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Decadal-scale frequency shift of migrating bowhead whale calls
in the shallow Beaufort Sea
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(Received 19 March 2017; revised 9 August 2017; accepted 17 August 2017; published online 21
September 2017)

Automated and manual acoustic localizations of bowhead whale calls in the Beaufort Sea were

used to estimate the minimum frequency attained by their highly variable FM-modulated call reper-

toire during seven westerly fall migrations. Analyses of 13 355 manual and 100 009 automated call

localizations found that between 2008 and 2014 the proportion of calls that dipped below 75 Hz

increased from 27% to 41%, shifting the mean value of the minimum frequency distribution from

94 to 84 Hz. Multivariate regression analyses using both generalized linear models and generalized

estimating equations found that this frequency shift persisted even when accounting for ten other

factors, including calling depth, call range, call type, noise level, signal-to-noise ratio, local water

depth (site), airgun activity, and call spatial density. No single call type was responsible for the

observed shift, but so-called “complex” calls experienced larger percentage downward shifts. By

contrast, the call source level distribution remained stable over the same period. The observed fre-

quency shift also could not be explained by migration corridor shifts, relative changes in call detect-

ability between different frequency bands, long-term degradation in the automated airgun detector,

physiological growth in the population, or behavioral responses to increasing population density

(estimated via call density). VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.5001064]

[RAD] Pages: 1482–1502

I. INTRODUCTION

After summering in the eastern Beaufort Sea, the

Bering-Chukchi-Beaufort (BCB) population of bowhead

whales (Balaena mysticetus) begins its autumn westward

migration in late August. Unlike the spring migration, the

autumn migration takes place relatively close to the northern

shores of Alaska (Moore and Reeves, 1993). During their

travels the animals produce a wide variety of frequency-

modulated (FM) and other signals that defy simple classifi-

cation into specific call types (Ljungblad et al., 1982; Clark

and Johnson, 1984; Cummings and Holliday, 1987; Moore

et al., 2006; Blackwell et al., 2007), but past work has

roughly divided calls between “simple” FM calls and so-

called “complex” calls (Blackwell et al., 2007). These calls

are distinct from so-called bowhead “song” produced during

the winter season at more southern latitudes (Stafford et al.,
2008; Delarue et al., 2009; Tervo et al., 2009; Tervo et al.,
2011). While bowhead song appears to serve a reproductive

purpose, the functional purpose of the call repertoire used

during the migration remains largely unknown.

Between 2007 and 2014, the Shell Exploration and

Production Company (SEPCO) commissioned Greeneridge

Sciences Inc. (GSI) to deploy at least 35 seafloor acoustic

recorders, divided among five sites in the coastal Beaufort

Sea (Fig. 1). Over that period, hundreds of thousands of

bowhead whale calls were recorded during each fall migra-

tion season. The motivation behind the effort was to evaluate

the potential impact of airgun and other industrial sounds on

bowhead whale behavior during their westward fall migra-

tion in the relatively shallow arctic waters off Alaska

(Blackwell et al., 2015).

The scale of the dataset, combined with a need for

timely analysis, motivated the development of methods for

automatically detecting, classifying, and localizing bowhead

whale sounds, while exploiting the directional localization

capabilities of the DASAR packages (Thode et al., 2012).

The results of the automated analysis have previously been

used to track seismic airgun activity around the Beaufort Sea

(Thode et al., 2010), to determine that bowhead whales

change their sound production rates in response to both

nearby and distant airguns (Blackwell et al., 2015), and to

establish source levels and calling depth distributions of the

migrating population (Thode et al., 2016).

Here this 7-year automatically analyzed dataset, com-

bined with supplemental manual analysis, is used to measure

trends in the frequency content of the call repertoire. Section

II describes the equipment used, along with the automated

and manual call detection procedures, detailing specific efforts

to ensure that seismic airgun signals were not mistakenly

labeled as whale calls. The section also describes the con-

struction and evaluation of statistical multivariate regressiona)Electronic mail: athode@ucsd.edu
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models for call frequencies. Section III uses descriptive statis-

tics and regression models to observe a 7-year downward

trend in the mean minimum frequency of the calls, a trend

that persists even when ten other potential factors are incorpo-

rated into the regression model, including acoustic propaga-

tion factors and behavioral factors like call type. Section IV

examines various possibilities for this observed 7-year shift,

including shifts in propagation conditions (such as shifts in

calling depth or distance offshore), relative differences in

detection rates arising from differential changes in ambient

noise levels across different frequency bands, increasing con-

tamination by airgun signals arising from degradation in the

automated detector, changes in the relative proportion of call

types used by the population, physiological growth of the pop-

ulation, and behavioral responses to increasing population

densities.

II. METHODS

A. Equipment and deployment configuration

The acoustic data for this study were recorded

on Directional Autonomous Seafloor Acoustic Recorders

(DASARs, model C) (Greene et al., 2004), autonomous

acoustic recording packages equipped with an omnidirectional

acoustic pressure sensor (sensitivity of �149 dB re V/ 1 lPa)

and two horizontal directional sensors capable of measuring

the north-south and east-west components of acoustic particle

velocity. This arrangement permits the azimuth of bowhead

whale sounds to be measured from individual DASARs. Each

time series is sampled at 1 kHz, but has a maximum usable

acoustic frequency of 450 Hz, due to antialiasing filter rolloff.

DASAR bearing precision, derived by comparing the active

acoustic intensity measured along orthogonal directions, has

been found empirically to be between 15� and 20� for signals

with signal-to-noise ratios (SNR) of 5 dB or less, and between

1� and 2� for signals with SNR greater than 10 dB. Coincident

bearings to calls detected on different DASARs are combined

via triangulation to yield two-dimensional call positions, from

which the range of each call to every DASAR can be esti-

mated (Greene et al., 2004).

From August to October 2007 to 2014, between 35 and

40 DASARs were deployed across a 280 km swath off the

Alaskan North Slope, on the continental shelf in water

depths between 20 and 53 m. The deployments were grouped

into “Sites,” labeled 1–5 traveling from west to east (Fig. 1).

Most sites contained seven DASARs deployed in a triangular

grid with 7 km separation, and labeled “A” to “G” from

south to north (Fig. 1). The analysis here focuses on data col-

lected at both Sites 3 and 5, as these sites were located rela-

tively distant from local seismic exploration activities (in

2008 and 2010). The analysis rejects data from the first year

of the study, 2007, when a different type of sensor was used

for the DASAR measurements.

B. Automated detection and localization

Each year bowhead whale calls in the raw acoustic data

were post-processed by a six-stage automated detection and

localization program, which has been extensively described

and evaluated elsewhere (Thode et al., 2012; Thode et al.,
2016). The algorithm basically conducts extensive prepro-

cessing of the signals to remove regular pulses produced by

seismic airgun surveys, and then uses image processing to

extract 25 descriptive features from noise-equalized spectro-

grams, including the minimum and maximum frequency

attained by a FM sweep. It then applies two cascaded feed-

forward neural networks to winnow candidate detections

based on these features. The rest of the algorithm associates

call detections between DASARs to permit triangulation, as

previously described in Greene et al. (2004) and Thode et al.
(2012).

Certain relevant aspects of this algorithm are reviewed

here, anticipating later discussion about whether errors and

degradation in the automated detector’s performance are fac-

tors in the observed long-term trends presented in Sec. III.

Specific topics of relevance include how airgun signals are

identified, how the minimum frequency obtained by an FM

sweep is measured, how the neural networks were trained

to recognize calls, and how the automated analysis linked

individual DASAR detections together to generate location

estimates.

One early portion of the automated procedure attempts

to identify and remove distant seismic airgun signals from

further consideration. These signals have bandwidths and

signal structure similar to bowhead whale FM downsweeps.

Propagation effects can distort their time-frequency structure

into a variety of range-dependent patterns with bandwidths

very similar to those of low-frequency bowhead whale calls,

which can make identifying and isolating these signals chal-

lenging. The automated procedure identifies these signals

by flagging regularly timed events arriving from consistent

FIG. 1. (Color online) Location and

bathymetry of DASAR deployments at

Site 5, near Kaktovik, AK.
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azimuths. For each “target” event initially detected, the azi-

muths of 200 preceding and succeeding events are examined

for those that lie with 15� of the target event and occur

within 800 s of the target event. This set of surviving detec-

tions is then scrutinized for patterns of regular intervals, or

“interval sequences,” that lie between 5 and 42 s, a span that

covers typical airgun firing intervals between 10 and 20 s. A

given detection before or after the target event is assigned to

an interval sequence if its arrival time fits within 60.5 s of

an arrival time predicted by a trial interval. If at least 12 out

of 20 trial interval timeslots surrounding the target event

match detections with appropriate bearings, then that trial

interval is assigned to the target event, which is then rela-

beled as a “candidate” airgun event. The process is then

sequentially repeated for all events. A second pass is then

made through all candidate airgun events that have been

assigned intervals. For each candidate detection, at least 7

out of 20 candidate detections preceding or succeeding it

must share an interval that lies within 0.4 s of the given can-

didate’s interval value, in order for the candidate detection

to be classified as an airgun. This last step is performed to

reduce removals of valid bowhead whale calls during times

of heavy bowhead whale calling activity, when bursts of

calls could arrive from similar azimuths, but at irregular tim-

ing intervals. The relatively ad hoc parameter values listed

above permitted identification of airgun signals from up to

four surveys simultaneously, but the algorithm was not fool-

proof, so long-term deterioration of this portion of the algo-

rithm is a valid concern that will be addressed in Sec. IV.

An image-processing stage extracts descriptive signal fea-

tures by applying various image processing techniques to spec-

trograms to identify complete time-frequency signal contours,

and not just fragments of the most intense signal portions

of the signal. Additional steps are used to assign harmonics

and overtones to the fundamental. Various features are then

extracted from the resulting time-frequency signal structures,

emphasizing the lowest-frequency, or “fundamental,” portion

of the signal. The minimum frequency attained by the call’s

fundamental FM component (Fig. 2) is defined as the call’s

“minimum frequency” fmin for the rest of this paper.

The neural networks required training data provided by

manual analyses in order to adjust the network weights and

output thresholds. The training data were obtained by run-

ning the first three algorithm stages on subsets of acoustic

data from 2008 and 2009 that had been reviewed manually

for bowhead whale calls. A comparison of the automated

results with the manual data divided the automated results

into appropriate “whale” and “non-whale” classes, produc-

ing the training sets. Once the networks had been trained and

their weights fixed, all stages were then applied to the com-

plete 7-year acoustic data sets. Because the networks were

trained only on data from the first two years of the program,

some degradation in performance over time was anticipated,

and thus supplementary manual analysis was conducted for

each year in a manner discussed in Sec. II C. These later

analyses were not used to retrain the networks, but to pro-

vide independent quality checks on the automated result

statistics. Using the manual data from later years to retrain

the networks would have blended the manual and automated

datasets together, eliminating the ability to evaluate side-

by-side comparisons between them. As will be seen in Sec.

