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ABSTRACT

Constraints to Adaptation in Maize: Environmental Trade-offs and Deleterious

Alleles

Selection can result in populations becoming more adapted, yet even in the presence of selec-
tion other effects can constrain adaptation. Two of the effects that can cause this discrepancy
are genotype by environment interactions (GxE) and the accumulation of deleterious alleles.
GxE is observed when an allele has different effects depending on the environment and can
result in the maintenance of genetic variation, particularly when no genotype is best adapted
to all environments. Deleterious alleles are generally considered as those which are deleteri-
ous across the conditions members of a species might encounter. Although they experience
negative selection, they can still contribute a substantial proportion of genetic variance.

In this dissertation, I analyzed GxE and deleterious alleles in maize. First, I investigated
GxE in a maize mapping population. We find that GxE contributes a substantial amount to
the phenotypic variance for many traits. While we identify loci contributing to GxE, overall
most of the GxE variance may be due to unidentified polygenic effects. Estimating the
genetic covariances between traits in each environment reveals large differences in the genetic
variance-covariance matrix between environments and in particular shows that differences
in selection on flowering time may be contributing to the observed GxE for yield. Second,
we analyzed the distribution of structural variants in maize inbred lines along the genome.
We find that structural variants are more depleted in constrained regions of the genome
than single nucleotide polymorphisms, possibly indicating that structural variants are more
likely to be deleterious. Finally, we apply a machine learning method to identify constrained
regions of the maize genome based on population genetic data. These predictions allow us
to assess more recent evolutionary constraint in maize and find regions where mutations are

more likely to be deleterious.
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Chapter 1

Analysis of genotype by environment
interactions in a maize mapping

population

Asher 1. Hudson!?, Sarah G. Odell'3, Pierre Dubreuil*, Marie-Helene Tixier?, Sebastien
Praud*, Daniel E. Runcie®, Jeffrey Ross-Ibarral:??
! Department of Evolution and Ecology, University of California, Davis, CA, USA
2 Center for Population Biology, University of California, Davis, CA USA
3 Department of Plant Sciences, University of California, Davis, CA, USA
4 Center of Research of Chappes, Limagrain, Chappes, France
> Genome Center, University of California, Davis, CA, USA

1.1 Introduction

Both the effect of a given genotype on a trait, and the impact of that effect on fitness, often
vary across environments. Such genotype by environment interactions (GxE) are widespread,
and have been commonly observed in plants (Bradshaw, 1965; Des Marais et al., 2013). GxE
interactions are of interest for multiple reasons: they provide insight into the physiological
processes and genetic architecture underlying individual traits, are likely crucial for local
adaptation of populations to different environments, but may also limit the response to
selection (Allard and Bradshaw, 1964; Kawecki and Ebert, 2004).

While alleles affecting a trait will demonstrate GxE for fitness across environments when



there is selection for different trait optima, it is also often observed that the effect of individual
alleles on traits will vary as well. This indicates that these alleles affect plasticity and they
may be present in a population due to selection for or against plasticity (Josephs, 2018).
Alternatively, they may be deleterious but rarely exposed to environments in which they
are selected against, or unassociated with fitness and selectively neutral (Des Marais et al.,
2013; Paaby and Rockman, 2014).

One avenue to study GxE is to search for individual loci with changing effects on traits
or fitness across environments. Multiple studies have identified loci that contribute to GxE
(several of which are reviewed in Josephs (2018)). Loci which contribute to GxE include the
Eda locus in threespine stickleback fish, which is associated with adaptation to the freshwater
environment, and SublA in rice, which is associated with tolerance to submergence (Barrett
et al., 2008; Xu et al., 2006). Genome-wide association studies (GWAS) have also been used
to identify alleles significantly associated with GxE, including shade response and drought
response in Arabidopsis thaliana (Filiault and Maloof, 2012; El-Soda et al., 2015).

Individual traits do not exist in a vacuum, however, and alleles that affect one trait
often have pleiotropic effects on others. Indeed, the outcome of selection on a trait depends
crucially on the genetic variance-covariance matrix (G-matrix), which describes how the
genetic value at one trait covaries with genetic values at other traits (Lande, 1979). Genetic
covariation between traits can have profound impacts on the genetic response to selection,
either hindering or facilitating trait response. For example, if fitness positively co-varies with
two different traits, but those traits negatively co-vary with each other, this can lead to a
trade-off.

But the G-matrix itself is not constant, as GxE at underlying loci may impact trait varia-
tion and covariation among traits (Wood and Brodie, 2015). If in a different environment the
covariance of a trait with fitness or other traits is weakened or changes sign, it may indicate
that the selection or trade-off does not exist in the new environment (Sgro and Hoffmann,
2004). As GxE contributes to the G-matrix within each environment, understanding the G-
matrix in multiple environments may illuminate the causes of GxXE. If the genetic covariance
between two traits changes between environments and GxE is observed, then a change in

the pleiotropy of the underlying loci may be responsible for both the changes in the genetic



covariance and GxE.

Maize is a crop species adapted to a wide diversity of environments, from temperate to
tropical and from low to high altitude (Hake and Ross-Ibarra, 2015). GxE has been shown
to be an important contributor to many traits in maize, including grain yield (Gage et al.,
2017; Gates et al., 2019; Rogers et al., 2021). Nonetheless, identification of GxE in maize,
as in many species, is complicated by issues of population structure and the low minor allele
frequency of most polymorphisms (Korte and Farlow, 2013). To circumvent these issues,
we investigated the genetic basis of GXE in maize in a multiparent advanced generation
intercross (MAGIC) population of 16 diverse temperate maize lines (Odell et al., 2022).
We grew the MAGIC hybrids across five contrasting temperate environments with diverse
management practices in order to capture a broad range of GxE relevant to the conditions
the parental lines would be grown in.

We find that GxE contributes as much as genotypic main effects to variance for some
traits. While GxE interactions are significant, genome-wide association only finds a small
number of markers significantly associated with GxE interactions, perhaps reflecting the
highly polygenic nature of most traits. Nonetheless, estimation of the G-matrix in each
environment reveals that changes in genetic covariance are common and may be contributing
to observed GxE. For example, we find that while only a small proportion of variance in
flowering time depends on GxE, the genetic covariance between flowering time and grain

yield is strongly affected by the environment.

1.2 Materials and methods
1.2.1 Plant materials

We developed a maize multi parent advanced generation intercross (MAGIC) population
by repeatedly crossing the offspring of sixteen maize inbred lines to generate recombinant
individuals (Odell et al., 2022). Inbred lines were selected to maximize genetic diversity
and include dent, flint, and Furopean flint lines. After eight generations of intercrossing,
we generated a population of 344 doubled haploids (DH) lines. DH lines were crossed to
MBS847, a dent line chosen to be the tester, to make F1 plants.



1.2.2 Phenotype Data

The MAGIC F1 plants were phenotyped in four different field locations in four different years,
resulting in five distinct environment-years (Supplemental fig. 1.4, supplemental table 1.1).
The environment-years included Blois, France in 2014 and 2017, Nerac, France in 2016, St.
Paul, France in 2017, and Graneros, Chile in 2015. We used an alpha design with two plots
of around 80 plants grown for each genotype in each environment-year. Planting density
ranged between 85,000 to 95,000 seeds per hectare. Seeds were planted with an automatic
seed drill. The row width was 0.8 meters with two rows per plot. The fields in environment-
years Blois 2014, Blois 2017, and Graneros 2015 all received consistent irrigation. The field
in Nerac 2016 was not actively irrigated from vegetative phase through flowering, causing
drought stress through most of the life cycle. The field in St. Paul 2017 was not irrigated
during vegetative phase but was irrigated during flowering to allow plants to recover from the
earlier drought stress. The applied drought stress was mild and intended to be representative
of realistic field conditions.

We measured the following traits: male flowering date, female flowering date, anthesis-
silking interval (ASI), plant height, percent harvest grain moisture (HGM), grain yield, and
thousand kernel weight (TKW), where values were averaged over plots. Both flowering time
phenotypes were measured as the sum of degree days since sowing with a base temperature of
6°C (48°F). Male flowering date was considered as the growing degree days (GDD) until 50%
of plants in a plot were shedding pollen on approximately one quarter of the central tassel
spike. Female flowering date was considered as the GDD until 50% of plants in a plot were
flowering with 2 cm of silk outside of husk leaves. Plant height was measured as the distance
from the base of the plant to the top of the tassel. Grain was collected using a combine
harvest. Grain yield and TKW were both adjusted to 15% humidity. TKW was estimated
from a 100 kernel sample. Data was also collected from an additional environment, Szeged,
Hungary in 2017. We did not use this data in the analyses presented here as flowering date
was not collected on the same schedule as in the other environments and this caused issues
with the GxE analyses. Data from Szeged is available in the data repository associated with
this paper. Between 292 and 309 of the MAGIC F1 lines were grown in each environment.
There were a total of 325 lines that had both genotype data and phenotype data from at



least one environment.

