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Abstract

We assessed the potential value of hydrologic forecasting improvements for a snow-dominated high-
elevation hydropower system in the Sierra Nevada of California, using a hydropower optimization model.
To mimic different forecasting skill levels for inflow time series, rest-of-year inflows from regression-based
forecasts were blended in different proportions with representative inflows from a spatially distributed
hydrologic model. The statistical approach mimics the simpler, historical forecasting approach that is
still widely used. Revenue was calculated using historical electricity prices, with perfect price foresight
assumed. With current infrastructure and operations, perfect hydrologic forecasts increased annual hy-
dropower revenue by $0.14 to $1.6 million, with lower values in dry years and higher values in wet years,
or about $0.8 million (1.2%) on average, representing overall willingness-to-pay for perfect information.
A second sensitivity analysis found a wider range of annual revenue gain or loss using different skill levels
in snow measurement in the regression-based forecast, mimicking expected declines in skill as the climate
warms and historical snow measurements no longer represent current conditions. The value of perfect
forecasts was insensitive to storage capacity for small and large reservoirs, relative to average inflow, and
modestly sensitive to storage capacity with medium (current) reservoir storage. The value of forecasts
was highly sensitive to powerhouse capacity, particularly for the range of capacities in the northern Sierra
Nevada. The approach can be extended to multireservoir, multipurpose systems to help guide investments
in forecasting.

1. Introduction

Water management is confounded, at least technically, by uncertainty about current and future
conditions of water supply and demand. Reducing supply-side uncertainty can help promote
more transparent, economically efficient and equitable water management. Furthermore, it is
a central motivation for hydrologic research generally [Bales et al., 2006, de Jong et al., 2009, Liu
and Gupta, 2007, Pappenberger and Beven, 2006], including important advances in environmental
sensing and computing infrastructure [Hill et al., 2014, Frew and Dozier, 2012, Kerkez et al., 2011]
and improvements in hydrologic modeling [de Jong et al., 2009]. However, while improvements in
hydrologic prediction are ostensibly for better management of climate- and water-sensitive activ-
ities, better management is often assumed. This observation is not new. Klemeš [1977] observed
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that “we believe, or pretend to believe, that an increase of effort will automatically bring about
a proportional improvement in the result; it has been in the name of the ensuing benefits that
pressures have been, and are being, exerted for more data, more complex models, more advanced
techniques, more powerful computers, etc.” However, the law of diminishing returns applies to
hydrologic information content and value [Schramm, 1974, Klemeš, 1977], such that forecasting im-
provements will not necessarily yield the same benefits as earlier improvements. The implication
is not that next-generation measurement and modeling systems are valueless, but that improve-
ments should be driven by their actual added value. This requires explicitly quantifying both costs
and benefits of additional information, such as from better hydrologic models. However, whereas
costs can be easily quantified [Goninon et al., 1997], marginal benefits remain poorly quantified;
this paper focuses on the latter.

Operational hydrologic forecasts generally use statistically based or relatively simple spatially
explicit hydrologic models, with much inherent uncertainty. Statistical forecasts range in com-
plexity from linear and univariate to nonlinear and multivariate, and are common in the western
United States [Perkins et al., 2009]. For example, the California Department of Water Resources
(DWR) uses multivariate regression models to estimate year-to-go unimpaired runoff to support
water allocation decisions [Rosenberg et al., 2011]. While not as widely used, process-based hydro-
logic forecast models that use spatially explicit data have nonetheless been increasing in popularity
in operational contexts, particularly for ensemble streamflow predictions [Wood and Lettenmaier,
2006]. For example, the U.S. National Weather Service River Forecasting Centers use the process-
based Sacramento Soil Moisture Accounting Model (SAC-SMA; Burnash [1995]). Both approaches
are imperfect, with uncertainties in initial conditions, anticipated future conditions, model struc-
ture, parameters, and observational data, as well as interpretation of model output. Reductions in
uncertainty can benefit both types of forecast models.

