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PERSPECTIVE OPEN

Solutions in microbiome engineering: prioritizing barriers to
organism establishment
Michaeline B. N. Albright1✉, Stilianos Louca2, Daniel E. Winkler3, Kelli L. Feeser 1, Sarah-Jane Haig 4, Katrine L. Whiteson 5,
Joanne B. Emerson 6 and John Dunbar1

© The Author(s) 2021

Microbiome engineering is increasingly being employed as a solution to challenges in health, agriculture, and climate. Often
manipulation involves inoculation of new microbes designed to improve function into a preexisting microbial community. Despite,
increased efforts in microbiome engineering inoculants frequently fail to establish and/or confer long-lasting modifications on
ecosystem function. We posit that one underlying cause of these shortfalls is the failure to consider barriers to organism
establishment. This is a key challenge and focus of macroecology research, specifically invasion biology and restoration ecology. We
adopt a framework from invasion biology that summarizes establishment barriers in three categories: (1) propagule pressure, (2)
environmental filtering, and (3) biotic interactions factors. We suggest that biotic interactions is the most neglected factor in
microbiome engineering research, and we recommend a number of actions to accelerate engineering solutions.

The ISME Journal (2022) 16:331–338; https://doi.org/10.1038/s41396-021-01088-5

Microbiome engineering is a rapidly evolving frontier for solutions
to improve human health, agricultural productivity, and climate
management. Microbiome engineering seeks to improve the
function of an ecosystem by manipulating the composition of
microbes. Two major challenges for successful microbiome
engineering are (1) the design of a microbiome with improved
function and (2) the establishment of an improved microbiome in
a recipient system of interest. While multiple articles and reviews
have addressed functional design [1–3], microbiome establish-
ment has received less attention. Here, we propose a strategy to
improve microbiome engineering by focusing on microbial
establishment and leveraging insights from macrobial ecology.
Two general engineering strategies are to manipulate indigen-

ous microbes [4] or to introduce new members [5]. The latter
involves the design and delivery of inoculants (a.k.a., probiotics in
medical and agricultural arenas) and is a rapidly growing
biotechnology sector. In their most general form, both strategies
have been practiced crudely for thousands of years in human
health [6] and agriculture [7]. However, despite current technical
advances, inoculants frequently still fail to establish or confer long-
lasting (months to years) modifications to ecosystem function [8].
We argue that this repeated failure is in part driven by lack of
emphasis on establishment of inoculants.
The problem of organism establishment in recipient ecosystems

is not unique to microbiome engineering; it has roots in
macrobiology, particularly invasion biology and restoration
ecology. We propose that adopting a cross-disciplinary conceptual
framework to identify barriers to organism establishment, and
then prioritizing these barriers through targeted research will
accelerate successful microbiome engineering. In addition,

recognizing differences in terminology and experimental design
within and across disciplines will facilitate research integration
across diverse ecosystems and scales. The components of a more
holistic strategy are discussed below.

CONCEPTUAL FRAMEWORK OF BARRIERS TO ORGANISM
ESTABLISHMENT
Pinpointing and overcoming barriers to inocula establishment are
important research priorities for successful microbiome engineer-
ing. Barriers to establishment have been studied extensively in
both invasion biology and restoration ecology. Invasion biology
aims to understand the mechanisms that promote or deter
invasive species establishment [9]. Restoration ecology aims to
restore beneficial plants, animals, insects, and/or microbial
communities in ecosystems where they have previously been
displaced or depleted [10]. Over time, these fields have produced
numerous theoretical frameworks to explain successful species
establishment [9, 11]. The overlapping foundational theory in
these fields presents an opportunity for cross-disciplinary synergy
with microbiome engineering. Although the goals of microbiome
engineering and restoration/invasion ecology are often different
(e.g., establishment of a new microorganism, consortium, and/or
set of functional properties in microbiome engineering vs.
prevention of establishment and/or removal of invading species
and preservation of native biota in restoration/invasion ecology),
the value in a cross-disciplinary approach to microbiome
engineering that considers restoration/invasion ecology is in
identifying emergent properties of the ecosystem that can
facilitate or inhibit establishment. Furthermore, microbial ecology
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can advance foundational theory by overcoming common
constraints on the scope and pace of macrobial ecology research,
such as the relatively slow growth rates of macroscopic organisms
and the difficulty of performing multi-species manipulations.
Although microbial studies of factors influencing establishment
are still relatively rare, foundational studies are emerging [12].
A useful theoretical framework for species establishment in

