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Inference for the existence of hormetic dose–response
relationships in toxicology studies

STEVEN B. KIM∗

Department of Mathematics and Statistics, California State University, Monterey Bay,
Seaside, CA 93955, USA

stkim@csumb.edu

SCOTT M. BARTELL, DANIEL L. GILLEN

Department of Statistics, University of California, Irvine, Irvine, CA 92697, USA

SUMMARY

In toxicology studies hormesis refers to a dose–response relationship with a stimulatory response at low
doses and an inhibitory response at high doses. In this manuscript, we particularly focus on a J-shaped
dose–response relationship for binary cancer responses. We propose and examine two new flexible mod-
els for testing the hypothesis of hormesis in a Bayesian framework. The first model is parametric and
enhances the flexibility of modeling a hormetic zone by using a non-linear predictor in a multistage model.
The second model is non-parametric and allows multiple model specifications, weighting the contribution
of each model via Bayesian model averaging (BMA). Simulation studies show that the non-parametric
modeling approach with BMA provides robust sensitivity and specificity for detecting hormesis relative
to the parametric approach, regardless of the shape of a hormetic zone.

Keywords: Bayesian model averaging; Hormesis; Hypothesis testing; Multistage models; Non-parametric models.

1. INTRODUCTION

In toxicology hormesis refers to a dose–response relationship with a stimulatory response at low doses
and an inhibitory response at high doses (Calabrese and Baldwin, 2001; Mattson, 2009). Mathematically,
a hormetic effect can be described as a non-monotonic dose–response curve with a sign change in the
slope of the curve. In this manuscript, we focus on dichotomous cancer responses with a beneficial effect
at low doses and a harmful effect at high doses that can be described as a J-shaped dose–response curve.
The objective of this manuscript is to develop and assess flexible statistical models to test for hormesis in
toxicology studies.

Hormesis has been extensively discussed in past literature. Calabrese and Baldwin applied a priori cri-
teria to a large number of toxicology studies to determine whether each study provided sufficient evidence
for hormesis (Calabrese and Baldwin, 1997; Calabrese, 2001). Later, additional studies evaluated hormetic
effects in toxicant dose–response (Calabrese and Baldwin, 2003; Calabrese and Cook, 2005). Although
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S. B. KIM AND OTHERS

(a) (b)

Fig. 1. Hypothetical dose–response curves. The figure on the left describes a monotonic dose–response relationship,
and the figure on the right describes a hormetic dose–response relationship. (a) Monotonicity. (b) Hormesis.

these studies highlighted the potential importance of hormesis, other authors have expressed skepticism,
pointing out a lack of formality in the hypothesis testing procedures, unknown specificity and sensitivity,
and potential adverse consequences of incorporating hormetic models into policy decisions (Crump, 2001;
Thayer and others, 2005; Mushak, 2009).

When attempting to distinguish hormesis from a monotonic dose–response relationship (see
Figure 1), the importance of flexible dose–response modeling has been discussed (Sielken and Stevenson,
1998), and several dose–response models for testing monotonicity versus non-monotonicity have
been proposed (Bowman and others, 1998; Hall and Heckman, 2000; Schabenberger and Birch, 2001;
Hunt and Bowman, 2004; Hans and Dunson, 2005; Hunt and Rai, 2005; Belz and Piepho, 2012;
Zhang and others, 2013; Kim and others, 2015). Among these existing models, the parametric model
proposed by Hunt and Bowman (2004) classifies dose–response relationships into three classes: strictly
increasing, threshold (i.e. flat below some threshold), and hormetic. This model was extended by
Hunt and Rai (2005) to account for potential random effects due to litter affiliation when testing for
hormetic and threshold effects in animal studies. The sample size they considered was relatively large,
and therefore the method could be applied by relying on asymptotic results in a frequentist frame-
work. Recently, Kim and others (2015) considered a multistage model that allows monotonicity and
hormesis for the estimation of a benchmark dose defined by the Environmental Protection Agency
(Environmental Protection Agency, 2012). The multistage model is a member of a class of well-known
models included in the widely used EPA Benchmark Dose Software.

An important limitation of the aforementioned parametric models is that they assume symmetric
hormetic zones. Our proposal in this manuscript is motivated by potential model misspecification when
the true hormetic zone is not symmetric. To address the issue, we propose two alternative methods. The
first is based on the multistage model with a non-linear predictor (i.e. non-linear multistage model). This
parametric approach is able to fit an asymmetric hormetic zone with enhanced flexibility. The second is
based on a weighted average of multiple non-parametric models using Bayesian model averaging (BMA)
as proposed by Raftery and others (1997). This non-parametric approach quantifies the posterior proba-
bility of hormesis based on the BMA framework. In this manuscript, we mainly focus on hypothesis testing
for monotonicity (the null hypothesis) versus hormesis (the alternative hypothesis).

