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ABSTRACT OF THE DISSERTATION 

 

Microbial Functional and Genetic Variation with Climate Change 

by 

Bahareh Sorouri 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2023 

Professor Steven D. Allison, Chair 

 

Microbial communities are integral for the survival of organisms and ecosystems. 

Anthropogenic influences like pollution and climate change drastically impact their environment, 

and microbial responses to these phenomena are uncertain. My dissertation investigates microbial 

functional and genetic variation with climate change. I aimed to address the following objectives, 

1) determine how microbial community extracellular enzyme activity varied during a reciprocal 

transplant that simulated climate change; 2) assess the evolutionary history, phylogeny, and habitat 

preference in a comparative genomic analysis of publicly available Sphingomonas genomes found 

worldwide; 3) uncover how Sphingomonas clade and functional distribution vary under simulated 

climate change. To address these objectives, I used computational, statistical, and bioinformatic 

techniques to analyze proteomic, genomic, and metagenomic data. 

In my first chapter, I investigated the variation in extracellular enzyme activity and litter 

decomposition of microbial communities from a Southern California climate gradient after an 18-

month reciprocal transplant. Communities were from five sites that varied inversely with 

temperature and precipitation (desert, grassland, mountains, etc.), and the reciprocal transplant 

simulated future climate change conditions. During the reciprocal transplantation, microbial 
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communities from each site were inoculated onto sterile grassland leaf litter, placed in bags that 

allowed for the transfer of nutrients, and distributed back into each site. Enzyme activity suggested 

microbial communities were not specialized to their native environment. Additionally, there was 

rarely a reduction in enzyme function after microbial communities were transplanted into new 

climate conditions. I found significant differences in decomposition rates; however, they were not 

related to enzyme activities. These results suggest that direct, physiological impacts of climate are 

potentially important for enzyme-mediated decomposition, but climate specialization will not 

constrain the microbial response to climate change in our system. 

In my second chapter, I used the bacterium Sphingomonas to explore why certain bacteria 

are present in specific habitats, by analyzing how microbial traits vary with evolutionary history. 

The Sphingomonas genus inhabits a wide variety of environments and hosts, making it ideal for 

examining the distribution of habitat preference traits. Furthermore, with appropriate management 

and manipulation, Sphingomonas can rehabilitate polluted locations. In this project, I downloaded 

publicly available Sphingomonas genomes, quality filtered them, curated them into eight habitat 

categories based on their isolation source (plants, animals, contaminated sites, etc.), analyzed their 

gene content, and assessed their evolutionary history. I found that closely related Sphingomonas 

genomes shared similar accessory genes, and genomes from similar habitats clustered together in 

phylogenetic clades. Moreover, the frequencies of functional genes significantly varied by habitat, 

suggesting habitat preference. Understanding environmental and host influence on Sphingomonas 

evolutionary history at a genomic level will aid future functional predictions and restoration of 

polluted habitats.  

In my third chapter, I expand on my previous findings to inspect the clade and functional 

distribution of Sphingomonas along the Southern California climate gradient, before and after the 
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reciprocal transplantation. Using metagenomic data, I trimmed and quality filtered sequences, 

extracted Sphingomonas core genes, determined Sphingomonas clade composition, and inferred 

the distribution of gene-based functional traits. I confirmed that prior to transplantation, sites have 

distinct Sphingomonas clade compositions. The clade and functional composition shift after the 

18-month transplant, and site conditions had the most significant effect on both clade and 

functional composition. In combination with previous research from the Southern California 

climate gradient, these findings support consistent bacterial response to climate change at multiple 

phylogenetic levels. In summary, this work will help assess and predict microbial response to 

climate change.  
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INTRODUCTION 

 
Anthropogenic activities and pollution are changing the climate and causing major 

environmental perturbations for the world and drastic consequences for its inhabitants 

(Barnosky, 2011; Johnson, 2017; Ripple, 2017; IPCC, 2022). More research is needed to 

understand the consequences for microbial inhabitants that are important for ecosystems and for 

the survival of organisms (Cavicchioli et al., 2019; Tiedje et al., 2022). Specifically, microbial 

communities are crucial for driving global nutrient cycling – such as carbon, nitrogen, and 

phosphorus – that maintain ecosystem function and support organisms (Falkowski et al., 2008). 

It is instrumental to understand how microbes will respond in the face of their changing habitats, 

because they have the potential to mitigate the effects of climate change (Cavicchioli et al., 

2019). 

To predict microbial responses to climate change, it is important to understand why some 

microbes are found in one location rather another, and how their biodiversity shifts over time 

(Brown et al., 1998; Martiny et al., 2006). The Baas-Becking hypothesis proposes that microbes 

are found “everywhere” and that the “environment selects” for those that can thrive, and 

ultimately contributes to variation in microbial diversity (Baas-Becking, 1934). There are 

different processes – such as environmental filtering and selective pressures from resource 

availability, climate, and competition – that drive microbial community assembly and select for 

advantageous traits within populations (Ackerly, 2003; Martiny et al., 2006; Kraft et al., 2015; 

Friedman et al., 2017). Many microbes possess climate response traits that are deeply conserved 

within their phylogeny and evolutionary history (Isobe et al., 2020). Some of these traits are 

conserved at more shallow levels, (Martiny et al., 2013; Chase et al., 2018; Isobe et al., 2019), 

even within strains (Chase et al., 2021). All these traits may play a role in microbial responses to 
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climate change at the community level (Glassman et al., 2018). Investigating microbial genetics 

can inform the functional traits driving physiological responses to environmental perturbations 

and improve predictions of microbial response to climate change. 

 My dissertation seeks to assess microbial genetic and functional responses to climate 

change. Throughout the dissertation, I analyzed data from a field study that simulated climate 

change by reciprocally transplanting microbial communities from a Southern California climate 

gradient. The climate gradient contained ecosystems that varied inversely with temperature and 

precipitation. In my first chapter, I investigated the variations in extracellular enzyme activity 

and litter decomposition of microbial communities from the Southern California climate gradient 

reciprocal transplant. I found that the physiological impacts of climate are potentially important 

for enzyme-mediated decomposition; however, climate specialization will not constrain 

microbial community response to shifting environments. In my second chapter, I explored the 

global distribution of the Sphingomonas bacterial clade to determine whether there is a 

relationship between habitat and phylogeny, and whether habitat preference is reflected in key 

genome-based traits. Using publicly available data, I found that Sphingomonas gene content and 

phylogeny reflects habitat preference. Finally in my third chapter, I returned to the Southern 

California climate gradient to inquire how Sphingomonas clade and functional composition shift 

after experiencing environmental perturbations from the reciprocal transplant. I found that 

Sphingomonas clade and functional composition change to reflect site conditions, and this 

change is consistent with previous bacterial research at other phylogenetic levels from the 

climate gradient. Altogether, my dissertation improves the understanding of how microbes 

respond to shifting environments. 
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CHAPTER 1 

Microbial extracellular enzyme activity with simulated climate change 

ABSTRACT 

 It is critical to understand the consequences of environmental change for the microbial 

regulation of carbon and nutrient cycling. Specifically, understanding microbial community 

traits, such as extracellular enzyme activity, can help inform nutrient cycling models and address 

knowledge gaps. We analyzed data on extracellular enzyme activities and litter decomposition 

from an 18-month experiment in which microbial communities were reciprocally transplanted 

along a climate gradient in Southern California. Communities were from desert, scrubland, 

grassland, pine–oak, and subalpine ecosystems. We aimed to test how enzyme activities 

responded to climate change following transplantation and how those responses related to 

decomposition rates. We hypothesized that microbial communities would specialize on their 

native climate conditions, resulting in higher enzyme activities when transplanted back into their 

native climate. We investigated the relationship between extracellular enzyme Vmax values, 

substrate mass loss, and microbial biomass as well as variation in these variables across the 

climate gradient. We found little evidence for climate specialization, and there was rarely a 

reduction in enzyme functioning after microbial communities were transplanted into new climate 

conditions. Moreover, observed differences in decomposition were not related to changes in 

extracellular enzyme potential, although there were significant differences in enzyme activities 

and decomposition rates across sites. These results suggest that direct, physiological impacts of 

climate are likely to be important for enzyme-mediated decomposition, but climate specialization 

will not constrain the microbial response to climate change in our system. 

 



 

4 

 

INTRODUCTION 

Understanding the implications of global warming for decomposition and subsequently, 

carbon and nutrient cycling is an urgent need (Cavicchioli et al., 2019). Microbial decomposition 

depends on climate variables, such as temperature and precipitation, that directly affect the 

abiotic environment (Allison 2006; Chapin et al. 2012; Swift et al. 1979). Climate may also have 

indirect effects on decomposition by altering substrate inputs (Hobbie, 1992). Therefore, 

investigating the impacts of climate change on microbial decomposition is critical for predicting 

carbon and nutrient cycling.  

There is increasing evidence that decomposition responses to climate change may depend 

not only on abiotic conditions, but also on microbial community composition. For example, 

some studies have found that plant litter from a given site is decomposed more rapidly by 

microbial communities from that same site (Gholz et al., 2000; Ayres et al., 2009). Still, the 

mechanisms underlying such community effects remain unclear, making it difficult to predict 

how soil carbon and nutrient cycling will respond to climate change across ecosystems. 

One of the key community-level traits relevant to decomposition is the production of 

extracellular enzymes. Microbes produce extracellular enzymes to break down complex 

polymers into soluble carbon and nutrients that can be taken up and used to fuel microbial 

metabolism (Burns et al. 2013; Sinsabaugh and Moorhead 1994). The costs of enzyme 

production may result in specialization to produce only enzymes that degrade the specific litter 

compounds in the local environment (Allison et al. 2010). In a new environment with different 

litter chemistry, those specialized enzymes might be less effective, leading to a “home field 

advantage” for the native microbial community (Gholz et al., 2000; Ayres et al., 2009).  
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Although there is evidence that microbial communities and their extracellular enzymes 

specialize on different litter substrates, it is less clear if communities and enzymes also specialize 

on different climate conditions. In previous studies with reciprocal litter transplants, both climate 

and litter substrates varied across sites, making it difficult to disentangle these potential drivers 

of community specialization (Ayres et al. 2009; Gholz et al. 2000). Like substrate, climate 

variables could select for production of extracellular enzymes with site-specific properties that 

affect decomposition activity. For example, extracellular enzyme temperature or moisture 

sensitivity might be tuned to the local climate in a way that alters enzyme kinetic properties 

(Alster et al., 2020). 

Testing for climate specialization requires holding litter substrate constant and measuring 

the performance of microbial communities across different climate conditions. Recently, 

Glassman et al. (2018) conducted such a test using a reciprocal transplant design along a climate 

gradient in Southern California with desert, scrubland, grassland, and forest ecosystems 

(Glassman et al., 2018). Although there was no evidence for climate specialization with overall 

decomposition (i.e. home field advantage based on climate), there were microbial community 

effects on decomposition rates (Glassman et al., 2018). The microbial community from the 

grassland ecosystem decomposed a common litter substrate fastest in the scrubland ecosystem 

and vice versa. 