microbiome engineering would identify the abiotic and biotic
levers that engineers could use for successful community
manipulation. Frameworks that vary in granularity have been
developed within invasion biology. At one end of the spectrum,
one synthesis outlined 33 mechanistic hypotheses for establish-
ment success [13]. At the other end of the spectrum, a widely
accepted framework posits that invasion success is mainly
determined by three factors: (1) propagule pressure, (2) environ-
mental filtering, and (3) biotic interactions [14]. Propagule
pressure describes dispersal potential, which determines the
spread of organisms to novel areas, either through natural- or
human-mediated movement. Environmental filtering describes
the compatibility of an organism with a new environment (e.g.,
suitable temperature or moisture range). Biotic interactions
encompass a range of interchanges that can occur between
introduced organisms and residents. Using this three-factor
framework from invasion biology, in the next section we illustrate
some complexity underlying these factors, illustrating the need for
strategic prioritization as a first step to guide microbiome
engineering (Table 1, Table S1).

PRIORITIZING BARRIERS TO ESTABLISHMENT
Potential barrier: propagule pressure
Dose and frequency. Propagule pressure (PP) is a measure of
dispersal used to describe the magnitude (dose) and pattern of
the arrival (frequency) of invasive individuals. PP is one of the
most commonly tested factors in macroorganism invasion biology
and is often linked to invasion success [15]. It also plays a role in
restoration ecology [11]. For example, increased seeding rates can
aid restoration of native plant communities (e.g., [16]), but is not
always effective [17]. Increased PP of a single or a few microbial
invaders may also increase establishment success [18]. However,
independent modeling and experimental work suggest that PP in
multi-species microbial invasions has restricted or minimal
impacts on establishment and community functioning [19, 20].
There are a number of mechanisms by which PP in theory could

influence establishment. Increasing PP can overcome the effects
of ecological drift—random births and deaths that change the
relative abundances of species in a community over time—also
known as demographic stochasticity, which generally increases for
smaller populations such as newly introduced species [21, 22].
Increasing PP can also mitigate the impacts of environmental
stochasticity, unpredictable spatiotemporal fluctuations in envir-
onmental conditions [21]. A higher dose may increase the
likelihood that sufficient inoculum reaches the desired establish-
ment location [23] or may impact density-dependent competi-
tiveness by affecting quorum sensing behaviors either positively
or negatively [24]. The temporal frequency of dose events is an

Table 1. Overview of factors impeding organism establishment, potential engineering solutions. A comprehensive source of examples of studies
which illustrate barriers to establishment and solutions is provided in Table S1.

Ecological principle Factor impeding establishment Potential engineering goal

Propagule pressure

• Dose a. Stochastic extinction
b. Density-dependent competitiveness

a. Add a higher dose of the inoculant
b. Add a lower dose of the inoculant

• Frequency a. Succession makes niche ephemeral
b. Biotic disturbance (i.e., inoculation) is
needed to open a niche

a. Add inoculant more frequently
b. Add inoculant at certain timepoint(s)

• Delivery mode a. Inoculants do not reach or do not stay in
intended location

a. Alter delivery mode
b. Increase dose

Environmental filtering

• Disturbance High-turnover of organisms (low
residence time)

a. Persistent delivery of inoculant is necessary
b. Create a protected physical space
c. Inoculant with characteristics resistant to disturbance

• Niche Breadth Inoculated organism requires a specific
resource that is absent

a. Engineer inoculant that has a larger niche breadth
b. Pre-adapt inoculant to available environment
c. Add resource specific to inoculant (‘pre-biotic’)

Biotic interactions

• Antagonism via
Competition

Direct competition exists between resident
organisms and inoculants

a. Remove/disturb resident microbes
b. Increase “competitive” trait of inoculation (e.g., antibiotic
production, biofilm formation)

c. Both a & b
d. Add resources to support the inoculant during establishment
period or beyond

e. Pre-adapt inoculant to available environment
f. Create a protected space

• Antagonism via
Antibiotics

Antibiotic-producing residents debilitate the
inoculant

a. Make inoculant resistant
b. Disrupt resident(s) (reduce antibiotic(s) production)
c. Create a protected space

• Antagonism via
Predation

Predation by resident microbes a. Make the inoculant resistant
b. Remove predators prior to inoculation
c. Create a protected space

• Facilitation Inoculant requires ‘services’ provided by
another organism which is not present

a. Add in an additional organism serving as a ‘keystone’ species to
modify interactions of the target inoculant and other organisms
and/or modify the environment

M.B.N. Albright et al.

