
UCLA
UCLA Electronic Theses and Dissertations

Title
On the Additivity of Equivariant Operads

Permalink
https://escholarship.org/uc/item/4r40725w

Author
Szczesny, Benjamin

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4r40725w
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

On the Additivity of Equivariant Operads

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Mathematics

by

Benjamin Jack Szczesny

2023



© Copyright by

Benjamin Jack Szczesny.

2023



ABSTRACT OF THE DISSERTATION

On the Additivity of Equivariant Operads

by

Benjamin Jack Szczesny

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Michael A. Hill, Chair

In this dissertation, we investigate equivariant generalisations of Dunn Additivity.

We first build equivariant operads called little star operads, which encompass little cube

and little disk operads and prove they provide models of EV -operads. We then show

general conditions for when additivity holds for these operads. In particular, we prove that

an equivariant additivity theorem holds for simplex-shaped operads. We then consider

another operad construction aimed to model more general N-operads. We show that

while they provide an approximation for N∞-operads, they seem to fail a corresponding

additivity theorem.
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Introduction

The Boardman-Vogt tensor product of operads is a mysterious and often frustrating

construction in operadic theory. Yet, as it encodes interchanging algebraic structures, it

plays a significant role in homotopical algebra. This thesis was born out of a desire to

comprehend the tensor in an equivariant context better.

The tensor is best described by its algebras. Suppose P and Q are operads, and X

is an object with the structure of a P -algebra and a Q-algebra. If the two structures

interchange, then X is an algebra of the operad P ⊗ Q. Rephrased differently, X is a

P ⊗ Q-algebra if it is a P -algebra in the category of Q-algebras and vice versa. This

construction appears in many guises; for instance, given an abelian group M that has

the structure of a left S-module and a right R-module. The interchange condition here

is nothing more than

s · (m · r) = (s ·m) · r for all m ∈M, s ∈ S, r ∈ R.

This then lets us equivalently describe M as a left S⊗Rop-module. The tensor of operads

is a vast generalisation of this.

One of the most important kinds of operads in homotopical algebra is the Ek-operads.

A E1-operad encodes a homotopy associative monoidal structure, while the rest encode
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an increasing amount of coherence data ending in E∞ which are, at least homotopically,

encodes commutative monoids. These kinds of operads are intimately linked with the

operadic tensor. A result of Dunn [Dun88] gives us that Ek-operads are additive:

Em ⊗ En ≃ Em+n.

Dunn specifically proved this for the little k-cubes operad Ck, a specific model for Ek-

operads. A concrete example of this equivalence in action is for loop spaces. A classic

result of May [May72] tells us that a group-like algebra X over the k-little cubes operad

Cn in spaces is equivalent to a n-fold loop space X ≃ Hom(Sn, Y ) = ΩnY . Dunn

additivity then appears as the property that if Y is also a grouplike Em-algebra such

that its algebra structure interchanges with the one on X, then we get that

X ≃ Hom(Sn, Y ) ≃ Hom(Sn, Hom(Sm, Z)) ∼= Hom(Sn+m, Z)

and so X is a n + m-fold loop space.

The main aim of this dissertation is to generalise Dunn additivity to an equivari-

ant context. What this means is slightly ambiguous. Just as in much of equivariant

homotopy, we can generalise to varying levels of “equivariant genuine-ness”. The “naive”

generalisation would be to prove that Cm⊗Cn ≃ Cm+n where these operads are now in

equivariant spaces. However, there is almost nothing to prove in this situation as the

original proof goes through without much issue.

Another level up the equivariance scale would be to prove additivity for operads

that encode equivariant loop spaces. An equivariant loop space ΩV Y has loops coming

from a representation sphere SV . The equivariant little disks operad D(V ) is the natural

generalisation of Ck to encode this structure. Our aim is to then prove that for G-
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representations V and W , there is an equivalence

D(V )⊗D(W ) ≃ D(V ⊕W ).

We essentially - but not quite - prove this. To explain what we mean by this, we must

bring up a problem with the Boardman-Vogt tensor that we have glossed over. The

tensor is not homotopical. This is why we say the tensor is mysterious and frustrating

at the beginning of this introduction. What we do is construct operads that we call the

equivariant little simplex operads D∆(V ), prove these are weakly equivalent to D(V )

and prove that

D∆(V )⊗D∆(W ) ≃ D∆(V ⊕W ).

This doesn’t imply the additivity of the little disks, but it does give us an explicit case

of an additivity of EV -operads.

There is one more level in the equivariance ladder. Blumberg-Hill in [BH15] define

and study a class of equivariant operads called N∞-operads which are a further gener-

alisation of E∞-operads that supersedes that of EU -operads. Here U is a G-universe,

a type of countably infinite dimensional G-representation. What Blumberg-Hill show

is that these types of operads are only a single type in a larger family of operads that

span from the most incomplete, the E∞-operads, to the most complete, the so-called

G− E∞-operads which do encode equivariant commutative monoids in a homotopically

coherent fashion. The N∞-operads sit inside a finite lattice of families, and Blumberg-Hill

conjectured that the tensor corresponds to the lattice join. A derived version of this

conjecture was proven by Rubin [Rub21c].

We have specialised to the ∞-case here because there is no theory of general N-

operads. In the last chapter of this thesis, we present some work in progress where we

build operads that attempt to model general N-operads. We will call these twisted little

3



cube operads CF
n, and we show that they can model both N∞-operads and also “finite

truncations” of them. We then end by considering how an additivity proof may work

for these operads, and identify an obstruction for this model. We conjecture that this

obstruction is also what stops CF
n from serving as true models for general N-operads.

Overview

Let us explain the structure of this dissertation in more detail and provide a guide for

the reader.

Chapter 1: Equivariant Operads In this chapter, we review the basic definitions

and properties of equivariant operads. This chapter mostly sets the notation and

conventions we will use throughout this thesis, and a reader familiar with the

subject is more than welcome to skim it. One section that is not standard is on

“operads indexed by other categories”; our treatment of this notion is non-standard,

and it is not something that we will explore in any real depth in this dissertation.

The purpose of this section is to define a set of technical conditions that imply

some of our constructs give operads.

Chapter 2: Little star operads While Dunn additivity holds for little cubes Cn non-

equivariantly, it is unknown if the same is true for non-equivariant little disks. This

is problematic since little cubes don’t work over representations. Moreover, while

the two kinds of operads are equivalent, this equivalence in the literature is exhibited

via a zigzag of equivalences. This chapter defines little star operads SM , which

uniformly treat little cubes, disks and other star shapes over a G-representation.

We then prove they are all weakly equivalent over the same representation V .

Chapter 3: The Boardman-Vogt tensor product In this chapter, we present a

self-contained account of the construction of the tensor product. We have done this
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as most contemporary accounts in the literature tend only to offer the generators

and relations of the tensor, but gloss over the nuts and bolts of it. This can make

understanding how the tensor functions difficult for the novice. We hope that this

chapter will be helpful for those new to the tensor.

Chapter 4: Equivariant Dunn additivity We finally prove an equivariant version

of Dunn additivity. This chapter looks more generally at the conditions needed to

prove additivity theorems. We will show that the only gap for verifying additivity

for all little star operads SM is in showing the induced maps from the tensor is

injective. We then establish general criteria for the injectivity of tensor maps and

show the equivariant little simplex operads D∆ satisfy this criterion, giving us the

desired additivity result.

Chapter 5: Operads that encode norm maps In this section, we present a work

in progress to find general models for N-operads. We will restrict ourselves to

an Abelian group G, and start this section with a quick overview on N-operads.

We then move on to constructing twisted little cube operads CF
n for each transfer

system F. We show that these encode the correct norm maps and, in the ∞-case

give a model for N∞-operads. We end with a conjecture on why this model fails

additivity and how we may fix it.

Conventions

Throughout this thesis, G universally means a finite group. Top is the category of

compactly generated weak Hausdorff spaces, and TopG is the category of G-spaces with

equivariant maps as morphisms. A G-representation V is always a countable sum of

finite orthogonal G-representations.
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Chapter 1
Equivariant Operads

1.1 Operads

Operads were first defined by May [May72] in his work on iterated loop spaces. They can

be viewed as special cases of the earlier notion of PROPS due to Adams and MacLane

[Mac63] and extended by Boardman and Vogt [BV68].

The core idea of an operad is to encode spaces of “n-ary” composition maps. This

is useful because (among many other reasons) each operad has an associated category

of algebras. Morphisms between operads, then let us compare different kinds of algebra

structures. Moreover, the use of topological operads allows us to keep track of homotopical

information of these algebras.

We will only recall the main definitions here and set our notation. There are many

references available for more information on operads. Some recent examples include

[Fre17] and [Man20]. We will denote by V a bicomplete closed symmetric monoidal

category with monoidal product ⊗ and identity 1. A V -operad is usually defined as a

sequence {P (n)}n∈N of objects in V with defined composition maps

γn,k1,...,kn : P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)→ P (
∑

ki)
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that satisfy certain associativity, unitality, and equivariance conditions. However, we

prefer a “coordinate-free” approach to simplify notation dramatically. We will write the

category finite sets as Fin and the subcategory of finite sets and bijections by Bij. For

each n ∈ N we will write n = {1, . . . , n} with 0 = ∅.

1.1.1 Definition. A (left) V -symmetric collection is a functor F : Bij → V . A morphism

of V -collections is a natural transformation, and we denote the category of V -collections

by Coll(V ).

Given a function of finite sets f : K → J and j ∈ J , we will usually denote the fiber

of f at j by Kj := f−1(j). Given a composition

L
g−→ K

f−→ J

we write gj for the pullback
Lj L

Kj K.

gj g

1.1.2 Definition. A V -operad is a V -symmetric collection P : Bij → V such that for

every map α : K → J in Fin there is a composition map

γP (α) : P (J)⊗
⊗
j∈J

P (Kj)→ P (K)

and for each singleton S, there exists maps idP (S) : 1→ P (S) such that the following

hold:

(1) Composition is associative. Given any morphisms

L
g−→ K

f−→ J

7



in Fin, the following diagram commutes.

(
P (J)⊗⊗j∈J P (Kj)

)
⊗⊗k∈K P (Lk)

P (J)⊗⊗j∈J

(
P (Kj)⊗

⊗
k∈Kj

P (Lk)
)

P (J)⊗⊗j∈J P (Lj)

P (K)⊗⊗k∈K P (Lk)

P (L)∼=

id⊗⊗j∈J γP (gj)
γP (fg)

γP (f)⊗ id
γP (g)

(2) Composition is natural. For every commuting sequence of maps in Fin

I K

J L

p

q

f g

where p, q are bijections. The following diagram in V commutes

P (J)⊗⊗j∈J P (Ij) P (L)⊗⊗l∈L P (Kl)

P (I) P (K)

P (q)⊗
⊗

l∈L
P (pl)

P (p)

γP (f) γP (g)

(3) The map idP is a unit.

(a) For any finite set J , the following commutes in V .

P (J)⊗⊗i∈I 1 P (J)⊗⊗j∈J P (Jj)

P (J)
∼=

P (idJ )⊗
⊗

j∈J
idP (Jj)

γP (idJ )

Here Jj is the fiber with respect to the identity map on J .

(b) for any map of finite set f : T → S where S is a singleton set, the following

8



commutes.
1⊗ P (T ) P (S)⊗ P (T )

P (T )

γP (f)

idP (S)⊗id

∼=

1.1.3 Remark. This definition for operads is equivalent to the usual definition. See, for

instance, [Bat08] for details. Be aware that our operads have symmetric action on the

left instead of the more common right-sided notion. These are equivalent but do change

some of the diagrams. We do this to follow the convention in [BH15]. The advantage of

this convention is that we deal primarily with operads in TopG, which puts both the Bij

and group actions on the left.

1.1.4 Definition. A morphism of operads f : P → Q is a morphism of the underlying

symmetric collections such that for any morphism of finite sets α : J → K and singleton

set S, the following diagrams in V commute.

P (K)⊗⊗k∈K P (Jk) Q(K)⊗⊗k∈K Q(Jk) 1 P (S)

P (J) Q(J) Q(S)fJ

fK⊗
⊗

k∈K
fJk

γP (f) γQ(f) fS

idP (S)

idQ(S)

We denote the category of operads in V by Oper(V ).

We will occasionally use another characterisation for operads due to Markl [Mar96].

Recall that for finite sets J, K and an element j ∈ J that we have the partial disjoint

union

J ⊔j K = (J\{j}) ∪K.

It may be helpful to think of this construction as taking K as a fibre over j of some map

and then collapsing. The connection with operads comes from the following.

1.1.5 Definition. A partial composition product on a V -collection P is a collection of

9



maps

◦j,J,K : P (J)⊗ P (K)→ P (J ⊔j K)

for each j ∈ J and K such that for any morphisms of finite set f : J → J ′, g : K → K ′

the following commutes.

P (J)⊗ P (K) P (J ⊔j K)

P (J ′)⊗ P (K ′) P (X ′ ⊔f(x) Y ′)

(P (f),P (g))

◦j,J,K

◦f(j),J′,K′

P (f⊔jg) (1.1)

(1) The partial composition on P it is associative if for all j ∈ J, k ∈ K, L the following

commutes

(P (J)⊗ P (K))⊗ P (L) P (J)⊗ (P (K)⊗ P (L))

P (J ⊔j K)⊗ P (L) P (J)⊗ P (K ⊔k L)

P ((J ⊔j K) ⊔k L)) P (J ⊔j (K ⊔k L))

αP (J),P (K),P (L)

P (id)

◦j,J,K⊗id

◦k,J⊔j K,L

id ⊗◦k,K,L

◦j,J,K⊔kL

(1.2)

Here α is the associator of V .

(2) The partial composition on P has a two-sided unit if there exists maps uS : I →

P (S) for all singleton sets S = {s} such that the following commutes for all j ∈ J .

1⊗ P (J) P (J)⊗ 1

P (S)⊗ P (J) P (J) P (J)⊗ P ({j})

P (S ⊔s J) P (J ⊔j {j})

λP (J)uS×id

◦s,S,J P (id)

ρP (J) id ×u{j}

◦j,J,{j}P (id)

(1.3)

Here λ and ρ are the left and right unitors of V .

1.1.6 Definition. A pseudo operad P is a symmetric collection with an associative

10



partial product. If the partial product also has a unit, then this is equivalent to the

definition of an operad.

We will mostly work with operads in concrete categories V , and instead of the above

diagrams, we will work with the point sets themselves. Given a map f : K → J in Fin,

and elements x ∈ P (J), yj ∈ P (Kj), we write the composition as

x ◦ (yj)j∈J ∈ P (K)

and the partial compositions as

x ◦j yj ∈ P (J ⊔j Kj).

The arity of an element x ∈ P (J) is the set J which we also denote by ar(x).

1.2 Operads indexed on other categories

This section is a bit technical and is only needed to justify a few constructions that

produce operads. As such, the reader is welcome to skip this chapter until they need the

results of this section.

First, let us review the basic definitions and properties of opfibrations of categories.

These ideas go back to Grothendieck [Gro71]. A recent reference that the reader may

find helpful is [Vis07].

Given a functor of categories π : F→ C, an arrow f : X → Y of F is π-cocartesian

if for all other arrows g : X → Z such that its image π(g) factors through π(f), this

factorization lifts uniquely. That is, if we have h such that π(g) = h ◦ π(f) then there

11



exists a unique h′ such that π(h′) = h and g = h′ ◦ f .

Z

X Y

π(Z)

π(X) π(Y )

f

g

π(f)

π(g)

h=π(h′)

∃!h′

A functor π : F → C is an opfibration if for every arrow f : x → y in C, and

object X ∈ F, there exists a π-cocartesian lift of f at X: f ′ : X → Y such that

π(f ′) = f . The idea behind this definition is the following. For every object x ∈ C,

we can define the fibre of F over x as a category F(x) with objects and maps those

that lift x and idx respectively. We would then like to define a functor C → Cat via

these fibres. The definition of an opfibration is almost enough to do this. Instead, the

resulting construction is a pseudo-functor1. The issue stems from the fact that given two

π-cocartesian lifts f ′, f̂ of the same map f : x→ y at the object X:

Z

X Y

y

x y

f ′

f̂

f

f

idy

∼=

The identity idy is only guaranteed to lift to an isomorphism. So there are choices in

constructing a corresponding fibre functor. An opfibration π : F→ C is split if the lifts
1A pseudo-functor is a functor where the relations defining functors only hold up to isomorphism

(and obey lax coherent conditions).
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can be chosen such that the resulting fibre pseudo-functor is a functor.

We can also go in the opposite direction. Given a pseudo-functor F : C → Cat, we

can construct an opfibration via the (covariant) Grothendieck construction
∫
C F → C.

1.2.1 Definition. Given a pseudo-functor F : C → Cat, the (covariant) Grothendieck

construction
∫
C F is a category with objects pairs (c, x) where c ∈ C and x ∈ F (c), and

morphisms are pairs (f, g) : (c1, x1)→ (c2, x2) where f : c1 → c2 and g : F (f)(x1)→ x2.

It may be helpful to think of this definition in terms of the diagram

x2

x1 F (f)(x1)

c2

c1 c2

F (f)

f

idc2

g

The dotted maps here don’t signify anything besides showing the similarity to the above

diagrams. Composition in
∫
C F is given by (f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦F (g2)). Again,

we can see think of this in terms of the following diagram.

x3

x2 F (f2)(x2)

x1 F (f1)(x1) F (f2)(x2) c3

c2 c3

c1 c2 c3

F (f1)

f1

idc2

g1

f2

idc3

f2

F (f2)

g2

idc3

F (g2)

The projection
∫
C F → C defines an opfibration. Hopefully, the above diagrams make
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this easy to see.

The Grothendieck construction gives us a correspondence between opfibrations and

psuedofunctors, and for us, correspondence between functors F : Bij → Cat and split

opfibrations
∫

F → Bij. If F is moreover a Cat-operad, then we can think of the operad

structure as determining a “partial disjoint union” on the Grothendieck construction
∫

F

that lifts the one on Bij. We then might want to consider “operads indexed on
∫

F”.

To make this explicit, let us define the following.

1.2.2 Definition. Given a functor π : C → Bij. A (strict) partial monoidal product on

C is:

(1) for every object X ∈ C(J), Y ∈ C(K) and j ∈ J , a choice of object X ⊔j Y ∈

C(J ⊔j K);

(2) For every pair of morphisms f : X → X ′, g : Y → Y ′ in C and j ∈ π(X), a choice

of morphism

f ⊔j g : X ⊔j Y → X ′ ⊔π(f)(j) Y ′

where f ⊔j g is an identity morphism if both f and g are;

(3) for every singleton set S = {s}, a distinguished object 1S ∈ C(S).

Such that the following hold:

(1) functoriality. For every pair of morphisms f : X → X ′, g : Y → Y ′ in C and

j ∈ π(X) the following commutes

X ⊔j Y X ⊔j Y ′

X ′ ⊔π(f)(j) Y X ′ ⊔π(f)(j) Y ′

idX ⊔jg

f⊔j idY f⊔j idY ′

idX′ ⊔π(f)(j)g

(1.4)

and the diagonal is equal to the morphism f ⊔j g.

(2) (strict) associativity. For objects X ∈ C(J), Y ∈ C(K), Z ∈ C(L) and j ∈ J, k ∈ K

14



then we have that

(X ⊔j Y ) ⊔k Z = X ⊔j (Y ⊔k Z) (1.5)

(3) (strict) unitality. For any singleton S = {s} and finite set J with j ∈ J we have

that

1S ⊔s X = X = X ⊔j 1{j}. (1.6)

The following is straightforward, and we omit the proof. It follows from comparing

Definitions 1.1.5 and 1.2.2, noting that the partial disjoint union on Bij is strict, and

since our opfibration is split, we have that the composition of the fibre functors is strict.