Building on the Glassman et al. (2018) study of decomposition rates and microbial 

composition, our goal was to test whether microbial enzyme activities showed climate 

specialization. Using Glassman et al.’s (2018) reciprocal transplant design, we simulated climate 

change effects on microbial communities while holding litter substrate constant. We tested the 

climate specialization hypothesis, which predicts that extracellular enzyme activities of native 
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microbial communities should be greater than those of non-native microbial communities 

(Figure 1.1). Although Glassman et al. (2018) found no evidence for climate specialization with 

overall litter decomposition, we tested whether the decay rates of specific litter chemical 

compounds were specialized to climate and related to specific extracellular enzyme classes or 

microbial biomass. 

 

METHODS 

Climate Gradient 

Our climate gradient includes five sites in desert, scrubland, grassland, pine-oak, and 

subalpine ecosystems (Figure 1.2; Table S1.1; Baker and Allison 2017). Temperature and 

precipitation vary inversely along the gradient: the desert site shows the hottest (22.8 ± 0.8°C) 

and driest climate (100 ± 24 mm mean annual precipitation) and the subalpine is the coldest site 

(10.3 ± 1.8 °C) with the most precipitation (~265 mm; Table S1.1). 

 

Reciprocal Transplant Design 

Microbial communities from each site along the climate gradient were transplanted into 

all sites to simulate climate change (Figure 1.2). A microbial community inoculum was created 

by collecting four samples from each of the sites on September 11, 2015, and homogenizing the 

samples within each site. Fifty mg of the site inoculum was added to 5 g irradiated, homogenized 

grassland leaf litter in sterilized litter bags. To keep the experiment manageable, we only used 

senesced grass as the litter type because grasses were present at all climate gradient sites. The 

grassland leaf litter was homogenized with coffee grinders. The litter bags were nylon membrane 
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bags with 0.22 µm pores (cat. no. SPEC17970; Tisch Scientific Cleaves, Ohio, USA) that 

allowed nutrients and water to travel freely though the bag. However, the bags did not allow for 

the movement of microbes and leaf litter. 

On October 19, 2015, 300 bags were deployed along the gradient (4 replicates x 5 sites x 

5 microbial community inocula x 3 timepoints = 300 bags). This design and level of replication 

had the statistical power to detect significant site by inoculum interactions that explained as little 

as 16% of the variation in mass loss within a timepoint (Glassman et al., 2018). The bags were 

placed in four 1 m x 1 m plots in each ecosystem and destructively sampled every 6 months over 

an 18-month period. At each of the three timepoints, 100 bags were collected (Timepoint 1: 

April 5, 2016; Timepoint 2: October 24, 2016; Timepoint 3: April 18, 2017). For information on 

microbial community taxonomic composition and shifts in litter chemistry, see Glassman et al. 

(2018). 

 

Substrate Mass Loss  

We re-analyzed litter chemistry data collected previously by calculating the ash-free mass 

and concentrations of cellulose, hemicellulose, lignin, crude protein, and starch (Baker and 

Allison, 2017; Glassman et al., 2018). For individual substrate mass loss, we subtracted the 

Timepoint 2 substrate mass from the initial mass of each substrate. Litter chemistry data were 

only collected for the initial litter and Timepoint 2. Statistical tests were conducted on the mass 

change, not the percent loss. Final substrate mass values are available on Github: 

https://github.com/stevenallison/UCIClimateExperiment/  

Microbial Biomass  

https://github.com/stevenallison/UCIClimateExperiment/
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Fungal hyphal lengths were measured with microscopy, and bacterial cell counts were 

measured using flow cytometry (Glassman et al., 2018). Subsequently, both hyphal lengths and 

bacterial counts were converted to carbon content per gram litter (g C/g) using previously 

established methods in the literature described by Baker et al. (2017) and Alster et al. (2013). 

Bacterial cells were considered to have C density of 2.2 x 10-13 g µm-3 and treated as spherical 

with a radius of 0.6 µm (Bratbak, 1985). We assumed fungal hyphae had a diameter of 5.2 µm, 

40% C in dry mass, 33% dry mass, and a density of 1.1 g cm-3 of hyphae (Paul and Clark, 1996). 

Microbial biomass is reported as the sum of both bacterial and fungal biomass. Fungal hyphal 

lengths were not measured at Timepoint 3, so fungal and total microbial biomass are only 

reported for Timepoints 1 and 2.  Fungal and bacterial abundance data are also available on 

Github: https://github.com/stevenallison/UCIClimateExperiment/ 

 

Extracellular Enzyme Assays 

Fluorometric and oxidative assays measuring the extracellular enzyme activities of α-

glucosidase (AG), β-glucosidase (BG), β-xylosidase (BX), cellobiohydrolase (CBH), leucine 

aminopeptidase (LAP), and polyphenol oxidase (PPO) were conducted using previously 

published methods (German et al., 2011; Baker and Allison, 2017). Litter samples (0.4 g) stored 

at -80°C were thawed and combined with 150 mL maleate buffer (2 5mM) at pH 6.0 to create a 

homogenate. Next 125 µL of litter homogenate was combined with 125 µL of fluorometric 

substrate solution in microplate wells. Standards and substrate solution were made in maleate 

buffer. The assays were incubated at 4, 16, 22, 28, or 34°C for 4 hours. Enzymes were also 

assayed at a range of 8 substrate concentrations at each of the temperatures (Table 1.1). A plate 

https://github.com/stevenallison/UCIClimateExperiment/
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reader was then used to measure substrate fluorescence or absorbance values. We calculated 

activity as µmol hr-1 g-1 dry litter based on standard calculations (German et al., 2011).  

Activities from the assays were fit to the Michaelis-Menten model using the “nls” R 

package to obtain maximum reaction velocities, Vmax (German et al., 2011; Baty et al., 2015). 

The Michaelis-Menten model describes enzyme reaction velocity as a function of substrate 

concentration. We fit natural log-transformed Vmax values at all the temperatures to a linear 

model and extracted the natural log Vmax at 22°C from the model for further analysis.   

 

 Statistical Analysis 

All statistical analyses were completed with R version 4.1.0 (R Core Team, 2021). First, 

we performed multivariate analysis of variance (MANOVA) on natural log-transformed potential 

extracellular enzyme Vmax to test the fixed effects of site, inoculum, and time on overall enzyme 

activities. Analysis of variance (ANOVA) was then applied to the individual extracellular 

enzyme Vmax values using the “car” package in R (Fox and Weisberg, 2019) to test for site, 

inoculum, and time effects. Also using the R “car” package, Type III tests were applied to 

enzymes that showed a significant three-way interaction, and Type II tests were applied to those 

that did not (Fox and Weisberg, 2019). This sequential approach was used to avoid type-1 errors 

in hypothesis testing. Post-hoc ANOVAs on individual enzymes were only run to determine the 

enzymes driving significant results from the MANOVA. 

A significant interaction effect (p < 0.05) between site and inoculum may indicate 

support for climate specialization. However, climate specialization also requires that the native 

community Vmax is significantly higher than the non-native communities’ Vmax values. Most 
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often, the extracellular enzymes did not have a three-way interaction effect, so we averaged the 

extracellular enzyme potential activity across timepoints for statistical analyses (Figures S1.1-

S1.3). LAP was the only enzyme with a significant three-way interaction effect, so we also 

analyzed LAP activity without averaging over time (Figure S1.4). We applied pairwise 

comparisons, specifically Tukey post hoc analyses, to test for significant differences among 

communities within a site. We performed the Tukey post hoc analyses with “multcomp” 

package, using the “glht” (general linear hypotheses) and “cld” (compact letter display) functions 

(Hothorn et al. 2008). Again, to avoid type-1 errors, post-hoc Tukey comparisons were only run 

if the enzyme ANOVA showed a significant site by inoculum interaction. 

To further test for mechanistic relationships between extracellular enzymes and substrate 

mass changes, we performed Pearson's product-moment correlation tests between natural log-

transformed extracellular enzyme Vmax values and their associated substrate mass losses. 

Similarly, we applied correlation tests to examine the relationship between natural log-

transformed microbial biomass and substrate mass loss. We used the base R “stats” package with 

the “cor.test” function for the correlation tests (R Core Team, 2021). 

 

RESULTS 

Potential Extracellular Enzyme Activities 

MANOVA results indicated that site, inoculum, and time had significant (p < 0.001) 

effects on the collective, natural log-transformed extracellular enzyme Vmax values (Table 1.2). 

Furthermore, there were significant (p <0.05) interactions between the fixed factors. ANOVA 

results indicated that inoculum, site, and timepoint each had significant effects on activity for all 
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enzymes except BX, which did not show a significant timepoint effect (Table 1.2). There was a 

significant site by timepoint interaction for all extracellular enzymes, except those that act on 

cellulose, BG and CBH (Table 1.2). All enzymes, except PPO, showed a significant inoculum by 

site interaction (Table 1.2). Further Tukey post-hoc tests only supported climate specialization in 

the scrubland site for BX and in the subalpine site for BG, LAP, and PPO (Figures S1.1-S1.3).  

LAP was the only EE with a significant timepoint x inoculum x site interaction effect (p < 0.05; 

Table 1.2). For LAP, potential activities at all sites and timepoints revealed only two potential 

instances of climate specialization: the subalpine site at Timepoint 1 and the desert site at 

Timepoint 3 (Figure S1.4). 

 

Extracellular Enzyme Activities and Mass Loss 

 Compared to other substrates, cellulose had the highest mass loss, similar to the total 

mass loss patterns (Figure 1.3a; Glassman et al., 2018). At Timepoint 2, there were no significant 

differences in BG Vmax values across the transplanted microbial communities within each site 

that would explain differences in cellulose decomposition (Figure 1.3b).  Furthermore, at 

Timepoints 1 and 2, the enzymes and their respective substrate mass changes did not exhibit any 

significant (p < 0.05) correlations (Table S1.2). Only AG Vmax at Timepoint 1 showed a positive 

correlation with starch decomposition. 

 

Microbial Biomass and Substrate Mass Loss 

 Overall, the strongest positive correlation with individual substrate mass loss was 

observed with bacterial biomass (Table 1.3). Most often, the strongest positive correlations 
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occurred between the bacterial biomass at Timepoint 1 and substrate mass loss at Timepoint 2 

(Table 1.3). Protein mass loss had the strongest positive correlation with bacterial biomass at 

Timepoint 2. In contrast, lignin mass loss at Timepoint 2 had a negative correlation with 

bacterial biomass at Timepoint 1 (Table 1.3). A negative correlation means there is a higher 

bacterial biomass with lower lignin mass loss, suggesting that the microbes present in the early 

stages of decay, mainly bacteria, are not lignin-degraders. Later, at Timepoint 2, there was a 

positive correlation with the bacterial biomass and lignin mass loss. The total microbial biomass 

showed mass loss relationships similar to bacterial biomass, but not fungal biomass (Table 1.3). 

Even when the fungal biomass exhibited a significant correlation — as seen with hemicellulose, 

lignin, and starch at Timepoint 2 — a similar correlation was not observed in the total microbial 

biomass correlations (Table 1.3).  

