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Theory for Glassy Behavior of Supercooled Liquid Mixtures
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We present a model for glassy dynamics in supercooled liquid mixtures. Given the relaxation
behavior of individual supercooled liquids, the model predicts the relaxation times of their mixtures
as temperature is decreased. The model is based on dynamical facilitation theory for glassy dynam-
ics, which provides a physical basis for relaxation and vitrification of a supercooled liquid. This is
in contrast to empirical linear interpolations such as the Gordon—Taylor equation typically used to
predict glass transition temperatures of liquid mixtures. To understand the behavior of supercooled
liquid mixtures we consider a multi-component variant of the kinetically constrained East model in
which components have a different energy scale and can also diffuse when locally mobile regions,
i.e., excitations, are present. Using a variational approach we determine an effective single compo-
nent model with a single effective energy scale that best approximates a mixture. When scaled by
this single effective energy, we show that experimental relaxation times of many liquid mixtures all
collapse onto the ‘parabolic law’ predicted by dynamical facilitation theory. The model can be used
to predict transport properties and glass transition temperatures of mixtures of glassy materials,

with implications in atmospheric chemistry, biology, and pharmaceuticals.

This paper presents a model for glassy dynamics in
mixtures of liquids. Understanding and predicting glassy
behavior of liquid mixtures and solutions has been im-
portant in investigating the fundamental properties of
glassy dynamics and the glass transition [TH3], as well as
in areas of research where solutions of liquids undergo
vitrification into amorphous solids, and where crystal-
lization needs to be avoided. These areas include chem-
istry of solutions [4], and pharmaceutical and food indus-
tries [BH7]. Insight into properties of glassy mixtures is
also important in more complex systems such as atmo-
spheric organic aerosols that show glassy behaviour [8-
[I1], and in the preservation of biological cells where vit-
rification may assist the recovery of cells after freezing
and/or desiccation [12,[13]. The typical approach to pre-
dict the glass transition temperature of liquid mixtures is
an empirical linear interpolation between the glass transi-
tion temperatures of individual components, such as the
Gordon-Taylor equation [14], without a physical basis in
a microscopic theory for glassy dynamics. In this work
we use the perspective of dynamical facilitation theory
to develop a model for glassy dynamics of binary mix-
tures, which can be used to predict relaxation behavior
and glass transition temperatures of supercooled liquid
mixtures.

When a glass-former is cooled below its onset temper-
ature (7°) its relaxation time exhibits a super-Arrhenius
increase with decreasing temperature [15 [16], and its mi-
crostructure exhibits dynamical heterogeneity, i.e., tran-
sient but distinct mesoscopic regions of particle mobility
and immobility. The increase in relaxation time is ex-
plained by dynamical facilitation theory, the idea that
regions of particle mobility (‘excitations’) facilitate the

motion of neighboring regions in a hierarchical manner,
with small motions leading to larger motions [I7H23].
The theory predicts a super-Arrhenius form, quadratic in
inverse temperature, for the increase in relaxation time
7 with decreasing temperature. This quadratic form col-
lapses experimental data for relaxation times of a wide
array of glass-forming liquids onto one universal curve,
the parabolic law, given by [23| [24]

Inr/7° ~ J3(8 — B°)°. (1)

Here g = 1/T is inverse temperature, 8° = 1/7° is the
inverse onset temperature, J is a property of the liquid
and is related to the free energy of creating an excitation,
and 7° is the relaxation time at T°. With knowledge of
the onset temperature 7°, the energy scale J, and the ref-
erence time scale 7°, one can predict the relaxation time
at a given temperature, and the glass transition temper-
ature for a given cooling rate |25, [26]. The parabolic law
(Eq. [1)) differs from the commonly used empirical Vogel—
Fulcher-Tammann relation [I5], In7 ~ const/(T — Tk),
and other proposed theories [27H30], in that it does not
show a singularity at non-zero temperatures. We note
that there is no microscopic physical theory to under-
stand the onset temperature, which is the temperature at
which the relaxation behavior crosses over from an Arrhe-
nius to a super-Arrhenius form. The idea of dynamical
facilitation is based on prototypical models with kinetic
constraints [31H33], such as the East model [34], that
exhibit hierarchical glassy relaxation. The East model
is a one-dimensional lattice of N spins with variables
n; = 0,1, where i« = 1,2...N. Each lattice site rep-
resents a region of particles and the spin variable, n;,
indicates the mobility of the region. n; = 1 represents an