The remainder of the manuscript is organized as follows: In Section 2, we briefly present a Bayesian
formulation of the aforementioned Hunt–Bowman model (Hunt and Bowman, 2004) and propose a flexible
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multistage model and a non-parametric BMA approach as novel alternatives for discriminating between
hormetic and monotonic dose–response relationships. Section 3 presents the results of a simulation study to
assess the performance of each approach in relatively sparse data settings that are commonly encountered
in toxicology studies. In Section 4, we apply the proposed methods to data assessing the carcinogenic
effect of cadmium compounds in male rats. Section 5 concludes the manuscript with a discussion of the
approaches for detecting hormesis in toxicology studies and avenues for further research in the field.

2. METHODS

In this section, we discuss three dose–response models that allow for both monotonicity and hormesis.
The first model is the Hunt–Bowman model originally proposed by Hunt and Bowman (2004) in a fre-
quentist framework, though we implement the model in a Bayesian framework to allow for potentially
better performance in sparse data situations. The second model is a newly proposed multistage model with
a non-linear predictor, which we refer to as the multistage model for the remainder of the manuscript. The
third model is a novel BMA-based non-parametric approach that does not require any functional form for
a dose–response relationship. Under each model, we consider hypothesis testing for strict monotonicity
versus hormesis.

2.1 Hunt–Bowman model

2.1.1 Parameterization. Let d � 0 denote the experimental dose of a potentially toxic compound. The
Hunt–Bowman model describes a dose–response relationship by

πd(�θ) =

⎧⎪⎨
⎪⎩

1

1 + e−β0
+ αd −

(α

τ

)
d2, 0 � d � τ,

1

1 + e−β0−β1(d−τ)
, d > τ,

where πd(�θ) denotes the probability of a toxic event at dose d conditional upon model parameters
�θ ≡ (α, β0, β1, τ ). Let �M and �H be the parameter space for monotonicity and hormesis, respectively.
Then, the test of H0: �θ ∈ �M versus H1: �θ ∈ �H simplifies to H0: τ = 0 versus H1: τ > 0.

2.1.2 Prior. To implement the Hunt–Bowman model in a Bayesian framework, we consider a spike and
slab prior for τ (Ishwaran and Rao, 2005). We let p0 = P(τ > 0) = P(H1), the prior probability of horme-
sis. Then, the prior density function of τ is

f (τ ) = p0 f +(τ ) + (1 − p0)Iτ=0, (2.1)

where Iτ=0 = 1 if τ = 0 (zero otherwise) and f +(τ ) is a density function for τ > 0.
For an interpretable prior specification on (β0, β1), we consider a conditional mean prior

(Bedrick et al., 1996). By choosing two arbitrary doses, say d−2 and d−1, we independently model
πdi = (eβ0+β1di /(1 + eβ0+β1di )) ∼ Beta(ri , si ) using the logistic link. In other words, we impose the two
independent Beta priors for the logistic link. Then, using Jacobian transformation,

f (β0, β1) =
−1∏

i=−2

�(ri + si )

�(ri )�(si )

(
eβ0+β1di

1 + eβ0+β1di

)ri (
1

1 + eβ0+β1di

)si

. (2.2)
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If τ = 0, we do not need to consider a prior distribution for α. Given τ > 0 and β0 ∈ (−∞,∞), a
hormetic effect can be quantified as π0(�θ) − π0.5τ (�θ) = −ατ/4. To express large uncertainty for −ατ/4,
we may consider the uniform distribution −ατ/4 | τ, β0 ∼ Uniform(0, 1/(1 + e−β0)) so that

f (α | τ, β0) = τ(1 + e−β0)

4
, − 4

τ(1 + e−β0)
< α < 0. (2.3)

From Equations (2.1–2.3), the joint prior density function of �θ = (α, β0, β1, τ ) is

f (�θ) = f (α | τ, β0) f (β0, β1) f (τ ), �θ ∈ �M ∪ �H . (2.4)

2.1.3 Posterior. Let di denote experimental doses for i = 0, 1, . . . , I with d0 = 0 being the control group
and 0 < d1 < · · · < dI . Without loss of generality, we assume dI = 1. Given ni animals allocated at dose di ,
let Yi ∼ Binomial(ni , πi ) denote the number of toxic events with πi = πdi (

�θ). The likelihood function is

f (�y | �θ) =
I∏

i=0

ni !

y!(ni − yi )!
{πdi (

�θ)}yi {1 − πdi (
�θ)}ni −yi (2.5)

for given data �y = (y0, y1, . . . , yn). By assuming τ ∼ Uniform(d0, dI ) in the presence of hormesis, from
Equations (2.4) and (2.5), the joint posterior density function is

f (�θ | �y) ∝
{

p0τ(1 + e−β0)

4
Iτ>0 + (1 − p0) Iτ=0

} I∏
i=−2

ci {πdi (
�θ)}yi {1 − πdi (

�θ)}ni −yi ,

for �θ respecting all constraints in the parameter space �M ∪ �H , where ci is the appropriate constant for
i = −2, . . . , I and yi = ri and ni = si + ri are pseudo-observations for i = −2,−1. If data support H1:
τ > 0, we expect to observe P(H1 | �y) > p0 = P(H1). If data support H0: τ = 0, we expect to observe
P(H0 | �y) > 1 − p0 = P(H0).

