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ABSTRACT OF THE THESIS 
 

Graph Based Metrics of Lineages Used to Characterize 

Wild-Type C. Elegans Cell Cycles during Development 

by 
 

Gunalan Kolaram Natesan 

Master of Science in Bioinformatics 

University of California, Los Angeles, 2022 

Professor Eric Jameson Deeds, Chair 

 
 
 Comparing tree topologies is an invaluable biological tool, though 

it is mathematically difficult to systematize. Tree comparisons are 

simpler to compute on ordered/labeled graphs, which are produced through 

the eutelic lineages of Caenorhabditis elegans development. We make use 

of this property to create novel approaches to compare the values and 

topologies of weighted graphs. This involves generalizing the euclidean 

norm to the weighted edges of tree structures to create a “branch 

distance”, incorporating the tree edit distance as a measure of 

topological distance, and normalizing the tree edit distance into the 

Jaccard Distance. These approaches are benchmarked by measuring cell 

cycle timing in embryonic cell lineages using this framework to 

categorize patterns of development and corroborating these findings with 

known developmental properties of this model organism.  
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Introduction: 
 

 Finding a systematic way to characterize lineages is an active area 

of interest in various fields of biology [1], including development [2] 

and epidemiology [3]. The ability to compare the tree topologies and 

associated values of these lineages is useful, as the tree structure can 

be used to represent descent from a single point of origin, which is a 

recurring biological motif. The recursive nature of this also makes 

practical computation of tree alignments difficult [4], necessitating a 

further look into making these graph metrics applicable.  

 C. elegans is a commonly used animal model, due to its small size, 

transparency, ease in cultivation and maintenance, and low cost [5]. Its 

property of eutely, the lack of variation in somatic cell count in an 

adult multicellular organism, [6]  yields insight into the processes of 

differentiation and tissue formation during development. The various 

cells in C. elegans embryos can be uniquely identified and thus named 

[7] , allowing comparisons of its developmental trees without 

computationally expensive graph alignment. Using C. elegans as a model 

organism, new tree comparison measures and metrics can be developed and 

benchmarked against known traits. 

 Regarding its use as a model organism, C. elegans has been 

extensively studied to understand a variety of developmental and 

biological processes, such as  RNA  interference [8] , addiction  [9], 

and aging  [10]. As the individual descendants of each progenitor cell 

are accurately known  [11], the regulation of cell fate in C. elegans 

has been studied extensively. Since complete cell lineages are known and 
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RNAi pathways are characterized, C. elegans is well suited to gene 

knockdown perturbation analysis  [12]. Indeed, a large-scale screening 

of developmental genes and the resulting perturbed fate changes in 

specific lineages has been conducted  [13]. Fate changes, in this 

context, are defined through changes in the expression patterns of 

specific marker genes. In sampling aggregate levels of specific markers 

for each cell, timing data that corresponds to the life cycle of each 

cell has also been produced. This timing data has mapped cell division 

down to the individual minute, delineated by cell position, lineage, and 

type, allowing for accurate measurements.  

 Since timing data exists for every individual cell it can be 

arranged in a way that mirrors the process of proliferation from a 

zygote, namely, a binary developmental tree. These trees can be compared 

across individuals and lineages using topological measures while 

avoiding the computationally  expensive  alignment problem  that  

often plagues graph theoretic approaches.  

In this project, we attempt to characterize the pattern of cell 

cycle times across individual lineages using novel and  adapted  graph  

theoretic approaches. This can be used to benchmark the sensitivity of 

our proposed metrics, as well as investigate the temporal development 

of wild-type C. elegans embryos on a lineage-by-lineage basis. 
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Results: 

 

Comparing Measures of Embryonic Development Time: 

 

We first looked at previous methods used to characterize cell birth 

times. Pearson’s correlation and its square measure linear correlations 

between two sets of measurements. It has been used to measure correlation 

in developmental events in C. elegans embryos [14], comparing absolute 

cell birth times. These comparisons yielded r2 values from 0.995 to 

0.997, which is indicative of tightly regulated data.  