1.2.3 Lemma. Let π : C → Bij be a split opfibration. Then there is a bijective correspon-

dence between strict partial monoidal products on C and the structure of a Cat-operad

on the fibre functor C : Bij → Cat.

1.2.4 Definition. Let π : C → Bij be a split opfibration with a strict partial monoidal

product. A functor F : C → V is a C-indexed operad if for finite sets j ∈ J, K and

objects X ∈ C(J), Y ∈ C(K), there exists a morphism

◦j,X,Y : F (X)⊗ F (Y )→ F (X ⊔j Y )

and for each singleton S, there exists a morphism uS : 1→ F (1S) such that the analogues

of the diagrams in Definition 1.1.5 hold.

1.2.5 Theorem. Let π : C → Bij be a split opfibration with a strict partial monoidal

product. For any C-indexed operad F : C → V , the left Kan extension

Lanπ F : Bij → V

is an operad.
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Proof. Since π is an opfibration, for J ∈ Fin, the left Kan extension Lanπ F (J) is given

by the colimit over the fibre of J ,

Lanπ F (J) ∼= colim
C(J)

F.

The symmetric monoidal category V is closed, and so the tensor commutes with colimits.

Hence, for j ∈ J, K we have induced maps

⊙j,J,K : colim
X∈C(J)

F (X)⊗ colim
Y ∈C(K)

F (Y )
∼=−−→ colim

(X,Y )∈C(J)×C(K)
F (X)⊗ F (Y )

◦−−→ colim
Z∈C(J⊔jK)

F (Z).

The map ◦ is the map induced by the partial composition of F . It is then straightforward

to prove that ⊙j,J,K defines an associative partial composition for Lanπ F using the

universal property of colimits. We get two-sided units via the maps

1
uF (S)−−−→ F (1S)→ colim

C(S)
F,

that satisfies the required diagrams from similar arguments used previously.

After examining the proof of the previous theorem, one realises that it essentially

says that colimits along the fibres “preserve the operadic structure”. This leads to a

mild generalisation, where we instead take weighted colimits. First, let us observe that

if π : C → Bij has a strict partial monoidal product, then so does (π)op : (C)op →

(Bij)op ∼= Bij. This follows by noticing that for every pair of morphisms f : X → X ′,

g : Y → Y ′ in C and j ∈ π(X ′), we simply define

f ∗ ⊓j g∗ := (f ⊔π(f)−1(j) g)∗.
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This satisfies the conditions of Definition 1.2.2 (where the base is (Bij)op instead). Note

that we are identifying (Bij)op with Bij through the inverse functor in this case. In

particular, the f ∗ : X → Y in (Bij)op corresponds to the map f−1 : X → Y in Bij. Pay

attention here to the fact that the variance of these maps is the same.

1.2.6 Definition. Let π : C → Bij be a split opfibration with a strict partial monoidal

product. A C-indexed weight is a (C)op-indexed operad.

Suppose we have a split opfibration π : C → Bij such that (π)op is also a split

opfibration, a C-indexed operad F : C → V , and a C-indexed weight G : (C)op → V .

We can construct a functor

G⊗C F : Bij → V

as follows: First, as V is closed and bicomplete, we can do the canonical base-change

and upgrade our functors F , and G into enriched V -functors. For J ∈ Bij, we set

(G⊗C F )(J) := G
∣∣∣
(C)op(J)

⋆ F
∣∣∣
C(J)

.

Note that this is just the unenriched functor tensor product G|(C)op(J)⊗C(J) F |C(J). We are

viewing these as enriched functors to easily justify a future step. Given a map ϕ : J → K

in Bij, we get from the opfibration structures that there are natural transformations

(C)op((ϕ−1)∗) : G
∣∣∣
(C)op(J)

⇒ G
∣∣∣
(C)op(K)

and C(ϕ) : F
∣∣∣
C(J)
⇒ F

∣∣∣
C(K)

.

These behave well with compositions and induce maps in the colimit.

(G⊗C F )(ϕ) := G
∣∣∣
(C)op(J)

⋆ F
∣∣∣
C(J)

.

Hence, we have constructed a functor (G⊗C F ).
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We have phrased this construction in terms of V -weighted colimits to make use of

the fact that, as V is closed, V -colimits commute with the tensor. In particular, for

j ∈ J, K we have the composition

⊙j :
(

G
∣∣∣
(C)op(J)

⋆ F
∣∣∣
C(J)

)
⊗
(

G
∣∣∣
(C)op(K)

⋆ F
∣∣∣
C(K)

)
∼=−−→

(
G
∣∣∣
(C)op(J)

⊗G
∣∣∣
(C)op(K)

)
⋆
(

F
∣∣∣
C(J)
⊗ F

∣∣∣
C(K)

)
⊓j⊗⊔j−−−→

(
G
∣∣∣
(C)op(J⊔jK)

⋆ F
∣∣∣
C(J⊔jK)

)
.

and via the same reason as in Theorem 1.2.5, this induces an operad structure on (G⊗CF ).

To summarise, we have that:

1.2.7 Theorem. Suppose we have a split opfibration π : C → Bij such that (π)op is also a

split opfibration, a C-indexed operad F : C → V , and a C-indexed weight G : (C)op → V .

Then the induced functor G ⊗C F : Bij → V inherits an operadic structure from those

of F and G.

1.3 A category of trees

Operads and trees are intimately related. Trees are convenient combinatorial gadgets

to keep track of repeated compositions of an operad, and something we will make use

of throughout this dissertation. Roughly, by a tree, we mean a rooted tree – a graph

with no loops and a distinguished root node. Since we need to be exact later, we will

use the following model for trees. Other options include the broad posets [Wei17], and

polynomial functors [Koc11]. We denote the category of finite pointed sets by Fin∗.

1.3.1 Definition. A (symmetric) rooted tree T is the data of a finite set of vertices

V(T ), a pointed finite set of edges E(T ) where the distinguished point is the root edge

which we denote by r, and also two functions:
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(1) an injective function oT : V(T ) −→ E(T ) where we call oT (v) the output edge of

vertex v,

(2) a function iT : E(T )\{r} −→ V(T ) where we call edge e an input edge of vertex v

if iT (e) = v.

From this data we have the edge walking function

ωT : E(T )\{r} −→ E(T )

given by ωT = oT ◦ iT . We require that for every non-root edge e, there is a finite k such

that ωk
T (e) = r. The edge walking function lets us define a descendant poset structure

on edges where for edges e, f ∈ E(T ) we have e ≤d f if ω(f)k = e for some k. We also

have a descendant poset structure on vertices in the same manner.

1.3.2 Example. Let us give a quick illustration of this definition. Consider fig. 1.1. This

is a tree with vertex set

V(T ) = {x, y, w, u}

and edge set

E(T ) = {a, b, c, d, e, f}

where f is the basepoint of E(T ). The functions iT and oT are also illustrated. The

descendant poset structure then corresponds to edges coming from lower edges.

Given a tree T , we will define two functors (viewing sets as discrete categories)

|−| : V(T )→ Fin

v 7→ i−1
T (v)
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x

y

a

w

b

d

u

c

e

f

iT

oT

Figure 1.1: An example of a rooted tree

and,

[−] : V(T )→ Fin∗

v 7→ i−1
T (v) ∪ oT (v)

where the output edge oT (v) is the base point of [v]. We will call the edges |v| the input

edges of v and the edges [v] the adjacent edges of v.

1.3.3 Convention. We will restrict ourselves to only trees where each vertex v ∈ V(T )

is the set |v|. i.e., the vertices are the sets of its incoming edges. We want to do this so

our trees are completely determined by E(T ) and the relations between them (This is

made explicit by broad posets). If we don’t, we will not have a strict identity in some

future constructions.

Some notation and terminology for trees that we will use are:

• A tree with no vertices and a single edge is called a trivial tree.

• The vertex v of a tree T such that oT (v) (if it exists) is the root edge is called the

root vertex.

• A vertex with no input edge is called a stump.
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x = {d, e}

y = {a, b}

a

w = ∅

b

d

u = {c}

c

e

f

Figure 1.2: The tree of fig. 1.1 using Convention 1.3.3 on vertices

• A tree with a single vertex is called a corolla. Given a based finite set (X, x0), we

denote by tX the corolla with edge set E(tX) = X. Given a tree T and vertex

v ∈ V(T ), the corolla based at v is given by the corolla with edge set [v]. The

corolla based at v is then t[v].

• Edges that aren’t output edges of vertices are called input edges of the tree. We

will denote the set of input edges of T by |T |.

• The set of internal edges (those edges neither an input edge nor a root edge) will

be denoted by Einn(T ).

• The valence or degree of a vertex is the cardinality of the input edges |v|. A vertex

with one input edge is called an unary vertex

Given a tree T , we will use the following constructions generated from T .

(1) For a unary vertex v ∈ V(T ), the tree T\v is given by removing the edge oT (v)

(and the vertex v), and for e ∈ |v|, redefining the edge output to be oT \v(i) = ωT (v).

Geometrically, this removes the vertex v and reattaching the input edges to the

vertex to which v was attached. We will not apply this to the root vertex. See

fig. 1.3b.
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(a) Tree T

x

y

a

w

b

d c

f

(b) Tree T\u

x′ = {a, b, e}

a

w

b

u

c

e

f

(c) Tree T/d

Figure 1.3: Examples of tree constructions.

(2) For an internal edge e ∈ Einn(T ), the tree T/e is given by removing the edge e and

joining the vertices a = o−1
T (e) and b = iT (e) into a new vertex given by |b| ⊔e [a].

Geometrically, this corresponds to collapsing the edge e. See fig. 1.3c.

(3) Given two trees T and T ′, for an input edge e ∈ |T | the tree grafting along e,

written T ◦e T ′ is given by removing the root edge of T ′, taking the union of the

edge and vertex sets and setting oT ◦eT ′(v) = e where v is the root vertex of T ′.

1.3.4 Definition. We will define a category T as follows: The objects will be rooted

trees. The morphisms will be maps on the vertices generated by three kinds of maps:

(1) inner face maps. Given an internal edge e ∈ Einn(T ), we have inner face maps

dv : V(T )→ V(T/e)

these are identity on vertices except those on the collapsed edge which are mapped

to the joined vertex in T/e.

(2) degeneracies. For a vertex v ∈ V(T ) of degree 1, we have degenerate maps

sv : V(T\v)→ V(T ).
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This is the injective map on vertices that misses the vertex v of T .

(3) tree isomorphisms. Bijective functions V(T )→ V(T ′) that commute with the edge

walking functions ω.

We will write Tiso for the subcategory generated by just the isomorphisms, and Tinert for

the subcategory generated by isomorphisms and degeneracies.

1.3.5 Remark. Readers familiar with the dendroidal category can identify this with a

subcategory of the opposite dendroidal category. Another related interpretation is that

this category is the category of “augmented dendroidal intervals”.

We have the following, which is dual to the usual factorisation in the dendroidal

category (see [MW07], also [HM22, Proposition 3.9] for a direct proof).

1.3.6 Lemma. For a morphism f : T → T ′ in T. There exists a factorisation

f : T
F−→ S

I−→ S ′ D−→ T ′

where F is an inner face map, I an isomorphism, and D a degeneracy map. Moreover,

given any other factorization (F ′, I ′, D′) there exists unique isomorphisms α and β such

that the following commutes.

S S ′

T T ′

S ′′ S ′′

I

α

D

β

F

F ′

I′

D′

The input function on trees |T | defines a functor

π : T → Bij.

This maps into Bij because the only morphism of our category that affects the inputs of
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the tree are the isomorphisms. In particular, we see that for face maps and degeneracy

maps, we have that π(d) = π(s) = id|T |. Since each morphism ϕ in Bij has a lift starting

(ending) at any object in the fibre of the source (target) of ϕ that is an isomorphism,

we conclude that the functor π is a split bifibration. Moreover, an easy check shows

us that tree grafting satisfies the conditions of a strict partial monoidal product from

Definition 1.2.2. Hence we have the following:

1.3.7 Lemma. The categories Tiso, Tinert, and T have the structure of Cat-operads

induced from tree grafting.

1.4 Resolutions of operads

As mentioned in remark 1.3.5, we can consider the category T as a “ category of augmented

dendroidal intervals”. Our purpose for introducing them is that they are natural categories

to build simple operadic resolutions in a similar way the augmented simplex category

leads to simplicial resolutions. This section will introduce some notation and give a

simple example of this approach in action.

1.4.1 Definition. Given a G-symmetric collection K : Bij → TopG, we define a functor

Riso(K) : Tiso → TopG given on objects by

Riso(K)(T ) :=
{

f ∈ TopG

(
V(T ),

∐
v∈V(T )

K(|v|)
) ∣∣∣∣ f(v) ∈ K(|v|)

}
.

This is topologized as a subspace of ∏v∈V(T ) K(|v|). One can think of f ∈ Riso(K)(T ) as

a vertex labelling function that labels a vertex of valence J with an element from K(J).

The functor on an isomorphism ϕ : T → T ′ is given by Riso(K)(ϕ)(f) = f ◦ ϕ−1, the

pullback of the inverse.
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1.4.2 Definition. Given a based G-symmetric collection K : Bij → TopG, we can

extend the previous functor to Rinert(K) : Tinert → TopG where on degeneracy maps

sv : T\v → T , we set

Rinert(K)(sv)(f) =


f(w) w ̸= v

∗ w = v.

That is, it’s the map extending f by putting the base point on the new vertex v.

1.4.3 Definition. Given a G-operad K : Bij → TopG, we can extend the previous

functor to R(K) : T → TopG where on internal face maps de where the edge is e = (v, w)

by

R(K)(de)(f)(u) :=


f(u) u ̸= v, w

f(w) ◦e f(v) u = {v, w}.

That is, we compose the vertices along the collapsing edge.

Since tree grafting doesn’t affect the vertices, the following is straightforward.

1.4.4 Lemma. Let T∗ = T,Tinert, or Tiso. Tree grafting is a strict partial monoidal

product on the tree category T∗ and the functor R∗(K) : T∗ → TopG, from the correct

form of Definitions 1.4.1 to 1.4.3, has a partial composition product given by taking the

coproduct of functions.

So R∗(K) are T∗-indexed operads. From Theorem 1.2.5, the left Kan extensions of

these then have induced operad structures. These operads are familiar. Let σ : Bij → T∗

be the functor that maps J 7→ t[J⊔∗]. Note that σ is cofinal for T and πσ = id. Since

the left Kan extension is given by the colimit over each fibre, we immediately have that

Lanπ R(P ) ∼= P is an operad.

1.4.5 Lemma. The composite functor

F = Lanπ ◦R : CollG → OperG
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is the free functor from G-collections to G-operads. Similarly,

F∗ = Lanπ ◦R : CollG∗ → OperG

is the free functor from based G-collections to G-operads.

Proof. We will just prove this for F. The other case follows similarly. Let K ∈ CollG,

and P ∈ OperG. We will denote the forgetful functor OperG → CollG by U . Take any

CollG-map f : K → UP and apply the functor Riso to get

Riso(f) : Riso(K)⇒ Riso(UP ).

Note for later that Riso is faithful on CollG. The isomorphism Lanπ R P ∼= P corresponds

to a map R(P )→ P ◦ π which we precompose with the inclusion functor i : Tiso → T to

get

R(P ) ◦ i⇒ P ◦ π ◦ i.

Notice that R(P ) ◦ i = Riso UP and so we get a composite

Riso(K)⇒ Riso(UP ) = R(P ) ◦ i⇒ P ◦ π ◦ i.

Via the left Kan extension adjunction, we get that this corresponds to a map

Lanπiso Riso(K)⇒ Lanπiso Riso(UP ) α=⇒ P

where πiso = π ◦ i. Since Riso is faithful we see that (UP, α) is terminal in Lanπiso Riso /P

and hence we conclude that Lanπiso Riso is left adjoint to U .
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1.5 Homotopy of equivariant operads

We denote the category of topological G-spaces and equivariant maps TopG. A G-

operad is an operad in Oper TopG =: OperG. A reduced2 G-operad P is one in which

P (0) = P (∅) = ∗. We will denote the category of reduced operads by OperG
0 . An

important example of G-operads is the following.

We recall the following model structure on TopG (The homotopical structure is due

to Bredon [Bre67]).

1.5.1 Theorem. For any family of subgroups F of G, there exists a cofibrantly generated

model structure on TopG, called the F-model structure, where

• a map f : X → Y in TopG is a fibration (weak equivalence) if and only if fH :

XH → Y H is a fibration (weak equivalence) in Top for all H ∈ F,

• and the generating (trivial) cofibrations are given by

IF =
{

G/H × Sn → Dn+1
∣∣∣∣∣ n ≥ 0, H ∈ F

}

JF =
{

G/H ×Dn → Dn

∣∣∣∣∣ n ≥ 0, H ∈ F

}
.

We will primarily work in the model structure associated with the complete family.

Unless we specify otherwise, weak equivalence, fibrations, and cofibrations mean being

taken with respect to the complete model structure.

Using the equivalence between Bij-modules and Σ-modules, we have that

CollG := Coll(TopG) ≃
∏
n≥0

TopG×Σn .

So given a sequence of subgroup families {Fn}n∈N where F is a subgroup family of G×Σn,
2These are sometimes called unital operads.
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we can put a model structure onto CollG via the product model structure. A result of

Gutiérrez-White [GW18] tells us that we can transfer this model structure to Oper(TopG)

via the free-forgetful adjunction

F : CollG ⇄ OperG : U.

1.5.2 Theorem. For a sequence of subgroup families {Fn} as above, there exists a

model structure on OperG, called the F-model structure, where a morphism G-operads

f : P → Q is (1) a fibration (weak equivalence) if the underlying morphism of symmetric

collections Uf : UP → UQ is a fibration (weak equivalence) in the product model

structure, (2) a cofibration if it has the left lifting property with respect to the acyclic

fibrations.

We will generally work in the complete version, just as in the case of TopG.

We won’t use the model structures too much in this thesis. Much of what we do

will be in terms of explicit homotopies.

1.5.3 Definition. Given a map of G-symmetric collections A and B, a G-homotopy H

of symmetric collections from A to B, written as

H : A× I → B

is the data of a collection of maps

{H(J) : A(J)× I → B(J)}J∈Bij

where each H(J) is G× Aut(J)-equivariant.

1.5.4 Remark. Another way to think of Definition 1.5.3 is to observe that there is a

28



faithful functor

ι : TopG ↪→ CollG

where ι(X) is the symmetric collection given by

ι(X)(J) = X

for all J ∈ Bij. Here we take the trivial Aut(J)-action on X. Then a G-homotopy of

symmetric collections is a morphism of symmetric collections

H : A× ι(I)→ B.

1.5.5 Remark. Since the model structure on OperG is the transferred model category

from the product model structure on CollG. A morphism of operads f : P → Q is a

weak equivalence if it has a weak left and right inverse in symmetric collections CollG.

1.5.6 Convention. We will often call symmetric collections just spaces and use common

terminology of topology for symmetric collections. When we say this, we view symmetric

collections as diagrams of spaces, or, phrased in the terminology of [Man+01], Bij-spaces.

Properties (definitions) that we say the space has means that every space in the diagram

has that property (satisfies that definition).

A stronger form of homotopy of operads is the following.

