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A study of the flowfield evolution and mixing in a planar 
turbulent jet using direct numerical simulation 
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1 University of California, San Diego, La Jolla, CA 92093-0411 
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Abstract 
Turbulent plane jets are prototypical free shear flows of practical interest in propulsion, com­

bustion and environmental flows. While considerable experimental research has been performed 
on planar jets, very few computational studies exist. To the author's knowledge, this is the 
first computational study of three-dimensional planar turbulent jets utilizing direct numerical 
simulation. 

A validation of the results from the direct numerical simulation against experimental data is 
shown. Jet growth rates as well as the self-similar mean velocity, mean scalar and Reynolds stress 
profiles all compare well with experimental data. Coherency spectra, vorticity visualization and 
autospectra are obtained to identify inferred structures. The development of the initial shear 
layer instability, as well as the evolution into the jet column mode downstream is captured well. 

A detailed analysis of the large- and small-scale anisotropies in the jet is discussed. It is 
shown that while the large-scales in the flowf1eld adjust slowly to variations in the local mean 
velocity gradients, the small-scales adjust rapidly. Near the centerline of the jet, the small-scales 
of turbulence are more isotropic. 

The evolution of the mixing process in turbulent planar jets is studied through analysis of 
the probability density functions of a passive scalar. Immediately after the roll up of vortical 
structures in the shear layers, the mixing process is dominated by large-scale engulfing of fluid. 
However, small-scale mixing dominates further downstream in the turbulent core of the self­
similar region of the jet and a change from nonmarching to marching PDFs is observed. Near 
the jet edges, the effects of large-scale engulfing of coflow fluid continue to influence the PDFs 
and non-marching type behavior is observed. 

1 Introd uction 

Turbulent plane jets are prototypical free shear flows on which fundamental research can expand the 
overall understanding of the characteristics of turbulent flows. In addition, turbulent plane jets are 
of practical interest due to their presence in a broad range of engineering applications such as com­
bustion, propulsion, and environmental flows. A thorough understanding of the dynamics of these 
flows is required in order to understand and control the transport processes in these applications. 

There are a number of issues in planar turbulent jets still requiring further research. For instance, 
the development of large and small-scale structures, their mutual interaction, and the response to 
external forcing are current topics of investigation in jets. The evolution from the initial shear layer 
modes to the jet column mode downstream is also of interest. While the fully developed "self­
similar" region downstream is of fundamental interest, the large-scale structural reorganization in 
the nearfield of planar jets and the subsequent impact on the evolution of turbulence and mixing in 
the first ten to twenty jet widths is of great practical interest. For example, mixing in combustion 
and noise generation in propUlsion are both applications for which the initial region of the jet is 
important. 
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The intent of this research has been to develop an accurate computational model of a spatially 
evolving turbulent plane jet that is rigorously validated against experimental data. Such a model 
could then be utilized to study the fundamental as well as practical issues in the development of 
these flowfields. Towards this end, direct numerical simulation, DNS, of the full Navier-Stokes 
equations has been utilized in order to eliminate the uncertainties added by the inclusion of a model 
for the turbulent stresses. DNS has been utilized in the study of free turbulent shear flows which are 
homogeneous in one or more directions, that is, temporal simulations. However, relatively few direct 
numerical simulations of spatially evolving turbulent flows have been performed. To the authors' 
knowledge, no direct numerical simulation of planar turbulent jets has been performed outside of 
the current study. 

1.1 A Historical Summary of Planar Jet Research 

Many experimental studies have been performed on planar turbulent jets. The early study by 
Albertson et al. (1950) concentrated on the measurement of mean velocity profiles in planar and 
circular turbulent jets. With the advent of hot-wire anemometry, later studies were able to focus 
on quantifying the statistical quantities related not only to the mean flowfields, but also to the 
fluctuating fields. Miller & Comings (1957) measured the mean velocity and pressure fields, as well as 
the Reynolds stresses in the first forty jet widths. Later work of Bradbury (1965), Heskestad (1965), 
and Gutmark & Wygnanski (1976) used hot-wire anemometry to measure the mean and Reynolds 
stress profiles in the self-similar region of planar jets. It was found through these experiments that 
the evolution of the fluctuating velocity fields as well as the jet spreading rate and centerline velocity 
decay were strongly affected by the initial conditions at the nozzle and the external conditions in 
the laboratory. Everitt & Robins (1978), Bradbury & Riley (1967) as well as recent work of LaRue 
et al. (1997) showed that the presence of a strong coflow can slow the development of the jet to a 
self-similar state. 

With the practical applications of turbulent buoyant jets, such as in smoke stacks and cooling 
water discharges from power-plants, there was considerable interest in the effects of buoyancy and 
heat transfer in planar jets. Bashir & Uberoi (1975), Kotsovinos (1977) as well as Kotsovinos & 
List (1977) studied the effects of buoyancy and heat transfer in highly heated jets, while Jenkins & 
Goldschmidt (1973), Davies, Keffer & Baines (1975) and Browne et al. (1983) studied mixing of the 
temperature field in more moderately heated jets. 

In general, the early work on planar jets concentrated on the study of the statistical quantities 
in the flowfield. However, correlation measurements in the jet led to an increased interest in the 
large-scale coherent motions. Lateral correlation measurements, across the jet, of Goldschmidt & 
Bradshaw (1973) exhibited quasi-periodicity in time, and showed negative correlation of the longitu­
dinal velocity at zero time delay, while profiles of the autocorrelation coefficient of the longitudinal 
velocity across the jet by Gutmark & Wygnanski (1976) and Everitt & Robins (1978) showed nega­
tive lobes for large probe separations. These measurements were originally interpreted as indicating 
a large-scale, flag-like, flapping motion in the self-similar region of the jet. 

Later Cervantes de Gortari & Goldschmidt (1981) observed that the apparent "flapping" fre­
quency scaled with the large-scale properties of the jet and corresponded with the frequency of 
the structures responsible for intermittency. Based on these observations they concluded that the 
correlation measurements were a result of large-scale structures in the jet rather than a flapping 
motion. Utilizing further correlation measurements, Oler & Goldschmidt (1982) suggested that a 
two-dimensional, asymmetric, von Karman-like vortex street existed. They verified, using numer­
ical simulations, that this structure could produce the observed correlations. Further studies by 
Mumford (1982), Antonia et al. (1983), Goldschmidt, Moallemi & Oler (1983), as well as Oler & 
Goldschmidt (1984) have supported this structural arrangement in the flow. Mumford (1982), how­
ever,suggested that the von Karman-like vortex street might also be accompanied by roller-like 
structures aligned in the direction of mean strain. The size of these structures was shown to scale 
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in a manner consistent with the self-preserving nature of the plane jet. 
Early work of Sato (1960) and Rockwell & Niccolls (1972), as well as later work of Antonia et al. 

(1983) and Thomas & Goldschmidt (1986b) have shown that near the nozzle, the structures are 
predominately symmetrical, for a flat exit velocity profile. This "varicose" mode is most commonly 
observed in the nearfield of planar jets. Michalke & Freymuth (1966) showed that very near the 
nozzle lip, the growth of instabilities in the shear layers on plane jets closely followed that predicted 
by a spatial stability analysis for the shear layer. The evolution from this symmetric configuration 
near the nozzle lip to the asymmetric structure in the fully developed region of the jet is not fully 
understood. Antonia et al. (1983) found that this transition occurs in the region after the merging of 
the shear layers, but before similarity is achieved. It is in this region that the mean velocity profile 
changes from a relatively flat profile to a curved profile. Sato (1960) and Rockwell & Niccolls (1972) 
showed that asymmetric structures in the jet are characteristic of a curved mean velocity profile. 
Likewise, for jets evolving from a curved velocity profile in the nozzle an asymmetric or "sinuous" 
mode is observed in the nearfield of the jet. 

Thomas & Goldschmidt (1986a,b) studied the growth and development of large-scale structures 
in the initial region of naturally developing planar turbulent jets. They identified symmetric and 
antisymmetric modes in the near field of the jet and suggested that the antisymmetric modes were 
due to a resonant forcing of the shear layers by the jet structures downstream of the potential 
core. Thomas & Chu (1989) further studied the evolution of the near field of the jet by imposing a 
low level acoustic forcing upstream of the nozzle to organize the initial instability wave in order to 
facilitate it's study. They were able to further confirm the upstream feedback and suggested that it 
was a result of the loss of symmetry of the large-scale structures downstream of the potential core. 
Thomas & Prakash (1991) studied the evolution of the shear layer modes to the jet column mode in 
an "untuned" jet, where the standard shear layer progression of subharmonic growth is incapable of 
obtaining the jet mode, fIt =fi f;d2n. They observed a drastically.different spectral evolution than is 
observed through the subharmonic instability, occurring symmetrically in the jet shear layers. This 
evolution was followed by a rapid loss of symmetry in the region just downstream of the potential 
core. 

Most of the more recent work on planar jets has concentrated on the evolution from the shear 
layer dominated region near the nozzle to the jet region downstream, as well as on the characteristics 
of the large-scale structures in the fully developed region of the jet. However, there have been a 
few exceptions. Ramaprian & Chandrasekhara (1985) revisited the statistics in the fully developed 
region of the jet using laser Doppler anemometry, while Lemieux & Oosthuizen (1985) and Namer & 
Otiigen (1988) studied the effects of Reynolds number on the initial development of planar turbulent 
jet. 

1.2 Numerical Studies on Turbulent Plane Jets 

There have been considerably fewer numerical studies of plane jets than experimental. Oler & Gold­
schmidt (1982) tested the idea of a von Karman-like vortex street, by simulating the fully developed 
region of a two-dimensional jet as a spatially growing vortex street composed of a superposition of 
Rankine vortices. The downstream growth was prescribed in order to match the self-similar growth 
observed in experiments. Comte et al. (1989) performed direct temporal simulations of the fully 
developed region of a two-dimensional Bickley jet. For simulations initialized with a white noise 
perturbation, a von Karman-like vortex street developed and exhibited pairing between vortices of 
like sign. However, when the initial stream function contained a sine perturbation in the stream­
wise direction at the fundamental mode, the vortex street developed, but the subsequent pairing 
was inhibited. Dai, Kobayashi & Taniguchi (1994) performed the first simulations of a spatially 
evolving, subsonic, plane jet. Unlike the DNS approach used here, they performed large-eddy sim­
ulations of an incompressible, three-dimensional, plane turbulent jet using a Smagorinsky model. 
They obtained relatively good agreement with experimental data in their mean profiles, however the 
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self-similar turbulence intensities were 40% high. Similarly, Weinberger, Rewerts & Janicka (1997) 
showed self-similar fluctuation intensities which were 15% high in their large-eddy simulation of a 
spatially evolving, incompressible, plane jet using the Bmagorinsky model. However, neither of these 
'studies analyzed the influence of the LES model utilized. Le Ribault, Sarkar & Stanley (1998) per­
formed an extensive comparison of the Smagorinsky, dynamic Smagorinsky and dynamic mixed LES 
models in simulations of the near field region of planar turbulent jets. They found that while the 
dynamic models worked well, the standard Smagorinsky model severely underestimated the initial 
growth and turbulence development in the near field of the jet. 

Reichert & BiringEm (1997) studied the effects of compressibility on the spatial evolution of two­
dimensional, inviscid jets with a strong coflow. While their jets were slow to develop, they did 
observe self-similar growth rates downstream. They showed a reduction in the jet growth rate and 
entrainment with increasing convective Mach number, Me = (UI - U2)/(CI + C2). For Me = 0.4, 
they observed a sharp decrease in the entrainment in the self-similar region of the jet. In addition to 
these simulations of free planar jets, Hoffmann & Benocci (1994) performed a large-eddy simulation 
of a planar jet impinging on a wall while Jones & Wille (1996) performed a LES of a plane jet into 
a cross-flowing stream. 