Several studies of hydropower systems have assessed the improvements in generation and/or
revenue from improvements in forecasting local hydrologic state variables, using stochastic dy-
namic programming [Stedinger et al., 1984, Barnard, 1989, Tejada-Guibert et al., 1995, Kim and Palmer,
1997]. Later hydropower studies turned to assessing the value of improvements in seasonal fore-
casting using climatic teleconnection variables such as sea surface temperatures, in addition to
local phenomena, using simulation [Hamlet et al., 2002, Maurer and Lettenmaier, 2004] and optimiza-
tion [Proveda et al., 2003, Block, 2011]. These studies indicate that potential benefits vary widely,
depending on local characteristics of the system. For example, Hamlet et al. [2002] noted a poten-
tial hydropower revenue increase of 45% ($153 million per year) by including long-lead forecasts
using El Niño/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) information
for operating the Columbia River system. In contrast, Maurer and Lettenmaier [2004] note relatively
low potential hydropower revenue gain (1.7%) with perfect long-lead (12-month) forecasting of
climate, soil and snow variables for the reservoirs of the Missouri River mainstem; the economic
value of forecasting depended on reservoir capacity relative to inflow, with low value for both
small and large reservoirs.

The present study addresses similar issues, but differs from previous studies in geographic
setting and by using a more generic approach that considers incremental increases in year-to-
go inflow forecast accuracy, without explicitly examining specific hydrometeorologic variables
other than inflow, thus implicitly considering all forecasting variables in aggregate. Klemeš [1977]
quantified the value V of better information as:

V (ΔI) = L? (I) − L? (I + ΔI) (1)

where L? is the loss from optimal operations given information quantity I and ΔI is a discrete
amount of additional information. Here, a similar approach is used, with a more generic method
to quantify additional information.
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This paper aims to estimate the economic value of improved hydrologic information for hy-
dropower systems in snow-dominated mountain basins, and understand how the value of hydro-
logic forecast skill varies with different infrastructure and management conditions. Two general
hydrologic improvements are considered: increased accuracy of input into a statistical forecast
model and general improvements in future inflow predictions.

2. Methods and Data

A numerical study was conducted using representative reservoir inflow forecasts in a hydropower
optimization model to test the sensitivity of hydropower revenue to hydrologic forecast improve-
ments and infrastructure capacity. The optimization model used deterministic inflows, composed
of forecasted inflows from a SWE-dependent statistical inflow model, representative actual inflows
from a physical hydrology model, or some combination of the two. Representative historical SWE
and inflows were from the physical hydrology model so all hydrologic data were from an inter-
nally consistent data set; there is no accurate SWE data set in the study area. These models are
described below.

Four scenario sets, also described below, were considered (Table 1), consisting of variations in
hydrologic forecasting capability or infrastructure attributes in a series of annually independent
models spanning 58 water years (1952-2009). Each annual run was for 1 water year (October
through September). First, systematic uncertainty in SWE was considered. Second, the economic
value of general forecast accuracy under existing (base case) infrastructure configuration and
operations was examined. Third, the benefit of perfect forecasts with different infrastructure
capacities was assessed by varying both reservoir and powerhouse capacities. Finally, a more
detailed variation in powerhouse capacity was examined for three reservoir sizes.

2.1. Study Site

For this study we used the multi-reservoir Yuba-Bear and Drum-Spaulding hydroelectric projects
(YB/DS) in the upper Yuba River watershed in the northern Sierra Nevada, California (Figure
1), aggregated to a single composite reservoir. With a Mediterranean montane climate, inflow
consists of highly variable rain-driven runoff in winter followed by snowmelt in late spring and
summer.

Historically, precipitation in the YB/DS mostly occurred as snow above the system reservoirs
[Jacobs et al., 1995]. As in the rest of California and the western United States generally [Perkins
et al., 2009, Rosenberg et al., 2011], snow is the major contributor to runoff, resulting in a strong
causal correlation between snow accumulation and year-to-go inflow. This correlation is strongest
from about March through May, when SWE is greatest, and weaker both earlier in the year, when
future precipitation is unknown, and later in the year, when most snow has melted and flows are
low (Figure 2).

Operations consist of hydropeaking with diversion-type high-head hydropower typical of the
Sierra Nevada. Specifically, the YB/DS system diverts water for hydropower production and water
supply in the adjacent Bear River watershed through four medium-sized reservoirs, with capaci-
ties ranging from 61.6 to 92.6 million m3 (MCM) [Nevada Irrigation District, 2006, PGE, 2007] and
storage capacity:annual inflow (S:I) ratios from 0.34 to 1.3. Operational objectives consist of spill
minimization and revenue-maximizing timing of releases for hydropower, some water supply, and
environmental releases [Jacobs et al., 1995]. This study omits water supply objectives. The YB/DS
reservoirs provide seasonal storage, with little inter-annual carryover, to shift energy production
from winter and spring to summer, when energy prices are higher; we assumed no inter-annual
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carryover. When represented as a single reservoir, the system has minimum and maximum stor-
age capacities of 62 and 324 million m3, and a diversion capacity of 25.4 m3/s. For simplicity,
minimum storage was subtracted from storage capacity, for an operating storage capacity of 262
million m3, or a S:I ratio of 0.51. Hydropower was similarly represented as a composite of ten hy-
dropower plants, with a head of 957 m and an efficiency of 100% [see Rheinheimer et al., 2013]. A
constant instream flow requirement of 0.31 m3/s (11.0 ft3/s) was assumed, which is the aggregate
of the historical IFRs below the three lowest reservoirs. Spill was assumed to be uncontrolled.