1.5.7 Definition. We can put a monoid structure on the unit interval I by setting

ab = max(a, b) for a, b ∈ I. Then ι(I) has the structure of an operad. If P and Q are

operads, then a G-homotopy of operads is an operadic map

H : P × ι(I)→ Q
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1.6 Little disks and EV -operads

The following is an operad of central importance to us.

1.6.1 Definition. Given a G-representation V and finite subrepresentation W , a little

disk in W is an affine map f : D(W )→ D(W ) of the form f(v⃗) = αv⃗ + b⃗ where α ∈ R>0

and b⃗ ∈ D(W ). Here D(W ) means the unit disk in W . We define a G-operad DW (V )

where, for J ∈ Fin, the component DW (V )(J) is given by tuples (fj)j∈J of little W -disks

in V such that

fi(D(W )) ∩ fj(D(W )) = ∅

for all i ̸= j. The operadic composition is induced by function composition. Explicitly,

given K
α−→ J in Fin, gj = (gj,k)k∈Kj

∈ DW (V )(Kj), and f = (fj)j∈J ∈ DW (V )(J) we

have that

(f ◦ (gj)j∈J)k := fα(k) ◦ gj,k

For finite subrepresentations W ⊆ W ′ we have a morphism of operads DW (V )→ DW ′(V )

induced by the map

f(w⃗) = αw⃗ + b⃗ 7→ f(w⃗′) = αw⃗′ + b⃗

on little disks. The G-operad of equivariant little V -disks is then given by

D(V ) = colim
W ⊆V

DW (V ).

1.6.2 Definition. A G-operad is an EV -operad if there exists a zigzag of weak equiva-

lences of G-operads to the little disk operad D(V ).
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1.7 The Boardman-Vogt tensor product

Given two operads P and Q, and an object X which has the structure of a P -algebra

and Q-algebra.

ηP : P → End(X)

ηQ : Q→ End(X)

We say these algebra structures interchange on X if for each (K, L) ∈ Bij × Bij the

following commutes and is natural for each α ∈ P (K) and β ∈ Q(L).

∏
l∈L (∏k∈K X) ∏

l∈L X

∏
(k,l)∈K×L X X

∏
k∈K (∏l∈L X) ∏

k∈K X

∏
l∈L

ηP (α)

ηQ(β)∼=

∼= ∏
k∈K

ηQ(β)

ηP (α)

This diagram amounts to the X being a P -algebra in Q-algebras and vice-versa. Note

that the isomorphisms on the left shuffle the factors around. An alternative version

of this interchange condition is that the following commutes and is natural for each

K, L ∈ Bij.
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P (K)×∏k∈K Q(L) E(K)×∏k∈K E(L)

P (K)×Q(L)

E(K × L)

Q(L)× P (K)

Q(L)×∏l∈L P (K) E(L)×∏l∈L E(K)

ηP

∏
k∈K

ηQ

γE

∼=

id ×∆

id ×∆

ηQ

∏
l∈L

ηP

γE

where E = End(X) is the endomorphism operad of X. In general, this diagram works

for any pair of operad maps P → Z, Q→ Z.

1.7.1 Definition. Given operad maps P
f−→ Z and P

g−→ Z, we say these interchange

if they satisfy the interchange relations above. In this case we will call the pair (f, g)

an interchanging pair. Given any morphism of operads W
h−→ Z, then the composition

induces a morphism of interchanging pairs (f, g) h−→ (hf, hg) and we get a category of

interchanging pairs.

The Boardman-Vogt tensor product is then defined by the following universal prop-

erty.

1.7.2 Definition. The Boardman-Vogt tensor product is the initial object in the category

of interchanging pairs. For operads P and Q, we will denote this by (iP , iQ) where

P
iP−→ P ⊗Q

iQ←− Q.

Of course, we haven’t justified that this exists. We will provide a proof of this in a

future chapter.
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Chapter 2
Little star operads

In this chapter, we build a generalisation to equivariant little disks that we call little star

operads. The purpose of this generalisation is two-fold: (1) we want to build equivariant

versions of other little shape operads that are better suited for additivity results that

generalise those of Dunn [Dun88]; and (2) we want to show that these operads all encode

the same operad up to homotopy. We do this in this chapter by first examining the

relationship between embedding operads and the “ambient” operad, which doesn’t enforce

a non-overlapping condition. We also restrict the “flavour of embedding” which we call

an affine type. This leads us to our definition of little star operads SM(T ), where M is

the affine type, and T are star-shaped subsets of a G-representation V . We then start

working on understanding how the affine type M and star-shape T change the homotopy

type of the operad. To do this, we build intermediate little star operads SM(S, T ) for two

different star shapes S and T . We will use these to show that all our little star operads

for the same representation are weakly equivalent. This generalises the well-known fact

that the little cubes and little disks are weakly equivalent in the non-equivariant setting.

Throughout this chapter, a G-representation V means a countable sum of finite di-

mensional orthogonal G-representation with an inner product. We will also use algebraic

objects in TopG, which we will call G-(algebraic object). e.g., a group object in TopG
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will be called G-group.

2.1 Embedding operads and affine types

First of all, let us recall what the embedding operad is non-equivariantly.

2.1.1 Definition. Given a topological space U ⊆ Rn, the embedding operad Emb(U)

has J-component given by J-tuples (fj)j∈J where each fj are embeddings U → U and

fi(U) ∩ fj(U) = ∅

for all i ̸= j. Composition is given by function composition, just as in the little disk

operad.

The non-equivariant little cube and little disk operads are just special cases where we

restrict the form the embeddings take and use specific subsets U . One thing to observe

is that the embeddings of little cubes and disks are well-defined homeomorphisms on

the entirety of Rn. Little star operads will be embedding operads where we have chosen

slightly more general kinds of embeddings and shapes than the little cube and disks.

As the name suggests, we want to embed the following type of shape.

2.1.2 Definition. Given a G-representation V , a G-star domain S in V is a G-invariant

subset S ⊆ V such that 0 ∈ S and for all points x ∈ S and t ∈ [0, 1], we have that tx ∈ S.

We also require that

(1) S is open, and

(2) it is non-degenerate: for all ε > 0, there exists a δ > 0 such that

(1− ε)S + B(0; δ) ⊆ S.

i.e., if we shrink S by any amount, then there is some small translation perturbation
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we can do that remains in the original shape S.

A general or non-equivariant star domain S is an {e}-star domain.

Besides the shape between the little disks and cubes, the type of embedding is slightly

different. For little disks, these embeddings are translations and scaling. However, for

cubes, the embeddings are rectilinear. i.e., maps of the form v⃗ 7→ Av⃗ + b⃗ where A is

diagonal with strictly positive diagonal elements. We want to consider both these kinds

of embeddings and combinations of them. One viewpoint we take is that for a given

G-representation V , we want to treat the indecomposable subrepresentations as “axis’ of

V ”. We don’t want to scale differently in different directions in the same indecomposable.

On the other hand, scaling differently for different indecomposables is fair game.

2.1.3 Definition. For a G-representation V , a decomposition is a collection of sub G-

representations {Vi}i∈I such that ⊕i∈I Vi = V . We will call it a finite decomposition if

|I| is finite. If every Vi is finite-dimensional, we will say it is a decomposition into finite

subrepresentations.

The type of maps that build the equivariant little disks is the following type.

2.1.4 Definition. For a G-representation V , and finite dimensional subrepresentation

W ⊆ V , we have a topological G-group given by

ΛW (V ) :=
{

w 7→ α idW w + b

∣∣∣∣∣ α ∈ R>0, b ∈ W

}

where the G-action is given by conjugation. This is topologized as a subspace R>0 ×W .

For each inclusion W ⊆ W ′ there exists a continuous injective G-homomorphisms

ΛW (V ) ↪→ ΛW ′(V )

(w 7→ αw + b) 7→ (w′ 7→ αw′ + b).
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We then define the G-group of rigid dilations on V by

Λ(V ) := colim
W ⊆V

ΛW (V ).

The equivariant candidate for the types of embeddings we want is then the following.

2.1.5 Definition. Let V be a G-representation and F = {Vi}i∈I be a decomposition of

V with each Vi finite, or I finite. For each inclusion of subsets K ⊆ J ⊆ I where K, J

are finite, we have a G-homomorphism

∏
k∈K

Λ(Vk) ↪→
∏
j∈J

Λ(Vj)

(fk)k∈K 7→ (f j)j∈J

where

f j =


fj if j ∈ K

idVk
otherwise.

The affine type on V generated by the decomposition F is given by

M(F ) := colim
K⊆I

∏
k∈K

Λ(Vk).

Note that we can identify M(F ) with the subspace

M(F ) ∼= R⊕̃|I|
>0 × V

where

R⊕̃|I|
>0 = {(λi)i∈I | λi ̸= 1 for finitely many i}.
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i.e., R⊕̃|I|
>0
∼= R⊕|I| under a homeomorphism induced by the exponential.

2.1.6 Definition. Given any f ∈ Λ(V ), we have that f(D(V )) = λD(V ) for a scalar

λ ∈ R>0. We will call this scalar λ the dilation factor of f and denote it by δ(f). In

general, for f ∈ M(F ), restricting f onto any Vi ∈ F has a dilation factor. Moreover,

there are only finitely many possible values as we iterate over Vi. Hence, the minimal

dilation factor exists, and we set in this case ∆(f) := mini∈I δ(f |Vi
).

2.1.7 Remark. It is also possible to extend affine types to include rotations. This gives us

generalisations for operads like framed disks and the skew-cubes of Dwyer-Hess-Knudsen

[DHK18]. Much of what we do extends to this context; however, the number of edge

cases and other complications that arise increases exponentially. Since these cases aren’t

directly related to the overarching thesis of this dissertation, we have decided not to

include these types to make our current presentation more transparent.

2.2 Little star operads of a single star domain

Before we move on to defining little star operads, there is one thing we would like to

clarify. While embedding operads are geometric, they live in very much algebraically

defined operads – a viewpoint we will find helpful throughout this dissertation. To explain

this, let us review an important adjunction between monoids and operads ([Igu82], see

also [FV15, Lemma 7.2]).

2.2.1 Definition. Given a topological G-monoid A, we can construct a reduced G-operad

O(A) as follows. The J-ary components are given by

O(A)(J) =
∏

AJ ,

and the composition is given by distributing the multiplication across the elements. That
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is, for a map of finite sets α : J → K, the composition is

γ(α) : O(A)(K)×
∏

k∈K

O(A)(Jk)→ O(A)(J)

((ak)k∈K , ((bj)j∈Jk
)k∈K) 7→ (aα(j)bj)j∈J .

2.2.2 Theorem. The construction above is functorial and has a left adjoint given by

taking the 1-ary components.

OperG
0 Mon(TopG)

O

(·)(1)

⊣

All our operads of interest then fall into operads of this type once we forget the

non-overlapping condition of the embedding operads. For instance, for D the unit disk

in V , if we write Λ(V )(D) for the G-monoid of all maps f ∈ Λ(V ) such that f(D) ⊆ D.

Then the little disk operad naturally sits inside the following.

D(V ) ⊆ O(Λ(V )(D)) ⊆ O(Λ(V ))

Extending this idea, we define a coloured operad as a natural space for the little star

operads to live in. First, the following is the generating G-monoid we want to construct

it from.

2.2.3 Definition. Given an affine type M of V , and general star domains S, T , define

a subspace of M given by

M(S, T ) := {f ∈M | (g · f)(S) ⊆ T for all g ∈ G}.
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2.2.4 Remark. When S and T are G-star domains, then this simplifies and we have

M(S, T ) = {f ∈M | f(S) ⊆ T}.

2.2.5 Remark. It is natural to think of elements f ∈ M(S, T ) as restricted functions

f : S → T ; indeed, we have chosen notation to reflect this. However, it is crucial to

keep in mind that they are not. For instance, the group conjugation on f wouldn’t make

sense. We may occasionally refer to S as the domain and T as the codomain - but we

never restrict our functions in this way.

2.2.6 Example. Let us illustrate what the space M(S, T ) can look like. Consider the

nontrivial irreducible representation of C3 = Z/3Z⟨τ⟩; the affine type M is the rigid

dilations Λ, S is a triangle, and T is a square. We have two maps f, g ∈M as described

in fig. 2.1 by their images. The map f is in M(S, T ) because its entire orbit is inside

f

τ · f

τ 2 · f

g

τ · g

τ 2 · g

Figure 2.1: Example of M(S, T ) for C3 representation.
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the square. The map g, on the other hand, isn’t because its orbit isn’t contained in the

square. Note that for any g ∈ G, (g · f)(S) ⊆ T is equivalent to f(g−1S) ⊆ g−1T , and so

we can instead geometrically view the containment condition as not requiring the orbit

of f being contained, but instead that the orbit of the domain shape is included in the

orbit of the codomain shape.

2.2.7 Lemma. The subspace M(S, T ) is G-invariant and closed in M . Moreover, if

T ⊆ S, it is a G-semigroup, and if S = T , it is a G-monoid.

Proof. The fact it is G-invariant is clear from the definition. The semigroup and monoid

statements are clear. Let us now prove that this is a closed subspace of M . Observe

that M is a metric space so we can test closure with sequences. Suppose we have a

sequence (fk)k∈N in M(S, T ) that converges to f ∈ M . Suppose for contradiction that

f(S) ⊈ T . Since f is a homeomorphism on V and S is open, we have that f(S) ⊈ T

and there exists a point f(x) ∈ f(S)\T . Now, we have that fk(x)→ f(x), and we have

that fk(x) ∈ T , which is a contradiction. Hence f(S) ⊆ T . We can similarly show that

(g · f)(S) ⊆ T and so f ∈M(S, T ).

2.2.8 Definition. Given an affine type M on G-representation V , the coloured ambient

star operad A(M) is a coloured TopG-operad which has as set of objects ob(A(M)) star

domains of V . The morphisms are given by

A(M)({S1, . . . , Sn}, T ) = M(S1, T )×M(S2, T )× · · ·M(Sn, T )

and composition is given by distributing across tuples (as in O(M)).

2.2.9 Definition. We also have the coloured star embedding operad E(M) given as a

suboperad of A(M) with the same objects and morphisms E(M)({S1, . . . , Sn}, T ) given
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by (fi)n
i=1 ∈ A(M)({S1, . . . , Sn}, T ) such that for all i ̸= j, g ∈ G,

(g · fi)(Si) ∩ (g · fj)(Sj) = ∅.

In general, we will write nS := {S, . . . , S︸ ︷︷ ︸
n times

} and the corresponding 1-coloured operads

we will write slightly differently as

AM(S)(n) := A(M)(nS, S)

EM(S)(n) := E(M)(nS, S).

Let us record a lemma about their topology here.

2.2.10 Lemma. For affine type M on V and star domains S1, . . . , Sn, T , the sets

A(M)({S1, . . . , Sn}, T ) and E(M)({S1, . . . , Sn}, T )

are closed in Mn. One consequence of this is that the induced subspace topologies are

compactly generated.

Proof. That A(M)({S1, . . . , Sn}, T ) is closed in Mn follows from Lemma 2.2.7.

We will show that the sets

E(M)({S1, . . . , Sn}, T ) :=
{

(f1, . . . , fn) ∈Mn

∣∣∣∣∣ (g·fi)(Si)∩(g·fj)(Sj) = ∅ for all i ̸= j

}

are closed in Mn. This implies the rest of the lemma as

E(M)({S1, . . . , Sn}, T ) = E(M)({S1, . . . , Sn}, T ) ∩A(M)({S1, . . . , Sn}, T ).
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Suppose we have a sequence (fk)k∈N where

fk = (fk
1 , . . . , fk

n) ∈ E(M)({S1, . . . , Sn}, T )

that converges to f = (f1, . . . , fn) in Mn. Let S be an arbitrary general star domain.

We must have that the minimum dilation factors converge

∆(fk
i )→ ∆(fi).

Hence, for some ϵ > 0 small enough, there exists K > 0 such that

B(0; ϵ) ⊆ fk
i (B(0, 1)) for all i = 1, . . . , n, and k > K.

Suppose x ∈ S. Then for some α > 0 we have that x ∈ B(x; α) ⊆ S since S open, and

as fk
i are affine maps, we get for all k > K,

B(fk
i (x); αϵ) = B(fk

i (0); αϵ) + fk
i (x)

⊆ fk
i (B(0; α)) + fk

i (x)

= fk
i (B(0; α) + x)

= fk
i (B(x; α)).

In summary, for any x ∈ X, and i, we can find α > 0 with B(x; α) ⊆ S such that for all

k > K we have B(fk
i (x); αϵ) ⊆ fk

i (B(x, α)).

Now, suppore we have for some i ̸= j that there exists y ∈ fi(Si)∩ fj(Sj). Then for

some x1 ∈ Si, and x2 ∈ Sj such that fi(x1) = fj(x2) = y. The previous argument tells

us that we can find α > 0 with B(x1; α) ⊆ Si and B(x2; α) ⊆ Sj such that for all large
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enough k, we have that

B(fk
i (x1); αϵ) ⊆ fk

i (B(x1; α)),

and

B(fk
j (x2); αϵ) ⊆ fk

j (B(x2; α)).

However, fk
i (x1), fk

j (x2)→ y and so eventually y is in both B(fk
i (x1); αϵ) and B(fk

j (x2); αϵ).

This contradicts that fk
i (Si) ∩ fk

j (Sj) = ∅. Hence fi(Si) ∩ fj(Sy) = ∅, and we get similar

statements for the conjugated elements. Therefore we are done.

Unsurprisingly, we define the following.

2.2.11 Definition. Given a G-representation V , affine type M on V , and general star

domain S. The little star operad SM(S) is given by

SM(S) := EM(S).

Some examples of little star operads are the following.

2.2.12 Definition. For a G-representation V and M an affine type, let C(V ) be the

unit cube with respect to some orthonormal basis. The equivariant little cube operad is

CM(V ) := SM(C(V )).

2.2.13 Remark. The equivariant little cubes CM(V ) are very similar to the little skew

cube operads of Dwyer-Hess-Knudson [DHK18].

2.2.14 Definition. Let V be a G-representation and suppose S = {s⃗i}i∈I is an affine

independent subset of V such that (1) its affine span aff-span(S) is the entirety of V ,

and (2) the interior of its convex hull conv S contains the origin. Then the S-simplex

∆S = conv(S) =
{∑

i∈I

λis⃗i

∣∣∣∣∣ ∑
i∈I

λi = 1 where λi ≥ 0, finitely many non-zero
}
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is a general star domain. We call the resulting little star operad the equivariant little

simplex operad.

DS
∆(V ) := SΛ(V )((∆S)◦)

2.2.15 Definition. Given a G-representation V and a decomposition F = {Vi}i∈I , we

can choose affine independent subsets Si for each subspace Vi, and get a corresponding

simplex ∆Si as in Definition 2.2.14. The equivariant little product simplex operad for the

decomposition F is given by

DF
∆(V ) := SM(F )

(
(×i∈I∆Si)◦

)
.

2.3 Little star operads of pairs of star domains

We want to compare little star operads SM(S) for different star domains S. Given

another star domain T , the little star operads SM(S) and SM(T ) are different subspaces

of the ambient star operad AM(V ), or in a more refined sense, objects of the coloured

embedding operad E(M). From this viewpoint, there is an almost obvious candidate

to use as a go-between for SM(S) and SM(T ). Consider G-star domains S, T such that

T ⊆ S. Then for all n we have that

E(M) (nS, T ) ⊆ E(M) (nS, S) = EM(S)(n).

