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| MULTIPARENTAL POPULATIONS

A Random-Model Approach to QTL Mapping in
Multiparent Advanced Generation Intercross

(MAGIC) Populations
Julong Wei*,† and Shizhong Xu*,1

*Department of Botany and Plant Sciences, University of California, Riverside, California 92521, and †College of Animal Science
and Technology, China Agricultural University, Beijing 100193, China

ABSTRACT Most standard QTL mapping procedures apply to populations derived from the cross of two parents. QTL detected from
such biparental populations are rarely relevant to breeding programs because of the narrow genetic basis: only two alleles are involved
per locus. To improve the generality and applicability of mapping results, QTL should be detected using populations initiated from
multiple parents, such as the multiparent advanced generation intercross (MAGIC) populations. The greatest challenges of QTL
mapping in MAGIC populations come from multiple founder alleles and control of the genetic background information. We developed
a random-model methodology by treating the founder effects of each locus as random effects following a normal distribution with a
locus-specific variance. We also fit a polygenic effect to the model to control the genetic background. To improve the statistical power
for a scanned marker, we release the marker effect absorbed by the polygene back to the model. In contrast to the fixed-model
approach, we estimate and test the variance of each locus and scan the entire genome one locus at a time using likelihood-ratio test
statistics. Simulation studies showed that this method can increase statistical power and reduce type I error compared with composite
interval mapping (CIM) and multiparent whole-genome average interval mapping (MPWGAIM). We demonstrated the method using a
public Arabidopsis thaliana MAGIC population and a mouse MAGIC population.

KEYWORDS best linear unbiased prediction; empirical Bayes; mixed model; polygene; restricted maximum likelihood; multiparental populations;

Multiparent Advanced Generation Inter-Cross (MAGIC); MPP

THERE is an urgent need to develop and studymultiparent
advanced generation intercross (MAGIC) populations

(Rakshit et al. 2012). Along with nested association mapping
populations (Yu et al. 2008), the MAGIC population is called
a second-generation mapping resource (Rakshit et al. 2012).
Using MAGIC populations to perform QTL mapping was
first proposed for mice by Threadgill et al. (2002). Such a
population is called the Collaborative Cross (CC) population
(Churchill et al. 2004; Collaborative Cross Consortium
2012). Simulation studies showed that an eight-parent CC
population with 1000 progenies is capable of increasing
mapping resolution to the sub-centimorgan range (Valdar

et al. 2006). MAGIC populations in Drosophila melanogaster
are called Drosophila Synthetic Population Resources (DSPR)
(MacDonald and Long 2007; King et al. 2012a, et al.b). A
review of MAGIC populations in crops can be found in
Huang et al. (2015). The first plant MAGIC population
was developed in Arabidopsis thaliana by Kover et al.
(2009). The population will be described later. Subse-
quently, MAGIC populations have been developed in wheat
(Huang et al. 2012; Mackay et al. 2014), rice (Bandillo et al.
2013), and other crop species (Gaur et al. 2012; Pascual
et al. 2015; Sannemann et al. 2015). One key difference
between MAGIC populations and other multiparent popu-
lations is that all MAGIC lines have experienced multiple
generations of inbreeding and thus all are inbred lines.
As a result, they are also considered genetic reference popu-
lations whose particular genome arrangement can be
replicated indefinitely. MAGIC populations in plants un-
doubtedly will become more popular in the future of plant
genetics and breeding (Varshney and Dubey 2009; Rakshit
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et al. 2012; Huang et al. 2015), which calls attention to the
need for improvements in statistical methods to analyze
and interpret data derived from these populations. A recent
call for papers on QTL mapping in MAGIC populations by
GENETICS and G3 (http://www.genetics.org/) further in-
dicates the urgent need for new technologies in MAGIC
population QTL mapping.

Current methods of QTL mapping for MAGIC populations
are adopted primarily from methods used in biparental pop-
ulations. For example, composite interval mapping (CIM)
(Zeng 1994), originally developed for biparental popula-
tions, has been used in QTL mapping for MAGIC populations
to control genomic background. Othermethods and programs of
QTL mapping in MAGIC populations include MCQTL (Jourjon
et al. 2005), R/qtl (Broman et al. 2003), R happy (Mott et al.
2000), andR/mpMap (Huang andGeorge 2011),most ofwhich
have an option to perform CIM. However, there is an intrinsic
limitation in cofactor selection, which is more problematic in
MAGIC populations than in biparental populations. In an eight-
parent-initiatedMAGIC population, eachmarker has 82 1= 7
founder effects to estimate. The total number of effects will
soon saturate the linear model as the number of cofactors in-
creases. For example, a MAGIC population of size 500 will
allow only fewer than 500/7 � 71 cofactors to be included in
the model. When the number of cofactors is small, the CIM
procedure is sensitive to the selection of cofactors. Ideally, a
model should include all markers in a single model. However,
when the marker density is high, genome scanning (a single-
QTLmodel) provides a better alternativemethod for QTLmap-
ping, but the cofactors should be replaced by a polygenic effect,
as done in genome-wide association studies (GWAS) (Yu et al.
2006). We recently developed a QTL mapping procedure by
fitting a polygene using a marker-inferred relationship matrix
(replacing cofactors) and demonstrated the robustness of the
method (Xu 2013b).

Recently, Gatti et al. (2014) developed a mixed model for
QTL mapping in Diversity Outbred (DO) mice by treating the
effects of scanned markers as fixed and a polygenic effect as
random. The polygenic effect essentially replaced cofactors
to control the genetic background. The method tends to have
a low power because part of the effect of the marker currently
scanned is absorbed by the polygene. Our simulation studies
showed that dramatic improvement can be achieved in terms
of resolution and statistical power of mappedQTL if the effect
of the current QTL captured by the polygene is taken into
account. Verbyla et al. (2014) developed a multiple-QTL
model for QTL mapping in MAGIC populations. The
method is called multiparent whole-genome QTL analysis
(MPWGAIM), and several steps are involved in selecting
markers for inclusion in the model. First, a polygenic base
model is implemented to detect the whole-genome effect
on the traits of interest. If the polygenic variance is signifi-
cantly larger than zero, then markers are subject to selection
under a random-model approach; i.e., the founder allelic ef-
fects of a marker are treated as random effects, and the var-
iance of those founder effects is estimated and the marker is

then selected if the variance is sufficiently large. The final
model will include all markers selected (forward selection).
This is a variable-selection approach and may be costly if the
number of markers and the number of QTL found are large.
We will treat this model as the “gold standard” for simulation
and comparison. Another recent study of QTL mapping in
MAGIC populations is the Bayesian modeling of haplotype
effects (Zhang et al. 2014), where the founder haplotype
effects are estimated via Markov chain Monte Carlo (MCMC)
sampling or importance sampling (IS). One important fea-
ture of the Bayesian method is the ability to handle uncer-
tainty of the founder allelic inheritance. The only concern
with the Bayesian method is the high computational cost
when the sample size and the number of markers are very
large because Monte Carlo sampling is involved. It is recom-
mended to use the Bayesian method to fine-tune the model
aftermarkers are selected using some simplemethods such as
interval mapping (IM) and CIM.

In this study, we extended the mixed-model methodology
of QTL mapping in MAGIC populations by fitting a polygenic
effect as randomanda scannedmarker effect either asfixed or
random. Furthermore, we released the polygenic counterpart
ofascannedmarkereffectbacktothemodeltoavoidcompetition
between the marker effect and its polygenic counterpart. This
improvedmixed-modelmethodologyhas significantly improved
the statistical power of QTL detection. We used a CC mouse
population (Collaborative Cross Consortium 2012) to perform
simulations to examine the properties of the new methods
(there are no phenotypic values available for the CC mouse
population). The Arabidopsis MAGIC population of Kover et al.
(2009) and the pre-CC mouse population of Rutledge et al.
(2014)were reanalyzed using the newmethods to demonstrate
the differences between the new and existing methods.