332

The ISME Journal (2022) 16:331 – 338

1
2
3
4
5
6
7
8
9
0
()
;,:



alternative route to enhance dosage while also addressing
uncertain timing of niche access.

Delivery mode. Delivery mode may influence establishment by
affecting dispersal range or dose viability. If the delivery mode is
insufficient, inoculants may not reach the intended location of
establishment or may be debilitated when they arrive. Parallels in
plant invasion biology and restoration ecology include natural
seed coats that enhance plant dispersal range by animal vectors
[25] or artificial seed coatings that prevent desiccation or delay
germination [26]. Delivery modes in microbiome engineering
include direct addition of inoculants as free cells in liquids,
lyophilized cells on solids (e.g., on animal feed or on seed
surfaces), or protected cells (e.g., within seeds or gel beads) [27]. A
delivery mode may be chosen to enhance the probability of
microbial inoculant establishment based on environmental con-
ditions and/or the traits of an inoculant [8].

Potential barrier: environmental filtering
Environmental filtering (EF) refers to the selection of organisms
that are compatible with the existing environment or are able to
rapidly modify local conditions to fit requirements. Incompatible
immigrants become extinct. EF can limit invasive plant establish-
ment (e.g., [28]) and often explains restoration failures (e.g., [11]).
Invasion success is expected to increase if invaded environments
match those of a species optimum range [29]. In restoration,
environmental filters are commonly manipulated to facilitate
establishment of target restoration species [30] and/or prevent
invader establishment [31]. An example of this phenomenon
among microbes is the role of host specificity in microbial invasion
success [32]. In both macro and microbiology, the most broadly
successful invaders tend to have larger habitat ranges than non-
successful invaders [33], which typically corresponds to tolerance
of diverse conditions. EF conventionally includes abiotic (physical,
chemical) and biotic factors (e.g., interactions with resident
species). However, for engineering purposes it is useful to separate
biological interactions (BI) from other modes of EF when
considering barriers to establishment and potential solutions,
because BI are generally harder to control for than abiotic factors.
When EF is a barrier to microbiome engineering, either the
expected longevity of engineering or the environmental condi-
tions must be adjusted. Below, we summarize two aspects of EF to
consider for microbiome engineering: niche availability and
disturbance.

Niche availability. A lack of niche space for an inoculant is an
obvious barrier to establishment. Understanding the temporal and
spatial distributions of niche availability may be key to tailoring
inoculant establishment [34]. Identification of a target niche space
for inoculants through in situ strain characterization and
subsequent isolation has led to success in a number of
bioaugmentation efforts [35] and more recently, high-
throughput phenotyping assays have been used [36]. If the target
niche for an inoculant exists but is already filled, displacing the
resident competitors may be required (e.g., [37]; see Biotic
Interactions).
Alternatively, a niche can be created. Niche availability can be

manipulated in some cases by altering the abundance of a single
or multiple resource(s), as is done with prebiotics [4]. In host-
associated communities, the host can provide a substrate to
recruit health-promoting taxa, as illustrated by oligosaccharides in
human breast milk that foster the growth of Bifidobacterium
infantis strains in infant guts [38]. Similarly, there is increasing
evidence that plant roots secrete metabolites to shape rhizo-
sphere microbial composition [39]. Prebiotics can also be used to
create novel niches for exotic inoculants, resulting in a combined
pre- and probiotic known as a synbiotic. For example, porphyran
—a marine polysaccharide—was used to establish an exogenous

Bacteriodetes strain in mice guts [40] and xenobiotic compounds
have been applied to support microbes of interest in industrial
fermentations [41]. Continual delivery of an exotic resource can
enable long-term stability of a “specialist” organism [42].
Conversely, short-term delivery of an exogenous resource may
aid ‘generalist’ microbial inoculants that have a wider niche
breadth but need a resource supplement during the transitional
establishment period [43]. An alternative to manipulating niche
availability is to exploit microbial inoculants that modify the
environment, constructing their own niche [44] or a niche for
other inoculants ([45], see Biotic Interactions).

