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PREFACE

This work describes a theoretical approach to the statement
of loads on buried rigid culverts. The methods are applied to an
actual culvert on the San Luis Reserveoir road lccation where
extensive instrumentation was installed. Comparisons of results
were possible. The report involves statements on effective
modulii of soil-rock congiomerates, minimum gage dimensions on
soil meters, extensive soil and rock testing, counting of rocks
in the r~~-lomerate, computer programming and instrument design.
The computer rogram was developed by Messrs. B. W. Smith and
R. Hermuinuw. Mr. W. Mostaghel carried ovt “he material tests
and helped with the data reduction. Prof. V. Mitchell advised
on the soil tests and Prof. D. Pirtz supervicsed much of the
instrumentation design. The aid of the State Division of Highways
is acknowledged for the efficiency with which the rock count was
accomplished and the meter results taken and reduced.



INTRODUCTION

The stress distribution in bodies vhich are built up in an
incremental manner has been shownl’g to be derendent upon the
construction procedure. Where an embankment ie formed with a
culvert as an inclusion the effect or the culvert mast aiso ke
dependent upon the history of the fill sequence. learly, as the
fill is placed in the region below the crown of the culvert the
tendency is to cause the crown to rise and the structure to elon-
gate in that direction. With subsequent fill above the crown the
effect is reversed but this motion is resisted by the passive
pressure of the side fill. These conclusions would not be evident
if the final massless fill with culvert inclusion was considered
and the effects of gravity applied to this completed body. Two
problems are of importance tc the engineer: first the stresses
at critical pecints in the fill and second, the tractions around
the barrel of the culvert. With this information the design of
embankment and culvert can be carried out reasonably. Both of
these problems are sensitive to the construction procedure and
history but proper account of these chronological events is seldom
possible in an exact theoretical manner. 1In this work an approxi-
mate treatment is developed vhich is checked by extensive

instrumentation in the f£ill and around an included reinforced



concrete culvert constructed in the San Iuis Reservcir rozd
relocation near Los Banos, California.

This paper is divided into three parts. In Psrt T the
theoretical viewpoint is developed in some generality 2nd this is
then specially applied to the particular structure beins ccnsidered

in Part II. The finite element method for plarne elasticity

problems is used and account taken of the properties »f the Tili,
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culvert and foundation material. Tre fill conzisis

components, a rock-matrix uncemented conglomerate and &n organic
material placed over the culvert crown to induce "arching' action.
The modulus of the multi-phase conglomerate could not te determined
by direct test but theoretical bounds were developed by the methods

3 and Hashin and Shtr:“.c}x:manl’L

of Hashin
Part III consists of ¢ discussion of the previous work irom
the analytical and design viewpoin:s. This discussion makes use

of the results of extensive instrumentation in the fill and in

the barrel of the culvert.



PART I

THEORETICAL CONSIDERATIONS

1.1 Scope of the Theory

Although existing work provides clear statements of the general
physical and mathematical characteristics of the incremental method,
the existing applications are for very simple configurations which can
be solved completely in closed form. The more complex geometries
encountered in this problem necessitate the reformulation of the incre-
mental problem for approximate solution on the digital computer. The
solutions for each layer of added material are obtained by use of the
linear theory of elasticity and the subsequent summing of these
solutions in the contimuing process of superposition involves a process
well suited to the com-nter. The individual incremental solutions are
obtained by the finite - element technique, the accuracy of whick has
been well established by usage and also by theoretical investigations
of its manner of bounding the true solution. These considerations of
the analytical solution are dealt with first. The second portion
considers the material properties to be used in the analysis. The
heterogeneous nature of the main fill required that effective elastic
properties of the conglomerate be sought rather than gross properties
from large scale tests. In this case the inclusions in the matrix were
of about 12" diameter and the resulting specimen size for gross tests
wés impractically large. The theoretical bounds developed for the
effective properties require only the matrix and inclusion properties

and the numerical distribution of the inclusions.



1.2 Incremental Formulation and Analysis

At the end of the last century & remark to G. H. Darwin by Maxwell
was confirmed experimentally by the former. This remark concerned the
"historical element" affecting the nature of the limiting equilibrium
of granular material. By "historical element" is meant that structures
of this material put together in different orders and ways exert
different forces even though the final appearance is the same. Eighty
years later theoretical attempts were made to describe this phenomenon
and it was shown that the internal stresses in built-up embankments
depend on the construction sequence. Similarly many engineers have
realized that the conditions in the barrel of a culvert may vary in a
non-monotonic manner as the fill material rises monotdnically up the
sides and then above the crown of the structure.

Here, we specialize the problem to two dimensions and to
the configuration of the embankment near Los Banos in particular. A
center line section is shown in Fig. 1. At some time in the construction
sequence the upper line of the fill is at A. The effects of a layer
of material added to A in the normal manner of construction is to cause
displacements and stresses in the existing embankment. If we think of
a fixed coordinate system x,y, then the displacements and stress fields

are

(1 ’ﬁ‘: {(x,y) 1.2.1

b

- ) 2.

where i, J may each take values x and y.
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The addition of a subsequent leyer of material at A' makes the
layer added et A into en intrinsic part of the embanlment and for this
new ctructure tne displacement und stress fields are descrived as 1.2.1

PR A S B o ‘ P | irm . L v s -
eni 1.2.2 with 4' inctead of . Tor all events in the conswructior

swruence we can think of similer incrementsl displecom=enis wrnd 210503,

2y some rmethod of adding trese incrementsl solutiors thz disni:
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relationships between displacements, siresses and time which chorastari
the material of the fill. The simplest cuch maierial decoription oola
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of time.
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For the csimple directly eicstic materisl which is inderendan

time the conditions a2t the wcint of interest Jumr as each incromen. !
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vwhere F is the final contour and 4l an increment of added meterizl.
Jhen the material response depends upcn certain existing

conditions in the body, such as the exisling stress or strain level,

tut is still independent of tims, then this response characteristic

will very from point to point in the already constructed body. The



incrementsl function for an elementzl increase in level at a pcint will
depend not only on the materisl vroperties at that point but a2lso on
the properties everywhere else in the body. This means that the
response at C depends on the curulative functions everywhere in the
body. Clearly with the addition of the dependerncy upon time the
problem is further complicated ard solutions for only very simple

configurations and highly idealized material laws mey be possible.

~

-

In the linear elastic case we formally scek ﬁg and aéj fields
which are compatible, in equilibrium and catisfy the boundary conditions.
By processes such s 1.2.3 and 1.2.4 the final conditions are arrived
a2t and these results are in ecuilibrium and satisfy the final boundary
conditions but are not necessarily compatible. The possible presence
of' the incompatibility tensor must be associated with the boundary
conditions prescribed for the additional layer in the incremental
solution. Acceptable conditions on a horizontal surface would be
normal tractions of magnitude given by weight/unit area of the added
material and no tanzential tractions. This means that slip between
the existing body and the acdz=d layer is possible tut with the addition
of a subsequent layer the boundary is shifted up and the original
added material becomes an intrinsic part of the body. By this process,
a dislocation of the Somigliana type is formed at each new upper
boundary; with the subsequent addition of meterial this dislocation
is healed but the conditions for the existence of an incompatibility
tensor exist. Certainly, no holes or breaks exist in final body and

under certain conditions the Beltrami-Michell conditions could be



satisfied. These conditions would involve no tangential slip at an
incremental upper boundary and may not be realistic.

Complete solutions for incremental problems of bodies built-up in
a gravity field are available for a sphere and for an embankment with
infinite sides. In each case the important physical difference between
the incremental results and those where the effects of inertia are
applied as an external condition tc the completed body have been
demonstrated. In certain problems, where no dislocations at the
incremental surface exist, these differences will not occur and the
final solutions will be compatible. A trivial case of this is the
guarter plane, where the increments are applied in parallel, horizontal
layers. It should be noted that the normal uniqueness theorems in
classical elasticity must be extended to account for the building
order in cases where the final gravity body forces occur in an
incremental manner.

The object of the incremental analysis of the gravity conditions
in embankments was to develop a mathematical model which had the usual
abilities to determine stresses and strains but which also could
account for the history of construction. In a #imilar manner this
historical element is of importance with respect to the culvert. The
variability of;the conditions in the cbmpletéd embankment depends upon
the manner and sequence of construction. By much the éame argument
the tractions on the surface of an enclosed culvert will also depend
upon these events. The structural problem is to design a culvert for

given loadings whereas the problem undertaken here is to find methods
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1.4 Other Consideretions in the finalysis

£lthouch the cmbzniment with included culvert is a three

dimensionel system it was found convenient to consider a unit

k)

thickness slice plane with norme )l aleons the culvert longitudinel

axis (the z-e:is in Fig. 1) in the region of the center of this

&)

ReRe

lergth. This slice only susteined in-pliane displacemenis and the

resulting theoreticsl simpliication zllowed relevant results 1o be

&

N

ticn. The

4]

cbtained. Justification must be ccusnt for tnis sliice =ssum

3

cross section considered wculd, in many embenkments, have nearly
syrmetric geometrical conditions abcut ¢ verticsl axis (the y-axis in
Fig. 1) through the culvert. The section in the center of the z-2xis
also may pcssess symmetry about the plane of the slice. The predomi-
nance of the soil weight effect would result in zero displacements in
the direction of the z-axis if these symmetries exist and any
deviations from these symmetriss tend to vitiate the in-plene
assumptions.

The material properties are assumed tc be linearly elastic in all
of this work. The problem is not linear because of the incremental
dislocations occurring at each soil layer. In addition, Brown and

>

King” have shown how non-linear stress:strein law materials may be
dealt with provided that they satisfy certain restrictions which are
termed of the Merkov type. The restriction involves considering only
the linear elastic effect of a small change in either force or

displacement field where the slope of the stress:strain curve depends

upon the existing state of strain at incipience of the change. This



state of strain varics over the whole body and therefore the local

modulus is spatially dependent but
time.
£n

imposed onto the earth's suriece

.

These deformetions mey considersbdl

and eround the culvert.

been most thoroughly investigated ¢

of various mathematical models hac
work three approaches swiere mede to

1) Treating the earth's

S B - R
I LNl reaatlve

guite independent of history and

additional problem exists becausc the cmbankment fill is suver-

because of this overloed.

itions in the fill

jaN

con

The case cf ¢ load on 2 sermi-infinite body has

thysicai meanings

bzen investigoted by Kerr. In this

the problem end the results compared.

surface as rigid (Fig. La).

s
©

2) Selecting a rectangular lincarly elastic, massless block

of the earth, containing the ermbankment and wih boundary conditions

on the block of zero horizontal displacements on the base and sides,

zero vertical displacements on the

the sides (Fig. Lb).

bzse and zero shear tractions on

3) As (2) except the boundary conditions on the base are

for continuity of normal and shear

stresses and the base is a part of

a semi-infinite body of the same properiies as the block (Fig. be).

The choice of the boundary and interface conditions was based on

reasonable physical expectations.

