UC Davis

Orthopaedic Surgery

Title

Identification and Characterization of an Intra-Tumoral Microbiome in Soft Tissue Sarcomas

Permalink

https://escholarship.org/uc/item/4r65940t

Authors

Basmaci, Ugur N. Jones, Louis B. Chen, Shuai <u>et al.</u>

Publication Date

2020

Data Availability

The data associated with this publication are not available for this reason: N/A

Identification and Characterization of an Intra-Tumoral Microbiome in Soft Tissue Sarcomas

Ugur N. Basmaci¹, Louis B. Jones², Shuai Chen³, Cordelia Dunai⁴, Alicia A. Gingrich⁵, Sean J. Judge⁵, Lauren M. Perry⁵, Arta M. Monjazeb⁶, Robert J. Canter⁷

¹UC Davis School of Medicine, Sacramento, CA, USA; ²Department of Orthopedic Surgery; ³Division of Biostatistics, Department of Public Health Sciences; ⁴Department of Dermatology; ⁵Department of Surgery; ⁶Department of Radiation Oncology; ⁷Division of Surgical Oncology, Department of Surgery. UC Davis Medical Center, Sacramento, CA, USA.

Background

- ✓ Immunotherapy is the "fourth pillar" of cancer treatment (Nobel Prize in 2018 by Drs. Allison and Honjo).
- ✓ The gut microbiome has been shown to impact immunotherapy outcomes in cancer.¹
- ✓ In human-to-mouse experiments involving fecal transplantation (FMT), the effect of the gut microbiome on immunotherapy outcomes was observed to be transferable.¹
- Cancer patients who receive antibiotics prior to initiation of immunotherapy may have worse outcomes, which is hypothesized to be due to the negative impact of antibiotics on the gut microbiome.²
- \checkmark Microbiota have also been identified in solid tumors of the pancreas and breast-organs that communicate with the outside world.^{3,4}
- ✓ In a murine model of pancreatic cancer, the intratumoral microbiome was shown to promote inhibitory immune pathways, and antibiotics reversed this effect.⁴

1. V. Gopalakrishnan et al. Science 2018:359:97-103

3. C. Urbaniak et al. Appl. Environ. Microbiol. 2016;82(16):5039-5048

2. D. Pinato et al. JAMA Oncol. 2019;5(12):1774-1778

4. S. Pushalkar et al. Cancer Discov. 2018;8:403-416

Research Questions

- 1) Is there a soft tissue sarcoma (STS) microbiome?
- 2) If so, is it clinically relevant?
 - Impact on immune phenotype (stimulatory vs. inhibitory)?
 - Correlation with the gut microbiome?
 - Response to cancer therapy?
 - Prognosis?

Methods

- 16S rRNA sequencing was employed to identify microbiome-specific genetic signatures in eight treated (post-radiotherapy) archived STS specimens (Table 1), obtained from the UC Davis Comprehensive Cancer Center Biorepository.
- Abundance and diversity of microbial organisms were examined against a background of reagentonly negative controls.

Figure 1. Overview of banked patient sarcoma tissue at the UC Davis Comprehensive Cancer Center Biorepository, classified by sarcoma sub-type (n = 186).

Table 2. Relative abundances of the six most abundant families of bacteria in each patient STS sample, expressed as percentages of the total 16S reads per sample.

	SA0536	SA0553	SA0648	SA0737	SA0738	SA0970	SA1210	SA1216
FAMILY	(% of 33,614)	(% of 46,143)	(% of 42,483)	(% of 42,292)	(% of 71,789)	(% of 51,659)	(% of 43,179)	(% of 57,148)
Bacillaceae	65.5%	35.8%	1.0%	63.3%	58.3%	47.2%	61.6%	54.7%
Enterobacteriaceae	0.0%	38.0%	0.4%	6.9%	0.0%	11.4%	0.0%	0.0%
Enterococcaceae	0.0%	3.5%	37.3%	0.2%	0.0%	1.1%	0.0%	0.0%
Tannerellaceae	0.0%	3.0%	23.7%	2.1%	0.0%	4.3%	0.0%	0.0%
Lachnospiraceae	0.0%	5.0%	19.0%	1.2%	0.0%	7.5%	0.0%	0.0%
Burkholderiaceae	29.2%	1.9%	0.1%	7.8%	27.3%	5.4%	28.9%	33.6%
Staphylococcaceae	2.4%	2.9%	1.2%	3.0%	9.9%	1.8%	5.1%	3.4%
Other	2.9%	9.8%	17.3%	15.6%	4.5%	21.4%	4.4%	8.4%
TOTAL	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