excitation, i.e., a region of mobile particles, and n; = 0
represents a region of immobile particles. The model
has a noninteracting energy function Hgast = J ZZ ng,
where J represents the energy required to generate par-
ticle mobility, i.e., an excitation, in a particular region.
The dynamics proceeds via single spin flips with the con-
straint that a site can flip only if its left neighbor is
excited, i.e., n;,_1 = 1, based on the idea that particle
mobility is facilitated in the vicinity of other mobile par-
ticles [20H22]. The typical concentration of excitations is
¢ = (n) = exp(—B.) /(1 +exp(—B)) ~ exp(—B.]) at low
temperatures.

Relaxation of the system is defined as all of the
spins changing their state at least once, and progresses
in the direction of facilitation, i.e., from left to right.
Sollich and Evans [18, [19] rationalized the timescale of
relaxation by considering domains between excitations,
e.g.1000001. The height of the energy barrier to relax-
ation is defined as the maximum number of excitations
required in a single configuration during the process
of relaxing, or flipping, the rightmost excitation. The
minimum height of the barrier for a domain of length
I = 2% is reasoned to be k excitations by iteratively bi-
secting the domain. For example, a domain of length 4L
requires twice as many excitations as a domain of length
2L, which in turn requires twice as many excitations as
a domain of length L. The minimum energy barrier is
therefore kJ = (Inl/1n2)J. For the average equilibrium
domain length [°d = 1/c¢ ~ exp(8J), the energy barrier
is 8J%/In2. The relaxation time 7 is inversely related
to the Boltzmann probability of this energy barrier,
giving 7 ~ exp(y8%J?), which is the parabolic law.
The factor v represents the number of paths available
to relax a domain, which are not accounted for in the
Sollich—Evans argument, and more rigorous analysis
shows that it is bounded as 1/2In2 <y < 1/1n2 [35].

A Multi-Component East Model. In the presence
of more than one component, the relaxation dynamics
includes not only dynamical heterogeneity but also com-
ponent diffusion and mixing. The interplay between het-
erogeneous dynamics and mixing in supercooled liquid
mixtures is not understood. With the perspective of dy-
namical facilitation theory and the East model we con-
struct a multicomponent lattice model for mixtures of
glass-formers that are well-mixed and do not phase sep-
arate. We begin by considering a mixture of two com-
ponents with different energy scales, Jy and J;. Each
lattice site represents a region of molecules of one com-
ponent or the other, represented by the lattice variables
p; = 0,1. The energy cost for an excitation depends on
the type of component, i.e., the value of p; for that site.
The Hamiltonian for this two component system is

N
H({n:,pi},z) = Zﬂz‘(mﬁ +(1=pi)do) +C({p:i}), (2)
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FIG. 1. Schematic of a two component East lattice with col-
ors representing the component variables p;. A spin can only
change its value if its left neighbor is excited. Two adjacent
excited spins can exchange colors, i.e, their component vari-
ables, resulting in diffusion (underlined).

where Jy and J; are the energies required to excite a spin
with component p; = 0 or 1 respectively. Here C({p;}) is
a constraint function that ensures that the total number
of each component remains fixed:

. N
0, if % YiDi=2x
oo, otherwise.

C{pi}) = {

where z is the fraction of sites with p; = 1.

Extending the idea of dynamical facilitation theory
that regions of mobile particles facilitate the movement
of neighboring immobile regions, irrespective of the type
of particles in each region, we define the dynamics of the
mixture model as similar to the single component East
model, i.e., a spin can flip only if its left neighbor is ex-
cited. The rates of creating and destroying an excitation
at site ¢ are

ko1, o (s e P (1—pi)e Py 3)
k10, OCMi—1,

where n; = 0, 1 again represents regions of immobile and
mobile particles respectively. With the reasoning that
only regions of mobile particles are able to diffuse, two ad-
jacent regions will be able to exchange components only
if they are mobile. We model this as two adjacent spins
exchanging p; variables only if they are both excited, as
illustrated in Fig.[[] This occurs with rate

Tiit1 ~ N Nit1 (1 = pi)pir + (1 — pix1)pi),  (4)

and is based on the assumption that mixing of particles
in two adjacent regions occurs over the same timescale
as motion of particles.