Stanley & Sarkar (1997a,b) performed comparisons of two-dimensional weak and strong jets with 
three-dimensional jets in an attempt to determine the usefulness of two-dimensional simulations in 
the study of planar jets. In agreement with Reichert & Biringen it was found that two-dimensional 
jets with a strong coflow velocity, "weak jets", evolved significantly slower than experimentally 
observed planar jets. In addition, two-dimensional jets with a weak coflow, "strong jets", behave 
in a fashion totally unlike experimentally observed jets, with differences in even the mean profiles. 
This was a result of a two-dimensional instability in symmetric and asymmetric vortex streets. 

Stanley & Sarkar (1999) studied the influence of the inflow fluctuation intensity and the shear 
layer thickness, as well as the effects of discrete forcing, on the initial development of planar tur­
bulent jets. They found that the inflow fluctuation intensity and shear layer momentum thickness 
had a strong influence on the jet development, with higher fluctuation intensity and thinner shear 
layers leading to more rapid jet development and an asymptotic approach of the centerline turbulent 
kinetic energy to the self-similar values. Lower fluctuation intensity and thicker shear layers gener­
ated overshoots in the centerline turbulent kinetic energy. Two-dimensional discrete forcing at the 
fundamental and first sub harmonic mode of the shear layers enhanced the growth of the large-scale 
structures in the initial region of the jet. However, the influence of discrete forcing was rapidly lost 
downstream with the breakdown of the large-scale structures. 

2 Mathematical Description 

2.1 Governing Equations / 

The governing equations applicable in the study of compressible, turbulent shear flows consist of the 
conservation equations for mass, momentum and energy. In this study we assume an ideal gas with 
a Newtonian relationship between fluid stress and rate of strain. The nondimensional conservation 
equations are summarized below. 
Mass conservation: 

(1) 

Momentum conservation: 

(2) 
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where the viscous stress tensor, Tij, is given by 

Energy conservation: 

~ ~ 8~ 7 ~T 7-1 
- +Uk- +7P- = --- + --<P 
8t 8Xk 8Xk PrRe 8x% Re 

where <P is the viscous dissipation function, 

8U i 
<P = Tij-

8xj 

(3) 

(4) 

(5) 

The values of the fluid thermodynamic quantities are related through the equation of state for an 
ideal gas, 

p=pRT (6) 

In these expressions, density, velocity, pressure, temperature, length and time are normalized by the 
reference quantities Pr, Un Pr = Pru~, Tr = Pr/(prRr ), lr' and tr = lr/ur, respectively. 

Additionally, a scalar equation is included which expresses the conservation of a passive property, 

8(p~) + 8(pUk~) = _1_~ (p 8~ ) 
8t 8Xk ReSc 8Xk 8Xk 

(7) 

The property ~ is passive in that it is influenced by the other properties of the flowfield, however 
it has no influence on the flow itself. This type of passive scalar equation is commonly used to 
study mixing in turbulent shear flows and is applicable to chemical systems under the assumption 
of infinitely fast chemistry, a useful simplification (Williams, 1985) in combustion studies. 

2.2 Favre Decomposition of the Flow Field 

The most common averaging procedure in the study of turbulent compressible flows utilizes mass­
weighted Favre averages. The advantage of using the mass-weighted decomposition over the standard 
Reynolds decomposition is the ensuing simplified form of the averaged convective transport terms in 
the conservation equations. For any variable rjJ, ¢ denotes the Favre average and rjJ" the corresponding 
fluctuation, while ¢ denotes the Reynolds average and rjJ' the corresponding fluctuation. 

The Favre-averaged momentum equations are 

8 (PUi) + 8 (PUiUj) = _ 8p + ~ 87i; _ 8 (pRij ) 
8t 8xj 8Xi Re 8xj 8xj 

(8) 

where 

(9) 

~ 

and ~j = u~'u'j is the Favre-averaged Reynolds stress tensor. The equation for the turbulent kinetic 
energy, K = Rkk/2, is given by 

(10) 
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where the turbulence production is, 

the turbulent dissipation rate is, 

the turbulent transport is, 

the pressure-dilatation is, 

while the last two terms, 

and 

are a result of density variations. 

P* _ R 8Uj - ·k--
- 3 OXk 

IOU'. 
€* = --T~ __ J 

pRe Jk OXk 

3 Numerical Techniques 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

In this section the techniques used in this study to numerically solve the equations for conservation 
of mass, momentum and energy, .§ 2.1, are summarized. Further details may be found in Stanley 
& Sarkar (1999). The general requirements for any study of turbulence using direct numerical 
simulation is that the numerical techniques provide high accuracy in both space and time as well as 
be computationally efficient. Through the development of the numerical algorithm described below 
a balance between accuracy and efficiency was sought. 

The Euler terms in the governing equations discussed in § 2.1 are marched in time using the 
low-storage, fourth-order Runge-Kutta integration scheme of Carpenter & Kennedy (1994). The 
viscous and conduction terms are marched in time using a first-order integration scheme. This is 
implemented by advancing the Euler terms in time using the Runge-Kutta scheme described above 
and then evaluating and advancing the viscous terms using a first-order scheme. The advantage 
of this approach is that 20% less computational work is required for each time step than for a full 
Runge-Kutta time advance of all terms. It was discovered through the course of this investigation 
that, for the conditions being studied, treating the viscous and conduction terms in this way had a 
negligible impact on the accuracy of the solution. 

A nonuniform fourth-order compact d~rivative scheme is utilized to evaluating the spatial deriva­
tives. This scheme generalizes the uniform compact derivatives of Lele (1992) to nonuniform meshes. 
This central-derivative scheme is closed at the boundaries using internal-biased, nonuniform, third­
order compact derivatives based on the uniform derivatives of Carpenter, Gottlieb & Abarbanel 
(1993). This 3-4-3 scheme allows the simulation of problems on an open, non-periodic, domain 
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while maintaining an overall fourth-order spatial accuracy in the physical coordinate ~x on the 
nonuniform grid. In order to eliminate high wave-number errors resulting from numerical boundary 
closures, a nonuniform fourth-order compact filter is utilized to damp the high wave-number modes. 
As with the compact derivatives, this nonuniform compact filter generalizes the uniform filter of 
Lele (1992) to nonuniform meshes providing fourth-order accuracy in ~x. Only modes between the 
highest wave-number, kx = 0.5~x, and kx = 0.43~x are significantly affected by the filter. The jet 
Reynolds number and grid resolution are chosen such that filtering does not remove dynamically 
significant scales of motion. 

The solution of the governing equation for the passive scalar, equation 7, is based on the flux­
corrected-transport, FCT, scheme of Zalesak (1979). The predictor stage is performed with a low­
order scheme, 1st-order upwind, which produces a monotone solution. The corrector stage then 
modifies the predicted solution using the difference between a high-order scheme, 4th-order compact 
evaluation, and the low order scheme. This correction is nonlinearly limited so that the numerical 
solution is always bound between the known minimum of ~ = 0.0 and maximum of ~ = 1.0 avoiding 
spurious numerical oscillations. Sufficient resolution is used so that scalar statistics are obtained 
accurately. 

One of the greatest difficulties in the simulation of spatially evolving flows is the formulation 
of boundary conditions required due to the truncation of the infinite physical domain to a finite 
region containing the portion of the flowfield which is of interest. At the subsonic inflow boundary, 
the governing equations are essentially solved in a characteristic form. The time variations of the 
incoming characteristic variables are specified while the equation for the outgoing characteristic 
variable is solved using internal biased derivatives. Through the solution of the equation for the 
outgoing acoustics, the actual values of the variables at the inflow plane are allowed to float around 
the specified "target" values thus avoiding sharp changes during the downstream evolution as well as 
introduction of excessive dilatation, V' . u, into the flow. In addition, a simple exponential damping 
term is introduced into the governing equations for the streamwise momentum and the passive scalar 
at the inflow plane. Written for the passive scalar equation, this term is of the form 

8~ 
!:l = Standard Terms - (j (~ - ~ 
vt . 

(17) 

where (j = 0.22. These weak damping terms are added to counteract the long time effects of the 
weak numerical diffusion on the inflow profiles and maintain steady target mean profiles while, at 
the same time, allowing the desired fluctuation intensity about this mean. In practice, it is found 
that for the conditions of these Simulations, the variation of the velocity field at the inflow from the 
target values is small. 

For the downstream boundary and the two sidewall boundaries, the nonreflecting boundary 
conditions of Thompson (1987, 1990) are used. The form of these conditions is allowed to switch 
between that for nonreflecting inflow and outflow at each point on the boundary depending on the 
instantaneous local normal velocity. This is particularly important for the outflow boundary across 
which large vortical structures are advected. Depending on the strength of the low speed stream, the 
sign of the longitudinal velocity can change across a structure. The two corner points on the outflow 
boundary are treated as nonreflecting at an angle 45 degrees from the two adjacent boundaries, 
and the two corner points on the inflow boundary are calculated using the characteristic inflow 
conditions. 

It should be noted that these characteristic-based local boundary conditions were derived based 
on linearized waves propagating normal to the boundary, thus are not strictly non-reflecting in a 
multi-dimensional nonlinear flow. When the direction of wave propagation at the boundaries deviates 
from normal incidence, the amount of spurious reflection increases necessitating the use of filters for 
long-time stability of the turbulent jet simulations. 

At all outflow points on the downstream and sidewall boundaries, the pressure correction term 
originally proposed by Rudy & Strikwerda (1980) and later discussed by Poinsot & Lele (1992) is 
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used, 

where, 

A. n· aWin - K P - Poo 
m taXi - pc 

K = ac(1 - M;'a",) 
L 

(18) 

(19) 

In addition, a Perfectly Matched Layer, PML, buffer zone based on that ofHu (1996) was utilized 
on the downstream and sidewall boundaries in order to further isolate the interior of the domain from 
the effects of the boundary conditions. In this technique, a buffer region is added at the boundary 
where exponential damping terms are introduced into the governing equations of the form (written 
for the density equation on a boundary whose normal is in the x-direction), . 

'::: = Standard Terms - a(x) (p - p) (20) 

where, 

a(x) = am (x ~bx*)(J (21) 

In these expressions, x* is the location of the interface between the buffer zone and the interior of 
the domain, Lb = X max - x* is the length of the buffer zone, and we choose j3 = 2.0, am = 2.0. 
This term acts to damp the density values to the specified mean value, p, across the buffer zone. 
Similar terms are added in the the governing equations for pressure and momentum. On the sidewall 
boundaries, j = 1 and j = jmax, the longitudinal velocity is damped to the mean coflow velocity 
while on the outflow boundary the longitudinal velocity is damped to the profile of Bradbury (1965), 

U-U2 
f1U = exp [-0.67 491l (1.0 + 0.0271]4)] (22) 

where 1] = y/ou, with a target jet growth rate of ou/h = 0.1235 (x/h - 0.873). The lateral velocity 
is damped to the profile given by the requirement that the mean velocity -remain divergence free, 
au/ax + av/ay = 0.0. The value of the centerline velocity excess, f1U = Uc - U2 in the outflow 
buffer zone is selected to maintain the same excess momentum flux 

(23) 

at the outflow plane as is present at the inflow. It was found through the .course of this study that 
while damping to these "realistic" velocity profiles in a buffer region is required, it has a negligible 
impact on the flowfield in the region of interest. The pressure and density are damped to the constant 
initial values in the domain while the mean spanwise velocity is damped to zero. A grid stretching is 
also used in the buffer zones and is given by a simple geometric progression with a stretching ratio 
of 5%. 