In addition, the fixed and fixed in

the normal and free in the tangentizl displacement conditions were well

suited to the finite element approac

The conditions of (3) were

treated by a method due to King7 by which influence coefficients on

the horizontal boundary were generated for horizontal and vertical
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lozds on the boundury. These influence coefficients were based on
Bcussinesg cnd Cerrutti tyre equations for the plane.

In general, the culvert was considered to be rigid, but in ordoer
i,

to obtain an imuression of thes effect of the displacenents of tho

culvert the volumc enclosed by the outside culivert boundary .o o

considered to have a definite stiffness. The change in traction:
miscd for flexici. culvert rcull be  ompared to the rigid cass. luch
of the previous discussion was concerncd vwitlh the history of placing
the soil in the embaniment. Arnother important practical facet of the
problem concerns the effect of placing an area of very weak material

over the crown of the culvert. Intuitively this tends to cause the

1]

thrust to "arch” over the wezk material and reduce the force on the

-

of the culvert. .ne presence cf the wezk material is realised in the
field by filling to about 12' above the culvers top, removing this
material above the crown and replacing with straw or other crganic
material. This history of events is idealized in the mathematical
model by carrying out the incremental technique to the reguired level
above the culvert crown, determining the traciions (normal and shear)
around the edge of the prorposed excavated region, solving the boundary
value problem vhere these tractions, reversed in sign, are applied to
the previously obtained incremental solution. This results in the stage
of construction vwhere the excavation of the region over the crown is
completed. The added organic material is considered to cause pressures
on the base of the excavation equal to its own head. On the sides

contact between the normal fill material 2nd the organic material is

-
O~
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considered to exict; with subsequent addition of fill above the
boundaries o the normel £ill to the organic material as continuity
of strains and the relatively low stiffness of the latter induces
the so-called "archinzg" action.

Final sels of interface conditions between the fill and the
culvert, and the fill and the earth's surface require decicsions. The
culvert was assumed to be & Tinite element mesh with very nigh stit noos
to simulate the rigid inclusion. As previously mentionsd {1l s onifi-
necs could Lo reduced in order to determine the gross effects of
culvert fle ibility on the load distribution on the barrel. Tae
outside boundary of the culvert (barrel) was assumed to transmit only
normal tractions and this condition was provided by linking the nodal
points of the finite clements on the barrel to the fill nodal points
by triangular elements one nodal point of which was free and the
opposite side joined the culvert to fill by a line normal to the
barrel. The fill-ecarth interface was considered to be rough with
the maintenance of contact pcints. Noturally, it is difficult to
defend these interface conditions, but, without more extensive
experimental evidence than presently exists, some extreme assumptions
must be made.

The original geometry was assumed to be unaltered Tor all
incremental solutions. This is & reasonsble statement for the in-
clusion and the earth's surfece. Hovevaer, the compression of the
fill under its own weight as the construction process continues

exists but is not predictable from normal =lastic analysis.

iy



1.5 The Effective Modulus of the Fill

The fill for the San Luis relocation was obtazined from borro. vits
and highway excavation close to the site and consisted of rocks varying
from 2" to over a foot diameter distributed in a sand-clay matrix. Tnic
conglomerate was typical of that often found in such earth siructurs:
and methods of determining the modulus of elasticity employed in de:zirn
is of some general interest. Clearly the testing by static means of :
typical specimen is impossible; the dimensions of such a specimen ensure
that the cutting, design and operation of test would be beyond present
facilities normelly available. The necessity of obtaining a sufficient
number of specimens to ensure a reliable statistic of the gross or
effective modulus further aggravates the problem. Various theoretica
methods are available to estimate the effective modulus of such a
conglomerate. These involve knowledge of the aggregate modulus, matrix
modulus and the amount of aggregate of each type by size aad material
property in a given volume. The bounds on the effective shear and bulk

3 are applicable to this problem and the less

modulus obtained by Hashin
restrictive, simpler bounds by Hashin and Shtrickmanh for more genersl
materials ¢re also relevant. This bounding is made possible by clever
variational theorems and it is these works which will be utilized here.
The theorems have been applied to alloys of carbide particles embedded
in a cobalt matrix where results show theoretical bounds which are

close together and experimental values for the effective modulus, E,

vhich fall within these bounds.



In the determination of the effective properties of the fill i+
was found possible to determine statistics on the shear and Youns's
modulus of the soil and rock inclusions, tcgether with an indicctior
of the amount of rock between various equivalent spherical dimencions
within a unit volume of the conglomerate. This information was andlie
to the equations of references 3 and 4 for the evaluation of efccotiiv:
modulii.

We will consider the material idezlized to srheres ol Lhrgia
diameters and elastic properties enclosed in uniform elesiic matri:.
The spheres are considered to be spread through the mediwa i1 =
manner so that there is no tendency to bunch tegetnsr end evnzy,
is surrounded by the matrix. The conditions for tnis arrenges nn .

a rule for the distribvrtion of spheres as the terms in & Poiscon oo %o

is discussed elsewhere.” It is necessary to assi~n to each apnzoc ¢

associated volume of matrix and for this purpose the arrangement ~h.r:

i=1

<Il—’
<I

and ¢y = %Zvis 5

may be descriptive. Here we think of n types of stones (whers =::¢n
type is associated with common elastic proverties and diameter) of
individual volume Vis and add all the stones of euch type and ~11 th=
types together, which sum, when divided by the tcizl body volume v,
gives ‘the parameter c. In the small we mey think of the stone ViS

being surrounded by matrix such that the volume cof stone and a:sociutod

19



matrix, Vi’ divided into ViS also gives the descriptive parameter c.

If the total volume V is too large for these measurements to be carried

out then samples may be used to determine a statistic for c.
Considering the work of Hashin and Shtrickman for a general

material, that is one with no predominant matrix material, then

A
n
Ku=Kn+'i-+—a—A-— 1l.5.2
nn
A
= K+ =2 1.5.3
X T3 A 2
o 0O
*
where Kﬁ > K* > Ki
Bn
and Gu = Gn + 5 m 1.5)-4-
nn
BO
G, =G + & ——— 1.5.5

2
L o} l+BoBO

where G > G*>G

u L
Here K¥ and G* are actual effective bulk and shear modulii of the
polyphase material, Ku and Gu are upper bounds and KL and GL lower
bounds. As no definite matrix need exist in this material KO and GO

are defined as the smallest modulii and Kh and Gn the largest.

n
Therefore, %—O C; =1 and in addition
ljijl Ci i;? Ci
A, = 1 + 1 1.5.6
3 - O, = - <.
i=o %7Ky 9 iSga KKy

A0



1 + 1
i=J
a, = - 3
J 3Kj + EGJ
)
BJ = SGJ (Kj + 2Gj).

1.5.7

1.5.8

1.5.9

Clearly, if we consider Co’ Ko’ Go as referring to the matrix and

properties from 1 to n as the inclusions (where the matrix, as is

usual in practice, has the lowest properties) then we arrive at bounds

for the case described by 1.5.1.

For the special structure material of 1.5.1, where both matrix

and inclusions are defined, these bounds may be closed to

(Ki'Ko)Ci

n
K=K, + (3K + hGO)EL - g
1oy G+ 3 ‘Ki-(Ki-KO)CJ

(Ko-Ki)Ci

n
K K+ (3K5 +-hGo)§; K,
i 3Ki + hGo (1-ci + K; ci)

— n ‘ G
' 1
Gu = Go _1 +§z (af -1) clel]
i=
- G; -1
Gy, = Go 1 - (5; -1) C.o ]
i=

1.5.10

1.5.11

1.5.12

1.5.13

where 6 and ¢ are defined in Appendix A. For i=l1, Kﬁ = KL = K¥ in

1.5.10 and 1.5.11. It is to be noted that this is an exacf value of



the effective bulk modulus only for the idealized spherical inclusions
where the strain energy in all the svheres of volume Vi approach the
strain energy in conglomerate. Hill9 terms this as an arrangement of
"spherical composite elements" . Also, when i = 1, Kﬁ = KL = K* in

1.5.3 and 1.5.4 under the circumstance that GO = G that is when only

l)
the Eulk modulii differ.
" With bounds on the bulk and shear effective modulii determined,

it is possible to find the effective Young's modulus fram
E = §%5g7§ : 1.5.14

The additional complications for the closer bounds in 1.5.10-13
do not allow a convenient statement when the material is described as
in 1.5.2. However, in the description of 1.5.2-5 a simple statement
is possible. Two types o” natorizl specification will be considered,
first where the curve of [Fig. > iescribes the entire content, i.e.,
when ¢ in 1.5.2 is un..y, and second when the material of the curve is
enclosed in homogeneous matrix, ¢ € 1. For both specification types
it is possible that tiic 11 tzrial elastic properties are not constant.

Some variation as in Fig. 9 1ay exist and it is ner 38ary to describe

this as a funection of VL. For instance for Fig. ., we may state

o ¥ \ 0
K(v°) = —% <rs - vi> + —é <vs - (vi + VZ) %> 1.5.15

Under the circumstances we may form functions

£(v®) sy _ __ £(v%)
————— and c-j(v ) = T

K(P)K, ~ a 2(C(V)-G,) - By

aj(Vs) =

Y
n
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which allow us to describe
S s s S
A -‘fan(v ) &V°  and B _fbn(v ) av 1.5.16
vhere the integrations are over all material with modulii smaller than
Kn and Gn respectively as in 1.5.2 and 4. Also for integrations for

all material in excess of Kb and G. in 1.5.3 and 5 we may describe AO

0

and BO as in 1.5.16 with exchanged subscripts.

In the second type of specification, where the matrix occupies a

volume VO with elastic properties K _and G, 1.5 16 becomes

0 0’
Yo Yo
A =—Y s A(V®) av® ana B = —V + b (v¥)av® 1.5.17
n 1 s n n 1 - B n
KO-Kn n 2ZGO-Gn5 n

vwhere the integrations are over the volume of inclusions with modulii

smaller than Kh and Gn respectively. For use in 1.5.3 and 5,

S

V2 S S V2 S S
A = a.(V°) av° and B. = b (V7)) av 1.5.18
o .J,s 0 o ./.,s 0

v vy

1.6 Synthesis

This part of the report has drawn together varioué theoretical
and formulations necessary to attach analytica;ly the conditiops on a
built up embankment with a culvert inclusion. It is necessary now to
organise the treatment having in mind the previous discussions.