1.2.3 Genotyping

We genotyped each of the DH lines using the Affymetrix® Axiom® Maize Genotyping Array,
which successfully genotyped 551,460 SNPs. The probability of each founder contributing
to each segment in the genome was imputed from the genotyped SNPs (Odell et al., 2022).

1.2.4 Estimating kinship

Kinship matrices for the DH lines were estimated from the genotyped SNPs using the Van-
Raden method as implemented in the R package sommer (Covarrubias-Pazaran, 2016; Van-
Raden, 2008; R Core Team, 2020). SNPs were first filtered for linkage disequilibrium using
Plink with a window size of 50 kb, a step size of 5, and an r? threshold of 0.2 (Purcell
et al., 2007). In order to perform genome-wide association analyses, we used the leave one

chromosome out method (Lippert et al., 2011).

1.2.5 Genotype x environment interactions

Variance components for each trait were estimated using the R package sommer. We used
the formula:

y = Zgug + Zgug + Zg.gurc + fe(x,y) +e

Where y is a vector of n observations from individual plots of a single trait including both
plots of all lines in all environments, Zg is a n X r design matrix for the genotypic main
effects of the r lines, Zg is a n x 5 design matrix for the environmental main effect, Zg.q is
a n x br design matrix for genotype specific effects in each environment, ug is a length r
vector of random genotypic effects, ug is a length 5 vector of environmental random effects,
Uug.q is a length 5r vector of random GxE effects with same variance and covariance among
environments, fr(x,y) is a two dimensional spline for the effect of the x/y position in the
field nested within environment modeled as a single random effect fit from an incidence
matrix containing the tensor products of the x and y coordinates in the field, and e is the
error. sommer models 2D splines based on modified code from SpATS (Rodriguez—Alvarez

et al., 2017).



1.2.6 GWAS

Genome-wide association analyses for loci contributing to GxE interactions were performed
with the R package GridLMM (Runcie and Crawford, 2019). Imputed founder probabilities
at each locus were used as markers, meaning that at each marker we asked if the identity
of the founder which contributed that genomic region at a given locus was a significant pre-
dictor of differences in plasticity among the hybrids. We set GridLMM to obtain maximum
likelihood estimates of the effect of each marker.

GxE models can be parameterized in multiple ways which could potentially capture
different aspects of GxE. We chose to model GxE in three different ways in our GWAS
analyses, which we describe below.

i) Main effect across environments and deviation effect within environments

We tested whether a locus had a different effect on a trait in two environments: Blois
2017 and Nerac 2016. We chose these two environments because they were respectively the
highest and lowest yielding environments. The model for this GWA was: y=p + wa +
XnBm + XpamBem + Laiug: + Zp.ciup.cr + Zgaugs + €

Where y is a vector of n observations from individual plots of a single trait including
both plots of all lines in both environments, pu is a constant length n vector of the average
trait value across the two environments, w is a length n design matrix of environmental
effects taking values of -1 and 41 according to the environment (1 for Blois 2017 and -1
for Nerac 2016), « is a scalar representing 4 the deviation of trait means between the two
environments, X,,, is a n X 16 matrix, where the kth column is the probability that each of
the n individuals inherited from the kth founder at marker m, Xg., is an n x 16 matrix
formed by multiplying w with each column of X,,, (,, is a vector of main effects of the
founder alleles averaged over the two environments, Sg.,, is a vector of differences between
the founder allele effects between the two environments, Zg; is a n X r design matrix of
additive genotypic effects, Zg.¢1 is a n X r design matrix of genotype deviations formed by
multiplying each column of Zg; by w, Zge is a n X r design matrix of non-additive genotypic
effects, ug is a vector of additive genotypic effects averaged over the two environments,
ugp.1 is a vector of additive genotypic deviations between the two environments, ugs is a

vector of non-additive genotypic effects averaged across the two environments, and e is a



vector of error terms. ug; and ug.g; both have covariance proportional to K, where K is
the additive genetic relatedness matrix, and uge and e both have covariance proportional
to the identity matrix. The statistical test to identify markers influencing GxE was against
HO: Bg.., = 0.

ii) Plasticity

We tested whether a locus had an effect on the slope of the observations of a genotype
across the mean phenotypic value of all genotypes in an environment. This model has
the benefit of including the maximum amount of data. Compared to the main effect and
deviation model (i), this model might be more likely to pick up GxE effects that have
smaller effects within those two environments but a larger effect on the overall slope across
environments. The model is the same as in i) except for the following: we now include
all 5 environments, w is a length n vector with each element taking the mean value of the
phenotype within the environment of the observation, and p is a length n vector of the mean
value of the phenotype within the environment of the observation.

iii) Finlay-Wilkinson GWAS

Finally, we tested whether a locus had an effect on the slope of the observations of a
genotype across the mean grain yield of all genotypes in an environment. Mean grain yield
here serves as a proxy for stress or environment quality and as such this GWA is testing
whether a locus affects the response to stress. This is known as a Finlay-Wilkinson analysis
(Finlay and Wilkinson, 1963). For this analysis, a quantile plot of p-values indicated that
the test was poorly calibrated. Instead of asking whether allowing a marker to have a slope
across environments improved prediction of a trait in each environment as in (ii), we thus

asked whether the marker significantly predicted the slope of each genotype.

s = Xfs + Zcius + e

Where s is a length r vector of slopes for each genotype of trait values on mean grain
yield in each environment, 3, is a vector of marker effects, and u, is a vector of genotypic
effects with covariance proportional to K. Other model terms are as in (i).

To determine significance thresholds for the first two models, we permuted phenotypic



values among lines within each environment and ran the GWA 100 times. For the third

model, we permuted the slopes among the genotypes and ran the GWA 100 times.

1.2.7 The G-matrix across environments

We estimated the G-matrix in each environment using the R package brms (Biirkner, 2017).
brms implements Bayesian multilevel models using Markov chain Monte Carlo (MCMC)
algorithms. This is important as the samples from the MCMC chains allow us to estimate

uncertainty and significance in our downstream analyses. We used the model:

Y =7ZU+ f(x,y) + E

Where Y = [y;...ys5] and y; is a vector of n observations for the ith trait, Z isa n x r
design matrix of genotypes, U and E are random effects drawn from multivariate normal
distributions: vec(U) ~ N(vec(0),G ® I,.), vec(E) ~ N(vec(0),R ® I,,), I, is the r x r
identity matrix where r is the number of lines grown in an environment, I,, is the n x n
identity matrix where n is the number of observations, and G and R are 5 x 5 genetic
variance-covariance and residual variance-covariance matrices estimated from the data. G
and R are parameterized as the products of standard deviations and correlation matrices
with a half Student-T distribution and LKJ-correlation prior. f(x,y) is a two dimensional
spline for the effect of the x/y position in the field. The standard deviations of the two
splines have half Student-T distributions as priors.

All traits were scaled by the mean value across all environments and centered before
analysis in order to make them unitless and improve model convergence. We performed this
same analysis with non-scaled traits so that our results can be compared with those of previ-
ous studies with non-scaled phenotypic data. The G-matrices we estimated were broad sense
G-matrices as they included both additive and non-additive sources of genetic variance. We
ran four chains with 1,500 iterations of burn-in followed by 3,500 iterations. We chose these
numbers as the brms documentation states that most models will converge with only a few
thousand iterations. We assessed convergence by checking that all statistics output by brms
— such as R, defined as the potential scale reduction factor on split chains, and the num-

ber of divergent transitions, which occur when the simulated trajectory along the posterior



differs from the true trajectory — were within recommended ranges and by visually inspect-
ing the trace and autocorrelation of model parameters. For genotypic standard deviations
and correlations, the bulk effective sample size of parameters ranged from 1,506 to 6,449.
To determine whether the correlation between two traits differed between environments, we
found the difference between the MCMC samples for the two environments and determined
whether the interval spanned by the 2.5% and 97.5% quantiles of the differences overlapped
zero. In particular, if the correlation between two traits was positive in one environment
and negative in another, and if one or both of those traits correlate with yield, this would
be evidence for a possible trade-off between fitness in different environments.

To quantitatively assess differences among the G-matrices estimated in the five envi-
ronments, we performed eigenanalysis of a covariance tensor as described in Aguirre et al.
(Aguirre et al., 2014). The tensor approach is a geometric approach founded on the di-
agonalization of symmetric matrices, and is mainly used to calculate a set of orthogonal
axes known as eigentensors that describe coordinated changes in the elements of the original
matrices being compared. Eigentensors describe which elements of a set of matrices most
contribute to variation among those matrices. As the G-matrices differed in their environ-
ment but not population, the genetic variances and covariances that contribute the most
to the eigentensors are those which are most influenced by the environment. Eigentensor
analysis was performed on the posterior median G-matrices. Uncertainty in the eigentensors
was estimated by performing eigentensor analysis on the MCMC samples of the G-matrices.
Finally, to determine whether an eigentensor explained more of the variation among G-
matrices than would be expected by chance, we shuffled the real phenotypic data among
environments, estimated G-matrices, and asked whether the eigentensors of the randomized
G-matrices explained as much of the variation as the MCMC samples from the real data.
If an eigentensor of the estimated G-matrices explain more of the variation, this indicates
that this eigentensor is explaining biological variation and not only variation due to random

sampling.