III B 1, the data sample sizes involved were so large that

applying additional restrictive criteria was successful in

combating neural network deterioration without compromis-

ing the statistical power of the manual data analyses.

Associating multiple detections on individual DASARs

with a single call was challenging in this environment,

because low-frequency whale and airgun signals dispersed

over a few kilometers range, such that the signal structure of

a given call differed between different DASARs, and simple

cross-correlation techniques could not be used to match

calls. A modified form of spectrogram correlation (Mellinger

and Clark, 2000; Thode et al., 2012) was employed to match

similar images between DASAR receivers. Were some air-

gun signals to be mistakenly identified as whale calls, and

then mistakenly matched with true whale calls on other

DASARs, then an airgun signal could conceivably be linked

to a position close to a DASAR. Section II D below details

steps used to check that such inadvertent admissions had not

occurred.

C. Manual analysis

As discussed in Sec. IV B, during each year of the pro-

ject between 5 and 8 non-contiguous days of a deployment

were selected for detailed manual analysis, with the intention

of performing quality assurance checks of the automated

analysis, which was always performed on the complete sea-

son. A team of roughly one to two dozen trained analysts

used custom-written MATLAB software to review calls within

the chosen dates. Each whale call was identified and classi-

fied by examining spectrograms of the acoustic data, 1 min at

a time, and listening to recordings of each call or suspected

call. The same minute recorded at each DASAR location was

shown as a series of spectrograms on the analyst’s screen.

For each DASAR, an analyst drew a bounding box around

every occurrence of a particular call. The bounding boxes

allowed the software to calculate parameters such as the

call’s duration (width of the bounding box) and bandwidthFIG. 2. Definition of the minimum frequency of a bowhead whale call, fmin.
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(height of the bounding box), minimum frequency detected,

received root-mean-square (rms) and sound exposure levels,

SNR, and bearing, the last of which was used to triangulate

the call position. Once all the calls included in the minute

had been marked, the analyst moved on to the next minute of

data. The lead analyst, who was the same person throughout

all the years of the study, performed regular checks to main-

tain consistency among analysts.

The manual analysis also classified various frequency-

modulated (FM) bowhead calls into “simple” FM modulated

calls that displayed at most one inflection point (e.g.,

“upsweeps,” “downsweeps,” “constant,” “n-shaped,” and “u-

shaped”), as well as a “complex” call category that incorpo-

rated any call that was not a simple FM sweep, including

“pulsed sounds, squeals, growl-type sounds with abundant

harmonic content, and combinations of two or more simple

segments” (Blackwell et al., 2007). As described later, these

manual classifications were used to determine the statistical

effect, if any, that call type had on the observed minimum

frequency fmin.

A weakness in the manual analysis was that consistent

procedures were never defined for treating signal harmonics.

As a result some analysts drew bounding boxes around mul-

tiple harmonics, while others simply drew a box around the

fundamental call component. Thus, when comparing auto-

mated to manual analysis, the metric of choice used here is

the minimum frequency fmin attained by a call, since its

selection criteria were consistent for both automated and

manual analysis approaches. An additional weakness in the

manual analysis is that the analyst software did not display

spectrogram content below 50 Hz, creating biased estimates

of fmin for low-frequency calls.

D. Data culling and quality assurance

The raw bowhead whale localization results produced

by both types of analyses (automated and manual) were fur-

ther culled to reduce any impact of potentially misidentified

airgun signals or incomplete whale call detections on the

observed call frequency distributions. In order to be included

in the final analysis, a given bowhead call had to satisfy the

following criteria, similar to those applied in Thode et al.
(2016):

(1) The call had to be detected on three or more DASARs at

ranges less than 50 km from every DASAR, and the call’s

localized range to the closest DASAR had to be less than

a threshold value Rmin. Had the algorithm accidentally

localized distant airgun signals, the resulting localization

ranges would have easily exceeded 50 km, and thus this

thresholding step removed most possibilities of flagging

airgun localizations as whale calls. Two values of Rmin—

2 and 15 km—were applied, values identical to those

employed in Thode et al. (2016). The 2 km threshold was

selected because previous analysis had shown that

DASARs are effective in detecting calls made at ranges

of 2 km or less, regardless of ambient noise conditions

(Blackwell et al., 2013; Blackwell et al., 2015). The

15 km threshold, which roughly corresponds to the dis-

tance spanned by three in-line DASARs, was selected to

increase the sample size available, as well as check to

what degree the minimum frequency distribution of the

call repertoire was influenced by Rmin.
(2) A call’s 90% confidence localization ellipse (Greene

et al., 2004) had to have the equivalent area of a 150

m-radius circle, or a mean radius less than �7% of the

range to the nearest DASAR for the 2 km scenario.

(3) The call’s fmin feature had to lie between 20 and 170 Hz,

in order to remove the potential impact of call directivity

on the analysis. A 170 Hz signal has an 8.5 m wavelength

in arctic water (1450 m/s sound speed), roughly the

length of a bowhead whale, so from a physical viewpoint

frequencies below 170 Hz can be reasonably expected to

be omnidirectional.

(4) The call’s estimated source level (in terms of sound

exposure level, or SEL) had to be within 6 dB of the

source level computed from any other DASAR detecting

the same call, a metric dubbed the “discrepancy” in

Thode et al. (2016). This procedure provides a safeguard

against the possibility that the automated algorithm cap-

tured only a fragment of a call, thus potentially missing

the minimum frequency fmin. Had only a fragment of a

call been captured on one or more DASARs, then the

estimated SEL source level would vary between the

DASARs.

Calls that survived the above criteria were assigned

the value of fmin detected on the DASAR closest to the

call’s position.

E. Ambient noise analysis

As discussed in Sec. IV B, one possible explanation for

long-term changes in the frequency content of the whale call

repertoire is that the frequency-dependent ambient noise

spectrum is evolving over time, changing the relative

amount of masking (detectability) occurring for calls at dif-

ferent frequencies. To investigate this possibility, ambient

noise properties were analyzed two ways.

The first approach created percentile distributions from

continuous ambient noise data samples within two different

frequency bands across all seasons. A set of 13 Fast-Fourier

Transform (FFT) sample spectra were generated from a 2-s

data segment (1 kHz sampling rate), using 512-point samples

overlapped by 75%. The FFTs were converted into units of

power spectral density (PSD), and then averaged together to

produce one PSD estimate (periodogram) for each 2-s audio

sample. The next PSD estimate retained the latter half of the

original FFT samples, and then used one second of new data

to generate the new PSD estimate. Thus, once an entire sea-

son was processed, a PSD estimate was produced every

second.

For a given frequency, the corresponding PSD levels

were then extracted and converted into a cumulative proba-

bility distribution for each season, from which percentiles

could be derived. By using values from the 75th percentile

and lower, potential contamination from whales and airguns

(which only influenced the top 10% of PSD samples) could

be removed from the ambient noise estimate. Section IV B

examines percentile trends of ambient levels over all seven

J. Acoust. Soc. Am. 142 (3), September 2017 Thode et al. 1485



seasons, and estimates to what degree changes in relative

ambient levels between two different frequencies could have

shifted the observed distributions of fmin across multiple

seasons.

The second approach to noise analysis, discussed in

detail below, used short noise samples collected over a fixed

bandwidth, just before times when whale calls were detected.

These samples were then used in a regression analysis to

determine the association between fmin, noise level, and sig-

nal-to-noise ratio.

F. Statistical regression

The large sample sizes yielded by both the manual and

automated analyses ensured that most simple statistical

hypothesis tests (e.g., Student’s t, Kolmogorov-Smirnov,

analysis of variance) consistently rejected the null hypothe-

sis that the distribution or mean of fmin remained constant

over time. Thus, more rigorous statistical multiparameter

regression analyses on fmin were conducted using both gener-

alized linear models (GLM) and generalized estimating

equations (GEE; Dobson and Barnett, 2008) in order to

examine effect sizes, confidence intervals, and the degree of

interdependence between samples. Data from Sites 3 and 5

were analyzed both separately and together, but only the

combined site analysis is presented here. Manual and auto-

mated detections using both Rmin¼ 15 km and the more

restricted dataset with Rmin¼ 2 km were analyzed to check

for modeling consistency, yielding a total of four datasets to

which a given regression model was applied (i.e., Rmin¼ 2,

15 km; manual or automated analysis).

Several potential explanatory variables were examined

that could impact the measured fmin. Before conducting the

regression, all predictor variables were examined for linear

independence using both Pearson’s correlation coefficients

and variance inflation factors (VIF). Twelve different varia-

bles were examined:

(a) Year (Year, 1¼ 2008, 2¼ 2009, etc.) was treated as a

continuous, and not a categorical variable, in order to

estimate the fmin shift rate.

(b) Whale calling depth (CallingDepth, m) was computed

using the methods described in Thode et al. (2016).

Source depth has a large impact on frequency-

dependent acoustic propagation in a shallow-water

waveguide, so including this factor was a necessity.

(c) Whale range from closest DASAR (Range, km) was

also tested, as different frequency components attenu-

ate with range at different rates.

(d) Sample discrepancy (Discrepancy, dB re 1 lPa2-s), as

defined in Thode et al. (2016), was included to test fmin

as a function of data quality. As discussed above, all

datasets were restricted so that this factor could not

exceed 6 dB.

(e) The median power spectral density (PSD) between 40

and 60 Hz was defined as NoiseBand1 (dB re 1 lPa2/

Hz). The 75 to 125 Hz band (NoiseBand2) was also

examined. The full-bandwidth rms sound pressure level

(SPL) was also computed across both bandwidths, to

determine to what degree the choice of noise metric

affected the regression result. As it turns out, the statisti-

cal analysis for both bandwidths and both metrics

yielded similar results, so only the PSD of NoiseBand1

is discussed in detail below.

(f) The signal-to-noise ratio (SNR, dB), of the call sample

was measured at the closest DASAR.

(g) Site (Site), a categorical variable, was assigned as a

proxy for water depth and other geographical differ-

ences in acoustic propagation factors. For example, the

median DASAR depth at Site 5 was 52 m vs 38 m for

Site 3.

(h) Airgun, another categorical variable, was assigned a

value of true whenever a given call was recorded dur-

ing times when distant seismic airgun activity was

detected, as reported by the airgun detection algorithm.

An airgun survey was judged to be present if 15 airgun

pulses were detected within 10 min on the DASAR

closest to the call (e.g., 50% of airgun pulses from a

survey with 20 s intervals).

(i) The Universal Transverse Mercator (UTM) Northing

(Northing, km) was tested, a proxy for both latitude and

offshore water depth, since the continental shelf mono-

tonically deepens with increasing latitude [Fig. 1(c)].

This factor was included to account for the possibility

that deeper waters would shift the optimum propagation

frequency. The mean northing of all calls sampled at a

given site was subtracted from each northing sample in

order to reduce the effect of Site on this variable.

