
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal 
Storage

Permalink
https://escholarship.org/uc/item/4r70f0q6

Author
Mammoli, Andrea

Publication Date
2013-04-18

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4r70f0q6
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
 
 
 
 
 
 
 

 
Software-as-a-Service Optimised Scheduling 
of a Solar-Assisted HVAC System with 
Thermal Storage 
 
 
A. Mammolia, M. Stadlerb, N. DeForestb, H. Barsuna, 
R. Burnetta and C. Marnayb 

 
a University of New Mexico (UNM) 
MSC01-1150 
1 University of New Mexico 
Albuquerque, NM 87131, USA 
 
b Lawrence Berkeley National Laboratory (LBNL) 
1 Cyclotron Road 
Berkeley, CA 94720, USA 
 
Environmental Energy Technologies Division 
 
presented at the 3rd International Conference on 
Microgeneration and Related Technologies 
Naples, 15-17 April 2013 
 
http://eetd.lbl.gov/EA/EMP/emp-pubs.html  
 
This work was supported by the Office of Electricity Delivery and Energy 
Reliability’s Energy Storage and Smart Grid Programs in the U.S. Department 
of Energy, under contract No. DE-AC02-05CH11231 (LBNL) and through 
Sandia National Laboratories under PO 570462 (UNM). The authors gratefully 
acknowledge this support. 
. 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 



 

 



 

   

 
Disclaimer 

 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither 
the United States Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or The Regents of 
the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof, or The Regents of the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 



 

   

 



SOFTWARE-AS-A-SERVICE OPTIMISED SCHEDULING OF A  
SOLAR-ASSISTED HVAC SYSTEM WITH THERMAL STORAGE 

 
A. Mammolia, M. Stadlerb, N. DeForestb, H. Barsuna, R. Burnetta and C. Marnayb,* 

a University of New Mexico (UNM), MSC01-1150, 1 University of New Mexico, 
Albuquerque, NM 87131, USA 

b Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 
94720, USA 

*corresponding author: chrismarnay@lbl.gov 
 

ABSTRACT 
The UNM Mechanical Engineering HVAC 
system incorporates cooling assisted by a 
232 m2 solar thermal array providing heat to a 
70 kWthermal absorption chiller. A 30 m3 heat 
storage tank solar decouples heat production 
and absorption cooling. Additionally, 350 m3 of 
chilled water storage shifts the cooling electrical 
load of this high desert location off-peak. While 
this system already provides substantial energy 
and cost savings compared to similar 
conventional buildings, there are still 
opportunities for improvement. Absorption 
cooling (augmented by an electrically powered 
central cooling loop) suffers from parasitic 
electric loads from a cooling tower pump, a 
cooling tower fan, and hot and chilled water 
circulation pumps. Moreover, depending on 
seasonal, weather, occupancy, and cost 
conditions, the cold storage tanks may only 
need partial charging to meet the next day's net 
building load, and losses need to be considered. 
Optimally operating this complex thermal-
electrical system poses a challenging 
mathematical problem. A model of the system 
was built on LBNL’s Distributed Resources 
Customer Adoption Model (DER-CAM) platform. 
A direct interface between the building energy 
control system, and DER-CAM hosted on 
LBNL’s server was developed. This interface 
delivers daily scheduling based on weather 
forecasts, tariffs, etc., to the building controller. It 
is found that energy cost savings can be 
proportionally substantial (almost 30%) - 
although in this case the payback period for 
system implementation is long, due to the very 
low energy consumption of the building. Also, it 
is found that accurate weather forecasting is a 
key ingredient of the optimization, although local 
biases can be corrected for in the optimization. 
Keywords: absorption cooling, thermal storage, 
optimisation, software-as-a-service, mixed 
integer programming. 