You can think of this as reinterpreting functions into ones with a larger codomain -

although we never actually restrict our functions (See remark 2.2.5). Similarly, we have

that

E(M) (nS, T ) ⊆ E(M) (nT, T ) = EM(T )(n).
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This can be viewed as a restriction on a smaller domain. Observe that we can view

{E(M) (nS, T )}n as a sub-pseudo operad of EM(T ) since it is closed under composition,

but it doesn’t contain the unit. Note that a similar statement holds for A(M).

2.3.1 Definition. Given an affine type M on V and G-star domains T ⊆ S then we

have the G-pseudo operads with n-arity components given by

EM(S, T )(n) := E(M) (nS, T )

AM(S, T )(n) := A(M) (nS, T ) .

Ultimately we want to compare the embedding 1-operads EM(S) for different S by

using EM(S, T ). Writing ι for the inclusion T ↪→ S, this situation above can be drawn

as:
EM(S, T )

SM(T ) = EM(T ) EM(S) = SM(S)
ι∗ ι∗

The problem is that this is a diagram in pseudo operads, not operads. We will build

little star operads of pairs that are a correction to this problem.

2.3.2 Definition. For a G-representation V and affine type M generated by the decom-

position F = {Vi}. Write ΛF
I (V ) for the G-monoid

ΛF
I (V ) :=

∏
i∈I

{λi idVi
| λi ∈ (0, 1] and finitely many λi ̸= 1.}

The main idea to introduce an identity to the pseudo operads EM(S, T ) is to observe

that for any f ∈M(S, T ) and α ∈ ΛF
I (V ) we have that

f ◦ α, and α ◦ f ∈M(S, T )
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since α(S) ⊆ S and α(T ) ⊆ T . Given a general element f = (fi)i∈I ∈ EM(S, T )(I) where

|I| > 1. We have for any i ̸= j ∈ I that

fi ◦ α(S) ∩ fj ◦ α(S) ⊆ fi(S) ∩ fj(S)

= ∅

and

α ◦ fi(S) ∩ α ◦ fj(S) = α (fi(S) ∩ fj(S))

= ∅

Hence, composition with elements of ΛF
I (V ) doesn’t change the non-intersecting condition.

This means if we add elements from ΛF
I (V ) to the unary component of EM(S, T ), this

gives it an identity, but also, we don’t need to change any other component to preserve

its operad structure. We will use this idea to define little star operads. However, we will

also give a variation required for the next chapter.

2.3.3 Definition. Let M = M(F ) be an affine type generated by a decomposition

F = {Vi} of V , S, T general star domains such that T ⊆ S. The little star operad for the

pair S, T , SM(S, T ), is the operad

EM(S, T ) ∪ ΛF
I (V )

If S = T , observe that ΛI(V ) ⊆ EM(S, S) and we have SM(S) = SM(S, S).

2.3.4 Example. Consider the case non-equivariant case when V = R2. Let C =

[−1, 1] × [−1, 1] and D be the unit disk, then D ⊆ C and so we have the operad

SM(C, D). For arity > 1, we can visualise elements as in fig. 2.2a, which are embeddings

of cubes into the disk that don’t overlap. For arity 1, we now allow our cube to be outside

the disk as long as it is centred at the origin, see fig. 2.2b.
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(a) An element of SM (C, D)(3) (b) An element of SM (C, D)(1)

Figure 2.2: Elements of the operad SM(C, D).

We also have the following variation, which has slightly better properties for the

next chapter.

2.3.5 Definition. Let M = M(F ) be an affine type generated by a finite decomposition

F = {Vi} of V . For star domains T ⊆ S in V , the thick little star operad is given by

SM
t (S, T ) := EM(S, T ) ∪ (M(S, S) ∩M(T, T )) .

Here we again interpret the G-monoid (M(S, S) ∩M(T, T )) as a G-operad in degree 1.

Note that we still have SM
t (S) = SM(S). We will often write SM

(t)(S, T ) in statements to

signify that they hold for both the normal and thick variants of little star operads.

Our small discussion at the beginning of this section justifies that SM(S, T ) is an

operad. Let us now show that the fat variation is also an operad. We will also show that

it satisfies a topological property we will need for the next chapter (and also the reason

we call it “thick”)

2.3.6 Lemma. The thick little star operad SM
t (S, T ) is a G-operad. Moreover, for each

s ∈ ΛF
I (V ), and λ ∈ (0, 1), there exists an open ball centered at λs of M , B(λs, ε) ⊆M ,

such that B(λs, ε) ⊆M(S, S) ∩M(T, T ).

Proof. Write M for M(S, S) ∩M(T, T ). Given any g ∈ M and f ∈ EM(S, T ), we have
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that

(f ◦ g)(S) ⊆ f(S) ⊆ T

(g ◦ f)(S) ⊆ g(T ) ⊆ T.

Hence, for any general element (fi)i∈I ∈ EM(S, T )(I) we have for g ∈ M, (gi)i∈I ∈ M
I

that

g ◦ (fi)i∈I , (fi ◦ gi)i∈I ∈ EM(S, T )(I).

So SM
t (S, T ) is an operad.

The second statement follows from the non-degenerate condition we impose on star

domains. We require that the decomposition F is finite so that λs is a well-defined

element of ΛF
I (V ). Since λ < 1 we have that λs is shrinking in all directions. Using the

non-degenerate condition of S and T , we know there exists a δ > 0 such that

λA + B(0; δ) ⊆ A

where A = S, or T . Hence, for small enough ε > 0, there exists a ball B(λs; ε) ⊆ M =

R⊕̃n
>0 × V such that

f(A) ⊆ A

for all f ∈ B(λs; ε). We are then finished the lemma.

2.3.7 Remark. The non-degenerate condition for our star domains is needed only for

Lemma 2.3.6. If we remove that condition, then nothing changes for this chapter. In

particular, the comparison theorems of the next chapter still work.
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2.4 Comparison of little star operads

For this section, we will only work with the non-thick variant SM(S, T ) since this gives

us the required comparison theorem without any extra complications. Although, the

same statements hold with the thick variant.

To get a comparison between SM(S) and SM(T ), we use that for T ⊆ S; we have

the inclusions of operads.

SM(S, T )

SM(T ) SM(S)

ι∗ ι∗

Eventually, we want to show that SM(S) ≃ SM(T ). To do this, we can turn SM(S, T )

into SM(T ) by “shrinking the domain”. Similarly, we can turn SM(S, T ) into SM(S)

by “enlarging the codomain”. We claim that such a transformation doesn’t change the

homotopy type. The following lemma makes this rigorous for scaling by fixed constants.

2.4.1 Lemma. For λ ≤ 1 and star domains S, T such that T ⊆ λS. The inclusion by

restriction

SM(S, T ) ↪→ SM(λS, T )

is a weak equivalence of G-operads. Similarly, for µ ≥ 1 and star domains S, T such that

µT ⊆ S. The inclusion

SM(S, T ) ↪→ SM(S, µT )

is a weak equivalence of G-operads.

Proof. For α ∈ ΛF
I (V ), write pα : I → ΛF

I (V ) for the path

pα(t) := ((1− t) idV +tα).
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The homotopy of G-symmetric sequences H : AM(V )× I → AM(V ) given by

H ((f1, . . . , fn) , t) :=
(
f, ◦ρλ(t), . . . , fn ◦ ρλ(t)

)

restricts to homotopies

H1 := H|SM (λS,T ) : SM(λS, T )× I → SM(λS, T )

H2 := H|SM (S,T ) : SM(S, T )× I → SM(S, T ).

Note that for any 0 < λ < 1, then λ idV ∈ ΛF
I (V ) and as pλ idV (1)(S) = λS, we have

that for α = λ idV in the above homotopies that H1(SM(λS, T ), 1) ⊆ SM(S, T ). We

then deduce the inclusion SM(S, T ) ↪→ SM(λS, T ) is a weak equivalence. The second

statement follows similarly except with the homotopy H̃ : AM(V )× I → AM(V ) given

by

H̃ ((f1, . . . , fn) , t) := (pµ−1(t) ◦ f1, . . . , pµ−1(t) ◦ fn).

We can extend this lemma to get a more general statement.

2.4.2 Theorem. Let S, T be G-star domains in V . For 0 < λ ≤ 1 and star domain S ′

with T ⊆ S ′ and λS ⊆ S ′ ⊆ S. The inclusion

SM(S, T ) ↪→ SM(S ′, T )

is a weak equivalence of operads. Similarly, for µ ≥ 1 and star domain T ′ with T ′ ⊆ S

and T ⊆ T ′ ⊆ µT then the inclusion

SM(S, T ) ↪→ SM(S, T ′)
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is a weak equivalence of operads.

Proof. Note that we have

T ⊆ S ′ ⊆ S ⊆ λ−1S ′ ⊆ λ−1S

and so we have a sequence of inclusions

SM(λ−1S, T ) ↪→ SM(λ−1S ′, T ) ↪→ SM(S, T ) ↪→ SM(S ′, T )

by lemma 2.4.1 and two-out-of-six these are weak equivalences. The second statement

follows similarly.

This theorem is the claim we made at the beginning of this section. In particular,

it shows that we get the following as a special case.

2.4.3 Corollary. For star domains S, T where there exists constants α, β > 0 such that

αS ⊆ T ⊆ βS, the following are equivalent

SM(S) ≃ SM(T ).

We will end this section with a comparison between different affine types.

2.4.4 Theorem. Let F be a finite decomposition of V and T a general star domain.

The inclusion

SΛ(V )(T ) ↪→ SM(F )(T )

is a weak equivalence of G-operads.

Proof. This follows from simply shrinking the radius of each element of SM(F )(T ) so that

all its dilation factors are equal to the minimum one. Since F is finite, this is always

possible.
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Chapter 3
The Boardman-Vogt tensor product

This chapter is on the construction of the Boardman-Vogt tensor product. Our goal

for this chapter is to (1) present a self-contained construction that is easily accessible,

and (2) make the construction less mysterious for the reader. In particular, we want to

make the relations and properties of the tensor more explicit - with the ultimate goal of

(hopefully) making them more intuitive for the reader. We do this by making how the

defining generators and relations interact more explicit with a notion we will call “trees

in superposition”. We will then show that the tensor product can be constructed as a

left Kan extension.

3.1 Trees in superposition

3.1.1 Definition. A (2-colour) tree in superposition is the data (T, cT , χT
W , χT

B, ϕT )

where:

(1) T is a rooted tree,

(2) we have a vertex colouring function

c : V (T ) −→ {w, b, g}.
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Here, w is for white, b for black, and g for grey. We will say that a vertex is pure

if it’s coloured white or black. We will say a grey node is in superposition.

(3) Writing S(T ) := c−1(g) for the set of vertices in superposition. Viewing this as a

discrete category, we have colour state functors, or a colour state assignment for

each vertex in superposition.

χW : S(T ) −→ Fin

χB : S(T ) −→ Fin

(4) Writing In(v) := |v|, we have a natural isomorphism

ϕ : χW × χB

∼==⇒ In |S(T ) : S(T )→ Fin

which we call the state labelling transformation.

3.1.2 Example. Let us illustrate the various parts of this definition. An example is

shown in fig. 3.1. We have omitted the edge and vertex labellings and have only shown

the colours and values of the colour state functor at the grey vertex. The idea behind

the grey nodes is that they represent both a white node and a black node. The colour

state functors χW , and χB are then the record of how the edges are related.

3.1.3 Definition. A morphism of trees in superposition T −→ T ′ is the triple (f, αW , αB)

where:

(1) f is a function of based sets f : V (T )+ → V (T ′)+ such that

(a) it preserves colours of pure vertices

(b) it partially preserves vertices in superposition. That is, for v ∈ S(T ) we either

have f(v) ∈ S(T ′) or f(v) = ∗

(c) it preserves the restricted descendant poset structure on f−1(V (T ′))
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(a, x)

(b, x) (a
, y

)

(b, y
)

a b

x

y

Figure 3.1: An example of a tree in superposition

(d) if v ∈ f−1(S(T ′)), the function f restricts to a well-defined function

|v| −→ |f(v)|.

This allows us to build a natural transformation

f : |−| ⇒ |−| ◦ f : f−1(S(T ′))→ Fin

(2) αW , αB are natural transformations

αW : χT
W ⇒ χT ′

W ◦ f : f−1(S(T ′))→ Fin

αB : χT
B ⇒ χT ′

B ◦ f : f−1(S(T ′))→ Fin
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such that the following commutes

χT
W × χT

B χT ′
W ◦ f × χT ′

B ◦ f

|−|T |−|T ′

αW ×αB

ϕT ϕT ◦f

f

The composition of two morphisms

T
(f,αW ,αB)−−−−−−→ T ′ (f ′,α′

W ,α′
B)

−−−−−−→ T ′′

is given by

T
(f ′f,(α′

W f)◦αW ,(α′
Bf)◦αB)

−−−−−−−−−−−−−−−−→ T ′′.

While we have defined morphisms generally, we won’t need all possible morphisms.

The following three are the expected generalisations from those of T. For a tree T in

superposition, we have

(1) Pure inner face maps. Given an edge e with adjacent vertices both pure and of the

same colour, we can put the obvious superposition tree structure on T/e and get

inner face maps de : T → T/e.

(2) Pure degeneracy maps. Given a pure unary vertex v, the tree T\v has an obvious

structure as a superposition tree by restricting the component functions. We then

have degeneracy maps sv : T\v

(3) Isomorphisms.

We do not have face or degeneracy maps for grey vertices. The new morphisms for grey

vertices are what we will call blow-up maps. Given finite sets A, B, we define the white

first interchange tree IW (A, B) as a tree where every path from input to edge is precisely

two nodes, and no stumps exist. The root vertex we colour white, and all other vertices
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we colour black. We use A for the input edges of the white vertex, and for each black

vertex v, we use {o(v)} ×B for its input edges. See fig. 3.2 for an example.

(a
1 , b1 ) (a

1,
b 2

)
a1

(a
2 , b1 ) (a

2,
b 2

)

a2

(a
3 , b1 ) (a

3,
b 2

)

a3

(a
4 , b1 ) (a

4,
b 2

)

a4

Figure 3.2: The tree IW (A, B) where A = {a1, a2, a3, a4}, B = {b1, b2}.

We similarly have black first interchange trees IB(A, B) where instead the root node

is black and other nodes white. The set B is the edges of the black node, and for white

node u, it has edges given by A× {o(u)}.

Given a tree in superposition T and grey vertex v, we have a tree in superposition

T ↑W
v which is the tree T , but we replace v with the interior of IW (χW (v), χB(v)). By

interior, we mean the graph constructed by removing the input and root edges. We

similarly have T ↑B
v where we use IB(χW (v), χB(v)) instead. The obvious morphisms

bW
v : T −→ T ↑W

v

bB
v : T −→ T ↑B

v

are called the white-first blow-up and black-first blow-up respectively.

3.1.4 Definition. The category of trees in superposition Tsup has objects trees in super-

position and morphisms generated by the following types:

(1) isomorphisms of superposition trees

(2) for a pure unary vertex v with all adjacent edges of the same colour, we take the

degeneracy maps sv : T\v −→ T . Note we aren’t assuming v has two adjacent
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bW
v

Figure 3.3: An example of a white-first blow-up map

vertices. i.e., the 1-corollas give degeneracy maps from the trivial tree | for both

colours.

(3) for an edge e with pure adjacent vertices of the same colour, the inner face maps

dv : T → T/e

(4) for grey nodes v, the black-first bW
v and white-first blow-up maps bB

v .

The full subcategory spanned by objects with no grey nodes will be denoted by Tbin and

be called the binary tree category. The full subcategory of non-trivial binary trees will

be denoted by Tnbin.

Just as for T, we have the functor π : Tsup → Bij that sends a tree T to its input set

|T |. Also, grafting trees makes just as much sense for trees in superposition as it does

for ordinary trees. Unsurprisingly, we have the following.

3.1.5 Theorem. The functor π : Tsup → Bij is a strict opfibration, and tree grafting

determines a Cat-operad structure on the corresponding fibre functor.
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3.2 Reduced trees and components

3.2.1 Definition. For a tree in superposition, we will say it is fully reduced if it has

vertices, none of which is in superposition and no edge that connects vertices of the same

colour. More generally; for any tree in superposition, if it has any vertices, then it has

a single vertex grey vertex and no edges that connect two vertices of the same colour,

we will say it is partially reduced. A reduced tree is one that is either fully or partially

reduced.

We then have the following subcategories of Tsup.

(1) The full subcategory of reduced trees which we denote by Tred
sup

(2) The full subcategory of fully reduced trees Tred
bin . The subscript is chosen because

these are all the reduced trees in Tbin.

(3) The full subcategory of partially reduced trees Tpred
sup .

3.2.2 Remark. Our phrasing about having vertices in our definition is on purpose. Perhaps

counterintuitively, we will consider the trivial tree to be partially reduced and not fully

reduced. We partially do this so the following has a nicer form. However, we also find

it more natural to think about the degeneracy maps from the trivial tree to secretly be

types of blow-up maps. Not only because they come in two different varieties for each

colour but because they also correspond to a sort of interchange between the identities

of two different operads in the coproduct and tensor.

First, observe that the categories Tpred
sup and Tred

bin are groupoids, as well as their fibre

variants Tpred
sup (J) and Tred

bin(J) for some J in Bij. For a non-trivial binary tree T ∈ Tnbin,

we can view this as being constructed by grafting white and black trees. To make this

more precise, let us define an equivalence on the vertices of T where v ∼ w if there exists

a walk on T that only passes through vertices of the same colour (including the vertices

v and w). Each equivalence class then gives us a connected subgraph of vertices of the
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same colour, which is maximal under subsets of connected vertices of the same colour.

This allows us to define the following.

3.2.3 Definition. Given a non-trivial binary tree T , and vertex v, denote the maximal

rooted subtree that has as vertex set the equivalence class of v by C(v). We will call this

the colour tree component of T corresponding to v.

These components are exactly the trees that form T under graft composition. We

can construct a reduced tree from the data of its component trees C(v) by grafting

corollas with the same input edges in the same order that the components are grafted.

3.2.4 Definition. We will call the isomorphism class in Tnbin of this constructed reduced

tree the total colour signature of the non-trivial binary tree T , which we denote by ξ(T ).

The isomorphism class of the reduced tree in Tnbin(J) we will call the relative colour

signature and denote this by ξJ(T ).

An important observation about these signatures is that no morphism in Tnbin

(Tnbin(J)) changes a tree’s total (relative) signature and, as we will see, they index the

connected components of the category.

Given a tree in Tnbin, if we compose all possible inner face maps, we are left with

an element T ′ of Tred
bin . We will denote this morphism by rT : T → T ′ and denote T ′

by rT , which we will call the reduction of T . Since this is reduced, this is inside the

isomorphism class of the total and relative signature of T . Given any other tree with the

same total (relative) signature, their reductions must be isomorphic in Tred
bin (Tred

bin(X)),

and so live in the same connected component of Tnbin (Tnbin(X)). To summarise, we have

the following.

3.2.5 Lemma. There is a bijective correspondence between the connected components

of Tnbin (Tnbin(X)) and the set of isomorphism classes of Tred
bin in the form of a tree’s
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total (relative) signature. Moreover, the subcategory Tred
bin (Tred

bin(X)) is cofinal in Tnbin

(Tnbin(X)).

This is a good time to prove a generalisation of Lemma 1.3.6.

3.2.6 Theorem. Any morphism f in Tsup can be factored into a product of compositions

of the form

f = D ◦ I ◦ F ◦B

where

• B is the composition of blow-up maps,

• F is the composition of inner face maps,

• I is the composition of isomorphisms, and

• D is the composition of degeneracy maps.

