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ABSTRACT OF THE DISSERTATION

Diagrammatic Formulae for Conjugate Systems and Transport Maps in the q-Gaussians,

and Free Moment Measures

by

Nicholas James Worthington Boschert

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Dimitri Y. Shlyakhtenko, Chair

We investigate the problem of finding explicitly a transport map from the q-Gaussians to

the free group factors. To whit, we introduce a new graphical structure called

semi-knots–diagrams which contain half the information of knots. With these we find

semi-knot formulae for the conjugate system, and show that there is a formal semi-knot

formula for the transport map. We further introduce free moment measures, which extend

the classical notion, and show that a broad class of free Gibbs laws are free moment

measures, in joint work with June Bahr.
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Chapter 1

Introduction

1.1 von Neumann Algebras and Non-Commutative

Probability

Initially studied by John von Neumann and Francis Murray, a von Neumann algebra is an

algebra of operators on a Hilbert space which is closed in the strong operator topology,

(Tα → T if ||Tαξ−Tξ|| → 0 for all ξ). There are two remarkable properties of such algebras,

first that they allow one to take f(x) where f is any bounded Borel measurable function

C → C and x is any normal operator (which makes them the natural setting for the spectral

theorem). Second, when the algebra is abelian (i.e. multiplication is commutative), and

equipped with an appropriate functional, it exactly describes a probability space, where

functional is the expected value functional.

As such, von Neumann algebras can be considered to be the non-commutative analog of

probability/measure theory. In particular, a non-commutative probability space is defined

to be a pair (M, τ) where

1. M is a von Neumann algebra

2. τ is a (faithful, normal) trace on M , i.e. τ(xy) = τ(yx), τ(x∗x) ≥ 0 with equality only
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if x = 0, and τ is weak operator topology continuous.

We further call an element of such a space a non-commutative random variable.

The definition restricts itself to traces because there is an intimate relationship between

the trace on a von Neumann algebra and the algebra itself. In particular, if assumed to be

faithful and normal, a trace on the ∗-algebra generated by some elements {xi} determines

the von Neumann algebra they generate. Moreover, if M is a factor, meaning it has no

center except C, then it will have a unique trace (depending on the details, this may be

only defined on projections and may be allowed to take the value ∞). Non-commutative

probability spaces must be built out of type In and II1 factors, which are (so called finite)

factors with minimal projections (i.e. Mn(C)), and without minimal projections, respectively.

In the analogy to probability spaces these should be thought of as the atomic portion of the

probability space and the diffuse portion of the probability space respectively.

Examples of II1 factors require a bit more effort to describe, with the two most common

classes of examples being the hyperfinite II1 factor, R, and the group von Neumann algebra

construction L(Γ). Although R is of fundamental importance in the theory of von Neumann

algebras, it is not vital to this work, so we will not describe it here. On the other hand,

L(Γ), also due to Murray and von Neumann, will play an important role in this work, so we

provide a rapid summary:

Given a discrete, countable group Γ, the von Neumann algebra L(Γ) is the closure of the

group algebra C[Γ] where we consider the group algebra as operators on l2(Γ). In particular,

we denote the group algebra elements by ug and the natural basis of l2(Γ) by δh and have

that

ugδh = δgh

So far, this only constructs the algebra L(Γ), but it is worth noting here the result that

L(Γ) is a factor exactly when Γ has the infinite conjugacy class property, i.e. all conjugacy

classes have infinitely many elements. Of particular importance to us are the groups Fn, the
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free groups on n generators. These can be easily seen to have the i.c.c. property, and so

L(Fn) are all (type II1) factors. Curiously, it is not yet known whether L(Fn) ≃ L(Fk) when

n ̸= k. Indeed, this question, called the “free group factor isomorphism problem” is often

considered the biggest open question in von Neumann algebras.

L(Γ) is automatically equipped with a trace, namely

τ(x) = ⟨δe, xδe⟩

(note that any group element could be chosen in place of the identity with the same result).

1.2 Free Probability

In trying to solve the free group factor isomorphism problem, Dan Voiculescu created the

field of free probability. This field can be motivated by several important observations

1. Non-commutative probability spaces are a natural language for discussing many prop-

erties of random matrices. In particular, empirical measures (and most measurements

that are invariant under unitary conjugation) can be obtained by exclusively applying

the trace to the algebra generated by a random matrix.

2. When the random matrices are large, independent, and have probability distributions

that are invariant under unitary conjugation, the traces of the algebra they generate

approximately satisfy a relation called free independence, described shortly.

3. This free independence relationship allows for a novel product of von Neumann algebras

called the free product M1 ∗M2. This satisfies the important property that L(Γ ∗β) =

L(Γ) ∗ L(β) when Γ and β are countable discrete groups.

This notion of free independence is given by the relation

τ(a1b1a2...bn) = 0
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whenever ai ∈ M1, bj ∈ M2, and τ(ai) = τ(bj) = 0. This should be compared to the relation

of classical independence τ(ab) = τ(a)τ(b). Note that free independence naturally implies

that [a, b] ̸= 0 as long as neither a nor b is a scalar. Indeed, since the free product on von

Neumann algebras respects that of groups, we can see that it encodes a lack of any algebraic

relations between random variables from different algebras.

These observations also open up random matrix theory as a tool for studying the free

group factor isomorphism problem, since L(Z) ≃ L∞[0, 1], Fn = Z∗...∗Z, and since e.g. large

Gaussian unitary ensembles approximately generate L∞(Z). In particular, this produces a

description of a family of non-commutative random variables si which generate L(Fn), which

we describe in the next subsection.

1.3 Free Semicircular variables and the q-Gaussians

We begin by making precise the statement that a large GUE approximately generates

L∞[0, 1]. Let xN be the random variable that is the N by N GUE with unit variance.

This has a trace, namely E( 1
N
tr(·)). When N is large,

E( 1
N
tr(xm

N)) →
1

2π

∫ 2

−2

sm
√
4− s2ds

where the measure on the right is known as the Wigner semicircle law. This can be proven

for example using Wick’s theorem and a technique called the genus expansion [BIPZ78],

the upshot of which is the modification of wick’s theorem: when s is a random variable

distributed according to the unit variance semi-circle law,

τ(sn) =
∑

π a non-crossing pairing of {1,...,n}

1

which is distinct from Wick’s theorem only in that the pairings must be non-crossing (i.e. let

π(i) be the index to which i is paired. Then i < j < π(i) < π(j) is forbidden). Indeed, the
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multivariable Wick’s theorem (for independent centered Gaussians) generalizes to a formula

for the law for freely independent semi-circular variables.

τ(si1 ...sin) =
∑

π n.c. pairing

∏
j

δijiπ(j)

This formula can be further generalized to the q-Gaussians, q ∈ [−1, 1], which interpolate

between ordinary (Bosonic) Gaussians on Rn at q = 1, free semi-circular variables at q = 0

and boolean (Fermionic) variables at q = −1 [FB70]. The revised formula is

τ(xi1 ...xin) =
∑

π pairing

q#crossings(π)
∏
j

δijiπj

It is worth noting that the q-Gaussians can be built using a Fock space construction. In

this construction, we define a basis for our Hilbert space beginning with Ω, which we call

the vacuum, and then by considering inductively

ew = lw1 ...lw|w|Ω

where w is taken to be a word in {1, ..., n}, and li is intended to be the i-th creation operator,

and which is desired to satisfy the commutation relation

l∗i lj = qljl
∗
i + δij

which we can see generalizes the canonical commutation relations (q = 1) and canonical

anticommutation relations (q = −1) often used to define Bosons and Fermions. This relation

is enough, with the conditions l∗Ω = 0 and ⟨Ω, ew⟩ = 0 whenever |w| ≠ 0, to define the q-

Gaussian Fock space with the inner product

⟨ew, ev⟩ = ⟨Ω, l∗w|w| ...l
∗
w1
lv1 ...lv|v|Ω⟩ =

∑
σ∈S|w|

δσ(w)vq
#inversions(σ)
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whenever |w| = |v|, and 0 otherwise. The q-Gaussians are then the non-commutative random

variables Xi = li + l∗i .

For all interior q the q-Gaussians are a genuine non-commutative probability space (while

for q = 1 they are commutative, and for q = −1 they are anti-commutative). We will refer

to this algebra as qGn, where n is the number of generators. It has been shown that

1. [GS12] When |q| is small and the number of indices is finite, the qGn are isomorphic to

L(Fn).

2. [Cas23][BCKW23]When the number of generators is infinite then qG∞ is non-isomorphic

to L(F∞) for all q ̸= 0.

The q-Gaussians are not yet fully understood, but they hint at several extensions of

important probabilistic and physical notions. Firstly, we direct attention to the free Brownian

motion of Biane and Speicher [BS98a], which gives a notion of stochastic dynamics in the

free setting, replete with an Ito like lemma. We would like to be able to consider a notion

of q-Brownian motion, although existing attempts at a definition have thus far failed to

satisfy. Secondly, it is known [Dab14] that the q-Gaussians are free Gibbs laws, meaning

they can be constructed as the stationary point of a free Brownian motion. This can afford

an interpretation of the q-Gaussians as an interacting process in free statistical mechanics.

The sufficiently dedicated scholar of the q-Gaussians might hope that they can be used to

construct a broader class of quantum field theory that interpolates between Fermions and

Bosons, and indeed, does so in such a way that nearby values of q can be interpreted as

interacting q′ quantum field theories.

1.4 Tracial Formulas and the Notation

Toward the end of this work we will be trying to follow in the footsteps of David Jekel et.

al. with our notation. A fundamental object of study will be trace polynomials and their
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extensions. A trace polynomial in the (self adjoint) non-commutative random variables xi

is a formula which is a sum of terms of the form

tr(P1)...tr(Pn)Pn+1

where each Pi(x1, ..., xm) is a (non-commutative) polynomial. We can further extend these

by including f(y) where f is a function from R → R and y is a self adjoint variable, or

has only scalar terms (terms where all polynomials are inside traces). With some technical

details (see [JLS22]) these define the classes C and Ctr of tracial formulas, where Ctr ⊂ C

are the scalar valued formulas. We may also define separate class Cm of tracial formulas in

x ∪ S where S is an infinite family of symbols si. This class is required to be m-multilinear

in S (i.e. must be the sum of terms that each contain exactly m si, but in which each si

appears at most once), and will be denoted as f(x)[s1, s2, ...] = f(x)[s]. Several derivative

analogs have been introduced by Jekel and Voiculescu:

∂ : Cm → Cm+1

defined by

∂(ab)[s] = ∂(a)[s]b+ a∂(b)[s]

∂(xi)[s] = si

∂(tr(a))[s] = tr (∂(a)[s])

Which then defines the gradient

∇ : Ctr → C

satisfying

tr(P ∗∇f) = ∂(f)[P ] for all P (x) polynomials
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In addition to these, we will also need the cyclic gradient, D which is zero on Ctr and on

polynomials is

DP = ∇tr(P )

We will make explicit note of the product on Cn
1 that we will later make use of, namely

f [s] · g[s] = f [g[s]]

Once we evaluate these formulas in xi ∈ M a particular von Neumann algebra generated by

the x, we can identify Cn
1 with M ⊗M op, where op indicates the opposite algebra and n is

the number of generators.

1.5 Classical Moment Measures

Fix a measure µ on Rn; following [CEK13], we say that µ is a moment measure with potential

u when u is a convex function satisfying µ = (∇u)#ρ and ρ is the Gibbs measure 1
Z
e−udx.

We also say µ is the moment measure of u. Cordero-Erausquin and Klartag in [CEK13] show

that a finite Borel measure µ is a moment measure with some convex essentially continuous

potential u if and only if µ has barycenter zero (in particular, a finite first moment) and is not

supported in a lower dimensional hyperplane. This result is proven variationally, although

we will rely more directly on another variational approach taken in [San15a] which is more

closely related to optimal transport. In Section 2 we describe a functional in terms of µ

considered in [San15a] whose optimizer is ρ = e−udx, as well as this functional’s analog in

free probability.

Voiculescu introduced free probability theory in [Voi86]. He later introduced the notion

of free entropy in a series of papers [Voi93, Voi94, Voi96, Voi99, Voi98]; see also [Voi02] for

a summary. The setting for free probability is that of non-commutative (nc) probability

spaces—pairs (M, τ), where M is a ∗-algebra (often a C∗ or W ∗ algebra) and τ is a state, a
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functional which is both positive (τ(x∗x) ≥ 0) and satisfies τ(1) = 1. In this paper we will

further assume our state τ is a trace, i.e., τ(ab) = τ(ba). The analogy to classical probability

spaces (Ω,F , P ) is made by interpretingM as the space of F -measurable essentially bounded

functions on Ω, and τ as the expectation on this space with respect to P .