2.2 Multistage model

2.2.1 Parameterization. The linearized multistage model describes a monotonic dose–response rela-
tionship by πd( �γ ) = 1 − e− ∑ M

m=0 γm dm
with non-negative coefficients (Armitage, 1985; Crump, 1996).

For the purpose of hormetic testing, we take M = 2 with an additional parameter γ3 such that πd(�θ) =
1 − e− ∑ 2

m=0 γm dmγ3 , and allow γ1 < 0 to model a hormetic effect at low dose. By the non-linear predictor,
we are able to model an asymmetric hormetic zone with a smooth transition from a hormetic zone to a
monotonic zone. This characteristic is an important distinction from the Hunt–Bowman model which only
allows a symmetric hormetic zone and has discontinuity with respect to the first derivative at the transition
point.

We can partition the 4D parameter space for �γ = (γ0, γ1, γ2, γ3) into the monotonic parameter
space �M = {�γ : γ0 > 0, γ1 � 0, γ2 > 0, γ3 > 0}, and the hormetic parameter space �H = {�γ : γ0 > 0,

γ1 < 0, γ2 > 0, γ3 > 0, γ 2
1 < 4γ0γ2}. The last inequality in �H guarantees πd∗ > 0, where

d∗ = d∗( �γ ) =
(

− γ1

2γ2

)1/γ3

(2.6)
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is the nadir of the dose–response curve (i.e. the most beneficial dose). The sufficient condition for πd( �γ ) >

0 for all d � 0 is
∑2

m=0 γm(d∗)mγ3 > 0. Under this model, the length of the hormetic zone is

d∗∗ = d∗∗( �γ ) =
(

−γ1

γ2

)1/γ3

, (2.7)

where π0( �γ ) = πd∗∗( �γ ) and πd( �γ ) < π0( �γ ) for all d ∈ (0, d∗∗).
Another distinction from the Hunt–Bowman model is that all four parameters are present in both the

monotonic case and hormetic case. However, the non-linear predictor may cause over-fitting, particularly
when the number of experimental doses is small. To avoid fitting a hormetic curve to monotonic empirical
points, we may impose some restrictions on �H . In particular, we may be reluctant to allow d∗ < d1 and
d∗∗ < d2. In addition, we may not be practically interested in extremely small hormetic effects. For example,
if we measure a hormetic effect by the odds ratio comparing the odds of toxicity at doses d = 0 and d = d∗,

η( �γ ) = π0( �γ )

1 − π0( �γ )

1 − πd∗( �γ )

πd∗( �γ )
, (2.8)

we may only be interested in hormetic cases, where η( �γ ) exceeds some threshold. To this end, we define a
restricted hormetic parameter space as �

(R)
H = {�γ ∈ �H : d∗( �γ ) � d∗

L , d∗∗( �γ ) � d∗∗
L , η( �γ ) � ηL} for some

d∗
L � d1, d∗∗

L � d2, and ηL > 1. In other words, �(R)
H is the hormetic parameter space of practical importance,

and �H − �
(R)
H becomes the hormetic parameter space of indifference.

Whether we restrict the hormetic parameter space or not, a test of the hypothesis H0 : �γ ∈ �M versus
H1 : �γ ∈ �H (or �

(R)
H ) simplifies to a test of H0: γ1 � 0 versus H1: γ1 < 0 for �γ ∈ �M ∪ �H .

2.2.2 Prior. Unlike the prior specification for the Hunt–Bowman model, we do not need a spike and
slab prior under the multistage model. Instead, we specify a conditional joint prior distribution for
(γ0, γ1, γ2) given γ3 using a conditional mean prior. Operationally, we can arbitrarily select three doses,
say d−3 < d−2 < d−1, and specify three independent Beta priors as πdi = 1 − e− ∑ 2

m=0 γm d
mγ3
i ∼ Beta(ti , ui )

for i = −3,−2,−1. In other words, we impose the three independent Beta priors for the link function. To
transform from the three independent Beta distributions to the conditional joint distribution of (γ0, γ1, γ2)

given γ3, it can be shown that the determinant of the Jacobian matrix is det(J ) = (c−1,0 − c−2,0 +
c−2,−1)

∏−1
i=−3{1 − πdi ( �γ )}, where c j,k = (d j dk)

γ3(dk − d j ). Letting c(γ3) = |c−1,0 − c−2,0 + c−2,−1| the
conditional joint prior density function of (γ0, γ1, γ2) given γ3 is

f (γ0, γ1, γ2 | γ3) = c(γ3)

−1∏
i=−3

�(ti + ui )

�(ti )�(ui )

(
1 − e− ∑ 2

m=0 γm d
mγ3
i

)ti −1 (
e− ∑ 2

m=0 γm d
mγ3
i

)ui

. (2.9)

Then, the joint prior density function is f ( �γ ) = f (γ3) f (γ0, γ1, γ2 | γ3), where f (γ3) is the prior dis-
tribution for γ3 > 0. Similar to the prior specification described in Section 2.1.2, we consider ti − 1 = yi

and ui = ni − yi as pseudo-observations at the fixed dose di for i = −3,−2,−1.