(j) A previous publication on long-term changes in the fre-

quency content of blue whale calls (McDonald et al.,
2009) proposed that increases in animal density could

prompt behavioral decreases in call frequency.

Independent information on animal density was not

available for this study; however, call localization rates

were used as a proxy for population density, assuming

that call rates detected on a DASAR would be similar to

those detected by whales within a certain distance of the

nearest sensor.

Thus, two potential proxies, CallRate and

CallDensity, were defined and tested. CallRate is sim-

ply the raw number of localized whale calls detected

per minute over a 75-min interval centered on a given

call sample, regardless of the distance of the call from

the DASAR. The 75-min interval was chosen based on

an autocorrelation analysis of fmin, which found that

samples measured 75 min apart had fmin correlation

coefficients that fell below 0.1. This result was inter-

preted as representing a timescale over which a given

migrating animal or group of animals could be local-

ized by the array, and would thus be the timescale over

which a calling animal would detect call rates similar

to those measured on the DASARs. Call detections

measured within this window were used to compute

CallRate regardless of their value of Rmin, discrepancy,

localization success, or localization precision.

CallDensity, by contrast, was computed over the

same time interval, but used only calls localized within

the same value of Rmin used to construct the dataset.

CallDensity thus serves as a more accurate measure of

1486 J. Acoust. Soc. Am. 142 (3), September 2017 Thode et al.



the true underlying call density surrounding the

DASAR in terms of calls per unit area, while CallRate

is intended to measure the raw number of calls per-
ceived per unit time by a calling animal. CallRate is

much more sensitive to ambient noise levels than

CallDensity; however, CallDensity would still be

expected to be somewhat sensitive to noise levels for

datasets where Rmin¼ 15 km, since previous work has

shown that call detection rates decrease at ranges

greater than 2 km from a DASAR.

(k) Finally, for the manual data analysis a final categorical

variable CallType was used to distinguish between sim-

ple modulated FM sweeps (type “A”), “constant” tonal

calls (type “B”), and “complex” calls (type “C”), which

have been noted as having lower frequency content in

previous studies (Blackwell et al., 2007). A preliminary

data exploration of the frequency content of various call

types suggested that constant “tonal” calls should be

lumped into a separate “B” category from all the other

simple FM call types, the rest of which were then

lumped together into the same baseline “A” category.

CallingDepth and Discrepancy were obtained using full

normal-mode propagation models derived from geoacoustic

inversions of selected calls (Thode et al., 2016). NoiseBand1,

NoiseBand2, and SNR were measured by extracting a noise

sample from the closest DASAR to a given call’s location,

using a time window that lasted between 1 and 0.5 s from the

start of the measured call, and then using a 512 pt FFT win-

dow with 90% overlap to extract 10 PSD estimates. A 0.5 s

gap was set between the end of the noise sample and start of

the call in order to avoid inadvertently incorporating call com-

ponents into the noise sample. Using noise samples measured

0.5 to 1 s after the end of the call was found to yield no signif-

icant difference in the analysis. While both NoiseBand meas-

urements quantified the median power spectral density over a

fixed bandwidth (40–60 Hz and 75–125 Hz), the SNR mea-

surement was only computed over the same bandwidth as the

following call. The SNR measurement was thus directly

related to the detectability of the call, while the NoiseBand

measurements were included to test whether potential rela-

tionships exist between the general noise background and fmin.

To evaluate the degree to which adjacent data measure-

ments are correlated, the autocorrelation function was com-

puted between the measured fmin values, the various

explanatory variables, and model residuals. A threshold nor-

malized autocorrelation value of 0.1 was used to determine

block sizes for a first-order autoregressive (AR) covariance

structure for a GEE with a normal distribution. In effect, the

autocorrelation was used to estimate the average number of

correlated samples taken from one “subject” (i.e., the num-

ber of samples effectively obtained from one individual or

group swimming through a site). The AR structure fit the

observed correlation structure better than an equicorrelated

structure. The resulting GEE regression coefficients and their

confidence intervals were then compared to a normal GLM

that assumed complete sample independence. The GEE and

GLM models yielded similar regression coefficients and con-

fidence intervals, so most of the discussion that follows uses

the GLM results. The GEE models were more applicable

when examining ambient noise level trends, since noise lev-

els changed slowly with time and were thus often highly cor-

related between adjacent samples.

Four levels of regression models were tested on each

data set. Model 1 simply performed a least-squares linear fit

as a function of Year only, using both the normal GLM and

GEE; model 2 incorporated linear terms from up to 11 (auto-

mated detection) or up to 12 (manual detection) predictor

variables using both the GLM and GEE; model 3 further

incorporated first-order interactive terms between the predic-

tor variables, using the GLM framework only; while model 4

was a “full” model that permitted both pure and mixed terms

up to the quartic level (fourth-power). For models 2–4, indi-

vidual terms were added whenever inclusion of the term low-

ered the Bayes Information Criterion (BIC). The confidence

bands generated from the final prediction slices use simulta-

neous bounds to ensure that the entire curve has a 95% confi-

dence interval of lying between the bands (which generates

a much wider confidence interval than non-simultaneous

bounds, which just present the confidence intervals around

single observations).

III. RESULTS

A. Data sample sizes

Figure 3(b) shows that over 1.6� 106 calls were auto-

matically localized over 7 years at Sites 3 and 5 combined.

For a subset of days over that same period, 264 576 calls

were manually localized at the same sites [Fig. 3(a)], with

nearly half of detected calls obtained between 2012 and

2014, the last three years of the study. Over that same period

at both sites, over 1.6 � 106 airgun signals were flagged and

removed by the automated procedure [Fig. 3(g)].

Once the additional culling steps in Sec. II D were

applied to the raw results, the sample sizes dropped consider-

ably. Figures 3(c) and 3(d) indicate that 13 355 calls (5%)

from the manually analyzed dataset and 100 009 calls (6%)

from the original automated dataset remained when Rmin was

set to 15 km, and that 2585 (<1%) and 15 704 (<1%) calls

remained when Rmin was set to 2 km [Figs. 3(e) and 3(f)].

These reduced datasets changed the relative proportions con-

tributed by different years in the study, but still provided sig-

nificant samples from all years, with the possible exception

of 2011, which had unusually low numbers of calls. Note

that the subsets of days manually analyzed varied from year

to year, so the yearly distributions of the manual and auto-

mated analyses at a given Rmin are not expected to match.

B. Descriptive statistics

This section plots various distributions of call source

level, fmin, ambient noise levels, and airgun signals, provid-

ing some context for the more formal statistical regressions

reported in Sec. III C.

1. Source level distribution

Plotting the source level distribution vs year provides

useful insight about the degree to which the neural network
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performance deteriorated over the life of the study, and how

this deterioration can be compensated for with more strin-

gent data culling. This analysis is also a necessary prelimi-

nary step for estimating how long-term shifts in ambient

noise levels could influence call detectability (Sec. IV B).

Figure 4 arranges call source level distributions by

deployment year. [Note that Thode et al. (2016) displayed

source level distributions for all years combined.] The dashed

(yellow) lines are distributions derived after applying Criteria

1–3 to the data (not checking for source level discrepancy),

FIG. 3. (Color online) Pie charts show-

ing breakdown of call samples among

years of the study. Manual analyses

are displayed in left column, auto-

mated analyses—whale calls and air-

gun pulses—are displayed on the right.

The number of samples used are

shown in parentheses. (a) All manually

detected and (b) automatically detected

calls obtained from Sites 3 and 5,

with discrepancies <6 dB; (c) manu-

ally detected and (d) automatically

detected calls culled using the criteria

listed in Sec. II D, with Rmin¼ 15; (e)

manually detected and (f) automati-

cally detected results with Rmin¼ 2 km

and discrepancies <6 dB; (g) auto-

mated detections of airgun pulses.

FIG. 4. (Color online) Long-term

trends in source level distribution.

Source level distributions are shown

(a) from manually analyzed data, Rmin

¼ 2 km; (b) from automated analysis,

Rmin¼ 2 km; (c) from manual analysis,

Rmin¼ 15 km; (d) from automated anal-

ysis, Rmin¼ 15 km. The dashed (yel-

low) lines contain all data samples, and

the solid line shows results after

excluding source level estimates with

discrepancies greater than 6 dB. The

circles on each distribution show the

mean value of the x axis parameter

(i.e., the “center of mass”) of the

distribution.
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while the solid (blue) lines represent samples further winnowed

by Criteria 4, such that calls associated with source level dis-

crepancies greater than 6 dB are excluded. The open and solid

circles represent the mean dB-scale values, or “center of

masses” of the respective complete and winnowed distributions.

Figure 4(b), which shows automated source level distri-

butions for calls generated less than 2 km from a DASAR,

illustrates why data with large source level discrepancies

were winnowed. When looking at the distributions where dis-

crepancies have not been culled (yellow lines, open circle),

one sees how the mean source level seems to decrease over

time (�6.5 dB over 7 years), a pattern also visible to a lesser

extent in Fig. 4(d), where Rmin¼ 15 km. As mentioned in Sec.

II D, high discrepancy values arise whenever automated sam-

ples capture only fragments of calls on at least one DASAR.

Criteria 4 in Sec. II D, which restricts the permissible discrep-

ancy to values less than 6 dB, reduces these “substandard”

samples, and the resulting final distributions in both Fig. 4(b)

and 4(d) (solid circles; blue lines) show the resulting mean

source levels appearing relatively stable across years, with the

possible exception of 2012, the year in which Shell performed

exploratory drilling in the Beaufort Sea, between Sites 3 and

4. This stability in source level structure is consistent with the

associated manual analysis results, which also display a stable

mean source level at Rmin values of both 2 and 15 km [Figs.

4(a) and 4(c)] across all years except 2011.

The relative increase in high-discrepancy estimates over

time [as seen by the growing difference between the open and

closed circles in Fig. 4(b)] provides evidence that the neural

networks used by the automated algorithm, which were

trained on 2008 and 2009 data, are gradually degrading in per-

formance over time, a sign that some aspect of the bowhead

whale call repertoire is gradually diverging from the training

dataset. However, Fig. 4 also shows how one can compensate

for this degradation by rejecting high-discrepancy call sam-

ples from the sample distributions.

In the detailed statistical analyses that follow, only sam-

ples with discrepancies less than 6 dB are retained. Enforcing

this criterion reduced the final sample size by only 15%, a

much less stringent culling than what the localization restric-

tions of Criteria 1 and 2 required.

2. Minimum frequency distribution

Figure 5 uses 8 Hz-wide frequency bins to produce his-

tograms of the 7-year trend in the minimum frequency (fmin)

distributions of the call samples analyzed using the four data

sets. A long-term trend is visible in these distributions: the

mean value of fmin decreases over 7 years, due to a relative

increase in the fraction of calls descending below 75 Hz. The

direction and magnitude of this shift is robust to the type of

analysis applied: it is independent of Rmin, whether manual

or automated analysis is used, and whether high-discrepancy

samples are retained or excluded. The fact that the shift

in mean fmin is independent of Rmin [Figs. 5(a) and 5(b) vs

5(c) and 5(d)] indicates that the observed distribution is char-

acteristic of the call repertoire generated by the animals,

and has not been modified by frequency-dependent acoustic

FIG. 5. (Color online) Long-term

trends in minimum frequency fmin of

call distributions, using a format identi-

cal to Fig. 4, and using 8 Hz frequency

bins. Note the prominent increase in

relative numbers of calls below 75 Hz

over time.
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propagation effects. These qualitative observations are borne

out by the formal regression analyses in Sec. III C.