Consistent with this analogy, a nc random variable is an element of M . Similarly, a

vector valued nc random variable is an n-tuple (X1, ..., Xn) of elements of M . Note that

when M is a C∗ or W ∗ algebra this can be slightly more restrictive than the classical notion,

since we assume that these random variables have bounded norm, corresponding classically

to an almost surely bounded random variable. The linear map sending non-commutative

polynomials P to τ(P (X1, . . . , Xn)) is the law of these random variables.

It is thus natural to ask if moment measures have an analog in free probability. This is

especially of interest to us because moment measures µ are in a sense parametrized by their

potentials u. Of course there is a natural way of doing this in Rn, considering the density

with respect to the Lebesgue measure. However, in the free case, the notion of density is

ill-defined.

There is an analog of Gibbs measures 1
Z
e−udx to free probability: free Gibbs laws (see

[BS98b, Voi02]). Where Gibbs laws minimize

E(µ) +
∫

udµ,

with E is the classical entropy (E(f dx) =
∫
f log f dx), free Gibbs laws minimize

−χ(τ) + τ(U),

where χ is free entropy, first defined by Voiculescu (see the survey paper [Voi02] for more

information). Here U , which is assumed to be self-adjoint, is the potential for the free Gibbs

law τ .

Definition 1.5.1 ([Voi02, Gui06, GMS06]). The free Gibbs law τU associated to the potential

9



U is the minimizer of −χ(τ) + τ(U) if it exists.

There are two cases when such laws are known to exist. The first is when U is a n.c.

power series which is a small perturbation of quadratic (see [GMS06]).

The second is in the single variable case when U is bounded below, satisfies a growth

condition, and satisfies a locally Hölder continuity-like condition (see [dPS95, Remark 3])

where we also get uniqueness. In this latter case, the free entropy is the negative of log energy,∫∫
log |s− t|dµ(s)dµ(t), (see [Voi02]). The above optimization implies (and by [GMS06], for

U which are small perturbations of quadratic the above, is equivalent to) the integration by

parts formula or Schwinger-Dyson (type) equation:

τ(P · DU) = τ ⊗ τ ⊗ Tr(JP )

where U ∈ C⟨X1, ..., Xn⟩ is the potential of the law which is assumed to be self-adjoint,

and P is an arbitrary n-tuple of nc polynomials in X. Letting M = W ∗(X1, ..., Xn), we

have that Voiculescu’s cyclic gradient D = (Dx1 , ...,Dxn), the difference quotient derivative

∂ = (∂x1 , . . . , ∂xn), and the (difference quotient) Jacobian J are linear maps on the following

spaces

Dxi
: M → M

∂xi
: M → M ⊗M op

J : Mn → Mn×n (M ⊗M op) ,

10



defined by

Dxi
(xi1 · · ·xin) =

n∑
j=1

δi,ijxij+1
· · ·xinxi1 · · ·xij−1

∂xi
(xi1 · · ·xin) =

n∑
j=1

δi,ijxi1 · · ·xij−1
⊗ xij+1

· · ·xin .

(JP )ij = ∂xj
Pi

The above Schwinger-Dyson equation is the nc analog of

E(f · ∇U) = E(Tr(Jacf))

which holds for log concave Gibbs laws 1
Z
e−U dx, where Jac is the classical Jacobian. These

free Gibbs laws are known to exist in the multi-variable case when U is a small perturbation

of the semi-circle potential ([GMS06]). In the single variable case, this can be relaxed to

ordinary convexity along with growth conditions: U(x) must go to infinity as |x| does (and

thus must grow at least as |x|).

We then define free moment laws as follows

Definition 1.5.2. The law τ of the nc random variables X1, . . . , Xn is a free moment law if

there exists a self-adjoint nc power series U such that the free Gibbs law τU is well defined

and is the law of nc random variables Y1, . . . , Yn such that

(X1, . . . , Xn) = (DU)(Y1, . . . , Yn)

In the single variable case, laws have corresponding measures, and so we will discuss free

moment measures instead of free moment laws.

Our main result is to show that certain free Gibbs laws are in fact free moment laws.

We organize the paper as follows. In Section 2, we discuss the single variable case where

we prove the most general existence result for free moment measures using a variational
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approach. We will also provide a few examples and contrast them with the classical case. In

Section 3, we discuss the existence of free moment laws for a certain class of free Gibbs laws

which are close to the semicircular law. We proceed in this case by a contraction mapping

argument.

1.6 What are We Trying To Achieve

There are two largely unrelated goals in this work. The second, the contents of chapter 4, are

to generalize the notion of moment measures to the free probabilistic setting. In particular,

since many of the classical notions in probability–densities, cumulative distribution functions,

characteristic functions, etc.–are not defined in the context of general von Neumann algebras,

we must translate the notion into the language of laws (aka moment methods) and free

probability. With this translation, we succeed in showing that many non-commutative laws

that are sufficiently close to the free semi-circle law are free moment measures.

The other two chapters of the thesis are all in service of answering the question: are

the q-Gaussians isomorphic to the free group factors? As mentioned earlier, we have some

answers, thanks to [GS12] [BCKW23]. In particular, we know that for an infinite collection

of indices, the q-Gaussians are not isomorphic to the infinite free group factor. Conversely,

we know that for |q| small enough (in a way dependent on the number of indices), they are

isomorphic. In fact, this result constructs an isomorphism that is also an optimal transport

by constructing a “convex” potential whose gradient is the transport map. This result in

fact extends beyond just the q-Gaussians, to a broad class of free Gibbs laws.

It is the opinion of the author that a diagrammatic language is the natural language for

discussing the q-Gaussians, and so we attempt to explicitly compute the transport map in

this diagrammatic language. We make considerable progress, but stop shy of achieving our

result. We manage to find diagrammatic formulae for several intermediate steps, and show

that there is a formal (i.e. infinite, potentially non-convergent) diagrammatic formula for a

12



copy of the free group factor inside the q-Gaussians.

There are several gaps between our results and our goals:

1. We certainly require that this formula converges in the q-Gaussians. This is the most

important gap, and will be an immediate concern of the author.

2. We need a formula in the opposite direction, finding the q-Gaussians in the free group

factors. This is important, but should not require new techniques, and should be

approachable one the first gap is closed.

3. We need to know that these two formulae give transport maps that are inverses of one

another, and hence isomorphisms.

4. We would like to verify that these are the same transport maps given in [GS12]. The

most natural way to do this would be to either reconstruct the diagrammatic formulae

using the contraction mapping argument therein, or showing that the diagrammatic

formulae we have satisfy a version of the Monge-Ampere equation.

All of this is following the suspicion of the author that the q-Gaussians are isomorphic

to the free group factors for all q ∈ (−1, 1), when the number of indices is finite. We further

suspect that this isomorphism is implemented diagrammatically, and that it will only fail

in the infinite index case because the terms it contains will involve sums over all index

assignments, which cannot converge when there are infinitely many indices.
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Chapter 2

Diagrammatic q-Gaussian

Computations and Semi-Knots

The core of this work is centered on methods for performing q-Gaussian computations via

diagrams. We must first understand how the q-Gaussians can be represented by diagrams,

and produce some relevant results. We will then have to explore a richer diagrammatic setting

which largely extends the q-Gaussian algebras which will be the home of the remaining, and

central, results of the section.

2.1 Diagrams and the Conjugate System

It is well known that there is an isomorphism between L2(qGn) and the Hilbert space on

which it acts. This isomorphism can be implemented using the q-Chebyshev polynomials,

Tw, with the particular identification (for the rest of this work w will be assumed to be a

word in the alphabet {1, .., n})

Tw(X)Ω = lw0 ...lw|w|−1
Ω = ew

Since the q-Gaussian variables are defined to be Xi = li+l∗i , We can find the q-Chebyshev

14



polynomials satisfy the recursion relation

T∅ = 1, Ti = Xi

XiTw = Tiw +

|w|−1∑
j=0

δiwj
qjTWĵ

Where wĵ is the word w with the j-th entry removed.

Appealing then to the q-Gaussian Wick formula, we can begin to understand the relevant

diagrams. In particular, we can consider diagrams of the form

w0w1w2w3w4w5w6

Which feature straight vertical lines indexed by w0, ..., w|w|−1 to represent Tw. Thus any

element of L2(qGn) can be represented as a weighted sum of these diagrams. The product of

two such diagrams is then quite simple:

w0w1w2w3 v0 v1 v2 v3 v4

=

w0w1w2w3 v0 v1 v2 v3 v4

+

w0w1w2w3 v0 v1 v2 v3 v4

+ . . .

+

w0w1w2w3 v0 v1 v2 v3 v4

+

w0w1w2w3 v0 v1 v2 v3 v4

+ . . .

+

w0w1w2w3 v0 v1 v2 v3 v4

+ 3 and 4 pair partial pairings

Where a partial pairing is a diagram where some subset of w is paired with a subset of v

with the same cardinality. This of course contains new diagrammatic elements not already

apparent in the simplest diagrams. Two in particular are salient: lines that are not simply
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vertical represent pairs, and contribute a δwivπ(i)
, and crossings (between pairs or between a

pair and a vertical line) which contribute a factor of q to the term. Next we can express the

trace, which simply assigns 0 to any term with any unpaired vertical lines, and assigns the

above coefficient δwπ(w)q
#cross(π) to fully paired diagrams. Finally among the basic algebraic

operations, ∗ is simply implemented as flipping a diagram left-to-right.

Together, these produce a formula for the inner product of two diagrams (note that they

must contain the same number of unpaired lines):

w0w1w2w3 , v0 v1 v2 v3

=

w3w2w1w0 v0 v1 v2 v3

+ · · ·+
w3w2w1w0 v0 v1 v2 v3

Which is simply the graphical version of the familiar formula [MS23]:

⟨Tw, Tv⟩ =
∑

σ∈S|w|

q#inv(σ)δvσ(wrev)

where wrev is the reversed word w|w|...w1.

Introducing now the dual basis fw for the q-Gaussian Hilbert space which satisfies

⟨fw, ev⟩ = δwv

Then we see that

ew =
∑

σ∈S|w|

q#inv(σ)fσ(w) =: P|w|−1fw

This defines Pn which we set out to invert for the remainder of this subsection. We will

summarize in words that Pn is the sum of all permutations on n+1 indices with the number

of inversions incorporated as coefficients. To better understand this algebraically, we must
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now define the family of operators σi which we take to be generators of the braid groups (or,

since we will only use positive powers of the generators, the braid semi-groups). They will

satisfy [σi, σj] = 0 when |i− j| ≥ 2, and always satisfy σiσi+1σi = σi+1σiσi+1. On diagrams,

we can implement these as

σiew =

 0 |w| < i+ 1

qew0...wi−2wiwi−1wi+1... else

or diagrammatically:

σi


w0

. . .
wi−1wi

. . .
w|w|−1

 =

w0

. . .
wi−1wi

. . .
w|w|−1

in particular, each one creates a new crossing, and so creates a factor of q. We can express

Pn in terms of these generators:

Pn = (1 + σ1)(1 + σ2 + σ2σ1)...(1 + σn + σnσn−1 + ...+ σn...σ1)

Hitherto, all of these statements and notations are versions of results already known. We

will now need several new refined notations. As above Pn will represent the product of the

above terms, while Pn,S, S ⊂ {1, ..., n} will represent the sum of all those terms in Pn which

can be written beginning with an element of S (and 1). For example,

P3,{1,2} = (1 + σ2 + σ2σ3)(1 + σ1 + σ1σ2 + σ1σ2σ3)

Similarly, Mn,S will be the sum of all terms which can only be written beginning with an

element of S (and 1). For example, σ1σ2σ1 is in Pn,{1}, but is not in Mn,{1}, since the braid

group relations specify that this is equal to σ2σ1σ2. Thus, the above factorization of Pn can
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be written as

P1M2,{2}M3,{3}...Mn,{n}

More generally, we may also use PS,T , T ⊂ S to represent those words which are written

using only elements of S and can begin with a letter of T , and MS,T for those which must

begin with a letter of T . If S = T , then only one will be written.

With this we are equipped to state the main theorem of this subsection

Theorem 2.1.1.

P−1
n = (1 + (−1)n+1σ1σ2σ1...σnσn−1...σ2σ1)

−1

∑
i

(−1)n−i
∑
|S|=i

P−1
n,S


and hence

fw = P−1
|w|−1ew

has a diagrammatic expansion.

Following the proof, we will expound on the diagrammatic interpretation of this result.

We prove the theorem with a series of claims:

Proposition 2.1.2. The braid corresponding to a permutation can be written beginning with

σi if and only if the i−th and (i− 1)-th strings cross.