The incremental analyses for gravity stresses treated in other
works is adapted for the finite element approximate solutions in plane
elasticity. Instead.of thinking of the superposition of material as a

continuous process, the effects of additional material in discrete



layers is determined and the conditions associated with the final
configuration are found bty an approximate summation process. The
effects of a layer of material require that the foundation reaction,
the materjal properties of soili-rock matrix and the response due to
organic material be studied. To deal with the foundation reaction
various methods are proposed. Each involves some idealizaticn of
the actual conditions, the extent of which can be completely dis-
cerned. The elastic properties of the rock are determined from
cores. Those of the soil-rock conglomerate are closely bounded by
methods due to Hashin. These bounds require knowledge of the
elastic properties of the soll, inclusions and the percentage of
volume of inclusions campared to the total volume for various rock

sizes. This information must be obtained empirically.
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PART II

SAN LUIS RESERVIOR RCAD RELOCATION EMBANKMENT

2.1 General Considerations

Theory outlined in the previous part is now applied to the particular
embankment, with enclosed culvert, on the San Luis Reservior road reloce-
tion. The first point of interest is the distribution of forces around
the barrel and second the tractions in the fill. The barrel forces are
of importance to the structural designer of the culvert and knowledge of
the predicability of soil stresses is always of concern. Extensive
instrumentation was carried out to check these analytical results. 1In
this part of the report the actual bounds on the fill properties are
described, the computer analysis specified and a description of the

problems of instrumentation given.

2.2 Material Properties

The assumption of a rigid culvert ensured that the material proper-
ties of this element were defined. However, as an additional matter an
investigation of the general effects of culvert deformations was made
and for this purpose the body enclosed by the barrel was given a definite

material stiffness of

E culvert = 2.9 x 106 p.s.i.

|

0.4.

v culvert

The properties of the existing rock (a sandstone) on which the fill was

placed were obtained from bore hole specimens at various depths. Two

26



types of tests were conducted:

a) Static compression on specimens about 3" long and 2" diameter.

b) Dynamic bending and longitudinal oscillations on specimens

about 13" long and 2" diameter.

In the static tests, eleven specimens were finally used. Other
specimens shattered in early test because of faulting, or broke in
the end capping process. The static modulus of elasticity varied
from 6.6 x lO6 pP.s.i. to 3.9 x lO6 P.s.i. The mean was 4.8 x lO6
p-s.i. and the standard deviation 15%. In the same tests lateral
strains were measured and the value of Poisson's ratio varied be-
tween 0.11 and O.14. The stress-strain curves were essentially
linear up to 7,000 p.s.i. and then strain softening. The stress:
Poisson's ratio curves indicated a constant value of the ratio up
to 7,000 p.s.i. and then increasing values to 0.18 at 10,000 p.s.i.

The dynamic measurements were associated with the determination
of the flexural and longitudinal wave frequencies. The former was
much more dominant and easily determined. Two specimens were
tested in each mode. The dynamic modulus of elasticity figures were
6.25 and 4.75 x 106 p.s.i. in bending, and 7.3 and 5.8 x 106 p.s.i.
in the longitudinal motion.

The stresses in the base rock ﬁere not expected to exceed the
linear static response and the values from these tests were employed
in the analysis. The difficulty in deciding the flexural critical
frequencies and the confirmation of the static results by the bend-
ing wave dynamic tests encouraged the use of the mean static modulus.

Thé results for Poisson's ratio from static tests also were consid-
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ered satisfactory and in‘'the analysis the following rock elastic properties

were employed:

E rock = 4.8 x 106 p.-s-1i.

v rock 0.12

The embankment fill material was composed of adjacent excavated mate-
rial and consisted of the rock previously described and soil which formed
the matrix in which the rock was carried. The conglomerate had water
added to the extent of the optimum water content of the soil. Bounds on
the modulus of elasticity were obtained by the methods of section 2.5.

Two additional pieces of information beyond that already described were
required:

a) The soil elastic properties.

b) The arrangement of the rock inclusions.

The determination of the elastic modulus of the soil was obtained
from two test results on each of three samples taken from widely 4if-
ferent parts of the fill. The stress strain curves were obtained on specimens
re-moulded at the optimum water content. 'The first quarter cycle of
the loading was employed in the modulus determination and this was
Justified by the realization that the loading produced an essentially
monotonic increase in strain with addition of fill material. The load
deformation curves from the unconfined compression test were essentially
linear up to a stress of 60 p.s.i. The tests were of the strain type
at a rate of 0.02 in,/mino The independent tests of the same samples

provided confirmation of the sample modulus but the different samples
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had widely varying results; namely values 7.7, 4.3 and 16.0 k.s.i. The

average

E = 9.3 x lO3 p.s.i.

matrix

The value of Poisson'’s ratio was difficult to determine from tests. How-

ever, a technique using the methods of Paullowhere

E¥ = E +(E -E)A 2.2.1
c p ¢’ 'p
G* = G +(6_ -G ) A 2.2.2
c ho) c P
hence
* ( - * - 0o
G* = G+ \Gp GC) (E Ec) 2.2.3
E -E
P (]

provides practical results. Now the soil consists of clay and pieces of
small sandstone the properties of which have been described. When the
rock particles were washed out the value of the clay modulus was found

E
c
i = i - — i ¥
to average 7.1 k.s.i. = Ec“ Assuming Gc = 3 and knowing E¥ = E atrix,

Erock

Gp = éTm—-’ = 21)43 anoio’ then

rock

G¥* = AR (2143 - Z%}) (9.3 - 7.1) = 3.3 k.s.1i.

3
LBOO - T.1
E*
but v¥ = 2?')-(’ -1 202u)+
* - = E
hence V¥ =V oirix S 0.4

With these results for the rock and soil modulus and Poisson's ratio

tThis argument was devised by N. Mostaghel.
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the bounds for a single inclusion type were found using 1.5.10 through

1.5.13 for various ¢« These bounds are shown on Fig. 7.

The bounds shown on rig- 7 indicate only one size of rock inclusion.
In fact, an elaborate rock count carried out by the State showed a range
of rock sizes. Even this rock count was made before the compaction of
the material in the fill was carried out and definite reduction in sizes
would have occured in this process. Rather than give an impression of
spurious accuracy, average values based on one rock size were computed
for the inclusion concentration. Two counts were made by the state at
widely differing levels in the fill. Materinl passing a 2" sieve was
considered to be a part of the matrix ané larger rocks as inclusions.
Each count consisted of five loads of abo.:. <5 cubic yards each. The
loads of each count were obtained from different locations at the same
level. Average results are given in Table 1. The mean size of

inclusion was a sphere of 5" diameter and the volume concentre..on was

Count Average Number of Rocks per Cubic Yard
Retained on 2" Retained on 12" lLarger than 24"
1 477 1 1/2
2 Lh5 1 1/2

Table 1 - Rock Count Results
O.7. With this value of C the bounds on the modulus are determined from
Fig. 7. The mean was used for the modulus and Poisson's ratio of the

matrix was considered to govern.
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This lower bond has been shown to be a dubious valuell. Under these
circumstances. lower values may be more pertinent and a range employed in the

analysis is shown on Fig. 8.

2.3 Computer Analysis

The example refers to the system indicated in Fig. 1. It is the
arrangement in a road relocation required by the creation of the San Luis
Reservoir near Los Banos; California. The values of material properties
employed in the analysis are shown in Fig. 8.

In order to account for the incremental character of the material
placing nine steps were considered in the analysis. A schematic of these
is shown in Figure 3. For each the effects of a uniform load at that surface
were found and used as influence dencities for the final integration process.
This process utilized a simple trapezoidal rule. The effects of the inclusion
of the organic material were accounted for in the manner previously deseribed
between layers 3 and 5. The stress and displacement fields were determined
on the assumption that the organic meterial was continuous with the main £ill
on its boundary, but that its weight was transferred only by normal forces
at its base.

The effects of the various rock boundary conditions shown in Figure 4
were considered as follows:

a) The arrangement of Figure 4(b) was compared to those of Figure

U(c) with a coarse finite element mesh. The stresses in the
vicinity of the culvert inclusion were nearly identical by both
schemes of investigation. The arrangement of Figure U(c) was
therefore not used because of the increased computer demands of
such a system.

b) The determination of a, b and ¢ in Figure L(b). The realization

of the minimum value of these dimensions is important because it
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allows a finer mesh to be used with subsequent increased local accuracy.

Many block sizes were compared and the figures

a = 650“
b = 600"
C = 200'

were finally s.lected. For a larger block little change in *he fill

stresses was observed. Seven full analyses were run as showrn in Table IT.

Analysis Number Rock Boundary Fill Hay Ratio:
(Figo ki (Fig. &) (Fig. 8) Fill oo
Hay

1 Rigid (a) (a) No hay 1

2 Rigid (a)} (a) (a) 100

3 Rigid (a) (a) () 200

4 Flexible (b) (a) No hay 1

5 Flexible (b) (a) (a) 100

6 Rigid (a) (a) (e) 20

T Rigid (a) (b) (a) 10

Teble II - Analyses Reported

The organization of computer work is indicated in the flow chart

and program contained in Appendix B.

2.4 Instrumentation

Carlson type pressure meters were provided around the barrel of the
arch (7" diameter) and in the fill. Positions and a reference numbering

system are given in Fig. 9. Those meters in the fill were of two types:
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a) 18" diameter Carlson meters

b) three 7" diameter meters between two 3/4" plates
vhich provided the same surface area as type (a). The areas of these
meters was influenced by the heterogeneous nature of the £ill previously
described. A decision on the meter area was obtained by the following
analytical approach.

Consider the fill material described on page 19 with total volume

V made up of n different types of rock inclusions, the total volume of

the ith rock type being Ai’ and the matrix of volume B. Therefore,

from page 19,

Al =Z vi® 2.6.1

n

) ;ﬂ Ai

(o] =—E-=_l_— 2.‘4‘.2

Vv
AlUAeUAB...UAna ) 2.4.3
and Al' n A2' n A3' . 3 '3 n An' = B 2.’4’.""

where the prime denotes the complement and ¢ the empty set. The volume
V need not be the total fill but be a sample so large that no doubt as
to 1ts mean or average characteristics exists.

A flat area h in the heterogeheous mass is subjected to & normal

force P where

PB fo dh 2-1‘-5
s, h nn
and the average pressure, ann’ on the area h is
o = -l;-jp 0  dh 2.4.6
nn h , p =

The local pressure, ann’ varies across the plane h because of
1) The local value caused by the heterogeneous nature of the material.
2) The local value associated with the variation of the continuum
stress field across such & finite region. Thus Fig. 10 indicates
36
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a variation of the continuum stress field as a continuous curve
with the effects of local heterogeneous material riding on it and
o = 9+Z. 2.b.7
The problem to be faced concerns the selection of an area h large enough
such that the variation due to cause (:) is minimal and small enough that
the variation due to cause (2) is also minimal. Again in Fig. 10 the

value h sought is such that the change in the extreme continuum values

o and 0 . are small and the effects of the riding values gives
max min

dehHO. 2.6.8
h

With this in ming,

Gn.n_>—l° f C d.}l 2.)“'09
h Jp
and in addition
“mn —31. 2.4,10
c

The conditions 2.4.8, 9, and 10 will only approach equalities when 0 is
uniform and h infinitely large. Here we are interested in quantitative
statements on these conditions which will allow us to put confidence in
the meter size selected. In addition, the area h must not be considered
as just & plane in the material but as an inclusion of a foreign material,
the meter, and its effect on the continuum stress field of cause (2) must

be included,

Minimum Size

In this part interest is focussed on meking the integral in 2.4.8 a
minimum. This amounts to taking a sample from V and determining that the
sample response is much the same as that of whole body V under the same
characteristics as V. This type of problem was investigated by Kelvinl)+

who showed that a regular, homogeneous space ( in which regular inclusions
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occur in a definite array) could be divided up by cells shaped as tetrakaid-
ekahedrons, and that these cells would be unrecognizable from each other.