The clearest temporal changes in the observed distribu-

tion are visible in Fig. 5(d), which uses the largest sample size

(100 009, automated analysis, Rmin¼ 15 km), and which

shows a 10.5 Hz downward shift in the mean fmin over the life

of the study. At the start of the study, calls with fmin below

75 Hz (labeled from this point on as “low-frequency calls”)

comprised 27% of the total, but by the last 2 years the low-

frequency calls comprised 41% of the total. Similar shifts are

visible for the other analyses. Figure 6 contains example spec-

trograms of these low-frequency calls, with four examples ran-

domly selected from each of the 7 years of the study. All calls

shown were generated less than 2 km range from the DASAR.

A significant fraction of the calls have several harmonics

above the 30–50 Hz fundamental, extending past 100 Hz.

3. Airgun signals

Figure 7 displays the frequency, bearing, and timing

interval distributions of identified airgun signals on a yearly

basis, as compared with the distributions of automatically

classified bowhead whale calls, for Rmin¼ 15 km.

The left column of Fig. 7, which shows the frequency dis-

tributions of airgun signals and whale calls, reveals how the

peak frequency of detected airgun signals tends to reside

between 25 and 75 Hz, the same frequency region that is regis-

tering increased numbers of calls in Fig. 7(d) [which reprodu-

ces Fig. 5(d) for Rmin¼ 15 km]. The middle column of Fig. 7

plots the bearings (azimuths) of both airguns and whale calls,

with the azimuths of the latter category measured from the

DASAR closest to a call’s position. Airgun bearings are

clearly dominated by certain directions, reflecting the fact that

most surveys detected are distant from Sites 3 and 5 and are

thus confined to a relatively small angular sector throughout a

season. By contrast, whale bearings measured from the closest

DASAR show much wider angular spreads around locations

mostly to the east and west of the site, although 2010 shows

heavy concentrations of calls to the south of the DASARs,

indicating a southern shift in the migration route during that

year. The last column displays the mean intervals between

detections (evaluated over 800 s), and shows how the intervals

between adjacent whale localizations are irregular and gener-

ally greater than the much more regular 10 to 20-s intervals

of the airguns. The similarity between airgun and bowhead

whale frequencies justifies the inclusion of airgun activity as a

predictor variable in the regression analysis, but the lack of

correspondence between their respective bearing and interval

distributions indicates that the effect of airgun presence should

not be significant.

FIG. 6. Examples of low-frequency (fmin< 75 Hz) calls that became more prevalent with time. Each row represents a year of the study, and each column repre-

sents a randomly picked sample from that year. FFT sample size is 512 pts, 90% overlap, sampling rate 1 kHz.
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4. Ambient noise levels

In most shallow water environments ambient noise lev-

els increase with decreasing frequency, due in large part to

the ubiquitous presence of commercial shipping, the domi-

nant source for low-frequency noise worldwide (Wenz,

1962; McDonald et al., 2006). However, in the Beaufort

Sea, shipping traffic is very light, leaving wind-driven break-

ing waves as the dominant noise-production mechanism.

Propagation modeling of sound at Site 5 at 50 m water depth,

using environmental models derived from geoacoustic inver-

sions of whale sounds (Abadi et al., 2014), reveals that

acoustic propagation is more efficient for shallow wind-

generated sources at higher frequencies; below 75 Hz sound

attenuates more quickly with range. The combined result of

these factors is that wind-generated ambient noise levels

would be expected to be lower below 75 Hz than they are

above 100 Hz.

Figures 8(a) and 8(b) confirm this expectation by plotting

various percentiles (between the 25th and 75th percentiles) of

the seasonal ambient noise power spectral density at 40 Hz

and 103 Hz, frequencies that represent the low and high-

frequency peaks of the bimodal call frequency distribution

FIG. 7. (Color online) Comparison

between automated airgun signal

detections (top) and automated bow-

head whale detections (bottom, Rmin

¼ 15 km). Left column shows fre-

quency content of airguns (a) and whale

calls (d), middle column shows bear-

ings to airguns (b) and whale calls (e),

as measured from measured DASAR

(with 0� representing true north), and

right column shows intervals between

two airgun pulses (c) or whale calls (f)

detected on the same DASAR.

FIG. 8. (Color online) Changes in ambient noise levels over years. (a) Various

percentiles of the power spectral density levels at 40 Hz vs year, ranging from

the 25th to the 75th percentile; (b) same as previous, but showing 103 Hz com-

ponent; (c) dB difference between 103 and 40 Hz for various percentiles.
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visible in Fig. 5(d). These data are derived from all acoustic

data, whether whale calls were present or not, using the tech-

niques in Sec. II E. Ambient levels are always higher at

103 Hz. Figure 8(c) plots the relative difference in dB level

between the two frequencies for each season. The highest

median ambient noise levels at both frequencies occur in

2009, while the lowest levels occur in 2011. However, Fig.

8(c) also shows that during the first 3 years of the study

(2008–2010) the relative noise difference between the two

frequency bands decreases, but then in the last years of the

study (2011–2014) the 103 Hz band becomes increasingly

noisy relative to 40 Hz, culminating in a 6 dB difference in

the 50th percentiles (and most other percentiles) in 2013.

Section IV B will examine whether a 6 dB ambient noise

increase at higher frequencies could have sufficiently sup-

pressed detection rates of higher frequency calls to cause an

apparent shift in the fmin distribution.

C. Regression analysis

Tables I and II present the predictor coefficient esti-

mates, associated confidence intervals (CI), and R2 fit for

models 1–3. The p-values from hypothesis tests that a given

regression coefficient is actually zero were generally minus-

cule and are only reported if they were greater than 10�5. In

the results reported below, the CI is provided in brackets.

1. Models 1 and 2

Model 1, a simple linear regression of fmin with Year,

found annual decreases of the mean fmin on the order of �1.6

[�2.1, �1.1] to �1.94 [�2.04, �1.85] Hz per year, depend-

ing on which of the four datasets is used. These rates trans-

late into a 9.6 to 11.6 Hz shift in mean fmin over the life of

the study, replicating the graphical observations of Fig. 5.

The R2 value of the fit was small, between 0.01 and 0.02,

TABLE I. GLM (plain) and GEE (italics) coefficient estimates for Models 1 (Year only) and 2 (linear combination of predictors), applied to the four datasets.

All estimated values have p-values less than 10�5 unless otherwise noted. a is the best-fit variance parameter for the AR(1) matrix structure for the GEE.

Quantities in brackets are confidence intervals. The absence of numbers in a particular grid cell indicates that a factor was not significant for that particular

dataset.

1 2 3 4 5

Model 1 Manual analysis,
Rmin¼ 2 km

Automated analysis,
Rmin¼ 2 km

Manual analysis,
Rmin¼ 15 km

Automated analysis,
Rmin¼ 15 km

Fmin vs Year �1.6 [�2.1 �1.1] �1.6 [�1.9 �1.4] �1.7 [�1.9 �1.5] �1.94 [�2.04 �1.85]

�1.6 [�2.4 �0.8] �1.6 [�2.1 �1.2] �1.7 [�2.1 �1.3] �2.0 [�2.1 �1.8]

a¼ 0.18, R2¼ 0.017 a¼ 0.26, R2¼ 0.011 a¼ 0.24, R2¼ 0.020 a¼ 0.26, R2¼ 0.015

NoiseBand1 vs Year — �0.49 [�0.77 �0.2] �0.71 [�1.04 �0.37] �0.51 [�0.64 �0.38]

(40–60 Hz, GEE only) a¼ 0.81 a¼ 0.78 a¼ 0.84

NoiseBand2 vs Year �0.30 [�0.62 0.02] �0.34 [�0.45 �0.23] �0.41 [�0.69 �0.14] �0.33 [�0.45 �0.21]

(75–125 Hz, GEE only) a¼ 0.68 a¼ 0.63 a¼ 0.71 a¼ 0.84

Model 2 a¼ 0.17, R2¼ 0.2 a¼ 0.23, R2¼ 0.074 a¼ 0.22, R2¼ 0.20 a¼ 0.24, R2¼ 0.089

Year �1.8 [�2.3 �1.4] �1.4 [�1.7 �1.1] �1.3 [�1.5 �1.1] �1.4 [�1.5 �1.3]

�1.9 [�2.7 �1.1] �1.4 [�1.9 �0.9] �1.5 [�1.9 �1.1] �1.4 [�1.6 �1.2]

CallingDepth (m) — �0.3 [�0.39 �0.28] �0.15 [�0.19 �0.11] �0.27 [�0.29 �0.25]

�0.13 [�0.2 �0.03] �0.3 [�0.35 �0.23] �0.14 [�0.19 �0.10] �0.24 [�0.26 �0.22]

Range (km) — — 0.77 [0.59 0.95] 1.8 [1.7 1.9]

1.04 [0.76 1.32] 1.8 [1.7 1.9]

Discrepancy (dB) 1.2 [0.60 1.8] 2.0 [1.7 2.4] 1.3 [1.0 1.6] 2.0 [1.8 2.1]

1.2 [0.61 1.8] 1.9 [1.5 2.3] 1.27 [0.94 1.60] 1.7 [1.6 1.9]

NoiseBand1 (dB re 1 lPa rms) 0.2 [0.01 0.32], p¼ 0.03 0.89 [0.82 0.95] 0.46 [0.40 0.52] 1.1 [1.07 1.13]

(40–60 Hz) 0.83 [0.71 0.96] 0.53 [0.44 0.62] 1.0 [0.98 1.1]

NoiseBand2 (dB re 1 lPa rms) — 0.81 [0.74 0.89] 0.50 [0.43 0.58] 1.05 [1.02 1.08]

(75–125 Hz) 0.75 [0.61 0.90] 0.64 [0.51 0.77] 0.98 [1.18 2.02]

SNR (dB) — 0.54 [0.44 0.65] 0.14 [0.08 0.20] 0.73 [0.68 0.78]

0.52 [0.38 0.66] 0.21 [0.13 0.30] 0.69 [0.62 0.76]

CallRate (calls / min) — — — �0.58 [�0.72 �0.45]

0.42 [0.14 0.71] p¼ 0.004 — — �0.63 [�0.87 �0.38]

CallDensity (calls / min) — �11.5 [�14.2 �8.8] — �3.8 [�4.1 �3.4]

3.84 [1.82 5.87] �11.7 [�16.0 �7.4] 0.69 [0.07 1.3] �3.8 [�4.3 �3.3]

(p¼ 0.03)

Site 5a 3.0 [1.3 4.7] 3.4 [2.3 4.5] 4.8 [4.1 5.6] 2.4 [2.0 2.8]

4.0 [1.1 6.6] 3.2 [1.3 5.1] 5.1 [3.5 6.6] 2.4 [1.6 3.2]

CallType Ba 6.3 [4.4 8.3] — 6.4 [5.5 7.3] —

— —

CallType Ca �25.9 [�28.3 �23.5] — �24.7 [�25.9 �23.5] —

— —

Airguna — �2.9 [�4.1 �1.7] — �1.0 [�1.5 �0.53]

— �2.8 [�4.7 �0.80] — �1.0 [�1.8 �0.03], p¼ 0.02

aCategorical variable.
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reflecting the fact that the fmin depends on many other factors

than just Year.

