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Understanding the population dynamics of megafauna that in-
habited the mammoth steppe provides insights into the causes of
extinctions during both the terminal Pleistocene and today. Our
study area is Alaska’s North Slope, a place where humans were
rare when these extinctions occurred. After developing a statisti-
cal approach to remove the age artifacts caused by radiocarbon
calibration from a large series of dated megafaunal bones, we
compare the temporal patterns of bone abundance with climate
records. Megafaunal abundance tracked ice age climate, peaking
during transitions from cold to warm periods. These results sug-
gest that a defining characteristic of the mammoth steppe was its
temporal instability and imply that regional extinctions followed
by population reestablishment from distant refugia were charac-
teristic features of ice-age biogeography at high latitudes. It fol-
lows that long-distance dispersal was crucial for the long-term
persistence of megafaunal species living in the Arctic. Such dis-
persal was only possible when their rapidly shifting range lands
were geographically interconnected. The end of the last ice age
was fatally unique because the geographic ranges of arctic mega-
fauna became permanently fragmented after stable, interglacial
climate engendered the spread of peatlands at the same time that
rising sea level severed former dispersal routes.

ice age | megafauna | extinction | paleoecology | mammoth steppe

One of the most intriguing examples of mass extinction and
the most accessible in terms of its geological record occurred

around the end of the Wisconsin ice age ca. 10–45 calendar ka B.P.
(10,000–45,000 calendar y ago) when some 65% of terrestrial
megafauna genera (animals weighing >45 kg) became globally ex-
tinct (1). Based on what we know about recent species extinctions,
the causes of extinction are usually synergistic, often species-specific,
and therefore, complex, which implies that there is no universal
explanation for end-Pleistocene extinctions (2, 3). Globally and
specifically in the Arctic (3–10), megafaunal extinctions have been
variously blamed on overhunting, rapid climate change, habitat loss,
and introduced diseases (3–10). Further complicating a clear un-
derstanding of the causes of ice-age extinctions is that the magni-
tude and tempo of environmental change during the last 100,000 y
of the Pleistocene were fundamentally different than during the
Holocene (11), and these differences had far-reaching implications
for community structure, evolution, and extinction causes (12).
A recent survey comparing the extinction dates of circum-

boreal megafauna with ice-age climate suggests that extinctions
and genetic turnover were most frequent during warm, in-
terstadial events (13). However, the mechanisms for these ex-
tinctions remain unclear, partly because this previous study
considered multiple taxa living in many different ecosystems.
Here, we focus on five megafaunal species that coinhabited a
region of the Arctic with an ecological setting that is relatively
well-understood. To avoid the methodological problems involved
in pinpointing extinction dates (13), we infer population dy-
namics from changes in the relative abundance of megafauna
over time. Using a uniquely large dataset of dated megafaunal
bones from one particular area, we test a specific paleoecological
hypothesis relating rapid climate change to population dynamics—
namely, that transitions from cold to warm intervals were briefly
optimal for grazing megafauna.

The study area is Alaska’s North Slope, the tundra region
bordered to the south by the Brooks Range and to the north by
the Arctic Ocean (Fig. 1). The North Slope is a particularly in-
teresting place to study end-Pleistocene extinctions for several
reasons. First, its ice-age megafauna included iconic species like
woolly mammoth (Mammuthus primigenius), steppe bison (Bison
priscus), and cave lion (Panthera spelaea) (14). Second, the local
extinctions of megafauna on Alaska’s North Slope occurred at a
time when archaeological remains are rare, suggesting that people
seldom ventured there (15, 16). Third, bone preservation in arctic
environments tends to be excellent because of the presence of
permafrost (perennially frozen ground), which makes it possible
to 14C date large numbers of bones from many different species
(SI Appendix, Table S1). Our record of dated bones provides key
insights into the temporal dynamics and biogeographical character-
istics of the mammoth steppe, a biome that was unique to the ice ages
and the exact nature of which has been long debated (17).