2.2.3 Posterior. Using the same form of the likelihood function in Equation (2.5), the joint posterior
density function of �γ is given by

f ( �γ | �y) ∝ f (γ3)c(γ3)

I∏
i=−3

(
1 − e− ∑ 2

m=0 γm d
mγ3
i

)yi
(

e− ∑ 2
m=0 γm d

mγ3
i

)ni −yi
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for �γ ∈ �M ∪ �H , the unrestricted hormetic zone, or �γ ∈ �M ∪ �
(R)
H , the restricted hormetic zone.

2.3 Non-parametric models with BMA

2.3.1 Parameterization. Suppose we have I + 1 experimental doses d0 < d1 < · · · < dI , where d0 = 0 is
the control group. We let M j denote the j th dose–response model and πi j = πdi , j denote the probability of
a toxic event at dose di under M j for i = 0, 1, . . . , I . We do not introduce any mathematical relationship
between di and πi j . Instead, we consider I non-parametric models, say M0, . . . , MI−1. Without loss of
generosity, let M j denote a model such that min(π0 j , π1 j , . . . , πI j ) = π j j for j = 0, 1, . . . , I − 1. With
a restriction such that the dose–response has a positive slope once it passes its nadir (i.e. π j j < π j+1, j <

· · · < πI j ), M1, . . . , MI−1 represent hormetic models with nadirs at d1, . . . , dI−1, respectively, and M0

represents a strictly monotonic model. In this non-parametric setting, hypothesis testing for monotonicity
versus hormesis is then equivalent to H0: M0 versus H1:

⋃I−1
j=1 M j .

2.3.2 Prior. We let �π j = (π0 j , π1 j , . . . , πI j ) denote the vector of parameters under M j for j =
0, 1, . . . , I − 1. For a joint prior distribution of �π j , we consider a series of conditional truncated Beta dis-
tributions. We say π ∼ TB(a, b, l, r) if the density function is f (π) = g(π)/

∫ r
l g(π) dπ , where g(π) =

(�(a + b)/�(a)�(b))πa−1(1 − π)b−1 for π ∈ (l, r) and g(π) = 0 for π /∈ (l, r). For the control dose
group, we assume a Beta distribution which is equivalent to π0 j ∼ TB(a0 j , b0 j , 0, 1), and this prior distri-
bution may be constant over M j based on the prior knowledge regarding the prevalence of a toxic event
in the absence of the toxin. If πi+1, j shall be > πi j , we assume πi+1, j | πi j ∼ TB(ai j , bi j , πi j , ri j ) for some
ri j ∈ (πi j , 1). If πi+1, j shall be smaller than πi j , we assume πi+1, j | πi j ∼ TB(ai j , bi j , li j , πi j ) for some
li j ∈ (0, πi j ). To allow for a wide range of dose–response curves, we may let li j = 0 and ri j = 1. By the mul-
tiplication rule, the joint prior density function of �π j under M j is f (�π j | M j ) = f (π0 j )

∏I
i=1 f (πi j | πi−1, j )

for j = 0, 1, . . . , I − 1.
In addition to the prior specification on each �π j , we assign the prior model probability P(M j ) > 0 such

that
∑I−1

j=0 P(M j ) = 1. This probability assignment should reflect the prior plausibility of each hypothesis

as P(H0) = P(M0) and P(H1) = ∑I−1
j=1 P(M j ). For example, P(M0) = 1/2 and P(M j ) = 1/(I − 1) for

j = 1, . . . , I − 1 reflects the same degree of prior belief for monotonicity and hormesis, and also reflects
the same degree of prior belief for each nadir conditioning on hormesis.

2.3.3 Posterior. We are interested in P(H0 | �y) = P(M0 | �y) and P(H1 | �y) = ∑I−1
j=1 P(M j | �y). Appeal-

ing to BMA, each posterior model probability is P(M j | �y) = f (�y | M j )P(M j )/
∑I−1

j=0 f (�y | M j )P(M j ),
where f (�y | M j ) is the marginal likelihood function under M j .

3. SIMULATION

In this section, we investigate sensitivity and specificity of the Hunt–Bowman model, the multistage model,
and the BMA-based non-parametric method in the context of hypothesis testing.

3.1 Scenarios

We consider two monotonic scenarios and seven hormetic scenarios with various hormetic zone shapes.
Scenario 1 is a threshold case which is generated under the Hunt–Bowman model with �θ = (α, β0, β1, τ ) =
(0,−1.386, 4, 0.125). Scenario 2 is a strictly monotonic case which is generated under the multi-
stage model with �γ = (γ0, γ1, γ2, γ3) = (0.223, 0, 1.5, 2). The two monotonic scenarios are presented in
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(a) (b)

(c) (d)

Fig. 2. Simulation scenarios. Scenarios 1 and 2 are monotonic cases generated by Hunt–Bowman model and multistage
model, respectively. Scenarios 3–5 are hormetic cases generated by the Hunt–Bowman models. Scenarios 6 and 7 are
hormetic cases generated by the multistage models with symmetric hormetic zones. Scenarios 8 and 9 are hormetic
cases generated by the multistage models with asymmetric hormetic zones. The different line types connecting the
six dots distinguish scenarios in each subfigure. (a) Scenarios 1 and 2. (b) Scenarios 3–5. (c) Scenarios 6 and 7.
(d) Scenarios 8 and 9.