Autocorrelation of fmin measurements found that adja-

cent samples have correlation coefficients of around 0.2,

with correlations dropping to 0.1 or less after 20 to 50 off-

set samples, the latter covering roughly 75-min. Thus when

models 1 and 2 were run with a GEE, the block size was set

to 50, and the best-fit intra-class correlation coefficient a
for the autoregressive model was found to be between 0.18

and 0.26 (as would be expected from the autocorrelation

results). The relatively low value of a indicated that the

localization samples became decorrelated relatively quickly

over time, resulting in predictor coefficient values and CIs

for Year that are very similar to the GLM regression (which

assumes samples are uncorrelated). We interpret this result

to mean that the time scale over which migrating individual

whales (or associated individuals with similar acoustic

behavior) were resampled was short compared to the dura-

tion of a season.

The next two rows of Table I show the result of regress-

ing NoiseBand1 and NoiseBand2 against Year using the

GEE framework, to determine whether long-term trends in

background noise levels exist. Noise samples collected from

each call localization were much more highly correlated

with adjacent samples (a�0.63 to 0.84), indicating that the

timescale over which background noise conditions evolved

was longer than the residence time of calling animals within

the tracking region. Using the largest dataset (Rmin¼ 15 km;

automated), the regression found that over seven seasons the

NoiseBand1 median PSD decreased 3.1 [2.3, 3.8] dB and

NoiseBand2 decreased 2.0 [1.3, 2.7] dB re 1 lPa2/Hz. Thus

the mean difference in ambient noise levels between the two

bands changed by only 1 to 2 dB over 7 years, consistent

with the net change in ambient noise levels over seven sea-

sons shown in Fig. 8(c).

The other prediction factors were relatively uncorrelated

with each other, with correlation coefficients generally less

than 0.15. Some exceptions emerged: the Airgun indicator did

have higher correlations with Site (0.23) and Year (0.44).

This is not surprising, since airgun activity only occurred in

certain places and in certain years. Also unsurprising was that

CallRate was negatively correlated with NoiseBand1 (�0.34),

TABLE II. GLM terms from Model 3 (interactive terms). Model 3 for

Rmin¼ 2 km manual analysis is identical to the corresponding Model 2, so is

not shown below. DBIC is the change in the Bayes Information Criterion

(BIC) caused by removal of a particular term, with positive values indicating

that the term’s removal decreases the BIC. DR2 is the change in R2 fit caused

by the removal of the term (multiplied by 1000).

Term Estimate

Lower

CI

Upper

CI DBIC 1000*DR2

Rmin¼ 2 km; Automated Analysis, 14 terms, R2¼ 0.206

Year �2.33 �2.88 �1.78 �60.21 4.06

CallingDepth �0.15 �0.24 �0.06 �2.02 0.68

Discrepancy �0.36 �1.15 0.44 8.88 0.05

NoiseBand1 �0.14 �0.39 0.10 8.30 0.08

SNR �4.29 �5.22 �3.36 �71.86 4.74

CallRate �42.15 �55.81 �28.49 �26.90 2.12

Site 5 9.20 6.62 11.77 �39.37 2.85

Airgun 22.80 12.59 33.01 �9.51 1.11

Year:Discrepancy 0.52 0.36 0.68 �33.15 2.49

Year:CallDensity �3.58 �5.07 �2.08 �12.42 1.28

CallingDepth:Site 5 �0.28 �0.39 �0.17 �15.68 1.47

NoiseBand1:SNR 0.07 0.05 0.08 �82.60 5.36

NoiseBand1:Airgun �0.39 �0.54 �0.24 �16.09 1.49

SNR:CallDensity 2.24 1.63 2.85 �41.97 3.00

Rmin¼ 15 km; Manual Analysis, 20 terms, R2¼ 0.213

Year 7.13 4.59 9.67 �20.75 1.79

CallingDepth �0.15 �0.19 �0.11 �39.91 2.92

Range 0.07 �0.30 0.45 9.35 0.01

Discrepancy 5.57 2.48 8.66 �3.04 0.74

NoiseBand1 0.62 0.41 0.82 �25.37 2.06

SNR �1.38 �1.96 �0.81 �12.64 1.31

Site 5 �11.99 �19.33 �4.66 �0.80 0.61

CallType B �9.56 �18.66 �0.46 7.69 0.67

CallType C �18.80 �30.86 �6.73 7.69 0.67

Year:Range 0.19 0.10 0.27 �8.02 1.04

Year:NoiseBand1 �0.12 �0.15 �0.08 �35.26 2.65

Year:SNR �0.06 �0.09 �0.03 �7.78 1.02

Year:CallType B �1.37 �1.84 �0.90 �23.61 2.52

Year:CallType C �1.39 �2.05 �0.74 �23.61 2.52

Discrepancy:

NoiseBand1

�0.08 �0.12 �0.04 �4.86 0.85

Discrepancy:SNR 0.09 0.04 0.13 �5.54 0.89

NoiseBand1:SNR 0.02 0.01 0.03 �22.02 1.86

NoiseBand1:Site 5 0.24 0.13 0.34 �9.23 1.11

NoiseBand1:CallType B 0.28 0.15 0.40 �1.33 1.20

NoiseBand1:CallType C 0.01 �0.15 0.18 �1.33 1.20

Site 5:CallType B 3.58 1.83 5.34 �7.59 1.57

Site 5:CallType C �2.73 �5.14 �0.33 �7.59 1.57

Rmin¼ 15 km; Automated Analysis, 25 terms, R2¼ 0.10

Year �12.63 �13.92 �11.34 �357.43 3.32

CallingDepth �0.21 �0.29 �0.14 �21.25 0.29

Range 0.14 �0.19 0.46 10.84 0.01

Discrepancy �0.96 �1.40 �0.53 �7.48 0.17

NoiseBand1 �0.06 �0.20 0.08 10.82 0.01

SNR �2.56 �3.04 �2.07 �93.56 0.94

CallDensity �4.27 �5.17 �3.37 �74.35 0.77

Site 5 10.63 9.36 11.90 �257.24 2.42

Airgun 8.62 3.52 13.72 0.55 0.10

Year:CallingDepth �0.02 �0.03 �0.01 �0.80 0.11

Year:Range 0.16 0.12 0.21 �39.58 0.46

Year:Discrepancy 0.45 0.38 0.52 �168.52 1.62

Year:NoiseBand1 0.12 0.10 0.13 �199.61 1.90

Year:SNR 0.13 0.11 0.16 �104.01 1.04

TABLE II. (Continued)

Term Estimate
Lower

CI
Upper

CI DBIC 1000*DR2

Year:CallDensity �0.39 �0.58 �0.19 �3.91 0.14

Year:Airgun �0.38 �0.59 �0.16 �0.34 0.11

CallingDepth:Range 0.04 0.03 0.05 �79.41 0.82

CallingDepth:Discrepancy 0.05 0.03 0.06 �37.34 0.44

CallingDepth:Site 5 �0.42 �0.46 �0.37 �372.90 3.46

Range:CallDensity 0.40 0.20 0.60 �4.53 0.14

Range:Site 5 �0.33 �0.50 �0.16 �2.84 0.13

Range:Airgun 0.39 0.19 0.59 �3.36 0.13

NoiseBand1:SNR 0.04 0.03 0.05 �120.12 1.18

NoiseBand1:Airgun �0.19 �0.26 �0.12 �16.62 0.25

Site 5:Airgun 3.94 3.04 4.83 �63.27 0.67
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as higher noise levels would be expected to reduce the total

number of localized calls detected. Regardless of these spe-

cific relationships, the maximum variance inflation factor

(VIF) never exceeded 1.3, with typical values around 1.05, so

the predictor variables were effectively linearly independent.

When these additional factors were incorporated into

model 2 (linear terms in the GLM and GEE; Table I), the

Year coefficient and its CI remained similar to model 1, but

other factors were also found to have non-zero coefficient val-

ues: CallingDepth (GEE only), Discrepancy, NoiseBand1,

and Site were factors in all four datasets. CallType, in particu-

lar, was a major factor in predicting fmin for manually ana-

lyzed datasets, with type C (complex calls) having minimum

frequencies 25 Hz [24, 26] lower than the type A (simple FM)

category, and type B calls (constant FM) generally having a

fmin value 6.4 [5.5, 7.3] Hz greater than type A. R2 increased

to 0.2 for the manual analysis and 0.09 for the automated

results. The manual results have a higher R2 primarily due to

the inclusion of CallType: without this factor the manual R2

fit drops to 0.07. Range and SNR are also significant regres-

sion factors for automated datasets, and (to a lesser extent)

the manual datasets.

Several factors were revealed to have minor to insignifi-

cant impacts on fmin. For example, Northing did not yield a

coefficient significantly different from zero for any dataset

or model and is not discussed further. In addition, measuring

either NoiseBand1 or NoiseBand2 in terms of SPL instead of

PSD made little difference in the results presented here, and

thus more complex regression models used only NoiseBand1

in terms of PSD. While Airgun presence was not a signifi-

cant factor in the manual datasets, it was a small factor in the

automated datasets, with a �1 [�1.5, �0.5] to �2.9 [�4.1,

�1.7] Hz shift in fmin when airguns were present. However,

the large CI for Airgun and the relatively high p-value (0.02)

indicated a relatively minor effect.

CallDensity always appeared as a significant factor

across the four datasets, but CallRate was significant only in

a couple of datasets. However, the magnitude and even the

FIG. 9. (Color online) Plots of prediction slices for model 3, a GLM with interactive linear terms, using data from both Sites 3 and 5. Top row: Rmin¼ 2 km;

Bottom row: Rmin¼ 15 km. Gray: manual data; pink: automated data. Dashed lines show mean values, and shaded regions are 95% simultaneous prediction

bounds. The absence of a curve on a particular plot means that the factor was not significant for that dataset. Vertical dashed (blue) lines indicate fixed values

used for computing prediction slices in adjacent plots on the same row.
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sign of these regression coefficients fluctuated depending

on the type of analysis and the value of Rminused. CallRate

tended not to be significant in more complex regression

models and so later discussion will only discuss CallDensity.