In the problem of this communication no such regularity of inclusion array
occurs, but, because of their random charac.eristies it would appear that
the basic cell must have point symmetry and, in fac%t, the sphere would be
logical extension to Kelvin's fourteen sided figure. Arn extreme form of

solution would require that the sample set has

i = V (3 20)'}.11

This means that the inclusions in the sample are in proportional form to

the inclusions in the body. Brown8 has shown that this is a conservative
measure and that the volumgs associated with this configuration proportionality
are over twenty times larger than required for a stiffness measure of
homogeneity. With this in mind, the argument about the minimum diameter

of a sample to ensure a measure of stiffness homogeneity follows that

of reference (8).

The expected volume of the rock type Ais in the sample is

s 5
EA;7) = AV 2.4.12
\')
but in any sample differing volumes of the rock type will occur in a
manner distributed about this value E. A measure of the dispersion of
this distribution is the standard deviation, © (Ais), which may be normalized
into Pearscn's coefficient of variation
5
< o(a,")
1% = —2=
E(A;7)
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An acceptable measure of p (Ais) 1s a value k and

k = p (Ais) . 2.k 1k
Similar equalities may be written for all A:I._S and a region may be described
in n-dimensional space by the various

(1-k) E (Ais) < A% < (14k) E (Ais) 2.4.15

i

in which the probability of A 5 being in this regicn is

i
p[ (1-k) E (Ais) < Ais < (14k) E (Ais) ]: p, 2.4,16
The n probability products of the assumedly independent event Ais
Py *PopesesebP =a . 2.4.17
The configurational sample of diameter Ds of volume v° is one where
the n products of 2.4.17 equal an acceptable value q. This is found bty
the adjustment of the value k in 2.4.14 such that the region in the sphere
space of 2.4.,15 is specified. This sample is one in which each rock type
occurs in much the same arrangement ( as indicated by k) as in the body V
and in this sense 2.4,11 is satisfied. This is a restrictive statement
on DS and in fact, smaller proportions may be specified by thinking in
terms of the stiffness of the sample. An expected effective modulus F¥
of the conglomerate may be considered as a funztion of the moduli of Ais
and B, and the expected quantities E (A_,LS). Thus
F* o f ( E (Ais), M,, MB> 2.4,18
where Mi is the modulus of the inclusion i and MB that of the matrix (note
that B is implied in 2.4.18 from 2.4.4.) If the M are considered as

deterministic and Ais lies in the bounds of 2.k 15, then extreme values

of F are

F, =f Q (1+Xk)E (Ais), My, M.b> 2.4.19
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and =1 . 2.4.20

By retaining q in 2.4.17, increasing k then the m in 2,4,19 may
adjusted to a satisfactory value, is 1is accomplished by adjusting the

sample value V 5,

Maximum Size

Here interest is on making the quotient 2,4.10 approach unity, or
as & minimal problem by seeking to minimize ( S ax = C min)' Ar indicator
of the distribution of 0 across the proposed meter may be obtained from
an analysis of the soil structure. Such an analysis can seldom consider
the three-dimensional aspects of the problem and even for linear
constitutive equations only a limited number of closed solutions are
available for the plane ass.mnption. Any such solution must account for
the construction sequencel’ 2 as has been demonstrated by the photo-elastic
studies of Richardsl5 o« For most situations approximate solutions have to
be employed where the estimates of material properties, configuration and
construction sequence can be accounted for. Such a method for materials
of the Markhov type has been developed by Brown and K:Lné. From this

type of solution an estimate of the normal stress across any line in the

body can be determined. Hence an acceptable value 7y in

2(c_ -0 )
max min _ 2.4,21
(Uma.x + Umin)

allows & maximum dimension h to be determined.
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Meter Cogpliance

An additional matter above the previous geometric considerations
concerns the stiffness of the meter in relation to the parent material.
Essentially two matters have tc be discussed;

1) The compliance of the meter relative to the soil body as a whole,

2) The action of the meter as a inhomogeneity in the soil.,

The first part requires that an attempt be made to ensure that the meter
stiffness in its design mode is much the same as the heterogeneous fill.
The second part requires that the stress-concentration effect of the
meter in the fill should not be any greater than that of an inclusion in
the matrix.

An initial step in (1) above involves obtaining an actual expression
for the modulus of the conglomerate fill rather than the form of equation
2.4,18. Here we select the lower bound of Hashin3 as an indicator of
modulus. The suggestive nature of this previous statement is made because
of the instabilities described in reinforced matrices by Brown and Mbstaghelll.

"Hashin has the bulk modulus lower bound as

K% K.B+(2KB+ —g—GB)cJ

2.4,22
l+ cJ
where KE and GB are the matrix bulk and shear moduli,
J = 3 i A; (K;-Kp) .
A 3 Ki + MGB 2.4.23
i i=1

i=1

and ¢ as described in 1l.5.1 and Ki is the bulk modulus of the Ai vhase,

- Similar expressions are possible for shear modulus,
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It is now suggested that if a sample is taken from the fill material
which includes the meter as in Fig. 11 then a uniaxial compression test
on this sample must give a response curve of essentially same form as in
a similar sample without the meter. In this way the gross effect of the
meter is negligible in the fill. This means that for y = l/h the response
curve for the soil rock meter conglomerate shéuld vary as l.5 KL*° A
secondary effect is associated with the meter disturbing the stress
pattern; this is illustrated in Fig. 12 where the meter X is on plane
A-A in the body. The effect of the material stress above and on A-A
is exactly the same as the reaction below and on A-A. The presence of the
meter can disturb this locally as indicated in Fig. 12(b) where statical

equivalence exists and when R is some radius in the meter face,

fdadh-fc'bdh
p oo y B

2.4.24
foma-R-ah=fannb-R-dh ,
h h

However, the local distributions of onna and cnnb mey differ. In particular,

the Unna will have a very small gradient whereas Onnb may have rapid stress
gradients at the edges. One way of looking at this employs the extremes
of a completely flexible meter with a traction specified boundary condition
and a rigid meter with & displacement specified condition. Clearly, the
actual mgter provides circumstances between these extremes. Solutions for
this problem by Borowickals indicate infinite reaction edge stresses on
round plates wniformly loaded when the plates and medium are elastic. This
applies for all except the completely flexible plate. In fact this edge
stress will be limited to a value of the ultimate bearing capacity of the
medium. The replacement of the reactive material by a deposit of cohesion-
less sand would alter the interface pressure distribution to be nearly

17

parabolic™’ with zero edge stresses. This results in a stress concentration
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of 1.5 (ratio of maximum reaction to the loading pressures) for uniform
plate loading; To determine the acceptability of this stress concentraticn
it is necessary to compare it with cthers which may occur in the rock
reinforced matrix. Idealizing the material to ar elastic matrix with
rigid spherical inclusicns, the work of HiulB wotld indicate stress
concentrations with a lower value of 2 and increasing as the inclusions

are moved closer together. The lower value is thaet of Gc:mclie:":l'9 for a
single inclusion and may be further reduced for s sirair softering m;a:t:".'.:scaQ
and i1f the continuum admits the consideratior of couple-stressal. However,
the min:imm stress concentration in the fill material would be greater
than that associated with the reaction pressure under the meter as long

as the meter is founded on a sand. Under this circumstance, a meter

properly founded on cohesionless sand would disturb the continuum stress

distritution by a smaller amcunt than the rock inclusions of the parent material.

Poisson Distribution Example

When the distribution of each rock type, A:I.

and independence as 2.4.3 is in effect, then the probability of Als, A%, o .

» 1s Poisson in the £il1

Ans in the sample v° must be written i» whole number, discrete form.

£ ] =3
Ai = Xi V:l 2.k.25
where )(i is the number of rocks of individual volume Vis making up Ais
in v°, and
5 g 8
E (Ai ) = A 2.k4.26

then the probability of X, XZ, X3, ""'xn rocks of types 1, 2, 3e¢sen

occurring in Ve is



o % X (—ix )
P( le xzs X3,...Xn ) = l * X ....Xn'n) €XPo 1= i . 2.1‘_.27

X'.L Xa sseo Xn'

For each rock type the mean and variance are equal to A i and hence for each
1

type the coefficient of variation is A\ i-z and 2.4.1% becomes

k = . 2.4.23

The use of the Poisson distribution combined with the lower bound of

Hashin as a modulus indicator allows *the guantity F, to be stated as
. Kg + (2K5 + B/3 65)  (1ik) eJ *

1 + (1tk) cJ

2.4.29

and
F* = Ki* . 2,430

Thus, m as specified In equation 2.4.20 may be written from 2.4.22, 29, and 30.

The selection of the meter area, h, as defined by a sample diameter
of Ds’ results in the description of the size parameters k, g, m and ¥
previously developed. The acceptability of these values must be judged
in the light of similar occurences in engineering practice.

Although the previous developments for minimum meter size were
predicted on known values of the moduli of matrix and all rock types, in
fact, all these moduli will have a distribution the minimum coefficient
of variation of which may serve as an upper acceptable value on m. It
is likely that the distribution of mcduli for the various phases will be
normal with the resulting collection of about two-thirds of the results
in a band about the mean defined by E (1L + p). This suggests a value of
q in 2.4.17 of about two-thirds which, with m, defines k in 2.4.15 and 16.
This k is a much less restrictive parameter of homogeneity than could be
obtained by purely configurational arguments a.lone8.

The maximum dimension of the meter is defined by y in 2.4.21, which

involves the normalized maximum change of stress, 0, across the meter.



This change should be no greater than that allowed in £ in 2,L4.7, the
indicator for which is m as described above. Therefore, a reasonable
decision of meter size rests on

Yy = m< £
where £ 1s the least coefficient of variation of the various phase moduli,

and
q o 2/3 ° 20’4‘032

A value of £ is likely to be about 0.1 fr:.. previcus exrerience with
control of concrete production anc «...  processes.

In applying this analysis to the meter design cf the San Luis
relocation, the values cf rock and soil properties of Section 2.2 were
used. The minimum standard deviation of these materials was for the rock
modulus with a value of 12%. Therefore, for m = 0.05 < £ = 0,12 and
q = 0.683, a minimum meter size

DS = 17"
was obtained.

