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Developing effective tuberculosis (TB) vaccines is a
high priority. We use mathematical models to predict the
potential public health impact of new TB vaccines in high-
incidence countries. We show that preexposure vaccines
would be almost twice as effective as postexposure vac-
cines in reducing the number of new infections.
Postexposure vaccines would initially have a substantially
greater impact, compared to preexposure vaccines, on
reducing the number of new cases of disease. However,
the effectiveness of postexposure vaccines would diminish
over time, whereas the effectiveness of preexposure vac-
cines would increase. Thus, after 20 to 30 years, post- or
preexposure vaccination campaigns would be almost
equally effective in terms of cumulative TB cases prevent-
ed. Even widely deployed and highly effective (50%–90%
efficacy) pre- or postexposure vaccines would only be able
to reduce the number of TB cases by one third. We discuss
the health policy implications of our analyses.

Tuberculosis (TB) remains one of the leading causes of
illness and death in the world. One third of the world’s

population is estimated to be infected with Mycobacterium
tuberculosis, the causative agent of TB (1). This reservoir
of infected persons leads to ≈8 million new cases of TB
and 2 million deaths each year. Approximately 80% of all
new TB cases in the world occur in 22 countries that have
incidence rates from 68 to 584 per 100,000 population (2).
The priorities for TB control programs in these areas are
identifying and treating active cases. Unfortunately, only
40% of smear-positive pulmonary cases are detected glob-
ally, and, of these cases, 28% to 80% are treated success-
fully (2). Most high-incidence countries also use the only
available TB vaccine, Mycobacterium bovis bacillus
Calmette-Guérin (BCG). Although BCG is the most wide-
ly used vaccine in the world, its efficacy in preventing
adult forms of TB is relatively poor, with an average effi-
cacy ≈50% (3). A new, more effective vaccine would be
expected to improve TB control substantially, and there-

fore, vaccine development is one of the highest priorities
in TB research (4,5). The Gates Foundation recently pro-
vided nearly $83 million in grants to boost TB vaccine
research (6). 

Recent sequencing of the M. tuberculosis genome as
well as new developments in proteomics and comparative
genomics have led to renewed interest in developing new,
more effective vaccines against TB (7,8). Vaccines cur-
rently under development include subunit vaccines (9),
naked DNA vaccines (10,11), and attenuated mycobacte-
ria, including recombinant BCGs expressing immunodom-
inant antigens and cytokines (12). Phase I clinical trials of
several of these vaccines are under way or scheduled to
begin very soon (13,14). TB vaccines under development
can be divided into two categories: preexposure or post-
exposure vaccines. Preexposure vaccines prevent infection
and subsequent disease; these vaccines are given to unin-
fected persons. Postexposure vaccines aim to prevent or
reduce progression to disease; these TB vaccines will be
given to persons who are already infected with M. tubercu-
losis. In industrialized countries where TB incidence is
low, a preexposure vaccine is the most effective for TB
control (15). However, the most effective type of vaccine
to control TB epidemics in high-incidence countries,
where prevalence of latent TB infection is high, is not
apparent. We use mathematical models to predict the
potential public health effect of new TB vaccines for epi-
demic control in high-incidence countries. We evaluate the
effect of both pre- and postexposure TB vaccines on two
outcome variables: the number of new infections and the
number of new cases of disease. We then discuss health
policy implications of our analyses.

Prediction Methods
We used mathematical models to compare the potential

public health impact of mass vaccination campaigns that
used either pre- or postexposure vaccines. We assessed the
public health impact in terms of the cumulative percentage
of infections prevented and the cumulative percentage of
TB cases prevented. We modeled the potential effect of
vaccines in developing countries with a high incidence and
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prevalence of infection. Our simulated incidence ranged
from 100 to 200 new TB cases per 100,000 persons per
year, and we assumed that 28%–50% of the population
was latently infected with M. tuberculosis. We also
assumed that treatment rates were low to moderate (i.e.,
that 40%–60% of TB patients would be treated and cured).
We modeled the potential public health impact of high-
efficacy (50%–90%) vaccines and high vaccination cover-
age rates (60%–90%). We used two separate mathematical
models to assess the effect of vaccination: a pre- and a pos-
texposure vaccine model (see Appendix). Our models are
similar to those developed by Lietman and Blower (15,16),
but we extended them to include the possibility of reinfec-
tion of latently infected persons. We analyzed both of our
models with uncertainty and sensitivity analysis based on
Monte Carlo methods (17–20) (see Appendix for further
details) to quantify the effect of vaccine efficacy, duration
of vaccine-induced immunity, and vaccination coverage
rates on the cumulative percentage of infections and TB
cases prevented. 

