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Abstract—Due to the high-density nuclear matter equation of state (EOS) being as yet unknown, neutron
stars (NSs) do not have a confirmed limiting “Chandrasekhar” type maximum mass. However, observations
of NSs (PSR J1614-2230, PSR J0348+0432, PSR J0740+6620, PSR J0952–0607) indicate that the NS’s
limiting mass, if there is any, could be well over . On the other hand, there seems to be an observational
mass gap (of around ) between the lightest black hole and the heaviest NS. Therefore, the “massive
NSs” are prime candidates to fill that gap. Several NS EOSs have been proposed using both microscopic and
phenomenological approaches. In this project, we look at a class of phenomenological nuclear matter
EOSs—relativistic mean field models—and see what kind of NS is formed from them. We compute the max-
imum mass supported by each model EOS to observe if the mass of the NS is indeed in the “massive” NS
( ) regime. We also observe the effects of including exotic particles (hyperons, Δs) in the NS EOS and
how that affects the NS mass. However, only by introducing the magnetic field, i.e. for magnetized anisotro-
pic NSs, we find the mass exceeding . Using tidal deformability constraints from gravitational wave
observations, we place a further check on how physical the EOS and NSs are.

Keywords: nuclear matter in neutron stars, general relativity, gravitational waves, nuclear astrophysics,
nuclear matter, neutron stars and pulsars, astrophysical electromagnetic fields
DOI: 10.1134/S1063772923140214

1. INTRODUCTION
Even after half a century since the original discov-

ery of the first pulsar [1], the precise constituents of
neutron stars (NSs) and their radius are still not well
constrained. This also leads to the fact that NSs do not
have a well-defined mass-limit, unlike the Chan-
drasekhar mass-limit of white dwarfs. Nevertheless,
attempts have been made to establish the NS mass-
limit (e.g. [2]), which are however insensitive to the
equation of state (EOS). On the other hand, it is well-
known that above nuclear saturation density, EOSs are
highly uncertain due to the uncertainity of the strong
interaction coupling constant. This leads to the variet-
ies of possible mass-radius relations and mass-limits.
Additional uncertainty arises when a NS is (highly)
magnetized, due to the uncertainty of the magnetic
field geometry and the central (or maximum) mag-

netic field of the star. This has been indeed shown to
be the case for NSs and white dwarfs [3, 4].

It is believed that the lightest mass of an astrophys-
ical black hole could be as low as  [5] (but also
see [6]) and the heaviest NS is  [7]. Hence,
there seems to be a mass gap. On the other hand, the
recent gravitational wave observation GW190814
argues for the existence of a compact object of mass

, in the mass gap. While it could be a pri-
mordial black hole, there is no observational evidence
for such objects yet. Further, an astrophysical black
hole seems implausible to have such a tiny mass [8].
Can this be a NS? Conventional NS EOSs do not
seem to suggest their mass as high as , particu-
larly when hyperons are assumed to emerge at higher
density. Can other physics help to increase the stellar
mass?

Here, we show that (moderately) strong magnetic
fields with central field  G, along with a stiffer
EOS, can lead to NSs well belonging to the mass gap.
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We further report that the results also depend on the
geometry and profile of the magnetic field. They are
also in accordance with the tidal deformability limit.

2. FORMALISM

We describe magnetized, anisotropic, spherically
symmetric NSs by modified Tolman–Oppenheimer–
Volkoff (TOV) equations [3], given by

(1)

where the symbols have their usual meanings. The
effective anisotropy of the system 

 for radially oriented (RO) fields, and

  for transversely oriented (TO)
fields.