INTRODUCTION 
Distributed energy resources associated with 
commercial and institutional buildings are 

becoming increasingly common, ranging from 
traditional combined heat and power (CHP) to 
full-scale microgrids, often capable of supporting 
the entire facility either in grid-tied or islanded 
mode. The presence of these distributed 
systems stems from the need to diversify energy 
sources to increase reliability, efficiency and 
sustainability, and to reduce costs. Distributed 
energy resources can include several forms of 
generation (including renewables), storage, or 
load control. Among the possible operating 
strategies to meet the objectives of providing 
electric power and thermal conditioning to the 
facility, the one that optimizes a particular cost 
function should be chosen. The problem is that 
determining this schedule involves solving a 
complex optimization problem with parameters 
that could change daily as a function of energy 
prices, weather, occupancy, and other variables. 
Software-as-a-Service (SaaS) may be an ideal 
vehicle to perform this task. In this paper, the 
steps necessary to enable an institutional 
building to use a remote optimization service, 
including characterization of the building 
systems and load profiles, implementation of a 
data transfer protocol, and modifications to 
control program, are described. Optimized 
operation is compared directly with normal un-
optimized operation, for various seasonal 
conditions to determine the cost savings. The 
sensitivity of the results to accurate weather 
predictions is assessed. 

METHOD 
Thermal systems characterization 
The Mechanical Engineering building at the 
University of New Mexico (UNM-ME) is a 7000 
m2 building energy systems ‘living laboratory’, 
located in Albuquerque, New Mexico (USA). The 
building was commissioned in 1980, but its 
thermal solar and storage systems received a 
thorough modernization between 2006 and 2010 
[1,2]. During the cooling season (from mid-
March to mid-October), the building can be 
cooled by the thermal cold storage, by a solar-
powered absorption chiller, by a district chilled 
water system, or by various combinations of the 
above, as shown schematically in Fig. 1. 
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A four-stage centrifugal pump (P1 in Fig. 1) 
driven by a variable speed motor circulates a 
glycol-water mixture through the solar array. A 
second pump (P2 in Fig. 1), also driven by a 
variable speed motor, draws water from the 
bottom of the hot storage tank, routes it through 
the heat exchanger, and returns it to the top of 
the hot storage tank. The solar field produces 
170 kWth at peak, with an extended peak period 
resulting from a set of booster mirrors [3], well in 
excess of the 100 kWth used to drive the 
absorption chiller’s regenerator. 
The hot water storage consists of a 30 m3 
highly-insulated below-ground unpressurized 
concrete tank. To measure the parasitic rate of 
energy loss from the tank, an experiment was 
performed as follows: The hot tank was charged 
using the solar heating system, without water 
draws. The temperature at various tank depths 
was measured using a tree of calibrated T-type 
thermocouples. 

 
Figure 2. Energy content of the hot water tank, 

as a function of time. Note the step-wise change 
in energy content during the water draw, an 

artefact from the thermocline going past each 
thermocouple in the thermocouple tree. 

The tank’s total energy content EHS can be 
accurately approximated using: 

 (1) 
where N is the number of thermocouples, T0 is 
an arbitrary datum temperature (here roughly 
equal to the average temperature of the 
discharged tank), and Vi is the volume 
associated with measurement point i. The tank 
energy content is plotted as a function of time in 
Fig. 2, showing tank charge between 10:00 and 
17:00, idle conditions between 17:00 and 20:00, 
and discharge between 20:00 and 23:00. 

While the tank is charged during sunlight hours 
by the solar array, discharge can occur either 
during the day or during the nightly off-peak 
period. An exponentially decaying curve fit to the 
temperature history during the idle period from 
17:00 to 20:00 yields a decay coefficient of 0.3% 
per hour, indicating a well-insulated tank. 
The cooling system can utilize up to seven 50 
m3 chilled water storage tanks. Each of which 
can store approximately 2100 MJ of cooling 
capacity. To characterize the loss of cooling 
capacity in the chilled water tanks during the 
period after charging and before water draw for 
cooling, one of the seven tanks was 
instrumented with a thermocouple tree, 
containing 16 T-type calibrated thermocouples 
spaced 0.234 m apart. 

 
Figure 3: Energy content of a single cold storage 

tank operating in isolation, for 42 hours of 
operation beginning at 0:00 on April 8, 2012.  