Materials and Methods

MAGIC populations

Three MAGIC populations were used in this study to demon-
strate the new methods of QTL mapping, two populations in
mice and one in A. thaliana. The first MAGIC population in
mice does not have phenotypes available on the website
(http://www.csbio.unc.edu/CCstatus) and was used only

Table 1 Information for the seven simulated QTL using genotypes
of the first MAGIC population of mice

QTL Chromosome Position (cM) Bin Variancea Proportionb

QTL-1 1 41.35 209 0.10 0.046
QTL-2 2 21.16 602 0.20 0.092
QTL-3 3 58.79 1313 0.30 0.138
QTL-4 3 65.18 1348 0.30 0.138
QTL-5 4 27.42 1564 0.40 0.185
QTL-6 4 41.19 1641 0.40 0.185
QTL-7 5 28.65 1994 0.10 0.046
a Variance of a QTL, which is defined as varðZkgkÞ, and the variance is taken across
all individuals in the MAGIC population.

b Proportion of the total phenotypic variance explained by the QTL.
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for simulation studies. The secondMAGIC population of mice
has both genotype and phenotype information and was used
as a real application example. The MAGIC population in
A. thaliana also has both genotype and phenotype information
and was reanalyzed to compare the results of the different
methods.

First MAGIC population of mice: This MAGIC population is
called theCC population (Churchill et al. 2004). The genotype
data were published by the Collaborative Cross Consortium
(2012). No phenotype information is available in the 458 CC
mice, and thus the data were used only for simulation study.
The CC population is an eight-parent MAGIC population de-
rived from a funnel mating design. We downloaded the re-
combination breakpoint data of 19 autosomes from 458 CC
mice posted on the University of North Carolina (UNC) Sys-
temGenetics website (http://www.csbio.unc.edu/CCstatus).
Using the breakpoint information, we inferred 6683 bins (in-
tact chromosome segments). A bin is defined as a segment
that contains no breakpoints across all lines within the seg-
ment. Within a bin, all markers segregate in exactly the same
pattern across lines (perfect LD). Therefore, a single marker
can represent the whole bin. For detailed information on bin
data analysis, see Xu (2013a). The bin data are available in
Supporting Information, File S1.

Second MAGIC population of mice: The second MAGIC
population was derived from the same eight parents as the
first CCpopulation, but theCCmicewere not fully inbred, and
therefore, the population is called the pre-CC population. The
data were obtained from Rutledge et al. (2014) and consist of
151 individuals. This data set includes 27,039 SNPs evenly
distributed among the 20 chromosomes (including the X
chromosome). Probabilities of the parental origins of the
SNPs were calculated using the HAPPY program based on
the hidden Markov model (Mott et al. 2000). In the original
study of this population, the authors focused on two traits
associated with severe asthma and decrements in lung func-
tion, including airway polymorphonuclear neutrophil (PMN)
recruitment and the concentration of CXCL1 in lung lavage
fluid. Here we reanalyzed the first trait, PMN.

MAGIC population of Arabidopsis: The MAGIC population
of A. thaliana (Kover et al. 2009) consists of 527 lines

descended from a heterogeneous stock of 19 intermated par-
ents. These lines and the 19 founders were genotyped with
1260 SNPmarkers [minor allele frequency (MAF). 5%] and
phenotyped for two development-related traits, the number
of days between bolting and flowering (DBF) and growth rate
(GR), where GR was measured as the residual of regression
by fitting the number of leaves to the number of days to
germination. The 527 lines were derived from the 19 founder
accessions of A. thaliana, intermating for four generations,
and then inbreeding for six additional generations, forming
nearly homozygous lines. The authors further updated the
database after the initial publication. We downloaded the
updated genotypes and phenotypes from http://mus.well.
ox.ac.uk/magic/. There were only 426 lines having both
the genotype and phenotype information. In this analysis,
we included the 426 lines and 1254 markers distributed
among five chromosomes (total length of the genome is
118 Mb). The founder strain probabilities for all loci were
calculated using the HAPPY program. We analyzed both
DBF and GR.

Statistical methods

Polygenic model: The polygenicmodel is the null model used
to scan the entire genome for QTL identification. We now use
an eight-parent MAGIC population as an example to demon-
strate the model. The method holds for any p-parent MAGIC
populations. Let y be an n3 1 vector of phenotypic values for
n individuals. Define Zk as an n 3 8 matrix of founder allele
inheritance indicators for locus k. The jth row of matrix Zk is
defined as a 1 3 8 vector. If this individual is a heterozygote
carrying the first and second founder alleles, then we define

Zjk ¼ ½ 1 1 0 0 0 0 0 0 �

If the individual is a homozygote inheriting both alleles from
the fifth founder, then Zjk is defined as

Zjk ¼ ½ 0 0 0 0 2 0 0 0 �

The general rule for defining Zjk is that there are at most two
nonzero elements, and the sum of all eight elements equals 2.
We then define the following polygenic model, which is the
null model used to test significance of an individual marker:

y ¼ Xbþ jþ e (1)

Table 2 Founder effects for the seven simulated QTL using genotypes of the first MAGIC population of mice

Founder namea

QTL Chr. Position A/J C57BL 129S1 NOD NZO CAST PWK WSB

QTL-1 1 41.35 20.174 20.015 0.145 20.409 0.046 20.281 20.058 20.073
QTL-2 2 21.16 20.473 20.095 20.063 0.352 0.052 0.161 20.074 0.303
QTL-3 3 58.79 0.21 20.181 20.398 20.414 0.391 20.422 20.089 20.174
QTL-4 3 65.18 20.294 0.116 0.58 0.067 20.111 0.172 20.443 0.267
QTL-5 4 27.42 0.549 0.113 0.595 0.266 20.13 0.161 20.43 20.265
QTL-6 4 41.19 20.287 0.225 20.027 0.104 20.123 20.227 0.809 0.061
QTL-7 5 28.65 20.252 20.042 0.042 20.083 0.028 0.346 20.202 0.132
a Strain names of the 8 founder strains initiating the CC population.
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where X is an n3 r design matrix for r fixed effects; b is an
r 3 1 vector for the r fixed effects; j is an n 3 1 vector of
polygenic effects with an assumed multivariate normal
distribution j � Nð0;Kf2Þ, where K is a marker-derived
kinship matrix and f2 is a polygenic variance; and
e � Nð0; Is2Þ is a vector of residual errors with an un-
known error variance s2. The marker inferred kinship ma-
trix is defined as

K ¼ 1
d

Xm
k¼1

ZkZ
T
k (2)

where d ¼ ð1=nÞtrðPm
k¼1ZkZT

kÞ is a normalization factor. The
expectation of y is EðyÞ ¼ Xb, and the variance-covariance
matrix is

varðyÞ ¼ Kf2 þ Is2 ¼ ðKlþ IÞs2 ¼ Hs2 (3)

where l ¼ f2=s2 is the variance ratio, and H ¼ Klþ I. After
absorbing b and s2, the restricted maximum likelihood is
only a function of l, which is

LðlÞ ¼ 2
1
2
lnjHj2 1

2
lnjXTH21Xj2 n2 r

2
lnðyTPyÞ (4)

where

P ¼ H21 2H21XðXTH21XÞ21XTH21 (5)

The restrictedmaximum likelihood solution oflwas obtained
by maximizing the preceding likelihood function using the
Newton iteration algorithm. The eigen-decomposition algo-
rithm proposed by Kang et al. (2008) was used to evaluate
the likelihood function for fast computation. The estimated
variance ratio is denoted by bl and will be used as a known
constant in the genomic scanning model that follows. File S2
describes the method of estimating l along with the effect of
the marker scanned, the so-called exact method (Zhou and
Stephens 2012).