Proof. It is clear that any permutation can be drawn as a straight line-braid, wherein we

place the starts of the strings at (i, 0) ∈ R2, and the ends at (σ(i), 1), and connect these with

straight lines, taking all crossings to be positive (say the line coming from the left crosses

under that coming from the right). Clearly, if the braid can be written beginning with σi

then the i− 1th and ith strings must cross. On the other hand, suppose that they do cross

in a given permutation. We can then homotope the default straight line braid so that the

i − 1th string and the ith string cross first: we simply move the starting points of these

strings to (i− 1+ t, 0) and (i− t, 0) for a value of t close enough to 1
2
that the corresponding
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lines must intersect at a smaller y than all other lines. Moreover, this is a genuine homotopy

of braids, since we may embed this braid in R3 by first starting each string at (i, 0, 0) then

taking the ith string to (i, 0, i), then connecting this to (σ(i), 1, i) then again moving down to

the x− y plane. With this added elevation, any planar homotopies that restrict the strings

to start along y = 0 and end at y = 1 cannot give rise to any intersections of the strings.

Proposition 2.1.3. A braid corresponds to a permutation if and only if the crossing numbers

of all pairs of strings is at most one.

Proof. Clearly the straight line braid representation of a permutation satisfies the above

property (since any two straight line segments in the plane can intersect at most once). For

the converse we again homotope the braid so the i-th string is at height i, which we do simply

along the straight line homotopy that moves only the z coordinate. This homotopy does not

create any intersections, since all crossings have the string from the left going under that

from the right. Once each string is at a separate altitude we can then homotope the strings

to be straight lines and we have a straight line braid for the corresponding permutation.

Corollary 2.1.4. A given braid (using only positive crossings) can be written with a squared

generator iff there are two strings that cross at least twice in that braid.

Proof. Only if is clear, since any squared generator means that two strings cross twice con-

secutively. If follows from the previous proposition; choose a pair of two strings i and j such

that

1. i and j cross twice

2. no other pair of strings cross twice between two of the crossings of i and j.

We then split the braid into three parts: the portion until just after the first (qualifying)

crossing of i and j, the portion after the second crossing of i and j, and the portion in

between these two. Suppose that strings i and j are in the (k − 1)-th and k-th position

at the end of the first portion. We leave the beginning and end portions unchanged, and
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homotope the middle portion to begin with σk, which we may do because we know that this

portion of the braid corresponds to a permutation (since all strings cross at most once in

this portion) and by the previous proposition. Since the first portion must have ended by

σk, this presentation of the braid must have a σ2
k.

Proposition 2.1.5. If S, S ′ are not adjacent (i.e. |i− j| ≥ 2 ∀i ∈ S, ∀j ∈ S ′) and are both

intervals (i.e. i, j ∈ S, i ≤ k ≤ j implies k ∈ S). Then

Pn = PSPS′Mn,(S∪S′)c

Proof. We have first that

Pn = PSMn,Sc = PS′Mn,S′c

by Proposition 1, since PS is those permutations that affect only those strings in S, andMn,Sc

is all permutations of {0, ..., n} which preserve the order of strings in S. Thus, an arbitrary

permutation may be made by first rearranging only the strings in S to their appropriate

reordering, and then permuting everything else without affecting the ordering of the strings

in S. Similarly,

Mn,Sc = MS∪S′,S′Mn,(S∪S′)c

by the same reasoning restricted to those permutations that have no intersections among

strings in S. Moreover, since S and S ′ are not adjacent, they commute with one another so

MS∪S′,S′ cannot contain any terms with a factor from S, so it is equal to PS′ .

Moreover, since PS and PS′ commute when S and S ′ are not adjacent, we can see that

P−1
S is simply the product P−1

S1
P−1
S2

...P−1
Sn

where the Si are the connected subsets (intervals)

of S. The following is the main step in the theorem:

Lemma 2.1.6. Suppose that we have constructed P−1
k for all k ≤ n. Then
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 ∑
S⊊{1,...,n+1}

(−1)n−|S|P−1
n,S

Pn+1 = (1 + (−1)nσ1σ2...σn+1σ1...σnσ1...σ1σ2σ1)

Where in particular the last braid represents the complete inversion permutation σ(i) = n−i.

Proof. Using the previous factorization, we can see that Pn+1 ∗P−1
S = Mn+1,Sc . So the above

product becomes the sum over S ̸= ∅ of (−1)|S|+1Mn+1,S. If we consider π a permutation

which can be written beginning with k different σi. This will then appear in

∑
i≥1

(
k

i

)(
n+ 1− k

j − i

)

different PS with |S| = j. When k=0 (i.e. π is the identity permutation), we then get that

it comes with a coefficient of

∑
i≥1

(−1)j+1

(
n+ 1

j

)
= (1− 1)n−1 + 1 = 1

and the complete inversion, which is the only permutation that can be written with any

starting letter, does not appear in any term except Mn+1,n+1, and so comes with a (−1)n.

For all other terms we have

n+1∑
j=1

(−1)j+1
∑
i≥1

(
k

i

)(
n+ 1− k

j − i

)
= 0

Since the first binomial coefficient ensures that i ≤ k and the second binomial gives a factor

of (1− 1)n+1−k by summing first over j.
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This affords us an inverse to Pn+1, namely

 ∑
S⊊{1,...,n+1}

(−1)n−|S|P−1
n,S

 (1 + (−1)nσ1σ2σ1...σ1)
−1

For the sake of clarity, we first give the formulas for the first three inverses, then show

that this converges in the q-Gaussians, and then give a graphical description.

P−1
1 = (1 + σ1)

−1

P−1
2 =

(
(1 + σ1)

−1 + (1 + σ2)
−1 − 1

)
(1− σ1σ2σ1)

−1

P−1
3 =

[
1−(1−σ1)

−1−(1−σ2)
−1−(1−σ3)

−1+
(
(1 + σ1)

−1 + (1 + σ2)
−1 − 1

)
(1−σ1σ2σ1)

−1

+ (1 + σ1)
−1(1 + σ3)

−1 +
(
(1 + σ3)

−1 + (1 + σ2)
−1 − 1

)
(1− σ3σ2σ3)

−1
]

(1 + σ1σ2σ3σ1σ2σ1)

In understanding this expansion graphically, it will be useful to show that there is very

little cancellation between these diagrams.

Lemma 2.1.7. The above expansion converges in the q-Gaussians.

Proof. Let πn be the complete inversion permutation on n letters. By induction, this lemma

amounts to showing that (1 ± πn)
−1 exists in the q-Gaussians. In turn, this amounts to

showing that the corresponding Neumann series converges. However, this is easy to see since

σ2
i = q2

so ∑
n

σn
i = (1 + σi)

∑
n

σ2n
i
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and the latter obviously converges. The same reasoning applies to πn, since

π2
n = qn

2+n

In describing the graphical interpretation of this expansion, it is useful to know that we

change the formula only slightly to remove any cancellations among the diagrams.

Lemma 2.1.8. When considering P−1
n = A(1 + (−1)nπn)

−1 we can remove all cancellation

by removing the first term from all Neumann sums in A, and inverting the signs of all terms

in A. For example,

P−1
2 =

(
−σ1(1 + σ1)

−1 − σ2(1 + σ2)
−1 + 1

)
(1− σ1σ2σ1)

−1

Proof. We have need of an invariant for discerning when two diagrams in the sum might

cancel. For this purpose we will use the matrix of (unsigned) intersection numbers of the

strings in our braid. If two braids have different intersection matrices, then they must

certainly be distinct braids (this follows from the fact that we are interested only in the

braid semigroup with positive powers of the generators).

Let us consider more carefully the kinds of diagrams that appear in this expansion. In

general, we begin by applying πn some number of times, which adds one to all off diagonal

elements of the intersection matrix. We then choose an S ⊂ {1, ..., n}, and apply the inverse

for that subalphabet only. By induction, the inverse for this subalphabet then consists of

first applying the complete inversion on each of its connected components some number of

times, then choosing a further subalphabet. At each step, we are adding one to all elements

of a block matrix that allows us to identify which subset we are doing the complete inversion

on. Moreover, since later inversions must be on subsets of earlier inversions, we never have a

situation where we can have two different blocks B1 and B2 where say B2 is partly contained
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in B1 and partly outside B1 and both blocks are incremented. For example,



0 2 2 1 1

2 0 2 1 1

2 2 0 1 1

1 1 1 0 5

1 1 1 5 0


is a valid intersection matrix that can occur in our inverse (obtained by inverting the whole

braid once, then the first three strings once, and the last two strings 4 times) but



0 1 1 0 0

1 0 2 1 0

1 2 0 1 0

0 1 1 0 0

0 0 0 0 0


Is not, since it would require first inverting the first three strings, and then inverting strings

2-4 (or vice versa) and neither set of strings is a subset of the other.

Considering the first example, we can see that we can read off the number of inversions

and what subalphabet they applied to by identifying the blocks in the matrix. Indeed, the

only problem is that we might choose a subalphabet S, then fail to make any inversions,

and then choose a further subalphabet. Thus, as long as we guarantee that we apply at least

one inversion to each connected component of our choice of subalphabet we can read off our

choice of subalphabet, and number of complete inversions. This condition, that we apply the

complete inversion to each connected component of the subalphabet, is exactly the condition

that the Neumann sums begin at 1 instead of 0.

Finally, we give a graphical description of this inverse. Our example will be on the braid
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with 7 strings.

First, we begin with the complete inversion some number of times (this can be zero):

We then select two sub braids, which for our purposes will be the first five strings and

the last two strings. We then apply the complete inversion to each of these substrings some

number of times. In the example given below, the first five are inverted once, while the last

two are inverted three times.

We then continue this process, selecting sub braids of each of the subbraids. We will
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select the first two strings, the second three strings and each of the last two strings as our

subbraids. Applying the inversion to each relevant subbraid (only once this time) gives

Although there are further subbraids we could choose (namely in strings 3-5), we will

stop this example here. We must then determine whether this diagram comes with a + or -.

In the formula for the inverses we have a (1+(−1)n+1πn)
−1 which is taken to be a Neumann

series. Thus, each inversion comes with a (−1)number of strings. So here we get four factors of

−1, two from the inversions of all seven strings, and one each from the five and three string

inversions. Thus this diagram would come with a coefficient of 1.

Finally, we give an example of a diagram that cannot appear in this inverse.
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Which is disallowed because the second inversion is on a subbraid (strings 4-7) which is

neither a subbraid of strings 1-4, nor of strings 5-7, which are the two subbraids the first

inversion split the braid into.

With this, we can explicitly construct a purely diagrammatic formula for the conjugate

system ξi.

2.2 Diagrammatic Formula for the Conjugate System

In addition to the basic algebraic operations introduced before, we must now also con-

sider Voiculescu’s difference quotient derivative, ∂, diagrammatically. This will necessitate

a slightly modified version of the diagrams. First, when considering vectors of elements, i.e.

elements of qGn
n , we include a dot below the diagram whose index will be the vector index

in which the diagram lives. For example,

w1w2w3w4

i
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represents the vector which is zero in all entries except the i-th, where it is Tw1w2w3w4 .

Second, those terms which are in the codomain of ∂, namely Mn ⊗ qGn ⊗ qGop
n will be

represented by a rectangle with several strings coming out of the top, right, and bottom

sides, along with a dot on the left side. The dot and line coming out the right side represent

the matrix indices of the diagram, while the lines that end facing upward represent the qGn

portion, while those that end facing down represent the qGop
n portion. For example,

w1 w2

w3

w4

i

represents the matrix whose entries are all zero except the i, w3-th entry, which is Tw1w2⊗

Tw4 . With this we can now express ∂, Voiculescu’s difference quotient derivative.

∂

 w1w2

. . .

wn

i

 = w1w2wn
i

. . .

+ w2
w1

wn
i

. . .

− w2
w1

wn
i

. . .

+ . . .

Which is perhaps most easily summarized in words. You proceed in two steps to compile

a list of relevant diagrams. First, you place each unpaired line in turn on the right side of the

box, moving all lines before it to the top side and all lines afterward to the bottom. Then for

each such diagram we produce further diagrams by considering each partial pairing of the

top with the bottom, where all pairing lines must take the right hand path around the the

box. We then add these diagrams together, with the caveat that each diagram is multiplied
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by (−1) for each new crossing of the rightward line generated in this way. We include a

proof for completeness, and to get accustomed to some diagrammatic calculations, although

this result is known in [MS23] [DSS14]. Before the proof, however, it would be useful to see

the product structure of these matrices graphically.

kj
w1

. . .
wn

xn
. . .

x1
i l

v1

. . .
vn

yn
. . .

y1

= kj
w1

. . .
wn

xn
. . .

x1
i l

v1

. . .
vn

yn
. . .

y1 = δjk
w1

. . .
wn

xn
. . .

x1
i l

v1

. . .
vn

yn
. . .

y1

where the final dots indicate taking the product in qGn alone, i.e. considering all partial

pairings of the left with the right. In fact, we can extend this to the full algebra Mn ⊗A⊗

Aop ⊃ Mn ⊗ qGn ⊗ qGop
n which includes the creation and annihilation operators. They will

similarly act only on their side of the box, as will be relevant in the following proof.

