, including weakly dependent tests arising from high
dimensional linear regression and Gaussian graphical models. However, the optimal choice of weights is
still an open issue that deserves more research; inspiring discussions can be found in the comments by
Dobriban, Ramdas and Habiger on use of weighted p-values and interactive use of masked p-values.

Asymptotic false discovery rate control and variations of the Benjamini–Hochberg procedure
CARS and Lfdr-methods offer asymptotic FDR-control and work better for large-scale testing problems
where the density functions can be well estimated. By contrast, the BH procedure offers guaranteed FDR-
control under a range of dependence structures. For smaller-scale problems with a few dozen or several
hundred tests as considered by Goeman and Solari, we recommend GAP and other variations of the BH
procedure (see the discussions by Dobriban, Ramdas and Habiger) to incorporate useful side information.
It would be of great interest to investigate the performance of Bayesian CARS (see Professor Roquain’s
comments) to increase the stability in small sample settings.

The sparse case and updated covariate-assisted ranking and screening package
We thank Roquain and Nichols for noticing the issues of our CARS package under the very sparse case.
We have uploaded to the Comprehensive R Archive Network the updated package that includes the ‘sparse
option’ described in Section 5.1 and a new section on the vignette illustrating that CARS, using the sparse
option, controls FDR when m = 10000 and k = 10: a setting considered by Professor Nichols. The key
idea for the sparsity adjustment is to use the known densities to stabilize the bivariate density estimate in
regions with few observations. Through communication with Professor Mark van de Wiel, we recognize
that, for methods based on CARS and Lfdr, the instability of the non-parametric density estimator (in
the denominator) seems to be a common issue. In the sparse regime, Professor Roquain’s proposal of
employing Cauchy slab priors is a promising direction with the potential of having the best of both worlds:
the method avoids non-parametric modelling of a bivariate density, while the choice of priors has great
promise of leading to good frequentist properties.

On choosing the auxiliary sequence
We briefly address the interesting question from Goeman and Solari whether the total variance could be
a good competitor as an auxiliary variable. First, it can be shown that, with known and homoscedastic
variances, the pair (T1, T2) is a sufficient statistic (per Professor Fan); hence T2 is optimal in the sense
that it has no information loss. Although the sufficiency principle may be satisfied by other pairs, our
choice of T2 not only is intuitively appealing but also simplifies the development of both methodology and
theory; see the discussion in Section 2.1. Second, an important consideration in choosing the auxiliary
variable is to avoid selection bias. As noted in a post by Professor Ryan Tibshirani on the ‘Normal deviate’
blog, screening based on between-group variance leads to severe selection bias. The total variance is not
promising either, at least under the CARS framework, because under heteroscedasticity it is correlated with
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the primary statistic and cannot capture the sparsity structure effectively. Moreover, the total variances
are not suitable as useful structures to inform BH algorithms. The p-value null distribution is likely to be
distorted when screening, grouping or weighting is carried out via total variance.

Open issues and concluding remarks
Large-scale multiple testing is a fundamental building block in contemporary statistics and developing
efficient procedures that control the FDR, a celebrated innovation in the past two decades, has been a
prominent and impactful research area. Although the hypothesis testing framework is not omnipotent as
pointed out by Professor Longford, we believe that some concerns may be possibly addressed by tailor-
ing the general FDR-concept to the needs of specific applications; notable ideas include weighted FDR
(Benjamini and Hochberg, 1997), directional FDR (Guo et al., 2010) and the false important discovery
rate (Sun and McLain, 2012). As pointed out by Medina and Stehlı́k, the null hypothesis should be care-
fully formulated, and existing methods should be properly modified for specific applications. Much more
research is still needed in this area.
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