Figure 2(a). Scenarios 1 and 2 serve as references when we evaluate specificity (i.e. concluding H0 when
H0 is true).

Scenarios 3–5 are hormetic cases generated under the Hunt–Bowman model. The respective true param-
eters are �θ = (−3,−1.386, 4, 0.125), �θ = (−2,−1.386, 4, 0.25), and �θ = (−1,−1.386, 4, 0.5) so that the
hormetic zone is shortest in Scenario 3 and longest in Scenario 5 among the three scenarios. All three
hormetic zones are symmetric as shown in Figure 2(b). Scenarios 6 and 7 are hormetic cases gener-
ated under the multistage model. The respective parameter values are �γ = (0.223,−1.386, 2.773, 1) and
�γ = (0.223,−2.045, 8.180, 1). By fixing γ3 = 1, the hormetic zones are symmetric, and the hormetic zone
in Scenario 6 is shorter than the hormetic zone in Scenario 7 as shown in Figure 2(c). Scenarios 8 and 9 are
hormetic cases also generated under a multistage model, but with an asymmetric hormetic zone (γ3 |= 1)
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as shown in Figure 2(d). Scenarios 3–9 serve as references when we evaluate sensitivity (i.e. concluding
H1 when H1 is true) in the context of hypothesis testing.

For each scenario, six experimental doses are geometrically spaced at d0 = 0, d1 = 1/16, d2 = 1/8,
d3 = 1/4, d4 = 1/2, and d5 = 1, and ni = 50 animals are allocated at each experimental dose which sum
to the sample size of

∑5
i=0 ni = 300.

3.2 Models compared

We compare five different models with respect to the performance of hypothesis testing for hormesis.
The first model is the Hunt–Bowman denoted by HB. The second model is the multistage model with the
unrestricted parameter space �M ∪ �H denoted by MS, and the third model is the multistage model with
the restricted parameter space �M ∪ �

(R)
H denoted by MSR. The MSR model rules out negligible hormetic

effects by setting the lower bounds d∗
L = d1 = 1/16, η∗

L = d2 = 1/8, and γL = 1.2 in Equation (2.8). The
fourth and fifth models are based on the non-parametric approach with BMA. We place vague priors in the
fourth model and denote it by BMAV, and we elicit relatively strong priors in the fifth model and denote
it by BMAS (see Section 3.3 for detail explanation).

3.3 Priors

To place large uncertainty under the HB model, we specify f +(τ ) = 1 for τ ∈ (0, 1) and p0 = 0.5
in Equation (2.1). In other words, we express P(H0) = P(H1) and the length of hormetic zone can
be anywhere within the experimental range before observing data. Then, we specify (d−2, r−2, s−2) =
(0.2, 1.01, 1.10) and (d−1, r−1, s−1) = (0.8, 1.10, 1.01) in Equation (2.2). This specification adds small
numbers of pseudo-observations at d−2 = 0.2 and d−1 = 0.8.

Similarly, to place large uncertainty under the MS and MSR models, we a priori assume (d j , t j , u j ) =
(0.2, 1.01, 1.10), (0.5, 1.05, 1.05), (0.8, 1.10, 1.01) for j = −3,−2,−1 in Equation (2.9). This specifi-
cation also adds small numbers of pseudo-observations at the three chosen doses. We then place a nearly
flat prior on γ3 using the �(0.001, 0.001) prior.

For the BMAV model (V stands for “vague”), we specify (ai j , bi j ) = (1.01, 1.10) for i = 0, 1, 2, 3,
(a4 j , b4 j ) = (1.05, 1.05), and (a5 j , b5 j ) = (1.10, 1.01). This vague prior is comparable to the prior speci-
fications in the parametric models with large uncertainty. For the BMAS model (S stands for “strong”), we
specify (ai j , bi j ) = (2.64, 7.55) for i = 0, 1, 2, 3, (a4 j , b4 j ) = (1.53, 1.53), and (a5 j , b5 j ) = (5.38, 1.49).
This strong prior reasonably well assumes the trajectory of the dose–response curves in all scenarios.
For both BMAV and BMAS, we have one monotonic model M0 and four hormetic models Mi with the
nadirs at di for i = 1, 2, 3, 4. For prior model probabilities we let P(H0) = P(H1) = 1/2 and P(Mi ) = 1/8
for i = 1, 2, 3, 4. When πi+1, j > πi j , we let πi+1, j ∈ (πi j , 1) under the truncated Beta distribution. When
πi+1, j < πi j , we let πi+1, j ∈ (0, πi j ).