 

DISCUSSION 

Understanding the microbial community functional response to climate change is 

especially important for predicting future carbon and nutrient cycling. We hypothesized that 

microbial communities specialize on climate conditions, meaning that their extracellular enzyme 

activities should be greatest in their native climate. Instead, we found minimal evidence for 

climate specialization and no relationship between enzymes and substrate mass loss (Figure 1.3). 

Surprisingly, non-native communities often met or exceeded the Vmax values of native 

communities within a site. To the best our knowledge, this result is the first field test of climate 

specialization with microbial extracellular enzymes. A previous study along our climate gradient 

found that access to native microbes did not increase litter decomposition or enzyme Vmax, but 

that study’s design could not be used to test for climate specialization (Baker et al., 2018). 
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There are several potential explanations for a lack of climate specialization in our study. 

Rather than being climate specialists, microbes and their enzymes may have broad climate 

tolerances given the high climatic variability within sites along our gradient. It is also possible 

that there is climate specialization of some microbes and traits, but not enzyme activities (Chase 

et al., 2021). Notably, other studies have also found a lack of support for microbial community 

specialization on litter chemistry. John et al. (2011) rejected the home field advantage hypothesis 

in a grassland-forest reciprocal transplant. Furthermore, home field advantage was not observed 

for leaf litter decomposition in the Atlantic rainforests of Brazil (Gießelmann et al., 2011). 

For all enzymes, there was statistical evidence for activity differences across inoculated 

communities; in most cases, there were also significant inoculum x site interactions (Table 1.2). 

A few of these interactions were consistent with climate specialization, such as slightly higher 

BG activity in the subalpine community in the subalpine site. More frequently, though, non-

native communities matched or exceeded the Vmax values of native communities—in the 

scrubland site for example, the desert community showed the highest BG activity (Figure S1.2). 

It is possible that these differences were driven by stochastic variation in community assembly or 

priority effects as the inoculated communities established on the grassland litter (Zhou and Ning, 

2017; Albright et al., 2019). Seeing as we only measured decomposition of grassland litter, 

different patterns might emerge on different litter types. A forest litter type, for example, would 

have selected for a different set of communities that might have exhibited a different degree of 

climate specialization. Additional community transplants across climate gradients with other 

litter types would be needed to know for sure.  

 As with extracellular enzymes, we found no evidence for climate specialization in 

decomposition rates of specific chemical substrates. Furthermore, there was almost no 
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relationship between extracellular enzyme activity and decomposition, suggesting that other 

factors mediate variation in decomposition rates (Graham et al., 2016). For cellulose degradation, 

which involves a complex multi-enzyme system, it is possible that endoglucanases control the 

rate-limiting degradation step, whereas the CBH and BG enzymes we measured are active 

further downstream (Xie et al. 2007; Singh et al. 2016). Another possibility is that the abundance 

of specific microbial taxa controls decomposition rates. 

Overall, our microbial biomass results suggest that bacteria promote the decomposition of 

non-lignin litter compounds (Wohl et al. 2004). We found positive correlations between bacterial 

biomass at Timepoint 1 and cellulose, hemicellulose, and starch mass loss, whereas lignin 

showed a negative correlation under the same conditions (Table 1.3). Protein mass loss at 

Timepoint 2 correlated positively with bacterial biomass at the second timepoint. In general, 

there were not strong correlations between fungal biomass and substrate decomposition, although 

we did find significant positive relationships with hemicellulose and starch loss, and a negative 

relationship with lignin loss (Table 1.3). These results support Glassman et al.’s (2018) finding 

that for grassland litter types, bacterial communities seem to have a stronger effect than fungal 

communities. Furthermore, a more detailed analysis of microbial functional composition could 

help explain why some enzyme potentials and decomposition rates varied across communities. 

Taken together, our enzyme and decomposition results indicate that microbial 

communities vary in their enzymatic efficiency, defined as substrate mass loss per unit of 

extracellular enzyme activity (Alster et al. 2013). For instance, BG efficiency of cellulose 

degradation was lower for microbial communities in the desert site relative to other sites at 

Timepoint 2 (Figure 1.3). Interactions between microbial community members could explain 

variation in enzymatic efficiency and support enzymatic functioning outside the native climate. 
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Some microbes “cheat,” or benefit from extracellular enzymes without incurring the costs of 

enzyme production, which could limit enzyme efficiency, even in native communities (Allison 

2005). Differences in production strategies or spatial structure across communities may result in 

different in-situ decomposition rates despite similar lab-measured extracellular enzyme 

potentials (Burns 2013). Additionally, resource acquisition traits and life history strategies vary 

between microbial communities, which could affect their overall efficiency of substrate turnover 

(Malik et al., 2020). 

 

CONCLUSIONS 

In summary, we found little support for climate specialization of extracellular enzymes. 

Correspondingly, we did not find much evidence for microbial community specialization to 

climate, and even if it did occur, there was no associated reduction in enzyme functioning with 

climate change. Likewise, there was no evidence for climate specialization in litter substrate 

decomposition, and the differences in decomposition that Glassman et al. (2018) observed across 

microbial communities were not driven by changes in extracellular enzyme potential. There were 

significant differences in enzyme Vmax values and decomposition rates across sites, suggesting 

that direct, physiological impacts of climate change are likely to be more important than indirect 

effects from community compositional change. The microbial communities in our system appear 

to have a high degree of metabolic flexibility, meaning that climate specialization is not likely to 

constrain decomposition as climate changes.  
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FIGURES AND TABLES 

 

 

Figure 1.1. Hypothetical example of climate specialization in which the scrubland microbial 

community shows the highest extracellular enzyme activity in the scrubland site.  
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Figure 1.2. Climate gradient and experimental setup.  

Microbial communities were reciprocally transplanted across 5 sites: desert (D), scrubland (Sc), 

grassland (G), pine-oak (P), and subalpine (S). These sites vary inversely with temperature and 

precipitation Table S1.1). Litter was collected from each site and individually inoculated onto 

gamma-irradiated grassland leaf litter substrate. Nylon membrane bags containing the inoculum 

and the substrate were placed in cages and randomly distributed within sites. The bags remained 

in the field for 18 months and were destructively sampled every 6 months. 
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Figure 1.3. Extracellular enzyme activity and mass loss at Timepoint 2.  

A) Cellulose-specific mass loss at Timepoint 2. B) Log transformed Vmax of BG (β-glucosidase), a 

carbohydrate degrading extracellular enzyme, at Timepoint 2. Boxplots represent median values 

with the upper and lower quartiles. Whiskers cover the data range, excluding outlying data 

points. Within a site, inocula sharing the same Tukey letters above the boxplots are not 

significantly different from one another. Panels without Tukey letters did not show any 

significant differences. Extracellular enzyme activity did not reflect climate specialization since 

there were no significant differences in BG activity within sites. Additionally, BG activity did 

not have a significant correlation with cellulose mass loss (Table S1.2) and did not reflect 

substrate mass loss patterns. 
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Supplemental Figure 1.1. Boxplots of natural log transformed A) AG and B) BX Vmax values 

averaged across time. Letters above inoculum indicate Tukey Test pairwise comparisons. Values 

that share the same letter are not significantly different within a site.  

A) 

B) 

B
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Supplemental Figure 1.2. Boxplots of natural log transformed A) BG and B) CBH Vmax values 

averaged across time. Letters above inoculum indicate Tukey Test pairwise comparisons. Values 

that share the same letter are not significantly different.  

A) 

B) 

B
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Supplemental Figure 1.3. Boxplots of natural log transformed A) LAP and B) PPO Vmax 

values averaged across time. Letters above inoculum indicate Tukey Test pairwise comparisons. 

Values that share the same letter are not significantly different. 

A)

) 

B) 

B
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Supplemental Figure 1.4. Boxplots of natural log transformed LAP faceted at each timepoint 

and site. Columns are sites and rows are times. Letters above inoculum indicate Tukey Test 

pairwise comparisons. Values that share the same letter are not significantly different. 
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Table 1.1. Enzyme classes, the substrates they act upon, and the synthetic substrates used 

in this study.  

 

a The substrate concentration refers to the concentrations of synthetic substrate. There were eight 

concentrations: the maximum concentration and seven serial dilutions. 
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Table 1.2. MANOVA and ANOVAs p-values of natural log transformed microbial 

extracellular enzyme Vmax at 22°C. 

 

a Abbreviations: AG (α-glucosidase), BG (β-glucosidase), BX (β-xylosidase), CBH 

(Cellobiohydrolase), LAP (Leucine aminopeptidase), PPO (Polyphenol oxidase)  
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Table 1.3. Pearson correlations of substrate mass loss at Timepoint 2 and natural log 

transformed biomass.  

 

N.S. = not significant. 
a Substrate mass loss at only Timepoint 2. 

b Timepoint that the natural log transformed biomass was collected and tested against the 

substrate mass loss.  

c Bacterial indicates only bacterial biomass, fungal indicates only fungal biomass, and microbial 

indicates the sum of fungal and bacterial biomass.  

d Only statistically significant correlation coefficients (* p < 0.05; ** p <0.01; ***p < 0.001) are 

shown in bolded font. 
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Supplemental Table 1.1. Site description adapted from Baker and Allison 2017. 
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Supplemental Table 1.2. Table of Pearson’s product-moment correlation values of natural log 

transformed microbial EE activity and its associated substrate mass loss at Timepoints 1 and 2. 

Significant values (p < 0.05) are bolded.  

 

EE Timepoint 1 Timepoint 2 

AG 0.410 -0.00257 

BG 0.107 -0.0354 

BX 0.242 -0.245 

CBH 0.126 -0.0140 

LAP -0.153 0.0616 

PPO -0.250 0.305 
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CHAPTER 2 

Variation in Sphingomonas traits across habitats and phylogenetic clades 

ABSTRACT 

Whether microbes show habitat preferences is a fundamental question in microbial ecology. If 

different microbial lineages have distinct traits, those lineages may occur more frequently in 

habitats where their traits are advantageous. Sphingomonas is an ideal bacterial clade in which to 

investigate how habitat preference relates to traits because these bacteria inhabit diverse 

environments and hosts. Here we downloaded 440 publicly available Sphingomonas genomes, 

assigned them to habitats based on isolation source, and examined their phylogenetic 

relationships. We sought to address whether: 1) there is a relationship between Sphingomonas 

habitat and phylogeny, and 2) whether there is a phylogenetic correlation between key, genome-

based traits and habitat preference. We hypothesized that Sphingomonas strains from similar 

habitats would cluster together in phylogenetic clades, and key traits that improve fitness in 

specific environments should correlate with habitat. Genome-based traits were categorized into 

the Y-A-S trait-based framework for high growth yield, resource acquisition, and stress 

tolerance. We selected 252 high quality genomes and constructed a phylogenetic tree with 12 

clades based on an alignment of 404 core genes. Sphingomonas strains from the same habitat 

clustered together within the same clades, and strains within clades shared similar clusters of 

accessory genes. Additionally, key genome-based trait frequencies varied across habitats. We 

conclude that Sphingomonas gene content reflects habitat preference. This knowledge of how 

environment and host relate to phylogeny may also help with future functional predictions about 

Sphingomonas and facilitate applications in bioremediation. 
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INTRODUCTION 

Bacteria occur in a wide diversity of habitats, but the factors that control habitat 

preference are unclear (Fierer and Jackson, 2006; Martiny et al., 2006; Merino et al., 2019). 