Background
Mammoth Steppe. Episodically during the late Pleistocene, the
mammoth steppe extended from Europe to northwestern Canada
(18). Its soils were relatively dry, warm, and fertile compared with
those of the present day (19, 20) (SI Appendix, SI Text), and its
vegetation supported large herds of grazing mammals in species-
rich communities (14, 17, 18). The biomasses and diversities of
these ice-age communities contrast starkly with the impoverished
megafaunal communities living in the same regions today (10, 21).
The climate supporting the mammoth steppe was more continental
than today (18) and, as detailed below, it was much more change-
able at millennial and centennial timescales.
The nature and, for some authors, even the veracity of the mam-

moth steppe remain controversial (14, 17). Some paleobotanists
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argue that the palynological evidence is inconsistent with the pro-
ductive grasslands that paleozoologists infer based on the nature of
the megafauna (22). Compromise solutions to this debate have
suggested a spatial mosaic of habitats: some polar desert-like in
character and others more steppe-like (23–27).

Timing of Regional Extinctions on Alaska’s North Slope. Based on
current evidence, the regional extinction of the ice-age megafauna
was complete in arctic Alaska before 12 calendar ka B.P. (10),
leaving caribou (Rangifer tarandus), tundra muskox (Ovibos
moschatus), and brown bear (Ursus arctos) as the only surviving
megafaunal species. Of the Pleistocene species, horse (Equus cf.
ferus) and steppe bison survived the longest. The most recent
horse lived between 12.4 and 12.7 calendar ka B.P. (Beta-339279)
(SI Appendix, Table S1), and the most recent bison lived between
12.2 and 12.6 calendar ka B.P. (CAMS-53767). The most recent
lion lived between 13.0 and 13.3 calendar ka B.P. (CAMS-53909),
and the most recent mammoth lived between 13.5 and 14.1 cal-
endar ka B.P. (AA-26006). Moose (Alces alces) is a postglacial
newcomer, arriving north of the Brooks Range ca. 14 calendar ka
B.P. (CAMS-91810). There is no direct paleontological evidence
in the form of dated bones in mainland Alaska supporting claims
based on ancient DNA (aDNA) that mammoth and horse sur-
vived as late as 7,500 calendar y B.P. (28). The DNA in question
was extracted from wind-blown sediment that may have in-
corporated biological material previously stored in permafrost.

Climate Change, Paludification, and the Demise of the Mammoth
Steppe. Guthrie (14, 18) cited climate change, specifically the loss
of climatic continentality, as the ultimate cause of the disappearance
of the mammoth steppe at the end of the Pleistocene. As sea level
rose across Alaska’s continental shelves and storm tracks shifted
poleward, maritime air masses invaded more frequently, transform-
ing the North Slope’s summer climate from sunny, dry, and relatively
warm to its present state of cloudy, damp, and relatively cool (29,
30). Guthrie (14, 18) identified paludification, the spread of peat and
organic soil horizons across previously well-drained landscapes, as
the proximate cause of the demise of the mammoth steppe (31).
Peat flourishes during cool, moist summers, and its presence

has transformative effects on ecosystems. Peat stabilizes hillslopes
and dune fields and restricts loess deposition, which allows soil
acidification to proceed unhindered by inputs of unweathered
mineral material (20). As organic matter accumulates and soils
acidify, nutrient cations, including Ca, K, NH4, and Na, are leached
away, whereas other nutrients, like phosphorous compounds, are
increasingly bound to organic matter and made unavailable to
plants (32, 33). In response, vegetation shifts toward plant taxa that

are heavily defended with antiherbivory compounds (SI Appendix,
SI Text).
Peat also cools the underlying ground (34), which allows perma-

frost to rise nearer the surface and it perches the water table there.
The resulting combination of increased moisture and colder temper-
ature retards decomposition, reduces nutrient availability, and en-
courages more peat to form (35). Many regions in northern Eurasia
and northwestern North America that supported mammoth steppe
during the ice age are today blanketed by peat-rich plant communities
(36) incapable of supporting large biomasses of grazing mammals.