Fixed model: To test the significance of the kth marker, we
first used the fixed-model approach proposed by Gatti et al.
(2014). The model is

y ¼ Xbþ Zkgk þ jþ e (6)

where Zk is the allelic inheritance matrix for marker k, as
defined earlier, and

gk ¼ ½ g1k g2k g3k g4k g5k g6k g7k g8k �T (7)

is an 8 3 1 vector for the eight founder allelic effects. Under
this model, the gk vector is assumed to be fixed effects. The
model is in fact a mixed model because it contains both fixed
and random effects.We call it the fixedmodel because later on
we will treat gk as random effects. Under the fixedmodel, we
can only estimate and test seven (8 – 1 = 7) effects by de-
leting the last founder allele from the model. The maximum-
likelihood method was used to estimate gk, and the result
turned out to be identical to the weighted-least-squares esti-
mate after premultiplying all variables (y, X, and Zk) by the
eigenvectors of the K matrix and the weight for the jth indi-
vidual being Wj ¼ 1=ðdjblþ 1Þ, where dj is the jth eigenvalue
of the K matrix (Xu 2013b). Note that bl is the estimated
variance ratio under the polygenic model, as described ear-
lier. This method is called the approximate method (Zhou and
Stephens 2012). The likelihood-ratio test was used as the test
statistic and is defined as

Gk ¼ 2 2
�
L0
�eb; es2�2 L1

�bb; bgk; bs2�� (8)

where L0 is the log likelihood function under the null model
(gk = 0), and L1 is the log likelihood function under the
alternative model. Note that the estimated b and s2 under
the two models are different. The P-value was calculated
from the chi-square distribution with seven degrees of free-
dom. This method is called FIXED-A when compared with
other methods.

Recall that Zk contributes to the calculation of the kin-
ship matrix K, as shown in equation 2. Although not ex-
plicitly estimated in the polygene, the effect of marker k
has a polygenic counterpart that may compete with the
estimated gk when marker k is scanned. Let bjk ¼ Zkbak be
the estimated polygenic effect contributed by marker k,
and bak is the estimated effect for this marker under the
polygenic model. We can release this effect from the poly-
gene back to the model to avoid this competition. The re-
vised model is

y ¼ Xbþ Zkgk þ j2bjk þ e (9)

Table 3 Statistical powers for the seven simulated QTL and FDR drawn from 1000 replicated simulation experiments

Method QTL-1 QTL-2 QTL-3 QTL-4 QTL-5 QTL-6 QTL-7 FDR

FIXED-A 0.001 0.699 0.827 0.911 0.985 0.628 0.003 0.0015
FIXED-B 0.003 0.868 0.919 0.957 0.993 0.750 0.014 0.0034
RANDOM-A 0.002 0.704 0.849 0.916 0.985 0.636 0.004 0.0014
RANDOM-B 0.003 0.868 0.923 0.959 0.993 0.754 0.014 0.0036
MPWGAIM 0.150 0.500 0.690 0.700 0.670 0.770 0.340 0.0179
IM 0.003 0.352 0.326 0.355 0.494 0.389 0.001 0.0608
CIM-30 0.002 0.476 0.620 0.761 0.986 0.754 0.015 0.0113
CIM-50 0.001 0.136 0.043 0.015 0.512 0.009 0.003 0.0317
CIM-65 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.940
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Rearranging this equation leads to

y þ bjk ¼ Xbþ Zkgk þ jþ e (10)

Further defining yk ¼ y þ bjk, we now have a new model

yk ¼ Xbþ Zkgk þ jþ e (11)

which is the same as equation 6 except that the y vector
changes every time a marker is scanned. Note that bjk, the
polygenic component from marker k, is calculated only once
under the null model. Therefore, this revised method does
not present much additional computational burden. The
method to obtain bjk is called the best linear unbiased predic-
tion (BLUP) and is described in File S2. This revised method
is called FIXED-B when compared with other methods.

Random model: The fixed-model approach may not be
stable when the number of founders is large (Gatti et al.
2014), and the design matrix Zk may have variable
ranks across different markers. Under the null model,
the likelihood-ratio test statistic follows a chi-square dis-
tribution with degrees of freedom depending on the num-
ber of founders. We propose to treat the eight founder
effects as random variables following a normal distribu-
tion with mean zero and a common variance. Although it
is still a mixed model, we call it a random model to distin-
guish it from the fixed model described earlier. The linear
model remains the same as equation 6, but gk � Nð0; I8f2

kÞ
is assumed, where f2

k is a locus-specific variance. The
expectation of y remains EðyÞ ¼ Xb, and the variance-
covariance matrix is

Figure 1 Test-statistic profiles of different methods
from a simulated data set. The test statistics are pre-
sented as 2log10ðPÞ. Locations of the simulated QTL
are represented by the filled triangles on the x-axis.
This figure demonstrates the common behaviors of
the different methods that are expected in a real data
analysis. (A) Comparison between RANDOM-A and
FIXED-A. (B) Comparison between FIXED-A and FIXED-B.
(C) Comparison between RANDOM-A and RANDOM-B.
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varðyÞ ¼ ZkZ
T
kf

2
k þ Kf2 þ Is2 ¼ ZkZ

T
kf

2
k þ ðKlþ IÞs2

¼ ZkZ
T
kf

2
k þHs2

(12)

where l inH is replaced by the estimated value under the poly-
genicmodel. A restricted-maximum-likelihood (REML) estimate
of f2

k is obtained by maximizing the restricted likelihood func-
tion. Woodbury matrix identities (Golub and Van Loan 1996)
are applied along with the eigen-decomposition to ease the
computational burden (File S2). The null hypothesis for marker
k is f2

k ¼ 0, which is tested using the likelihood-ratio test

Gk ¼ 2 2
�
L0
�eb; es2�2 L1

�bb; bf2
k ; bs2�� (13)

Under the null model, this test statistic follows approximately
a mixture of x2

0 and x2
1 distributions with an equal weight

(Chernoff 1954; Visscher 2006). This method is called
RANDOM-A when compared with other methods.

We also developed a revised version of the random model
by avoiding competition between the currentmarker scanned
and its polygenic counterpart usingmodel 11 aswedid for the
fixedmodel. This revised randommodel is called RANDOM-B
to distinguish it from other methods.

Figure 2 Average test-statistic profiles [2log10ðPÞ] of six methods from 1000 replicated simulation experiments. The horizontal dashed lines represent the
95% thresholds drawn from 1000 simulated samples under the null model. The true locations of the seven simulated QTL are represented by the filled
triangles on the x-axis. (A) Result of FIXED-A from the simulated data. (B) Result of FIXED-B from the simulated data. (C) Result of RANDOM-A from the
simulated data. (D) Result of RANDOM-B from the simulated data. (E) Result of IM from the simulated data. (F) Result of CIM-30 from the simulated data.
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Multiparent whole-genome average interval mapping
(MPWGAIM): Here we also performed the analysis using
the MPWGAIM approach proposed by Verbyla et al. (2014)
for comparison using their R package mpwgaim. In the
mpwgaim package, only detected markers are reported with-
out test statistics attached. For comparisonwith ourmethods,
we calculated the Wald test statistics of detected markers
based on their estimated effects and variances and then
obtained the P-value from the chi-square distribution with
8 2 1 = 7 degrees of freedom. For the simulated data anal-
ysis, we also applied the MPWGAIM method. The empirical
critical value for hypothesis test was inferred from multiple
(1000) simulations under the null model. The 95th percentile

of the highestWald test from each of themultiple simulations
was chosen as the empirical critical value. The P-value was
transformed by2log10 and used to determine whether or not
a marker exceeds the empirical critical value.