The longitudinal velocity in the shear layer on either side of the jet at the inflow is given by a 
hyperbolic tangent profile, 

_ U1+ U2 f1U h (J!...-) 
u - 2 + 2 tan 2(} (24) 

where (} is the shear layer momentum thickness, [/1 and U2 are the velocities of the high- and low­
speed streams respectively and f1U ;, U1 - U2 . This profile is mirrored about the jet centerline to 
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obtain a top-hat mean jet profile with smooth edges. The mean lateral and spanwise velocities are 
zero at the inflow. The mean pressure and density at the inflow are uniform initially, although a 
slight variation across the jet is generated due to the outgoing acoustic waves. 

The mean profile for the passive scalar at the inflow' is given by a hyperbolic tangent profile 

c = 6 + 6 + 6 - 6 t h (JL) 
.. 2 2 an 2(} (25) 

with ~l = 1.0 and 6 = 0.0 in the jet and ambient, respectively. The value of () used for the passive 
scalar is the same as that used for the mean longitudinal velocity profile. 

A broadband inflow forcing is utilized with a three-dimensional energy spectra specified by 

(26) 

This forcing is designed to provide energy to the flowfield in a range of scales characteristic of that 
present in an actual turbulent flow in order to increase the rate at which the jet develops from the top­
hat profile present at the inflow plane to the self-similar profiles downstream. This broadband forcing 
of the inflow plane is performed by generating a three-dimensional volume containing fluctuating 
velocity, pressure and density fields which is then convected past the inflow plane, as the simulation 
is integrated in time, using a constant convection velocity, Ue • Figure 1 shows the Reynolds stress 
profiles for the broadband fields used to force the inflow plane in the simulation discussed in § 4. The 
strong peaks in the shear layers on either side of the jet are clear, as well as the strong drop in intensity 
towards the jet centerline. The fluctuation intensity does not, however, decay completely at the jet 
centerline. The complete decay in the centerline intensity is incompatible with the requirement that 
the fluctuations be divergence free. While there are fluctuations present in the pressure and density 
at the inflow, their magnitude is small. The root-mean-square pressure fluctuations have a peak 
intensity of P~m8/P!:::.U; = 1.1 X 10-8 while the peak in the density fluctuations is P~m8/P = 1.1 X 10-9. 

Figure 2 shows the one-dimensional autospectra in the x- and z-directions of the longitudinal and 
spanwise components of velocity, respectively. The energy contained in these fluctuating fields is 
spread over a broad spectra in both time and the spanwise direction. 

The computational grid used in this study was generated using a simple geometric progression, 
!:::.Yj+1 = Aj!:::'Yj· Further details are provided later regard the specific grid used in each of the 
simulations. 

4 Simulations of Three-Dimensional Turbulent Jets 

This section discusses the evolution of a spatially evolving Reh = p!:::.Uh/ /-t' = 3000 jet with turbulent 
inflow. The Reynolds number based on the jet width increases to approximately 4700 at the outflow. 
The Schmidt number, Sc = /-t/pDF, = 1.0, and Prandtl number, Pr = Cp/-t/k = 0.72, for this 
simulation. The mean jet velocity at the inflow is given by equation 24 with a velocity ratio, 
'TJ = !:::.U/(U1 +U2) = 0.83 while the convective Mach number, Me = !:::.U/(Cl +C2) = 0.16. It is clear 
that, although this simulation is performed using the compressible Navier-Stokes equations, it is 
essentially incompressible. The momentum thickness, for the shear layers at the inflow is () / h = 0.05. 
The inflow forcing for this jet has the spectrum, equation 26, while its intensity is q/!:::.U = 0.10 in 
the shear layers and q/!:::.U = 1.9 X 10-2 at the centerline of the jet, where q2 = u'u' + v' v' + w'w'. 
This simulation was performed on a 244 x 221 x 72 computation grid with a physical domain size 
of Lx/h = 13.5 + 1.5, Ly/h = 13.1 + 3.0, Lz/h = 4.0 and a grid spacing in the domain interior of 
!:::.X = !:::.Y = !:::.z = 0.055h. The designation, L/h = a + b, for the domain dimensions indicates that 
the interior of the domain has a size of a while there is a buffer zone of size b. 

In the course of the discussion below, comparison of the current results against experimental 
data are made. The studies of Thomas & Chu (1989), Thomas & Prakash (1991) and Browne et al. 
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Source Reh h/O [q/~Ulsl [q/~Ulcl 
Ramaprian & Chandrasekhara (1985) 1,600 29* 
Browne et al. (1983) 7,620 54 0.0035 
Thomas & Prakash (1991) 8,000 67 ::; 0.0042 
Thomas & Chu (1989) 8,300 67 ::; 0.0043 
Gutmark & Wygnanski (1976) 30,000 0.0035 
Hussain & Clark (1977) 32,550 182 0.071 0.021 

Table 1: Physical parameters of the experimental results used for comparison. * Momentum thick­
ness, 0, estimated based on laminar flow in the nozzle. 

(1983) are used for comparison of the downstream evolution of the jet width, centerline velocity 
decay, as well as centerline fluctuation intensities because they document the near field of the jet 
well. However, these studies do not provide complete measurements of the fully-developed region of 
the jet. The data in the fully-developed region of Gutmark & Wygnanski (1976) and Ramaprian & 
Chandrasekhara (1985) is used for evaluating the self-similar behavior. The physical conditions for 
these experimental studies are outlined in table 1 for comparison with the physical conditions of the 
current study. . 

Based on the spatially evolving linear stability analysis of the hyperbolic tangent velocity profiles 
performed by Michalke (1965) and the later work by Monkewitz & Huerre (1982) for different velocity 
ratios, 'TJ = ~U /(UI + U2 ), the fundamental frequency, 1:1 (cycles per second), for the shear layer 
instability occurs at a Strouhal number of S:I = I:IO/Uc = 0.033 where 0 is the momentum thickness 
of the shear layer and Uc = (UI + U2 )/2 is the convection velocity. The fundamental mode which is 
observed experimentally in the fully developed region of the jet is S = 11t8u / ~U = 0.11 

For the nozzle conditions of the jet simulated here, the fundamental frequency for the shear layers 
at the jet nozzle is I:I~Uo/h = 0.395 while the peak frequency in the calculated energy spectrum 
at the outflow plane is Ipk~Uo/h = 0.07. 

4.1 Visualization of the Vorticity Field 

Figure 3 shows instantaneous contours of the spanwise vorticity, W z , on an xy-plane through the 
domain at z/h = 0.0. It should be pointed out that the lateral extent of this plot, y/h = ±4.0, is not 
the full extent of the domain. The domain in this simulation has a lateral extent of approximately 
13h. In the region 0.0 ::; x/h ::; 4.0 there is clear indication of the presence of vortex roll up in 
both the upper and lower shear layers. The spectral evolution along with the development of the 
shear layer instabilities will be investigated· further in § 4.4. In the lower shear layer, peaks in the 
magnitude of the spanwise vorticity are present at x/h = 3.5 as well as x/h = 2.0 and a structure in 
the early stages appears to be present near x/h = 0.5. The streamwise wavelength of the spanwise 
vortices is consistent with the expected wavelength of the shear layer instability of Uc/U:lh) = 1.52. 

Figure 4 shows an instantaneous xz-plane of the spanwise vorticity through the lower shear layer, 
y/h = -0.53. While there is some spanwise variation of W z in the shear layer for 0.0 ::; x/h ::; 2.0, 
in general the structures appear to be relatively two-dimensional. The spanwise variations present 
in this region are small and of relatively long wavelength. However, downstream of x/h = 2.0 there 
is a rapid increase in the three-dimensionality of the structures present in the shear layer. This 
breakdown of the shear layer structures coincides with a strong growth in the magnitude of the 
streamwise vorticity, figure 5. Figure 5 shows contours of the streamwise vorticity, wx , on the xz­
plane in the lower shear layer. While there is streamwise vorticity present in the shear layers at the 
inflow, only downstream of x/h = 2.0 is the magnitude of the streamwise vorticity consistent with 
that of the spanwise vorticity. 

Figure 6 shows an xy-plane of the streamwise vorticity, W x , at the spanwise station, z/h = 0.0. 

11 



4.0 

-4.0 L-'--'--'-----"'---' .................. -:-' _________ --L.-'---'---'---'---'-................. --'--'--'--'-.............. 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
xIh 

8.0 
7.0 
6.0 
5.0 
4.0 
2.9 
1.9 
0.9 

-0.1 
-1.1 
-2.1 
-3.2 
-4.2 
-5.2 
-6.2 

Figure 3: Instantaneous spanwise vorticity, W z , contours on an xy-plane located, z / h = 0.0. 
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Figure 5: Instantaneous streamwise vorticity, wx , contours on an xz-plane in the lower shear layer, 
y/h = -0.50. 

From figures 5 and 6 it is clear that the structures present in the streamwise vorticity for 2.0 ::; 
x/ h ::; 4.0 are elongated in the streamwise direction and have an inclination inwards towards the 
centerline of the jet suggesting stretching by the mean strain of the jet. The structure located in 
the lower shear layer of figure 6 for 2.5 ::; x/h ::; 3.0 is located in the braid region between the two 
spanwise vortices at x/h = 2.0 and x/h = 3.5 which were noted in figure 3. The behavior of the 
structures in the spanwise and streamwise vorticity for 0.0 ::; x/h ::; 4.0 is consistent with the roll 
up and pairing of spanwise vortices, generation of streamwise vortices, and eventual breakdown to 
strong three-dimensional turbulence which is observed in shear layers (for example Lasheras & Choi, 
1988). It is clear that the beginning of the breakdown to strongly three-dimensional turbulence 
occurs before the merging of the shear layers for the jet simulated here. 

The strong vorticity patches in the two shear layers near the inflow show signs of interacting 
in the region 4.0 ::; x/h ::; 6.0. A few small patches of streamwise and spanwise vorticity begin to 
appear near the jet centerline in this range, figures 3 and 6. However, only downstream of x/ h = 6.0 
are there structures present in the vorticity field near the centerline of a magnitude similar to that 
present in the high shear region. In the downstream region of the jet, x/h ~ 8.0 the distribution 
of vorticity across the jet is relatively uniform from upper shear region across the centerline to the 
lower shear region. However, there are occasional regions devoid of strong vorticity near the jet 
edges, such as that along the upper edge of the jet near x/h = 10.5, due to the intermittent nature 
of the turbulence near the jet edges. 

Figure 7 shows the downstream variation of the three root-mean-square vorticity components 
as well as the mean spanwise vorticity in the lower high shear region, y j du ~ -1.0. At the inflow 
of the jet, the RMS spanwise vorticity is a factor of four higher than the RMS streamwise or 
lateral vorticity. In the region 0.0 < xjh < 3.0 the mean spanwise vorticity and the spanwise 
vorticity fluctuations decay while the streamwise and lateral vorticity fluctuations grow strongly. 
Downstream of xjh = 2.5 all three components of the root-mean-square vorticity'are greater than 
the mean vorticity. This coincides with the rapid increase in three-dimensionality of the vorticity 
contours observed in figure 4, 

The root-mean-square of the centerline fluctuating vorticity (not shown) does not begin to grow 
until xjh ~ 4.0 after which there is strong growth in the region 4.0 < x/h < 7.0. The spanwise 
vorticity fluctuation ~ntensity begins to grow.slightly earlier than the streamwise and lateral compo­
nents, although, the centerline values for the three components are generally of the same magnitude 
throughout the domain. While all three components of the RMS vorticity are of relatively the same 
magnitude on the jet centerline, in the high shear region the streamwise vorticity fluctuations are 
consistently larger than the spanwise and lateral components. 