Moreover, given a different factorisation f = D′ ◦ I ′ ◦ F ′ ◦ B′ of the same form. Then

there exist unique isomorphisms that make the following commute.

U V W

T T ′

U ′ V ′ W ′

B

I′

F I

∼=

D

D′

∼=

F ′

B′

∼=

Proof. Observe that for a blow-up map bv and any inner face map, degeneracy or iso-

morphism g, we have that bvg = gbv. Here we mean the commutativity of g to the left

of blow-up maps. In the reverse direction, we need to be careful as it can’t involve any

of the vertices in the image of the blow-up. Hence we can factor f as f = h ◦ B where

h is the composite of face, isomorphisms and degeneracy maps. The result then follows

from Lemma 1.3.6.
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Now that we have this factorisation, we can more easily explain an extension to

Lemma 3.2.5. Let us build an equivalence relation on Tred
bin : for two trees T, T ′ in Tred

bin ,

set T ∼ T ′ if they are spanned by a tree with a grey node (or the trivial tree), or they

are isomorphic. That is, if they aren’t isomorphic, then there exists a tree S which has a

grey node or none and morphisms so that T ← S → T ′. We then consider the generated

equivalence relation on Tred
bin .

We claim that it is sufficient to only require the spanning trees S to be partially

reduced to generate the same equivalence relationship. To see this, by Theorem 3.2.6,

we can assume that the spanning morphisms are of the form

S

T T̂ T̂ ′ T ′

r◦b

∼= ∼=

r′◦b′

where b, b′ are composites of blow-ups and r, r′ are reduction maps. Since we are including

isomorphisms in the generating relations, we can assume that T̂ = T and T̂ ′ = T ′.

Moreover, since T, T ′ are binary trees, this implies that the blow-ups b, b′ blow-up the

same vertices. Namely, all the grey vertices of S. Since we can commute blow-ups past

each other, b and b′ differ only by whether the blow-ups are white or black on each grey

vertex. Writing v1, v2, . . . , vn for the grey nodes of S and bv and b′
v for the corresponding

blow-ups on that node from the morphisms b and b′ respectively. We get the following
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commutative diagram.

S

S1 S2 S3 Sn

T T 1 T 2 · · · T n

T rT 1 rT 2 T ′

r r1 r2 r′

bv1 b′
v1

bv2 b′
v2

bv3

b̂v1 bv2 bv3 ...bvn

b′
v1 b̂v2 bv3 ...bvn

b′
v1 b′

v2 b̂v3 ...bvn
b′

v1 b′
v2 b′

v3 ...b̂vn

b′
vn

Here b̂v means that map is omitted in the composition. This justifies our claim

since each Si has exactly one grey node. We then have the following. Note, the above

argument works just as well in the fibres Tsup(X).

3.2.7 Lemma. The connected components of Tsup (Tsup(J))are in bijection with equiv-

alence classes on objects of Tred
bin (Tred

bin(J)) under the equivalence generated by isomor-

phisms and spans by partially reduced trees. Moreover, we have that the subcategory Tpred
sup

(Tpred
sup (X)) is cofinal in Tsup (Tsup(J)).

3.3 Resolutions of the tensor

3.3.1 Definition. Given G-operads P, Q define a functor Rsup(P, Q) : Tsup → TopG

where on objects we define

Rsup(P, Q)(T ) :=
∏

v∈V (T )
[P, Q](v)
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where

[P, Q](v) =



P (in(v)) if v is white,

Q(in(v)) if v is black,

P (χW (v))×Q(χB(v)) if v is grey.

The functor on isomorphisms is just the induced isomorphism on the product factors.

The functor on the inner face and degeneracy maps is composition and inserting the

identity from the corresponding operad, respectively. The functor on blow-up maps is

the diagonal maps from the interchange diagram. We will denote the restricted functor

on Tbin by R2(P, Q).

We have a couple of important functors relating our tree categories T, Tsup and Tbin.

First, we have the coloured inclusions

iW , iB : T → Tsup

where iW is mapping a rooted tree to the tree with all white vertices. iB is similar except

for black. We also have a forgetful functor U : Tsup → T where we forget all data except

the tree. Observe that the coloured inclusions form sections of the forgetful functor.

idT : T iW ,iB−−−→ Tsup
U−→ T.

3.3.2 Theorem. For G-operads P, Q we have that

P
∐

Q ∼= Lanπ R2(P, Q) and P ⊗Q ∼= Lanπ Rsup(P, Q).

Proof. From Theorem 1.2.5, we know these left Kan extensions are operads, so we just

need to show that they satisfy the required universal properties. Suppose we have inter-
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changing operad maps P
f−→ Z and Q

g−→ Z. This determines a natural transformation

(f, g) : Rsup(P, Q)⇒ R(Z) ◦ U

which is given on components Rsup(P, Q)(T )⇒ (R(Z) ◦ U) (T ) by applying f and g to

the decorations on the trees. That these are operadic maps means that this is natural

with respect to the isomorphism, inner face and degeneracy maps. It is also well-behaved

on the blow-up maps (the image of the maps bW , bB are equal) because the morphisms

interchange.

Observe that the natural transformation R(f) factors as the following

R(P )
∼==⇒ Rsup(P, Q) ◦ iW

(f,g)iW=⇒ R(Z) ◦ U ◦ iW = R(Z)

via adjunction, this corresponds to a natural transformation

LaniW
R(P ) =⇒ Rsup(P, Q) =⇒ R(Z) ◦ U

which in turn corresponds to a natural transformation

R(P ) = LanU LaniW
R(P ) =⇒ LanU Rsup(P, Q) =⇒ R(Z).

Since we have applied the left kan adjunction along an isomorphism, we know this map

factors R(f). We get a similar expression for g and Q. Taking the left Kan extension

of these diagrams along p : T → Bij then gives us the requisite maps for the universal

property. Note that the induced map Lanπ Rsup(P, Q)→ Z is unique since we can view

Bij as a cofinal subcategory of T and so, in this case, Z = Lanp R(Z) = R(Z) ◦ i where

i : Bij → T is the inclusion. Hence we can backtrack any other possible map through

our adjunctions. However, it is not hard to see that the map (f, g) above is forced if
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we require the correct restrictions. Hence P ⊗ Q ∼= Lanπ Rsup(P, Q). The case of the

coproduct follows similarly.

Let us write sk(C) for the skeleton of a category C, and bW and bB for the degeneracy

maps from the trivial tree which insert a white and black node respectively. Then from

3.2.7 we get the following.

3.3.3 Corollary. Given G-operads P, Q, for all X ∈ Bij the tensor component (P ⊗

Q)(X) is isomorphic to the coequalizer of

∐
S∈sk

(
T

pred
sup (X)

)Rsup(P, Q)(S)
∐

T ∈sk
(
Tred

bin(X)
)Rsup(P, Q)(T )

R(rbW )

R(rbB)

Here, the maps rbW mean to apply the corresponding white-first blow-up map on the

component T and then take the reduction (if it’s not already reduced). Similarly for rbB.

3.3.4 Remark. Note that Rsup(P, Q)|
Tred

bin
= R2(P, Q)|Tred

bin
and so

∐
T ∈sk

(
Tred

bin(X)
)Rsup(P, Q)(T ) ∼= P ⨿Q.

i.e., the above shows us that the tensor is given by adding relations to the coproduct.

So this gives us back the classical method the tensor is constructed.

3.4 Representatives of elements in the tensor

3.4.1 Definition. Given operads P, Q, and element x ∈ P ⊗Q, by a representative of x

we mean an element x′ ∈ P ⨿Q whose equivalence class determined by Corollary 3.3.3

is x. We will use the notation [x′] to be this class. i.e., x = [x′]. Also, given a ∈ P (n),

and b ∈ Q(m), we will use the notation a⊗ b := [a ◦ bn] = [b ◦ am].
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There are several quick simplifications we can make when dealing with represen-

tatives. The first is to realise that the interchange diagrams with one part given by a

unary vertex allow us to commute unary elements up the tree. As we also compose

matching elements in the coproduct, this tells us that every element x ∈ P ⊗ Q has a

representative with no unary elements except for possibly at the top of the tree.

Moreover, if we add the extra condition of P and Q being reduced, then the inter-

change diagram works for any vertex ending in stumps. This effectively allows us to

replace such vertices with a stump, which then immediately composes with its ancestor

as they are of the same colour. Using this, along with the degeneracy maps, allows us

to find a representative without any stumps for any element of x ∈ P ⊗ Q. We can

formalise this situation in our current framework as follows.

3.4.2 Definition. We will say a tree in superposition T is halfway reduced if it is fully

reduced, the trivial tree, or it is partially reduced with its grey node having one of its

colour states being empty or a singleton. Denote the full subcategory of halfway trees

by Thalf .

It is straightforward to see that this is a strict opfibration over Bij. So in particular,

we can form an operad by left Kan extension that lies halfway between the coproduct

and tensor.

3.4.3 Definition. Given reduced operads P and Q, the reduced coproduct of P and Q is

Fred(P, Q) := Lanp Rsup(P, Q)

where p : Thalf → Bij.

From the universal properties of left Kan extensions, we see that the quotient map
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P
∐

Q→ P ⊗Q factors as

P
∐

Q→ Fred(P, Q)→ P ⊗Q.

The advantage to this is that, unlike the coproduct, Fred(P, Q)(n) is given by a finite

disjoint union of products of the components of P and Q. i.e., there are only finitely

many representative trees with n-many inputs.

3.4.4 Definition. Given reduced operads P, Q, and element x ∈ P ⊗ Q, by a proper

representative of x we mean an element x′ ∈ Fred(P, Q) with image x. We will use the

notation [x′] to be this class. i.e., x = [x′].

Let us end this section by using this in an example.

3.4.5 Example. When S is a singleton set, it is well known ([FV15]) that if P and Q

are reduced, then (P ⊗Q)(S) ∼= (P ×Q)(S) as monoids. This can also be seen from the

map

Fred(P, Q)→ P ⊗Q.

By construction, this is surjective. The component Fred(P, Q)(S) is easily seen to be

isomorphic to P (S)×Q(S) as monoids; however, on singletons Fred(P, Q)(S) and (P ⊗

Q)(S) are given by the same relations, and so are isomorphic.
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Chapter 4
Equivariant Dunn additivity

In this chapter, we will investigate Dunn additivity. We aim to get as far as possible in

proving additivity for the little star operads. i.e., there is a zigzag of weak equivalences

between

SM(S, T )⊗ SM ′(S ′, T ′) ↭ SM×M ′(S × S ′, T × T ′).

Unfortunately, we do not get a complete version of this statement. However, we do show

that the little equivariant simplex operads are additive.

Our approach is in the same vein as the original proof by Dunn [Dun88] and

Brinkmeier [Bri00]. Our original proof used many of the ideas of Brinkmeier; how-

ever, recently, a paper by Barata and Moerdijk [BM22] greatly simplified many of the

arguments involved in the classical additivity result. As a result, the proof we present

here makes use of Barata and Moerdijk’s approach. In particular, we generalise their

proof of the injectivity of the tensor map to isolate a set of key conditions that imply

injectivity. We also use their observation that it is easier to justify a map is an embedding

by showing specific maps are proper rather than looking at the compact extensions of

operads.

Let us now give an overview of our approach. First of all, unless our star domains
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and codomains are equal, we do not get a direct map of the form

SM(S, T )⊗ SM ′(S ′, T ′)→ SM×M ′(S × S ′, T × T ′).

Instead, given little star operads SM(S, T ), SM ′(S ′, T ′), there are embeddings of operads

SM(S, T ) ↪→ SM(T ) ↪→ SM×M ′(T × T ′)

(fi)i∈I 7→ (fi × idT ′)i∈I

and,

SM ′(S ′, T ′) ↪→ SM ′(T ′) ↪→ SM×M ′(T × T ′)

(fi)i∈I 7→ (idT ×fi)i∈I .

These interchange, and so we get an induced morphism of G-operads

ι : SM(S, T )⊗ SM ′(S ′, T ′)→ SM×M ′(T × T ′). (4.1)

Our goal is to prove that this map is a weak equivalence. Recall from Theorem 2.4.2

that there is a weak equivalence

SM×M ′(T × T ′) ≃ SM×M ′(S × S ′, T × T ′)

and so proving that the induced tensor (4.1) will prove that there exists the desired

zigzag of weak equivalences.

4.0.1 Remark. There is a similar map to (4.1) using the inclusion maps SM(S, T ) ↪→ SM(S)

given by codomain extension instead. We can also take combinations of the two if we so

desire.

The steps of showing that map (4.1) is a weak equivalence are to show that:
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(1) ι has closed image,

(2) the image of ι is a deformation retract of SM×M ′(T × T ′),

(3) ι is injective.

We have ordered these by least to most difficult, and this is the order we shall tackle them

in this chapter. We also require correspondingly more for each to hold. In particular, we

shall see that:

(1) Tensors of all of our little star operads give closed images,

(2) as long as our little star operad is of the thick variant, the image is a deformation

retract of the codomain, and

(3) injectivity is extremely hard to prove.

The fact that injectivity is so hard to establish can surprise those readers new to the

tensor product. Especially since, as we will see, the ambient star operads satisfy an

additivity theorem on the nose. Injectivity is so challenging to establish that we can only

justify that the induced tensor maps are injective for a small class of shapes. Surprisingly,

the little cubes for non-trivial representations do not fall into this class.

Throughout this chapter, let V, V ′ be G-representations, M , M ′ affine types on V, V ′

respectively, S, T be bounded G-star domains on V with T ⊆ S, and S ′, T ′ be bounded

G-star domains on V ′ with T ′ ⊆ S ′.

4.1 Algebraic additivity

Before we move on to proving the additivity of the little star operads. Let us first explain

why there are isomorphisms of G-operads

AM(S, T )⊗AM ′(S ′, T ′) ∼= AM×M ′(S × S ′, T × T ′).
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This isomorphism isn’t needed for what follows; however, we believe it adds useful context

to the results we are trying to prove. None of this section is original and well-known to

the experts (cf. axial operads of [FV15]).

Suppose we have G-monoids A and B. We have the usual projection morphisms

prA : A×B → A and prB : A×B → B

which induce morphisms of G-operads

O(prA) : O(A×B)→ O(A) and O(prB) : O(A×B)→ O(B).

Similarly, the inclusions iA : A→ A×B, iA : B → A×B given by a 7→ (a, id), b 7→ (id, b)

induce morphisms

O(iA) : O(A)→ O(A×B) and O(iB) : O(B)→ O(A×B).

Together, this induces an isomorphism of G-operads

O(prA)× O(prB) : O(A×B)
∼=−→ O(A)× O(B).

Perhaps less obviously, there is also an isomorphism

O(A×B) ∼= O(A)⊗ O(B).

This can be seen by observing that O(A× B) has the universal property of the tensor.

In particular, suppose we have a G-operad P and interchanging morphisms

O(A) f−→ P, O(B) g−→ P.
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We then define a morphism F : O(A × B) −→ P by F = O(U(f) × U(g)). Note that

these morphisms interchange, which means that the images of U(f) and U(g) commute

with each other, so we get a well-defined map of monoids

U(f)× U(g) : A×B −→ U(P ).

The morphism F is unique since, via the adjunction, it must correspond to the map

U(f)× U(g). To summarise, we get the following result which is an equivariant version

of a well-known result.

4.1.1 Lemma (Remark 7.5 of [FV15]). Given topological G-monoids A, B, the following

are isomorphic as reduced G-operads

O(A)× O(B) ∼= O(A×B) ∼= O(A)⊗ O(B).

Since the ambient star operads are of this form, we immediately get the following.

4.1.2 Lemma. There is an isomorphism of G-operads

AM(S, T )⊗AM ′(S ′, T ′) ∼= AM×M ′(S × S ′, T × T ′).

4.2 Proper composition maps in operads

The first step in proving the additivity theorem is to show that the image of the induced

map is closed. We want this to show that the induced map is an honest embedding once

we establish injectivity. We will show more than this and show that the map is closed.

We do this by establishing the map is a proper map. By a proper map f : X → Y ,

we mean that the preimage of all compact subsets are compact. References for proper

maps are scattered, and there are multiple variations in definitions. We include direct
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proofs for some elementary facts about proper maps in the appendix for the reader’s

convenience. The main things to recall about proper maps are the following.

(1) Given a proper map f : X → Y , then the function f |f−1(U) restricted to any

preimage U ⊆ Y is also proper.

(2) If X has a finite closed cover {Xi} such that f |Xi
: Xi → Y are all proper, then

f : X → Y is proper. In the other direction, if f : X → Y is proper and F ⊆ X is

closed, then the restriction f |F is proper.

(3) Products of proper maps are proper.

(4) Compositions of proper maps are proper. Moreover, if f ◦ g is proper, then g is

proper, and if g is surjective, then f is proper.

4.2.1 Definition. We will say an operad P is proper if all of its composition maps

are proper. A morphism of operads f : P → Q is proper if all of its component maps

f(X) : P (X)→ Q(X) are proper.

Fortunately, the tensor product behaves well with respect to properness. The fol-

lowing is essentially [BM22, Lemma 4].

4.2.2 Lemma. For proper morphisms of reduced G-operads ϕi : Pi → Q which inter-

change. If Q is a proper operad, then the induced morphism of reduced G-operads

ϕ : P1 ⊗ · · · ⊗ Pn → Q

is proper.

Proof. Recall Definition 3.4.3. We have the following diagram of operads

Fred(P1, . . . , Pn) P1 ⊗ · · · ⊗ Pn

Q

ϕ

q

ϕ◦q
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The map ϕ◦q is the map that applies the morphisms ϕi to each product in the components

of Fred(P1, . . . , Pn) and then uses the composition maps in Q to get a single element of Q.

This amount to taking a disjoint union of products of the maps ϕi and then composing

with the composition maps of Q. Since Fred(P1, . . . , Pn) breaks up into finitely many

components and so is a finite closed cover, this means the resulting morphism ϕ ◦ q is

proper. Hence we also conclude that ϕ is proper as q is surjective.

The following two lemmas follow easily from the elementary facts stated at the

beginning of this section.

4.2.3 Lemma. If we have G-operads P ⊆ Q with P closed in Q, and the composition

maps in Q proper. Then the composition maps in P are also proper.

4.2.4 Lemma. Let A be a monoid with proper multiplication maps. Then the operad

O(A) has proper composition maps.

We will now move on to proving the ambient and little star operads are proper, and

the inclusion maps are proper.

4.2.5 Lemma. The G-operads AM(S), SM(S), and SM(S, T ) are proper.

Proof. From Lemma 2.2.10, SM(S) and SM(S, T ) are closed in AM(S). From Lemma 4.2.3,

it is sufficient to prove the lemma for just AM(S). Suppose M is an affine type generated

by the decomposition F = {Vi} and let Mi := {f |Vi
: Vi → Vi | f ∈ M}. It follows we

have an inclusion of subspaces

AM(S) ⊆
∏
i∈I

AMi(SVi
)

where SVi
= S ∩ Vi. From Lemma 4.2.3 and that proper maps are closed under products,

it is sufficient to prove AM(S) has proper composition maps when M is the group of rigid
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dilations M = Λ(V ). We recall that for rigid dilations, we have that Λ(V ) = R>0 × V ,

and so we have that

AΛ(V )(S)(1) ⊆ (0, 1]× V.