2.2. Hydropower Optimization Model

The hydropower operations decision model consisted of a single linear programming (LP) model
[Grygier and Stedinger, 1985, Yeh, 1985, Labadie, 2004] with variable-length time steps, run anew at
the beginning of each day with initial and boundary conditions updated as needed. For each new
LP problem, hourly decisions with daily inflows were used for the first n days, with multiday
time steps for decisions and inflows thereafter. Water allocation decisions were from the first day
of each successive model run. The LP model was formulated in Python using Pyomo [Hart et al.,
2011] and solved with the GNU Linear Programming Kit (GLPK) [Free Software Foundation, 2014].

The operational objective is to maximize hydropower revenue, less penalties for unmet envi-
ronmental flows, with management decisions for daily operations. The objective function includes
hourly decisions during the initial n-day period and multiday decisions thereafter, represented as:

max z = ∑
d,h

(πd,h − Cd,h) + ∑
md

(πmd − Cmd) , (2)

where π and C are revenue and penalty (cost), respectively, for each hour during the initial days
(d, h) and each subsequent multiday time step (md). Main decision variables consist of release
through a main hydropower turbine, release through a low level (bypass) outlet into the river
below, and storage, denoted as PH, LL, and S, respectively.

During the initial n-day period, hourly (h) revenue is calculated from hourly energy prices:

πh = ∑
h

PhEh , (3)

where Ph is hourly energy price, assumed known with perfect foresight, and Eh is hourly energy.
During each generic time step t (i.e., hourly or daily time step), energy Et is calculated using:

Et = η ∙ γ ∙ h ∙ PHt , (4)

where η is aggregate powerplant efficiency, γ is specific weight of water, h is head, and PHt is
turbine flow. Head is assumed constant, appropriate for the high-elevation hydropower plants
considered here.

Revenue during the multiday time steps is approximated from piecewise-linear revenue curves
that represent the total revenue generated by releasing a percentage of total release capacity [Oli-
vares and Lund, 2012]. Each piece of the linearized revenue curve consisted of a fraction of total
release capacity and a slope corresponding to the average price within that capacity range. This
is represented as:

πmd = Ecap
md ∙ ∑

p
mmd,pEmd,p , (5)

where p represents each piece of the revenue curve, Ecap
md is the energy capacity during the multiday

period, mmd,p is the slope of the revenue curve piece, and Emd,p is the energy produced by the
fraction of flow corresponding to the piece.
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Two costs (C) were included. First, penalties for not meeting environmental flows were im-
posed, with single, high-value linear penalties for each time step. However, environmental flows
were sufficiently small that they were always met. Second, a small penalty was added for empty
storage to prevent spill when the reservoir is not full.

Constraints include mass balances and infrastructure capacities. The mass balance constraint
for each time step t, where t ∈ {d, md}, is:

St = St−1 + It − (PHt + LLt + SPt) , (6)

where St and St−1 are the storage at the end of the current and previous time steps, respectively,
and It, LLt, SPt are, respectively, the inflow, low-level release, and spill during the current time
step. Inflow was from the inflow model described below. Storage is constrained by maximum and
minimum storage (Smin ≤ St ≤ Smax) and releases for hydropower are constrained by powerhouse
turbine capacity (PHt ≤ PHmax). For each annual run, initial storage was assumed zero, and there
was no final storage objective.

Instream flow requirements (environmental flows) are modeled with a release constraint for
each time step:

LLt + IFRde f
t ≥ IFRt , (7)

where IFRde f
t is the instream flow requirement deficit and IFRt is the instream flow requirement.

2.3. Inflow Model

On any given initial day i, the daily and multiday inflow volumes used in the optimization ( It in
equation (6)) were aggregated from a year-to-go daily inflow time series consisting of a blend of
actual and predicted inflows; improved prediction accuracy was represented by blending a greater
proportion of actual inflows. Actual inflows were approximated by output from a physical hy-
drology model, while predicted inflows consisted of median inflows from the physical hydrology
model scaled by year-to-go inflow regressed by SWE. The blending approach is described here,
with the physical hydrology and regression models described below.