3.4 A receiver operating characteristic curve in the context of hypothesis testing

Suppose we conclude H1 when P(H1 | �y) � q for some q. By repeating simulated trials and computing
P(H1 | �y) under a null scenario and an alternative scenario, we can plot one minus specificity on the x-axis
and sensitivity on the y-axis by varying the decision threshold q from zero to one. In our setting, sensitivity
is the probability of concluding H1 under an alternative scenario (Scenarios 3–9), and specificity is the
probability of concluding H0 under a null scenario (Scenarios 1 or 2). This plot is known as a receiver
operating characteristic (ROC) curve in the context of hypothesis testing, and a large area under the curve
indicates a plausible operating characteristic. Since we have two null scenarios, we obtain two areas under
ROC curves for each hormetic scenario. When Scenario 1 serves as the reference (which is generated under
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Table 1. Simulation results in Scenarios 3–7 (symmetric hormetic zones). In Scenario 1,

E[P(H1 | �y)] = 0.708, 0.334, 0.167, 0.816, and 0.768 for HB, MS, MSR, BMAV, and
BMAS, respectively. In Scenario 2, the respective results are 0.860, 0.348, 0.201,

0.846, and 0.813. In the table, A1 and A2 denote the area under the ROC curve relative
to the HB model and the MS model, respectively

Length of A1 (relative A2 (relative)
Scenario Truth hormetic zone Model E[P(H1 | �y)] to HB) to MS)

3 HB 1/8 HB 0.809 0.633 0.375
MS 0.434 0.609 0.580
MSR 0.229 0.501 0.458
BMAV 0.914 0.650 0.579
BMAS 0.883 0.656 0.572

4 HB 1/4 HB 0.943 0.860 0.653
MS 0.668 0.850 0.842
MSR 0.575 0.818 0.827
BMAV 0.994 0.926 0.887
BMAS 0.994 0.957 0.925

5 HB 1/2 HB 0.989 0.966 0.881
MS 0.832 0.962 0.968
MSR 0.792 0.922 0.959
BMAV 0.999 0.968 0.943
BMAS 1.000 0.987 0.971

6 MS 1/4 HB 0.998 0.992 0.967
MS 0.876 0.972 0.978
MSR 0.850 0.933 0.971
BMAV 1.000 0.974 0.952
BMAS 1.000 0.988 0.973

7 MS 1/2 HB 0.987 0.960 0.866
MS 0.610 0.783 0.771
MSR 0.545 0.795 0.799
BMAV 0.988 0.905 0.862
BMAS 0.989 0.934 0.892

HB), the area is denoted by A1. When Scenario 2 is serves as the reference (which is generated under MS),
the area is denoted by A2.

3.5 Results

The simulation results are summarized in Tables 1 and 2. In the tables, E[P(H1 | �yn)] denotes the average
posterior probability for hormesis, and A1 and A2 denote the area under the ROC curve in each hormetic
scenario when Scenario 1 and Scenario 2 served as the reference for a monotonic scenario, respectively.
In the two monotonic scenarios, the HB model, BMAV model, and BMAS model tended to yield relatively
large values of P(H1 | �y) on average when compared with the MS and MSR models. In Scenario 1 (the
threshold HB model), we obtained E[P(H1 | �yn)] = 0.708, 0.334, 0.167, 0.816, and 0.768 in the HB, MS,
MSR, BMAV, and BMAS models, respectively. In Scenario 2 (the strictly monotonic MS model), the
respective results were 0.860, 0.348, 0.201, 0.846, and 0.813. Due to the restricted hormetic zone, the
MSR model yielded smaller P(H1 | �yn) than the MS model on average in both monotonic scenarios.
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Table 2. Simulation results in Scenarios 8 and 9 (asymmetric hormetic zones). In Sce-
nario 1, E[P(H1 | �y)] = 0.708, 0.334, 0.167, 0.816, and 0.768 for HB, MS, MSR,

BMAV, and BMAS, respectively. In Scenario 2, the respective results are 0.860, 0.348,

0.201, 0.846, and 0.813. In the table, A1 and A2 denote the area under the ROC curve
relative to the HB model and the MS model, respectively

Length of A1 (relative A2 (relative
Scenario Truth hormetic zone Model E[P(H1 | �y)] to HB) to MS)

8 MS 1/2 HB 0.973 0.913 0.715
MS 0.877 0.975 0.981
MSR 0.831 0.928 0.964
BMAV 0.999 0.970 0.946
BMAS 1.000 0.988 0.974

9 MS 1/4 HB 0.902 0.777 0.521
MS 0.694 0.880 0.877
MSR 0.520 0.781 0.784
BMAV 0.985 0.878 0.828
BMAS 0.986 0.922 0.876

In the three hormetic scenarios generated by the HB model (Scenarios 3 to 5), the BMAV and BMAS

models outperformed the three parametric methods based on both A1 and A2. Despite the fact that true
model was the HB model, the performances of MS and MSR methods were comparable to the HB method
(see Table 1).