Warm Transitions Were Briefly Optimal Hypothesis. Guthrie (37)
identified the Pleistocene–Holocene transition (12–16 calendar ka
B.P.) as a highly favorable time for megafauna (Fig. 2). Guthrie
(37) speculated that this was the case because the Pleistocene–
Holocene transition was a period of ecological disequilibrium,
during which the climate had become warmer and wetter but the
vegetation cover had not yet had time to equilibrate with these
changes. During this lag period, the edible graminoids and forbs
that had dominated the mammoth steppe became more productive
and could support more animals. Today, grasses and forbs flourish
at tundra sites where soils and vegetation have been disturbed (38,
39) but only until paludification recurs. On the North Slope, 500–
700 y are required for peat to accumulate to a steady-state thick-
ness on a previously bare surface of a mineral soil (35). During the
ice age, short-lived pulses of high-quality range occurring before
either paludification became widespread or full glacial climate re-
sumed may have created transitory bonanzas for megafaunal
grazers, which resulted in short-lived peaks in the relative abun-
dance of these animals on the landscape.

Approach
Predictions from the Warm Transitions Were Briefly Optimal Hypothesis.
The hypothesis by Guthrie (37) makes a number of predictions
that can be addressed using our data and analyses.

i) Megafaunal abundance peaked during warm interstadial pe-
riods, particularly during their initial stages.

ii) In the course of the most recent of these interstadials, the
Bølling–Allerød [Greenland Interstadial-1 (GI-1)], megafau-
nal abundance declined as paludification progressed.

Fig. 1. The North Slope is the tundra region between the Brooks Range and
the Arctic Ocean. The light blue area shows the extent of the Bering Land Bridge
during the last glacial maximum (LGM) ca. 19,000 calendar y B.P. Glacier extent
(gray) during the LGM is based on the works by Dyke (64) and Brigham-Grette
et al. (71). The timing of the opening of the ice-free corridor is still uncertain.

Fig. 2. Death by peat? The warm transitions were briefly optimal hypothesis
asserts that highest range quality and hence, the largest numbers of megafauna
occurred during the initial stages of interstadial (warm) periods before wide-
spread paludification could occur and before climate reverted to full glacial
conditions. A short-lived bloom of ruderal plant species provided a grazing bo-
nanza during this transition period, when both soils and climate were relatively
warm andmoist. Megafauna populations crashed after widespread paludification
occurred and moist acidic tundra vegetation became widespread, a process re-
quiring ∼1,000 y after an interstadial began (35). Mammoth steppe consisting of
sparse grass and forb vegetation was widespread during the colder, drier stadials,
when megafauna existed at some intermediate level of abundance. Between
11,700 and 50,000 calendar y B.P., the duration of interstadials varied between
100 and 2,600 y, whereas the intervening cold stadials lasted 500–8,000 y (47).
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iii) Widespread paludification took place during lengthy
interstadials.

iv) Megafaunal diets shifted in response to widespread paludi-
fication during these long-lasting interstadials.

v) Population declines caused by the spread of organic soils during
lengthy interstadials caused population bottlenecks among arc-
tic megafauna that are recorded by changes in gene frequencies.

Distinguishing Calibration Noise in Cumulative Probability
Distributions of 14C Dates. To test the warm transitions were
briefly optimal hypothesis, we need to compare temporal trends in
megafaunal abundance with climate records. Cumulative proba-
bility distributions (CPDs) of 14C dates can be informative proxies
for changes in abundance through time, and they have been widely
used in paleontology, archaeology, and geomorphology (6, 40–42).
Unfortunately, the interpretation of CPDs is complicated by arti-
facts introduced during the calibration of 14C dates to calendar
ages by variations in slope of the curve relating 14C age to calendar
age (42–44) (SI Appendix, SI Text). Here, we use a Monte Carlo-
based approach to separate data-derived peaks in CPDs from
calibration-induced noise. This method compares the CPD of a set
of real calibrated dates with the CPDs of multiple simulated sets
of calibrated dates to identify peaks in bone abundance that are
unlikely to result from calibration artifacts. If the warm transitions
were briefly optimal hypothesis is correct, peaks in megafaunal
abundance should coincide with the warm interstadials, specifi-
cally the initial stages of interstadial warming.