When comparing the absolute cell birth times between two embryos, 

there were no r2 values smaller than 0.99, confirming methods found in 

[14]. Since the birth time for each cell is the sum of cycle times of 

its parents, we note that birth time might be altered by effects of 

random variable summation. To test this, the correlation coefficient was 

calculated on the embryonic cell cycle times that were scrambled (r2 less 

than 0.005), before it was summed to simulate birth timing comparisons. 

The new r2 were calculated as being in between 0.7 and 0.85 from initially 

completely uncorrelated data, suggesting that the assumed tight 

correlation between the two comparisons may be a result of statistical 

artifacts induced by the central limit theorem when individual cell cycle 

durations are summed  to yield the absolute cell birth time as a measure 

of developmental timing [15]. 

Comparing the linear correlation between wild type embryos 

calculated  on   individual   cell  cycle  durations  yields  a  more  
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heterogeneous view of normal embryogenesis, motivating further 

characterization. Given that the structure of the data was that of an 

ordered binary tree, we attempted to create a metric that would function 

on the topology of ordered binary trees.  

 

Constructing Graph Metrics 

 

We generalized the Euclidean notion of distance to the graph space 

to create the branch distance, as a metric for comparing cell cycle 

durations across embryos with shared topology. In the branch distance, 

the differences between cycle durations of aligned cells in each lineage 

tree under comparison are squared and summed, before the square root is 

taken. The eutelic nature of C. elegans embryogenesis produces ordered 

lineages where each cell can be uniquely named, allowing for 1-to-1 

alignment between lineages. branch distances were calculated to form a 

distance matrix of 435 unique distance measurements between 30 WT embryos 

from the published dataset. The embryos were hierarchically clustered 

with single, average, and maximal linkage methods which consistently 

found two large groups with a branch distance of ~150 seconds between 

them. The larger of these 2 groups had a 21  embryo  cluster with diameter 

~ 100 seconds while the smaller of the 2  had 9  embryos and a diameter 

of ~ 100 seconds. WT embryos  were imaged from January 2011 to May 2011 

in multiple locations. WT embryos in the smaller cluster are imaged from 

April 27 2011 to April 29 2011 suggesting some form of batch effect 

thatmay be present in the published data. Using the first eigenvector 
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of the singular value decomposition of a matrix comprised  of the aligned 

pairs  of cell  cycle durations between each pair of embryos from the 

two clusters as a non-parametric linear regression yielded slopes larger 

than ~1.1, suggesting that most of the difference between these clusters 

was produced by a global scaling of cell cycle durations.  

 

Characterizing C. elegans Sublineages: 

 

 The branch distance, in theory, should also compare the timings of 

the progeny of specific cells, due to the recursive binary tree topology 

of each lineage. Because of the eutelic property of the WT embryos, each 

sublineage follows the exact same structure across embryos and can thus 

be standardized. However, when comparing different sublineages, the 

difference in topology must be accounted for before comparing branch 

distances. In this case we will use a conventional graph metric known 

as the tree edit distance to measure differences in the number and 

location of cells in each lineage under comparison. We define the tree 

edit distance, in this case, as the number of elements that need to be 

added and subtracted from one graph to turn it into another graph. This 

can be normalized by dividing the tree edit distance by the number of 

unique elements in the combined set of both trees, which is analogous 

to the Jaccard distance.  

The Jaccard distance was computed between each pair of sub-lineages 

originating from the 22 founder cells described in [14]. Each generation 

of the AB lineage was found to be topologically identical to every other 



 

6 
 

AB lineage that was in the same generation. The descendants of the P1 

lineage are far more varied, in that the Jaccard distance between the  

pairwise  comparisons of  each  of  the descendants of P1 is never below 

0.2.  

The pairwise Branch Distances between all the 22 sub lineages was 

also computed between the 21 embryos belonging to the larger of the wild-

type clusters identified above. In this case, it is noted that the branch 

distances between the sublineages follow a structure that resembles the 

Jaccard distance calculation. AB sub lineages are closest in branch 

distance to other AB sub lineages in the same generation. The descendants 

of P1 tend to be more sporadic in branch distance comparisons. The most 

noticeable difference is the large distance found between the E and EMS 

lineages and all other sub-lineages (Distances from E & EMS are from 

~110 to ~150 seconds while MS has branch distances from ~40 to ~90). 