13 



4.0 

3.0 

2.0 

1.0 

~ 0.0 

-1.0 

-2.0 

-3.0 

-4.0 '--'--'--'---"''---''--''--'--'--'---0.--0.---'----'----'----'---'--'--'---'--'-............................ 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
xIh 

7.5 
6.4 
5.4 
4.3 
3.3 
2.2 
1.1 
0.1 

-1.0 
-2.0 
-3.1 
-4.2 
-5.2 
-6.3 
-7.3 

Figure 6: Instantaneous streamwise vorticity, wx , contours on an xy-plane, z/h = 0.0 . 
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4.2 Mean Velocity 

Figure 8 shows the mean streamwise velocity profiles at several downstream stations compared with 
experimental results from Gutmark & Wygnanski (1976) and Ramaprian & Chandrasekhara (1985). 
The mean profiles at x/h = 0.0 clearly shows the sharp shear layers on either side of the jet. The 
stniamwise velocity profiles from the three downstream stations shown, x/h ~ 4.0, collapse to a 
self-similar profile which compares well with the experimental data. 

Figure 9 shows the mean profiles of the lateral velocity component at three stations in the jet. 
In a jet, the free-stream value of the mean cross-stream velocity, V, is equivalent to the entrainment 
velocity, Ve. The most upstream station shown, x/h = 5.0, is the first station at which the entrain­
ment velocity, Ve, has approached the magnitude of the self-similar· value, Ve / f::,.Uc ~ 0.035. It can be 
seen that this value of the entrainment compares well with those of Gutmark & Wygnanski (1976) 
and Ramaprian & Chandrasekhara (1985). Although the mean lateral profiles do not collapse as 
well in the self-similar region as the mean longitudinal profiles, they compare well with experimental 
data. 

Figure 10 shows the downstream growth in the jet half-width based on the longitudinal velocity. 
Following the plane jet similarity· analysis, the width of the jet is expressed as the half-width, 8u , 
defined as the distance from the jet centerline to the point at which the mean streamwise velocity 
excess, Ue = U - U2, is half of the centerline velocity excess. In this definition U2 is the local cofiow 
velocity. Also shown in figure 10 is the experimental data from Thomas & Chu (1989) and Browne 
et al. (1983). It can be seen that the growth of the jet compares well with the experimental results 
in the initial developing region. Analysis of the self-similar region of planar jets predicts a linear 
relationship between the jet width and the streamwise coordinate, x, 

(27) 
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Figure 9: Mean lateral velocity profiles in a planar jet. --x/h = 5.0, --- x/h = 10.5, -- x/h = 
11.5,0 Gutmark & Wygnanski (1976),0 Ramaprian & Chandrasekhara (1985). 

The current results give the values K 1u = 0.093 and K 2u = 0.155 for the linear growth region of the 
jet. These values are obtained using a linear fit of the current data in the region from x/h = 6.0 to 
12.0. The linear growth rates are compared in table 2 with data from several experimental studies of 
planar jets. While the Reynolds number for these experimental studies vary, the self-similar growth 
rates are relatively consistent. The growth rates for the current results compare generally well with 
the experimental results, although they are approximately 10% lower. There is a large variation in 
the virtual origins K 2u of the experimental studies which makes a comparison difficult. Since the 
virtual origins of the plane jet are strongly affected by the conditions at the nozzle (see Stanley & 
Sarkar, 1999) it is expected that these values will vary. 

Figure 11 shows the centerline velocity decay compared against the experimental data of Thomas 
& Chu (1989) and Browne et al. (1983). It can be seen that the centerline velocity decay for 
this simulation compares well with the experimental results. The analysis of planar jets predicts 
an inverse-squared relationship between the mean centerline velocity excess and the downstream 

Source K1u K2u C1u C2u 

DNS results, q/6.Uo = 0.10 0.093 0.155 0.193 0.128 
Ramaprian & Chandrasekhara (1985) 0.110 -1.00 0.093 -1.60 
Browne et al. (1983) 0.104 -5.00 0.143 -9.00 
Thomas & Prakash (1991) 0.110 0.140 0.220 -1.20 
Thomas & Chu (1989) 0.110 0.140 0.220 -1.19 
Gutmark & Wygnanski (1976) 0.100 -2.00 0.189 -4.72 
Hussain & Clark (1977) 0.118 2.15 0.123 4.47 

Table 2: Jet growth rates and centerline velocity decay rates for the current results and several 
experimental studies. 
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coordinate, x, 

(28) 

where /:!:l.uo is the centerline mean velocity excess at the jet nozzle and flUe is the centerline mean 
velocity excess at the specific x / h station. The current results predict values for the coefficients, 
G1u = 0.193 and G2u = 0.128. Table 2 shows a comparison of these values with results from several 
experimental studies. It is clear that there is a broad variation in the values of the centerline velocity 
decay rate as well as the virtual origins between the different studies. However, the current results 
are well within the range of values from the experimental data. Based on the constancy of the 
centerline mean longitudinal velocity the length of the potential core of this jet is approximately 
Ip/h = 4.0. This compares well with the range observed experimentally of 2.5 to 5.0 for jets with 
Reynolds numbers ranging from 1000 to 7000 (Thomas & Chu, 1989; Browne et al., 1983; Namer & 
Otiigen, 1988). 

The turbulent planar jet is a flow in which the mean Reynolds number, Re5u = 2pou flUc/ J.1., 
grows downstream in the self-similar region as Re5u ()( Xl/2. In the current simulation the mean 
Reynolds number remains nearly constant at the inflow Reynolds number of Reh = 3000 up to 
xjh = 3.0. However, downstream of x/h = 3.0, the mean Reynolds number grows strongly with 
the expected variation of Xl/2. At x/h = 12.0, the mean Reynolds number has grown to a value of 
Re5u = 4692. 

A planar jet issuing into a coflowing stream does not strictly follow the self-similar behavior 
discussed above. The addition of the coflow is not a pure Galilean transformation in that it imposes 
a relative velocity between the jet nozzle and the coflowing stream. Planar jets in a coflowing stream 
have been studied experimentally by Bradbury (1965), Bradbury & Riley (1967), Everitt & Robins 
(1978) and LaRue et al. (1997) as well as computationally by Reichert & Biringen (1997) and Stanley 
& Sarkar (1997 a,b). A plane jet exhmlsting into a stagnant fluid will develop from the nozzle until 
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Figure 11: Decay of the mean velocity excess on the jet centerline. --Current results, 
---(D..Uo /D..Uc )2 = 0.193(x/h + 0.128), 0 Thomas & Chu (1989), 0 Browne et al. 
(1983). 

it exhibits the self-similar behavior discussed above, 8u ex x and Uc ex x-1/ 2 and continue to do so. 
A jet exhausting into a coflowing stream, on the other hand, will initially develop the self-similar 
behavior characteristic of a plane jet into stagnant fluid. However, when the ratio of centerline 
velocity to coflow velocity, Uc/U2 , approaches unity it will transition into a self-preserving wake-like 
behavior with 8u ex x 1/ 2 and 6.Uc ex x-1/ 2 (Bradbury, 1965; Bradbury & Riley, 1967). For the 
initial velocity ratio used in this study, Uj /U2 = 11, it is clear from figure 10 that self-preserving jet­
like behavior is observed. Bradbury & Riley (1967) observed a region of linear growth characteristic 
of jet-like behavior with jets having an initial velocity ratio of D..Uo /U2 = 6.25 as did LaRue et al. 
(1997) for D..Uo/U2 = 5. However, in both of these cases the jet growth rate, K 1u , was on the order 
of ~ 0.02, or a factor of five below the rate observed for jets exhausting into stagnant fluid. From the 
good comparison of the linear jet growth rates in the current study with the observed data for jets 
exhausting into stagnant fluid it is clear that the small coflow velocity in this study has a minimal 
effect on the development of the jet. However, the nonzero coflow velocity could account for the fact 
that the growth rates in our jet are slightly low compared to experiments. 

4.3 Reynolds Stresses 

Figures 12, 13, and 14 show the downstream evolution of the Reynolds stresses Ruu , Rvv , and R ww , 

respectively, on the jet centerline compared to the experimental data of Thomas & Chu (1989), 
Thomas & Prakash (1991) and Browne et al. (1983). It can be seen froin these figures that the 
length of the potential core, based on the location of strong growth of the centerline fluctuations, 
is approximately 2 - 3 jet widths and is consistent with the experimentally observed values. In 
the current results, the fluctuation intensities on the jet centerline grow strongly in the region 
2.0 < x / h < 12.0. While the longitudinal and spanwise centerline intensities appear to asymptote to 
their self-similar values by x/h = 12.0, the lateral intensities still show a slight growth at the most 
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Figure 12: Growth of the longitudinal Reynolds stress on the jet centerline. --Current results, 
o Thomas & Chu (1989), I> Thomas & Prakash (1991), 0 Browne et al. (1983). 

downstream station. 
It should be noted that the initial fluctuation intensities in the shear layers of the DNS case 

discussed here are relatively high. The typical approach in experimental studies is to report the 
fluctuation intensity at the centerline of the nozzle, rather than in the shear layers. Since the 
fluctuation intensities peak in the boundary layers on the nozzle lips, the centerline intensity is not' 
sufficient to quantify the inflow conditions of the jet. In the studies .of Thomas and Chu, Thomas 
and Prakash as well as Browne et al. the centerline fluctuation intensity is on the order of 0.35%, 
table 1. However, the peak intensity in the shear layers from these studies is unknown. Likewise, 
the spectral content of the inflow fluctuations from these experiments is unknown. The centerline 
fluctuation intensity for the current study is 1.9% while the peak intensity in the shear layers is 
I':::j 10% of the jet nozzle velocity. 

The initial rate of growth of the fluctuations at the jet centerline is consistent with the experi­
mental studies, although the initial growth rate of the longitudinal fluctuation intensity in the region 
2.0 < xlh < 5.0 is a little low, figure 12. As discussed in Stanley & Sarkar (1999), the initial growth 
of turbulence intensities is weaker for thicker shear layers and therefore the slower growth in the 
simulation may be related to the smaller hie = 20 in the DNS relative to experimental values, see 
table 1. In the experiments, the longitudinal fluctuations grow more rapidly near the inflow than 
the lateral or spanwise components. In the current results all three components of the fluctuating 
velocity field grow ,at approximately the same rate on the jet centerline. This difference is likely 
due to the difference in the inflow fluctuation intensities between the current study and the exper­
imental results. In shear flows, the longitudinal fluctuation intensities grow due to the production 
by the mean shear before the transfer of energy to the lateral and spanwise components can occur. 
The redistribution of energy is larger in nonlinearly evolving turbulent flows than in transitional or 
rapidly-distorted flows. Therefore the transfer of energy from the longitudinal component to the 
lateral and spanwise components occurs more rapidly in the DNS where there is initially energy in 
all three velocity components at a level which is larger than that in experiments. 
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Source u'u' /q2 v'v' /q2 W'W'/q2 lu'v'l/q2 
DNS Results, Lower S.L. 0.52 0.22 0.27 0.19 

Upper S.L. 0.48 0.22 0.30 0.19 
Wygnanski & Fiedler (1970) 0.43 0.26 0.31 0.13 
Spencer & Jones (1971) 0.53 0.23 0.23 0.20 
Bell & Mehta (1990) 0.44 0.27 0.29 0.14 

Table 3: Comparison of the shear layer turbulence intensities at x / h = 4.0 with experimentally 
measured values for turbulent shear layers. 