For initial day i, blended inflows for future day j were represented as:

Iij = αij İj + (1 − αij) Îij , (8)

where İj is the actual inflow during day j, Îij is the predicted inflow for day j, and αij is an inflow
forecast blending factor for day j from initial day i. αij can vary by i and j to account for changing
predictive capacity during different times of year. In this study, we assume αij only varies with
future time step j. This reflects that historically accurate forecasts, such as low summer flows, are
implicit in the forecast model rather than in αij. On any initial day i, the initial n-day period is
with perfect hydrologic foresight, during which αij = 1. This is followed by a m-day blending
period between future days j = n and j = n + m, during which αij decreases linearly from one to
a final inflow forecast blending factor α f . For days j ≥ n + m, αij was held constant at α f . This is
expressed as:

αij =






1, j ≤ n

1 − j−n
m

(
1 − α f

)
, n ≤ j ≤ n + m

α f , j ≥ n + m

. (9)

Year-to-go inflow hydrograph accuracy was represented in this study by changing α f . The initial
n-day period and m-day blending period were fixed at 7 days each. This approach, including the
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length of the blending period, is similar to that previously used by the California Nevada River
Forecast Center (CNRFC) (A. Henkel, personal communication).

2.3.1 Physical Hydrologic Model

The Water Evaluation And Planning system (WEAP) [Yates et al., 2005] was used to simulate daily
runoff at several gaged locations within the Yuba River watershed, based on the weekly time step
model described by Young et al. [2009]. Runoff for subwatersheds was aggregated to create a single
inflow time series representing actual inflow ( İj). Subwatersheds, defined by the gauged locations,
were intersected with 250 m elevation bands, resulting in catchments, within which meteorological
conditions and soil and vegetation characteristics were considered homogeneous. Vegetation was
classified with GIS data from the U.S. Geological Survey (USGS) National Land Cover Dataset
(NLCD) [Homer et al., 2004]. Soil depth was classified using the USGS Soil Survey Geographic
(SSURGO) Database [NRC, 2013]. Meteorological forcing was from two sources. Precipitation,
temperature, and relative humidity were from the 1/16◦ hydrometeorological data set described
by Livneh et al. [2015] and wind was from DAYMET [Thornton et al., 1997].

Calibration was automated with PEST [Doherty, 2015] using 13 physical parameters across
three subwatershed groups, defined by geographic proximity. The reconstructed daily unimpaired
flow data set developed for re-licensing the YBDS [DTA Sacramento, 2007] was used for model
calibration and evaluation of daily discharge, with a calibration period of 1984–88, which included
a range of water year types, and an evaluation period of 1989–99. Following Moriasi et al. [2007],
the ratio of root mean square error to the standard deviation of observations (RSR), Nash-Sutcliffe
efficiency (NSE) and percentage bias (PBIAS) were used to assess goodness-of-fit; these are defined
and described by Moriasi et al. [2007]. Monthly inflow goodness-of-fit metrics for the period of the
reconstructed data set (1975–2004) were “satisfactory,” as defined by Moriasi et al. [2007], with
RSR = 0.70, NSE = 0.51, and PBIAS = –24.9% (overestimation). The hydrology model generally
over-estimated inflow through April and slightly under-estimated flows thereafter through July,
indicating under-estimation of snow accumulation.

2.3.2 Statistical Inflow Estimation Model

Although multivariate regression models are often used in the region, typically with SWE, recent
runoff, and air temperature as independent variables [Rosenberg et al., 2011], a univariate regression
with SWE was used in this study, as SWE accounts for most observed runoff variability in spring
and summer. The regression model consisted of three steps. First, calculate historical median
daily inflows ( Ĩd). This is similar to the “median forecast” used by Jacobs et al. [1995]. Ĩd does
not depend on the date of forecast and is calculated just once using the representative historical
inflows. Second, on each day of SWE measurement, estimate the regression coefficients between
SWE and total year-to-go inflow using modeled hydrologic data spanning the period-of-record
(WY 1952–2009), as follows:

Ireg = a ∙ SWE + b , (10)

where Ireg is the regressed year-to-go total inflow and a and b are the regression coefficients.
Example regressions are shown in Figure 2. Linearity was deemed adequate through July, when
regression coefficient a remains high and year-to-go inflow becomes relatively low (less important
for hydropower). Third, scale the median daily hydrograph using the SWE-runoff relationship
with a scaling factor f :