Given that habitats vary in their abiotic and biotic conditions, different habitats may select for 

different organismal traits (Noble and Slatyer, 1977). These traits can be phylogenetically 

conserved (Martiny et al., 2013; Dolan et al., 2017; Isobe et al., 2019, 2020) or horizontally 

transferred (Ochman et al., 2000), but likely also represent trade-offs for life-history strategies. 

For environmental microbes, one way to organize these trade-offs is the Y-A-S framework, 

which posits that bacterial life-history strategies are driven by tradeoffs in resource allocation to 

growth Yield, resource Acquisition and Stress tolerance responses (Malik et al., 2020). 

Investigating functional traits related to the Y-A-S strategies has the potential to yield insights 

into factors that affect the distributions of microbial taxa.  

Sphingomonas is an excellent bacterial genus to investigate the distribution of habitat 

preference traits because it is found in a wide range of habitats. Within the Proteobacteria 

phylum, the Sphingomonas genus are Gram-negative, strictly aerobic, chemoheterotrophic, 

yellow-pigmented bacteria that possess glycosphingolipids in their cell envelope (Balkwill et al., 

2006; Yabuuchi et al., 1990). Sphingomonas species have been isolated from soils, plant roots, 

water distribution systems, human samples, and hospital machines (White et al., 1996; Leys et 

al., 2004). Some species cause animal disease, while others are antagonistic toward 

phytopathogenic fungi that infect commercially important plants (White et al., 1996). 

Additionally, Sphingomonas species have also been used on the International Space Station to 

aid the extraction of rare earth elements (Cockell et al., 2020). On planet Earth, Sphingomonas 

serves as biocatalyst for bioremediation and can be found in soils that are contaminated with 
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pollutants (Leys et al., 2004). Understanding the distribution of Sphingomonas is especially 

important because with appropriate management strategies, this lineage can be a tool to clean up 

polluted environments (Onder Erguven & Demirci, 2019). Furthermore, Sphingomonas is able to 

degrade cellulose and hemicellulose and is therefore involved in organic carbon decomposition 

(Koskinen et al., 2000). Hence, the distribution and functional abilities of Sphingomonas make it 

an ideal genus for investigating phylogenetic histories of habitat preference traits.  

Despite the potential importance and widespread distribution of Sphingomonas species, 

there has not yet been a comprehensive, in-depth study of the comparative genomics and 

phylogenetics of the genus from a trait-based perspective. Most studies thus far look at the 

distribution and phylogeny of select genomes from 16S rRNA perspective, and often do not 

consider genome-based traits (Leung et al., 1999; Leys et al., 2004; Asaf et al., 2020). Moreover, 

the Sphingomonas genus classification is still evolving; Sphingomonas has five sub-genus 

classifications, and although additional strains continue to be identified, it is difficult to place 

them in specific clades (Takeuchi et al., 2001; Jogler et al., 2013; Asaf et al., 2020). 

Additionally, some Sphingomonas species have been shown to improve plant growth during 

stressful drought and salinity conditions (Halo et al., 2015; Asaf et al., 2017). Currently, there are 

knowledge gaps in the literature with respect to Sphingomonas phylogenetics, taxonomy, and 

genome mapping in the context of stress tolerance and bioremediation (Asaf et al., 2020). 

Therefore, it is useful to explore the phylogenomics of Sphingomonas from a whole-genome and 

trait-based perspective. Since Sphingomonas has important bioremediation qualities, 

understanding the genetics and distributions of these traits can provide preliminary knowledge 

towards harnessing Sphingomonas to rehabilitate natural habitats (Schmidt et al., 1992). 



 

33 

 

The knowledge of how environment and host influences genetics may also help with 

future functional predictions. In this study, we downloaded over 400 available Sphingomonas 

sequences from public databases, assigned them to a habitat based on where they were isolated 

from, and assessed their phylogenetic relationships. With this information, we sought to address 

two questions. First, are there significant relationships between habitat and phylogeny? Second, 

do key, genome-based traits demonstrate phylogenetic clustering and correlate with habitat 

preference? 

We used the genome-based traits as proxies for the Y-A-S life history categories: growth 

yield, resource acquisition, and stress tolerance (Figure 2.1; Malik et al., 2020). For growth yield, 

we investigated the distribution of amino acid related enzymes, lipid biosynthesis proteins, and 

lipopolysaccharide biosynthesis proteins. Carbohydrate-active enzymes (CAZymes) reflected 

resource acquisition strategies. Finally, for stress tolerance traits we explored chaperones, folding 

catalysts, prokaryotic defense system genes, as well as peptidoglycan biosynthesis and 

degradation proteins. Collectively, these traits underlie habitat preference. We hypothesize that 

Sphingomonas strains from similar habitats will cluster together in phylogenetic clades. 

Furthermore, key traits that improve fitness in specific environments should correlate with the 

isolation habitat. For example, CAZyme genes should be most prevalent in genomes of 

Sphingomonas associated with plants, and prokaryotic defense system genes would be the 

highest in Sphingomonas genomes found at locations with a contaminant. Ultimately, these 

findings will improve the understanding of Sphingomonas distribution across habitats, as well as 

illuminate the link between habitat preference and life history strategies. 
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METHODS 

Library collection and curation 

We downloaded 440 publicly available Sphingomonas genomes from the PATRIC database 

on July 31, 2020 (Wattam et al., 2014) and used the metadata for each strait to identify the 

isolation source (Table 2.1). The sequences were categorized by their isolation source and 

assigned to one of these eight groups based on the strain description: animal (n = 10), clinical (n 

= 43), contaminated site (n = 13), industrial (n = 13), environmental (n = 54), plant (n = 68), 

water (n = 34), and other (n = 17; Table 2.1). More specifically, strains in the animal category 

were isolated from living, non-human sources. Strains in the clinical category came from 

hospital settings and included bodily samples from human beings, like blood. Any strain with the 

word “contaminated” in the description was placed in the contaminated site category. The 

environment category consisted of strains from abiotic, outdoor sources that were not water-

based, like soils. The industrial category included samples from bioreactors, mines, and 

wastewater facilities (which contained the key phrase “activated sludge” in the description). 

Strains isolated from the plant kingdom were placed in the plant category; these strains were 

isolated from different parts of plants such as the seed, root, stem, and leaf. The water category 

consisted of strains isolated from a water source and sediments that did not include 

“contaminated” in its description. Finally, strains that could not be assigned to one of the 

previous 7 distinct groups were placed in the other category, such as samples from lichens and 

dust (Table 2.1). 

Genomes with unspecified isolation sources were removed from our analyses. Next, we 

checked the completeness of the genomes against the Sphingomonadales order using the BUSCO 

(Benchmarking Universal Single Copy Orthologs) v4.1.4 program (Seppey et al.,  2019). 
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Genomes with a BUSCO completeness score of less than 95% were filtered out. We used the 

online QUAST (Quality Assessment Tool for Genome Assemblies) server v5.0.2 to investigate 

the quality of the remaining genomes (Gurevich et al., 2013). From the initial genome library, 

254 high quality Sphingomonas genome sequences remained for further analysis. These genomes 

consisted of 23 completed genomes and 231 fragmented genomes. All genomes were annotated 

with Prokka v1.14.6, and the core genes and accessory genes were identified with Roary v3.13.0 

(Page et al., 2015; Seemann, 2014). For comparison to the larger subset that included fragmented 

genomes, we also used Prokka and Roary to quantify the pangenome for just the 23 completed 

genomes (Seemann, 2014; Page et al., 2015). 

 

Outgroup Optimization 

Zymomonas, Rhizobium, and Rhodospirillum are three closely related genera to 

Sphingomonas (Leys et al., 2004). To select the best outgroup or combinations of outgroups, we 

used Roary core gene counts. Specifically, we compared the core genes of the Sphingomonas-

only ingroup to the core genes of the ingroup with various combinations of outgroups. We also 

included E. coli as a distantly related outgroup for further confirmation (Zhao et al., 2017). We 

selected Rhodospirillum centenum SW (GenBank Accession: CP000613) as an outgroup because 

it yielded a core gene count that was closest to the Sphingomonas-only ingroup. Furthermore, 

previous phylogenetic analysis (Leys et al., 2004)  confirmed that Rhodospirillum is not part of 

the ingroup. 

 

Reference Tree Visualization 
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We made a phylogenetic tree with core genes present in Sphingomonas genomes and the 

Rhodospirillum outgroup using methods from Rodriguez and Martiny (2020). In short, we ran 

Roary again, this time with a 50% blastp sequence identity for the Sphingomonas ingroup and 

Rhodospirillum outgroup. We identified 401 core genes and generated a bootstrapped Maximum 

Likelihood tree of the alignment with RAxML v8.2.12 with the PROTGAMMABLOSUM62 

substitution model and 100 rapid Bootstrap searches (Stamatakis, 2014). Two of the 254 

Sphingomonas sequences were removed from the analyses since RAxML deemed them identical. 

Therefore, we removed the duplicate sequences and re-ran Roary with the 252 Sphingomonas 

genomes to generate an alignment of 404 core genes. We used the core gene alignment to 

construct a phylogenetic tree with RAxML and subsequently visualized the tree with the iTOL 

v6.5 interactive tool (Figure 2.3; Letunic and Bork, 2019).  

 

Clade Designation 

We manually designated phylogenetic clades based on their divergence from the common 

ancestor. We marked the first clade by starting from the most distant, large monophyletic group. 

Subsequently, we moved along the tree until we came across another large, monophyletic group 

that was interpreted as another clade. Clades were defined in this manner until we identified a 

total of 12. Two strains that resembled an outgroup within two separate monophyletic clades 

were not included as part of the clade. We confirmed the clades and genome clusters by 

identifying pairwise average amino acid and nucleotide identities with the Enveomics tool 

(Rodriguez-R and Konstantinidis, 2016). Additionally, clades possessed a bootstrap identity of at 

least 86. 
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Genome-Based Traits 

We quantified the abundances of genome-based traits involved in high growth yield, resource 

acquisition, and stress tolerance strategies. To identify the traits, we used the CAZy (Cantarel et 

al., 2009) and KEGG databases (Kanehisa and Goto, 2000). For CAZymes we looked at 

glycoside hydrolase and carbohydrate binding module abundances. Specifically we identified 

cellulase and glycoside hydrolase genes from Prodigal protein annotations using dbCAN2, a 

metaserver based on the CAZy database (Hyatt et al., 2010; Zhang et al., 2018). In our analysis, 

we only selected genes that were found with all three tools available on dbCAN2: HMMER, 

DIAMOND, and Hotpep. Additionally, we used the GhostKOALA v2.2 automatic annotation 

server to annotate the remaining genes based on KEGG Orthology (Kanehisa et al., 2016). We 

selected these genome-based traits for further analyses: lipopolysaccharide biosynthesis proteins, 

lipid biosynthesis proteins, amino acid related enzymes, prokaryotic defense system, 

peptidoglycan biosynthesis and degradation proteins, and finally chaperones and folding 

catalysts. These genes were grouped into the Y-A-S microbial life history trait-based framework 

developed by Malik et al., (2020) based on their role in high growth yield, resource acquisition, 

and stress tolerance strategies. 