This is corroborated when the E lineage has an average scaling parameter 

~5 times larger than the MS lineage’s scaling parameters. This is further 

supported as the E lineage has a Jaccard distance of 0 from the AB 

lineage, with an average branch distance of ~80 to the AB lineage. This 

suggests that the E lineage has significant delays to its cell cycle. 

Given our metric, can different sub-lineages be uniquely identified 

on the basis of cell cycle duration alone? I compared the distributions 

of each sub-lineage branch distance to additional examples of itself 

from other wild-type lineages to the distribution of branch distances 

measured between each sub-lineage and each other sub-lineage in other 

wild-type embryos using a permutation test to determine significance. 
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We determined that each self-comparing branch  distance distribution was 

significantly different from the branch distances between subtrees, with 

the exception that the distributions of branch distances between subtrees 

ABprp and ABplp were not distinguishable.  
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Methods: 

 

The data that is used [13] consists of 30 WT embryos imaged to 350 

Cells, with the concentration of one of three marker genes (pha-4, cnd-

1, nhr-25) imaged every ~1.25 minutes. Data also contains 1322 RNAi 

embryos of 204 Essential Conserved Developmental regulators s.t. 

knockdown results in a lethal phenotype. Timing and marker expression 

data are also included in the same format as the WT image data. In 

addition, times where each RNAi embryo imaging process was stopped for 

each lineage are also included, as are a list of Homeotic and Undefined 

Fate transformations for the first 4 divisions of the lineage. Data was 

analyzed using numpy [16] and scipy [17] modules, and graphed with 

matplotlib on Python 3.9 [18]  Jupyter Notebooks [19].  

 

Measures of Relative Comparison: 

 

Each of the WT and RNAi embryos can be represented as vectors, with 

dimensions analogous to the presence of certain cells and each cell’s 

corresponding timing data representing feature value. With this, vector 

operations can work on the predefined tree structure. The Coefficient 

of Determination (R2) between an independent and dependent variable is 

indicative of the amount of variation in the dependent variable that is 

predictable from the  independent  variable. It is frequently used as a 

measure of correlation between two vectors of equal size. In a Similar 

vein, to show differences in the global clock between two embryos, the 
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cells of each embryo are plotted against each other and linearly 

regressed, from which the slope is taken to provide a parameter which 

describes the time scaling between the various embryos. This version of 

the scaling coefficient is a parametric measure which implicitly assumes 

a causative relationship between the two distributions. Principal 

component analysis (PCA) is instead used as a nonparametric measure of 

finding primary and secondary orthogonal basis vectors, where the ratio 

between the two is taken to find the scaling coefficient. It is worth 

noting that the value produced by computing f(x,y) is not necessarily 

equal to f(y,x), rather, ln(f(x,y)) = -ln(f(y,x)). Previous studies have 

shown that the developmental clock of c elegans embryogenesis scales 

linearly with temperature.  

The Plotted Birth time of each cell in an embryo against the Birth 

time of corresponding cell in another embryo is benchmarked by computing 

linear regression and r2 values. We converted embryo birth times to cycle 

times by subtracting each cell's birth time from its child's birth time. 

Plotted cycle times of each cell in an embryo against cycle time of 

corresponding cell in another embryo, computed linear regression and r2 

value.  We assigned each cell in a WT embryo to a random cell’s cycle 

time in the same embryo. Use these new assignments to  compute  cell  

birth  time  through  adding  parental assignments to compute cell birth 

time through adding parental cycle times. Use this resampling as a method 

of bootstrapping linear regression of birth times.  
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Metrics on Graph Spaces: 

 

Each embryo can be represented as a directed binary tree of cells, 

where each cell is a node connected to its parent, with up to 2 children. 

We adopted the standard naming convention of C. Elegans embryonic 

development [7].  