To close the system of equations, we introduce a
model functional form for  based on the general
parametric form, first introduced by Bowers and
Liang [9], and further modified to include the effects
of magnetic field by our group [3], given by

(2)

Following previous work [10], we restrict  values to
the range . We further need to supplement
with the equation of state (EOS) and magnetic field
profile to solve the set of equations.
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2.1. Magnetic Field Profile
We introduce a density-dependent magnetic field

in the star [11, 12], given by

(3)

which describes the magnitude of the field at a given
density (hence the radius of the star). Here,  corre-
sponds to the surface field of the star,  controls the
field at the center, and  and  are model parameters
that control how the field decays from center to sur-
face. Throughout this work, we have chosen  to be

. The results are mostly independent of  as

increasing the surface field to  does not have a
practical effect on the results.

2.2. Equations of State
We consider a selection of phenomenological

EOSs, constructed under the relativistic mean field
(RMF) approximation. Matter is modeled at the had-
ron level (quantum hadrodynamics). The baryon-
baryon interactions present in NS matter are modeled
in terms of meson fields as mediators. The meson field
strengths are then set to their mean values as per the
RMF approximation. We have included three such
meson fields — the scalar meson , which describes
attraction between baryons; the vector meson ,
which describes repulsion; and the isovector meson ,
which is required to explain isospin asymmetric inter-
actions.

EOSs are constrained in two ways—by NS observa-
tions, and by the properties of nuclear matter at satu-
ration density. We choose a few EOSs—GM1L [13],
SWL [14], DD2 [15], DD-ME1 [16], and DD-ME2
[17]—that best satisfy both the above constraints.

At their cores, NSs can have densities several times
to order(s) of magnitude higher than the nuclear satu-
ration density. As a result, the presence of exotic parti-
cles is energetically favorable in such conditions.
“Exotic” particles are those that do not exist in stable
form under terrestrial conditions. Along with pure
nucleonic ( ) EOSs, we have also considered
hyperon and  admixed ( ) EOSs. The
inclusion of hyperonic matter has been done by
including meson-hyperon couplings based on the
SU(3) ESC08 model, and the inclusion of  particles
done by including a near-universal meson-  cou-
pling, with , where  represents
the coupling constants; the subscript  indicates the 
particles,  the nucleons, and  represents the mesons
mentioned above.

Figure 1 shows that the pure nucleonic EOSs are
much stiffer. This aligns with the hyperon soften-
ing/hyperon puzzle explored in past literature. Includ-
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Fig. 1. EOSs for  matter (upper branch) and hyperon-  admixed cases (lower branch). 
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ing additional baryonic degrees of freedom in the form
of the exotic particles, in this case, hyperons and Δs,
soften the EOS by minimizing the total energy.

2.3. Tidal Deformability

An additional constraint on the NS EOS is the tidal
deformability parameter. In the presence of an exter-
nal gravitational field ( ), a star develops a quadru-
pole moment ( ) such that , where  is the
tidal deformability of the star.

Theoretically, one can link  to the dimensionless
second Love number , arising from gravitational
multipole expansion, as  [18]. If  is
recast into a dimensionless form, we obtain

 , where  is the
compactness of the star.

To compute , we solve the following differential
equation for , given by,

(4)
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Here,  is a radial function arising from the static,
linearized perturbations of the Einstein equations. As
we are solving for , we restrict ourselves to the ,
static, even-parity perturbations of the perturbation
metric. The other quantities are ,

 (the speed of sound squared),
, and . For

isotropic stars, .

On obtaining  by solving Eq. (4) simultane-
ously with our system of equations, one can compute
the tidal love number  as

(5)

where, , with  being the radius of
the star.

In recent years, due to gravitational wave observa-
tions, observational constraints have been placed on
the dimensionless tidal deformability parameter.
From the binary NS merger event GW170817, the
dimensionless tidal deformability at  has been
constrained to be  [20] and  [21].
The difference between these limits is parameter
dependent, and we have enforced both in our subse-
quent analysis.
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Fig. 2. Mass-radius curves for isotropic NSs constructed from  matter (left) and hyperon-  admixed EOSs (right). 
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3. RESULTS AND DISCUSSIONS

We study magnetized NSs constructed from differ-
ent RMF EOSs. We solve Eqs. (1)–(3), supplemented
by EOS, for a series of central densities. Each EOS
input generates a family of stars, parameterized by the
central density.