IM and CIM: IM (Lander and Botstein 1989) and CIM (Zeng
1994) also were used to analyze the data to compare the
results with the new methods. These two methods are called
IM and CIM-x, respectively, where x indicates the number of
cofactors included in the model for background control. The
statistical model for IM differs from model 6 by ignoring the
polygenic effect. The model for CIM differs from model 6 by
replacing the polygenic effect with selected cofactors. The IM

Figure 3 True and estimated allelic effects of eight founders for seven simulated QTL in the simulation experiment. The estimated effects are the
average effects of 1000 replicated experiments. Results from four methods are presented: FIXED-A, FIXED-B, RANDOM-A, and RANDOM-B. (A) Effect of
QTL-1. (B) Effect of QTL-2. (C) Effect of QTL-3. (D) Effect of QTL-4. (E) Effect of QTL-5. (F) Effect of QTL-6. (G) Effect of QTL-7.
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method was implemented in the HAPPY program (Mott et al.
2000). The CIM method was implemented using our own R
program. For the CIM-x method, the number of cofactors x
was set at the following levels for the first MAGIC population
of mice: 65, 50, and 30. For a sample size of 458, the maxi-
mum number of cofactors cannot be higher than 458/7� 65;
otherwise, there will not be any degrees of freedom left to
estimate the residual error variance. For the second MAGIC
population of mice (the pre-CC population), the number of
cofactors was set at 20, 10, and 5. The population size is 151,
and thus the number of cofactors cannot be higher than
151/7 � 20. For the Arabidopsis population, the number of
cofactors was set at 20, 15, and 10. The maximum number of

possible cofactors cannot be greater than 428/18 � 23. The
likelihood-ratio test statistic also was used for the IM and CIM
methods.

P-value and permutation: We now have a total of seven
methods to compare: FIXED-A, MPWGAIM, IM, and CIM are
existingmethods,andFIXED-B,RANDOM-A,andRANDOM-B
are new methods proposed in this study. The P-value of a
marker was calculated from the central chi-square distribu-
tion with 8 2 1 = 7 degrees of freedom for the two mouse
populations and 19 2 1 = 18 degrees of freedom for the
Arabidopsis population under the FIXED-A, FIXED-B,
MPWGAIM, IM, and CIM methods. For the RANDOM-A and

Figure 4 True and estimated allelic effects of eight founders for seven simulated QTL in the simulation experiment. The estimated effects are the
average effects of 1000 replicated experiments. Results from two methods are presented: IM and CIM-30, where -30 means that 30 markers are used as
cofactors. (A) Effect of QTL-1. (B) Effect of QTL-2. (C) Effect of QTL-3. (D) Effect of QTL-4. (E) Effect of QTL-5. (F) Effect of QTL-6. (G) Effect of QTL-7.
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RANDOM-B methods, the P-value for each marker was cal-
culated from a mixture of two chi-square distributions,
denoted by 1

2x
2
0 þ 1

2x
2
1, where x2

0 is just a fixed number of
0 (Chernoff 1954; Visscher 2006). Let Pk be the P-value for
marker k, it was calculated using

Pk ¼
� 1  Gk ¼ 0

1
2
Pr
�
x21 .Gk

�
Gk . 0

(14)

where Gk is the likelihood-ratio test statistic calculated using
equation 13, and x2

1 is a chi-square variable with one degree

of freedom. In the real data analysis, we permuted the data
1000 times to generate a null distribution of the test statistics
[2log10ðPÞ]. From this null distribution, we determined the
95% quantile and used it as an empirical critical value of a
test statistic. A marker with the test statistic [2log10ðPÞ]
greater than this critical value is claimed to be significant at
the 0.05 genome-wide type I error rate. For the IM and CIM
methods, a permuted sample was generated by randomly
shuffling the phenotypes and keeping the genotypes intact.
For the four methods with polygenic background control, the
labels of the kinshipmatrix gowith the reshuffled phenotypes

Figure 5 Test-statistic profiles [2log10ðPÞ] for DBF of the A. thaliana MAGIC population obtained from six methods. The horizontal dotted lines
represent the 95% thresholds generated from 1000 permuted samples. (A) Result of the FIXED-A method. (B) Result of the FIXED-B method. (C) Result
of the RANDOM-A method. (D) Result of the RANDOM-B method. (E) Result of the IM method. (F) Result of the CIM-10 method.
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so that the polygenic covariance structure remains the same
as that in the original data set. This kind of permutation will
not destroy the polygenic variance (Cheng and Palmer
2013). Note that permutation was used only in real data
analysis to generate empirical critical values for significance
tests. In power calculation of the simulated data analysis,
empirical critical values were generated from multiple simu-
lations under the null model.

Simulation experiment

The simulation experiment was conducted based on the
genotypic data of the first MAGIC population of mice (the
CC population). As a result, the sample size was fixed at 458.
We used genotypes of the first five chromosomes as the true
genotypes to conduct the simulation experiment. The five
chromosomes contain 490, 503, 428,423, and 406 bins, re-
spectively, leading to a total of 2250 bins. The design of the
simulated QTLmimicked closely that of Verbyla et al. (2014).
We simulated a total of seven QTL distributed on the five
chromosomes. Information about the seven simulated QTL
is shown in Table 1. The simulated allelic effects of the eight
founders are given in Table 2. The polygenic and residual
error variances were set at f2 = 0.5 and s2 = 0.5, respec-
tively. The seven QTL collectively have a total variance of
1.1752, which is partitioned into the sum of variances for
all seven QTL (1.80) plus twice the sum of all covariances
20.6248 (1.80 2 0.6248 = 1.1752). The total phenotypic
variance is 1.1752 + 0.5 + 0.5 = 2.1752. Therefore, the
proportion contributed to the phenotypic variance by all
seven QTL is 1.1752/2.1752 = 0.5403. The proportion of
the polygenic variance contributed to the phenotypic vari-
ance is 0.5/2.1752 = 0.2298. The total genetic contribution
(QTL + polygene) is 0.5403 + 0.2298 = 0.7701. QTL-1 and
-7 are small in terms of the proportions contributed to the
trait phenotypic variance. The remaining four QTL are rela-
tively large.

Under the preceding parameter setups,we generated 1000
independent data sets to evaluate the empirical powers under
a 0.05 type I error. We also generated 1000 additional data sets
under the null model (no QTL were simulated but the poly-
gene). Results of the data analysis from the null model were
used to generate the empirical distribution of the test statistics
[2log10ðPÞ] and draw the empirical thresholds of the test
statistics for hypothesis tests. The statistical powers from
the 1000 replicated simulation experiments were reported
by comparing the results with the empirically drawn thresholds

of the test statistics. For each simulated QTL, a65-cMwindow
around the true position was reserved for power calculation, as
done by Verbyla et al. (2014). If any bin within this window
was detected, the QTL covered by this window was claimed to
be detected. Any detected bins beyond this window were
counted as false positives. All sevenmethodsmentioned earlier
were used to analyze the simulated data. The empirical powers
were compared for the seven methods.

Data availability

The new methods of QTL mapping for MAGIC populations
were implemented in an R package calledMagicQTL, which is
provided in the Supporting Information and downloadable
from the journal article website (see File S3 for the R package
and File S4 for the user instruction of the R package). R codes
for data simulation, data preparation, and data analysis are
downloadable fromhttps://github.com/JulongWei/MagicQTL.
This website also provides the R code for calling theMPWGAIM
package.

Results

Simulation studies

Statistical powers and false discovery rate (FDR): The
empirical statistical powers drawn from 1000 replicated sim-
ulations are given in Table 3. In general, the RANDOM-A and
RANDOM-B methods have slightly higher powers than the
FIXED-A and FIXED-B methods for the five large simulated
QTL. The FIXED-B and RANDOM-B methods have substan-
tially higher powers than the FIXED-A and RANDOM-Ameth-
ods. The MPWGAIM method has lower power for the first
four large QTL (QTL-2 to QTL-5) than that of the FIXED-A,
FIXED-B, RANDOM-A, and RANDOM-B methods. The
MPWGAIMmethod has an advantage over the othermethods
for detecting the following three QTL: QTL-1, QTL-6, and
QTL-7. Except for the MPWGAIM method, no methods have
sufficient power to detect the two small QTL (QTL-1 and
QTL-7). Overall, the new methods (i.e., FIXED-B, RANDOM-A,
and RANDOM-B) are more powerful than the existing
methods (i.e., FIXED-A, MPWGAIM, IM, and CIM) for large
QTL.

We also compared the FDR for the seven methods (see
the last column of Table 3). Here we define the FDR as the
proportion of detected QTL that are not true (65.00 cM
away from a simulated QTL). Clearly, the FIXED-A, FIXED-B,
RANDOM-A, and RANDOM-B methods achieve better control
of the FDR than the MPWGAIM method, which, in general, is
better than the IM and CIM methods.