Here, we interpret (0, 1] × V as a monoid where we multiply in the first coordinate,

and add in the second. The above inclusion is then a map of monoids. The monoid

multiplication of R>0 × V is proper, and as AΛ(V )(S)(1) is closed in it, so too is the

monoid multiplication of AΛ(V )(S)(1). Since AM(S) = O
(
AM(S)(1)

)
the lemma now

follows from Lemma 4.2.4.

We now want to show that the inclusion morphisms that generate the map from the

tensor are proper.

4.2.6 Lemma. The inclusion morphisms

ι : AM(S) −→ AM×M ′(S × S ′)

are proper. Similarly, the little star operad variants also have proper inclusion morphisms.

Proof. The little star operad variants follow from the ambient case as they are closed

subspaces. So we only need to prove the main statement. The inclusion map

ι : AM(S) −→ AM×M ′(S × S ′)

(fk)k∈K 7→ (fk × id)k∈K

has a left inverse given by the projection map

pr1 : AM×M ′(S × S ′)→ AMi(Si)

and this then implies that ι is proper.
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We have now verified the conditions for Lemma 4.2.2 for the little star operads.

Hence we have the following.

4.2.7 Theorem. The induced morphism

ι : SM(S, T )⊗ SM ′(S ′, T ′)→ SM×M ′(T × T ′)

is proper. In particular, since our spaces are Hausdorff, this is a closed map.

4.3 Deformation retract onto the image

We will now prove that there exists a deformation retract onto the image of the induced

tensor map (4.1). The idea is simple: we shrink the radius of our elements until they

can be factorised. This is the same method used in the classical proofs of the additivity

of the little cubes. However, our shapes are more general, so we must be more careful.

The main observation is that elements of a star operad lie in the induced image if

they are “small enough”. To explain this, and make it rigorous, let us introduce some

notation.

4.3.1 Definition. Given an operad P , we will write a | b for a, b ∈ P if there exists

(ti)i∈I ∈ P I where ar(a) = I and | ar(ti)| > 0 such that b = a ◦ (ti)i∈I . In this case, we

will say a is a left divisor of b and call the elements (ti)i∈I the quotients of b by a. Given

subspace S ⊆ P , a |S b signifies the quotients are in S.

4.3.2 Lemma. Let f = (fi)i∈I , g = (gj)j∈J ∈ SM
(t)(S, T ). If g | f , then there exists a

surjective set function α : I → J such that fi(S) ⊆ gj(S) for all i, j with i ∈ α−1(j). As a

partial converse, if there exists a surjective set function α : I → J such that fi(S) ⊆ gj(T )

for all i, j with i ∈ α−1(j) then g | f .

Proof. If g | f then by definition, then for each i ∈ I there exists hi ∈ SM
(t)(S, T )(1) such
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that fi = gj ◦ hi for some j ∈ J . This determines a function α : I → J and we must

have that

fi(S) = (gj ◦ hi)(S) ⊆ gj(S).

Note here that the reason we can’t claim fi(S) ⊆ gi(T ) and get an equivalence statement

is because we don’t, in general, have that hi ∈ SM
(t)(S, T )(1) are such that hi(S) ⊆ T .

For the converse statement observe that for every i ∈ α−1(j), since we have that

M is a G-group, there exists hi ∈ M such that fi = gj ◦ hi. In M , we have that

g−1
j ◦ fi = hi and as, by assumption, we also have (g−1

j ◦ fi)(S) ⊂ T and so deduce

hi(S) ⊆ T . Moreover, for any other i′ ∈ α−1(j), and corresponding hi′ we have that

g−1
j (fi(S) ∩ fi′(S)) = (g−1

j ◦ fi)(S) ∩ (g−1
j ◦ fi′)(S))

= hi(S) ∩ hi′(S)

Hence, as fi(S) ∩ fi′(S) = ∅, we get that hi(S) ∩ hi′(S) = ∅. We then conclude for each

j ∈ J we get that (hi)i∈α−1(j) ∈ SM
(t)(S, T ) and so g | f .

4.3.3 Definition. Given elements f = (fi)i∈I ∈ AM(T )(I), and g = (gj)j∈J ∈ SM
(t)(S, T )(J).

Let us say that f is separated by g if there exists a surjective set function α : I → J such

that fi(S) ⊆ gj(T ) for all i, j with i ∈ α−1(j). We will say f is completely separated by

g if it is separated and for all i, i′ ∈ α−1(j) we have that fi(0) = fi′(0).

Figure 4.1 summarizes the relationship between elements f ∈ AM(T ) and g ∈

SM
(t)(S, T ).

Recall that we have projection maps

pr1 : SM×M ′(T × T ′)→ AM(T )

pr2 : SM×M ′(T × T ′)→ AM ′(T ′).
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g completely separates f g separates f g divides f

if S = T

Figure 4.1: Diagram of implications relating separability and division

Let ht = (1− t) idV ×V ′ for t ∈ [0, 1). This gives us a G-equivariant map

H : SM×M ′(T × T ′)× [0, 1)→ SM×M ′(T × T ′) (4.2)

given by

((fi)i∈I , t) 7→ (fi ◦ ht)i∈I .

Geometrically, as t increases, H shrinks the radial lengths of elements. Hence, it is not

hard to see that for any fixed f ∈ SM×M ′(T ×T ′), there exists a t large enough that both

it’s projections pr1(f), pr2(f) are completely separated by elements of SM
(t)(S, T ), SM ′

(t) (S ′, T ′)

respectively. Such elements lie in the image of the tensor.

4.3.4 Lemma. Let f ∈ SM×M ′(T × T ′) be such that pr1(f), pr2(f) are completely sep-

arated by elements of SM
(t)(S, T ), SM ′

(t) (S ′, T ′) respectively. Then f is in the image of

map (4.1).

Proof. Let f ∈ SM×M ′(T×T ′)(I). We will build an element a ∈ SM
(t)(S, T )⊗SM ′

(t) (S ′, T ′)(I)

such that ι(a) = f . If |I| = 1 then as pr1(f), and pr2(f) is completely separated, they

themselves must be elements of SM(S, T )(I), and SM ′(S ′, T ′)(I) respectively. Hence, we

can build a as

a = pr1(f) ◦ pr2(f).

For |I| > 1, we must have at least one of the projections pr1(f) or pr2(f) to have

components that don’t share centres. Without loss of generality, suppose this is pr1(f).
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Then there exists g = (gj)j∈J ∈ SM
(t)(S, T )(J) with |J | > 1 that separates pr1(f). Let

α : I → J be the corresponding set function and as pr1(fi)(S) ⊆ gj(T ) for all i ∈ α−1(j)

there exists hi ∈ SM
(t)(S, T )(1) such that pr1(fi) = gj ◦hi. This follows from the argument

used in 4.3.2. Since pr2(f) is completely separated by some element in SM ′

(t) (S ′, T ′), then

so is each pr2((f)i∈α−1(j)) for each j ∈ J and let kj = (kj,i)i∈α−1(j) be the corresponding

separating element. Similarly to hi, we have for each i ∈ I, an element li ∈ SM ′

(t) (S ′, T ′)(1)

such that pr2(fi) = kj,i ◦ li where i ∈ α−1(j). We can now construct the element a via

the tree representative where each walk to the output i is decorated by

g ◦ kj ◦ hi ◦ li.

i.e.,

g kj hi li i

4.3.5 Example. As an example of this factorisation, let us consider the simple case

when S = S ′ = T = T ′ = [0, 1]. We have the element f ∈ S(I × I) given by

f =
(

[1/4, 1/2]× [1/8, 1/3], [1/4, 1/2]× [1/2, 3/4],

[2/3, 5/6]× [1/8, 1/3], [2/3, 5/6]× [1/2, 3/4], [2/3, 5/6]× [7/8, 15/16]
)

We can picture this as in fig. 4.2. This is completely separated, and the corresponding

factorisation is given by ι(a1 ◦ (a2, a3)) where a1, a2, and a3 are the elements in fig. 4.3.

Let us return to our discussion of the map H from (4.2), this lemma shows that each
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1/4 1/2 2/3 5/6

1/8

1/3

1/2

3/4

7/8
15/16

Figure 4.2: The element f ∈ S(I × I)

a1 =
1/4 1/22/35/6

1/8

1/3
1/2

3/4

a2 =

1/8

1/3
1/2

3/4
7/8 15/16

a3 =

Figure 4.3: The factors a1, a2, and a3.

f is eventually in the image of ι (4.1). We would then like to construct a deformation

retract

H̃(f, t) := H(f, s(f)t) (4.3)

where

s(f) = min{t ∈ [0, 1) | H(f, t) ∈ im(ι)}.

The thick variant of little star operads is needed here to ensure that the map s is

continuous.
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4.3.6 Theorem. The image of the induced map

ι : SM
t (S, T )⊗ SM ′

t (S ′, T ′)→ SM×M ′(T × T ′)

is weakly equivalent as G-operads to the codomain.

Proof. We must prove that (4.3) is a deformation retract. The image is closed from 4.2.7.

Moreover, it is clear that if H(f, t) ∈ im(ι) then H(f, s) ∈ im(ι) for all s ≥ t. It is then

enough to show that for any f ∈ SM×M ′(T × T ′)(I) we have that

({f} × [0, 1)) ∩H−1(∂ im(ι)) = ∗.

See Lemma A.2.1 for details on why this is enough. Since im(ι) is closed, the function

s(f) = min{t ∈ [0, 1) | H(f, t) ∈ im(ι)}

is well-defined. Suppose that t0 > s(f), and let a ∈ SM
t (S, T )⊗ SM ′

t (S ′, T ′) be such that

ι(a) = H(f, s(f)). Observe that it is sufficient to show some open neighbourhood of

H(f, t0) is in im(ι). Our plan to do this is the following. We have that

ι(a ◦ (λ idV ◦λ idV ′)i∈I) = H(f, t0)

for some 0 < λ < 1. From Lemma 2.3.6, we can choose small enough open balls B :=

B(λ idV ; ε), and B′ := B(λ idV ; ε) in M , and M ′ respectively such that B ⊆ SM
t (T )(1),

B′ ⊆ SM ′

t (T ′)(1) and (B×B′)(T ×T ′) ⊆ hs(f)(T ×T ′). We then have that for each i ∈ I

(fi ◦ ht0)(T × T ′) ⊆ (fi ◦ (B ×B′))(T × T ′)

⊆ (fi ◦ hs(f))(T × T ′).
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Note that (fi ◦ (B ×B′)) is open in M ×M ′ and so we have shown that

U := (fi ◦ (B ×B′))i∈I = H(f, s0) ◦ (B ×B′)

is an open neighborhood of H(f, t0) in SM×M ′(T × T ′). We now observe that

ι(a ◦ (B ◦B′)i∈I) = H(f, s(f)) ◦ ((B ×B′))i∈I

and so U is in the image of ι. Hence we have proven that a neighbourhood of H(f, t0) is

in im(ι) as required.

4.4 Injectivity of tensor maps

We will now prove conditions for when the induced map map (4.1) is injective. Our

method is a mild generalisation of the main idea in [BM22], which draws on ideas from

the proofs of Dunn [Dun88] and Brinkmeier [Bri00].

The difficulty in proving injectivity for tensor maps stems from the fact that it

requires understanding how elements factor in both the codomain and domain. We will

adopt the following terminology to talk about these issues more succinctly.

4.4.1 Definition. A reduced G-operad P is integral if for all x ∈ P (I) with |I| > 0, the

corresponding composition maps

x ◦ (−)i∈I :
∏
i∈I

P (Ji)→ P (∪i∈IJi)

are injective for all Ji. This terminology was chosen as an analogy to integral domains.

We also want to extend our division terminology from the previous section.
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4.4.2 Definition. Given a, b ∈ P , we call an element c ∈ P such that c|a and c|b a

common (left) divisor. If | ar(c)| > 1 then we say it is a non-trivial common divisor.

Similarly, for a, b ∈ P , we call an element m ∈ P such that a|m and b|m a common (left)

multiple.

4.4.3 Remark. Regarding tree representatives of the tensor, we can think of a, b ∈ P ⊗Q

having a common divisor as saying that they have representatives that share equivalent

rooted subtrees.

4.4.4 Definition. An element of a ∈ (P ⊗Q)(I) is atomic if |ar(I)| = 1 or it has a tree

representation by a corolla.

We will also need an efficient way to talk about the quotients of divisors. When a|b,

we will write a choice of this division as

b = a ◦ (qa|b
i )i∈ar(a)

and the corresponding surjective set function by α(a|b) : ar(b)→ ar(a).

Before specialising to little star operads, we want to develop a set of conditions

sufficient for a map P ⊗ Q → Z of operads to be injective. There are three different

kinds of divisions we are interested in this respect.

4.4.5 Definition. For a tensor map of reduced operads ϕ : P ⊗Q→ Z, with Z integral.

For an element x ∈ P ⊗Q, define

Dϕ(x) :=
{

a ∈ P ⊗Q

∣∣∣∣∣ a|x
}

Iϕ(x) :=
{

a ∈ P ⊗Q

∣∣∣∣∣ ϕ(a) |
im(ϕ)

ϕ(x)
}

Jϕ(x) :=
{

a ∈ P ⊗Q

∣∣∣∣∣ ϕ(a)|ϕ(x)
}

.
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Note that Dϕ(x) ⊆ Iϕ(x) ⊆ Jϕ(x).

Given all this setup, we can now state the main theorem of this section.

4.4.6 Theorem. Suppose we have a tensor map ϕ : P ⊗Q→ Z such that

(1) Z is integral,

(2) ϕ(1) is injective,

(3) I(x) = J(x) for all x ∈ (P ⊗Q)(1),

(4) and for all x ∈ P ⊗Q and all atomic elements a ∈ D(x), and b ∈ J(x), there exists

a common multiple m ∈ J(x) of a and b.

Then ϕ is injective.

We will use induction to prove this. To make this clearer, we will split this into

several parts. Throughout the proof, I will be some finite set such that |I| > 1. We will

then consider the following hypothesis

(H1) For all J with |J | < |I|, the map ϕ(J) is injective.

(H2) For all J with |J | < |I|, and y ∈ (P ⊗Q)(J) we have that Iϕ(y) = Jϕ(y).

(H3) For all z ∈ (P ⊗Q)(K), and atomic elements a, b ∈ P ⊗Q where a ∈ Dϕ(z) and

b ∈ Jϕ(z). There exists a common multiple m ∈ Jϕ(z) of a and b.

4.4.7 Lemma. Assume that condition (H1) and condition (H2) hold. Suppose we have

x ∈ (P ⊗Q)(I) and a ∈ D(x) with |ar(a)| > 1. If b ∈ J(x) such that a|b then b|x.

Proof. Writing our conditions out, we have that

x =a ◦ (qa|x
i )i∈ar(a), (4.4)

b =a ◦ (qa|b
i )i∈ar(a), (4.5)

and

ϕ(x) =ϕ(b) ◦ (qϕ(b)|ϕ(x)
i )i∈ar(b). (4.6)
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Similar to the previous lemma, we get from eqs. (4.5) and (4.6) that

ϕ(x) =ϕ(b) ◦ (qϕ(b)|ϕ(x)
i )i∈ar(b)

=ϕ
(
a ◦ (qa|b

i )i∈ar(a)
)
◦ (qϕ(b)|ϕ(x)

i )i∈ar(b)

=ϕ(a) ◦
(
ϕ(qa|b

i ) ◦ (qϕ(b)|ϕ(x)
j )j∈α(a|b)−1(i)

)
i∈ar(a)

.

Using eq. (4.4) and the integrality of Z we get that for each i ∈ ar(a)

ϕ(qa|x
i ) = ϕ(qa|b

i ) ◦ (qϕ(b)|ϕ(x)
j )j∈α(a|b)−1(i).

i.e., q
a|b
i ∈ J(qa|x

i ). Since |ar(a)| > 1 we deduce that ar(qa|x
i ) < |I|, and from condition

(H2), we get that there exist q̄i for each i ∈ ar(b) such that

ϕ(qa|x
i ) = ϕ(qa|b

i ) ◦ (ϕ(q̄j))j∈α(a|b)−1(i).

From condition (H1) this implies that

q
a|x
i = q

a|b
i ◦ (q̄j)j∈α(a|b)−1(i).

Using this, we then have that

b ◦ (q̄i)i∈ar(b) =
(
a ◦ (qa|b

i )i∈ar(a)
)
◦ (q̄i)i∈ar(b)

= a ◦ (qa|x
i )i∈ar(a)

= x.

Hence b|x.

4.4.8 Lemma. Assume (H1), (H2), and (H3) hold. Then for all x ∈ (P ⊗ Q)(I), we
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have that D(x) = I(x) = J(x).

Proof. Suppose y ∈ J(x), and let a, b be the root element of a proper representative of

x and y, respectively. We then have that a ∈ D(x), and b ∈ J(x), and so by (H3), there

exists a common multiple m ∈ J(x) of a and b. Since a is a root of a proper representative

of an element of arity > 1, we must have that |ar(a)| > 1 and so by Lemma 4.4.7 we have

m|x. Since m is a common multiple of b, this implies b|x. If ar(y) > 1 then as y ∈ J(x),

from Lemma 4.4.7 we get that y|x. If ar(y) = 1, we can take b = y at the beginning

instead.

Proof of Theorem 4.4.6. Because of 4.4.8, the missing step of a proof by induction is to

show that if (H1) and (H2) hold ((H3) is one of the given conditions), then if ϕ(x) = ϕ(y)

where x, y ∈ (P ⊗Q)(I) then x = y. Since J(y) = J(x) we in fact have from 4.4.8 that

x|y and y|x. Using that ϕ(1) is injective, and Z is integral, we use the usual argument

and see that y = x.

4.4.9 Remark. There’s nothing overly special about requiring the domain to be a tensor

P ⊗Q in Theorem 4.4.6. As long as we have some notion of atomic elements, the above

theorem can prove any operadic map that meets the given conditions is injective.

4.5 Equivariant Dunn additivity

As a special case of Theorem 4.4.6, we can get an easily checkable criterion for the

injectivity of the induced tensor map. First, let us define the following.

4.5.1 Definition. For the induced map

ι : SM(S)⊗ SM ′(S ′)→ SM×M ′(S × S ′),

and an element x ∈ SM(S)⊗ SM ′(S ′)(I) where |I| > 1. If for all elements a, b ∈ SM(S)

86



where a is a root element of a proper representation of x, and b is such that b| pr1(ι(x)),

there exists a common multiple m ∈ SM(S) of a and b such that m| pr1(ι(x)). We then

say that x has common refinements along pr1, and call m a common refinement of x and

a. We similarly define common refinements along pr2.

4.5.2 Lemma. Given star domains S, S ′ in a G-representations V, V ′ with affine type

M, M ′ respectively. For the induced tensor map

ι : SM(S)⊗ SM ′(S ′)→ SM×M ′(S × S ′),

if every x ∈ SM(S)⊗ SM ′(S ′) has common refinements along both pr1 and pr2, then ι is

injective.

Proof. We must verify the conditions of Theorem 4.4.6. That SM×M ′(S × S ′) is integral

follows from the fact that it is constructed from the G-group M ×M ′. The proof that

the induced map is injective on unary elements was done in Example 3.4.5. That we

have Jι(x) = Iι(x) for all |ar(x)| = 1 is straightforward. To see that common refinements

exist along each projection, observe that for all x ∈ SM(S)⊗ SM ′(S ′) and a ∈ SM(S) we

have that

a| pr1(ι(x)) ⇐⇒ ι(a)|x.