Both our vaccine models reflect the basic pathogenesis
of TB (Figures 1 and 2), as in our previous models
(21–27). When persons become infected with M. tubercu-
losis, one of the following can occur: 1) they can progress
quickly to disease (with probability p); 2) they can become
latently infected with M. tuberculosis (with probability
1 – p), and disease never develops; or 3) they can become
latently infected with M. tuberculosis (with probability
1 – p) and slowly progress to disease (at rate v). Latently
infected persons can also become reinfected (with a rela-
tive risk of θ) with a new strain of M. tuberculosis. We
assessed the potential public health impact of 1,000 differ-
ent postexposure and 1,000 different preexposure vac-
cines. Each vaccine had a different efficacy (50%–90%)
and average duration of vaccine-induced immunity (10–30
years). We modeled vaccination coverage rates from 60%
to 90%. We modeled a mass vaccination campaign at year
zero, and then continuous vaccination of each target popu-
lation each subsequent year. 

Our pre- and postexposure vaccine models were
designed to vaccinate different populations: preexposure
vaccines were designed for uninfected persons, and post-
exposure vaccines were designed for latently infected per-
sons. We modeled vaccine efficacy for the 1,000
postexposure vaccines by the magnitude of the vaccine’s
effect on reducing the rate of latently infected persons’
progressing to disease (Figure 1). Efficacy of preexposure
vaccines is potentially more complex than that of postex-
posure vaccines, since preexposure vaccines have several
potential mechanisms of action. Thus, we assumed that
preexposure vaccines could act by three different mecha-
nisms (Figure 2): 1) by reducing the risk for infection in
the uninfected, 2) by allowing infection but reducing the

probability of fast progression to disease, and 3) by allow-
ing infection but reducing the rate of progression of latent
infection to clinical disease. For each of our 1,000 preex-
posure vaccines, we varied these three potential mecha-
nisms independently from 50% to 90%. 

Percentage of Infections and Cases Prevented
In terms of reducing the cumulative number of new

infections with M. tuberculosis, we found that campaigns
that used preexposure vaccines had substantially greater
effectiveness than campaigns that used postexposure vac-
cines (Figure 3A). Preexposure vaccines quickly and sub-
stantially reduced the number of new infections; the
median cumulative percentage of infections prevented
(after 10 years of vaccination) was 46% (interquartile
range [IQR] 40%–53%). The effectiveness of preexposure
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Figure 1. Flow-diagram of postexposure tuberculosis (TB) vaccine
model. States and processes that relate to the vaccine are shown
in red. Equations are given in the Appendix.

Figure 2. Flow-diagram of preexposure tuberculosis (TB) vaccine
model. States and processes that relate to the vaccine are shown
in red. Equations are given in the Appendix.



vaccines in preventing new infections diminished over
several decades but remained fairly high. Postexposure
vaccines had a considerably slower and smaller effect on
reducing the number of new infections; the cumulative
percentage of infections prevented rose from 0% (when
mass vaccination began) and peaked after ≈10 years at a
median of 25% (IQR 21%–29%) (Figure 3A). After 10
years, the effectiveness of postexposure vaccines in pre-
venting new infections gradually declined. 

In contrast, in terms of reducing the cumulative number
of new cases of TB, postexposure vaccines initially had
substantially greater effectiveness than preexposure vac-
cines. After 10 years of vaccination, postexposure vaccines
had reduced the cumulative number of TB cases by a
median of 34% (IQR 29%–40%) (Figure 3B); effective-
ness diminished slightly over the next few decades, despite
continuous vaccination of newly infected latent persons
(Figure 3B). Preexposure vaccines, despite having reduced
the infection rate by 46% (IQR 40%–53%) (Figure 3A),
only reduced the cumulative percentage of TB cases by a
median of 23% (IQR 21%–25%) after 10 years (Figure
3B). After 20 to 30 years of continuous vaccination, post-
and preexposure vaccines had similar effectiveness in

terms of the cumulative percent of TB cases prevented
(Figure 3B).

Coverage Rates, Duration of Immunity, 
and Vaccine Efficacy

To predict the potential public health impact of pre- and
postexposure vaccines, in our uncertainty analysis we var-
ied vaccination coverage rates, duration of vaccine-
induced immunity, and vaccine efficacy. We determined
the quantitative effect of each of these three variables on
the cumulative percentage of TB cases prevented by per-
forming a multivariate sensitivity analysis and calculating
partial rank correlation coefficients (PRCCs) (Appendix).
The cumulative percentage of TB cases prevented
increased substantially (PRCC = 0.93, 0.96) as vaccination
coverage rates increased from 60% to 90% (Figure 4A,
unadjusted data after 20 years of continuous vaccination);
this effect was greater for postexposure vaccines than pre-
exposure vaccines. The cumulative percentage of TB cases
prevented also increased substantially (PRCC = 0.95, 0.97)
as the average duration of vaccine-induced immunity
increased from 10 to 30 years (Figure 4B, unadjusted data
after 20 years of continuous vaccination); this effect was
greater for postexposure vaccines than preexposure vac-
cines. 