1.3 Results

We evaluated 7 phenotypes for each of 344 hybrids of doubled haploid (DH) lines crossed with
a tester in replicated trials across 5 environments that varied in temperature, daylength, and
watering or drought conditions (Supplemental fig. 1.5). Each DH line hybrid was genotyped
for 551,460 SNPs, allowing us to identify ancestry segments along the genome.

1.3.1 Genotype x environment interactions

Genotypic main effects and GxE interactions contributed a significant amount of the variance
of all measured traits (Fig. 1.1). Across environments, it was common for the rank of
DH lines for grain yield to change, indicating that individual lines were generally not high
yielding in all conditions (Fig. 1.1A). Anthesis-silking interval (AST) showed a qualitatively
similar pattern of rank-changing, while some traits such as thousand kernel weight (TKW)
showed less dramatic GXE (Supplemental fig. 1.6). The proportion of variance due to main
genotypic effects ranged from 0.34 for grain yield to 0.72 for male flowering date (Fig. 1.1B).
For grain yield and HGM, GxE interactions contributed an amount of variance similar to
the amount contributed by genotypic effects. For flowering time, TKW, and plant height,

GxE interactions contributed less of the variance than main genotypic effects.

1.3.2 GWAS

Our test of the deviation effect of a marker within environments did not recover any markers
significant at the 5% permutation threshold for any trait. In contrast, our plasticity GWAS
identified two peaks which were significant at the 5% significance level, which were for ASI
and female flowering (Fig. 1.2A, supplemental fig. 1.7). Neither of these peaks overlapped
with GWAS peaks for main effects in this population (Odell et al., 2022). The peak for
ASI on chromosome 1 appears to be driven by the effect of the FV2 founder, which has a
small effect in environments where ASI is close to zero but strongly increases the magnitude
of ASI in environments where average ASI is greater (Fig. 1.2B). Patterns of identity by
descent at the genomic region surrounding the peak identified unique haplotypes for 15 of
the founders (Odell et al., 2022), but a PCA of the SNPs in the region did not indicate that
the FV2 haplotype was strongly diverged from other founders (Supplemental fig. 1.8). The

peak for female flowering on chromosome 4 appears to be driven by founder A654, but the
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Figure 1.1: A) Mean yield of all genotypes in each environment. On the X axis environ-
ments are plotted by the mean yield across all genotypes in that environment. Points are
mean yields of individual genotypes. Lines are the slope of a genotype’s mean yield in each
environment on the mean yield of all genotypes in that environment. The color of the line
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responsive to the environment than average. B) Restricted maximum likelihood estimates
of variance components for each trait across all environments.
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marker effects for this founder appeared unrealistically strong and likely reflect an artifact
of the extremely low sampling of this founder among the DH lines. In addition to these two
associations at the 5% level, we detected one peak which was significant at the 10% level
for grain yield (Supplemental fig. 1.9). Our Finlay-Wilkinson GWAS uncovered one peak
significant at the 5% level for ASI (Supplemental fig. 1.10). However, the founder whose
effect appears to be driving this peak also appears to be underrepresented at this locus and
only one line has a greater than 0.8 probability of carrying this founder allele. As a result,
this peak is likely to be a statistical artifact.
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Figure 1.2: A) Manhattan plot for plasticity (model ii) GWAS on ASI. The blue and green
lines represent the 5% and 10% significance levels based on permutation tests, respectively.
B) Estimated effect of founder ancestry on plasticity for the most significant marker. The
slope of a line indicates the plasticity of that haplotype and the difference in slopes is GxE.
The color of the line corresponds to the slope; a slope greater (or less) than one indicates a
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1.3.3 The G-matrix across environments

To understand how the environment affected pleiotropy, we estimated the genetic vari-
ance/covariance matrix (G-matrix) of five traits in each environment (Fig. 1.3A, B, sup-
plemental figs. 1.11, 1.12). We dropped ASI and HGM from this analysis because models

including those traits failed to converge; ASI was dropped due to concerns about collinearity

12



as it is a function of two other traits in our analysis and HGM was dropped because in
analyses run on subsets of these traits we found that HGM had very low covariance with the
other traits. Comparisons of the 95% credible intervals of the difference between individual
genetic correlations revealed numerous differences among environments (Supplemental fig.
1.13). Both the genetic variances of individual traits and the covariances between traits
differed across environments (Fig. 1.3A, B). As the traits were mean scaled, the variances
presented in Figure 1.3A are not heritabilites, which is the genetic variance scaled by the phe-
notypic variance. Importantly, mean-scaled genetic variances are not affected by the amount
of residual variance, which means that a trait with high genetic variance relative to the mean
along with high environmental variance can have low heritability but high mean-scaled ge-
netic variance. (Houle, 1992). We found that grain yield generally had high mean-scaled
genetic variance in each environment, and the single highest mean-scaled genetic variance
of any trait in any environment was grain yield in Blois 2017. In one case, the sign of a
genetic covariance changed: the genetic covariance between grain yield and female flowering
date was positive across all environments except in Nerac 2016. This environment was the
only one in which the values in the 2.5% and 97.5% quantiles of the posterior of the genetic
covariance between grain yield and female flowering date was entirely negative, while in both
years in Blois this interval was positive. The median posterior values of some other genetic
covariances also switched signs between environments, but based on credible intervals we
cannot state that they switched with confidence.

To quantitatively assess how individual elements of the G-matrix contributed to variation
among environments, we performed an eigentensor analysis. The eigentensors of a set of G-
matrices describe independent dimensions of variation among the G-matrices and can be
used to identify which elements are contributing the most variation among the set. All of
the four nonzero eigentensors explained significantly more variance than expected by chance
(Supplemental fig. 1.14). The element of the G-matrix that most contributed to the first
eigentensor was genetic variance for grain yield (Fig. 1.3C). When plotting each environment
on this eigentensor, Blois 2017 is strongly differentiated from the other environments, which
is probably due to the genetic variance for grain yield being the highest in this environment

(Supplemental fig. 1.15). The genetic variance for grain yield also contributed strongly to
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the second eigentensor, while the genetic covariance between plant height and grain yield
and the genetic variance of plant height contributed in the opposite direction. The third
eigentensor described a contrast between genetic variance for plant height on the one hand
and the genetic covariances between both female flowering date and TKW with grain yield on
the other. Nerac is strongly differentiated on this eigentensor. While the covariance between
female flowering and grain yield is not the only element of the G-matrix contributing to
the third eigentensor, it is worth noting that Nerac is the only environment in which this
covariance is negative.

Results of the analysis with non-scaled phenotypes are presented in the supplemental

figures.

1.4 Discussion
1.4.1 Genotype x environment interactions

Genotype x environment interactions are known to be important for many agronomically
important traits in maize, and our results on the relative importance of GxE across traits
confirm these earlier findings. For example, male and female flowering date have been shown
to be influenced predominantly by additive genetic effects and are not strongly influenced
by GxE interactions (Buckler et al., 2009; Rogers et al., 2021), while grain yield and HGM
have large GxE variance components relative to main genotype effects (Gage et al., 2017;
Rogers et al., 2021). We find similar results in our analysis, indicating that this may be a
consistent pattern for diverse maize germplasm in temperate environments.

If genotypes are adapted to different environments, we would expect to see GxE for fit-
ness related traits. The high variance contributed by GxE to grain yield seen in this study
thus indicates that the founder maize lines, despite all having been bred in temperate envi-
ronments, still carry many alleles that are differentially adapted to this set of environments.
For traits that are further removed from fitness it is less clear how to interpret the contri-
bution of GXE. It may be that the GxE we observe for a trait like HGM, which has a high
proportion of GxE variance and a low genetic covariance with grain yield, is an example of

neutral plasticity and is not under strong selection (Des Marais et al., 2013).
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Figure 1.3: The genetic A) variances and B) covariances of the highest yielding environment
(Blois 2017) and the lowest yielding environment (Nerac 2016). Traits are mean scaled. A
black border around a covariance indicates that the 95% quantile interval of the posterior
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C) Contributions of elements in the genetic variance-covariance matrices to the first four
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1.4.2 GWAS

Despite the presence of substantial GXE variance for several traits, we found relatively few
markers which were significantly associated with GxE. One possible explanation is that the
GxE variance we observed is largely polygenic and caused by many loci of small effect which
we did not have power to detect with our GWAS. Previous studies investigating loci with
main effects on traits such as grain yield and flowering time in maize have found that they
are highly polygenic (Buckler et al., 2009; Dell’Acqua et al., 2015). It may not be surprising
then if GxE for these traits also has a similarly polygenic basis. Grain yield is a highly
integrated trait dependent on the interaction of many other traits with the environment; if
those traits have a complex basis and different optima within different environments, then
it would not be surprising to observe large GxE variance at the level of genotype while not

observing significant GxE effects for individual loci.