Behaviors of the methods: We first demonstrate the differ-
ence between the randommodel and the fixedmodel in terms
of the test statistic expressed as2log10ðPÞ of scannedmarkers
using a single simulated data set (Figure 1). Figure 1A shows
the difference between the RANDOM-A and FIXED-A meth-
ods. Clearly, the test statistic of the FIXED-A method is

Table 4 Estimated variance components and heritability of two
traits in the A. thaliana population and one trait in the mouse
population

Population Trait
Polygenic
variance

Residual
variance Heritability

A. thaliana Bolt to flower 2.187 4.203 0.342
Growth rate 1.989 2.215 0.473

Mouse PMN 1.373 1.127 0.549
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slightly higher than that of the RANDOM-A method. We also
noticed that the 2log10ðPÞ statistic for the RANDOM-A
method is very close to zero in regions where no QTL was
simulated. This demonstrates the shrinkage property of the
randommethod. In either case, the test-statistic profiles show
clear peaks at positions where simulated QTL reside, and the
heights of the peaks are proportional to the sizes of the sim-
ulated QTL. Figure 1B compares the FIXED-A and FIXED-B
methods, where the2log10ðPÞ profile of the FIXED-B method
shows higher peaks than the FIXED-A method. This implies
that the FIXED-B method may have a higher power than the
FIXED-A method. Figure 1C compares the RANDOM-A and
RANDOM-B methods. This also implies that releasing the
polygenic counterpart of a marker back to the model may
help to increase the power of detecting this marker. These
types of behaviors are expected to be observed in data anal-
yses of real experiments.

Average test-statistic profiles: We replicated the simulation
experiment 1000 times under both the null model (without
QTL effects) and the alternativemodel (with simulatedQTL).
The average test-statistic profiles [2log10ðPÞ] over the 1000
replicates and the 95% threshold values are illustrated in
Figure 2. Comparing the fixed models (Figure 2, A and B)
with the random models (Figure 2, C and D), we found that
the test statistics are slightly higher for the fixed models than
for the random models, but the former are also associated
with higher threshold values in the test statistics. Comparing
-Amodels (Figure 2, A and C)with -Bmodels (Figure 2, B and
D), the latter have higher peaks at positions where simulated
QTL reside. For the four models, peaks corresponding to the
five large QTL are higher than the threshold values, but peaks
corresponding to the two small QTL are below the thresholds.
The peaks for the second QTL barely touch the thresholds for

-A models (Figure 2, A and C), indicating that the modified
models (releasing the polygenic effect back to the model)
help to boost the power. None of the peaks in IM reaches
the threshold value (Figure 2E). CIM with 30 cofactors only
detected four of the five large QTL (Figure 2F). When we
increased the number of cofactors to 50 and 65, the CIM
method behaved very badly (Figure S1). For the MPWGAIM
method, owing to the lack of the test statistics in the package,
we only reported the power and FDR.

Average estimated founder effects: We also estimated the
founder effects for the seven simulated QTL based on all
simulations, and they are illustrated in Figure 3 for the fixed
and random models and in Figure 4 for the IM and CIM
procedures. The true effects also were plotted along with
the estimated effects. All methods provided good estimates
of the founder effects. The random models tend to shrink the
estimated effects toward zero when the simulated QTL sizes
are small (Figure 3, A and G). Although the IM and CIM
methods are not as good as the other methods in terms of
statistical power, both gave very good estimated founder ef-
fects. Figure S2 shows the average estimated effects of the
founders when 50 and 65 markers were used as cofactors for
the CIM method.

Results of experimental data analyses: MAGIC population
in A. thaliana: Under the polygenic model, we estimated the
variance and heritability for each of the two traits, the days
between bolting and flowering (DBF), and the growth rate
(GR). The results are shown in Table 4. The heritability of
the two traits is 0.342 and 0.473, respectively. The variance
ratios for DBF and GR are blDBF ¼ bf2

=bs2 ¼ 0:5203 andblGR ¼ bf2
=bs2 ¼ 0:8980, respectively, which were used as

known values and incorporated into the covariance structures

Table 5 Significant SNPs associated with two traits in the A. thaliana population and one trait in the mouse population

Population Trait Method SNP Chr. Position (kb) P-valuea Varianceb
Candidate
gene (kb)

A. thaliana Bolt to flower RANDOM-A MN4_142943 4 143 0.011 0.437 FRIGIDA
RANDOM-B MN4_142943 4 143 0.005 0.517 Chr. 4: 269–272

MN5_2707605 5 2,708 0.023 0.598
IM MASC02783 5 2,522 0.041 0.874
MPWGAIM MN4_142943 4 143 —c 0.527

MN5_1931248 5 1,931 —c 0.629
Growth rate FIXED-B GA1_3232 4 1,243 0.013 0.626 FRIGIDA

RANDOM-B GA1_8429 4 1,238 0.010 0.299 Chr. 4: 269–272
MPWGAIM GA1_8429 4 1,238 —c 0.253 AT4G02990 (RUG2)
IM FRI_1888 4 270 0.005 0.493 Chr. 4: 1322–1324
CIM-10 GA1_7762 4 1,239 0.011 0.853 AT4G02780 (GA1)

Chr. 4: 1238–1245
Mouse PMN FIXED-B M2.887 2 87,583 0.040 0.471

RANDOM-B M2.887 2 87,583 0.030 0.292
MPWGAIM M2.887 2 87,583 —c 0.263
IM M2.887 2 87,583 0.013 0.450
CIM-5 M2.824 2 80,663 0.028 0.496

a P-value was obtained from a permutation test.
b Denotes the variance of the effect of the detected marker combining the founder allele inheritance indicators.
c Owing to the high computational cost, no permutation analysis was conducted.
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for genomic scanning of all markers. Figure 5 illustrates the
test-statistic profiles [2log10ðPÞ] along with the 95% thresh-
olds generated from 1000 permuted samples for DBF. Markers
with test-statistic values greater than the thresholds were
claimed to be statistically significant. There are two peaks
standing out on chromosomes 4 and 5, respectively, for all
methods except CIM-10. These two regions also showed up
in the original analysis of Kover et al. (2009). However, the
onlymethod that detected both peaks is RANDOM-B, implying
that this method may be the most powerful method. The de-
tected QTL on chromosome 4 is located near a known gene
called FRIGIDA. No related geneswere foundnear the detected

QTL on chromosome 5. The MPWGAIMmethod also detected
the two QTL in the same regions (Table 5). In addition, the
MPWGAIM method detected three more QTL, one on
chromosome 1 (PERL0236029) and two on chromosome 3
(MASC00175 and MN3_22843506). Figure S3 (A and B)
shows the results of this data analysis using the CIM
method when 15 and 20 markers were used as cofactors.