Disturbance. Disturbance, here defined as perturbation of
physical (e.g., structure, flow rates, temperature) or chemical
(e.g., nutrients, pH, oxygen) properties of the environment, has the
potential to increase species turnover. Consequently, disturbance
is either a useful tool to displace unwanted residents [46]; see
Biotic Interactions) or a barrier that impedes inoculant establish-
ment. In highly disturbed environments, long-term establishment
may be an unrealistic goal and persistent delivery of inoculants
may be unavoidable. For example, in phyllospheres, soils, or rivers,
‘washouts’ of microbes may occur from heavy or frequent
precipitation events or other physical disruptions [47]. Periodic
chemical disturbances, such bile secretion in the gut [48] or
application of pesticides in soils [49] can also impact inoculant
establishment. Providing inoculants with an enduring physical
haven that allows continuous dispersal into surrounding space
may overcome disturbance barriers, as seen in some macrobial
and microbial systems [16, 50]. This strategy is enhanced when
microbial inoculants possess superior abilities for attachment [51],
biofilm formation [52], or stress resistance [53].

Potential barrier: biotic interactions
The variety of BI is complex but can be broadly categorized as
either antagonistic or facilitative [54]. Within these categories,
interactions can be described as direct or indirect in relation to an
organism of interest. For example, antagonistic direct interactions
include mechanisms such as predation or competition, while
antagonistic indirect interactions include environmental modifica-
tions like antibiotic production or pH changes may adversely
affect competitors and non-competitors alike. In macrobial
ecology, the impacts of direct effects have been more commonly
considered e.g., [55], but research on indirect effects is increasing
e.g., [56]. There is also growing recognition that the number or
complexity of interactions may affect establishment in macrobial
[57] and microbial systems [58]. In simple systems with cultured
microbes, antagonistic interactions are abundant and are a driving
force in community assembly and stability [59]. Antagonism also
plays a role in functioning of more complex microbial systems [60]
and may be used in microbiome engineering [61]. Like antagon-
ism, facilitative interactions can also be direct or indirect. For
example, the presence of a keystone species that provides a
resource supporting an inoculant is direct facilitation, whereas a
general modification of the environment (e.g., a change in soil pH)
that benefits an inoculant is indirect facilitation. The distinction
between direct and indirect BI is important for microbiome
engineering because preoccupation with direct interactions can
overlook important indirect barriers and solutions.

Antagonism via simple competition. The complexity of competi-
tion can be categorized by the mechanisms organisms use to
capture growth limiting resources. In the simple case, competition
involves differences in search capability (i.e., motility) and/or
resource capture efficiency (e.g., nutrient uptake via transporters).
Increasing the number of competitors for a growth-limiting
substrate may reduce the ability of an inoculant to capture a
sufficient quota of resource to survive [62]. A general trend
observed in multiple ecosystems is that increased resident
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community diversity generally reduces invasibility because diverse
communities leave less free niche space [63, 64]. For microbiome
engineering solutions to overcome a competition barrier might
include creating a protected physical space or adding resources to
support the inoculant during an establishment period [58, 65].

Antagonism via antibiotics. Complex competition involves addi-
tional strategies to undermine competitors. Strategies include
secretion of antibiotics, signaling compounds that adversely affect
the metabolism of other species (e.g., quorum signals or volatile
organic compounds), or siderophores that create new growth
limitations for competitors. Antibiotic production is the best
studied strategy. In pairwise interactions of cultured isolates,
antagonistic antibiotic production occurred in approximately half
of Bacillus [66] and Streptomyces [67] isolates. Antagonistic growth
inhibition tends to increase with phylogenetic similarity of species
[68], presumably because competition is greatest among close
relatives with similar traits, a concept shared across microbial and
macrobial biology. The impact of antibiotics in natural commu-
nities is illustrated by the production of andrimid by marine
bacteria, which inhibits Vibrio cholerae growth [69]. The extent to

which antibiotic production is a barrier to establishment of
inoculants in microbiome engineering remains to be established,
but has been shown in at least one instance [70] and might be
routinely assayed by inhibition assays with filtrates from a resident
community. Active antagonism may also be an engineering tool
for establishment, illustrated by an artificial biocontrol strain used
to remove unwanted bacteria in a community [71].