The zero anisotropy and nonmagnetic field case
results in completely isotropic NSs, showing pure

EOS effects. As seen from Fig. 1,  EOSs are
much softer, and we expect them to support less mass
as compared to the pure nucleonic  EOS. This is
indeed found in the mass-radius relation shown by
Fig. 2, when  EOSs support NS of masses as high

as 2.51 , whereas  EOSs support masses

upto 2.18  (Table 1).

As the presence of exotic particles is well favored
energetically, we continue the rest of the analysis using

the  EOSs. Moreover, the tidal deformabil-

μ − Δnpe Y

μnpe

μnpe
�M μ − Δnpe Y

�M

μ − Δnpe Y
Table 1. Numerical values for the physical parameters of
isotropic NSs, both by inclusion of exotic particles, and for
pure nucleonic matter

EOS

Pure nucleonic 

( )

Incl. hyperons and Δs 

( )

R (km) R (km)

GM1L 2.3235 11.45 2.0348 11.365

SWL 2.3371 11.43 2.0098 11.246

DD2 2.4474 11.94 2.1049 11.786

DDME1 2.4703 12.123 2.1486 12.096

DDME2 2.5077 12.242 2.1857 12.248

μnpe μ − Δnpe Y

�max ( )M M �max ( )M M
ity analysis (Fig. 3) shows us that all the 

EOSs come under atleast one of the observational

bounds for , whereas the same is not true for the

purely nucleonic counterparts.

Therefore, through pure  EOS effects,

one can explain NS of masses , but not the mass

gap range objects (masses ). This motivates us

to turn to the additional physics of magnetic fields

and/or anisotropy.

We fix our anisotropy parameter, , to be 

throughout our subsequent analysis. We start with a

magnetic field profile defined by   and

choose  as  and  for TO, and

 and  for RO fields. Through-

out this work we choose  such that the maximum

field is below . As shown earlier [22], above

this value, the microscopic effects of field on the EOS,

i.e., Landau quantization, become important, which

is not included in our formalism. The general shape of

the magnetic field profile, and the resulting mass-

radius curves and tidal deformability, for the DDME2

EOS, are shown in Fig. 4. The limiting mass and cor-

responding radius are given in Table 2.

We see that similar to the earlier results [3], even at

zero field, due to the presence of anisotropy parameter

, the mass is enhanced from the isotropic case. Fur-

ther adding the magnetic field to this anisotropic star

can increase or decrease the mass based on the field

orientation. This trend is observed across all the EOSs

studied. Larger TO fields further increase the mass,

whereas larger RO fields tend to decrease the mass.

μ − Δnpe Y

Λ1.4

μ − Δnpe Y
�>2M

>2.5M�

κ 0.5

η = 0.2, γ = 2

0B × 18
0.9 10 G × 18
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× 18
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× 18
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Fig. 3. Tidal deformability for isotropic NSs constructed from  matter (left) and hyperon-  admixed EOSs (right). 
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For the DDME2 EOS, at , we

obtain limiting mass as high as .

On computing the tidal deformability of these cases
(Fig. 4), we find that extremely high fields appear to be

ruled out. Particularly,  fails to meet

either of the observational bounds on . However, it
is important to note that this result is dependent on the
magnetic field profile (the particular choice of 
and ).

To check if we are able to salvage high fields in our
NS while meeting the tidal deformability constraint,
we next look at an alternate magnetic field profile with

 and . The shape of this profile and the
results are shown in Fig. 5. For this profile, we con-

sider TO fields with four appropriate  such that

, , Bmax =

0.79 × 1018 G, and . As this pro-

file exhibits a faster decay of the field within the star, it
results in a lowered magnetic pressure gradient

× 18

0 = 1.2 10 GB
�2.76M

× 18

0 = 1.2 10 GB
Λ1.4

η
γ

η = 0.01 γ = 2

0B
× 18

max = 0.14 10 GB × 18

max = 0.28 10 GB

× 18

max = 1.32 10 GB
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Table 2. Numerical values for the physical parameters of ma

Field profile:  

0.899 (RO) 2.2641 11.695 0.127

0.599 (RO) 2.4128 12.408 0.057

0 2.540 12.924 —

0.895 (TO) 2.6706 13.436 0.118

1.188 (TO) 2.7645 13.752 0.196

η = 0.2, γ = 2

18
max (10 G)B �max ( )M M (km)R mag grav/E E
(Lorentz force). This ultimately leads to masses lower

than those of the previous profile considered above.