The test-statistic profiles along with permutation-generated
thresholds are illustrated in Figure 6 for GR. There are many
bumps in the test-statistic profiles below the thresholds,
indicating that this trait is mostly polygenic. One peak in
the beginning of chromosome 4 appears to be common to

Figure 6 Test-statistic profiles [2log10ðPÞ] for GR of the A. thaliana MAGIC population obtained from six methods. The horizontal dotted lines
represent the 95% thresholds generated from 1000 permuted samples. (A) Result of the FIXED-A method. (B) Result of the FIXED-B method. (C) Result
of the RANDOM-A method. (D) Result of the RANDOM-B method. (E) Result of the IM method. (F) Result of the CIM-10 method.
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all six methods. Except the FIXED-A and RANDOM-A meth-
ods, all other methods have detected the peak as statistically
significant. We list the SNPs exceeding the threshold values
in Table 5. Three candidate genes are found in this area
(about 6200 kb around the detected marker), FRIGIDA,
AT4G02990 (RUG2), and AT4G02780 (GA1). The first candi-
date gene (FRIGIDA) is known to affect flowering time. This
gene is also related to growth rate in the original study (Kover
et al. 2009), where it was pointed out that this gene not only
plays an important role in plan reproduction but also is
a major determinant of the plant developmental process.
The second candidate gene (RUG2) is important for leaf

development in A. thaliana, and its loss of function leads to
a pleiotropic phenotype, including leaf variegation, reduced
growth, and perturbed mitochondrial and chloroplastic gene
expression and development (Quesada et al. 2011). The third
candidate gene (GA1) codes for the enzyme ent-kaurene syn-
thase A. In GA1 mutants, the gibberellin biosynthesis path-
way is inactivated. As a result, these mutants are deficient
in bioactive Gas (Sun and Kamiya 1994). Some additional
markers are detected by the IM and MPWGAIM methods,
and they are listed in Table S1. Themarkers on chromosomes
2 and 5 detected by the IM method overlap with the addi-
tionalmarkers detected by theMPWGAIMmethod. The other

Figure 7 Test-statistic profiles [2log10ðPÞ] for PMN of the pre-CC mouse population obtained from six methods. The horizontal dotted lines represent
the 95% thresholds generated from 1000 permuted samples. (A) Result of the FIXED-A method. (B) Result of the FIXED-B method. (C) Result of the
RANDOM-A method. (D) Result of the RANDOM-B method. (E) Result of the IM method. (F) Result of the CIM-5 method.
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methods also show some bumps in regions near the addi-
tional markers detected by the IM and MPWGAIM methods.
These regions (about 6200 kb around the peaked markers)
harbored several candidate genes, which are not related to
GR in terms of gene function. Figure S3 (C and D) shows the
results when 15 and 20 markers were used as cofactors for
the CIM method.

Pre-CC population of mice:Weanalyzed a trait named PMN
from this population. The phenotypic values were log trans-
formed prior to the analysis, as done in the original study.
We estimated the genetic variance and heritability of the
trait, which are presented in Table 3. The trait is highly
heritable, with a heritability of 0.55. The variance ratio isbl ¼ bf2

=bs2 ¼ 1:373=1:127 ¼ 1:2183, which was used along
with the kinship matrix to control the polygenic effect in QTL
mapping. We scanned the entire genome using all seven
methods. The test-statistic profiles are illustrated in Figure
7. Except for the FIXED-A and RANDOM-Amethods, all other
methods detected a marker on chromosome 2 (Table 5). This
marker also was detected by Rutledge et al. (2014) in the
original study. They found a candidate gene (Dpn1) near this
marker. No other candidate genes were found in the neigh-
borhood of this marker. Figure S3 (E and F) shows the results
when 10 and 20 markers were used as cofactors for the CIM
method.

Discussion

A key difference between QTL mapping in MAGIC and bi-
parental populations is the difference in the number of effects
to be estimated and tested per locus. Under the fixed-model
framework, for an eight-parent MAGIC population, the num-
ber of effects per locus is 821=7,while it is always 22 1=1
for a biparental population. Under the null model, the likeli-
hood-ratio text follows a chi-square distribution with 7 de-
grees of freedom. In a p-parent MAGIC population, p 2 1 is
the degrees of freedom. When p is large, this test is not con-
venient and sometimes can be unstable (Gatti et al. 2014).
For example, if some founder alleles fail to appear in the
progeny for some loci, the Z matrices for these loci will not
have the same rank as those loci with full representation of
all founders. This variable-rank situation will cause some
difficulty in programming. More important, the degree of
freedom will vary across loci, so the likelihood-ratio text sta-
tistic will not be comparable across loci. We developed a
random-model approach to estimate and test the variance

among all founder effects per locus. As a result, we only need
to estimate and test a single parameter (the variance) regard-
less how large the number of founders is in a MAGIC popu-
lation. Simulation studies showed that the random-model
approach is slightly more powerful than the fixed-model
approach.

Some investigators also considered founder allelic effects
as random inMAGIC populationQTLmapping (Verbyla et al.
2014; Zhang et al. 2014). The MPWGAIM procedure of
Verbyla et al. (2014) assumes that all founder allelic effects of
the same locus share a common variance and that this variance
varies across loci. A forward variable selection approach was
adopted by adding one locus at a time to the model until no
further improvement was achieved. For consistency of com-
parison, we adopted the critical value generated from the
null model, similar to the other methods, to evaluate the
power of QTL detection by the MPWGAIM method using
the same test criterion. We demonstrated lower powers (for
large QTL) and higher FDR for the MPWGAIM method. The
MPWGAIM method can be time consuming if the numbers of
markers and QTL included in the model are large. Table 6
compares the computational times of our methods with that
of the MPWGAIM method under several different scenarios.
Clearly, the new genome-scanning approaches proposed
in this study are substantially faster than the MPWGAIM
method. The Bayesian method of Zhang et al. (2014) also
treats founder allelic effects as random, and it is a multiple-
QTL model. Because the method is implemented via an
MCMC sampling scheme, it is also computationally expen-
sive. The authors suggested that the method is better used
to fine-tune the results after an initial genome scan of all
markers.

When cofactors are replaced by the polygene for back-
ground control, there is a potential competition between a
currently scannedmarker and its counterpart in the polygene,
which isdetrimental to thepower.Thecompetitioncanbevery
serious when the number of markers used to calculate the
kinship matrix is small, although it may be negligible when a
very large number ofmarkers are used to calculate the kinship
matrix. To prevent such a competition, we proposed releasing
the polygenic component corresponding to the scanned
marker back to the model. This has dramatically increased
the statistical power of QTL detection. The BLUP estimate of a
marker effect in the polygene is calculated only once prior to
the marker scanning step, and thus little additional compu-
tational cost is present. We could have removed the currently

Table 6 Computational performances of different methods with different sample sizes and different numbers of markers

Method Mouse-458-2250a Mouse-458-6683b Mouse-151-27309 Arabidopsis-426-1254

FIXED-A 22 sec 53 sec 1 min 43 sec 23 sec
FIXED-B 41 sec 1 min 44 sec 4 min 25 sec 34 sec
RANDOM-A 36 sec 1 min 42 sec 5 min 21 sec 27 sec
RANDOM-B 55 sec 2 min 31 sec 8 min 10 sec 39 sec
MPWGAIM 32 min 29 sec 2 h 33 min 1h 33 min 11 min 51 sec
a The first number after the species name is the sample size, and the second number is the number of markers.
b The number of bins is 6683, which is the total number of bins of the entire 19 chromosomes of the mouse genome.
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scanned marker from the kinship matrix to avoid the com-
petition. However, this would substantially increase the
computational burden because a new kinship matrix would
have to be provided for each marker scanned. Special
algorithms, such as the spectrally transformed linear mixed
model (FaST-LMM) proposed by Lippert et al. (2011), may
be used to ease the computational intensity. However, the
fast speed is not achieved without a cost. One has to use
markers with a number substantially smaller than the sam-
ple size to gain the fast speed. When the number of markers
used to construct the kinship matrix is too small, optimal
control of the polygene may not be guaranteed (Zhou and
Stephens 2012).