 

Statistical Analyses 

After quantifying gene abundances, we natural log transformed the gene counts of the 

genome-based traits. Subsequently, we confirmed the normality of residuals using histograms 

and the Shapiro-Wilk tests, then ran Kruskal-Wallis rank sum tests to identify differences across 

habitats. We performed Kruskal-Wallis tests since not all the functional gene data were normally 
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distributed. Additionally, we conducted phylogenetic least squares (PGLS) statistical analyses to 

test whether there was an association between the habitat and the genome-based traits, 

independent of phylogenetic history (Mundry, 2014). We used PGLS statistics to also confirm if 

significant Kruskal-Wallis results were influenced by phylogenetic relatedness. 

We used R v4.1.0 to run all the statistical analyses, and specially incorporated the 

“nlme”, “geiger”, “phytools”, and “ape” packages (Revell, 2012; Pennell et al., 2014; Paradis 

and Schliep, 2019; Pinheiro et al., 2021)  

Additionally, we ran ANOSIM tests to determine whether phylogeny was related to 

habitat preference. Using the “ape” package in R, we called the tree in R and subsequently used 

the “cophenetic” function in the “stats” package to calculate a distance matrix (Paradis and 

Schliep, 2019; R Core Team, 2021). Then, we used the “anosim” function in the R “vegan” to 

run ANOSIM tests (Oksanen et al., 2020).  

 

RESULTS 

Pangenome 

 We downloaded 440 publicly available Sphingomonas genomes, selected 252 high-

quality genomes, and carefully curated them into 8 habitat categories based on the isolation 

source.  Roary and Prokka pangenome analysis for the 252 Sphingomonas genomes revealed a 

total of 113,816 genes. Specifically, there were 444 core genes found in at least 99% of the 

genomes, 304 soft core genes found in 95 to 99% of genomes, 4,070 shell genes found in 15 to 

95% of genomes, and 108,998 cloud genes present in less than 15% of genomes (Table 2.2).  
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When the Rhodospirillum centum outgroup was included in the pangenome analysis, 

there was a total of 115,874 genes with 404 core genes, 321 soft core genes, 4,091 shell genes, 

and 111,058 cloud genes (Supplemental Table 2.1; Figure 2.2). Some of the core gene functions 

include but are not limited to those associated with ribosomes, transcription factors, translation 

factors, and ATP synthases. 

The pangenome analysis of just the 23 complete Sphingomonas genomes revealed a total 

of 33,131 genes comprised of 758 core genes, 184 soft core genes, 4,452 shell genes, and 27,737 

cloud genes (Supplemental Table 2.2). 

 

Phylogenetic Tree 

Phylogenetic analysis of 252 Sphingomonas sequences with a Rhodospirillum centum 

outgroup yielded a phylogenetic tree assembled from an alignment of 404 core genes (Figure 

2.3). The tree leaves clustered into 12 clades with a minimum bootstrap value of 86. After 

running Enveomics, pairwise comparisons within clades revealed a minimum average amino 

acid identity of 33.24% and a minimum average nucleotide identity of 76.37%.  

Significant ANOSIM tests (p < 0.05) showed that Sphingomonas strains from the same 

habitat clustered together based on phylogeny, meaning that the distribution of taxa within a 

clade were not random and exhibited similar habitat preferences. For example, clade 7 was 

mostly composed of clinical samples, whereas clade 12 was dominated by strains from 

contaminated regions (Figure 2.3; Supplemental Figure 2.1). Some known lineages clustered in 

specific clades. Clade 2 contained Sphingomonas melonis, which is a pathogen of yellow 

Spanish melon fruits and causes brown spots (Buonaurio et al., 2002). Clade 3 included 
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Sphingomonas sanguinis, which causes dry rot of mango (Liu et al., 2018). Sphingomonas 

naasensis was found in clade 6 and was first isolated from forest soil in South Korea (Kim et al., 

2014). Clade 7 contained Sphingomonas koreensis, which was first isolated from natural mineral 

water and can be a human pathogen in patients with meningitis (Lee et al., 2001; Marbjerg et al., 

2015). Clade 8 included strains of Sphingomonas japonica (Supplemental Figure 2.2) that were 

isolated from the red king crab from the Sea of Japan (Romanenko et al., 2009). Moreover, 

Sphingomonas strains within the same clade shared similar clusters of accessory genes (Figure 

2.2b).  

 

Functional Genes 

There was a significant correlation between genome size and gene counts for most of the 

traits we analyzed (Supplemental Figure 2.3). The largest genome with 6,899,075 bases belonged 

to a strain isolated from a contaminated site, and the shortest genome came from the animal 

classification with 2,861,323 bases. On average, genomes from contaminated sites were the 

largest and those from animals were the smallest (Supplemental Table 2.3). Similarly, genomes 

from contaminated sites typically had more genome-based traits, whereas strains from animals 

often had the fewest when compared to the other habitats (Figure 2.4). The prokaryotic defense 

system gene group was highest within contaminated habitats. There was also a high enrichment 

of chaperones and folding catalysts within genomes isolated from the clinical habitat; on 

average, the genome size of clinical strains was the second largest (Figure 2.4; Supplemental 

Table 2.3). 
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A subset of KEGG Orthology genes were chosen for investigating genome-based habitat 

preference traits based on their classification within the Y-A-S framework. Kruskal-Wallis rank 

sum tests between habitat and genome-based trait counts yielded significant (p < 0.05) 

differences for all traits except CAZymes and peptidoglycan biosynthesis and degradation 

proteins (Figure 2.4). Similarly, analysis of variance tests (ANOVA) on the Phylogenetic 

Generalized Least Squares (PGLS) models indicated that trait frequencies differed significantly 

(p < 0.05) by habitat for all traits except the prokaryotic defense system and CAZymes. Kruskal-

Wallis rank sum tests between clades and genome-based trait counts also yielded significant (p < 

0.05) differences for all traits. 

 

DISCUSSION 

Using comparative genomics, we investigated the association between Sphingomonas 

habitat and phylogeny. Our hypothesis that Sphingomonas strains from similar habitats would 

cluster together in phylogenetic clades was supported as depicted in the phylogenetic tree with a 

significant (ANOSIM test p < 0.05) association between habitat and phylogeny (Figure 2.3).  

Furthermore, within clades, strains shared similar accessory genes (Figure 2.2). Moreover, we 

found partial support for the hypothesis that key, genome-based traits related to fitness in 

specific environments would correlate with the isolation habitat (Figure 2.3). A closer 

investigation of functional genes associated with life history strategies revealed significant 

differences in gene counts across habitats (Figure 2.3). Some of the patterns reflected what we 

anticipated, while others did not. Ultimately, these findings bring us one step closer towards 

understanding the relationship between habitat preference and phylogeny. 
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 The phylogenetic tree indicates that there is an association between Sphingomonas 

habitats and phylogeny, supporting our hypothesis that strains from similar habitats are more 

closely related (Figure 2.3; ANOSIM test p < 0.05). These findings are also supported in other 

bacterial systems such as Bifidobacteria, Curtobacterium, and Xyllela fastidiosa (Chase et al., 

2018; Rodriguez and Martiny, 2020; Batarseh et al., 2022). It appears that abiotic factors as well 

as biological conditions, such as hosts, contribute to the environmental filtering and evolution of 

Sphingomonas within each habitat (Martiny et al., 2006; Kraft et al., 2015). Although there is not 

a perfect alignment between habitat and phylogeny, it is possible that our 8 habitat categories 

(Table 2.1) may be too broad or too narrow, or perhaps dispersal between sources influences the 

evolutionary history (Finlay, 2002). Most of the environmental samples consisted of soils, while 

the plant samples could be separated into the root, stem and leaves (Supplemental Figure 2.4). 

The rhizosphere consists of soils in the vicinity of plant roots, and could include lineages that are 

selected by both soil and plant properties (Berendsen et al., 2012). Additionally, dispersal 

between habitats could bring together Sphingomonas strains from different sources in the same 

location (Finlay, 2002; Albright et al., 2019; Walters et al., 2022). Dispersal is particularly likely 

across environment, plant, water, and contaminated site habitats. 

Since we found that habitat preference is phylogenetically conserved, we sought to 

disentangle potential genome-based traits that underlie habitat preference. Sphingomonas clades 

share similar accessory genes (Figure 2.2), and genome-based trait counts varied by habitat, 

together suggesting that adaptation to the local environment has shaped habitat preference 

(Figure 2.4). Strains from contaminated sites had more genes associated with the prokaryotic 

defense system, while clinical strains had higher averages for chaperones and folding catalysts 

(Figure 2.4). It is possible that in the Y-A-S life history framework, strains from both of these 
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habitats may depend on stress tolerance strategies for survival (Figure 2.1; Malik et al., 2020). 

Chaperones and folding catalysts serve as signaling molecules to blood cells to promote 

immunity and inflammation (Henderson and Pockley, 2010), two common processes in clinical 

settings. Immune responses are stressful to bacterial infectious agents, and bacterial stress 

proteins such as chaperones may even trigger the immune response of hosts (Henderson et al., 

2006). Moreover, compared to the other habitats, contaminated sites also had more genome-

based traits associated with high growth yield (Figure 2.4). Since Sphingomonas can break down 

pollutants and has the potential for bioremediation (Schmidt et al., 1992), it is possible that 

strains in contaminated habitats invested in resource uptake rather than stress tolerance. 

For traits that did not possess significant differences in their frequencies, such as 

CAZymes and peptidoglycan biosynthesis and degradation proteins, there are two potential 

possibilities (Figure 2.4). These traits may be part of the core genome and are required by all 

strains for basic functioning. Alternatively, there may be finer-scale differences in specific genes 

that are not detected because our traits are defined as broad sums of multiple genes. Moreover, 

proteins may have overlapping functions in metabolic pathways, making it difficult to assign 

them to a single life history strategy.  

Although the genomics field and sequencing technologies have made tremendous 

advancement (Heather and Chain, 2016), there are still challenges with assembling complete 

genomes. In publicly available data, there will be differences in the quality of the genomes since 

sampling and sequencing methods vary across studies. Therefore, to mitigate variability, we 

were very selective with the Sphingomonas genomes that we decided to investigate further. 

Although we included fragmented genomes, all sequences had a minimum BUSCO score of 95% 

from the Sphingomonadales order (Seppey et al., 2019). Still, fragmented genomes may not 
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accurately reflect the total core gene count of Sphingomonas pangenome analysis due to missing 

genes. Therefore, for comparison, we performed pangenome analysis on the 23 complete 

Sphingomonas sequences in our dataset (Supplemental Table 2.2), revealing 758 core genes. 

This analysis indicates that our core gene count of 404 for the genus is reasonable. As the 

diversity and frequency of genomes increases, the number of core genes will decrease.  