1.4.3 The G-matrix across environments

The G-matrix has previously been shown to differ as much between environments as between
populations (evidence reviewed in (Wood and Brodie, 2015)). Our work shows that the G-
matrix differs across environments in a multiparent population of temperate maize lines. We
find that these differences include both changes in the magnitude of genetic variances and
covariances as well as changes in the sign of genetic covariances. The highest mean-scaled
genetic variance we observed was for grain yield in Blois 2017, and in general grain yield had
high mean-scaled genetic variance compared to other traits within each environment. This is
in contrast to the finding that grain yield had the lowest heritability across all environments.
This finding fits with previous work finding that fitness proximal traits frequently have low
heritability but high mean-scaled genetic variance, possibly because of high residual variance
for fitness proximal traits reducing heritability (Houle, 1992).

The magnitude of the genetic covariances between traits can be reduced solely as a
function of reduced genetic variance for one or both of these traits without a change in
the correlation between them. However, by looking at genetic correlations, we show that
the correlations between traits varied across environments beyond effects of the differences

in the variances (Supplemental fig. 1.13). Additionally, changes in the genetic variance
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alone will not cause the covariance between traits to change sign, which we also see for
some combinations of traits. Particularly striking was the change in sign for the genetic
covariance between grain yield and female flowering date observed in the most stressful
environment, Nerac 2016. This environment was the only one in which the genetic covariance
between grain yield and female flowering date was negative. Previous work has shown that
flowering time is important for adaptation to drought stress (reviewed in Kazan and Lyons
(2016)). Nerac 2016 experienced a drought from vegetative growth through maturity. Early
flowering in this environment was genetically correlated with higher yields, suggesting that
early flowering may have been a means to escape drought stress. The change in sign of
the covariance is noteworthy given that we observed low GxE variance and high genotypic
variance for female flowering date while simultaneously observing high levels of GxE variance
for grain yield. This indicates that genotypes were relatively consistent in their flowering
time across environments but that late flowering genotypes were higher yielding in most
environments and lower yielding in one environment. In this way, a change in the genetic
covariance between two traits (grain yield and female flowering) across environments may be
contributing to GxE in one of those traits (grain yield), and provides an illustrative example
of how traits that themselves show little GxE may nonetheless contribute to GxXE for fitness.

While differences between environments presumably shape these changes in the G-matrix,
previous work has found that neither measures of environmental novelty nor differences in
phenotypic means predicted differences in the G-matrix when looking across all the stud-
ies in a meta-analysis (Wood and Brodie, 2015). In our analysis we find a similar result;
differences between the G-matrices estimated in each environment are largely idiosyncratic
and do not correspond with levels of stress or water availability. Eigentensor analysis re-
veals that each of the main directions of variation across G-matrices correspond mostly to
the differentiation of one or at most two of the environmental G-matrices from the others.
Previous work investigating the G-matrix of plant populations grown in well-watered and
drought environments has been inconsistent in terms of whether drought stress increases
or decreases genetic variance and how it affects the genetic correlation between flowering
time and yield (Manzaneda et al., 2015; Sherrard et al., 2009). Considering our work in the

context of previous studies, we suggest that the environmental contribution to the G-matrix
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is complex and not easily described by one environmental axis, which raises the possibility
that multivariate adaptation to the environment may be difficult to predict.

Additionally, both the severity and timing of drought seem to be important in determining
the effects of water deficit on covariances between traits. In this study we find that in Nerac,
the most drought stressed environment, the genetic covariance between flowering time and
yield is negative and that this genetic covariance contributes to differentiating it from the
other environments. The fact that the genetic covariance between flowering date and grain
yield in the other water deficit environment, St. Paul, was not significantly negative may
be because that population was given water during flowering while in Nerac water deficit
extended through flowering. It appears that how the G-matrix is affected by environmental

stress is highly dependent on the species and population studied and the exact stress applied.

1.5 Conclusion

Using a MAGIC population of maize grown in five environment x year combinations we were
able to analyze the genetic basis of GXE in a set of diverse maize lines. We observed GxE
variance for all traits and for some traits we observed comparable amounts of genotypic and
GxE variance. Estimating the G-matrix within each environment revealed that changes in
genetic variances and covariances across environments were common. Notably, the genetic
covariance between yield and female flowering time was positive in most environments but
negative in one of the environments. GWAS identified one locus significantly associated with
GxE for anthesis-silking interval. Given the substantial GxE variance, the low number of

significant loci suggests that GxE for the traits we analyzed may have a polygenic basis.
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1.7 Appendix
1.7.1 Supplementary figures and tables

Table 1.1: Features of the five growing environments.

Environment- Mean tem- Mean relative Mean precipi- Water treat- Planting
Year perature (°C) humidity (%) tation (mm)  ment! density
(seeds/hectare)

Blois 2014 16.7 75.2 2.19 OPT 85,000

Blois 2017 17.0 72.3 1.71 OPT 95,000
Graneros 20.1 55.1 0.266 OPT 90,000

2015

Nerac 2016 19.1 74.9 1.15 Early term 85,000

St. Paul 20.3 65.4 1.12 Recovery 90,000

2017
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in each environment on the mean trait value of all genotypes in that environment. The color of
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Figure 1.11: Heat maps of the G-matrices for the remaining environments. Genetic variances
are on the top row (A) and covariances are on the bottom row (B). A black border around a
covariance indicates that the 95% quantile interval of the posterior does not overlap with zero.
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covariance indicates that the 95% quantile interval of the posterior does not overlap with zero.
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Figure 1.13: Genetic correlations of each pair of traits. For each pair of traits genetic correlations
are shown for each environment with 95% credible intervals. Letters indicate significantly different
groups as determined by comparing the 95% credible intervals of the difference between MCMC
samples from estimating the correlation in each environment.
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2.1 Introduction

Structural variants (SVs) are common in the genomes of many species (Feuk et al., 2006;
Fuentes et al., 2019; Yang et al., 2019). Compared to single nucleotide polymorphisms
(SNPs), however, SVs are relatively less studied and understood. This is in large part
because SVs are more difficult to identify in genomic data than SNPs (Mahmoud et al.,
2019). Despite this, there are numerous examples of SVs with phenotypic effects, including
several implicated in adaptation and domestication (Shomura et al., 2008; Zancolli et al.,
2019; Su et al., 2019).

While some SVs are adaptive, many are likely deleterious. Overall, theoretical and em-
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pirical evidence suggests that most mutations with phenotypic effects are deleterious (Joseph
and Hall, 2004; Keightley and Lynch, 2003). Different types of mutations can have different
distributions of fitness effects, which is clear in SNPs as non-synonymous and biochemically
non-conservative SNPs are on average more deleterious than synonymous and conservative
SNPs, respectively (Cargill et al., 1999). Similarly, SVs may on average be more or less
deleterious than SNPs. Different types of SVs, such as insertions and deletions, may also
differ from each other. SVs can also differ from each other based on size, whether the size
indicates the amount of sequence inserted or the number of base pairs inverted.

In this study, we analyze the distribution of SVs in the maize genome using genome assem-
blies of 25 maize inbred lines. These assemblies were created with a hybrid long read-short
read approach and optical mapping, allowing us to analyze many more SVs than previously
possible in this species. Maize is an ideal system for studying structural variation as it is
known to be abundant in the maize genome (Schnable et al., 2009; Brunner et al., 2005).
83.20% of the genome of the maize line B73 is estimated to be composed of transposable
elements (TEs), which are one cause of presence absence variation and have been associated
with agriculturally important traits (Hufford et al., 2021; Yang et al., 2013). Two examples
of functionally important structural variation in maize are a 14 Mb inversion on chromosome
4 associated with earlier flowering time and that may be adaptive in highland maize and
deletions in the gene Wazy that are associated with the waxy phenotype (Pyhé&jarvi et al.,
2013; Romero Navarro et al., 2017; Okagaki et al., 1991; Fan et al., 2008). If most new
mutations are deleterious, however, examples of adaptive SVs may be the exception rather
than the rule.

Here we identify evolutionarily constrained regions in the maize genome and then ask
whether SVs are enriched or depleted in these regions. We find that SVs are strongly depleted
overall in constrained regions and that they are more depleted than SNPs, suggesting that
on average they may be more deleterious. This pattern varies greatly among classes of SVs

and we identify genomic features that explain some of these differences.
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2.2 Methods
2.2.1 GERP

We identified conserved regions of the maize genome using a comparative genomic approach.
To do this, we obtained 13 publicly available angiosperm genomes from Ensembl Plants
and Phytozome. Soft masked copies of the genomes were aligned to the unmasked B73 v5
reference genome using Last (Kietbasa et al., 2011). Repetitive elements in B73 v5 were
then masked in the aligned sequences using a RepeatMasker file. We identified a species
tree using previously published trees (Soreng et al., 2017; Smith and Brown, 2018). We
then estimated neutral evolutionary rates for branches of the tree from fourfold degenerate
sites in the alignment using rphast (Hubisz et al., 2018). We used the tools gerpcol and
gerpelem from GERP++ to estimate conservation scores at aligned base pairs and identify
conserved elements (Davydov et al., 2010a). GERP++ conservation scores are based on
rejected substitutions across species, where sites that have fewer substitutions than expected
based on the neutral tree are given more positive scores. We did not include the maize genome

when calculating GERP scores in order to avoid reference bias.