To illustrate the relaxation behavior of the mixture
model we choose a system with two energy scales, Jyp =1
and J; = 0.5. We define the relaxation time, 7, as the
time taken for ninety percent of the system to change its
spin variable, n;, at least once, which represents ninety
percent of particles making non-trivial displacements at
least once [22]. In Fig.[(a), we show relaxation times for
mixtures with different fractions of the two components.
Similar to a single component system, the curves all
appear super-Arrhenius, with the mixture relaxation
curves lying in between the relaxation curves for the
individual components.
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FIG. 2. (a) Relaxation times 7 of East model mixtures of two components J; = 0.5 and Jo=1.0 as a function of inverse

temperature 5. « is the fraction of spins of type 1.

(b) All the curves collapse onto the parabolic law when the inverse

temperature axis is scaled by the effective energy Jm = zJ1 + (1 — z)Jo. The factor v = 1.18 within the predicted bounds
1/2In2 <y < 1/1In2 [35], and ¢ is an additive constant. Error is smaller than the symbols used.

An Effective Single Component Model. Based on
the super-Arrhenius relaxation behavior of the mixtures
in Fig. a) we hypothesize that a mixture effectively be-
haves as a single, homogeneous material with an effective,
predictable energy scale for excitations. This means that
mixing of components gives rise to a new, effective dy-
namical heterogeneity at different length and time scales
compared to the original components. To capture the
effective behavior of the two component mixture we pos-
tulate a single component East Hamiltonian, H,, with an
effective energy scale J,,. We attempt to predict Jy, as a
function of the energy scales of the individual component
materials. The postulated single component Hamiltonian
H,, is given by

N
Hy({ni,pi}, ) = szni+c({27i})~ (5)

We use a variational method to calculate .J,, that
best approximates the partition function for the multi-
component Hamiltonian H (Eq. . Using Jensen’s in-
equality (sometimes known as the Gibbs—Bogoliubov—
Feynman approach [36] [37]) we have

Zm _ _BH,, "
Z:Z—m;...zz...Ze BH =B Hm o +5H.

nN pP1 PN

= Zm(exp(=BAH)) 1, > Zmexp(—B(AH)w,,),

where Z and Z,, are the canonical partition functions
for Hamiltonians H and Hy, respectively, (...)y_ indi-
cates the canonical ensemble average with energy Hp,,
and AH = H — Hy,.

Calculating the value of Jy;, that maximizes the right
hand side of the inequality we obtain

(6)

Jn = xJq —|—(1—$)J0. (7)

The effective energy scale Jy, can be interpreted as giving
rise to effective excitations that occur with probability

exp(—fJm). Revisiting the Sollich and Evans argu-
ment [I8, [19], the average equilibrium domain length
between effective excitations is I$1 = exp(5Jm), creating
a minimum energy barrier of v.J, Inl¢4 = y3J2. This
gives a relaxation time 7 ~ exp(y32J2), which we refer
to as the parabolic law for mixtures. Using the effective
energy Jy, from Eq. [7| to rescale the data in Fig. a)
we find that all the relaxation curves collapse onto a
universal parabolic form (Fig. 2(b)). This indicates that
the two component system behaves as a single compo-
nent system with an effective energy scale of J,, an
average of the energy scales of the individual components.