Îd = f Ĩd (11)
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where Îd is the scaled predicted daily inflow, converted as needed to multiday time steps for Îij in
equation (8). Scaling factor f is defined as:

f =
Ireg

∑ Ĩd
, (12)

The statistical method was only applied from February through July, for reasons discussed
above, on days when SWE is assumed measured. In between snow-measurement days, only the
relevant remaining portion of the scaled daily hydrograph was used. Perfect hydrologic foresight
(i.e., inflows from the physical hydrology model) was assumed for August-September forecasts,
when runoff is relatively low and generally predictable. From October through January, when
runoff is most unpredictable, median daily inflows were assumed. This regression method works
well for this study, but in general becomes less valid as SWE decreases, such as with climate
warming and anomalous low-SWE years.

The statistical regression model and source blending approach are demonstrated. Figure 2
shows the correlation between SWE and year-to-go inflow for specific days of the year. The cor-
relation is strongest from April through June. Although the correlation becomes increasingly less
linear through summer, a linear regression was used during all months, as the linear correlation
remains strong through July, after which perfect hydrologic foresight was assumed.

Figure 3 shows how increasing α f inal changes year-to-go prediction error for three represen-
tative days of the year, with error measured by NSE and mean absolute percent error (MAPE)
[Moriasi et al., 2007]:

NSE = 1 −
∑N

t=1 (Ft − At)
2

∑N
t=1 (At − Amean)2 , (13)

MAPE =
1
N

N

∑
t=1

|Ft − At|
At

∗ 100% , (14)

where t is the time step, N is the total number of time steps, Ft is the forecasted inflow, At is the
actual inflow, and Amean is the mean actual inflow. These metrics can be calculated at any point
in time over any arbitrary number of time steps; in this study, time step t is daily. Performance
metrics do not necessarily improve through time, as reflected in the metric spreads (Figure 3),
despite the correlation between SWE and year-to-go runoff increasing from February through
June (Figure 2). This is because metrics are partly a function of the total number of time steps,
which decreases through the year.

Mean year-to-go daily MAPE (MMAPE) was used as an error quantification metric for multi-
day time periods. Using this approach, any given value of α f , which does not represent error per
se, can be mapped to a representative, multiperiod error term. Figure 4 shows this with boxplots
of mean annual MMAPE, i.e., mean of 365 year-to-go MAPE values across all years.

2.4. Electricity Prices

Hourly electricity prices were from the California Independent System Operator (CAISO) Open
Access Same-time Information System (OASIS; oasis.caiso.com). As no representative data set
of electricity prices exists, we used CAISO prices from the year 2006, when prices were relatively
stable. Hourly electricity prices for 4 months in 2006 are shown in Figure 5. The profit-maximizing
hydropower operator generates during large hourly spikes in electricity price from June through
September, which result from peak energy demand for summer cooling and convex electricity
supply curves [Stoft, 2002].
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2.5. Numerical Study Design

The four scenario sets considered are as follows and as listed in Table 1.

2.5.1 Set 1: SWE Error

In this set, a systematic SWE error was introduced to equation 10:

Ireg = a ∙ (SWEactual + εSWE) + b , (15)

where SWEactual is the assumed true SWE from the physical hydrology model and εSWE is the
systematic SWE error. SWE error was varied between –/+ 50% as approximate bounds on likely
error, based on the authors’ familiarity with the study area, and was held constant throughout
each year. In this and the following set, we also included a reservoir one half the size of the
existing reservoir. A larger reservoir was considered, but results were found to be insensitive to
larger reservoir sizes; this point is further discussed below.

2.5.2 Set 2: Forecast Accuracy

The economic value of general forecast accuracy α f under existing (base case) infrastructure con-
figuration and operations was examined. SWE measurement frequency ( fmeas) also was varied
between monthly and daily.

2.5.3 Set 3: Infrastructure

Infrastructure, runoff, operating objectives, and institutional characteristics determine the discre-
tionary power of a hydropower operator. The most important infrastructure characteristics for
the reservoir in this study include storage capacity and powerhouse capacity, in relation to each
other and to inflow characteristics. In this set, infrastructure capacity effects on the value of per-
fect hydrologic forecasts were assessed by systematically varying reservoir (Smax) and powerhouse
(PHmax) capacities. Only base case (α f =0) and perfect foresight (α f =1) conditions were considered.
SWE was assumed to be measured monthly in this and the remaining sets, as daily measurements
did not substantially improve hydropower value.