We assessed the effectiveness of 1,000 postexposure
vaccines that varied in efficacy from 50% to 90%; vaccine
efficacy was defined by the degree of reduction in the dis-
ease progression rate of latently infected persons. The
cumulative percentage of TB cases prevented increased
substantially as the postexposure vaccine efficacy
increased from 50% to 90% (Figure 4C, unadjusted data
after 20 years of continuous vaccination, PRCC = 0.97).
Efficacy of preexposure vaccines is more complex than
that of postexposure vaccines; therefore, we modeled the
efficacy of preexposure vaccines by three different mech-
anisms (Figure 2) and evaluated the effect of each of the
three mechanisms on the cumulative percentage of TB
cases prevented. We assumed that preexposure vaccines
could reduce the risk for infection in the uninfected (mech-
anism 1), allow infection but reduce the probability of rap-
idly progressing to disease (mechanism 2), and allow
infection but reduce the rate of progression of latently
infections to disease (mechanism 3). We varied each of
these three potential mechanisms independently to vary
efficacy levels from 50% to 90%. Preexposure vaccines
that operated by using mechanism 3 were not effective
(PRCC < 0.5) at preventing a substantial cumulative per-
centage of TB cases, even if these type of preexposure vac-
cines had a high efficacy. Preexposure vaccines that
operated by either mechanism 1 or 2 were effective in pre-
venting TB cases; with preexposure vaccines that operated
by reducing the risk of infection in the uninfected (i.e.,
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Figure 3. A) Cumulative percentage of new infections with
Mycobacterium tuberculosis prevented. B) Cumulative percentage
of tuberculosis cases prevented. Predictions made using either the
preexposure (black lines) or postexposure (red lines) vaccine
models and uncertainty analysis.



mechanism 1) being more effective (PRCC = 0.84) than
vaccines that operated by allowing infection but reducing
the probability of fast progression to disease (i.e., mecha-
nism 2) (PRCC = 0.66). 

Public Health Policy Implications
We evaluated the potential effectiveness of a variety of

pre- and postexposure vaccines in controlling TB epi-

demics in countries that have both a high incidence of dis-
ease and a high prevalence of infection. Under these epi-
demiologic conditions, we found that preexposure
vaccines would be almost twice as effective as postexpo-
sure vaccines in reducing the infection rate. In contrast,
vaccination campaigns that used postexposure vaccines
would initially have a substantially greater effect reducing
the number of TB cases than campaigns that used preexpo-
sure vaccines. However, our predictions show that (despite
continuous vaccination) the effectiveness of campaigns
using postexposure vaccines would diminish over time but
that the effectiveness of campaigns using preexposure vac-
cines would increase. Hence, after 20 to 30 years, cam-
paigns using either postexposure or preexposure vaccines
would be equally effective (because of the complexity of
the vaccine mechanisms that we modeled) in terms of the
cumulative number of TB cases prevented. 

Since preventing disease is more important than pre-
venting infection and to have an immediate, substantial
decrease in TB cases is desirable, our results imply that
postexposure vaccines would be more beneficial than pre-
exposure vaccines. Our results show that public health
officials should expect campaigns that use postexposure
vaccines to first appear highly effective, but that effective-
ness will decrease with time. We have also shown that the
incidence of disease is likely to remain high even if highly
effective vaccines that induce long-term immunity are
developed and widely deployed. We found that even wide-
ly deployed high-efficacy (50%–90%) pre- or postexpo-
sure vaccines are only likely to reduce the number of TB
cases by one third. Reductions in the number of TB cases
would directly translate into reductions in TB deaths
(results not shown). Currently the annual TB death rate is
2 million; hence, our results indicate that the type of vac-
cines we modeled could save ≈700,000 lives per year.
These vaccines could also substantially reduce the emer-
gence of drug-resistant TB (22,24). 