Proof of Diagrammatic Formula for ∂. Graphically speaking, the left creation operators add

a new (unpaired) line to the left. The left annihilation operators add a new line to the left,

but then attempt to pair it with each unpaired line in turn. For example

l∗i


w1w2w3

 =

i


w1w2w3



=

i w1w2w3

+

i w1w2w3

+

i w1w2w3

We can now use the fundamental recursion relation for ∂, which states that ∂ ((xip(x))j) =
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(1⊗ p(x))ij + (xi ⊗ 1)∂((p(x))j). Since xi = li + l∗i , this can be rewritten graphically as

∂

 i
j

D

 = −∂

 i
j

(D)

+ i

D

j (2.1)

+ jij ∂(D) + jij ∂(D)

Where

D

indicates that the diagram D has been rotated 180 degrees and placed on the

bottom of the box. This enables an induction on the number of unpaired strings. Certainly,

∂((xi)j) = ij

and this can be extended to any diagram with a single unpaired string quite naturally; it

amounts to bending the diagram around the base of the unpaired string and twisting it so

the unpaired string goes to the right. Both of these are homotopies that do not change the

number of crossings nor the indices of the ends of the paired strings, so they preserve the

coefficient appropriately.

In general, the second and third terms in 2.1 produce all the terms where unpaired strings

are extended to the right (the second term adds the diagram where i is chosen to go to the

right, and the third term ensures that all the other such terms now have the requisite i string

at the beginning. In fact, the third term accounts for all the terms which do not have the i

chosen as the rightward string and do not have the i paired. Clearly then, any crossings of

the rightward line in this term must be included in ∂(D), and so the inductive hypothesis

provides us with the correct sign. Among the terms we have claimed are in ∂(|iD), only

those where i is paired remain. The claim is that i can only be paired with elements on

the other side of the rightward line, that these pairings come with an extra factor of (-1),
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and that they must go around the right. The latter point is clear from the recursion–all the

pairing goes to the right. The first point comes from a cancellation between terms one and

four. Term 1 includes terms where i can pair with any index (except the rightward one),

all with the extra (-1), but the fourth term contains only those terms with i is paired with

another element on the top of the box. This cancels with all similar pairings in the first

term, leaving only the claimed terms. In particular, we can then note inductively that since

we get an extra factor of (-1), and an extra crossing of the rightward line, the power of (−1)

must be equal to the number of new crossings of the rightward line, as claimed.

We now elucidate the diagrammatic expression for the trace in Mn⊗qGn⊗qGop
n , as before,

it is zero for any diagram which has any unpaired lines on the top or bottom. However, we

also connect the rightward line to the left edge, which, as with all pairings, produces a δij if

i and j are the indices of the left edge and rightward line respectively. We can also consider

∗, which, like before flips the diagram left-to-right.

Together, these produce a formula for the inner product of two elements of this algebra,

namely

,

kj
w1

. . .
wn

xn
. . .

x1
i l

v1

. . .
vn

yn
. . .

y1

= lj
w1

. . .
wn

xn
. . .

x1
i k

vn

. . .
v1

y1
. . .

yn

∑
pairing of
w and vrev

∑
pairing of
x and yrev

which we can simply reorient to determine ∂∗(1 ⊗ 1) in terms of fw, and then simply

combine this with the previous section to produce a diagrammatic formula for ∂∗.
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∂∗(In ⊗ 1⊗ 1) =
∑

words w

∑
σ∈S|w|

(−1)|w|

w1

. . .
w|w|w|w|

. . .
w1 i

. . .

σ

Where the tilde indicates that the given diagram is written in terms of fw, and so must be

followed by P−1 from the previous section.

We can extend this result to ∂∗((d1 ⊗ d2)ij), albeit with some notational adversity.

Theorem 2.2.1. let d1 and d2 be two diagrams. We can find that

∂∗(d1 ⊗ d2)ij =
∑
w

∑
σ∈S|w|
υ∈S|d1|
ϕ∈S|d2|

∑
λ∈(|d2|+|w||w| )
µ∈(|d1|+|w||w| )

(−1)|w|P−1(dwσυϕλµ)

where dwσυϕλµ is the diagram

jwwrev

σ

d1 d2

υ ϕ

λµ

i

and σ, υ, and ϕ represent permutations of the corresponding braids, while µ and λ represent

the choice of ways to intertwine two braids.

Proof. It is sufficient to consider the inner product of (Tw)k with ∂∗(d1 ⊗ d2)ij. This is of
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course ⟨(d1 ⊗ d2)ij, ∂(Tw)k⟩, i.e.

∑
n

∑
λ∈2n−1

µ∈2|w|−n

|λ|=|µ|

∑
σ∈S|λ|

(−1)|λ|

,

kj

d1

d2

i wn
wn←

wn→

λ

µ

σ

where λ and µ indicate choices of subset of wn← (w ending just before n) and of wn→ (w

beginning just after n). σ then indicates the fact that there may be crossings between the

chosen subsets. Taken together, these three describe the partial pairings of wn← with wn→ .

The inner product is then

∑
n

∑
λ∈2n−1

µ∈2|w|−n

|λ|=|µ|

∑
σ∈S|λ|

(−1)|λ|
∑

υ∈S|d1|

∑
ϕ∈S|d2|

ki

d1

d2

j wn
wn←

wn→

λ

µ

σ

υ

ϕ

We will then modify this by either considering the inner product in the opposite or-

der/flipping the diagram horizontally, and then performing a Möbius transform that moves

the i − k line to the j − wn line (all diagram inner products are real valued). We will then

homotope all complexity toward the d1 d2 box, which will then then make clear our formula.
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j i

d1

d2
k wn
wn←

wn→

λ

µ

σ

υ

ϕ

At this point we would like to simply take the contents of the dotted box to be the

our new diagram. However, as of this subsection, we have not developed the machinery to

process strings that do not originate from the x axis, so for now we content ourselves with

cutting the line containing σ just below the wn − j line, turning it into the origin of a µ and

a µrev. This end of these lines will be taken to be next to the j, and the µrev will immediately

cross the j line. Immediately after that, σ will be applied to µrev. Then on either side of this

we can place d2,rev and d1,rev respectively. To them we can then apply ϕ and υ respectively.

The choices of µ and λ when considered in reverse amount to choosing how to intertwine

the strings from di into those from µ or µrev, which we previously notated using binomial

coefficients. Finally, we convert this into a diagram for a vector term by replacing the i side

of the box by the ·i, unfolding the other three sides of the box to lie on the x-axis and,

recalling that this is the term subject to ∗, flip it horizontally.

2.3 Semi-Knot Algebra and a Diagrammatic Formula

for Free Semi-Circular Variables in qGn

The central idea of the previous proof amounts essentially to condensing all complexity in

a diagram from ⟨Tw, ∂
∗((d1 ⊗ d2)ij) to one side of the diagram, so that it can be identified

as a dual pairing of a complex diagram with a simple one. However, the need to cut the w
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chord in the previous section suggests that there might be wisdom in extending our notion

of diagrams beyond what we have previously considered. Although not elaborated on here,

the current formulation also introduces some complexity when considering ∂∗(AB) where

A and B are both box diagrams which might have crossings of their rightward string. We

therefore seek to formalize the kinds of manipulations we have been making heretofore.

We will formalize our new family of more loose diagrams as semi-knots and semi-links

and present the corresponding semi-link algebras, so called because they contain half the

information of knots. When we trace the kinds of operations performed hitherto, we find

that three axioms are clear:

Definition 2.3.1. A semi-knot (or semi-link) diagram is a knot diagram where all infor-

mation about the handedness of crossings has been removed. That is to say, a semi-knot

diagram is a map from
⊔n

i=1 S1 to S2.

These diagrams can then be manipulated according to several axioms.

1. All the standard non-Reidemeister homotopies (i.e. post-composing with any isotopy

of the plane) can be performed.

2. The third Reidemeister move (sliding) can be performed. (This was already used

extensively in considering the braid semi-group.)

=

3. A weakened version of the first Reidemeister move (untwisting) can be performed:

=

In fact, we extend this somewhat into: for any given crossing between a string and
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itself, if we can split the crossing either horizontally or vertically such that the resulting

diagram has one more connected component than the initial diagram, then we can move

these connected sub diagrams to either side of the crossing. i.e.

d1 d2 = d1 d2

Remark 2.3.2. The final axiom in particular is not fixed by any considerations we will

make in this paper. Indeed we have chosen it for two reasons: to maximize the strength

of the available moves (i.e. to minimize the number of distinct semi-knots) and to try to

preserve the intuition from knots to the greatest extent possible. However, by preserving as

much of the structure of knots as possible, we reproduce one of the central difficulties of knot

theory: deciding when two semi-knot diagrams are equivalent. It is the opinion of the author

that this is most likely the morally correct set of axioms (in the sense that it should produce

the most elegant final results by ignoring irrelevant complexity), but this complexity will have

to be circumvented a few times by considering weak and fragile semi-knots. These replace

the final axiom by only being able to flip loops, i.e. only considering the first diagram in

axiom 3, or simply removing axiom 3 altogether. When relevant, we will refer to all these

structures together as the family of extended semi-knots.

To this family of semi-knots, we add the spiky semi-knots. I.e. those diagrams whose

domain consists not only of copies of S1 but also [0, 1]. For the semi-link algebra, we will

insist that all the ends of open links (i.e. the spikes) terminate on a common horizontal line,

which we take to be the x-axis in R2 and that the entire diagram be contained below this

line. To construct an algebra of spiky semi-links SL from such spiky semi-links, we define

a product structure, an involution and a trace exactly as with the ordinary diagrams at the

beginning of this section. More explicitly, we take
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k1

. . .

k2

. . .
=

∑
π∈partial pairing k1

. . .

k2

. . .

π

k1

. . . ∗

=

k1

. . .

and of course, the trace of a spiky semi-link is 0 if there are any spikes, and q raised to

the number of crossings otherwise. The algebra SL will then be the free algebra generated

by these diagrams. We can then define a map from this algebra to qGn quite simply: for a

diagram, d, we produce first assign an index {1, ..., n} to each string. The spikes then define

a word w, and include a term of q#cross(d)Tw in the result. We then add up the results across

all possible assignments of indices. Note that this means that any closed links contribute a

factor of n to the output. After one more slight modification, we will motivate this map by

considering the formula for the conjugate system in this notation.

The slight modification will be how we can present diagrams in SLv, which is relevant

when want to think of qGn
n . The only change is that we will now require that exactly one

spike terminate below the diagram, and when mapping the diagram into qGn
n , the index of

the string with the downward spike will determine which component of the vector is mapped

to. With this we can express the formula for the conjugate system (note that though this is

an infinite sum, we do not define any topology on SL, instead treating it as the free vector

space generated by the set of diagrams. To make sense of the infinite sums we must first

take the maps into qGn.)

ξ =
∑
n

∑
σ∈Sn

(−1)n

. . . . . .

σ

With this we are equipped to actually show the main result of this thesis. Which we

state roughly here:
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Theorem In SLv there is a sum which will formally produce the a family of n free semi-

circular elements from n q-Gaussian’s. More precisely, there is an (infinite) diagrammatic

formula f such that tr(fw1 ...fw2n) contains exactly the non-crossing pairings of w1 through

w2n.

We will begin our argument beginning with the very simple diagram

f =

and consider what kinds of errors are produced, as well as how to remove them. When

considering τ(xixj) this produces no errors. τ(xixjxkxl) however, produces the error

following our ethos of encapsulating all the complexity in one portion of the diagram and

leaving the rest simple, we can homotope this to any of

, , ,

Which is to say, that by replacing each leg in the four base points one at a time with

−1

4
(2.2)

we can cancel out all these errors. Other errors would of course be introduced, but for now

we will ignore them. Instead, we will consider τ(x6), which has several errors, including 6

terms with one crossing:

, ,
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, ,

3 terms with 2 crossings:

, ,

and one with 3 crossings:

The one crossing terms can likewise be fixed by adding 2.2 to each of the stems that are

involved in the intersection. For the two crossing terms, we will make an observation–all

of these terms are rotations of each other. To make this more plain, we will rearrange our

diagrams a bit. Instead of all spikes terminating at the bottom, we will declare that the

spikes must terminate on outside edge of a disk (we will arbitrarily choose the first spike to

be at the bottom). In this way, these three terms are now

, ,

which is to say they are all the same. When we choose to retract the diagrams so all crossings

are contained in one leg we will always get one of these three diagrams. As it happens, this

will be true for all error terms (a symptom of traciality), so we will focus on these circular

diagrams. This circular diagram has three distinct rotations, each of which has six legs.