A decision on the maximum diameter was made by considering theoretical
pressure plots such as shown on Fig. 13. These plots indicated the
impossibility of obtaining 7y < m unless the meters were located 8!
beyond the center line of the culverts. For locations closer then this
distance the pressure gradient would be such that y in 2.4.21 would take
on a large and unacceptable value. For the meter positions chosen, the
variation of continuum stresses, 0, as indicated by 7y, over the meter of
17" diameter was small compared to m. As a second feature of maximum
dimension decision the meters wére founded on & 3" pack of sand which was
of 30" dlameter and the sand pile was eventually extended to inumdate the
meter in a block about 30" diameter and 12" high. In this manner the dual
effects of the meter as a stress-concentration and the local pressure on

the meter by a rock inclusion were minimized,
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With such an inflexible meter as the Carlson type little can be done
about altering the meter compliance to accommodate the heterogeneous f£ill
properties. In this case a lower bound on E for the f£ill based on Hashin's3
work gave

3

= 50 x 10° psi

Beamy
This figure involved a change in thickness of 0.028" in a 1" meter under

the full fill and was close 4o the average compliance of the actual device.
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PART III

ANALYTICAL AND DESIGN CONSIDERATIONS

The discussion of analytical and design matters is based on the
seven analyses of the San Luis Reservoir road relocation embankmen<t

and the pressure meter readings on that project.

3-1 Tractions on the Barrel
Fig. 14 shOJs the cractions on the barrel for the seven analyses
of Table II. Fig. 15 shows the pressures measured on the barrgl and
the analyses associaied with the rigid rock boundary. Both these figures
are for conditions made the full construction depth of 200! The
effects of the histo:y of construction, and in particular the immediate
effect of the hay inclusion, are indicated in Figs. 16 and 17, where
the change in pressure with fill height for two locations on the barrel
are plotted. These results are at the crown and on the barrel wall;
the analysis is No. 7 which appears best to represent the final pressures
in Fig. 15. These figures allow consideration of the following professional
questions to bt made:
1) The extent to which the method developed is satisfactory in
predicting barrel tractions.
2) The effect of organic inclusions.
3) The effect of the fill and organic material properties and
their ratios.
L) The effect of tie deformability of the earth's crust.

5) The effect of rotting of the organic material.
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—— (ANALYSIS I (NO HAY)

SCALE:
b

100 PSI

8o NORMAL PRESSURE ON METER 8 (SEE FIG. 9)
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HAY MODULUS RATIO
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FIG. IS
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The plots in Fig. 15, 16 and 17 indicate that with a proper
selection of the modull of the fill material and organic hay inclusion
an accurate representation of the barrel traction distribution may be
obtained. It is clear by the examination of Fig. 14 that the barrel
tractions, especially at the crown region are highly sensitive to the
ratio of fill:hay modulus. For no hay, when the ratio is unity, high
pressures occur at the crown; these are reduced as the ratio increases.
For the case of rigid boundary (Figure 4a) only this ratio is important
in the analytical solution because of the homogeneous displacement
boundary conditions. When the rock stiffness is included in the analysis
the results will depend on the relative values of the moduli of the
three materials.

The fill properties in this problem were originally ascertained

from the bounds of Hashin3

but, as mentioned previously, the tests
performed by Brown and Mostaghel;l tended to vitiate the values of

these bounds. With this in mind the results with E = 1.5 x 106 pst

Fill _
would appear to be tlhe ﬁost accurate representation of the fill. With
regard to the'hay inclusién, no definite'values for a modulﬁs were
available. It would appear that a Value of EJrg. = 0.15 x lO'6 psf
appears most satisfactory and thus Analysis No. 7 best represents the
actual fill conditions with a fill:hay modular ratio of 10.

Figs. 16 and 17 clearly show the effects of the inclusion of organic
material with immediate drop of pressure and then the subsequent building

up of pressure as the fill procedures continue. These characteristics

are also displayed from the experimental pressure meter results.
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The conclusions about the first three professional questions are
that if the fill, hay and rock deformation properties, or at least their
ratios, can be properly described, then the analytical model proposed
can indicate accurately tractions on the barrel of the arch. Indeed,
the effect of the ha, inclusion is important inasmuch as it alters the
characteristic shape c¢f the pressure distribution on the barrel.

Fig. 1k indicates the effect of considering the deformabilicy of
the earth's crust. For the high rock:fill modulus ratio used (Fig. 8)
the change in force distribution on the barrel is small and may be
neglected in view of thé confidence that can be placed in the assumptions
with which the problem was commenced. When the rock modulus is closer
to that of the fill tl.e methods employed in accountingrfor the earthfs
crust effect may be utilized. It is possible that in Fig. 15 the
Analysis No. 7 would have more closely matched the recorded pressures
at the crown if the boundary had been non-rigid.

Ovef a long period of time the phyéical gharacteristics of the
organic ﬁaterial will change and, in fact, this material will cease
to exist from a structural viewpoint. This may be accounted for by
clearing the hay perimeter of the stresses associated Qith the state
of stress and displacement arrived at on pages 16 and 17, and dgtermining
the stresses and displacements ( Oij and Ui ) caused by this operation.
The final states at C, namely UiTand Ugj, after a long period of time

will be given by

3.1.1

o7



where Ui and aij are defined by 1.2.3 and 4 together with the adjustrents
for the hay indicated on pages 16 and 17.

This type of operation has been carried out for Analysis No. 7. The
results of oy and cnnT’ the normal pressures on the barrel, are shown

in Fig. 18.

3.2 Design Aspects of the Culvert

The design of the structural dimensions and reinforcing of a rigid
culvert can only proceed with knowledge of the tractions on the surface.
In this respect the analysis of this paper provides a way of obtaining
this design information. However, a more important design consideration
concerns arrangement of the fill to provide barrel tractions which are
most satisfactory in minimizing the bending and shear action in the
culvert. A state close to that of isotropic pressure would best satisfy
this requiremen=. \Vitl accurate knowledge of the fill p operties it
should be possible to provide an inclusion of different material to give
such axial action in the culvert. This inclusion material should be
non-perishable in order that the harmful distribution of Fig. 18 is not

obtained after a few years.

3.3 Fill Pressures

Fig. 19 gives the analytical and experimental results of fill pressures.
The locations of the positions are indicated in Fig. 9. Essentially it is
clear that both sets of results led to nearly lipear plots which; in the
theoretical case, were associated with the overburden weight. In Figs.
19 (a) and (b) the various experimental curves span the theoretical values

with the . triangular meters, proving to be upper, and the circular meters
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to be lower bounds. Only for the meters near to the base of the culvert
are the effects of the organic inclusion noticeable. The three small
meter, triangular device was intended to be sensitive to local perturbations
of stress across the meter; the single, 18" diameter circuler meters were
intended to average these local effects. The analytical results, of course,
only indicate the average value of pressure over finite regions. 1In Fig.

19 (c) the triangular meter again gave higher pressures than the circular
one, but their results are above the theoretical values. This may be
caused by the close proximity of the rock boundary. Fig. 19 (d) shows

the complete linearity of the theoretical readings.

From these results it could be determined that the finite-element
analysis gave reasonable indications of soil pressure, which in any case,
appeared to be closely associated with overburden weight regardless of
the meter location. An exception to this is in the vicinity of the hard

rock boundary.

3.4 Conclusions

This work has attempted to synthesize the various broblems in the
determination of the conditions in the fill and on the barrel of rigid
culverts under high embankments. The main theoretical contributions are:

1) a discussion of the effective'mpdulus of £ill with large inclusions.

2) design methods for ﬁeters in such a fill. '

3) analytical methods for the conditions in the fill and on the barrel,

which takes into account the rock boundary and construction sequence.

This wofk Qas supported by field tests which indicated that the conditions
on the Barrel were well duplicated by the analysis, provided that an accurate
picture of fill moduli was obtainable. In the fill itself the results of

the analysis were not so well borne out.
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From the professional viewpoint some important questions concerning
the effects of organic inclusions were dealt with. In particular, the
short and long term effect on barrel pressures were considered.

Future work could involve the consideration of culvert flexibility
and the experimental investigation of the theoretical soil pressures,

which appear to be essentially probable inasmuch as they vary linearly

as the soil density.
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1)

2)

1)

2)

Append{x B

A BRIEF DESCRIPTION OF STRESS INTEGRATION

In the stress integration routine there are 2 options:

NMNE2 = a DL is applied
=0 { b Removal or refill of material
NMNP2 Layers are added and unit

# © loads applied
NMNFP2 = O Then incremental stresses are added directly to the
accumulated total of stresses existing in the elements.

NMNP2 # O Then incremental stresses are integrated by the
traperoidal rile for each element and added to the total
existing stresses in the element.
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PSIT - LAYER BY LAYER ANALYSIS

Input and initialization

of structure

)

Input and initialization

of individual analysis

L

Modification of external
load due to either
a Uniformly distr. unit load

or
b Dead load

L

Initialization of total

stiffness array §§§§ §§§

L

Forming the array "NP(I,J)"
for mapping of nonzero
elements in the total stiff-

ness array

N

Keeping track of nodal
points in "MNP(I)" which
allows input of nodal
points not in numerical

sequence

N

count of connected nodal

points stored in "NP(I,1)"

Return until all layers have been added

[
>

Formation of stiffness
& Elements
Matrix for b Structure

A

Initialization of displace M

L

Inversion of nodal point

stiffnesses

Modification of boundary PT.s

& Relax nodal Pt. itself

Ieration b Relax connected Nodal
pts.

Displacements and Stresses

Displacements

Incremental Stresses

Integration of Stresses

Option for removal and
refill of material and
only adding incremental
stresses to accumul.
stresses.

Y

incremental

Print stresses {'total

L

Modific. of load due to re-
moval and filling of mate-

rial

rf‘.
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INPUT AND INITIALIZATION OF INDIVIDUAL ANALYSES - PSIT

READ

AT TMEL{NAL) NMNP(NAL)  NMEC(NAL)  XU(RALJ

Layer No., Accumulated elements, - NP, - boundary points, P01sson 5
RO(NAL) DISPL
ratio, Density, Initial vertical displacement for all NP from NFROM

as red in on structure control card to the last NP in layer con-
TOLER XFAC

sidered, Tolerance limite for iterations, Overrelaxation factor.