The eutely property of WT C. Elegans embryos means that each 

developmental lineage is identical, such that the various developmental 

subtrees of each embryo also have identical topologies as well. In C. 

elegans embryos, the daughter of a specific cell tends to be named after 

its mother, with a suffix representing the axis and direction of its 

mother’s division. Exceptions to this convention are found in the initial 

divisions of the zygote, where designated lineage founders are named 

distinctly. The divisions from the WT zygote are always arranged in the 

same way, where the zygote divides into the AB and P1 cells. The AB cell 

undergoes an anterior/posterior division, after which a left/right 

division takes place with the daughters, and another anterior/posterior 

division takes place to form the 8 sublineage progenitors. The P1 cell 

divides into EMS & P2, which divide into E and MS as well as C & P3 

respectively. After P3 divides into P4 and D, the E, MS, C, & D founding 

cells continue to divide into their own lineages. Each of these lineage 

founders, as well as the parents, are designated as founding cells, and 

thus have distinct phenotypes that can be categorized and compared. 

Each embryo can be thought of as a tree of cells, where each cell 

is positionally defined by its parent. The Tree edit distance is the 
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number of specific cells that need to be added or subtracted from one 

tree to convert it into another. In terms of direct operations, Tree 

edit Distance between embryo A & B is Calculated by the magnitude of the 

XOR set of cells between embryo A & B. It is a rigorous distance metric, 

as it is a generalization of the hamming distances on binary dimensional 

spaces.  

The Jaccard Distance can be thought of as the intersection of the 

two embryo sets divided by the union, which is subtracted from one. It 

can be thought of as the Tree Edit Distance normalized by the union of 

the embryo sets. It follows the distance metric definition rigorously, 

though its range is normalized to values between 0 and 1. 

Branch Edit Distance is defined as the square root of the sum of 

the squares of the differences between the times assigned to each cell. 

It is the euclidean norm on a dimensional space where tree structures 

function as vectors such that each dimension is represented by a cell 

in the embryos. As such, it is a rigorous distance metric that  follows  

the  properties  set  by  the euclidean  norm  in  high  dimensions. The 

TED and JD were run on the WT embryos to ensure total correspondence, 

since all WT C. elegans embryos have an invariant developmental lineage.  

The Branch Distances were calculated between each pair of the 30 

WT embryos to characterize natural heterogeneity. These were then 

hierarchically clustered using single, average, and maximum linkage 

methods to find distinct groups that are robust under various grouping 

schemes. The larger of these groups, which also has a proportionally 

smaller variance, is deemed an inlier cluster while the other is deemed 
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an outlier cluster. The PCA scaling parameters are also calculated 

between all pairs of WT embryos to see if variances between clusters are 

due to scaling. The experimental conditions of the two clusters are then 

compared to see if residual effects are caused by obvious batch effects.  

 

Subtree Analysis: 

 

P0, P1, and AB lineages are not consistently present in imaged 

embryos and will thus be excluded from subtree analysis. Each subtree 

has one of three dividing orientations (anterior/posterior, 

dorsal/ventral, left/right). When comparing subtrees with varying 

topologies, dorsal and left oriented divisions are equated to anterior 

divisions and ventral and right oriented divisions are equated to 

posterior divisions.  

For the WT data, each of the 21 subtrees in the embryos was compared 

against the others using Jaccard and Branch Distances. This results in 

a structure where each of the 21 subtrees was compared against the 20 

other subtrees (to produce 441 distance distributions for each 

comparison) and against itself once (producing 231 unique distributions 

consisting of 21 self comparisons and 220 cross-sublineage comparison 

distributions). These comparisons were also computed with pairwise PCA 

based scaling coefficients. This scaling parameter matrix was sanitized 

(removed errata of values above 54.6, below 0.01, and NaN values) and 

log-normalized. 
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Significance tests between the Distribution of a Self Subtree BD 

and the Distribution of distinct subtree BD’s were conducted. This serves 

to see if a subtree is distinguishable from another reference subtree 

given only branch distances to the reference subtree as information. For 

each lineage, its branch distance against a reference lineage was 

computed, and compared to the reference lineage’s Branch Distance against 

itself. The comparisons took place using a standard t test, the brunner 

munzel test, and a permutation test with 10000 iterations completed, 

using a p value of 0.05. When Bonferonni Corrected using this p value 

of 0.05 with a total number of 400 total hypotheses tested, we get a new 

cutoff of 0.000125, which each of these statistical tests also used as 

a cutoff.  