Results
The relative abundances of herbivorous megafaunal species living
on the North Slope of Alaska shifted markedly through time (Fig.
3). Horses increased in relative abundance after 40 calendar ka
B.P., whereas muskoxen were apparently absent between 15 and
25 calendar ka B.P. along with steppe bison between 15 and 20
calendar ka B.P. The combined CPD of 263 megafaunal bones

dating to between 10 and 45 calendar ka B.P. has numerous
peaks (Fig. 4). The curve loses some of this spiky character be-
fore 30 calendar ka B.P., because the range of possible calibrated
ages increases as error terms of individual dates increase.
The Monte Carlo procedure allows us to identify peaks in the

bone–abundance curve that are not caused by calibration effects.
Eight of the peaks in the CPD rise above the calibration noise at
the P ≤ 0.05 level, suggesting that these eight peaks were times of
unusually abundant megafauna (Fig. 4). In general, peaks in
megafaunal abundance coincide with warm, mid-Wisconsin in-
terstadials between 30 and 50 calendar ka B.P. The most recent
peak in abundance occurred during GI-1e, which in northwest
Europe, was manifested as the Bølling–Allerød warm period.
The δ15N values of horse bone collagen reflect dietary changes

over time (45). On the North Slope, starting ca. 47 calendar ka B.P.
and ending at 10 calendar ka B.P., Equus bone collagen δ15N values
became increasingly less positive, with values changing from +8‰
to +10‰ between 30 and 47 calendar ka B.P. to from +1‰ to
+2‰ at the time of extirpation ca. 12.6 calendar ka B.P. (Fig. 5).

Discussion
Comparing Bone Abundance to Climate. Although peaks in bone
abundance generally coincide with warm interstadials, correlations
differ slightly according to which proxy record is compared (Fig. 6).
Some of these differences are caused by the dating uncertainties
present in all of the records, and others probably reflect real differ-
ences in how global climate trends were expressed in different re-
gions. Of the three proxy records, methane (CH4) is the most globally
applicable because of its rapid mixing in the atmosphere. Compared
with the CH4 record, megafauna populations peaked on the North
Slope during GI-12, -11, -8, -6–7, -5, -4, and -1. Another bone peak
occurred at the outset of GI-2 at ca. 24 calendar ka B.P. (Fig. 6).
Comparison of bone abundances with δ18O records from spe-

leothems in southeast China suggests similar correlations (Fig. 6,
Middle), with peaks in megafaunal abundance early in GI-1 and -2.

Fig. 3. Changes in the relative abundances of mega-
faunal herbivore taxa on the North Slope of Alaska
between 10,000 and 45,000 calendar y B.P. Details of
these 14C dates are given in SI Appendix, Table S1.

Fig. 4. The CPD of 263 calibrated ages of North
Slope (NS) megafaunal bones (solid green). Yellow
bars mark times when there is a P ≤ 0.10 of the peaks
in bone abundance being explicable as artifacts of
the 14C calibration process. Red bars mark peaks
where P ≤ 0.05. Vertical gray bars depict the Green-
land Interstadials (GIs) after Rasmussen et al. (47).
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A bone peak ca. 28.5–29 calendar ka B.P. may correlate to the be-
ginning of GI-3, although this particular interstadial is not recorded
clearly in the Chinese record. There are suggestions that bone peaks
also occurred during the initial stages of GI-11, -8, and -6. Com-
parisons to the Greenland Ice Core Project (GRIP) δ18O record
suggest that bone peaks occurred during GI-1, -4, -5.1, -5.2, -8, and
-12 (Fig. 6, Bottom). A bone peak occurred at the onset of GI-2.2,
and a similar timing is suggested for GI-5.1 and possibly, GI-10.