2.2.2 Enrichment analyses

Bed files with SVs are from Hufford et al. (2021). Briefly, Hufford et al. sequenced and as-
sembled 26 inbred maize genomes with a hybrid approach using PacBio long read sequencing,
[lumina short reads, and Bionano optical mapping, allowing a higher degree of contiguity
and completeness than previous assemblies. This approach was also able to assemble large
amounts of the repetitive regions of the genome. They then identified SVs by aligning both
long reads and whole genome assemblies of the other 25 inbreds to B73. Importantly, this
means that all SVs are relative to the B73 genome. It is difficult to determine whether a
given insertion deletion polymorphism (indel) is an insertion or deletion relative to the an-
cestral state. As our GERP elements are also called based on alignments to B73, we use the
same polarization for insertions and deletions as well as using combined indels for analyses.

To test whether SVs were depleted in conserved elements, we measured the overlap be-
tween SVs and conserved elements and performed Fisher’s exact tests. For tests involving

combined deletions and insertions, we measured the overlap of base pairs in conserved ele-
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ments with the presence of a SV in any of the NAM parental lines. We also tested for the
depletion of deletions and insertions in conserved coding sequence, conserved noncoding se-
quence, and conserved non-genic sequence. In all three of these cases, the Fisher’s exact test
was testing depletion compared with non-conserved elements. For tests involving insertions,
we also measured the overlap of GERP elements with insertion start sites. As insertions may
simply move conserved elements while maintaining their function, we speculated that inser-
tion start sites may be more meaningful than base pairs of overlap with conserved elements
(Fig. 2.1). Insertions were also subdivided into quartiles based on size to test whether the

size of insertions was associated with depletion in GERP elements.

Figure 2.1: Illustration of potential impacts of an insertion. On the left, an insertion shifts
the location of a conserved element without interrupting it. On the right, an insertion
interrupts the conserved element.

2.3 Results

2.3.1 Enrichment analyses

Both SVs and SNPs were significantly depleted in conserved elements based on Fisher’s

exact tests, but SVs were depleted to a greater degree (Fig. 2.2). The log odds ratios for
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both SVs and SNPs were increased when considering conserved elements outside of coding
sequence and outside of genic sequence and slightly reduced when considering conserved
elements in coding sequence. All log odds ratios were significantly lower than zero. A
log odds ratio lower than zero indicates depletion, with a lower log odds ratio indicating
greater depletion. When we partitioned SVs by type, we found striking differences in their
depletion in conserved elements (Fig. 2.3). Combined indels were significantly depleted
in conserved elements. Deletions by themselves were even more significantly depleted in
conserved elements. Insertions were actually enriched in conserved sequence, contrary to
our expectations. Translocations were also significantly depleted, although to a much lesser

degree. Inversions were not significantly depleted.
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Figure 2.2: The log ratio of the odds that an allele overlapped with a bp in a conserved
element versus outside the conserved elements. Error bars are 95% confidence intervals.
Conserved elements are GERP elements, the intersection of GERP elements and coding
sequence, the intersection of GERP elements and non-coding sequence, and the intersection
of GERP elements and non-genic sequence.

To further investigate the surprising enrichment of insertions in conserved elements, we
performed a logistic regression of proportion of insertion base pairs in a 10 kb window on
number of base pairs in conserved elements, recombination rate, open chromatin, and num-

ber of base pairs masked in the B73 reference (Fig. 2.4). The number of conserved base
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Figure 2.3: The log ratio of the odds that a base pair overlapped a SV given that it was in
a conserved element versus it being outside the conserved elements. SVs are partitioned by
type. Error bars are 95% confidence intervals.

pairs had a significant negative effect on the proportion of insertion base pairs. The discrep-
ancy between this result and the apparent enrichment of insertions in conserved elements is
due to the correlation between conserved elements and the other features in our regression
model. Insertions are positively correlated with both higher recombination rates and open
chromatin, which are themselves positively correlated with constrained base pairs. Addi-
tionally, conserved elements are strongly negatively correlated with masked sequence. As
masked sequence has a negative effect on proportion of insertion base pairs, this contributes
to the enrichment of insertions in conserved elements.

The start sites of all size quartiles of insertions were significantly depleted in conserved
elements (Fig. 2.5). The largest insertions were more depleted in conserved elements than
small and medium sized insertions. The depletion of insertion start sites may seem perplexing
given the apparent enrichment of insertion base pairs, but is explained by the fact that most
conserved elements either entirely overlap with insertions or do not overlap at all. This
means that while there are many conserved elements that are moved by insertions relative

to their positions in B73, there are very few that are interrupted.
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Figure 2.4: Most 10 kb windows have no insertion base pairs, but smaller numbers have
proportions up to 1.0. Recombination rate and number of open chromatin base pairs in
a window are positively associated with the proportion of a window covered by insertions,
while the number of conserved element base pairs and masked base pairs are negatively
associated.

2.4 Discussion

We found that SVs are strongly depleted in constrained regions of the genome. Additionally,
we found that SVs are more depleted in these regions than SNPs. While this pattern is
stronger in constrained regions within coding sequence, it is also visible in constrained regions
both outside of coding sequence and outside of genes.

While SVs are depleted overall, this effect varies by class. Deletions are strongly depleted

in constrained regions. Inversions and translocations appear to be neither strongly enriched
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Figure 2.5: The log ratio of the odds that a base pair overlapped the start site of an insertion
given that it was in a conserved element versus it being outside the conserved elements. Error
bars are 95% confidence intervals. Insertions are binned according to quartiles of size.

nor strongly depleted. Unlike all other types of SVs, insertions were enriched in constrained
regions. While we were surprised that insertions appeared to be enriched, the differences in
enrichment /depletion between classes of SVs are in line with previous research. In Drosophila
melanogaster, deletions occur more often than insertions but are also more likely to be under
negative selection and less likely to be fixed by positive selection (Leushkin et al., 2013).
Inversions don’t interrupt genes or regulatory elements unless those elements overlap with
the inversion breakpoints. As a result, unless gene expression is altered, inversions may
not in themselves have large effects on phenotype, and there is evidence that inversions do
not generally alter gene expression in Drosophila (Ghavi-Helm et al., 2019). Inversions do
disrupt normal recombination, however, and can accumulate deleterious alleles as well as
combinations of adaptive alleles (Kirkpatrick, 2010). It may not be surprising then that
inversions do not appear to be strongly depleted, especially when compared to the more
unambiguous evidence for new deletions being likely to be deleterious.

The unexpected enrichment of insertions in constrained elements lead us to investigate

other factors that might explain this pattern. We found that this enrichment is partially
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explained by insertions being positively correlated with recombination and open chromatin.
There is evidence that recombination can be mutagenic in several species (Yang et al., 2015).
Some classes of TEs, such as Mu elements, are more likely to insert in gene-rich, high re-
combination regions (Schnable et al., 2009). Thus, a higher rate of insertion generating
mutations may be masking selection against insertions in these regions. Recombination is
also correlated with double-strand breaks, repair of which can result in indels (Lieber, 2010).
This may also be true for inversions, which can be caused both by repair of double-strand
breaks and ectopic recombination (Huang and Rieseberg, 2020). Additionally, insertions
were negatively correlated with masked base pairs. The negative effect of masked sequence
on insertion proportion is likely due to the technical issue of insertions being more difficult
to call in regions with large amounts of repetitive sequence. This suggests that our enrich-
ment analyses are likely to be in general under-estimating the depletion of SVs in conserved
elements. Finally, we found that insertions which interrupt constrained regions, rather than
shifting their coordinates within the genome, are relatively rare, suggesting that moving
constrained elements may not be strongly selected against.

As mentioned previously, it is difficult to determine whether indels are insertions or
deletions relative to the ancestral genome, and this makes interpretation of results with
these SVs complicated. In conserved elements it may be more likely that we are able to
correctly infer the type of mutation that occurred. If an element is conserved across multiple
species, this is likely to represent the ancestral sequence. A deletion within this element in
B73 may also be a deletion relative to the ancestral sequence, and the same for an insertion.
However, this does not solved the problem of polarizing indels by ancestral state outside
of conserved elements, which is also critical for estimating enrichment. Additionally, it is
possible that some polymorphisms that we call insertions in lines other than B73 may actually
be evolutionarily conserved elements that have been deleted in B73. This could potentially
contribute to the apparent enrichment of insertions that we observed. Some of our results
which polarize indels relative to B73 may be robust to this issue, such as the finding that
large insertions within conserved elements are more depleted than smaller insertions. In
order to fully understand selection on insertions and deletions separately further work with

mutation accumulation lines and ancestral genome reconstruction may be informative.
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SV abundance is negatively correlated with evolutionary constraint when accounting for
other genomic features, suggesting that most SVs are under negative selection. Experiments
to determine mutation rates for different types of SVs along the genome could help to clarify
the relative contributions of selection and mutation to the distribution of SVs and to provide

further clarification on which types of mutations are more likely to be deleterious.
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3.1 Introduction

Eukaryotic genomes are a mixture of genic and non-genic sequence. While some of this
non-genic sequence is known to be regulatory, what fraction of the genome is functional is
still under debate (Schrider and Kern, 2015; Graur et al., 2013; Davydov et al., 2010b; The
ENCODE Project Consortium, 2012). Regions of the genome that are functional are likely
to be evolutionarily constrained as mutations are more likely to have deleterious effects on
fitness in these regions. Multiple important questions in evolutionary biology are directly
related to understanding which regions of the genome are constrained. The fraction which

affects phenotype limits the target size for adaptive evolution. It also limits the target size
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for deleterious mutations, as mutations outside of that fraction should have little or no effect
on fitness.