patient STS sample, expressed as percentages of the total 16S reads per sample.

	SA0536	SA0553	SA0648	SA0737	SA0738	SA0970	SA1210	SA1216
GENUS	(% of 33,614)	(% of 46,143)	(% of 42,483)	(% of 42,292)	(% of 71,789)	(% of 51,659)	(% of 43,179)	(% of 57,148)
Bacillus	31.5%	21.4%	0.5%	31.9%	27.5%	27.3%	33.3%	25.4%
Anaerobacillus	34.1%	14.4%	0.5%	31.4%	30.9%	19.8%	28.3%	29.3%
Escherichia/Shigella	0.0%	38.0%	0.4%	6.9%	0.0%	11.4%	0.0%	0.0%
Enterococcus	0.0%	3.5%	37.3%	0.2%	0.0%	1.1%	0.0%	0.0%
Parabacteroides	0.0%	3.0%	23.7%	2.1%	0.0%	4.3%	0.0%	0.0%
Blautia	0.0%	1.6%	12.3%	0.8%	0.0%	2.5%	0.0%	0.0%
Ralstonia	29.2%	1.9%	0.1%	7.8%	27.3%	5.4%	28.9%	35.6%
Staphylococcus	2.4%	2.8%	1.2%	3.0%	9.9%	1.8%	5.1%	3.4%
Other	2.8%	13.3%	24.1%	15.9%	4.5%	26.3%	4.4%	6.4%
TOTAL	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

- Pleomorphic Sarcoma
- Liposarcoma

Leiomyosarcoma

- Fibromyxosarcoma
- Chondrosarcoma
- Rhabdomyosarcoma
- Other

- Osteosarcoma
- Synovial Sarcoma
 - Atypical Lipoma

Table 1. Characteristics of chosen STS post-RT specimens for 16S rRNA microbiome analysis (n = 8). UPS = undifferentiated pleomorphic sarcoma. Mean age = 69.5 years, 50% male.

Specimen ID	Diagnosis	Sex	Age	Race
SA0536	Liposarcoma	М	67	White
SA0553	UPS	Μ	65	White
SA0648	UPS	F	49	White
SA0737	UPS	F	86	White
SA0738	UPS	F	86	White
SA0970	UPS	Μ	86	White
SA1210	Liposarcoma	F	54	White
SA1216	UPS	Μ	63	White

Table 3. Relative abundances of the seven most abundant genera of bacteria in each

Figure 2 (A-B). Stacked bar plots at the family (A) and genus (B) level showing the relative abundance of each family and genus per patient STS sample, respectively.

Conclusion & Future Directions

- > We report exciting preliminary data demonstrating, for the first time to our knowledge, the existence of an intra-tumoral microbiome in STS.
- > Validation is ongoing, including a prospective collection and assessment of tumor tissue alongside key clinical correlates (Figure 4).
- ➤ If our hypotheses are correct, it would be an exciting opportunity for innovation in the treatment of this cancer that poses a formidable challenge in disseminated disease.

Figure 3. Study schematic for prospective tissue collection and microbiome analysis. RT = radiotherapy.

Acknowledgements: We would like to extend a special thank you to Matthew Rolston and the UC Davis Microbiome Core for their assistance in this project, and the UC Davis Comprehensive Cancer Center Biorepository for providing the patient tissue samples.

UCDAVIS HEALTH

SCHOOL OF MEDICINE