This follows easily from the characterisation of divisibility in terms of separability

(Lemma 4.3.2). Hence, if common refinements exist along each projection, this is exactly

verifying the last condition on atomic elements in the tensor of the same colour. When

they are of two different colours; i.e., suppose a ∈ SM(S) is a root element of a repre-

sentation of x ∈ SM(S) ⊗ SM ′(S ′) and b ∈ SM ′(S ′) such that ι(b)|ι(x). Then we get a

common refinement by just taking a⊗ b (See Definition 3.4.1). Therefore the conditions

of Theorem 4.4.6 hold.

87



We will now show that the equivariant little simplex operads (Definition 2.2.14)

satisfy this condition. The key lemma is the following.

4.5.3 Lemma. Let V be a G-representation and S an affine independent subset of V as

in Definition 2.2.14. Write ∆ = ∆S for the corresponding simplex. Given maps f, f ′ ∈

Λ(V )(∆, ∆) such that f(∆) ∩ f ′(∆) ̸= ∅. Then there exists a (unique) g ∈ Λ(V )(∆, ∆)

such that

g(∆) = f(∆) ∩ f ′(∆).

Proof. Since f is a homeomorphism, we can apply the inverse to the problem, and we

see it is sufficient to show that for any f ∈ Λ(V ) such that ∆ ∩ f(∆) ̸= ∅ there exists

a g ∈ Λ(V ) such that g(∆) = ∆ ∩ f(∆). For i ∈ I, denote by Pi the supporting affine

hyperplane of the facet opposite the vertex s⃗i.

Pi =
{ ∑

j∈I\{i}
finite

λj s⃗j

∣∣∣ ∑
j∈I\{i}

finite

λj = 1
}
.

Let αi be the affine form with ker αi = Pi and αi(s⃗i) = 1 and define the following

half-spaces

Hi :=
{
v⃗ ∈ V

∣∣∣ αi(v⃗) ≥ 0
}
.

This is set up so that

∆ =
⋂
i∈I

Hi

and this is a minimal intersection of half-spaces. Since the map f is affine, f(Hi) are

half-spaces. Moreover, since it is a rigid dilation, f(Pi) is parallel to Pi. For each i, we
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either have that αi(f(Pi)) ≥ 0 or αi(f(Pi)) < 0. Define the half-spaces Ki by

Ki :=


Hi if αi(f(Pi)) < 0

f(Hi) if αi(f(Pi)) ≥ 0.

Observe that we have that Ki = Hi ∩ f(Hi) and so we have that

∆ ∩ f(∆) =
(⋂

i∈I

Hi

)
∩
(⋂

i∈I

f(Hi)
)

=
⋂
i∈I

Ki.

So the intersection is a simplex where every facet is parallel to the corresponding facet

of ∆ and f(∆). The vertices of the intersection determine an affine map g such that

g(∆) = ∆ ∩ f(∆). Moreover, we pick this such that g(Hi) = Ki. We now need to show

that g ∈ Λ(V ).

Let us first consider the case when V is finite-dimensional. Suppose that there is

only a single i ∈ I such that Ki ̸= Hi. Then by Thales’s theorem (otherwise known as

the intercept theorem), we have that for every j, j′ ∈ I that g( ⃗sjsj′) = λ ⃗sjsj′ for the

same constant 0 < λ ≤ 1. We then deduce that g is of the form g(v⃗) = λv⃗ + c⃗ in this case.

For a general collection of the Ki, order these and apply the above, one hyperplane at a

time. We deduce that g must still be of the same form. When V is infinite-dimensional,

we just need to restrict to affine spans of finite subsets of S, where we see g is a rigid

dilation on the restriction. But as we cover V by these, we get that g ∈ Λ(V ), and we

are done.

We can also extend this to products.

4.5.4 Lemma. For a G-representation V with decomposition F = {Vi}i∈I and affine

type M = M(F ). Let ∆i be simplices on Vi such as in Definition 2.2.14, and denote the

product by ∆F := ∏
i∈I ∆i. For maps f, f ′ ∈M(∆F , ∆F ) such that f(∆F ) ∩ f ′(∆F ) ̸= ∅,
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there exists a map g ∈M(∆F , ∆F ) such that

g(∆F ) = f(∆F ) ∩ f ′(∆F ).

Proof. This lemma follows from the previous lemma by looking at the projections onto

each subspace Vi.

We can now finally state an equivariant version of Dunn additivity

4.5.5 Theorem (Equivariant Dunn additivity). Let V and V ′ be G-representations with

corresponding decompositions F and F ′. The induced map

DF
∆(V )⊗DF′

∆ (V ′)→ DF⊕F′

∆ (V ⊕ V ′)

is a weak equivalence of G-operads.

Proof. All that is left to prove is that Lemma 4.5.2 holds. However, this is obvious after

Lemma 4.5.4.

4.5.6 Remark. Interestingly, the equivariant little cubes of Definition 2.2.12 do not satisfy

Lemma 4.5.2 unless we work with a trivial representation. This is because the dilation

factor in the indecomposable must stay the same in that subspace. However, intersections

of cubes can change their side proportions within the same subspace, so we don’t have

the required condition.
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Chapter 5
Operads that encode norm maps

In this section, we will present some parts of a work-in-progress by the author on building

general N-operads. We start with reviewing the relevant ideas and literature about N∞-

operads before moving on to constructing twisted little cube operads CF
n. These operads

can be viewed as a model for operads between EV -operads and what should be called

N-operads. These operads encode norm maps determined by any choice of indexing

system F, and in the n = ∞ case, give us models for N∞-operads. We then end this

dissertation by discussing additivity for these operads.

We will change our notation for finite sets for this chapter and denote them instead

by scripts i, j, k, etc. We will also assume that the group G is abelian throughout this

chapter. We do this to simplify the presented proofs. We expect our results to hold for

general finite groups without much more work, and we will return to this in the future.

5.1 A conceptual overview of N-operads

Conceptually, E-operads encode algebras that have some portion of higher homotopy

coherence data for homotopy commutative monoids. To expand on what we mean by

this, let us take some Ek-algebra X in Top and let us denote the structure map by
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η : Ek → End(X). The basic structure of an algebra under an operad means that the

operad parameterises “multiplication maps” on X. The key property of an Ek-operad

is that it will also point out homotopies between different multiplications, homotopies

between homotopies and so on – at least up until k-cells.

Let us illustrate this idea in overbearing detail – we will find it useful shortly.

Consider an element f ∈ Ek(n) where k > 2. Then η(f) is a multiplication map

X ×X × · · · ×X
η(f)−−→ X,

but because this lives in a symmetric monoidal category, f determines more than one

map. For instance, let σ : Xn → Xn be any permutation map, then the composition

gives us a map

X ×X × · · · ×X
σ−→ X ×X × · · · ×X

η(f)−−→ X.

These maps correspond to the Σn-orbit of f in Ek(n), which by definition must be all

different unless f is identity. Another way to phrase this, is that f corresponds to a

non-equivariant map f̄ : ∗ → Ek(n). Since Ek(n) is a Σn-space, the induction-restriction

adjunction means this is equivalent to a Σn-map Σn × ∗
Σn×f̄−−−→ Ek(n) and the orbit of

corresponding multiplication maps by the Σn-map

Σn × ∗
Σn×f̄−−−→ Ek(n) η−−→ Hom(Xn, X).

For k > 1, then for f, g ∈ Ek(n), the data of Ek(n) also includes the data of a homotopy
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that connects these maps.

Σn × ∗

Σn × I Ek(n) Hom(Xn, X)

Σn × ∗

id ×i0
Σn×f

Σn×H η

id ×i1 Σn×g

We can keep doing this and adding higher homotopies, up to k-cells.

A E∞-operad extends this and encodes the entire tower of homotopy coherence

data. Homotopically speaking, we should expect no real difference between a E∞-algebra

and a commutative monoid. This is true and made rigorous in “rectification theorems”

between operads. In particular, the homotopy categories of E∞-algebras and commutative

monoids are equivalent. Counterintuitively, this no longer works if we look at E∞-algebras

in an equivariant category.

To understand what is happening here, let us now take the Ek-algebra X from

above to be in TopG. The Ek operad parameterises homotopy coherence data as in

the non-equivariant case. Let us again consider a single element f ∈ Ek(n). This is

determined by a G-map f̄ : ∗ → Ek(n), and inducing up to G×Σn-spaces, this is a map

Σn×∗
Σn×f−−−→ Ek(n) and the multiplication that f points out is given by the G×Σn-map

Σn × ∗
Σn×f̄−−−→ Ek(n) η−→ Hom(Xn, X).

There is now a problem. The orbit of f can only be Σn/e or if it’s the identity, Σn/Σn,

and so f must map to points of Hom(Xn, X) with isotropy given by subgroups of Σn.

However, Hom(Xn, X) is now a G×Σn-space, and its isotropy groups can now involve the

group G. We can think of these fixed points of Hom(Xn, X) as “twisted multiplications”.

This is because, after unpacking definitions, they correspond to multiplication maps
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f : Xn −→ X where for some homomorphism σ : H → Σn where H < G, we have for

h ∈ H that

hf(x1, x2, . . . , xn) = f(hxσ−1(h)(1), hxσ−1(h)(2), . . . , hxσ−1(h)(n)).

So unlike in the non-equivariant case, there are multiplication maps that Ek cannot

parameterise. This is the underlying reason for the failure of a rectification theorem

of E∞-operads in the equivariant setting. A commutative moniod in an equivariant

category must automatically satisfy relations involving twisted multiplications. However,

Ek cannot even parameterise these, let alone fill in the missing coherence data for the

relations these maps must satisfy.

The aim of N-operads is to extend E-operads to the equivariant setting by being

able to encode these twisted multiplication maps and associated coherence data. The

study of these kinds of operads, and the term N-operad, was initiated by Blumberg-Hill

in [BH15] where they defined and studied N∞-operads - the E∞-case. Let us recall how

these are defined.

5.1.1 Definition ([BH15], definition 1.1.). A N∞-operad P is a G-operad such that

(1) P (0) is G-contractible,

(2) the Aut(j)-action on P (j) is free,

(3) P (j) is a universal space for a family of subgroups Fj of G×Aut(j) that includes

the subgroups H × {idj}.

The Σj-free condition implies that the groups in these families of subgroups are of

the following form.

5.1.2 Definition. let j be a finite set. A G-graph subgroup Γ of arity j is a subgroup
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Γ ⊆ G× Aut(j) of the form

Γ = {(h, ϕ(h)) | h ∈ H}

for some group homomorphism ϕ : H → Aut j. We will call ϕ the underlying homomor-

phism of Γ and may use the notation ϕΓ for it.

5.1.3 Remark. G-graph subgroups Γ can also be characterized by the property that

Γ ∩ {e} × Aut(J) = {e} × {idJ}.

5.1.4 Definition. A collection of G-graph subgroups F is a collection of sets of G-graph

subgroups F = {Fj}j∈Bij . Given a N∞-operad P , we will denote the collection of G-graph

subgroups in it’s definition by F(P ).

5.1.5 Remark. Unpacking these definitions so far, we have that for an N∞-operad P that

P (j)Γ ≃


∗ if Γ ∈ F(P )

∅ if Γ /∈ F(P ).

This shows that an N∞-operad is precisely the kind of G-operads that homotopically

coherently encode some portion of the possible twisted multiplication maps.

The natural question is, then, what kinds of families of graph subgroups are admis-

sible? i.e., what families F are F(P ) for some N∞-operad P . Blumberg-Hill gave a set

of conditions such a family must satisfy and packaged this data in an indexing system

[BH15, 3.3]. Moreover, there is a lattice of such indexing systems and a functor from

Ho(N∞), the homotopy category of N∞-operads, to it. Blumberg-Hill conjectured that

this functor was an equivalence. Several proofs ([GW18], [Rub21a], and [BP21]) have

since confirmed this, each taking a different approach to the problem.

An alternative characterisation of indexing systems, due to both Rubin [Rub21b]
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and Balchin-Barnes-Roitzheim [BBR21], is the following

5.1.6 Definition. A G-transfer system is a subrelation 99K of the subgroup lattice

Sub(G) such that the following conditions hold.

(1) Identity. H 99KH for all H < G,

(2) Conjugation. If K 99KH then gK 99K gH for all g ∈ G,

(3) Restriction. If K 99KH and H ′ < H, then K ∩H ′ 99KH ′.

(4) Composition. If K 99KH and H 99K J then K 99K J .

The connection to the families F(P ) is through the following. A G-graph subgroup

Γ < G × Aut(j) with underlying homomorphism ϕΓ : H → Aut(j) determines a H-

action on j and so determines a H-set structure on j which we will denote by set(Γ).

If a finite H-set T is such that for some Γ ∈ F(P ) we have an isomorphism of H-sets

set(Γ) ∼= T , then T is called an admissible H-set for the operad P . As a consequence of

the definition of N∞-operads, the set of all admissible sets is closed under both coproducts

and subobjects. Hence, the admissible sets are completely determined by which finite

H-sets of the form H/K are allowed. These are exactly the transfer maps in a transfer

system.

We will end this section with an alternative characterisation for transfer systems

which is a bit more categorical.

5.1.7 Definition. We will call an object of CatG a G-category. i.e., a category with

an action by G via endofunctors. We will call a (commutative) monoid object in G-

categories a (symmetric) G-monoidal category. i.e., a G-category with a (symmetric)

monoidal category structure where the monoidal product is equivariant.

5.1.8 Lemma. The subgroup lattice Sub(G) has the structure of a G-category. Moreover,

it is a strict monoid object in the category CatG where subgroups’ intersections give the

monoidal product.
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Proof. The G-category structure comes from the lattice structure, which the G-action

by conjugation preserves and acts as functors. It is straightforward that the intersection

is a monoidal product on Sub(G) where G is the identity. It is strict since the set

intersection is strict. The intersection is also equivariant under conjugation by G.

5.1.9 Theorem. A transfer system 99K is equivalent to a wide G-monoidal subcategory

of Sub(G).

Proof. The identity, conjugation and composition conditions are just the conditions for

a G-subcategory. We will denote this subcategory by
99K
F . We must justify that the

restriction condition is equivalent to the monoidal product being closed on a subcategory.

What this amounts to is showing that the restriction condition is equivalent to the

intersection being a well-defined G-bifunctor:

− ∩− :
99K
F ×

99K
F →

99K
F .

Let us use solid arrows → for arrows in Sub(G). The restriction condition diagrammat-

ically is the following commutative square.

H K

H ′ H ′ ∩K

Using this, we can build the following commutative diagram which implies the functor
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is well-defined on the subcategory
99K
F .

H1 H2 H3

K1 K1 ∩H1 K1 ∩H2 K1 ∩H3

K2 K2 ∩H1 K2 ∩H2 K2 ∩H3

K3 K3 ∩H1 K3 ∩H2 K3 ∩H3

Conversely, if we are given a wide G-monoidal subcategory F of Sub(G), then for any

morphism K 99KH in F and subgroup H ′ < H, we get from functoriality of the product

that

H ′ ∩ (K 99KH) = H ′ ∩K 99KH ′.

i.e., that restriction holds.

5.1.10 Remark. Note that the intersection of subgroups in Sub(G) is the categorical

product. Because of this, another interpretation of a transfer system is an embedding

that preserves products.

5.1.11 Convention. When we refer to an indexing system from now on, we will mean

a wide G-monoidal subcategory of Sub(G).

The last thing we will recall in this section is that transfer systems themselves form

a lattice of transfer systems.

5.1.12 Definition. Given two transfer systems F and F′, the join F ∨ F′ is the transfer

systems generated by F and F′. i.e., the smallest transfer system to contain both F and

F′.
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5.2 Towards a model for N-operads

In this section, we will build “twisted” little cube operads as a model for N-operads. To

do this, we will need to separate our operads from their underlying representations. In

order to motivate the construction, let us first recall that the forgetful functor

(iG)∗ : OperG → Oper

has left and right adjoints, called induction and coinduction, respectively.

Oper OperGi∗
G

(iG)!

(iG)∗
⊣

⊣

Here iG is the map on the indexing categories iG : Bij → G×Bij, which is compatible

with the operadic structure. Induction and coinduction are given explicitly by

IndG
e (P ) = iG

! (P ) =
∐
G

P

CoindG
e (P ) = iG

∗ (P ) =
∏
G

P

Where this is the product and coproduct in OperG. The key idea for our constructions

is to use the unit of the restriction-coinduction adjunction

η : D(V )→ CoindG
e (i∗

G D(V ))

(fj)j∈j 7→ (g 7→ (g · fj)j∈j).

The unit is injective, so there’s a copy of D(V ) living inside of CoindG
e (i∗

G D(V )). This

copy no longer depends on the representation V . Since every EV -operad lives inside
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operads of the form CoindG
e (i∗

G D(V )), this raises the following question.

5.2.1 Question. Are there suboperads of coinduced little something operads that can

serve as models for N-operads?

We will provide a prototype of such a construction below. First, let us define a slight

variation on coinduced operads that doesn’t reference representations.

5.2.2 Definition. The ambient twisted little n-cube operad An has j-component given

by

An(j) = Hom(G× Aut(j), R(In, In))

where R(In, In) is the space of rectilinear embeddings. For α : k → j, and x ∈ An(j),

yj ∈ An(kj) we define the composition by

(x ◦ (yj)) (g, k) := x(g, α(k)) ◦ yα(k)(g, k).

The G-action (actually, a G×Bij-action) comes from ((g, σ) · x)(g′, j) = x(g−1g′, σ−1j).

In analogy with CoindG
e (i∗

G D(V )), we think of an element x ∈ An as a j-tuple of

cubes given by x(e,−). The other tuples x(g,−) then describe the orbit of the element

x(e,−) under the G-action. We will sometimes call x(−, j) the j-th cube of x. We will

use the following terminology.

5.2.3 Definition. Given an element x ∈ An(j) and a subset j′ ⊆ j, the j′-the cube of

x is the restriction

xj′ := x
∣∣∣
G×j′

.

For j ∈ j, we will often use the shorthand xj(g) := x{j}(g) = x(g, j).

Our aim is to find suboperads of An that have fixed points living in some prescribed

family F. Simply taking restrictions onto points with the correct stabilisers won’t be
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enough as this won’t ensure an operad structure. The key observation in preserving

an operad structure is that overlapping cubes introduce fixed points. These fixed points

come from possible compositions of these cubes. Because of this, identifying correct

suboperads of An to serve as models for N-operads boils down to correctly identifying

how the cubes x(g, j) of elements x ∈ An can overlap.

We can categorise how the cubes x(g, j) overlap in two ways: as a partial over-

lap, where the intersection is nonempty, and as a complete overlap, where the two

cubes are equal. Both of these types of overlaps are exhibited in the copy of D(V ) in

CoindG
e (i∗

G D(V )). Given (f1, . . . , fn) ∈ D(V ), we can have that fi and g · fj partially

overlap if i ̸= j. If, on the other hand, i = j, then we must have fi and g · fi completely

overlap or don’t intersect at all. This apparent asymmetry is due to the underlying

representation. However, if we forget about the origin of this condition, it still makes

sense to enforce it. Elements in CoindG
e (i∗

G D(V )), and also our ambient operad An,

are composed along the indices j ∈ j. Forcing that the disks be equal or disjoint then

preserves some overlaps after composition while completely removing the others. It,

however, doesn’t fundamentally change the remaining overlaps or introduce new ones.

It seems reasonable that we will want to emulate this behaviour in our constructions.

5.2.4 Definition. Given an element x ∈ An(j), we will say that the j-th cube xj has

strict orbits of type H, or H-orbits, if for g1, g2 ∈ G we have that

(1) x(g1, j) = x(g2, j) if g−1
1 g2 ∈ H, and

(2) x(g1, j)(In) ∩ x(g2, j)(In) = ∅ otherwise.