In the next two hormetic scenarios generated by the MS model with symmetric hormetic zones (Scenar-
ios 6 and 7), the performances of BMAS and BMAV were robust yielding fairly large A1 and A2. Again,
the outperformance was regardless of the amount of prior information we considered. The areas, A1 and
A2, in the HB methods were comparable to the areas in the BMAS model, and the HB method performed
better than the MS and MSR methods in Scenario 7. MS and MSR did not yield the largest A1 and A2

among the five methods despite generating Scenarios 6 and 7 under the MS model (see Table 1).
In the last two hormetic scenarios generated by the MS model with asymmetric hormetic zones (Scenar-

ios 8 and 9), the performances of BMAS and BMAV were also shown to be robust with respect to both A1

and A2. On the other hand, the HB method showed the impact of model misspecification in these asymmet-
ric cases. The areas A1 and A2 were consistently smallest among the five methods in these two scenarios.
The MS method exhibited good results, but it was not substantially superior to the non-parametric methods
despite the scenarios belonged to its own parameterization (see Table 2).

In summary, the BMA method imposes few restrictions on the shape of the dose–response curve and
showed robust results across all scenarios considered. The HB and MS methods perform similarly well
when the true hormetic zone is symmetric. The HB method well-tolerated model misspecification as long
as the hormetic zone was symmetric (Scenarios 6 and 7), but it did not perform well under an asymmetric
hormetic zone (Scenarios 8 and 9).

We repeated the same set of scenarios with the smaller sample size of ni = 30 for each dose group.
The estimated areas A1 and A2 were generally smaller due to the reduced amount of data, but the rela-
tive operating characteristics were preserved. We tested prior sensitivity by varying the values of hyper-
parameters. For MS, we tried (t−3, u−3) = {(1, 3), (2, 2), (3, 2)}, (t−2, u−2) = {(2, 6), (4, 4), (6, 2)}, and
(t−1, u−1) = {(5, 5), (5, 5), (5, 5)}, and the operating characteristics were generally preserved. For HB,
when we considered τ | τ > 0 ∼ Beta(2, 8) and Beta(8, 2), the areas A1 and A2 were below 0.5 in Sce-
narios 3, 8, and 9. Within the observed degrees of sensitivity, the relative performances were preserved
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in each scenario, and the non-parametric BMA approach continued to yield robust results. For the vague
priors, we also tested additional monotonic scenarios serving as the reference for a monotonic scenario,
and BMA was still more robust than HB and MS. The results have been added to an online supplementary
document (see supplementary material available at Biostatistics online).

4. APPLICATION

Cadmium compounds have been known to be associated with human prostate and renal cancers.
Waalkes and others (1998) studied cadmium carcinogenesis by injecting one of seven experimental
doses into male rates. The seven dose groups were (0, 1, 2.5, 5, 10, 20, 40) in µmol/kg. By dividing
each dose by the maximum dose 40 µmol/kg, the experimental doses transform to (0, 0.025, 0.0625,

0.125, 0.25, 0.5, 1), respectively. These experimental doses are similar to Scenarios 8 and 9 in Section 3
with the additional dose d1 = 0.025 between d0 = 0 and d2 = 0.0625. We focus on the development of
testicular tumors as an outcome of interest among multiple toxic outcomes measured in the study. The
respective sample sizes and observed numbers of events at the experimental doses were (45, 30, 29, 30,
30, 29, 29) and (8, 1, 3, 3, 4, 21, 24), respectively. The respective observed proportions of events were
(0.178, 0.033, 0.103, 0.100, 0.133, 0.724, 0.828). Based on this empirical trend, the possibility of horme-
sis was extensively discussed in Zapponi and Marcello (2006).

For the BMA model, we used vague priors similar to those used for the BMAV model in Section 3.3.
We specified P(H0) = P(H1) with uniform P(M j ) for j = 1, . . . , 5. For hyper-parameters in the trun-
cated Beta distributions, we chose (ai j , bi j ) = (1.01, 1.10) for i = 0, . . . , 4, (a5 j , b5 j ) = (1.05, 1.05), and
(a6 j , b6 j ) = (1.10, 1.01) to express large uncertainty under all M j . Given the data, we estimated P(H1 |
�y) ≈ 1. When we altered the hyper-parameters to (ai j , bi j ) = (2.64, 7.55) for i = 0, . . . , 4, (a5 j , b5 j ) =
(1.53, 1.53), and (a6 j , b6 j ) = (5.38, 1.49), we obtained P(H1 | �y) = 0.998. We attempted various strong
priors, and they altered the posterior probabilities to various degrees while they continued to yield values
of P(H1 | �y) close to one.

For the three parametric models, HB, MS, and MSR, we used the same priors as described in Section 3.3.
The fitted dose–response curves are presented in Figure 3. Figure 3(a) presents the fitted curves condition-
ing on monotonicity, and Figure 3(b) presents the fitted curves conditioning on hormesis. The posterior
probability for hormesis was 0.877, 0.821, and 0.851 under HB, MS, and MSR, respectively. We did not
observe relevant changes in P(H1 | �y) from various priors we attempted in a reasonable range.