Comparison with Experimental Data. With this
understanding from the East model we attempt to vali-
date the idea of an effective mixture energy scale with
available experimental data for supercooled mixtures.
We analyze dielectric relaxation measurements for binary
mixtures of various glass-forming liquids [2] B8-40]. Re-
laxation times for thirty three mixtures of five pairs of
liquids are shown in Fig. Ba). We first fit parabolas to
relaxation time data for single liquid components to de-
termine J values for the individual components. (We use
the low temperature data for these fits because the higher
temperature data may contain significant contributions
from the non-supercooled liquid.) We then calculate Jy,
for each mixture using Eq. [7] 3° and 7° for each mix-
ture are treated as fitting parameters, and + is treated
as absorbed into the J value for all experimental data.
On scaling the inverse temperature axis by Jy,, we find
that all the single component as well as mixture data col-
lapse onto the parabolic law (Fig. [3(b)). Consistent with
the model, it appears that mixtures of liquids effectively
behave as a single liquid with an energy scale that is an
average of the energy scales of the individual components
as per Eq.[7}

Recalling that the onset temperature is the tempera-
ture below which spatially and temporally heterogeneous
dynamics and super-Arrhenius relaxation behavior occur,
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FIG. 3. (a) Relaxation times as a function of inverse temperature of mixtures of five pairs of liquids: sorbitol (SOR)—glycerol
(GLY) [38], 2-methyl-1-butanol (BUT)-2-ethyl-1-hexanol (HEX) [39], methyl-m-toluate (MMT)-methyl-o-toluate (MOT) [2],
di-n-butyl phthalate (DBP)-methyl-m-toluate (MMT) [2], and glycerol (GLY)-water (WAT) [40]. (b) All single component
and mixture curves collapse onto the parabolic law when the temperature axis is scaled by the effective mixture energy scale
Jm (Eq. E[) For glycerol-water mixtures we use 40% glycerol as one reference curve and pure glycerol as the second because
the values of 8° and J for pure water are difficult to obtain with accuracy [4I]. With this reference curve, all intermediate
glycerol-water mixtures show excellent agreement with the parabolic law for mixtures. %All single component and mixture

curves collapse onto the parabolic law when the temperature axis is scaled by Em Jm (Eq. , except sorbitol-glycerol mixtures

(inset).

it is reasonable to expect that the onset temperature of a
mixture lies in between, and proportional to the fraction
of, the two individual components. Examining the esti-
mated inverse mixture onset temperatures, 5°, we find
that they are bounded by the onset temperatures of the
two individual components and change systematically de-
pending on the fraction of each component, with the ex-
ception of sorbitol-glycerol mixtures. In the latter case
we find that all the mixture data are best fit using on-
set temperatures that are lower than both the individual
components, even as the curvature of the parabola, Jy,,
is well predicted by Eq.[7} We revisit this pair of liquids
in the discussion below.

Modeling Onset Temperatures. In the previous
section we determined relaxation behavior by predicting
the effective energy scale, Jy,, of the mixture. We now
attempt to determine mixture relaxation times by pre-
dicting both the effective energy scale as well the onset
temperature. The East model shows super-Arrhenius re-
laxation behavior for all T' > 0, i.e., it has no meaningful
onset temperature. To model materials more realistically
the temperature field is modified to 8 = 8 — [3°, where 3°
is the inverse onset temperature of the material [25]. To
more effectively predict relaxation behavior for mixtures,
where each component can have a different onset temper-
ature, we further modify our multicomponent East model
so that depending on the component present each lattice
site feels an effective temperature field Sy = 1/T — 1/T§
or By = 1T — 1/T?, where T8 and T7 are the onset
temperatures of the two components. To achieve this we

modify the mixture Hamiltonian (Eq. [2) to

ot =S (P 5 Bo |
1 ({nspid o) = 3w (w3 (19 o)+,
(8)

The corresponding partition function, Z°, is given by

ZOZZ...ZZ...Zexp{ —Zm{gﬂlpi

nN p1

%

+ Bodo(1 —pi)} — BC({pi})},

where it can be seen that 50 and 51 act as effective tem-
perature fields depending on the type of species at lattice
site 7. Postulating again that mixtures of components be-
have as a single component with effective inverse onset
temperature 82 and energy scale Jy,, we propose an ef-
fective single component Hamiltonian, HY, of the form

E J N N
Hr(;({niapi}; Z‘) = mﬁ = an + Czpi, (10)

where Em =0- Eron The partition function, Z3, is given
by

Zﬁq:Z...ZZ...Zexp(—ngmZni

nN P1 PN (11)

N
—ﬂCE:mL



where Bm acts as the effective temperature field for every
lattice site <. Again using Jensen’s inequality to now find
BmJm that best approximates Z°, we obtain

B = xB1J1 + (1 — z)BoJo. (12)

This equation gives an effective temperature—energy scale
for a mixture given the energy scales and onset temper-
atures of the individual components, and reduces to our
earlier result (Eq. (7)) at low temperatures.