The tank loss coefficient was calculated as 
before, by fitting an exponential decay to the 
tank energy content history for a period of time 
when the cold storage is idle, in this case 
between 0:00 and 7:00. The cold storage 
degradation rate obtained thus is 0.67% / hour. 
The absorption chiller’s most energy-intensive 
process, the regeneration of the Lithium 
Bromide solution, obtains heat from the hot 
storage tank at a rate of 100 kWth, but there are 
a number of parasitic energy sinks that result 
from the need to maintain flows of the Lithium 
Bromide solution, the heat medium, the cooling 
water and the chilled water. The 400 W solution 
pump is internal to the chiller. The heat medium 
circulation pump (P3) uses 0.8 kW. The cooling 
water pump (P4) sends water to a cooling tower 
located on the building rooftop, 21 m above the 
cooling water level in the sump, using 3.3 kW. 
The chilled water pump (P5), that draws water 
from the air handler return and routes it through 
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the chiller, draws a constant 0.5 kW. The cooling 
tower fan is rated at 5 kW, but it too is driven by 
variable speed control, and seldom operates 
above 50% capacity, corresponding to 
approximately 0.6 kW. 

Historical building loads 
In this study, only the outside air temperature 
and the time of day were used to estimate 
building load. The outside air temperature can 
be obtained from a weather forecasting service, 
for example the one posted online by the 
National Weather Service National Weaher 
Forecast Office [4]. The building is cooled by 
chilled water from any combination of three 
sources: the cold storage tanks, the absorption 
chiller, and the district chilled water loop. The 
output of each system is calculated based on 
relevant historical data collected by the control 
system for the one-year period beginning on 
August 1, 2010. 

 
Figure 4: average building cooling load (thermal) 

as a function of temperature and time of day, 
obtained by averaging data over  the period 

August 1, 2010 to July 31, 2012. 
The cooling load is shown in fig. 4 as a function 
of time of day and ambient air temperature. The 
shape of the surface follows expectations. There 
is no cooling load at low ambient temperatures, 
and the load drops sharply during unoccupied 
hours, from 19:30 to 7:00. Occasional cooling 
occurs during unoccupied hours if temperatures 
in the building exceed a set value. The 
optimization algorithm calculates a line of best fit 
or each hour, which is used in conjunction with 
the predicted ambient air temperature to predict 
the building load. 

IMPLEMENTATION OF DER-CAM  
The HVAC systems at UNM-ME are controlled 
by two Delta DSC-1616 units. These are fully 
programmable, native BACnet building 
controllers that communicate on Twisted-Pair 
Ethernet 10-BaseT using BACnet IP and 
BACnet over Ethernet, or on an RS-485 LAN 
using the BACnet MS/TP protocol. The Delta 
ORCAView 3.40 system, the interface for the 
Direct Digital Control (DDC) system at UNM-ME, 
hosted on a server running the Windows 2008 

Server operating system, utilizes the General 
Control Language Plus (GCL+) language [5], 
which allows a high level of flexibility in system 
control and scheduling. 
The ORCAView interface has a several roles. 
First, it serves as a programming platform. 
Second, it allows a user to monitor system 
operation in real-time either in graphical or text-
based form. Third, it operates a historian that 
writes system state, at regular intervals and for 
any desired system variable, to a database 
(MySQL). Finally, here ORCAView enables 
communication with DER-CAM. 
Every day, DER-CAM obtains information about 
facilities it serves, including system status, 
energy tariffs, and weather forecast. In the 
present case, the sub-system parameters which 
must be optimized are the absorption chiller 
schedule, and the cold storage charge level. 
Because the hot storage tank, which supplies 
heat to the chiller, and the cold storage tanks, 
are completely discharged every day, the status 
of the facility is assumed known. The weather 
forecast is obtained by DER-CAM directly from 
the National Weather Service via a XML format 
once per day. The electricity tariff in New Mexico 
is fixed Public Service Company of New Mexico 
electric services [6] for the period of interest. 
Given this information, DER-CAM produces an 
optimized set of operating parameters for the 
week ahead on a daily basis [7], which are 
embedded in a spreadsheet file, and made 
available at the LBNL server at 11:00 each day. 
The procedure to import the optimization file 
from the LBNL server to the UNM-ME server, 
and to transfer the relevant information to the 
controller, is coordinated by a scheduler, which 
is part of the 2008 Server operating system, with 
tasks performed daily as follows: 
1. 14:50 - an ftp client is activated. The client 

obtains the optimization spreadsheet file 
from the LBNL server. To increase the 
probability of obtaining the file for the next 
day’s operation, the procedure is repeated 
two more times, at 14:55 and 15:00. 