We investigated the genomic variation and phylogeny of Sphingomonas across different 

habitats. Additionally, we used a trait-based framework to explore differences in genome-based 

traits and life history strategies. We found that strains from similar habitats group together in 

clades and share accessory genes. Although our results did not reveal distinct life history 

strategies for all habitats, genome-based trait counts varied by habitat. These findings indicate 

that Sphingomonas gene content reflects habitat preference. Considering the relationships 

between habitat, genomics, and phylogeny may help us predict Sphingomonas habitat preference 

and better exploit its potential for bioremediation. 
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Figure 2.1. Genome-based trait groupings into the YAS life history strategy framework 

developed by Malik et al. (2020). 
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Figure 2.2. Pan-genome analysis of 252 Sphingomonas genomes and the Rhodospirillum 

centum outgroup. A) Gene presence-absence heatmap where vertical blue lines represent 

presence of a gene within rows corresponding to the Sphingomonas genome, and white reflects 

gene absence. The line graph underneath indicates the percentage of strains possessing the 

corresponding gene. B) Close-up of the gene patterns within a clade shows how clades contain 

similar gene clusters. 
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Figure 2.3. Sphingomonas A) habitat and B) phylogenetic tree constructed with 252 

Sphingomonas genomes and 404 core genes, separated into 12 clades. The closely related 

Rhodospirillum centum was used as the outgroup to identify the core gene alignment and 

construct the tree. Significant (p < 0.05) ANOSIM results reflect that Sphingomonas sequences 

cluster together in clades by their habitat preference. 
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Figure 2.4. Heatmap depicting the enrichment of genome-based traits by habitat. Traits are 

grouped together based on their YAS classification: top green rows are growth traits, the middle 

blue CAZymes row is a resource acquisition trait, and the bottom, red rows are stress tolerance 

traits. Traits with stars indicate significant (Kruskal-Wallis, p < 0.05) differences of natural log 

transformed gene counts between habitats. 
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Supplemental Figure 2.1. Relative abundances of habitats within each clade. 
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Supplemental Figure 2.2. Sphingomonas phylogenetic tree from Figure 2.3 in main text with 

visible names. Genomes are labeled by the GenBank Accession Number and the associated 

Sphingomonas strain.  
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Supplemental Figure 2.3. Genome frequencies and traits. All traits had a significant (p < 0.05) 

correlation between the frequency of the associated genes and genome size.  
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Supplemental Figure 2.4. Demographic information of Sphingomonas genomes (N = 252) 

where the environment (N = 67) and plant (N = 60) classifications are further broken down into 

additional subcategories. Genomes labeled “Environment” were not further specified by the 

authors uploading the genomic sequences. 
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Table 2.1. Classification descriptions of the isolation sources for Sphingomonas samples.  
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Table 2.2. Pangenome analysis for the 252 Sphingomonas genomes. 
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Supplemental Table 2.1. Pangenome analysis for the 252 Sphingomonas strains and the 

Rhodospirillum centum outgroup. 

Gene Description Frequency 

Core genes 99% <= strains <= 100% 404 

Soft core genes 95% <= strains <= 99% 321 

Shell genes 15% <= strains <= 95% 4,091 

Cloud genes 0% <= strains <= 15% 111,058 

Total 0% <= strains <= 100% 115,874 
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Supplemental Table 2.2. Pangenome analysis for the 23 complete genomes that we included 

in our data analysis. 

Gene Description Frequency 

Core genes 99% <= strains <= 100% 758 

Soft core genes 95% <= strains <= 99% 184 

Shell genes 15% <= strains <= 95% 4,452 

Cloud genes 0% <= strains <= 15% 27,737 

Total 0% <= strains <= 100% 33,131 
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Supplemental Table 2.3. Average genome length for strains in the habitat categories. 

Habitat Average Genome Size (bases) 

Animal 3,678,369 

Clinical 4,414,984 

Contaminated Site 4,947,991 

Environment 4,059,478 

Industrial 4,188,510 

Plant 4,251,944 

Water 4,296,399 

Other 4,092,009 
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CHAPTER 3 

Sphingomonas clade and functional distribution with simulated climate change 

ABSTRACT 

Microbes are essential for the functioning of all ecosystems, and as global warming and 

anthropogenic pollution threaten ecosystems, it is critical to understand microbial responses to 

shifting environments. Here we investigated the climate response of Sphingomonas, a 

widespread Gram- bacterial genus, after an 18-month microbial community reciprocal transplant 

experiment across a Southern California climate gradient. Communities were taken from each 

ecosystem (desert, scrubland, grassland, pine-oak, and subalpine), inoculated onto sterilized 

grassland litter, and transplanted back into each of the sites. We aimed to determine whether 

Sphingomonas responds to climate change in line with previously published patterns from both 

Gram+ bacteria and whole bacterial communities across the same climate gradient. We 

hypothesized that after 18 months, the transplanted Sphingomonas clade and functional 

composition would correspond with site conditions and reflect the Sphingomonas composition of 

native communities. Alternatively, since all the transplanted microbial communities were 

inoculated onto grassland litter, we hypothesized that the Sphingomonas clade and functional 

composition might converge on the litter type. Using publicly available Sphingomonas genomes, 

we built a phylogenetic tree and grouped taxa into 12 clades. Next, we identified Sphingomonas 

sequences in metagenomic data across the gradient and inferred their clade and functional 

composition. Representatives of all 12 clades were found at varying relative abundances along 

the climate gradient, and transplanted Sphingomonas clade composition shifted after 18 months. 

Furthermore, our results supported both hypotheses, indicating that both site and substrate 

determine Sphingomonas clade and functional composition. Climate likely drives shifts in 
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composition because site had the most significant effect (PERMANOVA; p < 0.001) on the 

distribution of both Sphingomonas functional (R2 = 0.446) and clade composition (R2 = 0.359). 

Additionally, for both Sphingomonas clade and functional composition, principal coordinate 

centroids of the 18-month transplanted samples were closer on average to the native 

Sphingomonas composition of the grassland site compared to the site they were transplanted into. 

Thus, the grassland substrate was also responsible for influencing Sphingomonas clade and trait 

convergence. These findings are in line with previous microbial research from the same climate 

gradient and together support consistent bacterial response to climate at different scales of 

genetic variation. This understanding of how microbes respond to perturbation at varying genetic 

scales may aid future predictions of microbial responses to climate change. 

 

INTRODUCTION 

Microorganisms are critical for the maintenance of healthy ecosystems and are threatened 

by the anthropogenic effects of climate change (Cavicchioli et al., 2019; Seidel et al., 2022). 

Furthermore, microbial communities drive planetary biogeochemical cycles - such as carbon and 

nitrogen flux- that organisms require for survival (Falkowski et al., 2008). Therefore, it is 

important to understand the implications of climate change for microbial composition and 

functioning. Still, due to high microbial abundance and diversity, it is difficult to predict how 

microbial communities will collectively respond to environmental shifts (Torsvik et al., 2002). 

Moreover, the ecological niche of a single microbial strain – or genetic variant of a species – can 

vary depending on the geographic origin of the strain or prior exposure to stress, which further 

complicates predictions (Kvitek et al., 2008; Wang et al., 2011). 
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When investigating microbial response to climate change, it is important to consider the 

scale of genetic variation. For example, the response to climate change varies across domains, as 

well as broad clades within bacteria and fungi (Castro et al., 2010; Danovaro et al., 2016; Zhang 

et al., 2017; Glassman et al., 2018). There are also finer-scale differences in compositional 

responses to the environment within a genus and between bacterial strains (Martiny et al., 2013; 

Chase et al., 2021). These finer-scale differences in compositional responses are reflected in 

conserved functional traits; therefore, genomics and ecologically relevant functional traits can 

help predict the ecosystem implications of climate change (Martiny et al., 2013; Evans and 

Wallenstein, 2014).  

Along these lines, Glassman et al., (2018) reported that differences in microbial 

community composition and assembly impact litter decomposition under simulated climate 

change conditions. They reciprocally transplanted microbial communities across a Southern 

California climate gradient consisting of 5 sites that vary inversely with temperature and 

precipitation: desert, scrubland, grassland, pine-oak, and subalpine (Baker et al., 2018; Glassman 

et al., 2018). They found that the decomposition responses of microbial communities with 

respect to climate shifts depended on the community composition (Glassman et al., 2018). 

Furthermore, bacterial communities shifted more rapidly in response to changes in climate, and 

after 18 months, the bacterial community composition most closely reflected the abiotic 

conditions of the site (Glassman et al., 2018).  

Differential responses to climate not only occur at broad genetic scales, (Cadotte et al., 

2008; Gravel et al., 2011; Martiny et al., 2013), but also at finer scales. For instance, within a 

bacterial genus Chase et al., (2021) found that Gram+ bacterial species of Curtobacterium were 
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also differentially adapted to local climates and experienced a shift in their composition after 

transplantation.   

Building on the Chase et al., (2021) study of Curtobacterium, we aimed to test whether 

bacterial responses to climate change are similar across genera. In particular, we wanted to 

compare these responses across Gram+ and Gram- bacteria. There are physiological differences 

between the cell membranes of Gram+ and Gram- bacteria; namely Gram- bacteria have an outer 

membrane while Gram+ bacteria do not (Slonczewski and Foster, 2017). These physiological 

differences may yield different functional and compositional responses to the selective pressures 

of climate change and in particular, to desiccation stress (Schimel et al., 2007a), which varies 

along our climate gradient. Since Gram+ bacteria have a thicker layer of peptidoglycan within 

their cell walls, they may be more resistant to osmotic pressures and better tolerate stress than 

Gram- bacteria (Kieft et al., 1987; Schimel et al., 2007b; Evans and Wallenstein, 2014). The 

Sphingomonas bacterial genus is the most abundant Gram- bacteria found among our climate 

gradient sites (Chase et al., 2018). Therefore, we asked whether the Sphingomonas genus shows 

a similar response to changes in climate compared to Gram+ bacteria (Chase et al., 2018, 2021) 

and bacterial communities as a whole (Glassman et al., 2018).  

 To address this question, we investigated the phylogenetic and functional diversity of 

Sphingomonas across the climate gradient. Using metagenomic data, we tested how the 

composition and functional potential of the Sphingomonas genus shifted in response to climate 

change as simulated by an 18-month reciprocal transplant experiment (Figure 3.1A). Based on 

previous results with Curtobacterium (Chase et al., 2021), we hypothesized that the clade and 

functional composition in the transplants would correspond with the site environment and 

climate (Figure 3.1B). Alternatively, because all the transplanted microbial communities were 
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inoculated onto a common grassland litter, the Sphingomonas clade and functional composition 

might converge on the litter type (Figure 3.1C). Since substrate is a potentially important control 

of community assembly (Zhalnina et al., 2018; Finks et al., 2021), the functional and clade 

composition of transplants might converge on that of grassland litter. Ultimately, our findings 

aimed to improve understanding of how consistently microbes respond to climate change at 

multiple phylogenetic levels. 

 

METHODS 

Reciprocal Transplant Design and Metagenomic Sampling 

We analyzed metagenomic data from an 18-month reciprocal transplant across a 

Southern California climate gradient, as previously described in Glassman et al., (2018; Figure 

3.1A). Briefly, the climate gradient consists of 5 sites across which temperature and precipitation 

vary inversely: desert, scrubland, grassland, pine-oak, and subalpine. Leaf litter was collected 

from each site on September 11, 2015. Subsequently, the leaf litter was homogenized with coffee 

grinders and used to inoculate irradiated grassland leaf litter in sterilized nylon bags. The nylon 

litter bags had 0.22 µm pores (cat. No. SPEC17970; Tisch Scientific, Cleves, OH, USA) such 

that nutrients and water can move freely into and out of the bags, but bacteria and fungi cannot.  