The genotype coding system of QTL mapping in MAGIC
populations is different from that in biparental populations.
We used the Zk variable (an n 3 8 matrix) to indicate the
founder allelic inheritances for the kth marker. This variable
also was used to calculate the marker-inferred kinship matrix
K. The kinship matrix was eventually rescaled by a normali-
zation factor, which is the average of the diagonal elements of
the original unnormalized kinship matrix. After normaliza-
tion, the diagonal elements of the kinship matrix are all
around unity. Such normalization will bring the estimated
polygenic variance into the same scale as the residual error
variance. Our normalization factor is different from that pro-
posed by VanRaden (2008), which is the sum of heterozygos-
ity across all loci. The normalization factor only changes the
scale of the estimated polygenic variance; it affects neither
the hypothesis tests nor the results of QTL mapping. In
GWAS, where the Zk variable is simply a vector, Kang et al.
(2008) placed a weight variable for each marker in calculat-
ing the kinship matrix to take into account variable informa-
tion contents (allele frequencies) across differentmarker loci.
It is not obvious how to evaluate information contents when
the genotype indicator variable Zk for each marker is a ma-
trix. In CC and pre-CC mice, all founders contributed equally
to the mapping population, and thus, the weight variable can
be safely ignored (e.g., taking the default value of 1 from all
markers). In the 19-parent MAGIC population of Arabidopsis,
where the parental contribution varies across founders, a
weighted kinship matrix may be more appropriate. Further
study is needed to develop an appropriate weight matrix.
Alternatively, the method of Gatti et al. (2014) for calculating
the kinship matrix may be adopted here. The relationship
between each pair of individuals is a kind of average “scaled
similarity” over all loci. In our notation, the relationship be-
tween individuals i and j (the ith row and the jth column of
the kinship matrix) is expressed as

Kij ¼ 1
m

Xm
k¼1

ZTikZjkffiffiffiffiffiffiffiffiffiffiffiffi
ZTikZik

q ffiffiffiffiffiffiffiffiffiffiffiffi
ZTjkZjk

q (15)

We did not use this kinship matrix because the polygenic
counterpart of marker k (used in the FIXED-B and RANDOM-B
methods) would be difficult to interpret when this K matrix

is used. Furthermore, whether or not such a kinship matrix
can adjust unbalanced contributions from different founders
is still questionable.

The random-model approach is a kind of Bayesian analysis
if the founder effects are considered as parameters and the
variance of the founder effects is considered as a prior vari-
ance. Because the prior variance is estimated from the data, it
is called empirical Bayes (Xu 2007).The random model de-
veloped for QTL mapping in MAGIC populations can be used
in a number of other situations. The method can be extended
to QTL mapping in DO populations, such as the DO popula-
tion of mice developed from the same eight parents as the CC
mice (Gatti et al. 2014).

The random-model approach is computationally more in-
tensive than the fixed-model approach, where theQTL effects
are treated as fixed effects because it requires estimation of a
variance component for each marker scanned. We adopted
the eigen-decomposition algorithms for the polygenic (null)
model and combined them with the Woodbury matrix
identity for estimation of QTL variance. It would not be
realistic to perform such a random-model QTL mapping
without resort to these special algorithms. There may be
room for further improvement in the computational speed.
However, we emphasize the concept and the novelty of the
method, which are far more important than technical im-
provement in computational speed. Finally, all analyses
were performed using an R programwritten by the authors.
We developed an R package named MagicQTL, which is
provided on the journal website.
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 2 

Figure S1. Average test statistic profiles ( 10log ( )p− ) of the CIM method using different 3 
numbers of co-factors (CIM-50 and CIM-65) from 1000 replicated simulation experiments. The 4 
horizontal dashed lines represent the 95% thresholds drawn from 1000 simulated samples under 5 
the null model. The true locations of the seven simulated QTL are represented by the filled 6 
triangles on the x-axis. 7 

8 



  9 

 10 

Figure S2. True and estimated allelic effects of eight founders for seven simulated QTL in the 11 
simulation experiment. The estimated effects are the average effects of 1000 replicated 12 
experiments. Results from two methods are presented in this figure: CIM-50 and CIM-65, where 13 
the numbers after CIM represent the numbers of co-factors. 14 

  15 



 16 

 17 

Figure S3. Test statistic profiles ( 10log ( )p− ) for three traits in two populations using the CIM 18 

methods with alternative numbers of co-factors. The horizontal dotted lines represent the 95% 19 
thresholds generated from 1000 permuted samples. 20 

21 



Table S1. More SNPs related to growth rate detected by the IM and MPWGAIM methods in 22 
Arabidopsis thaliana. 23 

Method SNP Chr Position (kb) p-valuea Varianceb 

IM ATC_828 2 11,773 0.043 0.422 
 ATMYB33_119 5 1,837 0.024 0.442 
 MN5_4344025 5 4,344 0.023 0.447 
 NMSNP5_652310 5 6,523 0.01 0.459 
MPWGAIM SGCSNP10779 1 28,831 —c 0.072 
 MASC05360 2 5,179 — 0.057 
 MASC02928 2 9,753 — 0.091 
 HOS1_1176 2 16,614 — 0.111 
 MN3_4470311 3 4,470 — 0.079 
 PHYD_2806 4 9,197 — 0.066 
 MN5_1399959 5 1,400 — 0.048 
 MASC07384 5 8,001 — 0.156 
 VIN3_300 5 23,249 — 0.033 
 24 
a-p-value obtained from 1000 permutation analysis. 25 
b variance of effects of the detected marker combining the founder allele inheritance indicators. 26 
c “—” due to extensive computing time for the MPWGAIM method, no permutation was 27 
conducted.   28 
 29 



File S1: Bin data of the Collaborative Cross (CC) mouse population of 458 individuals.  (.RData, 494 KB) 

 

Available for download as a .RData file at: 

 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179945/-/DC1/FileS1.RData 
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File S1 Bin data of the Collaborative Cross (CC) mouse population of 458 individuals. 

File S2 Supplementary notes: derivation of various formulas. 

File S3 MagicQTL_1.0.tar.gz the R package (MagicQTL). 

File S4 Documents for the MagicQTL R package.  

 

File S2: Derivation of various formulas 

Restricted maximum likelihood estimation of variance component via eigen-decomposition: 

Under the polygenic model, the restricted log likelihood function is, 
2 1 1

2

1 1 1
( ) ln( ) ln | | ( ) ( ) ln | |

2 2 2 2
T Tn r

L H y X H y X X H X   


 
        (1) 

where  2, ,     is the parameter vector,   is a vector of fixed effects, 2 2/    the 

variance ratio, 2  is the polygenic variance, 2  is the residual variance, n is the sample size, r  
is the rank of matrix X, H K I   is the covariance structure and K is a marker inferred 
kinship matrix. Given  , the maximum likelihood estimates of   and 2  are  

1 1 1

2 1

ˆ ( )

1 ˆ ˆˆ ( ) ( )

T T

T

X H X X H y

y X H y X
n r



  

  





  


    (2) 

These two estimated parameters are expressed as functions of  . Substituting   and 2  in 

equation (1) by ̂  and 2̂  in equation (2) yields a profiled likelihood function that is only a 
function of  , as shown below, 

11 1
( ) ln | | ln | | ln( )

2 2 2
T Tn r

L H X H X y Py  
       (3) 

where 
1 1 1 1 1( )T TP H H X X H X X H          (4) 

A numeric solution of   can be found iteratively using the Newton algorithm,  
12 ( ) ( )

( 1) ( )
2

( ) ( )t t
t t L L  

 



     
         

   (5) 

The likelihood function requires inverse and determinant of matrix H, an n n  matrix, and the 
computation can be demanding for large sample sizes. We used the eigen-decomposition 
approach to deal with the K matrix (KANG et al. 2008; ZHOU and STEPHENS 2012). Further 
investigation of equation (3) shows that the profiled restricted log likelihood function only 
requires the log determinant of matrix H and various quadratic forms involving 1H  . Let us 
perform eigen-decomposition for K so that TK UDU , where  1diag ,..., nD    is a diagonal 



matrix for the eigenvalues and U  is the eigenvectors, an n n  matrix. The eigenvectors have the 
property of 1TU U   so that TUU I . Now, let us rewrite matrix H by 

( )T TH K I UDU I U D I U           (6) 
The determinant of H is  

| | | ( ) | | || | | |T TH U D I U D I UU D I          (7) 
where D I   is a diagonal matrix. Therefore, the log determinant of matrix H is 

1

ln | | ln( 1)
n

j
j

H  


       (8) 

The restricted log likelihood function also involves various quadratic terms in the form of 
1Ta H b , for example, 1TX H X , 1TX H y  and 1Ty H y . Using eigenvalue decomposition, we can 

rewrite the quadratic form by 

1 1 * 1 * * * 1

1

( ) ( ) ( 1)
n

T T T T T
j j j

j

a H b a U D I U b a D I b a b      



       (9) 

where * Ta U a  and * Tb U b . Note that *
ja  is the jth element (row) of vector (matrix) *a  and *

jb  

is the jth element (row) of vector (matrix) *b . Using eigenvalue decomposition, matrix inversion 
and determinant calculation have been simplified into simple summations, and thus, the 
computational speed can be substantially improved. 
 