2. Models 3 (interactive terms) and 4 (nonlinear
interactive terms)

Model 3, where predictor variables were allowed to have

first-order interactions, was the same as model 2 for the small-

est dataset (manual; Rmin 2 km). Yet Table II shows that signif-

icant interactions existed between variables in the other

datasets, yielding between 10 to 25 terms for the final linear

predictor. For example, in the automated Rmin ¼ 2 km dataset

the Year coefficient was influenced by Discrepancy and

CallDensity. The larger the value of Discrepancy, the lower

the yearly decrease, and the larger the value of CallDensity,

the faster the yearly decrease. Table II shows that 5 to 7 factors

influenced the Year coefficient in the larger Rmin¼ 15 km data-

sets. The DBIC column entries for these factors indicate that

the interactions between Year:NoiseBand1 and Year:CallType

contributed the most important modifications to the trend with

Year. For manual data, both B and C call types decreased

1.4 Hz faster per year than simple FM calls. Also, for manual

data, a 10 dB increase in NoiseBand1 caused fmin to decrease

faster by 1 Hz a year, but for automated data, a 10 dB decrease
in NoiseBand1 had the same impact.

Figure 9 uses the coefficients in Table II to plot linear

prediction slices for each variable in model 3, while holding

the other variables fixed at their median values in the data

sample (dashed blue lines). Thus, even though model 3

incorporated interactions between variables, Fig. 9 isolates

the effects of each variable when others are held fixed. The

fixed values for each variable are as follows: Year: 4;

CallingDepth: 25 m; Range: 1 km (for Rmin¼ 2 km) or 3 km

(for Rmin¼ 15 km); Discrepancy: 2.2 dB; NoiseBand: 68 dB

re 1 lPa2/Hz; SNR: 16 dB; Site: 5; CallType: B; Airgun:

false; and CallDensity: 0.1 calls/min (Rmin¼ 2 km) or 0.33

calls/min (Rmin¼ 15 km). The span shown for each factor lies

between the 5th and 95th percentile of the largest (100 009

sample) dataset. The 95% simultaneous confidence bands for

each slice are also displayed. The manual distribution had a

higher fmin value than the automated dataset because the man-

ual analyst software did not permit fmin to be selected below

50 Hz. Figure 9 also confirms that Site and Airgun had only

small effects on fmin, because the span of the confidence

bounds exceeds the shift in the mean fmin caused by changing

between these categorical variables. As a result the trends

visible in Fig. 9 remain the same as those displayed if Site is

switched to Site 3. The dependence of fmin on other factors

will be addressed in more detail in Sec. IV.

As CallType has the greatest impact on the predicted

fmin, Fig. 10(a) breaks out the impact of this factor on the

manually analyzed prediction curves, with each curve repre-

senting a different call type. The figure clearly shows how

the B (constant call; yellow shading) and C (complex call;

green shading) call types are 6 Hz higher and 20–30 Hz

lower, respectively, than call type A (simple call; purple

shading). All three call types showed decreasing fmin across

the seasons, but the B and C call types showed up to a 20 Hz

decrease over seven seasons, while A decreased by only

about 10 Hz over the same interval. Figure 10(b) shows that

type A dominated the logged calls (overall, 60% of total, vs

27% for B and 12% for C), with no trend in call type compo-

sition over time. The dominance of call type A explains why

the 10 Hz downward shift of fmin shown in Fig. 5(d) was sim-

ilar to the shift displayed by call type A alone.

Model 4, which permitted up to fourth-order polynomial

terms along with various lower-order combinations of inter-

actions, yielded many terms that reduce the model BIC: 27

terms for the automated, Rmin¼ 2 km dataset; 28 terms for

the manual, Rmin¼ 15 km dataset; and 50 terms for the auto-

mated, Rmin¼ 15 km dataset. The R2 values for the various

models reach 0.21 and 0.13 for the manual and automated

2 km Rmin datasets, and 0.24 and 0.14 for the manual and

automated 15 km Rmin datasets. As with all previous models,

the better fits to the manual data primarily arise from the

inclusion of CallType as a predictive factor. The overall

dependencies of fmin on the predictor variables are similar

between models 3 and 4, and so the terms and plots for

model 4 are only provided in the supplementary material.1

IV. DISCUSSION

Figure 5 shows that the distribution of fmin values was

quite broad. Even the most complex statistical regression

model (model 4) accounted for just 14% to 24% of this vari-

ance, despite employing nine predictive factors and up to 50

terms. The models clearly demonstrate that fmin has substan-

tial dependencies on many factors related to acoustic propa-

gation and potentially behavior. Some factors, like Site,

Airgun, and Northing, were either found to be insignificant

or found to have effect sizes smaller than the confidence

FIG. 10. (Color online) (a) Effect of manually analyzed call type on fmin and

other regressive model factors, Rmin¼ 15 km. Purple: Call type A; yellow:

Call type B; green: Call type C. (b) Relative proportions of the three call

types as a function of year.
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bounds for the prediction curves. Others, like NoiseBand1,

CallingDepth, and CallType, had strong and complex rela-

tionships with fmin. In particular, CallType, which was only

available for the manual analyses, seemed to be a crucial fac-

tor in predicting fmin (e.g., Fig. 9); for example, whenever

CallType was removed as a predictor variable from models

3 and 4, the R2 values dropped from 0.21 to 0.08 and from

0.24 to 0.12, respectively.

Despite the presence of the factors mentioned above, every

statistical model found a significant regression coefficient

between Year and fmin. Over 7 years, the shift in predicted

mean value (dashed lines in shaded regions of Fig. 9) matched

the mean shift visible in Fig. 5 and exceeded the confidence

bounds assigned to the prediction curve (Fig. 9, leftmost col-

umn). The 7-season shift retained roughly the same direction

and magnitude—a decrease of about 10 Hz over 7 years—

regardless of the model used, the dataset applied, or the number

of predictive factors included (e.g., Tables I and II).

Before discussing potential behavioral or physiological

explanations for these observed long-term frequency shifts,

we first examine three potential non-biological explanations

for this evolution: long-term changes in propagation factors

(including the location of the migration corridor), long-term

shifts in relative ambient noise levels, and increasing misclas-

sification of airgun signals as whale calls. We then examine

specific biological explanations, including a population-wide

shift in the relative use of call types, the addition of a new

call type, physiological growth in the population, and finally,

a behavioral response to increasing call spatial densities.

A. Possible explanations of frequency shift arising
from acoustic propagation factors

The bimodal structure shown in Fig. 5(d), along with the

presence of many harmonics in Fig. 6, raises the question as

to whether the bowhead population call repertoire is not actu-

ally shifting in frequency; perhaps the relative detectability of

a low-frequency fundamental is increasing with time.

Possible acoustic propagation mechanisms for increased low-

frequency detectability include shifts in the population calling

depths or the mean distance from a DASAR, a shift of the

migration route northward into deeper waters that are more

favorable to low-frequency propagation, or changes in the

sound speed profile over multiple years. It was for this reason

that the factors Range, CallingDepth, and Northing were

included in the statistical regression models, along with Site,

which served as a proxy for the differing average water depths

of the sites. Site had only a minor effect on fmin that fell well

within the confidence bounds, while Northing, a proxy for

both offshore distance and water depth, did not yield a predic-

tion coefficient significantly different from zero (p¼ 0.68)

and so was listed in neither the Tables nor the prediction

plots.

Range was only a factor for the Rmin¼ 15 km data sets,

and Fig. 9 shows that the effect size of Range on the manual

analysis was smaller than the curve’s confidence bounds.

However, Range had a clear effect on the frequency detected

by the automated analysis, with larger ranges resulting in a

higher detected mean fmin. The results are consistent with the

fact that low-frequency attenuation (i.e., below 75 Hz) is

greater in this shallow-water environment than “higher” fre-

quencies (i.e., 100 Hz and above). Even though the propaga-

tion modeling used to estimate calling depth incorporated

frequency-dependent effects, that modeling cannot recover

low-frequency signal components that have fallen below

background noise levels.

Regardless, Fig. 9 indicates that the multi-year down-

ward shift of fmin is similar for both Rmin¼ 15 km datasets,

and still exists whenever Range is held at a fixed value. The

effect of Range on the yearly frequency shift is also relatively

small; for example, Table II (model 3, manual analysis) dis-

plays a Year:Range interactive term of 0.19, so doubling the

fixed localization Range from 1 to 2 km generates an addi-

tional 1.3 Hz (7 years * 0.19 * 1 km) shift over 7 years.

Figure 9 also shows a significant effect size for

CallingDepth, in that shallower calling depths are generally

associated with higher-frequency detections. For example,

shifting a call from 10 m to 25 m depth is associated with a

downward shift in fmin by 10 Hz at Site 5. The effect due to

calling depth is smaller (8 Hz shift) at the shallower Site 3. As

discussed in Thode et al. (2016), these depth dependencies

likely arise from propagation effects: for example, 28 m turns

out to be the optimum depth for propagating sounds lower

than 100 Hz at Site 5, so at a given fixed range and source

level, lower-frequency signals are more likely to be detected

when generated at that depth. Similar calculations show that a

call generated at 10 m depth has an effective transmission loss

power law (to 5 km range) of 15logR at 80 Hz, but only

13.5logR at 100 Hz. Thus, a 100 Hz component for a 10 -m

deep call would be enhanced 5 dB relative to an equivalently

intense 80 Hz component over 3 km range, the most likely

propagation distance represented in the dataset, and, there-

fore, one would expect 100 Hz components to be detected

more easily than 80 Hz components for 10 -m deep calls, all

other factors being constant. Thus, the relationship between

fmin and CallingDepth is interpreted to arise from relative

detectability of lower-frequency calls arising from propaga-

tion effects. Despite these effects, the 7-season shift in fmin

persists regardless of the fixed value of CallingDepth chosen.

Numerical simulations of sound propagation at Site 5

found that changes in sound speed profiles only had a minor

impact on a 100-Hz signal in a 50 -m waveguide; long-range

absorption under those circumstances were dominated by the

seafloor sediment composition, which presumably remains

stable over decadal scales. The details of the sound speed pro-

file only influenced acoustic propagation above 150 Hz, a fre-

quency range excluded from the datasets due to Criteria 3 in

Sec. II D. Thus, potential changes in the temperature profile

over time were judged to be an unlikely cause of the fmin shift.

In summary, while range and calling depth are shown to

influence the detected fmin in the dataset, the predictive models

demonstrate that they do not explain the multi-season shift.

B. Possible explanations of frequency shift arising
from ambient noise trends

Here we discuss two analyses of the hypothesis that

the observed frequency shifts in call repertoire arise from
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improvements in relative detectability of low-frequency calls

vs higher-frequency calls, due to long-term shifts in relative

ambient noise levels.

A formal regression analysis found that the predicted

mean fmin is a strong function of NoiseBand1 in both manual

and automated analysis with Rmin¼ 15 km, but only for the

automated analysis when Rmin¼ 2 km. A 10 dB increase in

median PSD led to a 5 to 20 Hz increase in fmin over what is

plotted in Figs. 9 and 10, depending on the model and dataset.