 On October 19, 2015, the transplant bags were placed in the 5 sites and destructively 

sampled after 6, 12, and 18 months. In total, 300 bags (5 sites x 5 inoculum x 4 replicates x 3 

timepoints) were deployed, and 100 bags were collected at each timepoint. Additionally, at each 

timepoint, survey samples comprising native microbial communities on their native litter were 
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collected adjacent to each plot. Timepoint 0 (T0) refers to the time that all litter bags were 

deployed into the field. 

 Metagenomic data was generated for all survey samples (N = 20), the initial transplant 

communities (N = 20), and the 18 month transplant bags (N = 99) as previously described (Chase 

et al., 2021). Briefly, DNA was extracted from 0.05 g of ground leaf litter using the FastDNA 

SPIN Kit for Soil (Mo Bio). The DNA was subsequently cleaned with the Genomic DNA Clean 

and Concentrator kit (Zymo Research). Clean samples were diluted and used for the Nextera XT 

library Prep kit and sequenced with the Illumina HiSeq4000 instrument with paired-end reads of 

150 bp.   

We trimmed and quality filtered the metagenomic data using trimmomatic v0.36 (Bolger 

et al., 2014). We used bwa v0.7.17 and samtools v1.10 (Li and Durbin, 2009; Danecek et al., 

2021) to filter out abundant grass (Lolium perenne; Accession: MEHO01000000) and fungus 

(Pyrenophora teres; Accession: NZ_AEEY00000000). For our analyses, we used the forward 

reads. 

 

Sphingomonas identification from metagenomic samples 

 Using previously described methods, we selected 252 high-quality, publicly available 

Sphingomonas genomes to build a phylogenetic tree with 12 clades, rooted with a 

Rhodospirillum outgroup (Sorouri et al., in review). We identified 444 shared core genes within 

the Sphingomonas genomes, and of those, we selected 23 marker core genes (Supplemental 

Table 3.1) that appear in a reference genomic amino acid database developed by Chase et al., 

(2017). We appended the 23 core genes from each Sphingomonas genome to the Chase et al., 
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(2017) reference genomic database, which together served as our reference database for 

DIAMOND BLASTX (Buchfink et al., 2014). We included the genes from the reference 

genomic database because we wanted to extract only Sphingomonas core gene hits and avoid 

matching metagenomic sequences that were not Sphingomonas. Forward reads from 

metagenomic samples were translated to amino acids and queried against the reference database 

with default BLASTX parameters (Buchfink et al., 2014). Furthermore, to ensure the sequences 

belonged to Sphingomonas, we selected hits with a percent identity value of at least 98% and an 

E value of less than 1e-20 as previously done (Scales et al., 2022).  

When querying the metagenomic sequences, some hit only one clade, whereas others hit 

multiple clades. Those that hit only one clade were assigned to that clade. For the sequences that 

hit multiple clades, we first checked whether all hits to one of the clades showed consistently 

higher percent identity (e.g., 100%); if so, the sequence was assigned to that clade. If not, we 

assigned the sequence to a “pseudo clade” consisting of all clades that matched the query 

sequence with the same, highest identity. For example, if a query sequence matched 5 reference 

sequences from clade 1 with 100% identity, 4 reference sequences from clade 2 with 100% 

identity, and 3 reference sequences from clade 3 with 98% identity, then the query was assigned 

to pseudo clade 1-2. Because there are hundreds of potential pseudo clades, we grouped the 

sequences assigned to rarer pseudo clades into a single broad pseudo clade for subsequent 

analyses. Pseudo clades that had less then 10 hits were combined into the broad pseudo clade. 

For each of the climate gradient samples, we summed the Sphingomonas sequences by 

clade. We rarefied the data with the EcolUtils v0.1 R package (Salazar, 2022), calculated the 

clade relative abundances for each sample, and visualized clade relative abundances using the 

ggpubr v0.4.0 R package (Kassambara, 2020). One Timepoint 3 (T3) subalpine survey sample 
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and several T3 bag samples were removed prior to rarefaction due to low sequence coverage. 

With the clade relative abundance data, we performed a principal coordinate analysis (PCoA) 

using a Bray-Curtis dissimilarity matrix to visualize compositional differences between samples. 

A permutational multivariate analysis of variance (PERMANOVA) is a distance-based method 

that tests whether microbial composition is associated with the covariates (Tang et al., 2016); in 

our case was used it to determine site and inoculum effect sizes. All statistical analyses and data 

visualizations across the climate gradient were done in R v4.1.0. (R Core Team, 2021). The 

PCoA and PERMANOVA analyses were performed with the vegan v2.5-7 R package, and the 

PCoA was again visualized with ggpubr v0.4.0  (Kassambara, 2020; Oksanen et al., 2020).  

For the ordination, we averaged the points within sites to calculate the T3 transplant and 

survey centroids. Additionally, we used the average distances between centroids to determine 

which hypothesis was supported by results. To test the hypothesis that climate is responsible for 

convergence, we calculated the average distance between the T3 transplant centroids and their 

corresponding T3 survey centroid within the same site. To test the hypothesis that the grassland 

litter is responsible for convergence, we calculated the average distance between the T3 

transplant centroids and the T3 grassland survey centroid.  

 

Sphingomonas functional genes 

We used KEGG and CAZy databases to identify Sphingomonas functional genes in 

publicly available genomes, selected a subset of traits, and assigned them to a Y-A-S life history 

category depending on their role in growth, resource acquisition, or stress tolerance (Sorouri et 

al., in review). For growth, these genome-based traits included amino acid related enzymes, lipid 
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biosynthesis proteins, and lipopolysaccharide biosynthesis proteins. CAZymes were used to 

indicate resource acquisition. Chaperones and folding catalysts, peptidoglycan biosynthesis and 

degradation proteins, and prokaryotic defense system proteins were the genome-based traits 

attributed to stress tolerance. We calculated the relative abundances of each of these trait 

categories for each of the 12 Sphingomonas clades designated by the publicly available genomes.  

To infer the distribution of the 7 genome-based traits across the climate gradient, we 

multiplied the trait relative abundances from the publicly available genomes by the clade relative 

abundances for the transplant and survey samples at 18 months. For this product, we recalculated 

the clade relative abundances across the climate gradient for just the 12 clades and removed the 

pseudo clade categories. We averaged the values by sample and used them to construct a matrix 

with rows corresponding to samples and columns corresponding to traits. PCoA and 

PERMANOVA analyses were done on this matrix using the same methods described earlier for 

Sphingomonas clade relative abundances. 

 

RESULTS 

Sphingomonas clade composition 

 We aimed to evaluate the representation of Sphingomonas clades (Sorouri et al., in 

review; Figure 3.2) in metagenomic sequences across the climate gradient. Of 49,044 sequences 

identified as Sphingomonas, 34,003 matched to one of the 12 phylogenetic clades, and the 

remaining 15,041 were assigned to pseudo clades. Each of the 12 main clades was found across 

the climate gradient in both transplant and survey samples at varying abundance (Sorouri et al., 

in review; Figure 3.3). Sphingomonas composition was similar in the initial inoculum at T0 and 
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the survey samples at T3 (Figures 3.3A & 3.3B). However, the grassland site had a higher 

relative abundance of clade 1 in the T3 survey samples compared to T0. When comparing the 

survey and transplant samples at 18 months, there was a distinct difference in the distribution of 

Sphingomonas clades (Figures 3.3B & 3.3C). 

Environmental conditions at the sites influenced the composition of Sphingomonas 

clades. Although both site and inoculum had significant (p < 0.001) effects on the distribution of 

transplanted Sphingomonas, site was the strongest predictor of composition with an R2 value of 

0.359, whereas inoculum had an R2 value of 0.090 (Table 3.1). The strong site effect suggests 

that climate or other site conditions influence Sphingomonas composition following 

transplantion. There was also a significant (p < 0.01) site by inoculum interaction, which had a 

stronger effect on Sphingomonas composition than inoculum (R2 = 0.170). This indicates that the 

inoculum effect varies by site (Figure 3.3C). The T3 transplanted samples at the grassland site 

had the tightest clusters in the PCoA, meaning that the Sphingomonas clade composition within 

the grassland was similar across inocula. For the other sites, there was more variation in 

Sphingomonas clade composition across inocula (Figure 3.4). In the desert site, the relative 

abundances of clades 1, 2, 5, and 9 varied most across inocula. Within the scrubland site, relative 

abundances of clades 1, 2, 5, 9, and 12 varied most, while clades 1, 5, and 12 varied most in the 

subalpine site (Figure 3.3C). Clade 7 was absent in most T3 transplant samples, and in the higher 

elevation pine-oak and subalpine sites, clades 1, 5, and 12 were the most abundant. Overall, 

clades 1 and 5 played an important role in driving the site by inoculum interaction. Clades 1 and 

5 varied widely across the transplanted inocula within the desert, scrubland, and subalpine sites. 

However, clade 1 was rare within the grassland site and consistent within the pine-oak site. 
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If Sphingomonas composition is determined primarily by litter substrate, we would 

expect transplanted communities to converge on the grassland survey community (Figure 3.1C). 

The T3 survey samples not only clustered together by site, but also partially converged on the 

grassland survey community (Figure 3.4). The centroids of the Sphingomonas communities 

transplanted into the desert and scrubland were the closest to the grassland survey. The pine-oak, 

subalpine, and grassland transplants were further away from the grassland survey. Overall, the 

average distance (0.211) between the centroids of the transplant samples and the grassland 

survey was smaller than the average distance between the transplant centroids and survey 

samples within the same site (0.381). Therefore, there was also support for the hypothesis that 

Sphingomonas clades converged on the grassland litter.  

 

Sphingomonas functional composition 

 Since Sphingomonas functional gene content reflects habitat preferences (Sorouri et al., 

in review), we investigated the distribution of several Sphingomonas genome-based functional 

traits to determine whether they supported our hypotheses (Figures 1B & 1C). We identified 

3,615 unique genes from the KEGG database and 274 CAZymes. We analyzed a subset of the 

unique KEGG genes to investigate genes involved in growth (N = 61) and stress tolerance (N = 

154). Based on our analysis of publicly-available genomes, Sphingomonas clades had significant 

(p < 0.05, Kruskal Wallis) differences in their functional gene content (Figure 3.5A; Sorouri et 

al., in review). For the genome-based traits associated with high growth yield, the amino acid 

related enzymes and lipopolysaccharide biosynthesis proteins were the most abundant in clade 8, 

whereas lipid biosynthesis proteins were most abundant in clade 12. CAZymes linked to the 

resource acquisition strategy were more abundant in clade 1 relative to other clades. With respect 
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to the genome-based stress tolerance traits, chaperones and folding catalysts were most abundant 

in clade 7, clade 12 had the highest abundance of prokaryotic defense system genes, and 

peptidoglycan and biosynthesis proteins were most abundant in clade 2 (Figure 3.5A). 