The fraction of the genome experiencing selection is almost certain to vary among species
due to a variety of factors. The maize genome offers a chance to test several questions about
which regions of the genome are evolutionarily constrained. As in many plants, synteny is
relatively low and sequences outside of coding sequence evolve rapidly, making it difficult to
identify which regulatory sequences might be important (Zhao and Schranz, 2019). Maize
is also an ancestral allotetraploid; the ancestor of maize was a hybrid between two species
which subsequently reduced to a diploid with genomic regions inherited from both parental
species (Gaut and Doebley, 1997). While a process of gene fractionation has resulted in the
loss of one copy of many sequences, for some genes both parental copies are still carried in
maize (Schnable et al., 2009). In these cases, it is not always clear whether both genes are
still under selection or if one has become a pseudogene. Within maize there are also many
examples of presence absence variation and it is unclear how many such dispensable genes
are functionally important (Hufford et al., 2021; Schnable, 2020).

Multiple methods of identifying evolutionarily constrained regions have been developed.
Many existing methods rely on aligning the genomes of multiple species and identifying
sites which are conserved across them (Davydov et al., 2010b; Siepel et al., 2005). These
approaches are limited by the ability to align other species to the reference species of interest,
an especially difficult task for plant genomes. Among sequenced mammalian genomes, the
median percentage syntenic between two species is greater than 75%, while for angiosperm
species the comparable value is less than 12.5% (Zhao and Schranz, 2019). For maize only
around 10% of the genome aligns to sorghum, one of its closest relatives. These approaches
can only identify conservation on deep time scales and can not distinguish conservation
only within one species. It is also not obvious how to treat regions of the genome that
align multiply to other species, as occurs in maize due to being an ancestral allopolyploid.
Another way to identify constrained regions is to use population genetic data. This has
the advantage of being applicable in any region of the genome where polymorphisms can be
called. In addition, population genetic data has the potential to identify conservation unique

to one species. A population genetic method that uses a support vector machine (SVM) has
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previously been used to identify novel regions of constraint in the human genome (Schrider
and Kern, 2015). We apply a similar method to maize population genetic data to identify
novel regions of constraint in the maize genome.

In so doing, we address multiple questions about evolutionary genetics. First, do known
or putative functional elements show evidence of selective constraint? Additionally, are
there putative functional elements that appear to be unconstrained? Second, in the case of
duplicated genes, can we identify pairs where one member is potentially pseudogenized and
exhibits lower selective constraint? And third, can we use machine learning and population
genetic data to identify novel constrained regions in the maize genome which are not detected

by comparative methods?

3.2 Methods

3.2.1 Site frequency spectrum

We derived a site frequency spectrum (SFS) for 10kb windows in the maize genome from
772 maize inbred lines included in HapMap and the 282 association panel (Bukowski et al.,
2018; Flint-Garcia et al., 2005). We filtered out samples that were different accessions of the
same lines, teosinte lines, and lines that appeared to be identical based on relatedness. We
aligned short read data from the 772 lines to vb of the B73 maize reference genome using
BWA-MEM (Hufford et al., 2021; Li, 2013). We then used Sentieon Haplotyper to call SNPs
with default settings (Freed et al., 2017). We used GATK v3 to filter out sites with quality
normalized by allele depth less than 2, Fisher strand bias greater than 60, mapping quality
less than 40, mapping quality rank sum less than -12.5, and read position rank sum less than
-8, and sites for individuals that were called heterozygous (DePristo et al., 2011). In order
to remove SNPs that may have been incorrectly called due to paralogy or that were within
repetitive sequence we made a mask file using SNPable to identify uniquely mapping 35-mers
with other parameters default and obtained the RepeatMasker mask for the B73 genome (Li,
2009). We used VCFtools version 0.1.14 to select only SNPs within the SNPable mask and
outside of regions identified as repetitive by RepeatMasker and then get the counts of each
allele (Danecek et al., 2011). We downsampled the total count of each SNP to 458, the

10% quantile across SNPs. SNPs which were genotyped in fewer than 458 individuals were
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excluded from our analysis. The downsampled SNPs were used to obtain a site frequency
spectrum (SFS) for each 10 kb window in the maize genome (Quinlan and Hall, 2010). As
we do not know the ancestral state of each SNP, we recorded counts of the minor allele at
each SNP to construct a "folded” SFS. We filtered out all windows where less than 10% of
the window was within the SNPable mask.

3.2.2 Machine learning

We used a support vector machine (SVM) to identify regions of constraint in the genome.
Using the bins of counts of SNPs at each frequency in the SFS as features, we trained the
SVM to predict constrained and unconstrained windows across the genome. To identify
constrained windows, we used genomic evolutionary rate profiling (GERP) scores for B73
(Davydov et al., 2010b; Hufford et al., 2021). GERP is a comparative method that identifies
elements conserved across evolutionary history. We classified any window where GERP
predicted that >25% of the window was constrained as a constrained window. To identify
unconstrained windows we also used annotations of gene models and accessible chromatin
from ATAC-seq (Hufford et al., 2021). Windows that had no constrained GERP sites and did
not overlap with genes or open chromatin were classified as unconstrained. The remaining
ambiguous windows were not included in our training set.

Before running the algorithms, we separated 1/3 of the high confidence set into a training
set, 1/3 into a validation set, and the remaining 1/3 into a test set. The training and
validation sets were used while developing our implementation of the SVM while the test set
was reserved to measure the performance of the final SVM.

We used the packages kernlab and caret in R to run the SVM (Karatzoglou et al., 2004;
Kuhn, 2008). The parameter sigma was selected based on the default heuristic in kernlab
and the parameter C was chosen based on a search using powers of two from 272 to 27.
We also set "caret” to compute class probabilities for whether a window was constrained or
unconstrained. We assessed performance using a confusion matrix and an Receiver Operating

Characteristic (ROC) curve estimated with with the R package “ROCR”.
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3.2.3 Analyses

We compared the results of the machine learning approach to several annotations of the maize
genome. In addition to the previously mentioned annotations of genes and open chromatin
from ATAC-seq, we also used expression data from the NAM founders, a list of genes in B73
syntenic to Sorghum bicolor (Hufford et al., 2021), and a list of putative enhancers (Oka
et al., 2017). As the list of enhancers was on the coordinates of v4 of the b73 genome, we
used the software lifttOver (Kuhn et al., 2013) to port them to v5.

We calculated the percentage of genes, coding sequence, open chromatin, and enhancers
that were covered by windows predicted to be constrained and the percentage of windows
predicted to be constrained or unconstrained covered by annotations. We used loess regres-
sion to fit the relationship between a window overlapping an annotation and its predicted
constraint with the package for genes and open chromatin. This was not possible computa-
tionally for enhancers, possibly because of the small number of windows with enhancers, so
instead we used a generalized additive model.

To test whether genes in constrained windows had higher expression, used measures of
expression from RNA-seq performed on seven tissues of B73 (Hufford et al., 2021). We
measured expression as reads per kilobase of transcript, per million mapped reads (RPKM).
For genes with multiple transcripts, we used the transcript with the greatest RPKM. We
fit a generalized additive model for all annotated genes in B73 with mean_constraint ~
log(RPKM + 1), using the mean constraint of all windows overlapping a gene, weighted
by the length of the overlap. We also tested whether genes in constrained windows were
more likely to be associated with a protein with measured expression. Using proteome
data from (Walley et al., 2016), we classified genes according to whether or not they had
measured protein expression in any tissue or timepoint. We then used a chi-square test to
ask whether genes in windows that were predicted to be constrained were equally likely to
have an associated protein as genes in unconstrained windows.

For maize genes that were the result of a duplication since maize split with the common
ancestor of maize and sorghum, we compared the predicted constraint of the two copies to
determine if both copies were equally constrained or if one copy had experienced relaxed

constraint. We identified gene pairs where the average probability of constraint was > 0.95
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in overlapping windows for one gene and < 0.05 in the other as putative instances of pseu-
dogenization. We then used a Wilcoxon paired test to ask whether putatively pseudogenized
genes had fewer GWAS hits with 50 kb than their constrained counterparts using the results
of a meta-analysis of multiple maize GWAS (Wallace et al., 2014). As GWAS hits were
originally on v2 of the maize genome, we used liftOver to port them to v5. For each pair
of gene copies where one had a probability of constraint > 0.5 and the other had a prob-
ability of constraint < 0.5, we compared gene expression levels and asked if the copy with
greater predicted constraint had greater expression. We filtered out genes with no recorded
expression.