 

Discussion: 

  

 C. elegans has been used as a model organism for over 50 years 

[20], due to the roundworm’s small size, ease of cultivation and short 

lifespan [21]. In addition to its genetic homology with humans, C. 

elegans organisms are eutelic [6]. Every adult C. elegans has the same 

number of cells, with no variance under normal conditions. Working 

backwards from this property, the specific divisions that take place in 

development can be mapped. This can be used to compare specific cells 

between individuals. Eutely in C. elegans has been the basis of many 

assumptions regarding a high degree of homogeneity in the mechanism of 

the developmental clock [22] [23]. Indeed, previous studies on C. elegans 
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developmental timing [14] state that “95% of the cell divisions of an 

embryo deviate less than 2% from its general clock,” suggesting a high 

degree of consistency of cell cycle timing. However, bootstrapping the 

linear regression technique reveals that lineages with no correlation 

can produce tight correlations by summing constituent variables. This 

suggests that smoothing by way of variable summation [15] may affect the 

interpretation of developmental clock heterogeneity, which necessitates 

further investigation. It is likely that the high degree of previously 

noted consistency is due, in part, to the significant statistical impact 

of the artifact introduced by the central limit theorem. 

 In addition, the slope produced by  the  linear regression  of 

cycle/birth times has been stated to be indicative of scaling differences 

caused by temperature, parental health, or other extraneous factors [14]. 

However, linearly regressing the timings of each embryo implicitly 

assumes a causative relationship between the variable on the x axis and 

the variable on the y axis [24]. In addition, linear regressions have 

no commutative properties regarding variable order as regressing the x 

variable on the y variable does not have the same degree of precision 

as regressing the y variable on the x variable. A nonparametric method 

of linear correlation is needed to compute slope. Principal Component 

Analysis does so [25] by identifying a set of orthogonal basis vectors 

which minimize aggregate variance normal to the basis. The first 

principal component is used to compute slope, which after log-

normalization [26], is anticommutative.  



 

15 
 

 The introduced novel branch distance can find consistent 

differences in the branches of trees more effectively than either PCA 

or linear regression, as the branch distance is a metric and thus follows 

the triangle inequality. This means that there is an upper and lower 

bound on the distances between two structures (embryos in this case) 

based on the distances to other structures in that space [27]. Neither 

the coefficient of regression [28] nor any slope-based measurement have 

this property and are thus less useful in the context of clustering and 

comparison [29] [30]. Due to this property, the branch distance metric 

is very effective at the hierarchical clustering of lineage trees [31]. 

We were able to use the branch distance to characterize batch effects 

in WT embryonic cell lineages, while the slope was able to identify, but 

not compare the extent of batch effects, and the coefficient of 

regression was able to do neither. In benchmarking this metric, we have 

revealed greater heterogeneity in this dataset than previously noticed, 

while showcasing the sensitivity of the branch distance. Indeed, there 

are many more applications to the branch distance, as it is a 

nonparametric comparative measure that can work on any ordered graph 

structure.  

 The generalization of the branch distance to compare non-identical 

graph structures is non-trivial. The tree edit distance is an established 

rigorous metric to quantify the difference in topology of non-identical 

graphs by counting the necessary addition/operations to transform one 

tree into another [32]. When input graphs are unlabeled/unordered, the 

time complexity of the computation increases drastically, with the Zhang-
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Sasha Tree Edit Distance Algorithm [33] having a worst case of O(n4) 

[34]. This is indicative of the broader NP-complete problem of graph 

alignment [35] , which the branch distance metric necessarily operates 

on. Tree alignment is a relevant problem with various approaches to 

solve, such as introducing unique metrics [36] and semimetrics [37].  

The eutely property and subsequent naming convention of C. elegans 

[38] sidesteps this problem. Since each cell can be labeled by virtue 

of its parents with no discrepancies, cross-organism comparisons can 

directly take place on a cell-by-cell basis. This changes the tree edit 

distance calculation into an exclusive disjunction (XOR) operator on the 

cell labels, which can be finished much more quickly. The Jaccard 

distance [39] can function as a normalized tree edit distance when 

embryos are converted to sets of labels. The tree edit distance and 

Jaccard distance can be used as measurements that show topological 

differences between non-identical trees as a reference. If the branch 

distance is computed between non-identical trees, the tree edit distance 

and Jaccard distances can be used to provide a baseline for the tree 

topological difference to contextualize the branch distance measurement. 