The range of PHmax and Smax values selected was based on the approximate ranges of nor-
malized capacities in the high elevation Sierra Nevada, expressed, respectively, as PH:I (annual
powerhouse release capacity:annual inflow) and S:I (storage capacity:annual inflow). Calculat-
ing normalized capacities is not straightforward, however, as available (net) inflow depends on
interbasin transfers, which cannot be computed directly. Based on a cursory analysis for a few
reservoirs in the northern Sierra Nevada, normalized reservoir capacities were below about 1.5
and normalized powerhouse capacities were less than about 6, though these ranges are approxi-
mate.

2.5.4 Set 4: Powerhouse Capacity

In this set, the powerhouse capacity was varied with greater resolution and in a more targeted
way than in set 3, for three reservoir sizes. Variation in storage capacity was not assessed further,
since forecast value is relatively insensitive to normalized storage capacities typically encountered
in the region.

8
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3. Results

3.1. SWE Error

We first note the effect of systematic SWE error on assumed inflow, shown in Figure 6 for one dry
year (1991) and one wet year (1996) for two dates (Feb 1 and Apr 1). Increasing or decreasing the
error in SWE measurement yields a proportional increase or decrease in year-to-go runoff, as per
equation 15.

Underestimation of SWE resulted in the greatest revenue loss, with maximum annual losses
of about $4.0 million with -50% SWE measurement error with the existing reservoir (262 mcm),
regardless of SWE measurement frequency (Figure 7). Some years had greater revenue with
less accurate SWE measurement, owing to uncertainty in the regression between SWE and year-
to-go runoff (Figure 2). On an annual basis for the existing reservoir size, a systematic SWE
underestimation of -50% resulted in average annual revenue losses of about $0.7 million, out of
an average of $66.3 million with no error. In contrast, overestimation resulted in no significant
net difference. Averaged over multiple years, gains and losses from over-estimation of SWE tend
to cancel out. On average, overestimation of SWE is at least as good as perfect estimation for the
medium reservoir and almost as good for a smaller reservoir. In contrast, doubling the reservoir
size had no significant effect on sensitivity to SWE compared to the existing capacity (data not
shown). Underestimation of SWE results in greater revenue loss for the medium versus smaller
reservoir. The benefit of SWE error reduction is greater when measurements are made daily, rather
than monthly. These results did not vary significantly by water year type.

3.2. Forecast Accuracy

A perfect streamflow forecast provided an average annual increase in revenue of $0.8 million,
or about 1.2% of $66.3 million average revenue, for both daily and monthly SWE measurements
(Figure 8). Revenue increases were generally higher in wetter versus drier years, as indicated by
the quintiles in Figure 8, ranging from $0.14 million per year (2nd quintile) to $1.6 million per year
(4th quintile). A reservoir with half the existing capacity resulted in a higher gain from perfect
forecasting in the first three quintiles and lower values in the wetter two quintiles, for a similar
average gain. Doubling the reservoir capacity had no significant effect on the benefit (data not
shown).

3.3. Infrastructure Characteristics

The value of perfect forecasts depends on both storage and hydropower plant capacity (Figure
9). Sensitivity to storage capacity is affected primarily by spill (Figure 9b). A small normalized
storage capacity (S:I<0.3) sees no change in hydropower generation or spill, as the optimal strategy
is to always generate at capacity, unless electricity prices are less than zero, so forecasts have no
additional value for small hydropower reservoirs. For medium normalized storage capacities (0.3–
0.8), the value of perfect forecasts depends on both relative storage and powerhouse capacity. In
this range, operational decisions affect both spill, representing lost energy, and release timing. For
high normalized storage capacity (>0.8), forecasting value is sensitive to powerhouse capacity, but
less sensitive to storage capacity. The influence of powerhouse capacity is greater for PH:I=3, with
a large increase in revenue with a perfect forecast at about PH:I=1.9.

Figure 10 shows the effect of powerhouse capacity in greater detail. These figures show peak
revenue, averaged across all years, at PH:I of 2.25, 1.75 and 1.75 for the smaller, existing, and larger
reservoir sizes, respectively. The differentiation by water year quintile in Figure 10 is consistent
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overall with incremental changes in perfect foresight (Figure 8). Finally, we note that the sensitivity
of forecast value to powerhouse capacity is not smooth, as linearization of nonlinear behavior in
LP models generally results in nonsmooth responses.