The direct production of energy by the mean shear into the Ruu component in the sharp shear 
layers, y/8u = ±1.0, for x/h ::; 2.0 leads to a strong anisotropy in the fluctuating fields in this 
region of the jet. At the station x/h = 2.0, the longitudinal component is more than six times the 
lateral component and more than three times the spanwise component leading to anisotropy in the 
normal components which is far greater than is present in the fully developed region of turbulent 
shear layers. However the shear component of the anisotropy u'v' / q2 = ±0.17 agrees quite well with 
experimentally measured values in turbulent shear layers. 

In the region 2.0 ::; x/h ::; 4.0 the anisotropy in the shear layers relaxes to values which are 
more characteristic of those present in turbulent shear layers. Table 3 shows a comparison of the 
anisotropy values in the shear layers at the station x / h = 4.0 from the current results against the 
experimental values from Wygnanski & Fiedler (1970), Spencer & Jones (1971) as well as Bell & 
Mehta (1990) for fully developed turbulent shear layers. By this station, the shear layer Reynolds 
stresses have reached levels of anisotropy which are comparable to those present in turbulent shear 
layers. There is still an imbalance between the lateral and spanwise components; however, they 
have both become more comparable with the longitudinal component of the Reynolds stress. The 
ordering of the intensities is as would be expected, for a turbulent shear flow with the mean shear in 
the y-direction, with u'u' / q2 > W' W' / q2 > V' v' / q2. The Reynolds shear stress, as mentioned above, 
compares well with the values from turbulent shear layers even earlier in the jet. 

Figures 15, 16 and 17 show the profiles of the three normal Reynolds stress components down­
stream in the jet near the outflow of the domain. Shown in these figures are two stations from the 
current simulation, and experimental data from Gutmark & Wygnanski (1976) and Ramaprian & 
Chandrasekhara (1985). From the two stations shown, x/h = 10.0 and 11.5, it can be seen that the 
Reynolds stress components are very close to self-similarity near the outflow of the domain. The 
comparison of the current results against the experimental data is good. The longitudinal fluctu­
ation intensities, figure 15, fall within the range of experimental data. The current results show 
the strong dip at the centerline in the longitudinal Reynolds stress, Ruu , which is characteristic of 
planar jets and results from the fact that the regions of strong production are in the shear layers on 
either side while the production is small near the centerline. While the spanwise intensities match 
the experimental data well, the lateral intensities are somewhat high. In most experimental studies 
self-similarity of the Reynolds stress profiles is reached only after 30 to 40 jet widths downstream. 
By design, the relatively high intensity fluctuations at the inflow are chosen here to allow a more 
rapid transition from the developing region to a self-similar state. The shear stress profiles (not 
shown here) also compare well with experimental data. 

Figure 18 shows the balance of the terms in the turbulent-kinetic-energy equation in the self­
similar region of the jet. The trace of the pressure-strain term, II* /(5, also called the pressure­
dilatation is insignificant. The strong production, P*, of turbulent energy in the regions of peak 
shear, y / 8u ~ ±0.8, as well as the more uniform strong viscous dissipation of energy, -10*, can be 
seen in the core of the jet, -1 ::; y / 8u ::; 1. The advection term in the turbulent-kinetic-energy 
equation acts to transport energy from the edges of the jet in towards the centerline while the 
turbulent transport term, -ojTj* /(5, acts to transport fluctuating energy away from the region of 
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Figure 15: Longitudinal Reynolds stress profiles downstream -in the jet. --xjh = 10.0, 
---xjh = 11.5, 0 Gutmark & Wygnanski (1976), 0 Ramaprian & Chandrasekhara 
(1985). 

0.3~--------------------------------------------' 

0.2 

0.1 

/ 

~-.--:---... 

'7 
y 

r;' D~ , 

.r" OO~~~O"'" / vey~- ~, 

./ c9 ']:YO", 
'I 0 '1, 

° ~ . ° IEJ '. /, 0 \ 

° B d. / 

/0 
o , 
[tJ '. 0 

o '. 
" n--. ...... L-LJ ._ 

0·~3-L.0~"""'---2~.O~"""'---1"".0-"""'--0"".0-"""'--1"".0-""""'--2.""0-""""'-~3.0 

y/ou 

Figure 16: Lateral Reynolds stress profiles downstream in the jet. --xjh = 10.0, --- xjh = 11.5, 
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Figure 17: Spanwise Reynolds stress profiles downstream in the jet. --x/h = 10.0, ---x/h = 
11.5, 0 Gutmark & Wygnanski (1976). 

peak production towards the jet centerline as well as the jet edges. It is clear by the fact that the 
production term is zero at the jet centerline that the action of the advection and turbulent transport 
terms are the sole means by which fluctuating energy is present at the core of the jet. 

Near the outer edges of the jet, as discussed by Tennekes & Lumley {1972}, the balance is 
predominately between the turbulent transport term and the advection. At this point in the jet, the 
turbulent transport term acts to spread turbulent energy outwards towards the jet edges while the 
advection due to the entrainment velocity, Ve , propagates energy inwards. It is the balance between 
these two terms which results in the edge of the turbulent jet being stationary in the mean. 

In general, the turbulent-energy balance for the current results compares well with the energy 
balances shown by both Ramaprian & Chandrasekhara (1985) as well as Gutmark & Wygnanski 
(1976). However, a strong advantage of the current results in the study of the energy balance is that 
every term in the balance can be calculated, In experimental studies in the past, it has been necessary 
to make various approximations regarding the terms in the turbulent-kinetic-energy equation in order 
to estimate the balance of terms. Ramaprian and Chandrasekhara did not measure the spanwise 
velocity component, therefore they were forced to use an estimate of the turbulent kinetic energy 
based on the lateral and streamwise velocities only. Also, rather than measuring the dissipation 
directly, they estimated dissipation using the energy spectra of U,2. Gutmark and Wygnanski, on 
the other hand, estimatea the dissipation using the isotropic assumption, € = 15v( au' / ox}2. In 
general, all of the studies have restricted the form of the turbulent-kinetic-energy equation using the 
boundary-layer approximation for the mean velocity profiles to drop terms. While it is recognized 
that these are likely good and necessary approximations, in some cases the higher-order effects may 
be significant. For instance, in the current study the isotropic approximation underestimates the 
dissipation by approximately 18% at the centerline of the jet. 

The Reynolds stress anisotropy levels for y / ~u = ± 1.0 in the self-similar region of the jet are 
shown in table 4 compared against available experimental data. The results from this DNS show 
greater isotropy of the normal stress components than the experimental data of Ramaprian & Chan-
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Figure 18: Balance of the terms in the turbulent kinetic energy equation in the self-similar region 
of the jet. --Advection, ---P*, ----f*, ·········-ojTj*/p, -"-rr*/p 

Source u'u' /q2 v'v' /q2 w'w' /q2 lu'v'l/q2 
DNS Results, y / 8u = 1.0 0.386 0.311 0.310 0.148 

y/8u = -1.0 0.418 0.300 0.278 0.143 
Gutmark & Wygnanski (1976) 0.591 0.191 0.218 0.143 
Ramaprian & Chandrasekhara (1985), y/du = 1.0 0.397* 0.269* 0.152* 

y/8u = -1.0 0.423* 0.244* 0.145* 

Table 4: Comparison of the jet turbulence intensities for y/8u= ±1.0 in the self-similar region with 
- 2-2 

experimentally measured values. * assumes q2 = 3/2(u' + v' ) 

drasekhara (1985) and Gutmark & Wygnanski (1976). The magnitudes of v'v' /q2 and w'w' /q2 are 
much more balanced in the self-similar region of the jet than was the case in the shear layers near 
the inflow. In both' the D NS and experimental data the shear component of the isotropy, u' v' / q2 , 
is at a level consistent with those observed in turbulent shear layers, table 3. It should be noted. 
that a strong asymmetry is present in the Reynolds shear stress profiles shown by Ramaprian & 
Chandrasekhara. Their peak values for Rull are similar from side to side, however in the lower 
half-jet the peak occurs at y/8u = -1.0 while their peak occurs at y/8u = 0.5 in the upper half-jet. 
This explains the asymmetry in the shear component of the isotropy for their results. 

At the jet centerline, table 5, the large-scale isotropy does not change drastically from the levels 
present in the high-shear region. The longitudinal component is smaller due to the lack of a strong 
mean gradient driving this component at the centerline, however, the change is not large. The lateral 
component is higher than the isotropic level of 1/3 while the spanwise component is below this level. 
It is clear that the large scales have not relaxed to isotropy in spite of the absence of mean shear 
at the centerline. This is consistent with the experimental data shown in the table although, as in 
the high-shear region, there is a large variation in the turbulence levels with Gutmark & Wygnanski 
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Source 
DNS Results 
Gutmark & Wygnanski (1976) 
Browne et al. (1983) 
Ramaprian & Chandrasekhara (1985) 
Everitt & Robins (1978) 

u'u' j q2 

0.378 
0.485 
0.471 
0.375* 
0.385 

v'v' j q2 

0.363 
0.275 
0.237 
0.289* 
0.338 

w'w'jq2 
0.259 
0.240 
0.292 

0.277 

Table 5: Comparison of the jet turbulence intensities on the centerline in the self-similar region with 
experimentally measured values. * assumes q2 = 3j2(u'2 + v,2) 

(811' L8y)2 (8w'L8z)2 (8u'L8y)2 (8u'L8z)2 (011' L8x)2 (011' L8z)2 (OW'LOX)2 
(8u' /8X)2 (8u' /Ox)2 (Ou' /Ox)2 (8u' /8X)2 (011' /Oy)2 (011' /Oy)2 (Ow' /Oz)2 

Isotropic Values 1.0 1.0 2.0 2.0 2.0 2.0 2.0 
yj8u = 1.0 1.11 1.27 2.36 2.31 1.57 2.02 1.58 
yj8u = -1.0 1.17 1.28 2.36 2.35 1.46 1.99 1.53 
Centerline 0.94 1.01 1.98 2.03 1.87 1.85 1.89 

Table 6: Derivative variances in the self-similar region of the jet. 

having the highest levels and Ramaprian & Chandrasekhara as well as Everitt & Robins having 
more isotropic values consistent with the DNS results. 

While it is clear that the large scales of the flow adjust slowly to isotropy in the absence of mean 
shear at the centerline, the small scales adjust quite rapidly. Table 6 lists the velocity derivative 
variances for the centerline as well as the upper and lower high-shear regions in the self-similar region 
of the jet near the outflow. In the high shear regions, above and below the centerline, the deviation 
with respect to the isotropic condition that (8u'j8x)2 = (8v'j8y)2 = (8w'j8z)2 is as large as 28% 
while at the centerline of the jet this condition is met to within 6%. To a close approximation the 

cross derivatives variances of the longitudinal velocity, (8u' j 8y)2 and (8u' j 8z)2, are very nearly 
equal at both the centerline as well as in the shear region. Although significantly different from the 
isotropic estimate in the shear regions, the ratio of these terms to the normal derivative variance, 

(8u' j8X)2, approaches the isotropic value of 2.0 near the centerline. The cross derivative variances 
of the lateral and spanwise velocity components are more affected by the mean shear than those of 

the longitudinal velocity, so that (8v'j8x)2 # (8v'j8z)2 and (8w'j8x)2 # (8w'j8y)2 in the regions 
of strong shear. However, near the centerline these conditions are met quite well and the ratios of 
these cross-derivative variances to their respective normal-derivative variances match the isotropic 
values to within 9%. It is clear from this data that the small scales of motion in the self-similar 
region of the jet adjust rapidly, in space, to the local mean velocity profile so that near the centerline 
of the jet the small scales are, to a relatively good approximation, isotropic. However, as mentioned 
previously, the isotropic approximation for the dissipation underestimates the centerline dissipation 
by approximately 18% because of the accumulation of errors in the individual components that are 
summed to give the dissipation rate, E. 