Thus when we want to cancel this error we can place each unique rotation at each of the six

legs, producing 18 error correcting terms for 3 error terms, so we find that the correcting

term must be

−1

6

(
+ +

)
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Or, using the notation to represent taking the sum of all unique rotations of a circular

diagram,

−1

6

and indeed, this same notion suffices for the one three crossing error term, which can be

corrected by

−1

6

These considerations already hint at several important ideas:

1. It is only connected spiky (or spoky if you will) semi-links that should appear in our

formula, since different connected components of the error should be dealt with by

adding different correction terms to the legs of each connected component.

2. We should only really be concerned with circular diagrams, since all the rotations of a

given diagram can be produced by making different choices of which spike should be

the bottom spike. Indeed, because of traciality all terms in the error (and hence in the

correction) will appear with the same coefficient.

3. The rotational symmetry of the circular diagrams will be important for determining the

coefficients of the error terms. It is here that the problem of determining equivalence

of semi-knots will come into play. For example, the third axiom is needed to know that

has only one unique rotation.

With the final complexity in mind, the proper statement of the theorem is
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Theorem 2.3.3. There is a formal infinite sum, f , in each of the extended families of

semi-knots such that τ(fn) formally contains only noncrossing pairings.

Proof. Our strategy at this point is not explicit, but instead to show that there is a recursion

relation that the corrections must satisfy, thereby glossing over the question of equivalence

of diagrams. To begin with suppose we have that

f =
∑

Diagrams K

aKK

where ai ∈ C and di are diagrams enumerated in some order. Then the relevant error

diagrams that we can generate are any of the form

K1

K2Kn

. . .

π

where π is some pairing, here meaning a spiky diagram consisting of only straight lines.

However, we will only be concerned with connected error diagrams, so we will further insist

that the resulting diagram be connected (note that this is not equivalent to π being connected

since each Ki might send many lines to π, and even if these lines don’t intersect in π, they

may do so in the diagrams). This error term comes with a coefficient of
∏

i aKi
. Of course,

all rotations of this diagram will also appear as error terms with the same coefficient, so

indeed we can consider our diagrams only up to rotation and assume that all of them have

. We can then cancel this error by contracting the entire interior of the circle onto one

of the spikes. Referring to the above construction as D(K1, ..., Kn, π), we find the following
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recursion for f :

aK = − 1

n

∑
K1,...,Kn,π

D(K1,...,Kn,π)=K
not exactly one Ki nontrivial

∏
i

aKi

a
|
= 1

If this recursion is satisfied, then when we consider τ(fn), we get all noncrossing pairings

by default, and when we consider any diagram which has a crossing, we may consider each

connected component in turn, and see that they are of the form D(K1, ..., Km, π) for some

choice of Ki and π. However, by the recursion relation, we then find that the coefficient of

D(K1, ..., Km, π) is 0, since all ways that it can be generated are included with the corre-

sponding coefficients in the error term on the left hand side, but so also is the − 1
n
of this

coefficient included n times in the form of

. . .

D(K1, ..., π)

placed at each of the legs. To ensure that this recursion relation can be solved, we note that,

by construction we have assumed that not exactly one of the ki is nontrivial (i.e. not simply

|), and so there is no self reference. In fact, we can actually see that D(K1, ..., π) must have

more crossings that each Ki. In the first case, it contains at least two Ki which themselves

have crossings, so the sum of their crossing is more than either individually. In the second

case, all of the Ki are trivial, and since the diagram is connected, there must be at least one

crossing (excepting the case when there are two trivial semi-knots, and no others, which is

our base case). As such we can filter the set of semi-knots by number of crossings, and find

that this recursion relation moves us up this filtration, hence it has a solution.
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Remark 2.3.4. Of course, it would be preferable to determine these coefficients explicitly

(so far in this work the only one we have determined if that of ⊕, since all others could be

generated in more than one way). In one direction (that of strong semi-knots), the difficulty

is in determining when two semi-links are equivalent. If we instead choose to consider weak

or fragile semi-knots, then there is additional complexity in the patterns of coefficients brought

about by the proliferation of distinct diagrams. Perhaps worse, including distinct weak semi-

knots that are equivalent strong semi-knots might make the question of convergence of the

sum more opaque.

Remark 2.3.5. This result is in principle only one step away from showing that qGn contains

a copy of L(Fn). All that is required is showing that the sums for τ(fn) converge. Once this is

known, then we would in fact have that f itself converges in qGn, because convergence of the

first 2 moments would imply convergence of f in L2. Then convergence of higher moments

would ensure that this element is in fact in Lp for all p, and thus is in the algebra.

Remark 2.3.6. There is no issue obvious to the author that would prevent a similar pro-

gram in reverse, finding a formula for q-Gaussians in L(Fn). Although it has not yet been

performed, on account of deadlines, this is an obvious next consideration.

2.4 Ancillary Diagrammatic Calculations

As addition partial progress toward understanding the formula generated in the previous

section, we can at least identify a simpler characterization of the diagrams that appear.

Lemma 2.4.1 (Braid Style Construction). The set of diagrams that appear in the above

are those that can be constructed using the following operations, beginning from the trivial

diagram, —. Strings should be envisioned vertically, as in a braid diagram.

1. We can create a new string in a cup shape ∪ with the bottom along an existing string.

2. We can permute any existing lines.
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3. We can cap off two lines that are separated by exactly one line by applying ∩ with it’s

vertex placed along the intermediate string.

Proof. We first show that all three operations can be obtained via D(K1, ..., π). Given K,

the diagram we wish to perform an operation on, we can perform arbitrary permutations via

K

π

. . .. . .

Since π can be any straight line pairing, it can be any permutation. Next we consider capping

off a pair of strings:

K

. . .. . .

I.e. by pairing with a ⊕, we can cap off lines. In a fairly similar construction, we can use a

pairing between ⊕ and two adjacent trivial strings to create a new string around an existing

one.

K

. . .. . .
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We must now show that all diagrams that can be obtained through D (beginning with only

the trivial diagram), can be obtained through these actions. Our hope is to perform an

induction, showing that if each Ki is constructible in this manner then so is D(K1, ..., π).

The pairing π is not hard to deal with: any pairings between Ki and Kj with i, j ̸= 1 can be

handled with cups, and after all appropriate strings have been created, we can then perform

arbitrary permutations, thereby realizing π. The only issue for handling the remaining Ki

is the fact that they can be constructed with these operations, but a priori only from their

base string (the one attached to the outer circle). However, we can deconstruct them in

reverse by simply starting with the appropriate number of strings, replacing cups with caps

and vice versa, and simply reversing permutations. This allows us to induct on the set of

semi-knots obtainable by D to create a family of semi-knots which are closed under D (the

minimal such family).

This is valuable primarily in that it lets us show that not all diagrams are included in

the family. For example:

Corollary 2.4.2. This family does not contain

Proof. Any homotopy of this semi-knot must have only one intersection, and must also have

in the y coordinate a highest maximum and lowest minimum (we perturb it slightly if there

are multiple at the same height). If we suppose that one of these presentations is of the form

described by the lemma, then it requires that the local maximum and local minimum both
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occur at an intersection, a contradiction.
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Chapter 3

Tracial Formulas, Diagrams, and

Conjugate Systems

In the end, although the q-Gaussians are interesting objects with several potential applica-

tions, they are still a fairly niche subject withing von Neumann algebras. Of greater interest,

perhaps, is the question of whether out objects of study (conjugate systems, free Gibbs po-

tentials, transport maps) can be more effectively considered in a more general framework.

Following the work of David Jekel on the model theory of von Neumann algebras, we try

to find tracial formulas for a few of these objects. Even the rudimentary formulae we find

produce some more general results about von Neumann algebras.

Conjugate variables are defined by the equation

⟨ξi, p⟩ = tr#(∂ip))

which we can interpret in a tracial formula setting. By either of two methods we can then

pursue a theorem showing that all noncommutative laws near enough the free semi-circle

law will have a conjugate system.

Theorem 3.0.1. Given a tracial von Neumann algebra W ∗(X1, ..., xn), if the law of {Xi} is
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less than 1 away from the semi-circle law (in operator norm with respect to the Chebyshev

basis), and if tr#(∂iTw) is l
2 for each i, then a conjugate system exists. Moreover, it is given

by a fixed tracial formula.

Proof. The main idea of the proof is simply to formally invert the metric as an operator.

As such, we have several options to proceed, most prominently Neumann series or Graham

Schmidt. To play more nicely with our above hypotheses, we will use the Neumann Series.

We consider the inner product on L2(W ∗(X)) as an operator, g, on l2(W ), where W is the

set of words on {1, ..., n}, and then taking

g

(∑
w

awTw

)
=
∑
v

tr(T ∗
wTv)Tv

At the semi-circle laws, this operator is the identity, since the Chebyshev polynomials are

an o.n. basis for L2(L(Fn)). Hence, the second hypothesis on the law of X is exactly that

this operator is less than 1 away from identity in operator norm. Thus it can be inverted by

a Neumann series. Thus we see that the tracial formula

∑
n≥0

∑
w,v∈W

(1− g)ntr#(∂iTw)Tv

The second hypothesis then guarantees that tr#(∂iTw) ∈ l2(W ), and so this sum converges

in L2(W ∗(X)). This gives a tracial formula for ξ with generators that are nearly semicircular

simply by leaving g as a matrix of trace polynomials gwv = tr(T ∗
wTv).

Moreover, we have an alternate formula that we can consider as a necessary condition

for the existence of ξ. We begin by defining the family of tracial formulas T̃w as follows.

First, choose an ordering on the words w ∈ W . For now, we will choose an arbitrary (well)
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ordering such that |w| > |v| implies w > v. Then take T̃∅ = 1 and inductively define

T̃w = Tw −
∑
v<w

tr(T̃ ∗
v Tw)

tr(T̃ ∗
v T̃v)

T̃v

In any von Neumann algebra these will now evaluate to orthogonal element of the algebra

(taking the convention that (T̃v(X1, ..., Xn) = 0 simply removes that term from the sum).

This orthogonality allows the formula

ξi =
∑
w

tr#(∂iT̃w)

tr(T̃ ∗
wT̃w)

T̃w

This formula is a priori more difficult to garner estimates from, however, it allows for the

following proposition:

For any X such that W ∗(X) has a conjugate system, the above tracial formula must

converge in L2.

Proof. The above formula is simply a construction of an orthogonal family of elements of any

W ∗(X), which further span L2(W ∗(X)), since their span is equal to that of the Tw, which

includes all noncommutative polynomials. We will adopt the convention that T̃v(X) = 0

simply removes the term from the sum, since the projection onto the zero vector is zero.

Removing these terms therefore produces an orthogonal basis for L2(W ∗(X)) and the terms

that remain are exactly the coordinates of ξ in this basis, and so must converge.

One might reasonably wonder if the above formula depends on the ordering we choose

on words. This is answered at least in part by

Lemma 3.0.2. The tracial formula above is independent of finite reorderings of W .

Proof. Consider two orderings of W which agree after some initial segment ω. Then since

ω is finite, we can compute the coefficient of Tw over terms w ∈ ω simply using Cramer’s

rule.
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Chapter 4

Moment measures and Optimal

Transport

4.1 Main Result for One Variable

In the case of a single (non-commutative) random variable X in the nc probability space

(M, τ), the law of X can be given as a functional on the space of polynomials in a single

variable by letting the law τX(p) for a polynomial p(z) be τX(p) = τ(p(X)). Alternatively

we can view the law of X as a probability measure µ, using positivity and the Riesz-Markov

theorem.

Suppose X has law τ with corresponding measure µ. Then if τ is a free moment law,

there exists Y with law τu such that X = (Du)(Y ). As the cyclic gradient of a function in

one variable is equal to the ordinary derivative, the pushforward condition is equivalently

X = (u′)(Y ). If µ is the measure corresponding to τ and νu is the measure corresponding to

τu, then we have µ = (u′)#νu.

We refer to the measures associated to free Gibbs laws in one dimension as free Gibbs

measures. The authors emphasize that the idea of free Gibbs measures is not wholly novel;

Indeed, free Gibbs laws were defined earlier (see Def 1), it was known (see [Voi02],[Voi94])
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that χ(τ) reduces in the single variable case to log energy, and minimizers of −χ(τ) + τ(U)

have already been studied, e.g. in ([dPS95]).