Antagonism via predation. Another type of antagonistic interac-
tion that may influence the ability of inoculants to establish is
predation. Predation by protists, bacteria, and fungi is likely to be
density dependent, not taxon-specific, although cases of the latter
have been documented [61]. Predation by host-specific viruses
may also impact invader success. Phages vary in host range but
generally display host specificity. While phage are known to
impact the diversity and function of microbial communities [72],
they are still rarely considered when assessing controls on
microbiome succession [73]. Phages may stabilize the co-
existence of competing bacteria by preventing dominance of a
single species—an example of the “kill-the-winner” hypothesis
[74]. In microbiome engineering, establishing inoculants with

Fig. 1 Barriers to organism establishment and a path forward for microbiome engineering. A The current state of research focused on
inoculum establishment. Without quantitative prioritization, potential barriers like the illustrated examples are investigated randomly. B Path
forward to improve establishment success. Prioritization of barriers includes quantifying their relative impact in order to create decision trees
that can simultaneously rank barriers and summarize the potential impact of overcoming each barrier in a multi-factor solution path. Values in
parentheses on the decision tree illustrate an example of percentage impact of a barrier on inoculum establishment, guiding microbiome
engineering investments.
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“naïve immunity” may fail owing to lysis by phages in the resident
community [75]. Conversely, predation can be a tool for tailored
removal of residents that impede establishment of desired strains,
by building on concepts from work using phages for biocontrol of
pathogens in humans, on foods, in aquaculture, and on plants
(e.g., [76]).

Facilitation. Stable facilitative interactions between microorgan-
isms are only expected in restricted cases [77]. For example,
environmental conditions can mediate a tradeoff between
facilitation and competition, where harsher environments foster
microbial facilitation [78]. Another view posits that microbial
communities are able to organize into metabolically cohesive
units where consortia with positive feedback loops use resources
in a stable manner and minimize competition through resource
specialization and exclusion of resource generalists [79]. For
microbiome engineering, facilitative interactions could be lever-
aged, for example by creating highly specialized microbial units
where organisms are filling different niches.

Summary
The framework of PP, EF, and BI is a simple way of categorizing a
long list of ecological phenomena that can be barriers (or
engineering tools) for establishment of inocula in resident
communities (Table 1, Table S1). The overview above highlights
a few of the many sub-factors that have been documented in
macrobial ecology [13]. Given the large number and context-
dependence of factors that may impede organism establishment,
ranking barriers at the highest level (PP, EF, and BI) in a decision
tree framework is a critical first step to accelerate microbiome
engineering and avoid random testing of factors (Fig. 1).
Decision trees are increasingly being used in macrobial ecology

to manage species invasions and ecological restoration. For
example, some decision trees prioritize actions based on the
potential severity of invasive species on ecosystem services [80]. In
a restoration ecology examples, decision trees based on seed
dormancy attributes [81] or optimal habitat characteristics for bird
nesting [82] can guide restoration plans. Many decision trees
available to managers in macrobial ecology include a decision-
making step related to establishment (e.g., is there adequate time
for a seedling to establish during its typical growing season?).
Building decision trees in microbiome engineering requires

studies that test the relative importance of factors on establish-
ment success. For example, a recent study found that the relative
importance of PP and BI varied by organism domain, bacteria
versus fungi [19]. Another study found that the impacts of PP
depended on the competitive interactions of residents and
inoculants [18]. Findings from many studies like these must be
averaged to elucidate general rules for decision trees, but such a
pursuit is inefficient without planning for quantitative synthesis.

BREAKING BARRIERS: SYNTHESIS AND RECOMMENDATIONS
Overall, we posit that increasing focus on BI will lead to increased
success in inoculant establishment and improve outcomes in
microbiome engineering (Fig. 1B). While BI are commonly
considered in invasion biology and restoration ecology, manipulat-
ing BI is an under-explored mechanism in microbiome engineer-
ing, likely due to the abundance and complexity of organism
interactions in any given microbiome. Greater success in manip-
ulating early succession ecosystems (e.g., infant compared to adult
guts) [38, 65] may be due in part to their lower complexity, which
would point to the importance of BI. Assessing the number and
type of BI relevant for engineering complex microbiomes is
challenging because of the lack of direct measurement capabilities.
Network reconstruction techniques based on correlated species
abundances are often used to infer interactions (e.g., [83]), but
further development is needed to move beyond speculative

inferences [84]. Manipulation of microbial keystone species
deserves attention as a potential solution in microbiome engineer-
ing as this concept has proven to be a powerful strategy in
restoration ecology [85]. Although keystone microbial taxa have
been predicted in co-occurrence networks [86] and linked to
compositional shifts [87], few studies have confirmed the
physiological role of keystone microbes in a community [88].
In order to confirm the role of BI in microbiome engineering

outcomes and refine a decision tree of barriers to organism
establishment we recommend a number of actions. First, greater
attention is needed in microbial research to measure establish-
ment (persistence and/or proliferation) of inocula over long
timescales (e.g., months to years) with whole-community mea-
surement techniques that offer broader insight and more
standardized experimental design and reporting to facilitate
meta-analyses. Second, a careful cross-discipline synthesis—i.e.,
meta-analyses of microbial studies that measure the dependence
of inocula establishment on aspects of BI, as well as PP and EF,
that would illuminate knowledge gaps is needed. We expand on
these concepts in the sections below.