Table 2 shows that the magnetic field adds significant

mass to the star only at  above.

On the stability ground (by magnetic to gravita-

tional energy ratio: ), we find that this pro-

file leads to much more stable stars, even at high fields.

Further, on computing the tidal deformability, all the

magnetized stars, including the high  case, satisfy

even the stricter limit: , as seen in Fig. 5.

This indicates that all our results, starting from the

limiting mass to the tidal deformability, are not only

dependent on the magnitude of the (central/maxi-

mum) magnetic fields, but also the field profile within

the star. Highly magnetized NSs, possibly serving as

mass gap candidates, can exist while satisfying tidal

deformability and stability constraints, with the right

choice of profile.

≈ × 18
0.5 10 G

mag grav/E E

maxB
Λ1.4 < 580
gnetized, anisotropic ( ) NSs from the DDME2 EOS

Field profile:  

0 2.5400 12.924 —

0.14 (TO) 2.5409 12.922 0.0006

0.28 (TO) 2.5434 12.921 0.0026

0.79 (TO) 2.5696 12.898 0.024

1.32 (TO) 2.6158 12.875 0.064

κ = 0.5

η = 0.01, γ = 2

18
max (10 G)B �max ( )M M (km)R mag grav/E E
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Fig. 4. Mass-radius relation (top left) and tidal deformability (top right) for magnetized (  ), anisotropic ( )

NSs constructed from DDME2 EOS. Representative field profile within a given star given at the bottom. 
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4. CONCLUSIONS

Precise radius measurement of NSs is still a chal-

lenge and the underlying radius range is still not well-

founded. However, combined NICER and gravita-

tional wave data have started constraining the radius

with a range of 11–13 km for a  NS. This also

helps to sort out realistic EOSs. Nevertheless, still,

there are lots of other uncertainties, including the

questions of maximum mass and magnetic fields in

stable NSs. In this paper, we have explored a variety of

 EOSs, particularly stiffer ones, i.e. with the

possible emergence of hyperons at high density, yet

found the maximum mass of a NS to be . This

is still well below the mass gap. By introducing aniso-

tropic effects of matter at high density, the mass could

be increased to . However, we have found that

�1.4M

μ − Δnpe Y

�2.18M

�2.54M
to construct a NS well within the mass gap, the mag-
netic field is indispensable. For example, a toroidally
dominated magnetized anisotropic (due to matter and

magnetic effects) NS with a central field  G

could even be .

However, we have further checked the constraints
from stability and tidal deformability. Thence, we have

obtained the maximum mass to be about . This

argues that the lighter component of GW190814 could
be a NS filling in the mass gap. With more observa-
tions, particularly in gravitational wave astronomy, we
expect to see more such mass gap objects, some of
which could be massive, magnetized NSs. All the
above inferences, however, are based on one particular
magnetic field profile and two sets of parameters.
Moreover, a specific model of anisotropy is assumed

∼

18
10

�2.7M

�2.6M
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Fig. 5. Mass-radius relation (top left) and tidal deformability (top right) for magnetized ( ), anisotropic ( )

NSs constructed from DDME2 EOS. Representative field profile within a given star given at the bottom. 
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for the present purpose. To establish the results firmly,
other field profiles and model anisotropy should be
explored. Nevertheless, our findings suggest that mas-
sive NSs belonging to the mass gap should have inter-

nal fields as high as .
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