2. 15:02 - the spreadsheet is moved to a 
working directory, and archived. 

3. 15:04 - Information related to the chiller 
operating schedule and the cold tank state 
of charge is copied from the original 
spreadsheet into a second one which 
contains only this information. 

4. 15:06 - a database program accesses the 
contents of the spreadsheet file. 

5. 15:08 - An Open DataBase Connectivity 
(ODBC) driver transfers the next night’s cold 
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storage SOC set point and the next day’s 
chiller schedule. 

6. 08:00 - the new chiller schedule is copied 
from a temporary location to the operating 
location, ready for the day’s operation. 

The procedure is very flexible, since in principle 
any amount of needed information could be 
picked from the DER-CAM spreadsheet file and 
transferred to the controller using exactly the 
same process. It should be noted at this point 
that the framework presented here is in line with 
the Software-as-a-Service philosophy. The 
DER-CAM service provides a wealth of 
information about the system’s optimized 
operation, generally much more than is needed 
by the end-user. There is a good reason for this 
- different application may need different 
information, but rather than customize the output 
for every single application, DER-CAM produces 
a standard format which is verbose. The burden 
of selecting the appropriate information for the 
system at hand is placed on the end-user, rather 
than on the optimization host, which could 
otherwise not cope with the volume of individual 
applications. On the other hand, selecting the 
appropriate information subset from the 
standard DER-CAM output is a small burden for 
the end-user, who only performs this task once 
during system setup. This way, by allowing 
DER-CAM to produce a standardized output, the 
SaaS costs can be minimized.. 

REGULAR VS. OPTIMAL SCHEDULES 
The building is heated and cooled via a dual-
duct system, with individual air handlers serving 
their respective zones. The air handlers are 
scheduled to begin operating at 7:00, and stop 
operating at 19:30, roughly reflecting the 
occupancy of the building. When the outside air 
temperature is greater than the set discharge 
temperature, the air handlers request cooling 
water from the system. In this instance, the 
primary cooling pumps (P5 in Fig. 1) begin 
drawing water from the bottom of the cooling 
tanks and deliver the water to the cooling coils. 
If the return temperature from the cooling coils is 
over 18.3◦C, chilled water from the campus 
district energy system is circulated through the 
cooling heat exchanger, to maintain the coil 
return temperature at 65◦C. 
This circumstance generally arises when the 
chilled water storage system has been depleted, 
either due to insufficient charging the night 
before, or exceptionally hot weather. In addition, 
when the solar absorption chiller is active, water 
at 15-18◦C is drawn from the cooling coil return, 
routed through the absorption chiller, mixed with 
an appropriate amount of water drawn from 

storage, cooled to 8◦C, and re-inserted into the 
main flow upstream of the cooling coils, thus 
reducing the load on the chilled water storage. 

When operating in standalone mode (i.e. without 
optimization), the cooling system operation is as 
follows: 

• The cold storage is charged nightly. 
Water drawn from the top of the cold 
tanks is routed to the heat exchanger, 
cooled to a desired temperature, and 
returned to the bottom of the cold tanks. 
Charging stops when the temperature of 
the water from the top of the tanks goes 
below a set value, indicating full charge. 

• The absorption chiller is activated when 
there is a sufficient amount of water in 
the hot storage tank to allow ‘ride 
through’ of intermittent cloud cover. The 
chiller stops when the temperature of the 
hot storage drops below 75◦C, i.e. when 
the hot storage is depleted. 

While standalone operation is simple and 
reliable, it suffers from a number of potential 
drawbacks. Charging the cold storage tanks 
beyond what is needed inevitably results in 
inefficiency, since the tanks are constantly 
losing some cooling capacity. Similarly, 
operation of the chiller during the day (i.e. on-
peak) may not be optimal. The electrical loads of 
the hot water circulation pumps, the chiller 
solution pump, the cooling tower pump, and the 
cooling tower fan occur at high cost times. 
Operating the cooling tower during the hottest 
parts of the day results in higher fan speed. The 
substantial redundancy in the ability to provide 
chilled water to the cooling coils allows flexibility 
in scheduling, without compromising the comfort 
of building occupants. In the present work, two 
aspects of system scheduling were considered: 

• The cold storage system can be charged 
only as needed to meet the building 
load, rather than to full capacity. 