Best linear unbiased prediction (BLUP) of a marker effect under the polygenic model: 
Under the polygenic model, all marker effects share the same variance, i.e., 2~ (0, / )ka N I m ) 

for 1,...,k m , where 2 2   is estimated from the data under the polygenic model. The 

BLUP estimate of ka  is  
2 2 2 1ˆ ˆ ˆˆ ˆE( | ) ( / )( ) ( )T

k k ka a y Z m K I y X         (10) 

We have a total of m markers and thus m effects to estimate under the polygenic model (prior to 

the marker scanning step). The polygenic effect associated with marker k is ˆ ˆk k kZ a  . Here, 

eigen-decomposition is also required to avoid direct calculation of 2 2 1ˆ ˆ( )K I   . 
 
Estimating variance components via Woodbury matrix identity and eigen-decomposition: 
The genomic scanning model for the kth locus is 

k ky X Z            (11) 

where   is the polygene and the general error term    has E( ) 0    and 
2ˆvar( ) ( )K I      . We assume 2

8~ (0, )k kN I   and perform a significance test for 2
0 : 0kH   . 

Under the null hypothesis, the kth locus is not linked to QTL. The expectation of y remains 
E( )y X  , but the variance-covariance matrix is  

2 2 2 2ˆvar( ) ( )T T
k k k k k ky Z Z K I Z Z K I             (12) 

where 2 2/k k    is the variance ratio. Let * Ty U y , * TX U X  and * T
k kZ U Z  be transformed 

variables so that  
* * * ( )T

k ky X Z U            (13) 

The variance-covariance matrix of *y  is 
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where ˆR D I   is a known diagonal matrix for the general covariance structure. Let 
* *T

k k k kH Z Z R   and define the restricted log likelihood function for parameter vector 

 2, ,k     by 
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Given k , the maximum likelihood estimates of   and 2  are  
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The above estimated parameters are expressed as functions of k . Substituting   and 2  in 

equation (15) by ̂  and 2̂  in equation (16) yields a profiled likelihood function that is only a 
function of k , as shown below, 
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where 
1 1 * * 1 * 1 * 1( )T T
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The Newton algorithm for the numeric solution of k  is  
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   (19) 

Once the iteration process has converged, the solution is the MLE of k , denoted by k̂ .  
 
Efficient matrix inversion and determinant calculation are required to evaluate the log likelihood 
function shown in equation (17). We used the Woodbury matrix identities to improve the 
computational speed (GOLUB and VAN LOAN 1996). The Woodbury matrix identities are   
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and 
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Because ˆR D I   is a diagonal matrix, the Woodbury identities convert the above calculations 
into inversion and determinant of matrices with dimension 8 8 . The restricted likelihood 
function also involves various quadratic terms in the form of 1T

ka H b , which can be expressed as 
1 1 1 * * 1 * 1 * 1

8( )T T T T T
k k k k k k ka H b a R b a R Z Z R Z I Z R b            (22) 

Note that the quadratic term involving 1
kH   has been expressed as a function of various 

simplified 1Ta R b  terms. The simplified quadratic term is calculated using 
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      (23) 

where ja  and jb  are the jth rows of matrices a  and b , respectively, for 1,...,j n . 
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File S3: MagicQTL_1.0.tar.gz the R package (MagicQTL). (.gz, 590 KB) 

 

Available for download as a .gz file at: 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179945/-/DC1/FileS3.gz 
 



Documents for MagicQTL R package 

 

MagicQTL is an R package to perform QTL mapping in Multi-parent Advanced Generation 

Inter-cross (MAGIC) populations under both the fixed model and the random model 

methodology. The program also include two conventional QTL mapping methods, interval 

mapping (IM) and composite interval mapping (CIM). Users only need to call one function, 

magicScan. This user instruction has two parts: (1) how to install MagicQTL package in your 

computer; (2) an example to show the workflow using the MagicQTL package.  

 

1. Install magicQTL package 

In the Unix or Linux platform, 

Just type the following command, R CMD INSTALL MagicQTL_1.0.tar.gz 

Then complete installing the MagicQTL package! 

In the windows platform, 

The first step, download the Rtools from R CRAN (https://www.r-project.org/), then install the 

Rtools. Notes that you should add the “c:\program files\Rtools\bin”, “c:\program 

files\Rtools\gcc-4.6.3\bin”, “c:\program files\R\R.3.x.x\bin\i386” and “c:\program 

files\R\R.3.x.x\bin\x64” into the Path Variable on the Environment Variables panel. 

The second step, in the search box, type “command prompt”, then click. 

In the command prompt, type the following command R CMD INSTALL MagicQTL_1.0.tar.gz. 

Then install! 

To use this package, Just type library(MagicQTL) and call the function magicScan() 

 

2. Introduction of implementing the MagicQTL 

Here we provide a test example to briefly introduce how to implement the MagicQTL package. 

Details can be obtained via help(magicScan) or ?magicScan. 

The original data is Arabidopsis thaliana MAGIC population inherited from 19 founders 

obtained from the website (http://mus.well.ox.ac.uk/magic/). In consideration of file size, the test 

data is a subset, which is comprised of 65 markers distributed in the five chromosomes, 60 

individuals with five traits. We can offer the original data applying to our program format if 

requested.  

 

Demo code 

https://www.r-project.org/
http://mus.well.ox.ac.uk/magic/


# First step-load data 

 

 

 

 

 

 

 

 

 

  

library(MagicQTL) 

> data(Ara) 

> names(Ara) 

[1] "gen"      "map"      "Ara.phe"  "kk.eigen" 

> gen<-Ara[[1]] 

> map<-Ara[[2]] 

> Ara.phe<-Ara[[3]] 

> kk.eigen<-Ara[[4]] 

> chrnum<-length(gen) 



 # Data format Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#gen, probability matrix  

> dim(gen[[1]]) 

[1] 266  60 

> class(gen[[1]]) 

[1] "matrix" 

#map, marker information 

> dim(map[[1]]) 

[1] 14  4 

> class(map[[1]]) 

[1] "data.frame" 

#Ara.phe, phenotype 

> dim(Ara.phe) 

[1] 60   6 

#kk.eigen,including the kinship matrix, its eigendecomposition and  

# the numeric 

> names(kk.eigen) 

[1] "kk" "qq" "cc" 

 

 

 

 

 

 



  

#The probability matrix, like following   

 

##The map format, like  

 

##Ara.phe, the phenotype, including the five traits.  

 



  

#Second step-scan the markers 

 

 

#output the result after scanning  

 

  

> indi<-nrow(Ara.phe) 

> x<-rep(1,indi) 

> y<-Ara.phe[,5] # Phenotype,total length, that is height of the Arabdopsis 

> d<-data.frame(y=y,x=x) 

> scans<-

magicScan(dataframe=d,gen=gen,map=map,kk.eigen=kk.eigen,nfounders=19,

model="Random-A")  

lambda: 1.125352e-07 Residual error: 70.79299 Model: Random-A  

Data of chr have been completed 0  

Data of chr have been completed 0  

Data of chr have been completed 0  

Data of chr have been completed 0  

Data of chr have been completed 0 

#Output 

> parms<-lapply(1:chrnum, function(i){ return(scans[[i]][[1]]) }) 

> parms<-do.call(rbind,parms) 

> write.csv(parms,file="Ara.parm.csv",row.names=FALSE) 

> # 

> blupp<-lapply(1:chrnum, function(i){ return(scans[[i]][[2]]) }) 

> blupp<-do.call(rbind,blupp) 

> write.csv(blupp,file="Ara.blupp.csv",row.names=FALSE) 

 



#Output information 

#parms format, like following  

 

 

#blupp format, like following   

 