I

READ

Uniformly distributed load variables for top row of last layer.
The variable NMNP2 has a secondary function by controlling
1) Load modification; If NMNP2=0 DL is applied. If NMWTQ%O
uniformly distributed load is applied. '
2) Stress Integration; If NMNP2=0 incremental stresses are
added to the accumulated strésses. If NMNP2£0 incre-
mental stresses are integrated by the trapezéidal rule

and added to the accumulated stresses.

e
INITIALIZATION

A
PRINT
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LAYER By LAYER ANALYSTIS MWMITH FACILTTY FOR RFPLACTNG MATERTAL

DECCRIPTINN OF DATA FOP pPerT

THE ELFMENTS MUST RF NMUMBFRFD CONSFCUTTVFLY QTAPTING wTTH THr

C
C
C  INPUT
P
c
DR e
C
C 15T CARD
C
C 2ND CAPD
C
c -
C
C
C
C
C
DR
C
C
C
C
C
- -
C
C  NEXT CARD
C
C
C
e
C
C
C
C
C NEXT CARD
e
C
C
C
C
C
—
C
€ NFXT CARD
C
C
C
——
C
C
C NEXT CAPRD
c
c
C_ -
C
C
C

PLACFE FLFEMENTS AND CONTTIMITNA ROW

COL.1-72

COL.]‘4
COLe5-R
COL.9-12
COL.12-16
COLL17=-2n
COL+21-24
COL.25-28
COL,29-32

COL.33-36

COL+37-3R

COL1-4
CNL5-R
COLeO=1?
COL«132-16
COLe17-2R

CﬂL.l—&
COL.5-12
COL,13=-20
COL.21-32
COL.33-44
COL.45-56
COL.57~-6R

COLe1-4
COL.5-8

COL.9-16

COLW1-4
COL+5-8
COL.O-12

CNL.12-24

PY RNW
TITLF
PARPAMFTEP ARPAY

(1 CAPD ONLY)

TOTAL NUMRFR OF FLFMFNTS 14
TOTAL NUMREP NF NMADA[ “"PNTNTK T%
MUMRER OF ANALYSFS TN DFRFOPM T4
TOTAL NUMBRER NF B, C. 14
FORCF UNBALANCF PRINT INTFPRVAL 14
OUTPUT INTERVAL 0OF F!LL RFSULTS 14
CYCLF LIMIT 14
FIRST NODAL PQINT FOR ITMTTTAUTZATTON

OF DISPLACFMENTS 14
FLEMENT NO-PRINT OF STRFSSFS FROM

NFXT ELFMENT 14
DUMMY VARTARLFE CONTRNLL ING OUTPUT,

IF DUMMY =n THFN PRINT TNPUT MESH

ARRAYS OTHERYISF NOT ~ - 12
FLFMENT ARPRAY (1 CARD FNR FACH FLEMFENT)
FLFMFNT MUMAFR 14
NUMRFER NF NNDAT POTINT 1 14
NUMBRER OF NADAL POATNT 14
NUMRFR OF MODAL POINT ¢~ TS
MODULUS OF FLASTICITY Fl2.4
FACH TRTANGULAR FLFMFNT OF PIPF MiST

HAVF NODFS TN CNRRFCT ORDFR,

NONAL POTNT ARRAY (1 CARD FNR FACH NODAL PT,)
MODAL POTNT NUMRER wm7 mom e = EE
X=CNORDINATE 0OF POATINT FBel
Y-COORNINATFE NF POTINT F8e1
X-LOAD AT POINT Fl1242
Y-LNAD AT POINT F12.2
INITTAL X-DISPLACEMENT Fl12.8
INTTTAL Y=DISPLACFMFENT "7 "= 7 """ FI2.8
ROUINDARY ARRAY (1 CARN FNARP FACH R,C,)

NUMBFR OF BOUNDARY POTINT 14
INDTCATFS RFSTRAINT. (0 FOR FIXED IN ROTH
DIRFCTIONS. Y FOR FIXFD TN ¥ DIRFCTION, 2 FOR
FIXED IN Y DIRFCTION. ) Tt T4
SILOPF AT ROUNDARY POINT FB,2
MATFRTAL RFPLACFMFENT CAPD (1 CAPRPD ONLY)

NO. OF FLFMENTS TN TAKF OUT T4
NOo OF NNODAL POINTS ALOMAR THF FREF

FDGFS OF THF FXCAVATION — o
ANALYSTS AT WHICH MATFRIAL 1S TO

BE RFPLACFD ' 14
DFNSTITY NOF RFPLACFMFNT MATFRTAL F12.4
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COL.25-36 MOPULUS OF FLASTICTITY OF

- RFDLACFMFNT MATERTAL FY> LT
COL37-4R ASSUMED TNTITTAL VFRTICAL NISPLACFEMENT
PUF TO REMOVAL OF MATFRIAL Fl12.4
NEXT CARD FLEMENTS TO BF RFMOVFD,THF FLEMFNTS ARF LISTFD
20 ON EACH CARD WITH A FIXED POINT FORMAT
e UNTIL ALL FLFMFENTS WHTCH ARF ~TO RE—PEMAYET
ARE LISTED 2014
NEXT CAPRD NOPAL POINTS ALONG THF FRFF FNGFS AF THF

EXCAVATION ARF LTSTFN 20 ON FACH CARND
WITH A FIXED POINT FORMAT UNTIL ALL THF FRFF

NODAL™ POTNTS " ARF 1STFN™ {3
NEXT CARD ANALYSTS CONTROL CARD(1 CARD FOR FACH ANALYSTS)
COLe1-4 NUMBER OF ANALYSITS 14
COL,.5-8 NO. OF LAST ELFMFNT IN ANALYSIS 14

THF FLFMFNTS 0OF FACH AMALYSIS MUST RE NUMRFRERD

‘TN SENUENCE T

COL.9-12 NOJOF NP4S IN FACH ANALYSTS 14
THE NPeS NEFD NOT RE NUMRFRED IN SFQUFNCF FOPR
FACH TINDIVINUAL ANALYSTS,RUT MUST RF [N
SFOUENCE FOR THFE COMPLFTF STRUCTURF

COL+13-16 NOs OF BOUNNDAPY PATNTS TN ANALYSIS 14

COL17-24 POTSSONS "RATIQ FOR-ANPFO-LAYFRS FB8e3

COLW?25=~24 NENSTTY FOR ANDFN {AYFRS Fi1na.4

COL35-44 INITIAL GUESS NF VYFRTTCAL

’ DISPLACEMFNT Flnes

COL +45-~-54 TOLFRANCFE LIMIT Flo.4

COL«55-67 OVFR RELAXATION FACTNPR FBe4
NEXT CARD LOAD APPLICATION CARPD (1CARD FOR FACH ANAL,)

e AT THE SPFCIFIFD FLFVATTONSGTIF THF

UNTFORMLY DISTRIRUTFN LOAN T< APPLTIFD
BETWFFN THE FTRST AND THF LAST NODAL
POINTTWO REZCIONS OF DISTRIRUTED {NAD
IS POSIBLF ALCNG A ROW OF NODAL POINTS

CARD TS BLANK,GRAVITY LOAD IS APPLIFD
TO THE STRUCTURE,

COL.1-4 FIRST NP 14
COL.5-8 LAST NP, 14
COL.9-1? FIRST NP 14
T COLe13=16  LAST NPy T T T T s e TG
COL417-28  FELFVATION F12e4

END OF DATA CARDS,

AANANANANAdANANANAANNNAANANANANNANAAAANAANAANAANAANYNA A A A aXa¥aka¥e¥s NaNaataNataNa)

DIMENSTION AND COMMON STATEMFNTS - ==

DIMENSTON XORD(50N) 3 YORD(50D) yDSX(5NN) 4DSY (50N) 4STGXXT (8NN,
IMNP(500) s XLOAD(5N0) » YLOADIS50ON) sNP(S5N048) s NPT (8NN) 4NPI(8NN),
2NPKALRNAD) Sy NMEL(T10N) JNMNP(10N) 4y NMRCIINNY) 4FTIRNANY $XII{10N) 4RO(1INNAY
3SLOPE(100) yNPBIIDO) s NFTX(100) sSXX(2000 ) 4SXY L2000 ) oSYX(200N ),

BESYY (2000 Ys FRX(S50DN) 4FRY(500)yFLFV(INONY), SIGXX(8NANY s SIGXYTBNDYS
5SIGYY(BNN) 3L M(3)sA(696)9sB(6+6)sSI636)sSTGYYTIBNN) $SIGXYT(BAN)
6y NELOUTIINN)Y yNPFRFFE(5N) 4STG(3)

COMMDON SXX 9SXY s SYX g SYY 3 STGXX g STAXY 3 STAYY GNPT GNPIJNPK 4 XNRD 4 YORD

v edt————

———



TFORMAT

1 FORMAT
1

FORMAT
FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

O DI ON

10
11
12
13

FORMAT

FORMAT

FORMAT

FORMAT
1D

14 FORMAT

15 FORMAT
16 FORMAT

1F FELEMENTS

2 =
FORMAT
FORMAT

17
18

19
20
21
22
23
24

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

‘FORMAT
FORMAT
FORMAT

25"
26
27

1 :
28 FORMAT
29 FORMAT

30 FORMAT
31 FORMAT
10AD )
32 FORMAT
1TRESS

33 -FORMAT
13)

34 FORMAT

35 FORMAT
1D

36 FORMAT

“"1oH F
37 FORMAT
38 FORMAT
39 FORMAT
41 FORMAT
711 FORMAT

C

C
C

712 FORMAT

114 722H NO,

STATFMFNTS B
(72H1 BCD INFORMATTON
)
(014,12)
(31HNTOTAL NUMRFR OF FLFMENTS =1147)

(31H TOTAL NUMBFR OF MNODAL "PDINTS ETTLT7)
{31H NO+ OF ANALYSES TO P=,FORM =1T47/)
(31H CYCLF PRINT INTFRVAL =114/)
(31H OUTPUT INTFRVAL OF RFSULTS =1T14/)
(31H CYCLE LIMIT =1147/)
(22H TOLERANCE LIMIT =F943)

{22H RELAXATION FACTOR " =FK437
({27THYEL 1 J K F )]
(4144E1244)

(80H] NP X-0ORD
X-DI1sP Y-D1sp)
(1T4,2FBe192F12e¢242F12.8)

Y-ORD X-LOAD Y-LOA

(40HONOs OF TERMS [N TOTAC STIFNESS ARRAYS ETE J
(43HIRESULTS FOR ELFMFNTS TN PLACF=ANALYSIS NOWT4/22HONO. O
=14/22H NO. OF NODAL POINTS =14/22H NO+ OF B,C,
T4}

(31443F12,4)

(4144F863,3F1NehyFRWG)

(21H TOTAL NUMBFR OF ‘RyC,
(1T8,4F12,142F17.R)
(21441FB43)

(20HOBOUNDARY CONDITINONS)
(32H0 CYCLE FORCE UNBALANCF)
(1712,1E20.6)

=1T477

T{42HONODAL POINT X=DISPLACEMFNTY=DTSPLACEMFNTY
(111242F15,6)
(120H1 ELEMFENT X=-STRESS
MAX s STRESS MIN. STRFSS
{(1T10+3F15¢435Xs4F15,2)
(25HIRESULTS FOR ANALYSIS NO. T14/22HONO.