Definition 4.1.1. The free Gibbs measure νu associated to the convex function u : R → R

is the measure corresponding to the free Gibbs law τu, if it exists. In other words, νu is the

minimizer of

∫∫
log |s− t| dµ(s) dµ(t) +

∫
u(s) dµ(s)

if it exists.

Definition 4.1.2. A real probability measure µ is a free moment measure if

µ = (u′)#νu

for some convex function u : R → R.

Our main result in this section is Theorem 4.1.8 which implies that if µ is a probability

measure on R other than δ0 with finite second moment and barycenter zero, there exists a

convex u : R → R such that µ = (u′)#ρ and ρ = νu, where νu is the free Gibbs measure

associated to the potential u. Observe also that if µ is centered, then umust have a derivative

which changes signs, and so u(x) → ∞ as both x → ±∞. Through prior understanding of

free Gibbs measures, we’ll also have that ρ is absolutely continuous with respect to Lebesgue

measure and 2πH(ρ)(x) = u′(x) for any x ∈ supp(ρ). Here Hρ is the Hilbert transform of

ρ, given by the principal value integral

Hρ(t) =
1

π
PV

∫
R

1

t− x
dρ(x).

For a brief computational guide to solving 2π(Hρ)(x) = u′(x) for x ∈ supp(ρ) for a fixed

u, see the appendix. See also [dPS95] for more examples.
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In the classical case of moment measures, we are searching for ρ = 1
Z
e−u dx, the log

concave Gibbs measure with real convex potential u satisfying (∇u)#ρ = µ for some µ. Here

Z is the constant that makes ρ a probability measure.

It is possible to find such ρ when µ has barycenter zero and is not supported on a

hyperplane (which for R1 only means it isn’t δ0) [CEK13]. The measure ρ can be found by

considering the functional

∫
ρ log ρ dx+ 1

2

∫
x2ρ(x) dx+ 1

2

∫
x2 dµ− 1

2
W 2

2 (ρ, µ) =

∫
ρ log ρ dx+ T (ρ, µ)

=: E(ρ) + T (ρ, µ)

where W2 is the Wasserstein distance between ρ and µ, T (ρ, µ) is the maximal correlation

functional defined as follows and E is the negative differential entropy, E(ρ dx) =
∫
ρ log ρ dx.

The measure ρ satisfying (∇u)#ρ = µ and ρ = 1
Z
e−u dx is then the minimizer of E(ρ) +

T (ρ, µ) when such a ρ exists [San15a].

Definition 4.1.3 ([San15a]). The maximal correlation functional T (ρ, µ) is given by

T (ρ, µ) = sup

{∫
x · y dγ | γ ∈ Π(ρ, µ)

}
=

1

2

∫
x2 dρ+

1

2

∫
x2 dµ− 1

2
W 2

2 (ρ, µ)

where Π(ρ, µ) is the set of transport plans, i.e. probability measures on Rn × Rn with

marginals ρ and µ.

We replace the entropy term of E(ρ) + T (ρ, µ) with free entropy, which in the 1-D case

is the log energy (up to a constant) [Voi93]:

L(ρ) =

∫∫
− log |s− t| dρ(s) dρ(t).

This is justified by the following proposition:
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Proposition 4.1.4 ([San15a] p. 14). For V convex, the minimizer of the functional

E(ρ) +
∫

V ρ dx =

∫
ρ log ρ+ V ρ dx

over ρ probability measures with finite second moment is the density of the Gibbs measure

ρ = 1
Z
e−V .

As free entropy in the 1-D case is log energy up to a constant, we recall that the minimizer

of the functional

L(ρ) +

∫
V dρ

is the free Gibbs measure νV if it exists. Thus we see how E and L play analogous roles for

Gibbs measures and free Gibbs measures.

Following this analogy, we define the following functional:

F(ρ) = L(ρ) + T (ρ, µ). (4.1)

Throughout this section, ρ will be assumed to have finite second moment unless otherwise

specified.

Following [San15a], we can rewrite T (ρ, µ) a few ways. First, we use the maximal corre-

lation formulation:

T (ρ, µ) = sup

{∫
x · y dγ(x, y)

∣∣∣∣ γ ∈ Π(ρ, µ)

}

where Π(ρ, µ) = {γ ∈ P(R × R) | (πx)#γ = ρ, (πy)#γ = µ} is the space of measures with

marginals ρ and µ. Here P(X) denotes the space of probability measures on X.

This maximization problem has an equivalent dual problem, a minimization with the
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same optimal value:

T (ρ, µ) = min

{∫
u dρ+

∫
u∗ dµ

∣∣∣∣ u convex, lower semicontinuous

}
.

This lets us rewrite (4.1) as

F(ρ) = min


∫∫

− log |s− t| dρ(s) dρ(t) +
∫

u dρ+

∫
u∗ dµ︸ ︷︷ ︸

G(ρ,u)

 (4.2)

minimizing over the set where ρ ∈ P(R), Eρ(|x|) < ∞, and u is convex and lower semicon-

tinuous. Here u∗ denotes the Legendre transform

u∗(y) = sup
x

(x · y − u(x)) .

We’ll define G(ρ, u) =
∫∫

− log |s−t| dρ(s) dρ(t)+
∫
u dρ+

∫
u∗ dµ and so F(ρ) = minu G(ρ, u).

By minimizing G(ρ, u) first in u for each ρ, we can appeal to Santambrogio’s analysis of

the maximal correlation functional and deduce that (u′)#ρ = µ [San15a]. Next, for optimal

u, minimizing in ρ lets us rely on [dPS95] to see that ρ = νu, the free Gibbs measure

associated to u. This is explained in further detail in Theorem 4.1.8.

We now adapt the proof from [San15a] to show that F has a minimizer. First we prove

weak lower semicontinuity of the L(ρ) term and show that it’s bounded below by an ex-

pression involving the first moment of ρ, a bound we will combine with a known bound on

T (ρ, µ). We then prove a kind of convexity of L(ρ) in the Wasserstein space W2. We use

this to deduce the existence and uniqueness of the minimizer of F(ρ) = L(ρ) + T (ρ, µ).

Lemma 4.1.5. Assume that ρ is a probability measure with finite first moment. Then the

log energy L(ρ) satisfies the bound L(ρ) ≥ −
√
2
∫
|s| dρ(s).

Furthermore, when ρn and ρ are probability measures with ρn ⇀ ρ weakly and
∫
|x| dρn ≤

C for some C > 0 and all n ∈ N, then L(ρ) ≤ lim infn→∞ L(ρn). In short, weak lower
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semi-continuity of L if the first moments are uniformly bounded.

Proof. To bound L(ρ), we split it into three terms with a method inspired by [San15a]. In

that paper, Santambrogio splits up the integrand of the entropy term into three parts using

a Legendre transform of x log x for a key inequality.

We need an analogous inequality:

−1 + log

(
1

h

)
− log |x| ≥ −|x|h

for any x ̸= 0 and y > 0. This inequality can be derived from the Legendre transform of

− log x, the analogous term in our case, but it is more easily derived from an application of

1 + log a ≤ a where a = |x|h.

With this inequality, we consider the decomposition:

L(ρ) =

∫∫
−1 + log

(
1

h

)
− log |s− t|+ h|s− t| dρ(s) dρ(t)∫∫

− log

(
1

h

)
dρ(s) dρ(t) +

∫∫
1− |s− t|h dρ(s) dρ(t)

= I + II + III.

While this decomposition holds regardless of h > 0, we’ll select h inspired by the proof in

[San15a]. We choose

h(s, t) = e−
√

|s−t|.

Observe that term (I) has a positive integrand by the inequality mentioned above. Since

the integrand is continuous and bounded below, we have that (I) is lower semi-continuous

with respect to weak convergence of measures.
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Next, we bound the second term

II =

∫∫
− log

(
1

e−
√

|s−t|

)
dρ(s) dρ(t) =

∫∫
−
√
|s− t| dρ(s) dρ(t)

≥ −

√∫∫
|s− t| dρ(s) dρ(t)

≥ −

√∫∫
|s|+ |t| dρ(s) dρ(t) = −

√
2

∫
|s| dρ(s)

where the first inequality follows by Cauchy-Schwarz and the fact that ρ is a probability

measure.

Note that
√
x/|x| → 0 as x → ∞. We’ll use this to show that (II) is weakly lower

semi-continuous for ρn having bounded first moments.

Observe that as
∫
|x| dρn ≤ C, we have

∣∣∣∣∫
[−M,M ]c

−
√
x dρn

∣∣∣∣ ≤
√
M

M

∫
[−M,M ]c

|x| dρn ≤ C√
M

for any M > 1. Fix ϵ > 0. Thus we may choose M so large that
∣∣∣∫[−M,M ]c

−
√
x dρn

∣∣∣ < ϵ.

We now write

∫∫
−
√

|s− t| dρn(s) dρn(t) =
∫∫

|s−t|>M

−
√

|s− t| dρn(s) dρn(t)

+

∫∫
−
√

|s− t|χ|s−t|≤M dρn(s) dρn(t).

The first term is bounded in absolute value by ϵ. As the second term is integration against a

lower semi-continuous functions which is bounded from below, it is a lower semi-continuous

function with respect to weak convergence of measures.

Combining these facts,

∫∫
−
√

|s− t| dρ(s) dρ(t) ≤ lim inf
n→∞

∫∫
−
√
|s− t| dρn(s) dρn(t) + 2ϵ
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for any ϵ > 0 and thus we have the desired weak lower semi-continuity of this term.

Finally we write

III =

∫∫
1− |s− t|e−

√
|s−t| dρ(s) dρ(t)

and observe that the integrand is bounded between 0 and 1, so 0 ≤ III ≤ 1. The integrand

being continuous and bounded implies that this term is continuous with respect to the weak

convergence of measures.

Combining these inequalities, we have

L(ρ) = I + II + III ≥ 0−

√
2

∫
|s| dρ(s) + 0

as desired.

Furthermore, we have the desired weak lower semi-continuity in each term, and so it

holds that L(ρ) ≤ lim infn→∞ L(ρn) when the ρn all have bounded first moments.

We will need another lemma to obtain uniqueness of the minimizer. We’ll show that L(ρ)

is displacement convex, i.e., convex along geodesics in the Wasserstein space W2.

Lemma 4.1.6. The functional L(ρ) is displacement convex. Specifically, if ρt is any geodesic

connecting ρ0 to ρ1 in the Wasserstein space W2, then L(ρt) is convex.

Furthermore, L is strictly displacement convex for measures which are not translates.

That is, if ρ0 and ρ1 are not translates of each other, by which we mean one is not the

pushforward of the other under a map of the form x 7→ x + c, then L(ρt) < (1 − t)L(ρ0) +

tL(ρ1).

Proof. Let ρ0 and ρ1 to be two measures with finite second moments (so that they’re in

W2). Then let γ be the optimal transport plan between them (see [San15b] or [Vil08] for a

thorough introduction to these ideas), and consider ρt = πt#(γ) where πt(x, y) = (1−t)x+ty.

Note that ρt is the geodesic connecting ρ0 and ρ1 in W2, and all geodesics have this form

57



[San15b, Chap. 5]. We then observe

L(ρt) =

∫∫
− log |s− r| dρt(s) dρt(r)

=

∫∫
− log

∣∣(1− t)x+ ty − (1− t)x′ − ty′
∣∣ dγ(x, y) dγ(x′, y′)

=

∫∫
− log

∣∣t(y − y′) + (1− t)(x− x′)
∣∣ dγ(x, y) dγ(x′, y′)

By the convexity of − log, the integrand is strictly less than

− ((1− t) log |x− x′|+ t log |y − y′|)

unless x − y = x′ − y′. Thus L(ρt) is strictly less than (1 − t)L(ρ0) + tL(ρ1) unless γ is

supported on a translate of the diagonal, which can only occur if ρ0 and ρ1 are translates of

one another.

We aim to minimize F , but we need to show now that the minimizer will have finite

second moment.

Proposition 4.1.7. Let u : R → R be convex and have a minimum so that u(x) ≥ a|x|+ b

for some a > 0 and real b.

Suppose ρ is the free Gibbs measure associated to u and has finite first moment. Then ρ

is compactly supported and absolutely continuous with respect to Lebesgue measure. Further-

more, 2πHρ = u′ on the support of ρ.