4.4 Spectral Evolution 

Figure 19 shows the . longitudinal velocity autospectra in time near the nozzle in the upper shear 
layer, yj8u = 1.0. The frequency and power spectral density in this plot are scaled using conditions 
in the shear layer at the inflow. As mentioned earlier, the most unstable mode in the shear layer 
occurs at a Strouhal number, S = jBjUc = 0.033. It is clear from figure 19 that the initial growth 
of the fluctuations in this simulation i~ dominated by the interaction of the relatively high intensity 
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Figure 19: One-dimensional autospectra in time of the longitudinal velocity in the upper shear layer. 
-xjh = 0.0, ---xjh=1.0. 

fluctuations at the inflow with the mean shear, as opposed to the linear instability associated with 
the shear layer. While the shear layer mode does indeed grow, the strongest increase in energy in the 
autospectra occurs at larger scales where the energy due to the effects of mean shear is introduced 
into the fluctuating fields. Unlike the results for the two-dimensional forced jets of Stanley & Sarkar 
(1997b), discrete peaks at J;l and its subharmonics do not develop. It is also interesting to note 
that there is a decrease in the energy at the intermediate and small scales, S 2: 0.05, relative to 
the energy in the large-scales. As the turbulent cascade develops downstream the energy in the 
intermediate and small scales grows strongly. 

The absence of a strong peak in the autospectra coincident with the shear layer mode near 
the nozzle is a result of the strong broadband inflow forcing. The energy of the shear layer mode 
is not significantly greater than the broadband background energy, and thus is not visible in the 
auto spectra. However, the vorticity visualizations of § 4.1 show distinct spanwise vortices and their 
interaction. In order to reduce the influence of the broadband background energy and accentuate 
discrete frequencies, coherency spectra that use information at two separate locations in the flowfield 
are obtained. Figure 20 shows the coherency spectra of the lateral velocity at two points in the shear 
layers on opposite sides of the jet, y j 8u = ±1.0. The coherency spectra of a variable A is defined as 

(29) 

where 

(30) 

is the correlation coefficient in time between the values of A at two points separated by a distance ~: 
In this definition, Arms indicates the root-mean-square value of the time series A and EI2(f,~) is 
the Fourier transform ofthe correlation coefficient CI2 (7, ~). The spectra in figure 20 are normalized 
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Figure 20: Two-point lateral velocity coherence spectra for points in the upper and lower shear 
layers, y/8u = ±1.0, at the stations x/h = 0.0 and x/h = 1.0. --x/h = 0.0, 
---x/h = 1.0. 

using the shear layer scaling based on the inflow parameters. It is clear from the coherency spectra 
shown in figure 20 that the strongest growing mode between x / h = 0.0 and x / h = 1.0 is at a 
Strouhal number of S = f()o/Uc = 0.022 based on the inflow conditions. If this scaling is based on 
the shear layer conditions at x/h = 1.0 the Strouhal number is 0.037. It is clear that the strong 
peak is a result of the shear layer instability and the frequency at which this mode occurs is affected 
by the increase in the shear layer momentum thickness between x/h = 0.0 and x/h = 1.0. 

The secondary peak at S = 0.012 in figure 20 appears to be related to the subharmonic of 
the shear layer mode, although it does not occur at precisely one-half the Strouhal number of the 
strongest mode. The side peak at S = f()o/Uc = 0.018 is consistent with the jet mode. In terms of . 
the jet scaling, this mode occurs at a Strouhal number, S = f8u/!:::.U = 0.108 which matches well 
with the experimentally observed jet mode of S = Nu/!:::'U = 0.11. Figure 21 shows the coherency 
spectra of the lateral velocity at points on opposite sides of the jet at the stations, x/h = 1.0, 3.0 
and 5.0 with the frequency normalized using the local jet scaling. The coherency spectra are scaled 
using the inflow parameters to prevent masking the growth of individual peaks. It is clear from this 
figure that the side peak mentioned above at the station x/h = 1.0 coincides closely with the jet 
mode. While the shear layer mode grows strongly between x/h = 0.0 and x/h = 1.0, downstream 
it is clear that the jet mode, S = Nu/!:::'U = 0.11, becomes dominant. At x/h = 5.0 a strong 
peak has formed at frequencies near S = Nu /!:::'U = 0.10. Although not shown here, the phase 
data corresponding to the strongest peak in the lateral velocity coherency spectra shifts from being 
out-of-phase at x/h = 1.0 to in-phase for x/h = 5.0. This indicates a transition from symmetric to 
asymmetric structures over this region of the jet. Downstream of x/h = 5.0, the coherency spectra 
maintains a broad peak coinciding with the jet mode. The corresponding phase data downstream 
indicates asymmetric structures. 

Figure 22 shows the one-dimensional autospectra in time of the longitudinal velocity on the 
centerline of the jet at two stations downstream in the self-similar region. These spectra are scaled 
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Figure 21: Two-point lateral velocity coherence spectra for points in the upper and lower shear 
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5.0. 

using the local values for the jet-width, centerline velocity excess and the centerline variance of the 
longitudinal velocity. With this scaling, it is expected that the low wavenumber portion of the energy 
spectra in a fully developed jet would collapse. It can be seen in this figure that, for the conditions 
of this jet, all of the range of scales collapse relatively well. The energy spectra began exhibiting 
signs of self-similar behavior in the region near x/h = 9.0. The k-5/ 3 law is plotted for comparison, 
although for the conditions of this simulation an extended inertial subrange is not observed in the 
energy spectra. However, there is clearly a dissipative region at high frequencies where the energy 
spectra decays at greater than a k- 5/ 3 rate. 

Consistent with the earlier observation about the relative isotropy of the small scales in the fully 
developed region of the jet, the autospectra in time of the lateral and spanwise velocity components 
are very similar for the small-scale, high frequency, motions figure 23. However, as noted previously 
the large-scale, low frequency, motions are not similar between the two velocity components. A 
strong peak occurs in the autospectra of the lateral velocity component near the jet mode, S = 
fJu/b.U:::::: 0.11. Due to the symmetries associated with the isotropic turbulence assumption, the 
autospectra of the lateral and spanwise velocity components would be identical if the velocity fields 
were completely isotropic. . 

Between three and four orders-of-magnitude decay are present in both the temporal and the 
spanwise autospectra. This is large enough to indicate that the results are relatively well resolved. 

5 Evolution of the Passive Scalar in a Three-Dimensional 
Tur bulent Jet 

There is a great interest in the transport and-mixing processes of scalars in turbulent shear flows due 
to their importance in the propagation of contaminants in environmental flows, as well as the wide 
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self-similar region_ --x/h = 10_0, - - - x/h = 11.0, --------- x/h = 12_0_ 

101 

,-.. 
~ q, 
Kl 

10° ...-

~ 
ej. 

--Q 10-1 
;d 

~ 10-2 

Kl 
~ 

ej. 

-- 10-3 
Q 

;;{ 

10-4 
10-2 10-1 10° 101 

fBJ~U 
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range of applications involving turbulent combustion. In an environmental application, a passive 
scalar can be used to represent a contaminant which is spread by the effects of the turbulent flowfield. 
Likewise, in the limit of fast chemistry, the effects ofturbulent combustion. can be modeled using a 
passive scalar. 

The evolution of the passive scalar field in a Reh = 3000 turbulent jet is discussed in this section. 
The physical conditions for this simulation match those of the previous jet except for a decrease 
in the inflow forcing intensity to 5% in the shear layers. This DNS was performed on the same 
computational grid as the previous simulation. 

In the course of the discussion of the evolution of the passive scalar, comparison will be made 
against the experimental data of Ramaprian & Chandrasekhara (1985), Browne et al. (1983), Davies, 
Keffer & Baines (1975) as well as Jenkins & Goldschmidt (1973). In these studies the evolution of 
the "scalar" field was studied through experimental measurements of heated jets in air and water. 
In these studies the temperature difference between the jet and free stream fluids was kept small 
in order to minimize the effects of buoyancy on the evolution of the jet. Molecular effects on the 
evolution may be different since the Prandtl number, Pr = Cp/l-/K = 0.74 for air and Pr = 0.94 for 
water while the Schmidt number used for the passive scalar in this jet is Be = 1.0. However, the 
dominant means of scalar transport in turbulent jets is due to convection by the fluctuating velocity 
rather than due to molecular diffusion. Therefore, only the small-scale details, where molecular 
effects become significant, will be affected by this difference in Prandtl number without a major 
impact on the comparisons of scalar variables and fluxes made here. The physical conditions for the 
experimental studies utilized herein are given in table 1. 

5.1 Visualization of the Passive Scalar Field 

Figures 24 and 25 show instantaneous isocontours of the passive scalar on an xy-plane (side section) 
and a xz-plane (top section) in the jet, respectively, at a nondimensional time tt:J..Uo/h = 89.10. 
The xz-plane shown is at a station y / h = 0.467 which is just below the upper shear layer at the 
inflow. At this lateral station the fluid at the inflow is predominately jet fl'Ed. In these figures, 
the contour levels are defined such that white indicates pure coflow fluid, ( = 0.0, while black 
indicates pure jet fluid, l = 1.0. The levels of gray between are a measure of the mixedness of 
the fluid with darker indicating proportionally large quantities of jet fluid. The dark core of pure 
jet fluid is clearly evident in figure 24 near the inflow plane. In the region x / h <4.0 there is a 
slight spreading of the core of the jet due to the effects of turbulent diffusion in the shear layers. 
At x / h = 4.0 a large-scale roll up is present in the upper and lower shear layers. The large-scale 
entrainment of coflow fluid by the upper structure is evident in figure 25 by the sudden appearance 
of a large region of white at 3.0 ~ x/h ~ 4.0. While not entirely two-dimensional, as indicated by 
the inclination and spanwise inhomogeneity, the spanwise extent of this structure is large. In the 
region 5.0 ~ x/h ~ 7.0 the remnants of a second structure can be seen in figure 24 and 25. As is 
evidenced by the medium gray shading of this structure in figure 25 the effects of small scale mixing 
have eliminated any region of pure coflow fluid entrained by this structure. Likewise, this structure 
has greater three-dimensionality than that of the structure nearer to the inflow. 

Downstream in the jet, x/h 2: 8.0, the effects of small-scale mixing due to the strong turbulence in 
the jet have greatly reduced the presence of patches of pure jet and coflow fluid in the jet. However, 
there are small regions of fluid which are predominantly composed of one fluid type or the other. In 
figure 24 there is clearly a small patch composed primarily of jet fluid present near the jet centerline 
at x / h = 11.0. Likewise, near the jet edges there are clearly regions where nearly pure coflow fluid 
have been engulfed into the more mixed fluid present in the jet. 
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Figure 24: Instantaneous passive scalar contours on an xy-plane, z = 0.0. 
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Figure 25: Instantaneous passive scalar contours on a xz-plane just below the upper shear layer, 
y/h = 0.44. 
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Figure 26: Mean scalar profiles in a planar jet. --x/h = 0.0, ---x/h = 7.0, ---x/h = 10.0, 
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5.2 Mean and Fluctuating Scalar Fields 

Figure 26 shows the mean profiles of the passive scalar field at several streamwise stations. At the 
. inflow plane, x/h = 0.0, the sharp transition from pure coflow fluid, (' = 0.0, to pure jet fluid, (' = 1.0, 
in the near field of the jet is evident. Downstream, the effects of strong turbulent mixing in the shear 
layers act to spread this profile until self-similarity is approached near x/h = 7.0. The mean passive 
scalar profiles are slightly slower to develop than the mean velocity field. The mean longitudinal 
velocity becomes self-similar at x/h = 6.0 in this jet. Due to the lower fluctuation intensity at the 
inflow, this jet develops slower than that discussed in § 4. The mean passive scalar profiles from 
DNS compare well with experimental profiles for the mean temperature excess of Ramaprian & 
Chandrasekhara (1985), Davies et al. (1975) as well as Jenkins & Goldschmidt (1973). 