• The absorption chiller can be operated 
partly during the off-peak period, 
although not entirely since the capacity 
of the hot storage is not sufficient.  

DAY-AHEAD FORECAST ACCURACY 
A typical DER-CAM optimized schedule for one 
week is shown in Fig. 5. The optimization of the 
ME building systems schedule is based on 
temperature and solar irradiance forecasts. The 
building load is strongly correlated to outside air 
temperature and time of day. 
Inspection of Fig. 4 reveals a cooling load rate of 
change of 7.7 kWth per ◦C at noon. An error in 
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temperature forecast of 1 ◦C over the course of 
5 hours would correspond to an error in building 
load forecast of approximately 38 kWhth. 
The solar irradiance forecast, on the other hand, 
serves to predict the total length of time that the 
absorption chiller will be active during the 
following day. Optimization usually favours 
operation of the chiller during off-peak times, but 
because the hot storage is not large enough to 
store the entire daily heat production of the solar 
array, some on-peak operation is necessary. 
The relation between forecast and actual 
weather parameters is shown in Fig. 6. The 
temperature forecasts tend to under-predict 
lower temperatures, and over-predict higher 
temperatures, as indicated by the negative y-
intercept and the larger than unity slope of the 
linear fit. 

 

 
Figure 6: global fits of actual vs. day-ahead 
forecast temperature (top) and solar irradiance 
(bottom). 

The irradiance forecast is obtained using the 
NWS cloud cover prediction. A model of the 
form: 

 (2) 
where Ip is the predicted irradiance, Ic is the 
clear-sky irradiance for the date and time, C is 
the cloud cover prediction (with 0 representing 
clear sky, and 1 representing completely 
overcast conditions). The parameters a and b 
were obtained by minimizing the squared error 
between actual daily solar energy and the model 
prediction. For the present case, they are 1.0 
and 0.39. The scatter plot of actual vs. predicted 
irradiance in Fig. 6 shows an over-prediction of 
low irradiance and a slight under-prediction of 
high irradiance. The staggered clusters of 
prediction are likely due to the three-hour long 
cloud cover forecast blocks. 
Redundancy must be allowed to account for 
possible inaccuracy in the forecast. For the case 
of the cold storage, under-prediction of the 
building load would simply result in additional 
cooling drawn from the district energy system 
when the cold storage is depleted. Over-
prediction of the load, on the other hand, would 
mean that some of the cold storage capacity 
would be dissipated by tank losses before 
further use during the subsequent charge cycle. 
For the case of the chiller, under-prediction of 
the solar energy available would result in 
overcharging of the hot storage. The control 
program was modified so that when excessive 
tank temperatures are detected, the chiller is 
activated for an hour, irrespective of schedule, 
returning the hot storage to safe conditions. 
An example of operation of the ME building for 
standalone operations and optimized operations 
is shown in Fig. 7. In the case of optimized 
operations, the chiller operates for part of the 
time off-peak (after hour 44, which corresponds 
to 20:00). Also, during on-peak operation, the 
chiller starts and stops three times. Two of the 
start-stop cycles are due to the safety override 
due to tank overheating, resulting from under-
prediction of the solar irradiance on that day. 
The following day, during standalone operation, 
the chiller operates continuously on-peak. 