Proof. By [dPS95, Remark 3] and noting that the function u satisfies their condition (1.2),

Theorem 1 of [dPS95] guarantees that ρ is absolutely continuous with respect to Lebesgue

measure and that the support of ρ is contained in the set of points such that

h(x) =

∫
− log |x− y| dρ(y) + u(x)

is minimal. We can also see this by taking a first variation of the functional
∫∫

− log |s −
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t| dρ(s) dρ(t) +
∫
u(t) dρ(t) and considering the optimality conditions. Theorem 1 of that

paper also guarantees that 2πHρ = u′ on the support of ρ, noting that β = 2 for our case in

[dPS95, Eqn. 1.17], although using absolute continuity we could also get this by considering

optimality conditions for the functional defining νu and differentiating under the integral.

Since U(x) ≥ a|x|+ b, − log is non-increasing, and z 7→ log(1 + z) is subadditive on the

positive reals, we have

h(x) ≥
∫

− log |x− y| dρ(y) + a|x|+ b

≥
∫

− log(|x|+ |y|+ 1) dρ(y) + a|x|+ b

≥
∫

− log(|x|+ 1) dρ(y) +

∫
− log(|y|+ 1) dρ(y) + a|x|+ b

≥ − log(|x|+ 1) +

∫
− log(|y|+ 1) dρ(y) + a|x|+ b.

Note that the finite first moment of ρ implies
∫
− log(|y| + 1) dρ(y) > −∞, since log has

sublinear growth at ∞. Thus h(x) → ∞ as x → ∞ or x → −∞. Note that h(x) isn’t

constantly ∞ as its integral gives the functional minimized by ρ. Therefore the set where h

is its minimum value is compact, so supp(ρ) is compact.

We now show the existence of a minimizer of F and prove the main theorem of this

section.

Theorem 4.1.8. Let µ ̸= δ0 be a probability measure with finite second moment. The

functional F(ρ) = L(ρ) + T (ρ, µ) has a minimizer in P2, the space of probability measures

with finite second moment, which is unique up to translation, i.e., unique up to a pushforward

by the map x 7→ x+ c.

The minimizer ρ̂ is also absolutely continuous with respect to Lebesgue measure, has

compact support, and satisfies 2πHρ̂ = u′ on its support.

Furthermore, the following are equivalent:

1. ρ̂ is the unique centered minimizer of F(ρ)
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2. ρ̂ satisfies ρ̂ = νu for some convex u and (u′)#ρ̂ = µ.

Proof. First we’ll show that F has a minimizer unique up to translation.

Let ρn be a minimizing sequence of probability measures with finite first moment. Note

that without loss of generality we may assume that the ρn are centered, as F is invariant

under translation.

By [San15a], we have that T (ρn, µ) ≥ c
∫
|x| dρn(x) for some c > 0 depending only on

µ, since µ is not supported on a hyperplane, which here means µ ̸= δ0. Applying Lemma

4.1.5, we have L(ρn) ≥ −
√

2
∫
|x| dρn(x). Combining these yields a uniform bound on the

first moment of the ρn, which implies the sequence is tight. By passing to a subsequence, we

can assume that ρn ⇀ ρ̂ weakly for some probability measure ρ̂. Note also that ρ̂ ∈ P1, the

space of probability measures with finite first moment. This is because integration against

|x|, a lower semi-continuous function bounded from below, is a weakly lower semi-continuous

functional.

By weak convergence of ρn ⇀ ρ̂ and a uniform bound on the first moments, Lemma

4.1.5 gives us that L(ρ̂) ≤ lim infn→∞ L(ρn). As we know that T (ρ, µ) is weakly lower

semi-continuous in ρ by [San15a], we have that ρ̂ is a minimizer of F .

We know that ρ̂ has finite first moment, but we need to show now that it has finite second

moment as well. As part of showing this, we’ll see that it must satisfy ρ̂ = νu for some convex

u with (u′)#ρ̂ = µ, so we’ll have (1) implies (2). Afterwards we will show uniqueness of the

minimizer of F and then prove (2) implies (1).

Take u to be a convex lower semi-continuous function which realizes the dual formulation

of T (ρ̂, µ), that is, T (ρ̂, µ) =
∫
u dρ̂ +

∫
u∗ dµ. Additionally, we know that (u′)#ρ̂ = µ

[San15a].

Simplifying F using u now yields

F(ρ̂) =

∫∫
− log |s− t| dρ̂(s) dρ̂(t) +

∫
u dρ̂+

∫
u∗ dµ
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We consider a new functional

G(ρ) =
∫∫

− log |s− t| dρ(s) dρ(t) +
∫

u dρ+

∫
u∗ dµ

and observe that since the first term is L(ρ) latter two terms are larger than T (ρ, µ), we

must have G(ρ) ≥ F(ρ̂). Therefore ρ̂ minimizes G.

However, the final term does not depend on the measure, so K(ρ) = L(ρ) +
∫
u dρ is

still minimized at ρ̂. Thus ρ̂ = νu by definition of νu. And as ρ̂ has finite first moment,

Proposition 4.1.7 implies that ρ̂ has compact support, and thus all its moments are finite

and in particular ρ̂ ∈ P2. We also get that 2πHρ̂ = u′ on the support of ρ̂.

Thus we now have that F has a minimizer with finite second moment, and (1) implies

(2). Let’s now show that the minimizer to F is unique.

To show uniqueness up to translation, and thus uniqueness of a centered minimizer,

we invoke the displacement convexity of both L using Lemma 4.1.6 and T using [San15a,

Prop. 3.3]. Combining these will give displacement convexity of F . Note that displacement

convexity of T in [San15a, Prop. 3.3] is shown between two measures which are absolutely

continuous with respect to Lebesgue measure, but the result holds just as well with no

modifications when the initial measure is non-atomic and thus optimal transport maps from

it still exist in the space W2.

Furthermore, by Lemma 4.1.6, we have strict displacement convexity of L except between

translates. In particular, if ρ0 and ρ1 are minimizers and not translates of each other, then

on the geodesic between them, there is some ρt with a strictly smaller value of L and a value

of T no larger than that of ρ0 or ρ1. This is a contradiction, so any two minimizers of F

must be translates of each other.

Finally, let’s show (2) implies (1). Let ρ̂ satisfy ρ̂ = νu with u convex and (u′)#ρ̂ = µ.

We intend to show that ρ̂ is a minimizer of F(ρ), where we note that uniqueness up to

translation is already guaranteed. Also by the functional that defines νu not being +∞, we
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know that ρ̂ is non-atomic.

With ρ̂ as above, let ρ be another probability measure with finite second moment, and f

be the transport map between ρ̂ and ρ and let ρt = (ft)#ρ̂ where ft = (1− t)I + tf .

The map t 7→ F(ρt) is convex, so it is enough to show that its derivative at zero is

non-negative. We will compute the derivative of the log-energy term and borrow Santam-

brogio’s calculation for T , which we observe does not require absolute continuity but only

the existence of an optimal transport map [San15a, Prop. 3.3]. We calculate

d

dt

∣∣∣
t=0

L(ρt) =
d

dt

∣∣∣
t=0

∫∫
− log |x− y| dρt(x) dρt(y)

=

∫∫
− d

dt

∣∣∣
t=0

log |tf(x) + x− tx− tf(y)− y + ty| dρ̂(x) dρ̂(y)

= −
∫∫

f(x)− x− (f(y)− y)

x− y
dρ̂(x) dρ̂(y)

= −
∫∫

2
f(x)

x− y
− 1 dρ̂(x) dρ̂(y)

= 1− 2π

∫
f(x)Hρ̂(x) dρ̂(x)

= 1−
∫

f(x)u′(x) dρ̂(x).

The last line follows by recalling 2πHρ̂ = u′ on supp(ρ̂).

Note that for the T term, we have that d
dt

∣∣
t=0

T (ρt, µ) is bounded below by
∫
(f(x) −

x)u′(x) dρ̂(x) [San15a, Prop. 3.3]. Thus combining these two terms, we find that

d

dt

∣∣∣
t=0

F(ρt) ≥ 1−
∫

xu′(x) dρ̂(x) ≥ 0

where the final inequality follows immediately from Schwinger-Dyson for ρ̂ = νu (in partic-

ular, τ(xu′) = τ ⊗ τ(1), which is an application of 2πHρ̂ = u′ on the support of ρ̂). Thus,

using the convexity of the functional and noting that the above holds for any ρ, we see that

ρ̂ minimizes F .

We include some examples of free moment measures.
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The semicircular distribution µ equals ν1
2
x2
, so µ is a free moment measure with potential

u(x) = 1
2
x2, just as the Gaussian is a (classical) moment measure with quadratic potential.

This is not surprising, as the semicircle law plays an analogous role in free probability to the

Gaussian law in classical probability.

The next simplest example is µ = 1
2
δ−1 +

1
2
δ1 which has the potential u(x) = 1

2
|x|, since

νu is necessarily centered when u is even, and thus (u′)#νu = µ. In this particular case, the

corresponding measure is νu(x) =
1
π
log
∣∣∣1+√

1−x2

x

∣∣∣ (supported on [−1, 1]).

Given the potential x4/4, we calculate the free Gibbs measure to be

νu(x) =
r3

4π
(2x2 + 1)

√
1−

(x
r

)2
dx

where

r =
2
4
√
3

is the radius of the support. When we then push this forward by u′ = x3, we get

µ(x) =
3r3

4π
(2 + x−2/3)

√
1− x2/3

r2
dx

Thus µ is a free moment measure with potential x4/4.

Note that translations u(x + c) + d of a potential yield the same free moment measure

as u does.

Suppose µ has potential u such that (u′)#νu = µ. Let’s consider u(x/c) for c > 0. We’d

like to find the corresponding free moment measure. First, let’s find the free Gibbs measure.

If f(x) is the density for an optimizer for Fu(ρ), then cf(cx) is the density for the
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optimizer of Fu(cx)(ρ), and vice-versa. To see this we change variables

∫∫
− log |s− t|cf(cs)cf(ct) ds dt+

∫
u(ct)cf(ct) dt

=

∫∫
−(log |x− y| − log c)f(x)f(y) dx dy +

∫
u(x)f(x) dx

= Fu(f(x) dx) + constant

and note that the constant log c is irrelevant to maximization or minimization. This tells

us that if u is replaced with u(cx), the corresponding free Gibbs measure νu = f(x) dx is

replaced with cf(cx) dx.

As a consequence, for v(x) = u(cx), we have that for any g

∫
g(x) d

(
v′#νv

)
=

∫
g(cu′(cx))cf(cx) dx

=

∫
g(cu′(t)) dνu(t)

and so (v′)#νv = c# ((u′)#νu). Thus the new measure is a dilated copy of the old measure,

scaled by a factor of c.

4.2 Multivariable Case

Instead of generalizing the variational argument, we will be applying the methods of Shlyakht-

enko and Guionnet in [GS12]. These methods will allow us to deal with free Gibbs laws

which are near the free semicircular law (which is the free Gibbs law for the potential

1
2
(X2

1 + ...+X2
n)). In order to state out main theorem, we recall the norms || · ||A defined on

nc power series as

∣∣∣∣∣∣∑
I

aIXI

∣∣∣∣∣∣
A
=
∑
I

|aI |A|I|

where I ranges over multi-indices, and |I| is the length of I (see [GMS07]).
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Theorem 4.2.1. There exist a C and an ϵ such that, if W (X1, ..., Xn) is a self adjoint nc

power series containing only terms of even degree, and ||W ||C < ϵ, then there is a corre-

sponding power series V (Y1, ..., Yn) such that, when Y has the free Gibbs law associated to

1
2
|Y |2 + V , then Y +DY V (Y ) has the free Gibbs law associated to 1

2
|X|2 +W .

This is precisely the condition that the free Gibbs law for 1
2
|Y |2 + V (Y ) pushes forward

to that of 1
2
X2 +W (X) along D(1

2
|Y |2 + V (Y )).

In fact, we must take this opportunity to elaborate on the existence of free Gibbs laws.

In this perturbative regime, we cannot rely on convexity to ensure the existence of solutions

to Schwinger-Dyson, no matter how small the perturbation. Indeed, consider the single

variable case and W = ϵX3. The functional to minimize in τ is χ(τ) + τ(X2 + W ). The

value can be reduced by taking any measure which has finite free entropy and translating

it left, reducing
∫
W . Since there is no limit to how far we can translate it, and since this

effect will eventually overpower the increase in
∫
X2, we find that there can be no minimum.