This concept is shown when taking subtree comparisons, where the 

branch distance, Jaccard distance (normalized tree edit distance) and 

scaling parameters are calculated for each subtree of each embryo. When 

looking at branch distance matrices, it is worth noting that large 

distances between lineages may be a result of large topological changes 

on the lineage instead of large changes in the edge lengths of the tree 

itself. This is best exemplified with the E lineage, which has 
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significant scaling delays when compared to other lineages and thus a 

large branch distance. However, the E lineage, as imaged in this context, 

has no topological changes from the fourth generation of the AB lineage, 

suggesting that the E lineage is comparatively significantly slowed. The 

C. elegans E cell is the origin of all intestinal cells [40] , which 

undergo extended cell cycles [41]  due to the gap (g2) phase that is 

exclusive to the E descendants [42]. To examine our metrics further, 

there are variations within single sublineage blocks that correspond to 

batch affected embryos. This may be a sign that the timings of certain 

sub lineages are more sensitive to these batch effects or developmental 

delays [43], which warrants further investigation.  

Regarding the comparison of the distinct sublineage branch 

distributions against self-comparison branch distributions, a 

nonparametric permutation test not assuming independence or identically 

distributed points is used [44]. Since non-self-compared pairwise branch 

distance distributions are distinguishable from the distributions of 

self-comparison, it can be inferred that distinct lineages have distinct 

patterns of timing. The sole exception is that the distribution of the 

branch distances between Abplp and ABprp and the distribution of ABprp 

branch distance self comparisons are not distinguishable. It is worth 

noting that the branch distances between ABplp and ABprp are 

distinguishable from the ABprp branch distance self-comparison 

distribution, implying that ABprp is more tightly regulated than ABplp, 

and that ABprp and ABplp have similar developmental clocks. Indeed, C. 

elegans fates have been completely mapped [6] , such that all descendants 
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and cell types of each progenitor cell can be identified [45]. The ABplp 

and ABprp lineages have similarities in lineage development [46] in that 

both lineages produce neurons with each cell’s anterior sister producing 

hypodermal cells [47]. The two lineages also exhibit similar migratory 

behavior [48] and show similar behavior when perturbed [49]. 
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Figure 1: Benchmarking Comparisons of Absolute Cell birth time and 

Cell Cycle Time in Wild-Type C. elegans embryos. 

(A) The absolute birth times of each cell in some WT Embryo 1 are  

 



 

20 
 

plotted against the absolute birth times of each corresponding cell in 

some WT Embryo 2,  which has a coefficient of correlation r2 = 0.99. (B) 

The cell cycle times for each cell are computed by subtracting the birth 

time of each cell and its parent. These cell cycle times for each cell 

are computed for WT Embryo 1 and are plotted against the cell cycle times 

of each corresponding cell in WT Embryo 2. The calculated coefficient 

of correlation for these cell cycle times is r2 = 0.89.  

(C) The cell cycle times for each cell in embryo 1 were bootstrapped by 

assigning a random cell cycle time to each cell. The shuffled embryo 1 

cell cycle times are plotted against each the shuffled embryo 2 cell 

cycle times, with a coefficient of correlation r2 = 0.005.  

(D) The scrambled cell cycle times of each embryo are summed to all of 

its parent cells to produce reconstructed birth times for each cell. 

Each cell’s reconstructed birth times in embryo 1 are plotted against 

each cell’s reconstructed birth times in embryo 2, with a coefficient 

of correlation r2 = 0.81. 
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Equation 1: Branch Distance Formula for Labeled and Ordered Binary 

Trees.  

A and B are ordered binary tree representations of lineage trees with 

uniquely labeled nodes representing specific cells and weighted edges 

representing cycle times of division events. For each edge that is 

present in both A and B, the difference in weights between the edges are 

squared and summed to produce a single value. The square root of this 

value is then computed to produce the branch distance.  
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 (A)                                                          
(B)                     

    
 
Figure 2: Branch Distances and Scaling Coefficients between Cell 

Cycle times of Wild-Type C. elegans Embryos, Hierarchically 

Clustered and Sorted.  