For additional analyses using the parametric models, we estimated the length of the hormetic zone,
denoted by τ under the HB model and d∗∗ under the MS and MSR models as defined in Equation (2.7).
The posterior mean of the hormetic zone length was 0.122 with 95% credible interval (CI) of (0.030,
0.272) under HB, 0.183 with 95% CI of (0.042, 0.315) under MS, and 0.200 with 95% CI of (0.103,
0.319) under MSR. The estimated hormetic zone was the shortest under the HB model potentially due
to model misspecification. The empirically shown hormetic zone in Figure 3(b) does not appear to be
symmetric. The difference in the estimation under MS and MSR was small, but the estimated hormetic
zone was slightly longer under MSR by disregarding too short of a hormetic zone and use of a minimal
hormetic effect in �

(R)
H . In addition, the posterior interval was shorter under MSR than under MS. When

we compare the estimated hormetic zone length to the empirical points where the observed proportion at
d4 = 0.25 (0.133) is still smaller than the observed proportion at the control dose d0 = 0 (0.178), the three
model-specific posterior means all appear to underestimate the length of hormetic zone. However, the 95%
CI from each does cover d4 = 0.25.

To test prior sensitivity under the parametric models, we changed the prior distribution of τ for HB
and the values of (ti , ui ) for MS and MSR (fixing d j = 0.2, 0.5, 0.8). When we considered τ | τ > 0 ∼
Beta(5, 5), Beta(2, 8), and Beta(8, 2), we observed P(H1 | �y) = 0.966, 0.969, and 0.938, respectively,
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(a) (b)

Fig. 3. Estimated dose–response curves using the posterior means of parameters under the HB, MS, and MSR models.
The solid curve is from the HB model, and the dotted curves are from the MS and MSR models which are nearly
identical. (a) Monotonic. (b) Hormetic.

with E(τ | τ > 0, �y) = 0.258, 0.092, and 0.363, respectively. When we tested various values of (ti , ui ) for
2 � ti + ui � 10 for each i = −3,−2,−1, we observed 0.700 � P(H1 | �y) � 0.865 for MS and 0.479 �
P(H1 | �y) � 0.957 for MSR. The estimation of hormetic zone showed little sensitivity for both MS and
MSR. The non-parametric BMA method showed little sensitivity for various values of the hyper-parameters
with P(H1 | �y) close to one. Based on the sensitivity analyses in both simulation studies and the applied
example, the BMA method showed robustness with respect to P(H1 | �y), thus it would be our primary
choice. For the estimation for the length of hormetic zone under a parametric model (conditioning on H1),
MS provides a less restrictive approach when compared with HB, resulting in relatively mild sensitivity.

5. SUMMARY

We proposed two new flexible models for discriminating between hormetic and monotonic dose–response
relationships in toxicology studies and compared them to an existing parametric approach originally devel-
oped by Hunt and Bowman (2004) under a frequentist inferential framework. The Hunt–Bowman model
was observed to be inflexible in the sense that it cannot model an asymmetric hormetic zone, but it is
flexible in that it can fit a hormetic zone and a monotonic zone separately. The newly proposed multistage
model is flexible in that it can approximate various shapes of hormetic zone, but it is inflexible in that it
needs to model the two zones simultaneously. Finally, the proposed non-parametric approach using BMA
is more flexible than the parametric models we examined, and tends to perform well under a variety of
scenarios.

When we considered simulation results with 50 animals per dose level to results with 30 animals per
dose level (six dose groups total), the BMA-based non-parametric approach seems most appealing among
the models considered. However, if the BMA method is adopted, we still recommend to carefully choose a
joint prior distribution because the marginal likelihood can be sensitive to prior specification. Further, one
may gain efficiency by imposing further restrictions on unreasonable prior dose–response paths based on
available prior knowledge.

Though we could not exhaust all possible dose–response curves in the simulation studies, we could
determine that the parametric approaches considered here may not be reliable, particularly under poorly
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designed studies. The parametric approaches tend to be heavily influenced by leverage points. As such,
experimental designs with high leverage points (multiple observations at the highest range of the dose
space) may be an issue for detecting hormesis under a parametric model. While it may be possible to
create a scenario with an asymmetric hormetic zone such that the MS model performs poorer than the HB
model, such scenarios appear to be limited.

Future work is needed to consider optimal experimental designs when discriminating between hormetic
and dose–response relationships is of primary interest in toxicology studies. To this end, Dette and others
(2011) proposed optimal experimental designs for hormesis studies under specific parametric models.
However, when the BMA method is used we recommend sensitivity analysis and especially careful selec-
tion of the joint prior distribution because the marginal likelihood can be sensitive to prior specification.
In order to reduce the impact of model misspecification in the parametric modeling approach and to gain
more efficiency under non-parametric approaches, an efficient experimental design in a non-parametric
framework remains a focus of our future research. In addition, point and interval estimation for dose–
response curve and hormesis parameters (e.g. the hormetic zone, the most beneficial dose and the min-
imum risk) are often important in toxicology and biomedical studies. This topic is another focus of our
ongoing research.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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