4. Discussion

In this study, improved SWE measurements showed some benefit, though sensitivity to SWE error
was masked by error in the year-to-go inflow regression model. On any given date, using the
statistical regression (Figure 2) results in either under- or overestimation of year-to-go total inflow,
even with no SWE error, reducing overall value to SWE estimates. This error is also reflected in
Figure 3, in which SWE is assumed known, and which shows significant inflow forecast error
when α f =0, i.e., just using the relationship in Figure 2. This indicates that the value of reducing
SWE error is somewhat limited across all years, and suggests that benefits from better data also
may require a better runoff model.

In contrast, perfect forecast skill showed a maximum expected value of just under one million
dollars per year (1.2%) assuming historical price levels and good snow measurements. Given
that multivariate and nonlinear regression models may be somewhat better than the linear model
used here, this value represents an approximate upper bound on the economic gain from perfect
foresight, and, therefore, on the annual expenditures that the hydropower utility should be willing
to pay for additional hydrologic information. This value may grow with increasing value of
hydropeaking as renewables expand in electricity generation.

In many if not most years, this low relative value is to be expected, and would be predicted
by Klemeš [1977], who noted that “contrary to the prevailing opinion, a reservoir can be operated
quite reasonably even on the basis of very limited hydrologic information.” Though Klemeš [1977]
was describing the sensitivity of an operating policy to the hydrologic record length, the notion
applies equally to the revenue-maximizing hydropower reservoir with seasonal storage considered
here, with variable, price-driven operations.

The decreasing expected marginal value of additional information seen in Figure 8 also has
implications for investments in water resources information systems. Since perfect information is
unattainable, the actual economic value of and willingness-to-pay for additional information, as
derived from the intersection of the mean curve in Figure 8 and an information supply curve, is
less than the value of perfect information. To develop supply curves requires a detailed accounting
of the marginal costs of better forecasting, which was not done in this study. The concavity of
the curves in Figure 8 also show that investments in forecast systems become increasingly less
valuable as forecasts improve, as Klemeš [1977] suggested.

The insensitivity of forecasting value to reservoir size with larger reservoirs is due to little to
no spill with larger reservoirs. The value remains sensitive to powerhouse capacity, however, as
the operator must still optimize timing of hydropower generation.

Improving the physical hydrology model would not substantially alter the findings of this
study. The performance of the physical hydrology model, used to represent actual flows, also af-
fects assessed economic value of forecasting. Greater accuracy would likely show greater SWE, as
the model over-predicted winter runoff (i.e., under-predicted SWE). This would result in stronger
spring SWE-runoff linearity in the statistical model and, therefore, a more accurate statistical
model. A more accurate statistical model would, in turn, result in decreased benefits from fore-
cast improvements. However, as this study shows, most value is already accounted for with even
imperfect forecast models, so a decrease in forecasting value with more accurate actual flows
would be relatively small.

The estimated benefits of hydrologic information from this study is limited to the case of
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the single hydropower operator. There is an economic difference between value of informa-
tion for a single water-using firm and that for an entire industry (e.g., the energy industry or
the information-using public generally), particularly in terms of how operational decisions affect
prices. Single firms are typically price takers, whereas industry decisions can affect market prices.
Here, the short-term bidding strategy of the single hydropower operator is assumed to not affect
prices, the approach typically used in bidding strategy studies [Deb, 2000, Díaz et al., 2011].

Benefits from improved forecasts would also be higher if some benefits accrue to other manage-
ment objectives. Hydrologic information in the public domain is a non-rivalrous, non-excludable
good, serving multiple firms and purposes simultaneously, including water management, forest
management, drought planning, scientific and other purposes [Hanemann, 2006]. All traditional
water management priorities are present in the Yuba River watershed, but only hydropower gen-
eration in the upper Yuba River was considered here. The quantities reported for single-purpose
studies such as this provide lower-bound estimates of the economic value of better hydrologic
information to society generally. Although the approach used here is appropriate for multiuser
cases, the economic interpretation here is insufficient in a broader measurement and forecast in-
formation context.

Expanding the numerical study to include different infrastructure characteristics (storage and
powerhouse capacities) illustrates how the magnitude and relative value of better hydrologic fore-
casts is system-specific, although some generalizations can be made. For small and large reservoirs
relative to net annual inflow, powerhouse capacity is the most important factor affecting the value
of hydrologic forecasts. For the northern Sierra Nevada, most powerhouses are within a capacity
range in which the value of better hydrologic information is highly variable, but where there is
potentially significant value if the cost of next-generation forecasting systems are low.