XY~-STRESS
DIRFECTION)

Y-STRESS
MAX 4 SHFAR

OF ELEMENTS

"

OF NODAL POINTS =147 22H NOJ DF RFCy TETHY

(1H1)
(37H-MODIFIFD VFRTICAL LOADSIAT ELFVATTION FR.2/13H NP, YL

{15H-TOTAL STRESSFS /56H FLEMENT X=-STRESS Y-S

XY=-STRFSS )

(22H POISSONS RATIO ~ — —=F§33/22H DFNSTTY =Fo;

{22H1ANALYSTS OF THF FIRST 13,8H {AYFRS )

(30H MATERTAL T8 REMOVFD AND LOADS MODIFIFD /20H NP, XLOA

YLOAD )

(36H PIT IS FILLFD WITH ORGANIC MATFRTAL/GH DENSITY=F12.4/

=F12.,4) T
(2nl4)
(1842F1244)
{32H- ‘NP,
(E12.4)
(32HNAZERD OR NFARATIVF ARFA, FL, NO,=1T14)

XLOAD YLOAD )

(36HNAMORE THAN 7 POINTS CONMECTFD ™ TO NP TEGY

READ AND PRINT INPUT DATA

Th



PRINT 130

"READ 1 ’ T T
PRINT 1

RPEAD 24NUMELT4NUMNPT gNANAL s NUMBCT 4NCPTINGNOP TNy NCYCM4NFROM,
1 NBLOCK,T1

PRINT 3,NUMELT

PRINT 44 NUMNPT

T11 CONTINUE ) T

100

PRINT 54NANAL ) U T -

PRINT 19,NUMBCT

PRINT 64NCPIN

PRINT 74NNPIN

PRINT B8,NCYCM

READ 125 (M, ,NPT{N)yNPI(N)4NPK(N),FTIN), N=14NUMFLT)

READ 14,5 (MyXORD(M) 9 YORD (M) s XLOAD (M) 3 YLOAD (M) 4DSX (M) 3DSY (M) 4M=1 4 NUM
1NPT)

READ 215 (NPB(L)sNFTIX(L)sSLOPE(L)sL=1sNUMRCT)

IF (T1) 1n5,10n,1Nn5

PRINT 11

105

PRINT 125 (NsNPI(NY) yNPJ(M) 4yNPKIN)ZFTTNY R=T yNUMFLTY
PRINT 13

PRINT 205 (MsXORD(M) s YORD(M) 3 XLOAD (M) 3 YLOAD (M) 4DSX (M) 4DSY (M) yM=1,NU
IMNPT)

PRINT 22

PRINT 21, (NPB(L)sNFIX(L)ySLOPE(L)4L=14NUMBRCT)

READ 17 4NOUT oNFREF 4NTO4RORLETORG DORG—
PRINT 174NOUT¢NFREE 4yNTO4ROR,FTORG4NNRG
READ 37, (NELOUTI(1),1=14NOUT)

PRINT 37, (NELOUT(T1),1=1,NOUT)

READ 37, (NPFREE(I)s1=14NFRFF)

PRINT 37, (NPFREE(I),I=1,NFRFE)

aRaNa

INITTALTZATION OF ANALYSIS OF COMPLETF STRUCTURF

NCTAG= 8
NDIM=20n0
1FLAG=0

aNale!

120

122

NAL =" SR e
NNN=0
NID=0

TNITTALIZATION OF INDIVIDUAL ANALYSIS

“READ 18 » (NAL) s (NMEL (NAL ) sNMND (NALTYNMBC (NAT Y 3 XU INATY SROTNATY S DTSP——
1Ly TOLER G XFAC)

READ 123NMNP1 4NMNP2 4 NMND3 4 NMNP 4 FLFV (NAL)

NUMEL =NMEL ( NAL)

NUMNP=NMNP ( NAL}

NUMBC=NMBC({NAL)

CTF INAL=-1) 1254122,125% -~ o T T
NNUMFL =1

PRINT 164NAL s NUMEL s NUMNP ¢ NUUMBC

GO TO 127

NNUMEL=NMEL (NAL-1)+1

PRINT 294NAL s NUMFEL s NUMNP 4 NUMRBC

PRINT 10,XFAC

PRINT =3 4,XU(NAL)RO(NAL)
PRINT 9,TOLFR

TF (NMNP2) 145,145,139

e e T

75



[a¥aYa)

UNTT LOAD MODIFICATION -

139 PRINT 31 LELEV(NAL)
143 DO 142 N=NMNP1 4NMNP?2
IF (N=NMNP2 ) 140,141,141
140 UNITL=ABSF ((XORD(N+1)=XORD(N)) /2.0)

YLOAD (N)=YLOAD(N)=UNTTL""
YLOAD (N+1)=YLOAD(N+1)=-UNTTL
141 PRINT 14,NsYLOAD(N)
142 CONTINUE
TF (NMNP3) 145,145,144
144 NMNP1=NMNP3

NMNP 2 =NMNP 4 T e
NMNP3 =N
GO TO 143

145 IF (NMNP2) 14641464129

NEAD LOAD MODIFICATION

s XaNa!

146 NFEL=NNUMEL
NLFEL=NUMEL
RORG=RO(NAL)

147 DO 161 M=NFELsNLEL

TE (NMNP2) 156,157,156

“N=NELOUT (M)
GO TO 158

157 N=M

158 I=NPI(N)

J=NPJ(N)

K=NPK(N)

=1
\n
o

AJ=XORD(JY=XORD(T) 7~
AK=XORD (K)—=XORD( 1)
BJ=YORD(J)~YORD(1)
BK=YORD(K)~=YORD( 1)
ARFA=(AJXBK=-AK*RJ) /2.0
159 DL=AREAXRORG. /340

160" YLOAD(T)Y=YLOAD(I)=-DL
YLOAD(J)=YLOADIJ)-DL
161 YLOAD(K)=YLOAD(K)=DL
PRINT 139
PRINT 384 (MyXLOAD(M) s YLOAD (M) ¢4M=1 4NUMNP)
129 NCYCLE=0 v

NUMPT=NCPIN T
NUMOPT=NOPIN

DO 130 L=1,NDIM
SXX(L)=0e0

SXY(L)=Nn,eN

SYXtL)=0e0

aNakaXa

I3 SYY(L)=nan S

THE TAG ARRAY FOR MAPPING OF TOTAL STIFNFSSFS IS FORMED

162 DO 170 N=1,NUMEL

LM(1)=NPT(N) T
LM(2)=NPJ(N)

LM(3)=NPK(N)

PO 170 T1=1,3
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165
166

167
163
164

168

[ala

169
170

(NN el

171

lLie¢
13
L4
175

[aN ol ol N e

r

“TF NP 1S ZEROSSTORE LM(JJ)y 777777

TIF CANPUTION) ) 1749174172 & 7 T

TUNUMTGT=NP (Nyl)

“"M=0

MS=LM(TT)

NP (MS41)=MS T
PO 17N JJ=147

IF (MS=LM(JJ}) 165,170,170
DO 168 LS=24NCTAG
IF (NP(MSSLS)I=LM(JJ)) 167+17N0,167

IF (NP(MS,L5)) 16341694163 o o
IF (LS=-NCTAG) 1684164,416A4

IFLAG=1

PRINT 712sMS

CONT I NUE

NP (MSyLS)Y=LM(JJ)
CONT INUE
It (IFLAG) 442,153,442

CONSECUTIVE NUMBERING OF NODAL POINT LABELLING ARRAY

L=0

DO 155 N=1yNUMNPT

IF (NP(Ns1l)) 15541554154
L=L+1 .

MNP (L)=NP(Nyl)

CONI INUE S C e
MNP (NUMNP+1)=MNP (NUMNP ) +1

COUNTING ADJACENT NODAL POINTSS»T 't COUNT IS STORED
IN IHE FIRST COLUMN OF IHE TAG ARRAY

NP(191)=1 ' Lo T -

DO 175 M=14NUMNP ‘
I=MNP (M) .
[N=MNP(M+1)
N=1

N=N+1

it (N-NCTAG) 17191734173
NP (INsL)=N+NP(Llel)

GO 10 175 : )
NP(INgl)=N+NP(lgl)=-1
CONT INUE

PRINITOUT Or NUMBER OF CONNECTED NODAL POINTSeTHIS SHOULD EQUAL
NUMbtR OF TermS N EACH OF THE TOTAL STIFNESS ARRAYS AND NOT
EXCEED NDIM

N=MNP { NUMNP )

THE

PRINT 15eNUMTOT
IF (NDIM=NUMIOT) 44291764176

FORMATION OF SIIFFNESS ARRAY

M=M+ L
NLOt=NMEL (M)
IF (M =1) 180e1 794180

7



11y

180
181l

NFESI=1

GU 10 181 T T
NESI=NMEL(M=1)+1

VU 199 N=NF ST eNLSH

L=RPL(N)

JinkJing

K=aNFK(N)

ARJ=XORD(J)=XORDI 1) CorTTmT
AK=XURUV K ) =XURD L L)
LJ=YurRuv{v)=YURU( 1)
BK=YURVIK)=YUrUI( )

AREA= (AJABK=AKKRI )/ 2o )

0V
701

‘Al196)=0e0 Lo

“B(Z2s2)=COMM s

PICINT UF ERRURS IN [NPUITTDATA
IF (AREA) T701s7014 /00

1 CIFLAG) 7029702y 19y

PRINI 711N

LFLAG=1

GU 10 199

LOMM=0e ZO%E T (N) /1 (1a=XUIM)RRZ)H¥ARERT
Alls })=BJ=-BK

Ali92)=0e0

Alls3)=BK

A(lsa)=0e0

A(leb)==8J

A(291)=0eN
Alls2)=AK=AJ
A(£s3)=0e0
Allys)=-AK
A(Z2so)=0e0

TAT296)=AU o -

A(3491)=AK-AJ
Al3s2)=BJ-bBK
A{3493)=-AK
Al{3s4)=bK
Al(3eb)=AJ

TA(3s6)=-BJ S

Ir (NFST=NLS1) 7D0345204703
B{1e1)=COMM
Bl1ls2)=COMM*XUI(M)
Blle3)=0e0
Bl2y1)=COMM¥X (M)

B(Z293)=0eD
B(341)=0e0
B(3s2)=0e0
BU3s3)=COMM: {1e=XU(M) ) %45

DO 182 JJ=146
DO 182 {1=1¢73
S(11sdJ)=0e0
DO 182 KK=143
SiTledd)=a(11eJJ})+B( TI4KK)*A(KKsJJ)
LU 183 Jd=1+6

DO 183 T1=1,3 S ——
BlJJde I1)=S(T1Te4J)

VO 184 Jd=196

VDO 184 [l=146
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S(Itedd)=0e0

[N el aNe

DU7 184 KK=193
184 S(ITedd)=5(1lsJJd )+B(I19KK)*A(KKJJ)

SEARCHING FUR AND STORING NONZERO TERMS OF THE
TUTAL STIFNESS ARRAY

LMET)=NPLIN) - e
LM(Z)=NPJ(N)

LM(3)=NPK(N)

DO 198 11=1,3

KS=LM(I1)

DO 198 JJ=143

NS=NP(KS&o1) = o
LS=LM(JJ)