Testing the Warm Transitions Were Briefly Optimal Hypothesis.
Prediction 1: Megafaunal abundance peaked during warm interstadial
periods, particularly during their initial stages. The youngest intersta-
dials, GI-2.2 and -1, are of particular interest because the pre-
cision of age control in both the ice-core records and the 14C
dating technique decline with age (46, 47) (SI Appendix, SI Text).
The warming trend culminating in GI-2.2 began ca. 24 calendar ka
B.P.(Fig. 6). The peak in bone abundance at 23.9–24.3 calendar ka
B.P. occurred, therefore, during its earliest stages. In the CH4 and
Chinese δ18O records, peak megafaunal abundance occurred in the
initial stages of GI-1. In the GRIP δ18O record, this same bone
peak falls during the warmest part of GI-1 but is still within the first
millennium of this lengthy interstadial. These correlations tend to
confirm predictions made by the hypothesis by Guthrie (37).
Prediction 2: In the course of the most recent interstadial, the Bølling–
Allerød (GI-1), megafaunal abundance declined as paludification progressed.
Consistent with this prediction, the bone peak occurring ca. 14
calendar ka B.P. ended ∼1,100 y before GI-1 terminated (Fig. 6).
Furthermore, it coincided with the initial rapid spread of peat
across the North Slope and preceded the widespread pal-
udification occurring later (Fig. 5) (31).
Prediction 3: Widespread paludification took place during lengthy interstadials.
Peat layers dating to mid-Wisconsin interstadials are widespread in
both Siberia and Alaska (48). In northwest Alaska, peat layers and
elevated percentages of spruce pollen suggest that paludification
accompanied the intermittent presence of forests there between 40
and 60 calendar ka B.P. (49). On Siberia’s Lena River Delta,
buried peat layers date to 32–52 calendar ka B.P. (45). Along the
Kolyma River, peat-rich buried soils date to 44–46, 40–43, 36, and
32 calendar ka B.P. (50), and on the New Siberian Islands, buried
soils suggest that paludification occurred at 73° N during some
mid-Wisconsin interstadials (51). These reports confirm that
paludification was widespread in the Arctic during at least some
interstadials, suggesting that a short-lived grazing bonanza
followed by the spread of peat may have occurred during lengthy
(>1,000 y) interstadials.
Prediction 4: Megafaunal diets shifted in response to widespread paludifca-
tion during lengthy interstadials. At the outset of GI-1, the shift from
mammoth steppe to the moist tundra vegetation accompanying
widespread paludification coincided with a striking change in the
diet of horses (Fig. 5). Similar shifts in δ15N occurred earlier
during several of the longest interstadials, including GI-8, which
lasted 1,640 y, and GI-12, which lasted 2,580 y (47). Declining δ15N
during interstadials is consistent with paludification’s impact on
vegetation composition, soil temperature, soil moisture, and rooting
depths of plants (10, 52).

Prediction 5: Population declines caused by the spread of organic soils
during lengthy interstadials caused population bottlenecks among arctic
megafauna that are recorded by changes in gene frequencies. Consistent
with this prediction, paleontological records and aDNA indicate
that population bottlenecks affected a number of megafaunal
species at high latitudes between 36 and 48 calendar ka B.P., the
interval that saw some of the longest interstadials. Noncaballine

Fig. 5. The δ15N of 90 bones of caballine horses of
differing ages from Alaska’s North Slope. The num-
bered columns show the GIs. The green line shows
the cumulative number of basal peat dates from
Alaska (72). Red and yellow bars show the timing of
the bone abundance peak in the early stages of GI-1.
Horse diet changed radically as peat spread during
GI-1. Similar shifts in diet occurred during some of
the earlier interstadials. Bone ages are plotted by
their median calibrated ages.

Fig. 6. Comparisons between peaks in megafaunal bone abundance and
climate proxy records. The terminology and timing of the GIs are from
Rasmussen et al. (47). (Top) Methane concentrations in the GRIP core (47).
(Middle) The δ18O record from Chinese speleothems (73). The dynamics of δ18