(A) The cell cycles for each cell of thirty Wild-Type embryos were 

computed before the branch distance matrix between each pair of embryos 

present was calculated, hierarchically clustered using single, average, 

and maximal linkage methods, and sorted on the hierarchical clustering.  

(B) PCA is used to find the primary and secondary principal components 

between the regression of the cell cycle times of each embryo. The ratio 

of these principal components yields the slope, which is used as pairwise 

scaling coefficient which is calculated between each Wild-Type embryo 

before being plotted on the heatmap shown with a log  
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scale. The matrix of these scaling coefficients is sorted into two 

clusters using the hierarchical clustering labels from the branch 

distance matrix. 
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Equation 2: Tree Edit Distance Formula for Labeled and Ordered 

Binary Trees.  

Assuming A and B are ordered, labeled, binary lineage trees, the Tree 

Edit Distance is computed between ordered and labeled trees by computing 

the magnitude of the exclusive disjunction between the sets of 

vertices/nodes. 
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Figure 3: Tree Edit Distance between Ordered and Labeled Trees. 

(A) Ordered binary trees X and Y are shown, each following C. elegans 

naming convention with a root cell A and subsequent anterior/posterior 

divisions, producing a unique topology.  

(B) The Tree Edit Distances between example Trees X and Y is computed 

and illustrated.  
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Equation 3: Jaccard Distance Formula for Labeled and Ordered 

Binary Trees. 

Assuming A and B are ordered, labeled, binary lineage trees, the Jaccard 

Distance is computed between ordered and labeled trees by computing the 

magnitude of the exclusive disjunction between the sets of vertices/nodes 

and dividing by the magnitude of the union of sets of vertices/nodes. 
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Figure 4: Pairwise Wild-Type Embryo Sublineage Branch Distances. 

For each of the WT embryos present, 21 distinct sublineage founding cells 

that are produced in the second, third, and fourth generation are 

cataloged. The descendants of these 21 distinct sublineage founding cells 

are recorded into 21 distinct sublineage trees. The Pairwise branch 

distances between each of the 21 subtrees of the 30 WT embryos is 

computed. 
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Figure 5: Pairwise Wild-Type Embryo Sublineage Jaccard Distances. 

For each of the WT embryos present, 21 distinct sublineage founding cells 

that are produced in the second, third, and fourth generation are 

cataloged. The descendants of these 21 distinct sublineage founding cells 

are recorded into 21 distinct sublineage trees. The Pairwise Jaccard 

distances between each subtree of the 30 WT embryos is computed, using 

units of percent similarity and difference in regards to cells present 

in the embryo set. 
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Figure 6: Pairwise Wild-Type Embryo Sublineage Scaling 

Coefficients.  

For each of the WT embryos present, 21 distinct sublineage founding cells 

that are produced in the second, third, and fourth generation are 

cataloged. The descendants of these 21 distinct sublineage founding cells 

are recorded into 21 distinct sublineage trees. PCA is used to find the 

primary and secondary principal components between the regression of the 

cell cycle times of each WT embryo subtree. The ratio between the first 

and second principal components are computed as the scaling coefficient 
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before errata are removed (values above 54.6 and below 0.01), before all 

values are plotted on the heatmap on a log scale. As such, negative 

values correspond to the logarithms of slopes below 1, while positive 

values correspond to the logarithms of above 1.  
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Figure 7: Distinguishing Distributions of Branch Distances in 

Between Wild-Type Subtrees using Nonparametric Hypothesis Testing.  

Distributions of Pairwise branch distances between 21 distinct subtrees 

produces 120 distributions of branch distances between different 

sublineages and 21 sublineage self comparisons.  

Distributions of branch distances between two different subtrees are 

hypotheses tested against each subtree’s self comparison distribution. 

Using an initial p value of 0.05, Bonferroni corrected to ɑ = 0.001, a 
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permutation test of 10,000 iterations is calculated between each set of 

distributions.  
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