Recommendations for future research
To accelerate microbiome engineering across different applica-
tions, there is a need to target knowledge gaps that are
contingent on experimental design. Gaps range from complexity
of the inoculum to multifactorial manipulation strategies. We
highlight four gaps. (1) To date, most microbial establishment
studies have one or a few inoculant species. In contrast,
transplant of entire microbiomes (i.e., fecal transplants and
activated sludge transplants) is an increasing practice for some
medical and wastewater treatment applications, respectively, yet
knowledge of how these complex invasions impact community
composition and functioning is limited. (2) Often microbiome
engineering studies measure functional changes, not inoculant
establishment. Monitoring inoculants is needed to determine if
failure to achieve desired functional changes is due to lack of
establishment or instead, to attenuation of desired functions in
established inoculants. (3) More insight into the temporal
dynamics of functional changes is needed. It is common practice
to assess function at only one or two timepoints. Furthermore, the
time interval between manipulation and functional assessment
varies from hours to weeks. In many studies functional measure-
ments occur immediately following probiotic intervention and
longer-term impacts are not assessed, limiting insights into
barriers to establishment. (4) It is likely that multiple factors
simultaneously contribute to the failure or success of species
establishment (e.g., see [18]). Thus, multifactorial experiments
that test the interactive effects of establishment barriers (or
engineering solutions) are needed and may be especially helpful
in building decision trees.

Translating among fields
Prioritizing establishment barriers through cross-discipline synth-
esis depends on the capacity to find related knowledge that is
obscured by discipline-specific jargon. For example, medical
research on microbiome engineering typically uses the term
“probiotics” [89], while agricultural studies use the terms “micro-
bial inoculants”, “plant growth promoting microbes” (PGPM’s),
“biocontrol agents”, plant “biostimulants” or “probiotics” [90]. To
facilitate cross-discipline synthesis, we compiled some key
concepts, terms, and definitions (Table S2)—a step towards
making related knowledge findable, accessible, interoperable,
and reusable (FAIR), as recommended by the National Microbiome
Data Collaborative (NMDC; [91]).

Experimental design
Some standardization of experimental design features (e.g.,
independent and dependent variables, replication, testing scale,
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and temporal sampling) can also facilitate synthesis. At present,
wide variation in experimental design [92] impedes this goal. For
example, functional changes in the gut microbiome might be
assessed in some studies qualitatively from statements of
symptom relief among patients [93], whereas other studies may
quantify changes in the concentration of a specific analyte [94].
Microbial community composition is often reported in a
qualitative way; whereas variance partitioning would facilitate
quantification of probiotic impacts among studies. Furthermore,
use of positive controls (mock communities) and/or internal
standards in amplicon sequencing for taxonomic profiling can
improve the quantitative insights of this common and relatively
low-cost measurement technique [95]. Including a link in
publications to an easily accessible data table summarizing
experimental design can also facilitate data syntheses within
and across disciplines. A database of searchable studies that
include the experimental design and results with permanent
identification records and rich contextual metadata (somewhat
analogous to clinicalstudies.info.nih.gov/) would greatly accelerate
progress. Publicly accessible genomic repositories are a prime
example of how data aggregation and standardized formatting
across disparate studies is leading to groundbreaking discoveries
[96]. Data attribution guidelines that give researchers credit for
datasets used in subsequent work [96, 97] is another useful step.

CONCLUSIONS
Microbiome engineering is a rapidly expanding field. There are
notable cases of success in microbiome engineering for human
health, in particular in the infant gut [38, 65], bioremediation [98],
wastewater engineering [99], and agriculture [100]. However,
inoculants often fail to establish or to modify ecosystem
functioning over significant time periods [8]. Dispersal, environ-
mental, and biotic barriers to organism establishment likely
contribute to failures. Given the complex suite of possible barriers,
developing a decision tree to prioritize barriers is a top priority to
guide engineering. This priority may be aided by cross-disciplinary
synthesis because disparate fields are tackling similar challenges.
However, to leverage research and unite findings across fields
there is a need to recognize differences in terminology and to
standardize reporting of tested factors and magnitude of effects.
Lastly, increased attention to the types of experiments performed
and extended time-course measurements of inoculant establish-
ment will provide insights that accelerate successful microbiome
engineering across a range of applications.
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