The self-similar scaling of the mean profiles in figure 26 masks the mixing and subsequent decay 
in the overall scalar values downstream in the jet. The decay in the mean value of the passive 
scalar on the jet centerline provides a measure of the overall mixing in the jet. Figure 27 shows the 
downstream variation in the centerline scalar values plotted using self-similar scaling. The symbols 
in this figure are experimental data for the centerline temperature decay in heated jets. The data of 
Browne et al. (1983) shows a very strong decay in the region 5.0::; x/h::; 10.0, followed by a slower 
linear decay downstream. In the DNS results for the passive scalar, a similar strong initial decay is 
observed. 

The mathematical analysis for the self-similar region of the planar jet gives a downstream vari­
ation of the mean scalar on the centerline of ('C <X X-1/ 2 , similar to the centerline velocity decay. A 
linear fit of the values «('o/fcJ2 downstream in the jet, x/h ~ 7.0, results in the relationship 

(3.1) 
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Figure 27: Decay of the mean scalar and centerline velocity excess on the jet centerline. 
- ([o/[c)2, - - - (6.Uo/6.Uc)2, -- ([o/[c)2 = 0.308(x/h-1.48), _ .. - (6.Uo/6.Uc)2 = 
0.213(x/h - 1.02),\0 Browne et al. (1983), 0 Davies et al. (1975). 

where CI~ = 0.308 and C2f, = -1.48 for this jet. Table 7 shows a comparison of these constants to 
experimentally obtained values for the temperature field in heated jets. In general, the centerline 
scalar decay rates in the self-similar region, x/h ~ 7.0, are high compared to the experimental 
values. As noted above, Browne et al. (1983) show a large decay in the region 5.0 ::; x/h ::; 10.0, 
however they do not observe self-similar decay, [ex x- I / 2 , until x/h ~ 10.0. The self-similar decay 
region from Browne et al. is only shown by the last three points in figure 27. It is reasonable that 
the decrease in the slope of the DNS scalar decay is a gradual shift into a slower more linear decay 
downstream. 

Figure 28 shows the downstream growth in the jet half-width based on the mean profiles of the 
passive scalar. The symbols in this figure show experimentally measured values for the jet width 
based on the mean temperature profiles in a heated jet. The slow initial development of this jet to the 
linear growth rate, 8f, ex x, in the self-similar region is apparent. While Browne et al. (1983) see linear 
growth near x/h = 3.0, for the current case x/h = 6.0 before linear growth is observed, although the 

Source KIf, K 2f, Clf, C2f, Klu/Klf, Clu/CI~ 
DNS, q/6.Uo = 0.05 0.158 -1.34 0.308 -1.48 0.66 0.69 
Ramaprian & Chandrasekhara 0.167 2.00 0.194 6.00 0.66 0.87 
(1985) 
Browne et al. (1983) 0.128 5.00 0.189 7.86 0.81 0.76 
Jenkins & Goldschmidt (1973) 0.123 0.090 0.261 -5.62 0.71 0.61 
Davies et al. (1975) 0.115 2.05 0.258 0.920 0.87 0.61 

Table 7: Jet growth rates based on the passive scalar and centerline scalar decay rates for the current 
results and several experimental studies. 
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Figure 28: Downstream growth of the jet half-widths based on the passive scalar and velocity. 
-Jdh, - - -Ju/h, --Jdh = 0.158(x/h - 1.34), _··_Ju/h = 0.105(x/h - 0.220), 
o Browne et al. (1983), 0 Davies et al. (1975). 

self-similar growth rate downstream from the current results is consistent with experimental data. 
A fit of the scalar half-widths to the functional form 

Jf. [X ] h = KIf. h +K2f. (32) 

gives the constants KIf. = 0.158 and K2f. = -1.34 for the current results. As can be seen in table 7, 
the linear growth rate, KIf., compares well with the experimental data for heated jets. As with 
the virtual origins for the velocity field, there is a great deal of scatter in the values for the virtual 
origins of the scalar field, K2f. and C2f.. These values are strongly affected by the nozzle conditions 
in the jet and thus vary considerably from one study to the next. 

The decay of the centerline mean velocity excess and the jet half-width based on the velocity 
field for this case are also shown in figures 27 and 28. The constants in the fits for the self­
similar development of Ju/h and (AUo/AUc)2 are K lu = 0.105, K 2u = -0.220, Clu = 0.213 and 
C2u = -1.02, based on the region x/h ~ 7.0. The spread rates and centerline decay rates for the 
scalar field are larger than those for the velocity field. This would seem to indicate that the mixing 
of the scalar field occurs at a faster rate than for the velocity field. The ratio of scalar to velocity 
spread rates, K lu / KIf. = 0.66, and scalar to velocity centerline decay rates, Clu/Clf. = 0.69, are in 
the range of experimental values for the temperature field, table 7. In free shear flows, the turbulent 
Schmic;lt number, Set = vt/Dt ~ 0.7, which is consistent with the observed ratios Klu/Klf. and 
Clu/Clf. observed in the direct numerical simulation. 

Figure 29 shows the downstream evolution of the centerline scalar fluctuation intensity, Rf.f.. 
Consistent with the slow initial development of this jet, the scalar fluctuation intensities evolve 
slower relative to experiment. The strong growth in the centerline intensities occurs at x/h = 5.0 
for the current jet and is followed by a slow decay downstream, x/h ~ 8.0. Browne et al. (1983) 
observed a strong growth at x/h = 4.0 to a value greater than two times their downstream self­
similar intensity. This peak was then' followed by a slow decay downstream to the self-similar values 
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Figure 29: Growth of the scalar fluctuation intensity on the jet centerline. --Current results, 0 
Browne et al. (1983), 0 Davies et al. (1975),6. Ramaprian &Chandrasekhara (1985). 

at x/h = 15.0, not shown in this figure. An overshoot in the velocity fluctuations is not observed in 
the current DNS or by Browne et al .. 

5.3 Evolution of the Scalar Probability Density Functions 

The evolution of the probability density functions, PDF, of a passive scalar has been utilized to 
study the mixing process in planar turbulent shear layers (Koochesfahani & Dimotakis, 1986; Batt, 
1977; Rogers & Moser, 1994; Karasso & Mungal, 1996), as well as in round jets (for example Dahm 
& Dimotakis, 1990). However, there remains considerable debate on the final downstream state of 
the mixing process in self-similar shear layers. 

The characterization of mixing through the use of probability density functions requires the 
definition of a classification scheme for the PDF. In the studies of mixing in turbulent shear layers, 
classification of the probability density functions into "marching", "non-marching" and "tilted" has 
been used (Rogers & Moser, 1994; Karasso & Mungal, 1996). In "marching" PDFs, the most probable 
value varies across the layer in a fashion closely following the local mean value for the scalar. This 
type of probability density function is characteristic of the classical notion of mixing dominated by 
the small scales of motion. "Non-marching" PDFs , on the other hand, are characterized by a most 
probable value which remains at a constant location across the layer irrespective of the local mean 
value. In non-marching PDFs, the primary peak is accompanied by a secondary peak corresponding 
to unmixed fluid from one stream or the other. This type of probability density function characterizes 
mixing which is dominated by large-scale engulfing of pure fluid from the external streams. The 
"tilted" type of probability density function which is a hybrid of the other two types was suggested 
by Karasso & Mungal (1996). In this type of PDF the most probable value varies across the mixing 
region, although not as strongly as in marching PDFs. In addition, secondary peaks corresponding 
to unmixed fluid are still present. This type of probability density function would seem to indicate 
large-scale engulfing of unmixed fluid from each stream coupled with strong mixing at the small 
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Figure 30: Variation of the probability density function of the passive scalar across the jet at x/h = 
1.0. Symbols are as follows: 0 y / 8e = 0.33, 6. Y / 8e = 0.66, <l y / 8e = 1.00, <> y / 8e = 1.33, 
o y/8e = 1.66. 

scales causing a shift in the most probable value. 
While there has been considerable study of the scalar PDFs in turbulent shear layers and round 

jets, to the authors' knowledge there has been no such study in turbulent planar jets. As a building­
block turbulent flow, understanding the mixing process in planar jets could be beneficial in a wide 
range of physical applications. 

The variation of the probability density function of the passive scalar, PdfCe), from the centerline 
of the jet outwards through the upper shear region is presented here in order to characterize the 
development of the mixing process in this jet. Figure' 30 shows the PDF of the scalar for five 
lateral locations, 0.33 ~ y/8e ~ 1.66, at the streamwise station x/h = 1.0. In all of the PDFs 
presented, the solid symbols across the top of the plots give the mean scalar value for the PDF 
with the corresponding symbol. The station, x/h = 1.0, is very near the jet nozzle and thus the 
mixing process is dominated by the quasi-isotropic velocity fluctuations imposed at the inflow. The 
variation of the probability density functions across the jet at this station exhibit pure "marching" 
behavior where the peak in each PDF corresponds to the mean scalar value at that lateral location. 
The width of each PDF is a measure of the mixing due to the velocity fluctuations at that lateral 
location. As would be expected, the PDF at y / 8e = 1.00 is much wider than the others since 
the intensity of the velocity fluctuations peaks at y / 8e ~ y / 8u = 1.0. The PDF for y / 8e = 0.33 is 
characteristic of the behavior in y / 8e < ±0.33 at this streamwise station since pure jet fluid, e = 1.0, 
is present near the jet centerline. 

Near the end of the potential core at x / h = 4.0 the probability density functions are very broad, 
figure 31. For the lateral location, y/8e = 1.05, the mean scalar value is l = 0.47. However, there 
is nearly equal probability of having any scalar value in the range 0.05 ~ e ~ 0.9 with a drop in 
the probability for ( = 0.0 and ( = 1.0. For the lateral locations, y/8e = 0.52 and 1.58, there is 
a high probability of having pure jet and pure coflow fluid, respectively, although the PDFs have 
a central broad region. This streamwise location is in the region where strong vortical structures 
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Figure 31: Variation of the probability density function of the passive scalar across the jet at xlh = 
4.0. Symbols are as follows: 0 y18f, = 0.00, D. y18f, = 0.52, <JYI8f, = 1.05,0 y18f, = 1.58, 
o y18f, = 2.10. 

are beginning to develop, figure 24. It is likely that the broad range of scalar values present at 
y 18f, = 1.05 is due to the lateral motion of the region of sharp scalar gradient as vortical structures 
develop in the velocity field coupled with the occasional strong entrainment of coflow fluid by a 
structure that develops at xlh < 4.0. 