ECONOMIC ANALYSIS 
The application of SaaS described here 
manages relatively small electric loads and 
thermal energy storage, so it was known in 
advance that the cost savings would be limited. 
The intent of the work was to determine 
whether, even under these circumstances of 
limited costs, the implementation of the IT 
infrastructure necessary to use SaaS for 
optimization of operations of a medium-size 
building would be cost-effective. 
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To estimate costs for implementations where the 
learning phase is minimal, it is assumed that a 
modern DDC control system, and the hardware 
to host the software interface are both already 
present at the facility. Implementation costs 
under this scenario result from software (e.g. 
historian, ODBC interface), programming costs 
on the client side, and programming costs at the 
host site. A series of scenarios is presented, 
representing a broad range of possible 
applications: a single building, five buildings 
(e.g. a small commercial retail development), 
and fifty buildings (e.g. a university campus or a 
chain of hotels). The costs for the various 
aspects are summarized in Table 1. The bulk of 
the cost is in the data collection software and 
associated interfaces (e.g. the ODBC driver). 
Also, economies of scale apply in this case: for 
large enterprises with centralized data collection 
services (e.g. university campuses, hotel chains, 
retail chains) these costs are substantially 
reduced. The second largest cost, associated 
with tailoring of the optimization software to the 
particular application at the host site, can also 
decrease with increasing number of 
implementations. Here, learning is assumed to 
follow an 85% experience curve [8]. 
It is also noteworthy that the implementation 
cost at the facility is a relatively small 
component of the total implementation cost, 
although its share grows as the other costs 
decrease. Learning for this cost component 
does apply because, after a small number of 
prototypes, implementation costs are simply a 
function of the number of hours needed to 
implement the interface, which are not likely to 
decrease since buildings, their mechanical 
components and thus their control programs, 
are generally one-offs. 
The economic benefits of implementing SaaS 
operation optimization are strongly influenced by 
local electricity tariffs. For example, New 
Mexico’s PNM rate 15B [6], specific to large 
university campuses, applies relatively low 
energy prices, and a moderate differential 
between on-peak and off-peak conditions. 
Typical commercial California energy charges 
(SCE and SDG&E) are substantially higher, and 
also include shoulder rates, rather than just on- 
and off-peak rates. The economic benefits of the 
present DER-CAM implementation for an 
individual building are assessed using these 
three rates, shown in Fig. 9. The optimization 
performed by DER-CAM for this experiment was 
based on the PNM rate 15B, and the results 
may have differed if the other tariffs had been 
used. However, the differences would have 
been relatively small, and would have resulted in 
slightly higher economic benefits. 

 
Figure 9: Energy charges and for Albuquerque, 
New Mexico (PNM rate 15B) and two service 

areas in California (rates SDG&E AL-TOU and 
SCE TOU-8-B) for summer period. 

 
The first experiment was performed for the two-
week period beginning on July 16, 2012, 
representing summer conditions (June, July and 
August). For the first week, the building energy 
systems were operated with no optimization. 
Specifically, the cold storage was charged fully 
every night, and the absorption chiller operated 
on-peak. In the second week, the system was 
switched to DER-CAM optimization. The cold 
storage was charged partially, and the operation 
of the absorption chiller was operated partially 
off-peak. The operating costs for the two cases 
are shown in detail in Table 2. 
During the shoulder season (the second half of 
March to May, and September and October), 
cooling requirements are smaller, and there is 
even greater opportunity for savings by not fully 
charging the cooling tanks. Since only a small 
portion of the tank capacity is needed, fully 
charged tanks would present an un-necessarily 
large cold surface area for heat conduction into 
the cold storage, serving no useful purpose. 
Costs associated with shoulder-season 
standalone and optimized operation, for typical 
weeks, are shown in Table 3. Weekly energy 
cost savings are shown in Table 4. For the 
summer season, the cost saving are $43, $81 
and $72 for the PNM, SDG&E and SCE tariffs 
respectively. The shoulder cost savings are $9, 
$27 and $22 for PNM, SDG&E and SCE 
respectively. Assuming 18 weeks of shoulder 
season and 12 weeks of summer season, the 
yearly savings on cooling are $678, $1,458 and 
$1,260 for the PNM, SDG&E and SCE tariffs 
respectively. Irrespective of tariff, the expected 
yearly percentage energy cost reduction from 
optimized operation is approximately 29%. 
In the worst-case scenario, that of an 
implementation on a single building with PNM 
rates, the cost recovery period based on simple 
payback is 33 years. In the most attractive 
scenario, with a 50-building implementation and 
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SDG&E tariff, the payback period drops to 
approximately 5 years. Does this mean that 
SaaS is not an attractive proposition for small 
enterprises? It must be kept in mind that this 
analysis was performed on a building with very 
low energy consumption and correspondingly 
low energy costs, which already placed low 
bounds on the absolute value of the cost 
reduction. Regardless, despite the fact that the 
SaaS model is already very efficient, it appears 
that further benefits should be sought. For 
example, embedding the interface developed in 
the present exercise in the control software 
directly by the control system vendor would 
minimize the client-side costs. In addition, it may 
be possible, if the SaaS model takes hold, to 
take advantage of utility-side benefits which are 
only partially embedded in existing tariff 
structures, particularly if storage systems are 
part of the optimization [9]. 