To understand why even high-efficacy (50%–90%)
vaccines are only capable of reducing the TB death rate by
one third, how the natural history of M. tuberculosis infec-
tion differs from other, more “simple,” pathogens (e.g.,
influenza, measles, and smallpox) needs to be examined.
For “simple” pathogens, preexposure vaccines can be very
effective in reducing epidemic severity because the inci-
dence of disease is a direct function of the incidence of
infection. For a “simple” pathogen, if a vaccine reduces
infection rates by 80%, then the vaccine will also reduce
disease rates by 80%. However, the natural history TB is
more complex: the incidence of disease does not directly
reflect the incidence of infection with M. tuberculosis. The
incidence of disease is driven by two sources: susceptible
persons who become infected and quickly progress to dis-
ease (source 1) and latently infected persons who slowly
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Figure 4. Unadjusted predicted data are plotted; red points repre-
sent postexposure vaccines, black points represent preexposure
vaccines. A) Cumulative percentage of tuberculosis (TB) cases
prevented. B) Cumulative percentage of TB cases prevented.
C) Cumulative percentage of TB cases prevented. Cases prevent-
ed after 20 years of vaccination are shown as a function of vacci-
nation coverage rates, duration of vaccine-induced immunity, or
vaccine efficacy.



progress to disease, often many years after the initial infec-
tion (source 2). Both sources make a substantial contribu-
tion to the incidence of disease. Preexposure vaccines
(given to uninfected persons) will act mainly on reducing
the contribution of source 1 to the incidence, but they will
have little direct effect on reducing the contribution of
source 2. In contrast, postexposure vaccines (given to
latently infected persons) will act mainly on reducing the
contribution of source 2 to the incidence but will have rel-
atively little effect reducing the contribution of source 1.
Therefore, even if highly effective pre- or postexposure
vaccines are widely deployed, the incidence of TB in
developing countries (as our results show) is likely to
remain high. 

Also, the increasing HIV epidemic will lead to contin-
uous increases in the incidence of TB in developing coun-
tries (26). Currently, what effect co-infection with HIV
will have on TB vaccine effectiveness is unclear; possibly,
HIV co-infection could reduce vaccine effectiveness.
Thus, any new TB vaccine should be evaluated in clinical
trials to determine the effect of HIV coinfection on vaccine
effectiveness. To reduce the severity of TB epidemics, we
recommend that developing and deploying vaccines that
act as both pre- and postexposure vaccines are necessary to
simultaneously attack both sources that drive the TB rate.
Additionally, maintaining high rates of detection and treat-
ment of tuberculosis is necessary, as recommended by the
World Health Organization (2); by combining treatment
and vaccination strategies, eradicating TB epidemics may
be possible, as we have previously shown (16). 

Our results have implications for designing both TB
vaccines and vaccination campaigns. Highly effective vac-
cines will be needed to have the public health impact that
we have shown (i.e., to reduce the TB death rate by one
third). Whether or not the vaccines currently in develop-
ment will afford this level of efficacy remains to be seen.
Moreover, vaccines will need to provide very long-lasting
immunity; our current analysis examines the effect of fair-
ly long-lasting vaccines (10–30 years average duration of
immunity). Different types of vaccines have different dura-
tions of immunity. For example, DNA vaccines should
provide lifelong immunity, whereas subunit vaccines will
likely require booster vaccinations (28), an approach that
would be more logistically difficult and expensive. Also,
we have shown that preexposure vaccines are best if they
prevent infection (mechanism 1) rather than allow infec-
tion but reduce the probability of fast progression to dis-
ease (mechanism 2) or reduce the rate of progression of
latently infections to disease (mechanism 3). Whether or
not new TB vaccines will prevent infection from occurring
is not known, but BCG is clearly not able to prevent infec-
tion, and vaccines currently in development will likely not

be able to do so either (29). As new TB vaccines and other
control strategies become available, their potential benefits
to TB control efforts can be evaluated by mathematical
modeling. Mathematical models can be used as health pol-
icy tools to evaluate strategies for controlling TB (30–35);
mathematical models also provide insights for predicting
the potential public health impact of imperfect HIV vac-
cines (36–39). Our results show that, because of the com-
plex pathogenic process of TB, high-incidence epidemics
are unlikely to be substantially reduced by widely deploy-
ing highly effective preexposure or postexposure vaccines.
We suggest that to achieve global control of TB, develop-
ing a single TB vaccine that functions as both a pre- and a
postexposure vaccine is necessary.