IF (KS=LS) 186+195,198

186 DO 188 MS=2,4NCTAG

187 NS=NS+1

IF (NP(KSyMS)=LS) 1884195,188

B8 CONI INUE T T
195 SXXINS)=SXX(NS)+S(2%]1=142%JJ=-1)
SXY(NS)=OXY (NS)+S(2*]]=142%JJ )
SYXINS)=SYX(NS)+S(2*]1] s2%JJ-1)
SYYINS)=5YY(NS)+5(2%]1] 1 2¥JJ )
198 CONIINUE

T99CONI I NUE T T
IF (M=NAL) 178,200,420n0
200 CUNT INUE

IF ([FLAG) 44242014442

INITTALIZATION OF DISPLACEMENTS

201 DU <05 1=NFRUM¢NUMNP
N=MNP (1)
IF (NID=1) 2042024203
202 DSY(N)=DORG

GO 10 205
ZU3 DSYINJ==DSY (N} 7777 B
GU 10O 205

204 DSY(N)=DISPL
205 DSX(N)=0e0

INVERSION OF NODAL POINT STIFNESSES

(s Nale

DO 210 I=19sNUMNP:
M=MNP (1)

N=NP({ Myl)

COMM =SXXIN)I*¥SYY(N)=SXY(N)*SYX(N)
I (COMM) 208,209,208

208 TEMP=5SYY(N) 7COMM
SYY{N)=SXX(N)/COMM
SXX{N)=TEMP
SXY(N)==5XY(N)/COMM
SYX(N)==SYX{N)/COMM

2UY FRX(M)=XLOAD (M)

ZIDTFRYIM)Y=YLOAD (M) CoTTTme e -

MUDIFICATION OF BOUNDARY FLEXIBILITIFS
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LU <240 L=1sNUMBL

215

M’i‘NPth'L) T ) o TEmmm e -
N=XABSF (NP (Ms L))

NP (Mmyl)==NP(Msl)

IFONFIX(L)=1) 2¢5922049215

C=(SXX (N ) H*OLOFC (L) =SXY (N Y)Y/ (SYX(N ) #SLOPE(L)=-SYY(N
R=1e=C*SLOPE(L)

1)

SXXTNTT)YETSXXTN ) =T*SYX{NTTYTT/R
SXY(N )=(S5XYIN )1=C*¥SYY(N )I/R
SYXIN  )=5XXIN )*SLOPE(L)

SYY(N )=S5XY(N )*S5LOPE(L)
DOY(M)=0e0
GO 10 240

P49

225

SYYTN T )=S5YY (N T}J=SYXUN TV ¥SXY TN T T75XXTN )
USX(M)=O.H

GO 10 230

SYY (N y=NeN

DSY(M)=0eD

DSEX(M)=0e0

h e

230
235

240

243
245

SXXIN " }=0e0" T Com
SXY (N )=0.0

SYX (N )=0e 0

CONI INUE

ITERATION OF NODAL POINT DISPLACEMENTS

PRINT 23

SUM=(060

DU 290 1=19sNUMNP
N=MNP(1])

NN=MNP (I+1)

249

£I70)

255
260

262

265

275
280

290

"D07255 LL=14sNAP ' T

NODAL POINT N IS RELAXFED
NM=XABSF({ NP(Nyl))

IF (SXX{NM)+S5YY{NM)) 249,290,249
NAP=XABSF (NP{NN 1) )=XARSF({NP(N,1))-1
IF (NAP) 2602609250

NB=NP(N,LL+1 )

M =LL+NM

FRX(N)=FRX(N)-SXX(M)*DSX(NB)= SXY(M)*DSY (NB)
FRY(N)=FRY(N)=SYY (M) *#DSX(NB)- SYY(M)*DSY(NB)
DX=SXX(NM) ¥FRX(N)=DSX{N)+SXY(NM)*FRY (N}

DY ESYX (NM) ¥FRXIN) =DSYINY+SYYTNMY ¥FRY(N)

DSX(N) =DSX(N) +XFAC%DX

DSY(N) =DSY(N) +XFAC*DY

IF (NPUNs1)) 26542624262
SUM=SUM+ABRSF (DX/SXX (NM) ) +ABSF (DY /SYY (NM))

"NODAL POINTS CONNECTED TO 'NODAL POTNT N ARE REUCAXED

IF (NAP) 28032804265

DO 275 LL=14NAP

NB=NP(NsLL+1)

M=LL+NM

FRX(NB) = =SXX(M)*DSX(N )= SYX(M)*¥DSY(N )y+FRX(NR)

FRY(NBY= — = =SXY (MY XDSX(N Y ="SYYIMI*¥DSY N IFFRY UNB)
FRX(N)=XLOAD(N)

FRY(N)=YLOAD(N)

CONTINUE
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300
an1
302
an3

304

305

307

31n

21
312

317
319
320
322

323

324

GO TO 324 S g

CYCLF COUNT AND PRINT CHFCy

NCHECK=n
NCYCLE=NCYCLE +1}

IF (NCYCLE=NUMPT)3Nn1,3nNn,3AN
NUMPT=NIIMPT+NCP IN

PRINT 24 4NCYCLF 4SUM

IF (SUM=TOLFR)3N5,3Nn5,3n2

TF (NCYCM=NCYCLF}3n5,3n5,3n03
NCHECK =)

IF (NCYCLE=NUMOPT)245,3N4,304
NUMOPT=NUMOPT+NOP I N

PRINT OF DISPLACFMFNTS AND STRFSSFS
PRINT 25

DO 3Nn7 T1=14,NUMNP
M=MNP (T )

PRINT 264MyDSX (M) 4DSY (M) S T T T T e e e s

PRINT 27

DO 421 M=1,NAL

NLST=NMEL (M)

TE (M =1) 311,210,7]

NFST=1+NBLOCK

GO TO 312 S,
NFST=NMEL (M=1)+]

DO 421 N=NFST,NLST

I=NPT(N)

J=NPJ(N)

K=NPK (N)

AJ=XORD (J)=XORD( 1) T T T T e s
AK=XORD (K)=XORD(T)

BJ=YORD(J)=YORD(T)

BK=YORD (K)~YORD (1)

EPX=(RJ=BK)¥DSX (1) +BK*NEX (J)-RIXNSX (K )
EPY=(AK=AJ)%¥DSY (T)~AKXDSY (J)+AJ%DSY (K

GAM= ([ AK=AJ) ¥DSX (1) ~AK¥NSX (J) ¥AIXDSXIKTFIBIZAK F¥DSY T TY¥RR¥DEY (TT=BT

1%DSY (K)
COMM=ET(N)/ ((1e=XU(M)*%2) % (AJ¥BK-AK%R ) )

X=COMM* (EPX+XU (M) *FPY)

Y=COMMX* (EPY4+XU (M) *EPX )

XY=COMMXGAM¥ (14=XU(M))*,5

TF (NCHFCK) 321,317,221 T T e e e
TF (NMNP2) 319,328,319

IF (NNN-1) 320,328,328

IF (NAL=M) 322,322,323

CG=(YORD(T)+YORD (J)+YORD(K)) /340

SIGYY(N)==-1,0

CG=ELEV(NAL-1)
TMUL=(FLEVINAL)~CG)¥RO(NAL) /2N
SIGYYTIN)=STIGYYT(N)+(STGYY(N)+Y)%TMIL
STGXXTIN)=STOXXT(N)+(STGXX(N)+X) *TMUL
SIGXYT(N)=SIGXYTI(N)+(SIGXY (N)+XY)*TMUL

SIGXX(N)=X
SIGYY(N)=Y
SIGXY(N)=XY
GO TO 321

81



328 SIGXXT(N)I=SIGXXT(N)+X

STGYYTI(N)=SIGYYT(N)Y+Y -
SIGXYT(N}=SIGXYT(N)+XY

321 C=(X+Y)/2.0
R=SQRTF (((Y=X}/24D)#%2+XY*%2)
XMAX=C+R
XMIN=C=~R

TMAX={XMAX=XMIN} /2.0

IF (Y=X) 325,326,325
325 PA=OS5%5T,20578%¥ATANF ( 2% XY/{Y=X))

GO TO 327 g
326 PA=90.0 .
327 IF (24%X=XMAX-XMIN) 405,420,420

BOS—1F (PAY 41044204415
410 PA=PA49N .0
GO TO 420
415 PA=PA-ONN
420 L=N-NBLOCK
421 PRINT 2839 (L eXsYsXYsXMAXsXMIN,TMAX ,PA)

a)

IF (NCHECK) 431,431,243
431 PRINT 32

NFST=NBLOCK+1

DO 425 N=NFST NUMFL

L=N-NBLOCK

N NN

F25PRINT 28, L5 SIGXXT NI SSTOYYTINT TS TGXY T TN
LOADS SET TO 7ERO

DO 435 1=1,NUMNP
M=MNP (T}

XLOAD (M) =nen -

YLOAD(M)=Nn,e0
FRX{M)=0.0
FRY(M)=0,e0

435 CONTINUE
N=MNP (NUMNP+1)

[aNala!

NP(Ns1y=0~- = -
IF (NAL =NTO) 440,500,440

MODIFICATION OF LOAD DUF TO RFMOVAL OF MATERTAL

500 NN=0 _
TF-(NNN-1) 5055580,502
502 NNN=N
NID=0
DO 503 I=1,NFROM
DSY(1)=0en
503 DSX(I)=Nen ‘
GO "TO 440 - oo
505 PRINT 34, NAL
PRINT 35

510 NN=NN+1
LL=NELOUT (NN)
ETI(LL)=N.N

NFST=LL a Cormmmmmm
NLST=tLL

M=NTO

GO TO 181

82



520

DL=AREA*RO(NTO)/3.N

STG(1)=STIGXXT(LL) T T
SIG(2)=SIGYYT(LL)
SIG(3)=SIGXYT(LL)
LM(1)y=NPI(LL)

LM(2)=NPJ(LL)

LM{3)=NPKI(LL)

DO7530 JJ=1437 777 -
M=LM(JJ)

FRY(M)=FRY (M)+DL

DO 530 11=1,3
FRX(M)I=A(TT92%JJ=1)%SIG(TT)/2N+FRX (M)
FRY(M)=A(TT2%JJ)%*SIG(IT)/2.0+FRY (M)

307

540

CTONTINUE " -~ T

IF (NN=NOUT) 510,540,540
DO 570 M=1,NFREE
N=NPFREE (M)

XLOAD(N)= FRX(N)
YLOAD(N)Y= FRY(N)

s NaNe!

h
~
Q

PRINT 144 Ny XLOAD(IN) VYLOADTNY
NNN=1

NID=1

GO TO 129

REPLACING MATERITAL

580

590

DO 590 N=1,NOUT
L=NELOUT(N)
ET(L)=ETORG
RORG=ROR

PRINT 344NAL

PRINT 36 sRORGETORG
NID=2 ’
NNN=NNN+1

NFEL =1
NLEL=NOUT

GO TO 147 v

440
442

IF (NANAL-NAL) 442,442,120
CALL EXIT
END

83

ES