These functional relationships still hold whenever NoiseBand2

was used instead.

One possible interpretation of this relationship is that

background noise levels decrease with increasing frequency,

so an overall increase in ambient noise levels would tend to

mask lower frequencies. However, Fig. 8 shows that noise

levels were generally higher at higher frequencies, a result

that can be checked by measuring the “spectral tilt,” or slope

of the PSD curve, across various bandwidths. Between 40

and 60 Hz, this slope was 0.14 dB/Hz [�0.27 0.54], so the

noise level increased nearly 3 dB over this band. Between 75

and 125 Hz, the bandwidth over which most fmin values were

measured, the slope was �0.01 dB/Hz [�0.14 0.12], a rela-

tively small �0.5 dB change over the bandwidth.

Our preferred interpretation of this relationship is that

bowhead calls tended to have lower received levels at fmin

when compared with received levels at other frequencies in

the middle of the bandwidth, a situation that perhaps arises

from frequency-dependent differences in propagation. As

noise levels rose across the frequency spectrum, the lowest-

frequency (and weaker) call components were masked first,

shifting the detected fmin upward. Whatever the reason behind

the dependence of fmin on NoiseBand, whenever it was held

fixed at typical background noise levels (50th percentile) of

68 dB re 1 lPa2/Hz, all four datasets still predicted the multi-

season fmin decrease (Figs. 9 and 10), suggesting that shifts

in background noise levels were not responsible for the

7-season shift.

This conclusion can be checked by estimating what frac-

tion of bowhead calls would have been masked by an ambi-

ent noise increase. Estimating long-term changes in ambient

noise was a subtle matter, as year-to-year shifts were highly

variable (Fig. 8). A simple GEE statistical regression of

NoiseLevel1 and NoiseLevel2 (median PSD) against Year

found PSD values decreasing over time for both bands;

using the values from the largest dataset, over 7 years, the

40–60 Hz band decreased �3.1 dB [�3.8 �2.3], while the

higher band decreased �2.0 dB [�2.7 �1.3]. Consequently,

the lower frequency band became relatively quieter by only

�1 dB. However, when seasonal PSD percentiles are plotted

directly in Fig. 8 one sees that the long-term relative ambient

noise difference between a representative “high frequency”

(103 Hz) and “low frequency” (40 Hz) band was more com-

plex than a simple linear shift; while the overall shift across

7 years was small, the 103 Hz PSD actually increased 4 dB

relative to the 40 Hz PSD over the last 4 years of the study.

To estimate how relative changes in ambient noise lev-

els would impact relative detection rates for low- and high-

frequency calls, we exploited the fact that the source level

distribution of the population seemed consistent across time

(Fig. 4), and that the spatial distribution of the migration cor-

ridor did not change (based on a plot of the distributions of

Northing). We restricted the analysis to a single site, Site 5,

as ambient noise levels were more closely related across a

site than between sites.

Picking the year with the lowest 103 Hz ambient noise

levels [2011; Fig. 8(b)], the received levels of localized

high-frequency bowhead whale calls from Site 5 for that sea-

son were then plotted as a cumulative distribution in Fig. 11,

where the received level was measured on the DASAR clos-

est to the call’s location. A detection threshold was then esti-

mated by taking the PSD of noise levels at 103 Hz for that

year, adding 10log10(20 Hz) to account for typical bowhead

FM call bandwidth and then converting PSD into units of

sound pressure level (SPL); 6 dB was then added to this

value, to account for an estimated detection signal-to-noise

ratio (SNR) of 6 dB for the automated algorithm, producing

a 2011 detection threshold of 85 dB re 1 lPa in Fig. 11.

This threshold detection level would shift 6 dB higher, to

91 dB re 1 lPa, during the season with the highest ambient

noise levels (2009; Fig. 8). If one assumes that the received

level distribution from 2009 would have been similar to that in

2011 (since the overall source level distributions are steady

over time), we can estimate what fraction of calls detected in

2011 would not have been detected had noise levels been 6 dB

greater, and find that about 10% of the 2011 call sample would

have been lost with a 6 dB increase (Fig. 11). A corresponding

analysis for the 40 Hz band finds that basically all calls in

2011 would still have been detected in 2009 (since noise levels

are generally lower in that band). A relative change of 6 dB in

noise levels between the bands would thus be expected to

reduce the high-frequency call count by �10%. Table III esti-

mates what impact this noise masking would have had on the

Site 5 fmin distribution via column 5, which reduces the sample

size of calls above 75 Hz (column 4) by 10%, and then recom-

putes how the proportions of the fmin distribution would

FIG. 11. (Color online) Cumulative distribution of received levels (rms

sound pressure level) on high-frequency (fmin> 75 Hz) bowhead whale calls

detected on closest DASAR during the 2011 season. Solid (blue) line shows

detection threshold estimated from median ambient noise levels in 2011;

dashed (red) line shows estimated detection threshold using median 2009

noise levels, which were 6 dB greater than 2011.
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change. The result is that the proportion of high-frequency

calls would decrease by only 2%–3% for a differential 6 dB

ambient noise level increase between the frequency bands.

This detection-related shift is insufficient to explain the magni-

tude of the observed reduction in the proportion of Site 5 high-

frequency calls from 73% to 60% between 2008 and 2014, a

reduction of 13 percentage points. (Had the animals shifted

their source level distribution in response to changes in ambi-

ent noise background, then there would not have been any

change in relative detectability at all.)

In summary, neither the statistical regressions (Fig. 9)

nor the masking calculations (Fig. 11) support the hypothesis

of increased low-frequency call detectability arising from

changes in relative ambient noise levels.

C. The potential impact of airgun signal contamination

A final potential non-biological explanation for the rela-

tive increase in low-frequency fmin calls over time is that the

automated algorithm was gradually permitting more airgun

signals to become misclassified over time, signals that tended

to have frequency content lying between 25 and 50 Hz [Fig.

7(a)]. While applying Criteria 1 of Sec. II D to the data would

remove many of these misclassified signals (by restricting

any localizations to the immediate vicinity of the DASARs)

the possibility exists that misclassified airgun signals on one

DASAR were associated with true whale calls on another

DASAR, yielding positions that would lie within the thresh-

old Rmin. If this false position lay closest to the DASAR with

the misclassified airgun signal, then the fmin sample would

have been assigned to an airgun signal.

This concern was addressed two ways. The straightfor-

ward counterargument is that the inclusion of the categorical

predictor variable Airgun had little to no impact on the mea-

sured fmin (Figs. 9; Tables I and II) and had little impact on

the predicted trend of fmin with Year when Airgun was set to

a fixed value, as is shown by the relatively small value of the

Year:Airgun term (�0.38 Hz) in Table II, model 3 (15 km,

automated). The fact that the Airgun coefficient was nonzero

for automated datasets suggests that there was some misclas-

sification of the automated samples, but not nearly enough to

affect the long-term trend.

These statistical conclusions are consistent with a visual

examination of the center column of Fig. 7, which compares

the bearings of identified airgun signals with those from the

culled whale call data sets. Were large numbers of airgun

signals inadvertently being incorporated as whale calls, then

the bearings of these false “whale calls,” as measured from

the closest DASAR, would substantially overlap the bearings

of identified airgun signals. Figures 7(b) and 7(e) show that

the bearing distributions of whale calls do not display local

maxima that match the highly concentrated angular distribu-

tions of the airgun signals for each season, with the possible

exception of 2012 and 2014 (between 60� and 90�) and to a

lesser extent 2008. A similar argument could be made for

the interval distributions in Fig. 7(c) and 7(f). Figure 3(g)

also reveals that airgun signals decrease substantially during

the last 2 years of the study, even though those years exhibit

the biggest increase in low fmin calls [Fig. 5(d)]. Thus chang-

ing airgun misclassification rates can be discounted as an

explanation for the long-term frequency trend.

D. Physiological and behavioral explanations

From this point forward we assume that the observed

frequency shift represents an actual frequency shift in the

sounds being produced by the whale population. We exam-

ine three physiological/behavioral hypotheses for this shift: a

change in call repertoire, long-term physiological growth in

the population, and a behavioral response to increasing pop-

ulation densities.

1. Change in call repertoire

One explanation for the observed population-scale shift

in fmin is that the bowhead population’s migrating call reper-

toire is changing, either by shifting the relative proportion of

call types generated, or by introducing a new call type.

Bowhead and humpback whale sounds are known

to evolve over time. For example, both species produce

highly stereotyped and repetitive sequences of FM-modulated

sweeps, or “songs,” which gradually evolve over the course of

a season and across years (Payne and McVay, 1971; Payne

and Payne, 1985; W€ursig and Clark, 1993; Noad et al., 2000;

Tervo et al., 2009; Tervo et al., 2011). We note, however, that

TABLE III. Breakdown of call distribution for Site 5. Column 2 shows total number of calls used in the analysis; Column 3 shows the number (percent) of

calls with minimum frequencies below 75 Hz; Column 4 shows the number (percent) of calls with minimum frequencies above 75 Hz; Column 5 indicates

how the relative percentage of high-frequency calls would change if the number of high-frequency samples is reduced by 10% (per Fig. 11).

1 2 3 4 5

Year

Automated calls within 15 km

of a DASAR, Site 5 only,
discrepancy < 6 dB

Automated calls, fmin < 75 Hz
(percent of total)

Automated calls, fmin > 75 Hz
(percent of total)

Automated calls, fmin > 75 Hz,

reduced by 10%

(percent of total)

2008 9361 2512 (27) 6849 (73) 6164 (71)

2009 6132 1469 (24) 4663 (76) 4196 (74)

2010 9022 2153 (24) 6869 (76) 6182 (74)

2011 3957 1345 (34) 2612 (66) 2350 (64)

2012 4851 1534 (32) 3317 (68) 2985 (66)

2013 9517 4068 (43) 5449 (57) 4904 (55)

2014 9396 3757 (40) 5639 (60) 5075 (58)

Total 52 236 16 838 (32) 35 398 (68) 31 858 (65)
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the frequency content, sequencing, and seasonal timing of the

calls analyzed here are inconsistent with what is known about

bowhead song. Non-song social calls of humpback whales

(Rekdahl et al., 2013) have also been found to shift frequency

range (frequency span) over a 10-year period. Unfortunately,

the direction and magnitude of this shift was not noted, and

“the measured call parameters generally showed no clear

trend over time, [displaying] considerable within-call type

variability.”

Figure 10(a) clearly shows that different call types, par-

ticularly the C call type, display different fmin values, a result

consistent with the Blackwell et al. (2007) observations that

“complex” call types (type C) have lower frequency content.

A relative increase in the proportion of C-type calls would

tend to shift fmin downward. However, Fig. 10(b) demon-

strates that the total proportion of C-type calls (as measured

using Rmin¼ 15 km) is not increasing consistently over time;

instead, the C-type proportion fluctuates between 6% and

20%. Furthermore, Fig. 10(a) shows that all call types are

decreasing in minimum frequency over time, although some

call types are decreasing faster than others.