We also asked if genes present in B73 but but missing in one of the other founders (near-
core genes) or more than one of the other founders (dispensable genes) were less likely to
fall in windows predicted constrained than genes found in all founders (core genes) (Hufford
et al., 2021). As dispensable genes must by definition be under less constraint, we predicted
they should have lower predicted constraint.

We looked at which windows were predicted unconstrained by the SVM and constrained
by GERP and vice versa to find evidence of either recent changes in selection within maize or
windows where one or the other method fails. We limited this analysis to a high confidence
set of windows that had either a > 95% probability of being constrained or a < 5% probability
of being constrained. We called a window constrained based on GERP if greater than 15%
of it was covered by constrained GERP elements and unconstrained if it was covered by <
1% GERP elements. This is different from the classifications we used in defining windows
when training the SVM. We reduced the percentage of the window that must have positive
GERP scores for the window to be called constrained from 25% to 15% because at the more
strict threshold we only identified one such window. The windows called unconstrained by
GERP included those with few or no GERP scores due to not aligning to other genomes.
To consider only windows that appeared to be unconstrained based on GERP in regions
where there were scores, we looked at only windows where at least half of the sites had
GERP scores. We used a Mann-Whitney U test to ask whether windows that are called
unconstrained by the SVM but constrained by GERP have fewer GWAS hits within 50 kb

than all windows with a > 50% probability of being constained. Similarly, we also asked
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whether windows that are called constrained by the SVM but unconstrained by GERP have
more GWAS hits within 50 kb than all windows with < 50% probability of being constrained.

3.3 Results

We called SNPs from 772 inbred lines and obtained the site frequency spectrum (SFS) for
each 10 kb window in the maize genome. Using GERP and functional annotations we
identified a subset of windows we could classify as constrained or unconstrained with high

confidence, and used these windows to train an SVM to predict constraint based on the SF'S.

3.3.1 SVM performance

We assessed the performance of the SVM with multiple metrics. When evaluated on the
entire test set, the SVM has an overall accuracy of 89.74%, an accuracy of 89.58% when
predicting unconstrained windows and an accuracy of 90.22% when predicting constrained
windows (Fig. 3.1 A). When considering windows in the test set that the SVM classifies with
probability greater than 95%, the SVM has an overall accuracy of 95.80%, an accuracy of
95.92% when predicting unconstrained windows and an accuracy of 95.46% when predicting
constrained windows. (Fig. 3.1 B). The ROC curve shows that when keeping false positives
below 5% the SVM can identify true positives at a rate greater than 80% (Fig. 3.1 C).

Much of the maize genome is repetitive and both lies outside the scope of this method as
well as most likely not being under evolutionary constraint. At greater than 95% confidence
the SVM predictions cover 17.07% of the total genome (Table 3.1). In comparison, 6.0%
of the total genome is covered by GERP scores. Additionally, 39.40% of sites with GERP
scores are covered by windows with greater than 95% confidence and 64.41% are covered
by windows with greater than 80% confidence. When considering only the non-repetitive
portion of the genome, 28.80% is covered by SVM predictions at greater than 95% probability
(Table 3.2). When setting the cutoff at 80%, slightly more than half of the non-repetitive
genome is covered.

3.3.1.1 Constraint in the maize genome

To measure how well the SVM predictions are capturing functional elements, we asked what
fraction of various functional annotations is captured within predicted constrained windows.

When looking at constrained windows across the genome, the distribution of the number
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of genic base pairs is shifted to the right compared with unconstrained windows (Fig. 3.2).
Of base pairs in windows that passed our quality thresholds, 72.55% of genic base pairs lie
within predicted constrained windows. The respective percentages for open chromatin and
enhancers are 79.06% and 73.78%. Given that overall 41.19% of the genome is predicted to
be constrained, all of these functional annotations have higher percentages of overlap with
constrained window than the genome wide baseline.

Windows with non-zero overlap with genes had a higher median probability of being
constrained than windows that did not overlap with genes (Fig. 3.3). Even in windows with
only small number of genic base pairs, the median probability of constraint is more than 10%
higher than in windows with zero genic base pairs. Of windows with more than 100 genic
base pairs, the majority are predicted to be constrained. The results of a loess regression
on windows with non-zero overlap with genes showed that windows with an intermediate
number of genic base pairs tended to have a higher probability of constraint. This effect is
largely driven by a rapid drop in the probability of constraint in windows that have close to
10,000 genic base pairs. The results of a loess regression with base pairs of coding sequence
as the explanatory variable also showed that intermediate overlap with coding sequence
(between approximately 2,500 and 5,000 base pairs) had the highest probability of being
constrained. However, out of 32,777 windows that overlapped with coding sequence, only
62 included more than 5,000 base pairs of coding sequence. The probability of constraint
increases with the number of base pairs of open chromatin. In windows overlapping with
enhancers, windows with high overlap with enhancers were the most likely to be constrained,
but there was a dip in the probability of constraint at intermediate overlap with enhancers.

Using a dataset of gene expression in multiple tissues in B73, we analyzed the relationship
between predicted constraint and gene expression. We found that when looking at genes with
expression in the dataset we used, genes with higher expression pooled across multiple tissues
in B73 tended to be in windows with higher predicted constraint (Fig. 3.4). The Spearman’s
rank correlation between probability of constraint and log read count was significant (rho =
0.190, p-value < 2.2e-16). We found that the difference in mean constraint between genes
with zero expression and nonzero expression was much smaller than the difference between

lowly expressed and highly expressed genes. When looking at protein expression data, a
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chi-square test showed that genes in constrained windows were more likely to be associated
with a known expressed protein than genes in unconstrained windows, with 35.8% of genes
in constrained windows being associated with a protein and 31.3% of genes in unconstrained
windows being associated with a protein (p=0.0002732).

We compared members of gene pairs where one member was predicted constrained and the
other was predicted constrained. When looking at all gene pairs where one had a predicted
constraint > 0.5 and the other < 0.5 and there was measured expression for both genes,
we found a significant correlation between the difference in probability of constraint and
the difference in expression level (Pearson’s correlation = 0.212 [0.083, 0.336], p-value =
0.001542. Spearman’s correlation = 0.262, approximate p-value = 8.937e-05). If we narrow
to a much more conservative set, we identified 18 gene pairs where one gene copy appears to
have experienced pseudogenization and the other appears to still be constrained. A Wilcoxon
paired test showed that the unconstrained member of each pair was within 50 kb of fewer
GWAS hits than the constrained member.

When comparing core, near-core, and dispensable genes, we find that the percent overlap
with predicted constrained windows is greatest for core genes, followed by near-core, private,
and then dispensable genes (Table 3.3). Within windows that pass quality thresholds, 79.27%
of core genes are in windows called constrained while that value is only 45.54% for dispensable
genes. The median probability of constraint of windows overlapping with core genes is
91.6% and the median probability of constraint of dispensable genes is 40.6% (Table 3.4).
Dispensable genes are also more likely to lie within windows removed by quality thresholds
by the SVM (67.5%) than core genes (18.0%).

As the SVM relies only on population genetic data, it may be able to identify maize-
specific constraint more accurately than a comparative genomic method such as GERP.
Comparative genomic methods are limited to regions where the genome of the species of
interest can align to other species. Additionally, comparative methods identify constraint
on a deep evolutionary time scale that spans multiple species, not constraint within the
more recent history of one species. When looking at windows called by the SVM with >
95% confidence, we identified 23 windows that were called unconstrained by the SVM and
constrained by GERP and 3,852 windows that were called constrained by the SVM and
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unconstrained by GERP. Of the 213,190 windows called unconstrained by GERP where at
least 50% of the window had GERP scores, we identified 126 windows called constrained
by the SVM at greater than 95% confidence. To assess whether the SVM or GERP was
correct in cases where they disagreed, we asked whether windows predicted constrained by
the SVM and unconstrained by GERP were within 50 kb of more GWAS hits and vice versa.
Based on Mann-Whitney U tests, windows only predicted unconstrained by the SVM and
constrained by GERP are near fewer GWAS hits than all windows with > 50% probability
of being constrained (median svm predicted unconstrained = 1, median all constrained =
2, p=0.0187) and windows predicted constrained by the SVM and unconstrained by GERP
similarly are close to more GWAS hits than all unconstrained windows (median svm predicted
constrained GERP predicted unconstrained = 2, median all SVM predicted unconstrained

=1, p < 2.2¢-16).

H Probability Constrained Unconstrained  Total H
|

| 80% 11.14% 17.63% 28.76% ||
95% 5.84% 11.22% 17.07%

Table 3.1: Percentage of the genome covered by SVM predictions at two different levels of
confidence.

H Probability Coverage H

80% 50.31%
95% 28.80%

Table 3.2: Percentage of the non-repetitive genome covered by SVM predictions at two
different levels of confidence.
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Figure 3.1: A) Confusion matrix of the SVM run on the test set. B) Confusion matrix of
the SVM run on the test set only including high confidence (>0.95 probability) predictions.
C) ROC curve for the SVM run on the test set.