S.M.B. gratefully acknowledges financial support of
NIH/NIAID (RO1 AI041935). 
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Appendix

Vaccine Models

Preexposure Model
Our preexposure vaccine model consists of six ordinary dif-

ferential equations (1–6) that track the temporal dynamics of per-
sons in six different states: uninfected unvaccinated (X),
vaccinated uninfected (Xv), unvaccinated latently infected (L),
vaccinated latently infected (Lv), active tuberculosis (TB) (T),
and treated and cured (R). The model is given below:

dX/dt = (1 – c)π – βXT – µX + ωXv (1)

dXv/dt = cπ – ε1βXT – (µ + ω)Xv (2)

dL/dt = (1 – p)βXvT – (ν + µ + θpβT)L + ωLv (3)

dLv/dt = (1 – ε2p) ε1βXT – (ε3ν + µ + θpβT + ω)Lv (4)

dT/dt = pβXT + ε1ε2pβXvT + ωL + ε3ωLv + θpβT
(L + Lv) – (µ + µT + φ)T (5)

dR/dt = φT – µR (6)

Persons enter the population at rate π, and a fraction c of them
are vaccinated. Uninfected-unvaccinated persons (X) are infected
at rate βT(t), and then either progress to active disease (T) imme-
diately after infection with probability p, or progress to latent
infection with probability 1 – p. Latently infected persons (L)
progress to active disease because of reactivation of latent infec-
tion at rate ν. In addition, latently infected persons (L) can also be
reinfected at a rate βT(t) and progress to active disease with prob-
ability p (the probability of rapid progression for newly infected
persons) multiplied by the protection afforded by prior infection
from rapid progression (θ). Uninfected vaccinated persons (Xv)
are protected from infection by probability ε1. Vaccinated persons
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who become infected (Lv) are protected from rapid progression to
active disease by probability ε2. We assume that the vaccine may
offer some protection from reactivation (ε3). The average dura-
tion of vaccine-induced immunity is 1/ω. The average life
expectancy is 1/µ. Persons with active TB either die at a rate µT

or receive effective treatment at a rate φ, which leads to recovery
(R).

Postexposure Vaccine Model
Our postexposure vaccine consists of six ordinary differential

equations (7–12) that track the temporal dynamics of persons in
six different states: uninfected (X), unvaccinated latently infected
(L), vaccinated latently infected (LV), previously vaccinated
latently infected who have lost immunity (LW), active disease (T),
and treated and recovered (R). The model is given below:  

dX/dt = (1 – c)π – βXT – µX (7)

dL/dt = (1 – p) βXT – (ν + µ + θpβT + χ)L (8)

dLv/dt = χL – (εν + µ + θpβT + ω)L (9)

dLw/dt = ωLv – (ν + µ + θpβT)Lw (10)

dT/dt = pβXT + ω(L + Lw) + ε3ωLv + θpβT
(L + Lv + Lw) – (µ + µT + φ)T (11)

dR/dt = φT – µR (12)

Persons enter the population at rate π. They become infected
at rate βT(t) and then either progress rapidly to active disease
with probability p or progress to latent infection (L) with proba-
bility 1 – p. Latently infected persons (L) may progress to active
disease at rate ν or become reinfected at rate θpβT, where θ
defines the protection from reinfection because of natural immu-
nity. Latently infected persons may also be vaccinated. The rate
of vaccination is set so that the fraction of latently infected per-
sons who have been vaccinated is equal to c. Latently infected
persons who have lost immunity have the same probability of
reactivation and disease from new infection as uninfected per-
sons. The average life expectancy is 1/µ. Persons with active TB
either die at rate µT or receive effective treatment at a rate φ,
which leads to recovery.

Uncertainty and Sensitivity Analysis
We analyzed the two vaccine models by using time-depend-

ent uncertainty analysis (1–6) and numerically simulated the

models to calculate the cumulative reduction in new infections
with Mycobacterium tuberculosis and cases of TB. The reduction
in new infections and in cases of TB was calculated as the per-
centage of the cumulative number of new infections or new cases
of TB that would have occurred without vaccination (but with
treatment). We used probability density functions to specify each
parameter in the two models. We then used Latin hypercube sam-
pling, a modified Monte Carlo sampling procedure, to sample all
of the probability density functions (ranges are given in the text).
To conduct the uncertainty analyses (for each model), we per-
formed 1,000 simulations; full details of the uncertainty analysis
methods are given elsewhere (1–8). We modeled the effects of an
initial mass vaccination campaign of the target population and
then continued vaccinating the target population. To quantify the
sensitivity of the outcome variables to each parameter, we calcu-
lated a partial rank correlation coefficient between each parame-
ter value and each outcome variable (1–8).

Parameter Estimates
Our biological parameter values for TB were chosen to simu-

late epidemics in a high-incidence, high-prevalence region.
Estimates for µ, p, and µt, are previously described (5). We
assume that endogenous immunity to disease from reinfection
reduces rapid progression from reinfection by 50% to 100%; if
protection is 100%, reinfection does not occur.
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