Could a new call type be entering the repertoire? For

example, numerous low-frequency calls shown in Fig. 6

look similar to spectrograms of so-called “pulse tone” calls

published by Clark and Johnson (1984). In that manuscript,

the authors wrote that relatively few sounds of this type were

detected, and “detailed analyses of these harmonically rich

calls revealed that they were narrow band pulses with pulse

repetition rates between 30 and 75 pulses/s.” However, close

examination of the low-frequency call samples in Fig. 6

found no pulse trains; instead, the skewed waveforms actu-

ally observed indicate that all call harmonics shared a com-

mon zero crossing and were thus tightly locked in phase.

Furthermore, were a new call type to have emerged it would

likely have been assigned to the generic C call type, and Fig.

10(b) already eliminates the possibility of a trend in call

repertoire proportions. We thus conclude that a simple

change in call repertoire is insufficient to explain the

observed 7-season shift.

2. Physiological growth in the population

Another potential hypothesis proposes that the mean

size of individual bowhead whales is increasing over time,

enhancing their ability to generate lower frequency sounds.

The resulting shift in observed fmin could then arise as an

inadvertent byproduct of sound production by a physiologi-

cally growing population. When discussing long-term shifts

in blue whale call frequencies, McDonald et al. (2009) con-

sidered this hypothesis unlikely, arguing that any reduction

in mean individual size resulting from commercial whaling

would have recovered within a decade or so after the end of

widespread whaling.

Figure 10(a) suggests a quantitative test of this “growth”

hypothesis. To date every physical resonator or oscillator

likely to be involved in baleen whale sound production

(Aroyan et al., 2000; Bass and Clark, 2003; Adam et al.,
2013)—resonating tubes, Helmholtz resonators, simple har-

monic oscillation of the larynx, radiation from an acoustic

monopole—displays a power law relationship between the

physical scale of the mechanism and the frequency gener-

ated: f � CLb, where f is the output resonant frequency, b
and C are fixed constants, and L is some representative

dimension for the object. For example, in a resonating tube

the resonant frequencies are inversely proportional to tube

length L, hence b¼�1. Similarly, the resonant frequency of

a Helmholtz resonator also scales inversely with the resona-

tor dimension (provided that all dimensions of the resonator

grow proportionately), as does the resonant frequency of a

gas-filled sphere and a pulsating sphere maintaining constant

acoustic radiation intensity. A feature of these power law

relationships is that

Df=f ¼ bðDL=LÞ: (1)

Equation (1) states that if an acoustic source changes size

by a certain percentage, the resulting percentage frequency

shift in all of its signal components should be the same,

regardless of the particular frequency examined. Thus if the

100 Hz component of a sound source changes by �10% to

90 Hz, due to an increase in source size, then a 50 Hz com-

ponent co-generated by the same source should also display

a �10% shift to 45 Hz.

Figure 10(a) shows how the three grouped bowhead call

types span different frequencies, with the fmin of the C call

type nearly 20 Hz lower than the baseline A call type and

nearly 35 Hz lower than the B call type. One sees that each

call type shifts fmin by a different amount and percentage

over 6 years: �15 Hz (�22%) for the C type, �7 Hz (�7%)

for the A type, and �15 Hz (�14%) for the B call type. The

percentage change of these calls’ fmin differ, whereas they

should all be similar if all frequency shifts were byproducts

in the sound production mechanism’s growth. We therefore

interpret Fig. 10(a) as arguing against population-wide phys-

iological growth being responsible for the shift. This argu-

ment, however, relies on the assumptions that the different

call types are produced by the same mechanism, and that

this mechanism obeys a power law. More accurate and

detailed modeling of the mysticete sound production mecha-

nism might reveal more complex relationships than Eq. (1).

3. Response to increasing population density

As the number of vocalizing animals in a region

increases, the frequency structure of individual calls can shift.

Multiple papers have found that male frogs lower the domi-

nant frequency of their vocalizations in the presence of other

males (Lopez et al., 1988), although it remains uncertain

whether this shift arises from an attempt to falsely signal a

larger size (Bee et al., 2000), or to truthfully advertise a will-

ingness to fight (Wagner, 1992). Male-to-male competition

for female attention has also been proposed as a mechanism

behind long-term frequency shifts in baleen whale calls.

McDonald et al. (2009) hypothesized that long-term increases

in population density might spawn changes in blue whale call

frequency, arguing that as population density increases, the

source level required to communicate between nearby animals

decreases, allowing males an opportunity to generate lower
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lower-frequency sounds with the same amount of physiologi-

cal effort in order to exploit sexual selection preferences of

females. The theory was formulated assuming deep-water

propagation conditions that are independent of frequency,

which is not true here, and also assumes that mate attraction is

a primary function of the calls, which may not be the case for

bowhead whales. Keeping these caveats in mind, it is possible

to check two specific predictions of this theory. First, is the

source level distribution shifting slightly lower as the mean

fmin decreases? Second, is call density a predictor for the

mean fmin in the regression analysis?

Aroyan et al. (2000), on which the theory of McDonald

et al. (2009) is based, describes the relationship between

source intensity P0, sphere volume V, and frequency (f) of a

pulsating sphere:

V ¼ P0

qpf 2
: (2a)

(Note that this equation also exhibits a power law between

frequency and dimension, with b¼�3/2.) From this expres-

sion one can derive the following prediction between changes

in source level SL and changes in frequency shift:

DSL ¼ 20ðDf=f Þ; (2b)

which expresses the dB change in source level arising from a

fractional change in call frequency. A 10% decrease in mean

call frequency should correspond with a 2 dB decrease in

mean source level. When the statistical regression procedures

described in Sec. II F are applied to the source level distribu-

tions in Fig. 4, one finds that Year is either a non-significant

factor in the manually analyzed data (DSL¼ 0) or that the

mean source level in the automated datasets are increasing
slightly with Year (0.11 dB/yr, [0.09 0.13]), regardless of the

value of Rmin chosen. The specific mechanism proposed by

McDonald et al. (2009) is thus either incorrect or inappropri-

ate when applied to the bowhead whale migration.

However, the detailed regression model in Sec. II F did

define two predictor variables, CallRate and CallDensity, to

specifically examine whether fmin is related to population

density. This approach must assume that population density

is related to call density, and that call rates or densities esti-

mated on a DASAR are representative of what is encoun-

tered by whales within a distance Rmin of the sensor. As

discussed previously, CallRate measured raw call detection

rates, while CallDensity estimated true call rate densities

with a radius Rmin. Both variables are derived quantities that

can depend on other predictor variables like NoiseBand and

CallingDepth. The existence of a non-zero regression coeffi-

cient between CallDensity and fmin is relatively uninforma-

tive for the linear-only terms in model 2 (Table I), especially

since the sign and magnitude of the regression coefficient

differs substantially between the four datasets.

The results for model 3, however, show more consistent

evidence for a potential relationship between CallDensity and

fmin. No manual analysis dataset produces any strong relation-

ship, but both automated datasets (Rmin¼ 2 and 15 km) pro-

duce similar predictions, in that a doubling in calling density

shifts the predicted mean fmin downward by 3 to 5 Hz, with

confidence bounds small enough to suggest that the effect

size is real. The exact dependence is also a function of Year,

with later years producing a faster decrease in fmin for a given

CallDensity shift (i.e., the interactive term Year:CallDensity

has a value of �0.39 for the 15 km dataset in Table II). Table

II also shows that Range also interacts with CallDensity. By

contrast, the use of CallRate yields no significant relation-

ship. The fact that CallDensity is a more reliable predictor is

intriguing, in that would confirm that animals are able to esti-

mate the relative proximity of detected calls, and thus esti-

mate the local density of animals, rather than just raw call

detection rates. Model 4 (quintic terms) yields similar rela-

tionships to model 3, as well as higher-order interactions

between NoiseBand1 and CallDensity.

We conclude that some evidence exists that fmin is influ-

enced by local call density; however, Fig. 9 shows that the

effect, if it does exist, is independent of the long-term fre-

quency trend. Specifically, whenever CallDensity is held

fixed in the predictive model, the observed dependence

between minimum frequency and Year remains, so changes

in call density over time cannot account for the observed 7-

season shift in fmin.

V. CONCLUSION

The minimum frequency fmin attained by a bowhead call

forms a distribution that is evolving over time. Specifically,

between 2008 and 2014, the proportion of calls with fmin val-

ues below 75 Hz increased from 27% to 41%, shifting the

mean value of fmin observed for the population by 10.5 Hz

over seven seasons.

Long-term downward shifts in the frequency content of

calls have been noted in blue whale populations, but in con-

trast to the results reported here, they involved shifts in the

fundamental frequency of a single call type on an intra-annual

or inter-annual basis (McDonald et al., 2009; Gavrilov et al.,
2012; Miller et al., 2014).

This multi-year shift cannot be explained by changes in

propagation conditions, ambient noise levels, or changes in

automated detector performance, although a small portion of

the observed shift can be explained by relative changes in call

detectability arising from differential changes in ambient

noise levels at different frequencies. This shift also cannot be

explained by changes in the relative proportion of different

call types, and hypotheses based on physiological growth can-

not explain why different call types would experience differ-

ent percentage shifts. Increases in call density surrounding a

DASAR were related to decreases in call frequency, but only

for automated analyses, and the effect was independent of the

multiyear frequency shift.

We conclude that the observed frequency shift is a

population-scale behavioral change that involves more than

one call type, but cannot determine whether the change is a

random fluctuation in the repertoire, or a response to some

evolving external condition. The relatively low values of R2

in the regression models suggest that the minimum fre-

quency displays a large degree of individual variation, and/

or some long-term explanatory factor has not been included.
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For example, if long-term ambient noise levels were increas-

ing over a decadal-time scale, due to expanding ice-free

areas in the summer, we would expect the noise increase to

be larger at higher frequencies (above 100 Hz) than below

75 Hz, for the reasons presented in Sec. IV B. It would thus

be reasonable for the bowhead whale population to shift to

calls with lower frequency content in order to enhance call

detectability, as has been noted for right whale populations

(Parks et al., 2007; Parks et al., 2009; Parks et al., 2012;

Parks et al., 2016). The time span of the data set is insuffi-

ciently long, however, to distinguish whether the observed

7-season shift is a simple decadal-scale random fluctuation

in the repertoire, or is a long-term response to changing

external factors such as open-water ambient noise levels.

We recommend that future studies on this subject con-

duct concurrent automated and manual statistical analyses,

to enable independent side-by-side comparisons of these

datasets. While some manual data might be used to retrain or

update an automated detector, at least some manual data

should be withheld from the training or validation of the

algorithms in order to preserve the ability to conduct sepa-

rate statistical analyses. Both manual and automated datasets

have their quirks and weaknesses, so we feel that the ability

to generate similar statistical results independently from two

datasets provides a more robust analysis than an analysis of

a single “blended” dataset.
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