in southeast China are dominated by changing evaporative source areas and
transport distances of precipitation. (Bottom) δ18O in the GRIP core (47). The
close correlation between the CH4 record and the δ18O record attests to the
global extent of the climatic events recorded in Greenland. ppvb, Parts per
billion by volume; VPDV, Vienna Pee Dee Belemnite.
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horses became extinct in Alaska ca. 36 calendar ka B.P. (53).
Based on aDNA, Alaskan brown bears experienced a significant
population decline around that same time (54). Ancient DNA
further suggests the numbers of steppe bison, horses, and mam-
moths living at high latitudes decreased markedly 35–45 calendar
ka B.P. (3, 55, 56). Also based on aDNA, population bottlenecks
affected cave lions sometime after 50 calendar ka B.P. (57) and
muskoxen after 48 calendar ka B.P. (3, 58). Although the precise
timing of these population bottlenecks remain obscure (13), their
occurrence during the mid-Wisconsin interstadials is consistent with
the hypothesis by Guthrie (37). We interpret these bottlenecks as
side effects of widespread paludification during lengthy intersta-
dials, such as GI-14, -12, and -8.

Synthesis
Accepting the warm transitions were briefly optimal hypothesis
(Fig. 2) leads to new inferences concerning the nature of the
mammoth steppe, the biogeography of its megafaunal inhabitants,
and the probable causes of their end-Pleistocene extinctions.

Mammoth Steppe: A Biome Defined by Its Instability. Concurrence
between peaks in numbers of bones and periods of climatic tran-
sitions implies the occurrence of boom and bust cycles in ice-age
megafaunal populations in arctic Alaska (Fig. 6). Changes in the
abundance of taxa through time—for instance, the absence of bison
between 15 and 20 calendar ka B.P. (Fig. 3)—suggest the oc-
currence of regional-scale extinctions followed by recolonization.
Megafaunal populations were fluctuating because the ecosystems
supporting them were changing. Together with the global climate
records (Fig. 6), our data suggest that short-term (101–103 y)
ecological instability was a characteristic feature of the mam-
moth steppe in arctic Alaska during the last ice age.
Like an azonal soil that never equilibrates with regional climate

and has properties that are, instead, determined by the nature and
timing of the last geomorphic or ecological disturbance, the mam-
moth steppe may have been an azonal biome that never fully
equilibrated to any single climate state. If true, this implies that, in
addition to being a spatial mosaic of ecosystems (26), the mammoth
steppe was also a temporal mosaic with soils, vegetation, and fauna
that were chronically engaged in ecological successions triggered by
repeated, short-lived, and radical shifts in climate. One reason that
no clear analogs of the mammoth steppe exist today may be simply
that the degree of climatic instability experienced at high latitudes
during the late Pleistocene is absent today.

Ice-Age Dispersability Imperative. Survival in an azonal biome re-
quires coping with incessant environmental change, and arctic
megafauna may have been forced to play a game of musical chairs
across continental distances. Survival would have been especially
challenging for populations dependent on either long-distance mi-
gration, like some caribou herds are today in northern Alaska, or
episodic long-distance dispersal between shifting locations of suitable
habitat. In Africa today, the regional persistence of elephant pop-
ulations depends on episodic dispersals of subpopulations between
patches of favorable habitat, often across hundreds of kilometers
(59). During some Pleistocene stadials (14), mammoth steppe cov-
ered a region three times that of sub-Saharan Africa, and the very
un-Holocene tempo of ice-age climate change meant that patches of
suitable forage were flickering in and out of existence every few
centuries. The imperative may have been to disperse or be extirpated.

Fatal Intersection of Events. With this dispersability imperative in
mind, the intersection of two events made GI-1 (the Bølling–Allerød)
uniquely fatal for megafauna in arctic Alaska. First, paludification
had ample time to transform soils and vegetation over this intersta-
dial’s 1,800-y span (Fig. 5). Second, relative sea level was rising
rapidly, reducing the land area of northern Alaska, weakening the
continentality of the climate, and blocking dispersal routes to Siberia.
The degree of isolation between Alaska and Siberia estab-

lished after 14 calendar ka B.P. was extreme compared with most
of the late Pleistocene. The Bering Land Bridge was finally

submerged between 12 and 13 calendar ka B.P. (60, 61) when sea
level surpassed the −50-m level, a height not reached for the
previous 40,000 y. By the early Holocene, relative sea level stood
higher along the coast of northern Alaska than it had at any time
in the previous 100,000 y (62, 63).
As the Bering Land Bridge was closing, the ice-free corridor

between the Cordilleran and Laurentide Ice Sheets was slowly
opening. The corridor may have first appeared 13.5–14 calendar
ka B.P. (64), but it probably remained ecologically impassable to
megafauna until after GI-1 ended ca. 12.9 calendar ka B.P. (55,
65, 66). The end of the last ice age was probably uniquely fatal
for arctic megafauna because of the unusual intersection of two
events: widespread paludification that drastically reduced range
quality for megafaunal grazers and simultaneously hindered their
ability to disperse across the resulting soggy landscape and flooding
of dispersal routes to Asia before the ice-free corridor leading to
lower-latitude North America fully opened.