Figure 32 shows the scalar PDFs across the jet at the station xlh = 7.0. This station is just 
downstream of the end of the potential core based on the velocity field and is the station at which 
the mean scalar profiles are beginning to show signs of self-similarity. At this station, the probability 
density functions for y I 8f, = 0.43, 0.87 and 1.30 are decidedly non-marching. While the mean scalar 
values, solid shaded symbols at the top of the plot, vary strongly for 0.43 ::; y I 8f, ::; 1.30, a stationary 
central peak is present in the PDFs at scalar values ~ ~ 0.5. At each of these lateral stations there 
is a second strong peak in the probability density function corresponding to either pure jet fluid, 
y18f, = 0.43, or pure coflow fluid, y18f, = 1.30, or both y18f, = 0.87. For all three PDFs, the 
secondary peaks are as strong or stronger than the central peak at ~ ~ 0.5. The probability density 
functions for y18f, = 0.0 and 1.74 are quite broad and show a dominant peak of pure jet and pure 
coflow fluid, respectively. For y I 8f, = 0.0 the mean scalar value is [ = 0.79, however the broad 
portion of the PDF only starts to decay for ~ ::; 0.4. The non-marching PDFs at this streamwise 
station, xlh = 7.0, indicates that, in this region of the jet, mixing is dominated by the large-scale 
engulfing of fluid. In the region 0.43 ::; y I 8f, ::; 1.30 away from the centerline and the jet edges, there 
is still a strong tendency to have patches of pure jet and pure coflow fluid, interspersed with mixed 
fluid. 

Figure 33 shows the probability density functions of the passive scalar at the streamwise station 
xlh = 9.0 just before the fluctuating scalar and velocity fields reach self-similar behavior. The mean 
scalar value at the jet centerline at this station is f ~ 0.65. However, even at this downstream station 
there is a high probability of finding pure jet fluid on the centerline. The strong peak corresponding 
to pure jet fluid in the PDF for y I 85 = 0.41 is significantly less than that which is present at 
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Figure 32: Variation of the probability density function of the passive scalar across the jet at xfh = 
7.0. Symbols are as follows: 0 yf8f. = 0.00, /::. yf8f!. = 0.43, <I yf8f!. = 0.87, <> yf8f. = 1.30, 
o yf8f. = 1.74. 

xfh = 7.0 indicating a breakdown of the patches of pure jet fluid away from the centerline due to 
the effects of small-scale mixing. Thus, the fluid away from the jet axis is more thoroughly mixed 
with the coflow fluid than that on the axis. 

The probability density function for yf8f. = 0.78 still shows the effects of large-scale engulfing 
of coflow and jet fluid. A strong central peak is present near ~ = 0.42 with secondary peaks 
corresponding to pure coflow,~ = 0.0, and pure jet, ~ = 1.0, fluid. For yf8f!. = 1.15 there is an 
even stronger indication of the large-scale entrainment of co-flow fluid. At this location there is 
relatively equal probability of finding fluid with 0.1 ~ ~ ~ 0.5 as well as a very high probability for 
pure co-flow fluid. Comparison of the PDFs for yf8f. = 0.0, 0.41, 0.78 and 1.15 shows that there 
is some tendency of the central peak to shift from scalar values ~ ~ 0.65 to ~ ~ 0.25. This leads 
to the classification of these probability density functions as the "tilted" type, or a hybrid between 
marching and non-marching PDFs. 

Figure 34 shows the probability density functions for the passive scalar field further downstream 
in the jet, xfh = 11.5, after the fluctuating velocity and scalar fields have obtained self-similar 
profiles. At this station, the PDF at the jet centerline no longer shows a strong peak corresponding 
to pure jet fluid, ~ = 1.0. Small-scale mixing has eliminated the presence of strong patches of 
unmixed jet fluid. The probability density functions at yf8f!. = 0.0 and 0.38 exhibit "marching" type 
behavior at this streamwise station. There is a single peak in the PDF which corresponds to the 
mean value of the passive scalar at that lateral location. 

At the lateral locations yf8f. = 0.72 and 1.07 the probability density functions of the passive 
scalar still show a central peak which tends to follow the local mean scalar. value. However, at the 
stations in the outer half of the jet, closer to the coflow fluid, there are strong peaks in the PDFs 
corresponding to pure coflow fluid. At the outer point, yf8f. = 1.45, there is a sharp peak in the 
PDF corresponding to pure coflow fluid. 

The picture of mixing in planar turbulent jets which is presented by these scalar probability 
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density functions is as follows. Near the jet nozzle, prior to the roll up of strong vortical structures, 
mixing is dominated by the effects of the quasi-isotropic turbulence imposed at the inflow. The 
probability density functions correspond to the classical marching type with the most probable 
value equal to the mean scalar value imposed at the inflow, with a widening of the PDFs in the 
shear layers due to the imposed small-scale motions. In the region of the jet, 4.0 :::; x/h :::; 5.0, 
where strong vortical structures begin to develop in the shear layers, the mixing is still largely due 
to small-scale mixing, however there is a significant impact of the occasional large-scale transport 
of pure jet and coflow fluid across the interface by the randomly occurring large-scale structures. 
In a jet more strongly forced at the fundamental frequency for the shear layer, it is expected that 
the transition from the dominance of small-scale mixing, due to the imposed broadband inflow 
disturbances, to that of large-scale engulfing of fluid would be more dramatic and would occur at a 
fixed point in space. This type of forcing would lock the flowfield so that the roll up of large scale 
vortical structures occurs at a stationary point in space. 

After strong vortical structures have developed, the mixing is dominated by the large-scale scale 
engulfing of pure jet and pure coflow fluid by these structures. The PDFs are of the "non-marching" 
or "tilted' type. However, as the flowfield in the core of the jet becomes more fully three-dimensional 
downstream, the influence of large-scale engulfing of fluid near the jet centerline, y / 8e < 1.0, becomes 
less significant. The mixing in the central core of the self-similar region of the jet is dominated by 
the effects of small-scale turbulent motion and exhibits "marching" probability-density-functions. 
However, near the edges of the jet, y/8f. 2: 1.0, the entrainment of pure coflow fluid due to the 
large-scale structures is still quite significant. The effects of small-scale mixing in the interior of the 
jet then break these patches up and transport the coflow fluid inward resulting in the downstream 
decay in the centerline values of the mean scalar. 

6 Conclusions 

A computational model has been developed for three-dimensional, spatially evolving, turbulent jets 
using direct numerical simulation of the compressible Navier-Stokes equations. This computational 
model utilizes state-of-the-art numerical techniques to deal with the complex issues in unsteady 
flow computations arising due to the open computational domain. The efficiency and accuracy, 
both temporal and spatial, of this computational modef is suitable for performing detailed studies 
of spatially evolving turbulent flows. This numerical model provides detailed data on all flowfield 
variables in the initial and self-similar region of spatially evolving turbulent shear flows which, if 
validated against laboratory experiments, can be utilized in the evaluation and design of subgrid 
models for large-eddy simulation. 

Three-dimensional simulations of the spatially evolving plane jet have been performed and results 
compared against the available experimental data. The self-similar jet growth rate, K 1u = 0.093, 
compares well with the values K 1u = 0.110 and K 1u = 0.100 observed experimentally by Ramaprian 
& Chandrasekhara (1985), and Gutmark & Wygnanski (1976), respectively. Likewise, the self­
similar centerline velocity decay rate, C1u = 0.193, agrees with the values C1u = 0.220 measured by 
Thomas & Prakash (1991) and C1u = 0.189 measured by Gutmark & Wygnanski (1976). 

The mean longitudinal velocity profiles are self-similar at x/h = 4.0 and Reynolds stress profiles 
are approximately self-similar by x/h = 10.0. The self-similar mean and Reynolds stress profiles 
show good agreement with the experimental data of Ramaprian & Chandrasekhara (1985) as well 
as Gutmark & Wygnanski (1976). The growth of the fluctuating velocity components is in good 
agreement with experimental data, although there are some differences in the initial growth rate 
of the centerline root-mean-square longitudinal velocity. This, however, is not surprising since the 
downstream development of planar jets is sensitive to nozzle and external conditions. While the 
shear layer momentum thickness of the current results is somewhat larger than experimental values, 
the inflow fluctuation intensity has, been designed to provide a rapid breakdown of the jet to a 
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fully-developed turbulent state. Unfortunately, insufficient data is available to match the inflow 
conditions in the direct numerical simulation exactly to the nozzle conditions in the experimental 
studies. 

As shown through the use of coherency spectra across the jet, the simulation captures well the 
strong growth in the shear layer mode near the jet nozzle. A shifting of the dominant frequency in 
the coherency spectra is observed through the length of the potential core from the shear layer mode 
to that corresponding to the jet column mode. The transition to the dominance of the jet column 
mode occurs at the end of the potential core and thus coincides with the emergence of typical jet-like 
mean longitudinal velocity profiles. The region in which the jet column mode becomes dominant, 
3.0::; jh ::; 5.0, corresponds to that over which the strong breakdown to three-dimensionality occurs 
in the jet. Over this range, there is a substantial decrease of the longitudinal and spanwise correlation 
scales as well as a large increase in the energy content of the intermediate-to-smalliength scales in 
the turbulence. 

The turbulent-kinetic-energy balance in the self-similar region from the DNS simulation generally 
compares well with those of Ramaprian & Chandrasekhara (1985) as well as Gutmark & Wygnanski 
(1976). Strong production is observed in the region of sharp mean gradient with turbulent transport 
towards the jet centerline and edges. The viscous dissipation is relatively uniform across the core 
of the jet, -1 ::; y/8u ::; 1. The present results, however, have the advantage of allowing direct 
calculation of all terms in the TKE balance. While it is shown that on the centerline of the jet 
the small scales of motion are substantially more isotropic than at the jet edges, the isotropic 
approximation for the dissipation still underestimates the centerline value by 18%. 

Comparisons have been made of the evolution of a passive scalar field in a planar turbulent jet 
to experimental data on the temperature field in heated planar jets. Self-similar mean scalar profiles 
compare well with mean temperature profiles from experimental studies. The initial evolution of 
the centerline scalar decay rate and jet width based on the passive scalar are somewhat slower in 
the current results due to differences between the inflow conditions in the DNS and experiments. 
However, the downstream growth rates and centerline decay rates compare well with experimental 
values. 

Analysis of the probability density functions for the passive scalar has been used to characterize 
the evolution of the mixing process in turbulent planar jets. Near the nozzle, prior to vortex 
rollup, the probability density functions are dominated by the effects of quasi-isotropic small-scale 
fluctuations spreading the peaks of the PDFs. Therefore, in this region, scalar PDFs exhibit classical 
marching behavior. Downstream, after the roll up of strong vortical structures in the shear layers on 
either side of the potential core, the mixing process is dominated by large-scale engulfing of coflow 
fluid into the jet by these structures. In this region after vortex roll up, the probability density 
functions across the jet are non-marching. 

However, when the flowfield in the jet becomes more fully turbulent downstream the influence 
of large-scale engulfing of fluid on the mixing near the jet centerline progressively decreases. In the 
core of the self-similar region of the jet, the mixing process is dominated by small-scale mixing. 
Therefore, the probability density functions of the passive scalar are of the marching type. However, 
near the jet edges, the engulfing of coflow fluid by the presence of large structures remains significant. 
Therefore, double peaks are present in the PDFs, one of which corresponds to pure fluid originating 
in the coflow. 

In summary, the present work demonstrates through detailed comparison with classical experi­
mental data that DNS with high-order space and time accuracy and appropriate schemes to handle 
inflow and outflow boundaries can successfully represent a spatially evolving plane jet. The devel­
opment from interacting shear layers near the nozzle to the self-similar jet can be captured, albeit 
at a moderate Reynolds number. Such validated DNS can be useful in developing and validating 
improved turbulence prediction methods as well as in refining our knowledge of mixing in turbulent 
jets. 
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