This work can be extended in several ways for greater applicability to other systems. First,
the general approach here should be extended to examine the importance of specific hydrologic
parameters, including initial conditions (SWE, soil moisture, etc.) and future conditions (pre-
cipitation, temperature, etc.). These variables could be considered in either statistical or spatially
explicit hydrologic models. Second, the approach can be extended in complexity to larger systems
as well as other management objectives. Third, climate change and resulting hydrologic nonsta-
tionary and uncertainty should be examined, as optimal operations depend on assumptions about
inflow hydrology. Finally, variations in the value of water should be considered, as the value of
forecasts directly depends on the value of water. In the kind of hydropower system considered
here, this would entail different electricity prices, as with different energy supply portfolios.

5. Conclusion

Although more information is generally better, there are limits to the value of hydrologic fore-
casting investments under historical hydrologic and electricity demand conditions. The average
potential additional value of perfect forecasts was found to be about $0.8 million per year out of
$66.3 million mean annual revenue, or about 1.2%. However, within these limits, there are likely
opportunities for further investments, depending on the cost of additional information. From a
classical microeconomic perspective, the decision to invest in better hydrologic forecasting infras-
tructure and methods should be based on actual (not relative) costs and benefits.

A range of contextual factors affects the benefits (and costs) of improved hydrologic knowl-
edge, including the sensitivity of the forecast model and its accuracy to measured state variables,
infrastructure capacity, and operational constraints. In this study, regression model accuracy was
relatively insensitive to SWE, resulting in little overall improvement in operations with decreased
SWE uncertainty. For hydropower systems such as those in the Sierra Nevada, forecasting value
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is more sensitive to powerhouse capacity than to reservoir storage.
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Table 1: Scenario Set Definitions

Parameter Units
Set 1

SWE Error

Set 2
Forecast

Error

Set 3
Storage & PH

Capacity
Set 4

PH Capacity
εSWE no units -0.5 to 0.5 0.0 0.0 0.0
α f no units 0.0 0.0 to 1.0 [0.0, 1.0] [0.0, 1.0]
fmeas (time step) [month, day] [month, day] month month
PHmax (m3 s-1) 25.5 25.5 0 to 175 0 to 100
Smax (million m3) [131, 262] [131, 262] 0 to 600 [131, 262, 524]
IFRt [m3 s-1] 0.31 0.31 0.31 0.31

Figure 1: The location of the Yuba-Bear/Drum-Spaulding hydropower complex and its representation as a single reser-
voir.
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Figure 2: Regression between snow water equivalent (SWE) and year-to-go (YTG) inflow on specific days of the year
based on modeled historical SWE and inflow data.
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Figure 3: Inflow forecast metrics by blending factor (α f , equation (9)) for 3 days of the year. Metrics include a) Nash-
Sutcliffe efficiency (NSE), b) mean absolute percent error (MAPE). α f = 0 represents statistical regression
and α f = 1 represents perfect foresight. Whiskers span value ranges.
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Figure 4: Inflow forecast mean daily mean absolute percent error (MMAPE) by blending factor (α f ). Diamonds show
the aggregated MMAPE. α f = 0 represents statistical regression and α f = 1 represents perfect foresight.
Whiskers span value ranges.
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Figure 5: Hourly California Independent System Operator (CAISO) northern region hourly electricity prices by month
for 2006.
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Figure 6: Effect of systematic snow water equivalent (SWE) error on regressed median inflow hydrograph (Ireg) for
2 years, with actual inflow hydrograph from hydrology model (black lines) superimposed. First 7 days are
assumed with perfect forecast.
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Figure 7: Mean annual hydropower revenue with systematic snow water equivalent (SWE) error (εSWE) compared to
no SWE error (εSWE = 0.0) for all years. Each line is 1 year out of the 58 year record. Dashed line shows
mean.
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(forecast improvements) by water year quintile (WYQ) and hydrologic measurement frequency ( f meas) for
two reservoir sizes.
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Figure 9: Surface plots of a) revenue increase (forecast value) and b) spill reduction with perfect hydrologic foresight
compared to statistical forecasts by different reservoir and powerhouse (PH) capacities normalized by mean
annual inflow. Colors scale to the z-axis. “YB/DS” indicates the Yuba-Bear/Drum-Spaulding system.
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Figure 10: Mean annual magnitude increase in hydropower revenue with perfect hydrologic forecast by powerhouse
capacity:inflow and water year quintile for three normalized storage capacities (S:I). Vertical lines indicate
the Yuba-Bear/Drum-Spaulding system.
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