CONCLUSIONS 
The SaaS framework was applied to a medium-
sized facility with thermal storage and solar-
assisted HVAC for the purpose of optimizing its 
energy system operating schedule using LBNL’s 
DER-CAM system, to determine cost savings, 
and compare these with implementation costs. 
The optimization involved shifting a few kW of 
electric loads, and setting the state of charge of 
the cold storage to meet the expected building 
load. It was shown that the energy costs to cool 
the facility during shoulder and summer seasons 
could be reduced by almost 30%, largely thanks 
to improvements in the cold storage efficiency. 
However, because the base- line energy costs 
for this facility were relatively low, the payback 
period for a single implementation is not 
attractive. Multiple similar implementations (e.g. 
for a hotel chain) would substantially reduce the 
unit cost, and the payback period would then 
become attractive. 
It was found that the accuracy of the schedule 
depended strongly on the accuracy of the 
weather forecast, especially in the case of the 
amount of solar power available to drive the 
absorption chiller. Initially, the model often 
under-predicted the amount of solar heat 
available, resulting in multiple chiller start/stop 
cycles during the on-peak period. A later 
adjustment of the model based on statistical 
correlation of actual solar heat and predicted 
solar heat resulted in improved scheduling.  
It was not possible to reduce demand charges in 
this exercise, since the hot storage was not 
sufficient to shift the entire electrical load due to 
the operation of the absorption chiller off-peak. 
However, for the case of multiple facilities 
behind a single meter, a reduction of the 
collective peak would be possible using 

appropriate coordination, without impact on 
comfort of building occupants. Better economic 
benefits could arise if utility benefits could be 
monetized beyond single-meter tariff, for 
example by aggregating the optimization of 
multiple facilities.  
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Figure 1: Schematic representation of the solar-assisted HVAC system at UNM-ME. The hot loop 

(orange-red) consists of a 30 m3 hot water storage system, a 170 kWth hybrid solar array consisting of 
124 m2 of flat plate solar collectors, and 108 m2 of evacuated solar collectors, coupled by a brazed-
plate heat exchanger. The array side of the loop is pressurized, while the storage side is not. The 

cooling loop (green) consists of a 5 m3 sump and a rooftop cooling tower. The chilled water system 
(blue-purple) consists of 7 tanks, with total capacity of 350 m3. The tanks and an absorption chiller 

deliver water to air handling units. 
 
 
 

 
Figure 5: Typical weekly schedule produced by DER-CAM for UNM-ME. 
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Figure 7: Comparison of optimized (hours 0 to 48) and standalone (hours 48 to 72) building 

operations, during peak cooling season in July 2012. Note the difference in operation of the chiller, 
and the more abrupt cut-off of cold storage charge in the case of optimized operation. Note that, while 

in general charge time is shorter for optimized operation, in this case the cold storage was not 
depleted completely during the first day, so charging during the second day was shorter.  

 
 

Table 1: Costs for implementation of the DER-CAM SaaS infrastructure for various typical scenarios. 
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Table 2: Comparison of operating costs in standalone and optimized operation for typical summer 
weeks. For the SDG&E and SCE rates, the off-peak rate which applies to the chiller is the average of 

the mid-peak and off-peak rate. 

 
 
 

Table 3: Comparison of operating costs in standalone and optimized operation for typical shoulder 
weeks. For the SDG&E and SCE rates, the off-peak rate which applies to the chiller is the average of 

the mid-peak and off-peak rate. 

 
 
 
Table 4: Weekly energy cost comparison for standalone and optimized operation, for various electricity 

tariffs. 
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