H Gene class  Constrained Unconstrained Unclassified Sample size H

Core gene 65.0% 17.0% 18.0% 38279
Near-core 39.5% 16.4% 44.1% 4823

Dispensable 14.8% 17.7% 67.5% 16216
Private 35.6% 33.3% 31.1% 444

Table 3.3: Percentage of core, near-core, dispensable, and private genes present in B73 that
overlap with predicted constrained windows.
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Figure 3.2: Histograms of the distribution of genic base pairs in predicted constrained and
unconstrained windows.

H Gene class  Median probability of constraint H

Core gene 91.6%
Near-core 85.9%
Dispensable 40.6%
Private 53.1%

Table 3.4: Median probability of being constrained of windows that overlap core, near-core,
dispensable, and private genes present in B73.
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Figure 3.3: On the left are box plots of the probabilities of constraint for windows without
genic base pairs, between 1 and 100 genic base pairs, and greater than 100 genic base pairs.
On the right is the curve of a loess regression predicting probability of constraint based on
the number of genic base pairs in a window. Circles represent a random sample of 2,000
windows.

3.4 Discussion

We show that an SVM using population genetic data can accurately predict evolutionary
constraint in a plant species. In the test set the SVM has an accuracy of 89.74%, which is
comparable to what was found when this method was applied to humans (Schrider and Kern,
2015). Compared to using comparative genomic methods that require outgroup alignment,
the SVM substantially increases the fraction of the genome we can assess for constraint.
While GERP scores allow estimation of constraint in only 6.0% of the maize genome, we
can assess constraint for 28.76% of the genome using the SVM with 80% confidence. With
much higher confidence (95% accuracy) we are still able to assay nearly three times as much

of the genome (17.07%) than previously possible.
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Figure 3.4: Results from a generalized additive model of probability of constraint on the log
of RPKM + 1 for genes with expression greater than 0.

The accuracy of the SVM’s predictions is further supported by the overlap between
functional annotations and windows predicted constrained, which is greater than the baseline
percentage across the genome for genes, open chromatin, and enhancers. Given this result,
it is not surprising that a loess regression shows that the number of functional base pairs in
windows overlapping these annotations is a good predictor of constraint (Fig. 3.3). What
was more surprising was that the probability of constraint in windows with the highest
number of genic base pairs was lower than in windows with intermediate numbers of genic
base pairs. We can think of two possible explanations for this. First, windows that entirely
overlap with genes may be more likely to be overlapping with introns. The median length
of a gene in maize is slightly above 2.7 kb and fewer than 10% of maize genes are larger
than 9.9 kb (Hufford et al., 2021). Windows that overlap larger genes may be more likely
to overlap with introns. Second, large genes may be more likely to contain unconstrained
sequence, whether composed of introns or exons, or to be misannotated. The loess regression
of probability of constraint on number of base pairs of coding sequence provides evidence to
support these explanations. The vast majority of windows that overlap with coding sequence
contain fewer than 5,000 base pairs of coding sequence, and when considering those windows

the relationship between number of coding base pairs and probability of constraint appears
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to be essentially positive.

Population genetic methods have the potential to identify more recent selection than
comparative genomic methods, which by design identify selection that has been consistent
across multiple species. If a region of the genome has only recently become constrained
within a species, or has recently become unconstrained, a comparative genomic method may
incorrectly identify constraint. We identified windows where the SVM and GERP disagreed
about constraint. To investigate which method was more likely to be correct, we compared
the number of GWAS hits near windows where the two methods disagreed, hypothesizing that
truly constrained windows would be closer to more functional base pairs, where mutations
could contribute to phenotypic variance. We found that windows the SVM called constrained
were closer to more GWAS hits than windows the SVM called unconstrained, even when the
GERP classification disagreed. This supports the idea that the SVM is accurately predicting
constraint within maize, possibly due to changes in constraint between other species and
maize.

Higher gene expression was associated with higher predicted constraint among genes with
measured expression. This result is in line with previous work — for example, core genes
present in all maize lines have higher gene expression than dispensable genes (Hufford et al.,
2021). The correlation between predicted constraint and expression was significant but not
very high, which is not surprising as we would not expect gene expression to be the main
factor explaining constraint. If gene expression is under stabilizing selection, the optimum
value for any given gene is presumably dependent on the relationship between expression
and phenotype and would not always be higher for more constrained genes. For many genes
in primates, mice, and flies this does appear to be the case, although evidence is lacking for
plants (Romero et al., 2012; Lemos et al., 2005). More surprisingly, we found that genes with
zero measured expression were not less likely to be predicted constrained by the SVM than
genes with expression. It may be the case that many of the genes with no expression are
actually expressed in a tissue, timepoint, or environment not captured in the data we used.
Including these genes in the unexpressed category may thus be introducing noise into the
data that prevents us from seeing any true signal. Interestingly, in Walley et al. (2016) the

authors found that more than 95% of syntenic genes were expressed across 23 tissues. In the
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expression data we used from Hufford et al. (2021), the authors measured expression across
seven tissues and only detected expression for 60.7% of syntenic genes, which supports the
idea that some of the genes with zero expression in this data may actually be expressed in
tissues not measured in their study.

Comparing the predicted constraint of windows containing core and non-core genes re-
vealed that windows with core genes were more likely to be called constrained than windows
with near-core or dispensable genes. This makes intuitive sense in that if a gene is not
present in all members of a species it can not be essential and is not as constrained as a core
gene might be. We also find that windows containing dispensable genes are more likely to
not pass our thresholds for mappability. Windows with dispensable genes will have different
numbers of genotypable sites in different individuals — in an individual where that gene is
not present, no SNPs can be ascertained within the gene. This may affect the shape of the
SFS in windows with dispensable genes relative to those with core genes. While there are
fewer disposable genes we can predict constraint for, when only considering windows that
passed these thresholds we still find that the median probability of constraint of windows
including core genes is more than twice that of windows including dispensable genes. From
these results we conclude that while there are some non-core genes the SVM method can
not predict constraint for, overall dispensable genes are less evolutionarily constrained than
core genes. Other work also suggests that dispensable genes are less likely to be functional,
including that they are less likely to be expressed and that they overlap less than expected
with genes in maize and Arabidopsis thaliana whose mutants are known to have phenotypic
effects (Hufford et al., 2021; Schnable, 2020; Bush et al., 2014; Liang et al., 2019).

We used the SVM to investigate constraint among gene pairs present in maize as a re-
sult of the whole genome duplication in the ancestor of maize. Among gene pairs with two
copies in maize and only one in maize’s relative sorghum, if one gene was predicted to be
constrained and the other predicted to be unconstrained we found a significant positive cor-
relation between the difference in the probability of constraint and expression of each gene.
This provides evidence that the SVM is accurately discriminating which copy of a gene pair
present in maize following duplication is more constrained. We identified a high confidence

set of gene pairs where one gene copy was predicted to be constrained and the other un-
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constrained both with probability greater than 95% and provided further evidence for these
predictions by showing that the gene copy predicted constrained tended to be close to more
GWAS hits compared to the unconstrained copy. Following duplication, multiple outcomes
are possible for duplicated genes, including pseudogenization (a relaxation of constraint),
subfunctionalization, neofunctionalization, and the maintenance of both copies (all of which
should lead to continued constraint) (Innan and Kondrashov, 2010). Using predictions from
the SVM, we are able to provide evidence to assess which fate a duplicated gene pair has
experienced.

These predictions may be useful for multiple types of research. First, for population
genetic analyses, it is often necessary to identify regions under purifying selection or that are
evolving neutrally. The SVM predictions could be used to select regions for use in population
genetic analyses. Second, these results might be useful for prioritizing sites where mutations
have phenotypic effects. We find that while most elements annotated as functional are within
windows called constrained, some are not and we provide additional evidence that the SVM
is accurately calling these windows unconstrained. Additionally, we find 4,934 windows
predicted constrained that do not overlap with genes, open chromatin, or enhancers, some of
which may include currently unknown regulatory sequence. This contributes to the body of
research on which functionally annotated regions are in fact relevant to phenotype and under
evolutionary constraint. Answering this question is important for multiple topics in biology,
including development of genome annotations, evolution following genome duplication, and
dispensable genes and the pan-genome. While the SVM provides probabilities of windows
being constrained and we are able to support the accuracy of those probabilities over many
windows using additional sources of data, these classifications do not exclusively rule out
the possibility of the SVM being incorrect in individual windows. As accuracy is 95.90%
in the test set, which likely includes some of the most constrained and unconstrained, and
possibly easiest to predict, windows, some windows will invariably be called incorrectly. This
can be mitigated by focusing on high confidence predictions. As noted in Schnable (2020)
about gene annotations, validating each individual annotation for function would require
testing mutants in each annotation in the many environments an individual could realistically

encounter. Instead, combining multiple lines of evidence may be the most helpful strategy
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for assessing biological function within categories or in individual regions of the genome.

In conclusion, we show that an SVM can accurately predict evolutionary constraint in
maize using population genetic data, that these results cover more of the genome than
comparative genomic methods for the same purpose, and that these predictions are useful

for addressing evolutionary questions.
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