Using the functional trait distributions of each clade, we next predicted the distribution of 

Sphingomonas functional genes across the climate gradient. Similar to the clade composition 

patterns, site and inoculum had significant (p < 0.05) effects on Sphingomonas functional 

composition in transplants by T3; however, the site * inoculum interaction was not significant 

(Table 3.2; Figure 3.5B). As with the clade composition, site had the strongest effects on the 

Sphingomonas functional gene distribution (R2 = 0.446, p < 0.001), while inoculum had a 

weaker effect (R2 = 0.058, p < 0.05). The patterns of convergence on the grassland survey for 

functional traits were nearly identical to the patterns for clade composition in that the average 

distance between T3 bag centroids and the T3 grassland survey centroid (0.00782) was smaller 

than the average distance between the T3 bag centroids and their respective T3 survey samples 

(0.0125) from the same site. 

 

DISCUSSION 

Our results suggest that microbial responses to environmental change are consistent 

across bacterial clades at the genus level. The Sphingomonas clade composition varies across the 

climate gradient, indicating that clades may be differentially adapted to site conditions, including 

climate. Furthermore, Sphingomonas clade composition shifted within the genus during an 18-

month reciprocal transplant experiment (Figure 3.3). These findings thus support the hypothesis 

that climate and abiotic conditions of the sites drive shifts in Sphingomonas clade and trait 
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composition (Figures 3.1B and 3.4; Table 3.1). Moreover, there was also support for our 

alternative hypothesis that the grassland substrate was responsible for clade and trait 

convergence (Figures 3.1C; Fig 3.4, 3.5B), suggesting indirect effects of climate change via plant 

community shifts may also influence Sphinogomonas response to climate. Therefore, 

Sphinogomonas clade and functional composition is determined by both site and litter. 

The outcome that site and abiotic climate conditions drive clade and functional 

compositional shifts is line with previous findings across this Southern California climate 

gradient. Both Glassman et al., (2018) and Chase et al., (2021) found that climate drives distinct 

bacterial composition at both community and strain levels, respectively. Our study shows that 

these results extend to Sphingomonas, an abundant Gram- bacterial clade (Figure 3.4 and Table 

3.1). This phenomenon that environmental variables are strong predictors for microbial processes 

and composition is not only observed across the Southern California climate gradient, but also 

globally (Graham et al., 2016). Additionally, the patterns in the distribution of Sphingomonas 

clades and functional genes across the climate gradient to some extent reflect the climate 

conditions of the sites (Figures 3.4 & 3.5). Within both survey and transplant samples at T3, 

oftentimes the desert and scrubland sites grouped together, as did the pine-oak and subalpine 

sites. These groupings may reflect similarities with respect to temperature, precipitation, and 

litter chemistry (Baker et al., 2018).  

Although site conditions are a strong predictor of shifts in Sphingomonas clade 

composition (Figure 3.4; Table 3.1), there was still variation among the transplanted inocula 

within each site after 18 months even though the grassland litter they resided on was uniform 

(Figure 3.3). It is likely that the different inocula had varying levels of resilience to 

environmental changes, and microbial legacy effects from previous historical events may have 
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prevented complete convergence (Allison and Martiny, 2008; Martiny et al., 2017; Glassman et 

al., 2018; Hawkes et al., 2020; Chase et al., 2021). Additionally, Sphingomonas clades 1, 5, and 

6 contain taxa that are found at high relative abundances in both plant and environmental habitats 

(Sorouri et al., in review); these clades shifted the most in the T3 transplant after 18 months 

(Figure 3.3). Perhaps these clades are more abundant in the T3 transplant because they are better 

suited to survive on grassland litter across the climate gradient. Legacy effects also impact traits 

and potential functioning of microbial communities (Glassman et al., 2018). Even though some 

climate response traits are deeply conserved (e.g. Martiny et al., 2015; Amend et al., 2016; Isobe 

et al., 2020), climate response also occurs at fine scales, such as our results suggest for 

Sphingomonas and prior research reflects for Prochlorococcus (Martiny et al., 2013). Therefore, 

responses to climate change are likely to occur across different scales of genetic variation. 

We were surprised to find that in both clade and functional composition, the survey and 

transplant samples within the grassland site did not converge and in fact were very dissimilar 

(Figures 3.3-5). In both Sphingomonas functional and clade composition, after 18 months the 

grassland survey was more similar to the scrubland and desert transplant samples than to the 

grassland transplant samples. Given that the initial Sphingomonas clade composition of the 

grassland inoculum was similar to the grassland survey and they were both on grassland litter, 

for both hypotheses we anticipated that the grassland survey and transplant samples would 

converge after 18 months (Figure 3.1). However, it is possible that there were microclimate 

effects within bags that prevented the convergence. Additionally, the grassland substrate may 

vary from year to year, and microbial succession may have further contributed to the variation 

between the two groups (van der Valk, 1981). The combination of both litter substrate and bag 

microclimate may explain distinct Sphingomonas composition in grassland survey and transplant 
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samples, given that the response of bacterial microdiversity to environmental perturbations is 

substrate and ecosystem dependent (Scales et al., 2022). 

 Trait-based approaches are useful for predicting and interpreting microbial responses to 

climate change. Trait responses to climate change simulated by transplantation closely followed 

clade responses, consistent with the trait variation across clades (Figure 3.5A). For example, 

clade 1 had the highest abundance of CAZymes, and was responsible for driving the differences 

in Sphingomonas clade and functional composition. We also observed that clade 7 was rare in 

our litter metagenomes, consistent with this clade’s dominance by clinical strains that may not 

possess the traits to live in a surface soil environment (Sorouri et al., in review). Still, across the 

climate gradient, differences in the relative abundance of other environmentally prevalent clades 

such as 5 and 6 were not clearly related to the genome-based traits we measured. We recognize 

that there are likely finer-scale differences between traits, such as individual glycoside 

hydrolases (Berlemont and Martiny, 2013), that we did not assess here. Additionally, there may 

be functional differences in other ecologically relevant traits that we did not analyze.  

 

CONCLUSION 

 We investigated the distribution of Sphingomonas clades and functional potential across a 

Southern California climate gradient. We found that the clade and functional composition shifted 

during an 18-month reciprocal transplant. Our findings indicate that the Gram- Sphingomonas 

genus had compositional and functional responses similar to Gram+ Curtobacterium (Chase et 

al., 2021) and microbial communities (Glassman et al., 2018). Collectively, these studies suggest 

that compositional and functional responses to climate change occur at various genetic scales, 
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ranging from within Curtobacterium strains, to within Sphingomonas clades, and across clades 

within microbial communities. Understanding how microbes respond to perturbation at all these 

genetic scales may aid future predictions of microbial responses to climate change. 

 

ACKNOWLEDGEMENTS 

We would like to thank the following people for discussion and feedback on the 

manuscript: Adam C Martiny, Alberto Barron, Alex B Chase, Brittni L Bertolet, Claudia Weihe, 

Edwin Solares, Elsa Abs, Jennifer BH Martiny, José M Murúa Royo, Lucas Ustick, Luciana 

Chavez Rodriguez, Moein Hosseini, and Tiffany N Batarseh. Thanks to Nadya Williams and the 

HPC Team for technical support and maintenance of the high-performance computing clusters. 

This project was funded by the US Department of Energy, Office of Science, Biological and 

Environmental Research, under award DE-SC0020382. 

  



 

74 

 

FIGURES AND TABLES

 

Figure 3.1. Microbial community reciprocal transplant design and hypotheses driving 

Sphingomonas clade composition after 18 months in the field. A) Schematic of reciprocal 

transplant experiment across a climate elevation gradient across which temperature and 

precipitation very inversely. All colors and icons remain consistent across the figures. We 

hypothesized that B) site environment (e.g., climate) determines Sphingomonas composition 

after 18 months. Thus, the composition within bag transplant and survey samples will be similar 

at each site. C) Alternatively, since all microbial communities within transplants were inoculated 

onto grassland litter, the grassland substrate might drive Sphingomonas composition, causing 

transplants to converge on the grassland survey samples. 
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Figure 3.2. Phylogenetic tree of 252 publicly available, high-quality Sphingomonas 

genomes. The tree was built with 404 core genes and separated into 12 clades based on their 

divergence from a common ancestor. Clades are color coordinated, and the tree is rooted by a 

Rhodospirillum centum SW (Accession: CP000613) outgroup. 
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Figure 3.3. Sphingomonas clade distribution across the climate gradient in A) T0 

transplant samples, B) T3 survey samples, and C) T3 transplant samples. For A) and B), the 

clade relative abundances are represented for each site. For the T3 transplant, the facet boxes are 

labeled and colored by the site, and the x-axis indicates inoculum within each site. Facet and icon 

colors reflect the site, while relative abundances are colored by clade.  

  



 

77 

 

 

Figure 3.4. Ordination of Sphingomonas within survey and transplant samples after 18 

months based on clade relative abundances. Points are colored by site, where solid points 

reflect the transplant samples and open points represent survey samples. Asterisks represent the 

centroids of transplant samples and x’s represent the centroids of survey samples. 

PERMANOVA statistics revealed significant (p < 0.001) site, inoculum, and site* inoculum 

interaction effects. 
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Figure 3.5. Distribution of Sphingomonas functional genes within clades and across the 

climate gradient after 18 months. A) Trait relative abundance of YAS functional genes within 

clades from publicly available Sphingomonas genomes. B) Principal coordinate analysis of 

predicted trait composition in T3 survey and transplant samples across the climate gradient 

colored by site and calculated with Bray-Curtis dissimilarity distances. Ordination does not 

include trait information from pseudo clades. 
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Table 3.1. PERMANOVA statistics comparing the clade composition of Sphingomonas 

within Timepoint 3 transplanted samples. 

 

  Degrees of Freedom Sum of Squares R2 F p-value 

Site            4 4.859 0.359 14.156 < 0.001 

Inoculum       4 1.215 0.090 3.549 < 0.001 

Site : Inoculum  16 2.305 0.170 1.679 < 0.005 
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Table 3.2. PERMANOVA statistics comparing the predicted functional composition of 

Sphingomonas within Timepoint 3 transplants. 

  Degrees of freedom Sum of Squares R2 F p-value 

Site           4 5.47 * 10-3 0.446 19.126 <0.001 

Inoculum       4 7.13 * 10-3 0.058 2.492 0.017 

Site : Inoculum  16 1.50 * 10-3 0.123 1.315 0.164  
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Supplemental Table 3.1. List of 23 core genes selected from Sphingomonas genomes and 

appended to Chase et al., (2017) reference database 

Protein Name 

L1 rplA 

L2 rplB 

L3 rplC 

L4 rplD 

L5 rplE 

L6 rplF 

L10 rplJ  

L11 rplK 

L13 rplM 

L14 rplN 

L15 rplO 

L16 rplP 

L18 rplR 

L24 rplX 

S2 rpsB 

S3 rpsC 

S8 rpsH 

S9 rpsI 

S11 rpsK 

S12 rpsL 

S13 rpsM 

S17 rpsQ 

S19 rpsS 
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