Materials and Methods
14C Dating of Bones and Analysis of Bone δ15N. We dated 496 bones from
disarticulated skeletons on Alaska’s North Slope (10) (SI Appendix, SI Text and
Table S1). These bones were in good condition and were identified by their
definitive morphological characteristics. In certain instances, temporal and
ecological assumptions were used in our identifications (SI Appendix, Table S1).
Bone collagen was dated by accelerator MS techniques without ultrafiltration
(SI Appendix, SI Text). We excluded bones with nonfinite ages, bones of extant
taxa that were <10 calendar ka B.P. in age, and bones with finite ages >43,500
14C y B.P., and included 41 previously published bone dates from the North
Slope that met these criteria (10). We therefore use 263 megafaunal bones to
make CPDs for comparison with proxy records of climate change. The species
composition of these 263 bones is 113 caballine horses, 52 steppe bison, 40
woolly mammoths, 26 caribou, 16 tundra muskoxen, 7 cave lions, 3 moose, 2
wolves (Canis lupus), 2 saiga antelope (Saiga tatarica), 1 short-faced bear
(Arctodus simus), and 1 brown bear. We described the changing species com-
position of the megafauna through time by calculating the percentage of the
total number of bones of each taxon where median-calibrated ages fall within
5,000-y age bins between 10 and 45 calendar ka B.P. Smaller bin sizes tended
to distort abundance trends because of the spikey nature of the dated bone
record. We measured δ15N in bone collagen of 14C -dated horse bones using an
Elemental Analyzer Isotope Mass Spectrometer.

Distinguishing Calibration Noise in CPDs of 14C Dates. Some peaks and valleys in
the CPDs of calibrated 14C dates are artifacts resulting from the calibration
process (SI Appendix, SI Text). We use a Monte Carlo approach to distinguish
which peaks in a CPD of 14C dates are not caused by calibration noise. We
calibrated the 14C dates using the OxCal program [version 4.2.4 (67)] and the
IntCal13 calibration curve (68) to produce a summed CPD. For the simulated
datasets, we cannot simply produce sets of randomly chosen 14C dates; unlike
randomly chosen calendar ages, every 14C age is not equally likely, because
randomly chosen 14C ages are not uniformly distributed in calendar time (SI
Appendix, SI Text). Instead, we generate 999 sets of 263 random calendar ages
using OxCal from the time interval corresponding to 9,310–43,100 14C y B.P. Error
estimates for each of these simulated dates come from a regression equation
relating SD to calendar age in the real bone dataset. We next use the R_Simulate
procedure in OxCal to assign a 14C date and an error term to each of the ran-
domly chosen calendar ages. These simulated 14C dates are calibrated using
R_Simulate to create 999 CPDs containing 263 calibrated dates each in 5-y bins,
which then become the Monte Carlo trials against which the CPD of the real n =
263 calendar ages is compared. Finally, we estimate how extreme the upper-tail
probability of the actual bone CPD is with respect to the CPDs of the randomly
generated dates. We calculate empirical P values by tallying the number of times
999 simulated probability values in each bin equaled or exceeded the bone data
values using the relation P = (r + 1)/(n + 1), where r is the number of random
values greater than or equal to the observed bone value, and n is the number of
randomly generated datasets (69, 70). The timespans where P ≤ 0.05, for ex-
ample, define time periods when the bone CPD peaks are different from what
would be expected by chance at the α = 0.05 level. This procedure allows us to
identify peaks in the CPD that warrant comparison with climate proxy data.
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