The effective scale fy,Jm can again be interpreted
as giving rise to effective excitations with probability
exp(—fBmJm). The average distance between these ex-
citations, i.e., the average equilibrium domain length,

is {81 = exp(BmJm), giving rise to an energy barrier of

Jm In 84 = B,,J2. The expected time taken to overcome
this barrier, and therefore the relaxation time of the aver-
age equilibrium domain length, is 7 ~ exp(33mJ2 ). With
reference to the relaxation time at the onset temperature,
7°, we have 7/7° ~ exp(8%.J2), which is the parabolic
form for relaxation of mixtures that takes into account
both the energy scales, J, and the onset temperatures,
(°, of the individual components. This form reduces to
our earlier result, 7 ~ exp(52.J2), at low temperatures.

To compare the new parabolic equation for mixtures
with experimental data we use the individual values of
J and $° in Eq. [[2] to calculate the combined energy—
temperature scales. Here we only need one fitting
parameter, the reference time scale 7°. In Fig. c) we
find that the relaxation behavior for all liquid mixtures
agrees well the parabolic form when the data are scaled
by BmJm as per Eq. with the exception of mixtures
of sorbitol and glycerol. When using Eq. in the
previous section, we noted that even though the Jy, for
sorbitol-glycerol mixtures agreed well with the data, the
estimated values for B° were unexpectedly lower than
£° of the individual liquids. This, along with the lack
of agreement in Fig. c), leads us to suggest further
measurements for this pair of liquids.

Predicting Glass Transition Temperatures of
Mixtures. Empirical linear interpolations, such as the
Gordon-Taylor equation [14], are typically used to pre-
dict the glass transition temperature for mixtures [14].
This approach is not based on a microscopic physical de-
scription of glassy dynamics or glass formation, and also
does not take into account the protocol dependence of the
glass transition temperature. The work presented here
provides a prediction for the behavior of supercooled mix-
tures across various temperatures, from which the glass
transition temperature of a mixture can be calculated for
a given cooling rate [25] [26]. For a given cooling rate, v,
the glass transition temperature, T}, is the temperature
at which the relaxation time becomes slower than the
time available to equilibrate at that temperature, i.e.,
the temperature at which v=! ~ |d7/dT|r—r,. Using

5

the parabolic expression 7 ~ 7° exp(32,J2) in the above
equation gives a prediction for the glass transition tem-
perature of a mixture.

In summary, we find that a mixture of well-mixed
glass-forming liquids behaves as a single material whose
dynamics is governed by an effective energy scale, an av-
erage of the energy scales of the individual components.
We anticipate the use of our effective model in predicting
transport properties and glass transition temperatures
of mixtures especially for compounds, and under condi-
tions, where making measurements is challenging. Ex-
tending this model from binary to polydisperse mixtures
may provide insight into the effects of polydispersity on
the dynamics of glass-formers [43]. We also anticipate
the use of this model in studying the interplay between
dynamical heterogeneity of the system and the diffusion
and phase separation of individual components, possi-
bly involving interfacial fronts between two dynamical
phases bearing a dynamical interfacial tension [44]. This
is especially relevant in multi-component systems such as
atmospheric organic aerosols, where melting (and forma-
tion) of amorphous solids is hypothesized to occur via an
increase (or decrease) in water content [11].
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work. S.K. acknowledges funding from the National Sci-
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versity of California, Berkeley. K.K.M acknowledges
funding from the Department of Energy (contract DE-
AC02-056CH11231, FWP no. CHPHYS02). J.P.G was
supported by EPSRC Grant no. EP/R04421X/1.
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