If every cube of x has strict orbits (for possibly different subgroups for each j ∈ j), then

we say it has strict orbits.

In order to simplify notation in the future, we will use the following convention.

5.2.5 Convention. We will often omit In when talking about statements of a maps

image. i.e., we will write x(g, j)(In) as x(g, j).
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The following lemma is straightforward but essential.

5.2.6 Lemma. For a map of finite sets α : k → j, and elements x ∈ An(j), and

yj ∈ An(kj) for each j ∈ j. If x, yj all have strict orbits, then so does x ◦ (yj)j∈j. In

particular, if x(−, j) has strict orbits of type H and yj(−, k) has orbits of type K, then

(x ◦ (yj)j∈j)(−, k) has strict orbits of type K ∩H.

We want to restrict our suboperads only to have graph subgroups as isotropy sub-

groups – although, interestingly, we can build suboperads that don’t obey this, as the

following example shows.

5.2.7 Example. Consider the subcollection P of An given by

P(j) =
{

x ∈ An(j)
∣∣∣∣∣ for all g ∈ G we have ∩j∈j x(g, j) = ∅

}
.

This forms a well-defined G-operad and as long as σ ∈ Aut(j) is not a full cycle, we have

Pσ ̸= ∅.

The condition that will enforce graph subgroups as the only allowed isotropy groups

is the following.

5.2.8 Definition. We will say an element x ∈ An(j) is non-degenerate if x(g, j) ∩

x(g, j′) = ∅ for all g ∈ G, j ̸= j′ ∈ j.

As for further restrictions, let us consider the elements in fixed points. First, since

we can always compose with the zero element ∗ ∈ An(0), we only need to focus on the

basic orbit fixed points H/K as described by the transfer system. To better describe

arrangements of cubes, we will extend the xj notation as follows.

5.2.9 Definition. For a subset S ⊆ G, a vertical S-slice of G× j is a function a : S → j.

For an element x ∈ An(j), the a-cube xa of x is the function xa(g) := x(g, a(g)) for
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g ∈ S. We can interpret the j-th cubes xj as a special case of xa where we treat j as the

constant function G→ j with output j.

5.2.10 Example. Let us consider the group G = C4 × C2 and what a fixed point

x ∈ (An)Γ(2) where set(Γ) ∼= C2 × C2/C2 × {e} looks like. Here we will assume x has

strict orbits. We can set out the cubes of x in an array as in fig. 5.1a. The array entries

correspond to the cubes of x, which can be pictured as embeddings as in fig. 5.1b. Note

that we can’t have a = c since by the strict orbits, this would force b = d, and then this

would be a fixed point corresponding to (C4 × C2)/(C4 × {e}).

1 2

(0, 0) a b

(2, 0) a b

(0, 1) b a

(2, 1) b a

(1, 0) c d

(3, 0) c d

(1, 1) d c

(3, 1) d c

(a) cubes of x ∈ (An)Γ(2) in an array.

a

b

c

d

(b) cubes of x ∈ (An)Γ(2) as embed-
dings

Figure 5.1: An example of a fixed point of An.

As we can see, cubes of fixed points follow specific patterns that get repeated. The

following definitions are designed to encode such patterns and single out the combinations

of overlaps that can generate them. Our plan for building our desired operad is to

understand how these patterns behave under composition and only allow the correct

type.
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5.2.11 Definition. For an element x ∈ An(j), j ∈ j, and subgroups K < H < G.

H/K-twist of x based at j is an a-cube xa where a is a vertical gH-slice for some coset

gH ∈ G/H such that

(1) j ∈ im(a),

(2) we have ⋂h∈gH xa(h) ̸= ∅, and

(3) a−1(j) is a right K-coset.

5.2.12 Example. Considering again fig. 5.1, we can see that we have (C2×C2)/(C2×{e})-

twists (fig. 5.2a), but also ({e}×C2)/({e}×{e})-twists (fig. 5.2b). There are also “trivial

twists” of type (C2×{e})/(C2×{e}) (fig. 5.2c), and ({e}× {e})/({e}× {e}) (fig. 5.2d).

1 2

(0, 0) a b

(2, 0) a b

(0, 1) b a

(2, 1) b a

(1, 0) c d

(3, 0) c d

(1, 1) d c

(3, 1) d c

(a)

1 2

(0, 0) a b

(2, 0) a b

(0, 1) b a

(2, 1) b a

(1, 0) c d

(3, 0) c d

(1, 1) d c

(3, 1) d c

(b)

1 2

(0, 0) a b

(2, 0) a b

(0, 1) b a

(2, 1) b a

(1, 0) c d

(3, 0) c d

(1, 1) d c

(3, 1) d c

(c)

1 2

(0, 0) a b

(2, 0) a b

(0, 1) b a

(2, 1) b a

(1, 0) c d

(3, 0) c d

(1, 1) d c

(3, 1) d c

(d)

Figure 5.2: Examples of twists

5.2.13 Lemma. Let x ∈ An(j) be non-degenerate, j ∈ j, and H, K subgroups of G. If

xa is an a-cube where a is a vertical gH-slice for some coset gH ∈ G/H such that

(1) j ∈ im(a), and

(2) we have ⋂h∈gH xa(h) ̸= ∅.
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Then xa is a H/(H ∩K)-twist based at j where K is the orbit type of xj.

Proof. Consider the set S = a−1(j), which is nonempty as j ∈ im(a). We have S ⊆ gH by

definition and S ⊆ ĝK for some ĝ by the orbit type of xj. Hence S ⊆ gH∩ĝK = k(H∩K)

for some k ∈ G. Suppose that there exists h ∈ k(H∩K)\S. Let s ∈ S and then consider

x(h, a(h)) ∩ x(s, j). Since h /∈ S we get a(h) ̸= j, and since h, s ∈ ĝK, we conclude that

x(h, a(h)) ∩ x(s, j) = ∅. However, this contradicts the second condition as this would

imply ⋂h∈gH xa(h) = ∅.

5.2.14 Lemma. Let x ∈ An(j) have strict orbits and be non-degenerate such that

Γ = Stab(x) is nonempty and set(Γ) ∼= H/K. Then each j-th cube xj has strict orbits

of types K and every twist is of the form H ′/K ′ where K ′ = K ∩H ′ and H ′ < H.

Proof. let ϕ : H → Aut(j) be the underlying homomorphism of Γ and suppose that some

j-th cube xj has orbit of type K ′ > K. Since x has isotropy Γ, we have that

x(g, i) = x(hg, ϕ(h)(i)) for all h ∈ H, g ∈ G, and i ∈ j.

Since H/K is a transitive H-set, for all i ∈ j, there exists a h ∈ H such that ϕ(h)(j) = i.

Hence, by the above, for all k ∈ K ′, and g ∈ G we get that

x(kg, j) = x(kg, ϕ(h−1)(i))

= x(hkg, i)

= x(khg, i).

Since xj has strict orbit type K ′, we deduce that xi must have strict orbit type K ′.

Moreover, since each xi has the same orbit type and G is Abelian, this implies that we

can extend ϕ to a map K ′H → Aut(J) which contradicts set(Γ) ∼= H/K unless K ′ = K.

To show that each twist of the required form. Suppose we have a vertical gH ′-slice
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a. Since each xj has orbit type K, and |j| = |H/K|, we can have at most |H| equal disks

in a single vertical slice. Hence we must have that H ′ < H and then the lemma follows

from Lemma 5.2.13.

The following is the key lemma that describes how the H/K-twists behave under

compositions.

5.2.15 Lemma. Suppose we have a function of finite sets α : k → j, and non-degenerate

elements x ∈ An(j), and yj ∈ An(kj) for j ∈ j. Write z = x ◦ (yj)j∈j for the composition

and suppose that za is a H/K-twist based at i ∈ k. Then for some subgroup K < H ′ < H,

there exists a H/H ′-twist xb based at α(i), and a H ′/K-twist yc based at i.

Proof. From our assumptions, we have a function of finite sets a : gH → k. Construct

the function b : gH → j by the composition b = α ◦ a. Since z(g, i′) ⊆ x(g, α(i′)) for all

g ∈ G and i′ ∈ k, it follows that xb is such that ∩h∈gHxb ̸= ∅. If K ′ is the orbit type

of xα(i) then Lemma 5.2.13 tells us that b−1(α(i)) = g′H ′ for some g′H ′ ∈ G/H ′ where

H ′ < H. i.e., xb is a H/H ′-twist.

Now, consider the restriction c = a|g′H′ and the cube yc
α(i). This is such that

∩p∈hH′yc
α(i) ̸= ∅ and as za is a H/K-twist at i, we deduce that yc

α(i) is a H ′/K-twist at

i.

5.2.16 Definition. Given an element x ∈ An(j) and H/K-twist xa. The associated

transfer map is K 99KH.

5.2.17 Corollary. For a finite function k → j, and elements x ∈ An(j), and yj ∈ An(kj)

for j ∈ j. Every associated transfer map to twists of x ◦ yj lies in the same transfer

system generated by associated transfers of twists of x and yj.

5.2.18 Definition. For a transfer system F, the F-twisted little cube operad CF
n is the

suboperad of An where x ∈ CF
n if it
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(1) has strict orbits,

(2) is non-degenerate, and

(3) if xa is a H/K-twist, then K 99KH is in F.

5.2.19 Theorem. The operads CF
n are well-defined and (CF

n(j))Γ ̸= ∅ if and only if

set(Γ) is an admissible set of F. Moreover, if n =∞, then (CF
n(j))Γ ≃ ∗ if set(Γ) is an

admissible set of F.

Proof. All that needs to be justified for CF
n being a well-defined operad is that it is closed

under composition. This follows from Lemma 5.2.15. If a composite x◦ (yj)j has a H/K-

twist, then this must also be in F since we can use the properties of transfer systems to

build it from those of x and yj.

Suppose we have set(Γ) ∼=
∐

Hi/Ki. Then, if x ∈ (CF
n(j))Γ, from Lemma 5.2.14 we

see that x must only have H/K-twists where for some i, K = Ki and H < Hi. Hence,

it follows that set(Γ) is an admissible set of F if and only if (CF
n(j))Γ ̸= ∅.

As for the last claim, if x ∈ (CF
n(j))Γ, then x is a product of G×j-many cubes, some

of which are equal or otherwise completely disjoint. Whether they are equal or disjoint

is fixed for all points in (CF
n(j))Γ and so we see that

(CF
n(j))Γ ∼= Cn(j′)

for some set j′. Hence when n =∞, we get that this is contractible.

5.3 Failure of additivity

This section will discuss how additivity fails for our model CF
n, and, more generally, what

we believe is the cause. Before considering twisted cubes, let us first consider the ambient
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case. Just as in the standard case, we have G-operad maps

ι1 : An → An+m

x = (x(g, j))g∈G,j∈j 7→ x× id := (x(g, j)× id)g∈G,j∈j,

and

ι2 : Am → An+m

y = (y(g, j))g∈G,j∈j 7→ id×y := (id×y(g, j))g∈G,j∈j.

These maps also interchange. In order to see this, let j and k be finite sets, with

α : j×k → j, and β : j×k → k the projection maps. Let x ∈ An(j) and y ∈ An(k), and

write α∗(x× id)(g, (j, k)) := (x× id)(g, α(j, k)) = (x× id)(g, j). Similarly for β∗(id×y).

We then have that

((x× id) ◦ β∗(id×y)) (g, (j, k)) = (x× id)(g, j) ◦ (id×y)(g, β(j, k))

= (x× id)(g, j) ◦ (id×y)(g, k)

= x(g, j)× y(g, k),

which by symmetry we get that

(α∗(x× id) ◦ (id×y)) (g, (j, k)) = ((x× id) ◦ β∗(id×y)) (g, (j, k)).

This then implies that ι1 and ι2 interchange and so we have an induced map

An ⊗Am → An+m.

In fact, the above calculation shows that this is an isomorphism of G-operads since any

element z ∈ An+m, we can write z(g, j) = x(g, j)× y(g, j) where x ∈ An and y ∈ Am.
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5.3.1 Lemma. The maps ι1 and ι2 induce an isomorphism of operads

An ⊗Am → An+m.

Let us now consider what happens to elements of CF
n and CF′

m under the maps ι1 and

ι2. The following is straightforward.

5.3.2 Lemma. Let x ∈ CF
n(j) and suppose x× id ∈ An(j). Then the j-th cube (x× id)j

has orbits of type K if and only if xj does. Similarly, for the gH-slice a : gH → j,

(x× id)a is a H/K-twist if and only if xa is a H/K-twist.

A consequence of this lemma and Lemma 5.2.15 is that elements in the image of

CF
n⊗CF′

m must have twists with associated transfer maps in F∨F′. Therefore, the induced

map

ι1 ⊗ ι2 : CF
n⊗CF′

m −→ CF∨F′

n+m

is well-defined.

The natural next question is whether this map is injective. We can use the theory

we developed in the previous chapter to try and answer this. In particular, we can adapt

Theorem 4.4.6 and the special case Lemma 4.5.2 for this situation.

For us to apply these lemmas, we need to understand how twists behave under pro-

jections. Observe that projections are well-behaved with respect to operadic composition.

That is, given x ∈ CF
n(j) and y ∈ CF′

m(k) then using the projection pr1 : An+m → An we

have that

pr1((x× id) ◦ (id×yj))(g, k) = (pr1(x× id) ◦ pr1(id×yj))(g, k)

(x ◦ id)(g, k).

So in the projection, we have just repeated columns depending on the arities of the
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yj. This operation introduces new twisting. In particular, suppose xj has orbit type K

where x is the element above. If we have enough copies of xj in the composite, then for

any subgroup K ′ < K, we can build K/K ′-twists. Unfortunately, this is a considerable

obstruction that we need to overcome – and likely to be impossible.

The primary cause seems to be that our constructions CF
n are still too big. We

suspect this stems from the fact that there is one important feature of EV -operads that

we have failed to capture. Each disk in D(V ) has a unique orbit. This isn’t true in CF
n.

Given any cube x(e,−), almost every option for the orbits x(g,−) is allowed. While in

D(V ), the representation forces what these will be. Perhaps even more crucially, if a

disk contains another disk, then this containment is true for every disk in its orbit. We

could avoid the above obstacle if we had such a property for CF
n.

This also seems to be related to another problem of CF
n that we have glossed over

until now. The operads CF
n don’t appear to encode the correct algebras. A model for

a “N1-operad” should be encoding a sort of “twisted homotopy associative monoid”.

However, the fixed points seem “too free” to correspond to the correct thing – precisely

because the orbits aren’t unique. Because of this, we conjecture the following.

5.3.3 Conjecture. If we can define “canonical orbits” for little cubes Cn in the ambient

operad An, then we can define a model for N-operads in which additivity will hold.
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Appendix A
Elementary topology results

A.1 Proper Maps

Here we will give proofs of the elementary facts stated at the beginning of section 4.2.

Our presentation follows the set of notes by Schultz [Sch].

A.1.1 Lemma. Given a proper map f : X → Y , then the function f |f−1(U) restricted to

any preimage U ⊆ Y is also proper.

Proof. If K ⊆ U is compact, then it is compact in Y , and as f is proper, f−1(K) is

compact. Since f |U
−1(K) = f−1(K) we are done.

A.1.2 Lemma. Let f : X → Y be a map. If X has a finite closed cover {Xi} such

that f |Xi
: Xi → Y are all proper, then f : X → Y is proper. In the other direction, if

f : X → Y is proper and F ⊆ X is closed, then the restriction f |F is proper.

Proof. Given a compact subset K ⊆ Y , then for each i, f |Xi

−1(K) is compact. Since we

have that

f−1(K) =
⋃
i

(f
∣∣∣
Xi

)−1(K)

and this is a finite union of compact subsets, we get that f−1(K) is compact. This proves

the first statement. For the second statement, if f is proper, then f−1(K) is compact
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and since F is closed

f
∣∣∣
F

−1
(K) = F ∩ f−1(K)

is compact and we are done.

A.1.3 Lemma. Given a collection of proper maps fi : Xi → Yi, i ∈ I. The product

∏
i

fi :
∏

i

Xi →
∏

i

Yi

is proper.

Proof. This follows from the fact that products of compact sets are compact and closed

subsets of compact subsets are compact.

A.1.4 Lemma. Compositions of proper maps are proper. Moreover, if f ◦ g is proper

then g is proper, and if g is surjective, then f is proper.

Proof. That the compositions of proper maps are proper follow from the definitions. If

the composite f ◦ g is proper, then g is proper because the image of compact sets are

compact. Suppose g is surjective and K in the codomain of f is compact. We have that

K̃ = (f ◦ g)−1(K) is compact, and and so g(K̃) is compact. Since g is surjective, this

means that f−1(K) = g(K̃) and so we are done.

A.2 Homotopy

A.2.1 Lemma. Given a G-space X and a closed G-subspace A ⊆ X. If we have a

G-map H : X × [0, 1)→ X such that for all x ∈ X,

(1) there exist t ∈ [0, 1) such that H(x, t) ∈ A,

(2) if H(x, t) ∈ A, then H(x, s) ∈ A for all s ≥ t,

(3) the set ({x} × [0, 1)) ∩H−1(∂A) is a singleton.
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Then the mapping ϕ : x 7→ tx where tx = min{t ∈ [0, 1) | H(x, t) ∈ A} is continuous

and G-invariant. As a consequence, A is a strong deformation retract of X given by the

deformation

H̃(x, t) := H(x, txt).

Proof. Since A is closed, the map

ϕ : X → [0, 1), x 7→ tx

is well-defined, and as H is equivariant, it is G-invariant. So all we need to prove is that

this map is continuous. We do this via the net characterization of continuity. Let (xi)i∈J

be a net in X and x ∈ X such that xi → x in X. We will consider ϕ to have codomain in

I = [0, 1] which is compact. Hence, every net in I has a convergent subnet. This means

to prove ϕ(xi)→ ϕ(x) in I it is sufficient to show that every convergent subnet of ϕ(xi)

must converge to ϕ(x). This follows since if we didn’t have convergence, there exists a

subnet ϕ(xs)s∈S which is eventually separated from ϕ(x), but this isn’t possible if every

subnet contains a convergent subnet that converges to ϕ(x).

Let
(
ϕ(xf(s))

)
s∈S

be a subnet such that ϕ(xf(s)) → a ∈ I. We want to show that

ϕ(x) = a. If the subset

C = {s ∈ S | a = ϕ(xf(s))}

is cofinal in S, then we must have that a = ϕ(x) since I is Hausdorff and limits are

unique. Therefore, suppose C isn’t cofinal. As we have that

H(xf(s), ϕ(xf(s)))→ H(x, a)

and each H(xf(s), ϕ(xf(s))) ∈ A, which is closed, we have that 0 ≤ ϕ(x) ≤ a by the

definition of ϕ. If a = 0, then ϕ(x) = a in this case. Therefore, suppose we have that
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a > 0. Then for ϵ > 0 consider the net (ys)s∈S defined by

ys := min
(
0, ϕ(xf(s))− ϵ|a− ϕ(xf(s))|

)

Since C isn’t cofinal, the net (ys) is such that eventually ys < ϕ(xf(s)) and so H(xf(s), ys) ∈

X\A. Since ys → a it follows that (x, a) ∈ {x} × [0, 1) ∩ H−1(∂A). However, we also

have that (x, ϕ(x)) ∈ {x} × [0, 1) ∩H−1(∂A) and so as this set is a singleton we must

have a = ϕ(x).
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