Instead, we must artificially institute a cutoff, requiring that the norm of our random variable

is less than T > 2. Specifically, we invoke a slight modification of ([GMS06]):

Proposition 4.2.2. For each cutoff T > 2, we have that there is an R > 0 such that

||W ||T < R implies that there exists a unique solution, τ , to the bounded Schwinger-Dyson

equation

τ(P · (X +DW (X))) = τ ⊗ τ × Tr(JP )

|τ(Xi1 , ..., Xik)| ≤ T k

We will split the proof of Theorem 4.2.1 into two main steps—deriving a differential equa-

tion for V in which all terms are cyclic derivatives, and then “integrating” that equation to

find a map to which we can apply the contraction mapping theorem to find a solution. Fol-

lowing the proof, we will compare the restrictions in this result to those in the commutative

case and discuss potential directions for extension.
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The first step is to rephrase the Schwinger-Dyson equation from an integral equation to

a differential equation. To do so, it will be useful to define inner products associated to τ :

⟨a, b⟩M = τ(a∗b)

⟨a⊗ b, c⊗ d⟩M⊗Mop = τ(a∗c)τ(b∗d) = τ ⊗ τ((a⊗ b)∗c⊗ d)

⟨A,B⟩Mn(M⊗Mop) = τ ⊗ τ (Tr(A∗B))

We will omit the subscripts if the ambient space can be inferred. Thus the Schwinger-

Dyson equation can be written as

⟨DU, P ⟩ = ⟨1, JP ⟩, i.e.

⟨DU, P ⟩ = ⟨J∗(1), P ⟩, i.e.

⇒ DU = J∗(1)

We will also need some additional operators on nc power series, S, N , Σ (the inverse of

N ), and Π. These are linear operators on power series in Y , which act on monomials as

follows. The cyclic symmetrization operator, S, is given by

S(xi1 ...xin) =
1

n

n∑
j=1

xij ...xinxi1xij−1
,

on constant terms it acts as the identity. The number operator N is given by

N (xi1 ...xin) = nxi1 ...xin ,

Finally,

Σ(xi1 ...xin) =
xi1 ...xin

n
,
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is defined on power series with no constant term and is the inverse of N on that space. Π is

the projection onto power series with no constant term.

With these operators defined, we may state the following lemma.

Lemma 4.2.3. V satisfies the conclusion of Theorem 3.1 if and only if

SΠ
[
W (Y +DV ) + (N − 1)V +

|DV |2

2
− (1⊗ τ + τ ⊗ 1)Tr(log(1 + JDV ))

]
= 0

Proof. Our aim is to express the Schwinger-Dyson equation of the pushforward as a single

cyclic derivative. For the purpose of keeping our derivatives clear, we will define the variable

X = Y +DV (Y ). We then have that

Y +DY V (Y ) = J∗
Y (1) (4.3)

and want to understand what condition on V ensures Schwinger-Dyson for X, i.e.

X +DXW (X) = J∗
X(1). (4.4)

Substituting the definition of X into (4.4) gives

Y +DY V (Y ) +DXW (Y +DY V (Y )) = J∗
X(1),

to which we apply the chain rule found in [GS12, Lemma 3.1],

J∗
X(1) = J∗

Y

(
1

1 + JYDY V (Y )

)
,

to arrive at the equation

Y +DY V (Y ) +DXW (Y +DY V (Y )) = J∗
Y

(
1

1 + JYDY V (Y )

)
. (4.5)

67



Similarly, we apply the chain rule for the cyclic derivative:

DY = (1 + JYDY V )DX ,

obtaining

Y +DY V (Y ) + (1 + JYDY V )−1DYW (Y +DY V (Y )) = J∗
Y

(
1

1 + JYDY V (Y )

)
. (4.6)

In this equation, 1 is the identity matrix in Mn(M ⊗M op), the n× n matrix with 1⊗ 1

in all its diagonal entries. We know that 1+JYDY V is invertible in this space provided that

JYDY V has norm less than 1. In our next step, we will be restricting V to a smaller set still,

so invertibility is guaranteed.

As X has been removed from our equation and all derivatives are with respect to Y now,

we will assume this going forwards and neglect the subscripts. We expand the right hand

side of (4.5) as

J∗
(

1

1 + JDV

)
= J∗(1)− J∗

(
JDV

1 + JDV

)
= Y +DV − J∗

(
JDV

1 + JDV

)
,

Performing the resulting cancellation and multiplying (4.6) by (1 + JDV ) gives

DW (Y +DV ) = −(1 + JDV )J∗
(

JDV

1 + JDV

)
(4.7)

We will expand the right hand side of (4.7) and then simplify with the following identity

from [GS12, Lemma 3.4]:

1

m+ 1
D
[
(τ ⊗ 1 + 1⊗ τ)Tr(Jfm+1)

]
= −J∗(Jfm+1) + JfJ∗(Jfm). (4.8)
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Expanding the right hand side of (4.7) yields

∞∑
n=1

(−1)nJ∗(JDV n) + (−1)nJDV J∗(JDV n)

= −J∗(JDV ) +
∞∑
n=1

(−1)n(JDV J∗(JDV n)− J∗(JDV n+1))

= −JDV J∗(1) +D

[
(1⊗ τ + τ ⊗ 1)Tr

(
JDV +

∞∑
n=1

(−1)n

n+ 1
JDV n+1

)]

= −JDV J∗(1) +D [(1⊗ τ + τ ⊗ 1)Tr(log(1 + JDV ))]

= −JDV · Y − JDV · DV +D [(1⊗ τ + τ ⊗ 1)Tr(log(1 + JDV ))]

We’re left with

D(W (Y +DV )) = −JDV · Y − JDV · DV +D [(1⊗ τ + τ ⊗ 1)Tr log(1 + JDV )] (4.9)

which nearly expresses the equation as a total (cyclic) derivative. All that remains is writing

the first two terms of the right hand side of (4.7) above as cyclic derivatives. Analyzing the

remaining two terms of (4.7), we make use of the operators defined earlier, noticing

Jg · Y = N g

for any g. Thus, when g = DV , we get

JDV · Y = NDV = D(N − 1)V

We can also see that

JDV · DV = D
(
D1V

2 +D2V
2 + ...+DnV

2

2

)
= D

(
|DV |2

2

)
.
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So equation (4.7) can be rewritten as

D
[
W (Y +DV ) + (N − 1)V +

|DV |2

2
− (1⊗ τ + τ ⊗ 1)Tr(log(1 + JDV ))

]
= 0 (4.10)

Since D only sees the cyclically symmetric part of power series, and does not see constants,

this is equivalent to the desired equation

SΠ
[
W (Y +DV ) + (N − 1)V +

|DV |2

2
− (1⊗ τ + τ ⊗ 1)Tr(log(1 + JDV ))

]
= 0

Thus concludes this lemma as well as the first step in the proof of Theorem 4.2.1, deriving

a differential equation for V in which all terms are cyclic derivatives.

We proceed to the second step in the proof of Theorem 4.2.1, where we “integrate” the

above equation to find a map to which we can apply the contraction mapping theorem in

order to find a solution.

We rephrase the differential equation in Lemma 4.2.3:

SΠNV = SΠ
[
−W (Y +DV ) + V − |DV |2

2
+ (1⊗ τ + τ ⊗ 1)Tr(log(1 + JDV ))

]
. (4.11)

It will be more useful to solve for Ṽ = SΠNV , which must satisfy

Ṽ = SΠ

[
−W (Y +DΣṼ ) + ΣṼ − |DΣṼ |2

2
+ (1⊗ τ + τ ⊗ 1)Tr(log(1 + JDΣṼ ))

]
(4.12)

Whenever necessary, we will denote the right hand side by F (ΣṼ ). We will show that

there is a set on which F (Σ·) is a contraction. Along the way, we must prove two lemmas.

Lemma 4.2.4. F (Σ·) preserves evenness of power series. In other words, if U has only

terms of even degree, then F (ΣU) also has only terms of even degree.

In turn, proving this requires an easy proposition:
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Proposition 4.2.5. If U is a potential which contains only even terms, then τU(P ) = 0 for

any polynomial P which contains only odd terms.

Proof. This is a corollary of uniqueness of free Gibbs measures, [Gui06]. In particular, if X

has free Gibbs law τU , then Y = −X also satisfies

τ(P (Y ) · DYU(Y )) = −τ(P (−X) · DXU(X))

= −τ ⊗ τ(Tr(JXP (−X))) = τ ⊗ τ(Tr(JY P (Y )))

So by uniqueness, −X has the same law as X, yet τ(P (X)) = −τ(P (−X)) for any odd

polynomial, so this must be zero.

Proof of Lemma 3.4. We must check that each term preserves evenness. The term W (Y +

DΣV ) certainly does, since all terms in W are even, and all terms in Y + DΣV are odd.

The term ΣV is most immediate of all, and every term in |DΣV |2 is a product of two odd

factors. To see that the log term also preserves this, we expand it into its Taylor series

∑
n

(−1)n

n
(1⊗ τ + τ ⊗ 1)Tr((JDΣV )n)

Considering now a fixed n, we see that each term in JDΣV is of the form a⊗ b where the

degrees of a and b sum to an even number. The same is thus true of all powers. If (1 ⊗ τ)

or (τ ⊗ 1) were to produce a term with odd degree, it would be multiplied by τ(a) where a

also had odd degree, and so, by the proposition, would be zero.

We note that the log(1+JDΣṼ ) and W (Y +DΣV ) terms produce the requirement that

W be even. If V contains any terms of odd degree, both of these terms can produce linear

(degree one) terms in F (ΣV ) on which ΣV is not strictly contractive.

Next, we introduce the sets that we will consider as domains for F (Σ·): E ∩BA,R where

E is the space of nc power series with only even, positive degree terms, and BA,R is the ball

of || · ||A radius R. The previous lemma shows that F (Σ·) preserves E. We also need
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Lemma 4.2.6. If A ≥ 1, F (Σ·) has a Lipschitz constant on BA,R ∩ E bounded above by

1

2
+

∣∣∣∣∣
∣∣∣∣∣∑

i

∂iW

∣∣∣∣∣
∣∣∣∣∣
B⊗B

+R +
4R

A2 − 2R

where

||
∑
I,J

aIbJXI ⊗XJ ||A⊗B =
∑
I,J

|aI ||bj|A|I|B|I|

and, in the above bound, B = A+R.

Moreover

||F (Σ·)||A ≤ ||W ||B + ||V ||A
(

1
2
+R +

4R

A2 − 2R

)
Proof. Most of this proof can be reduced to an appeal to Cor. 3.12 in [GS09]. However, two

terms deserve a comment.

Unlike [GS09], our F contains a ΣV :

||ΣV − ΣU ||A ≤ 1

2
||V − U ||A

Which follows immediately from the fact that all terms in U and V are of order 2 or greater.

Additionally, our bound for the log term is different from that in [GS09] so we briefly

comment on it’s proof. We begin by Taylor expanding the log term as

∑
n

(−1)n

n
(1⊗ τ + τ ⊗ 1)Tr ((JDΣV )n − (JDΣU)n) ,

a notationally tedious, but otherwise straightforward calculation then shows that this is

bounded in norm by

∑
n

2n+1Rn

A2n
||V − U ||A = ||V − U ||A

4R

A2 − 2R
,

see [GS12, Lemma 3.8] for more detail.
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We can then obtain the desired bounds almost immediately from the Lipschitz constants,

with the only exception being the W term, for which we use the bound

||W (Y +DΣV )||A ≤ ||W ||B

which follows from max(||Yi +DiΣV ||A) ≤ B.

We are now equipped to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. We fix a cutoff 3 ≥ T > 2. We then choose A = 3 and an R < 1/4

so that ||V ||A < R implies the existence of a unique free Gibbs law with support bounded

by T . Then we find that the Lipschitz constant of F (Σ·) is bounded by:

∣∣∣∣∣
∣∣∣∣∣∑

i

∂iW

∣∣∣∣∣
∣∣∣∣∣13
4
⊗13

4

+
1

4
+

1

9− 1/2
≤ ||W ||17

4
+

59

68

Where we have used that

∣∣∣∣∣
∣∣∣∣∣∑

i

∂iW

∣∣∣∣∣
∣∣∣∣∣
A⊗A

≤
∑
I

|WI ||I|A|I|−1 ≤
∑
I

|WI |(1 + A)|I| = ||W ||A+1

Moreover, ||V ||A < R implies that

||F (ΣV )||A ≤ ||W ||13
4
+R

(
1

2
+R +

4R

9− 2R

)
≤ ||W ||13

4
+

59

68
R

Since

||W ||13
4
≤ ||W ||17

4

We find that if ||W ||17
4
< 9

68
then F (Σ·) will be a contraction, and if ||W ||17

4
< 9

68
R, then

we can also be assured that it will map E ∩BA,R into itself, so we have a fixed point V . We
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then find that Ṽ = ΣV satisfies the conclusion of the theorem, since Σ can only decrease

|| · ||A. Thus, we take C = 17
4
and ϵ = 9

68
R.

74



Chapter 5

Closing Thoughts and Open Questions

The ideas considered herein produce several tempting open questions, which we shall rank

in order of how pressing they seem to the author.

1. Foremost are the questions of convergence from section 3, as well as the determining

whether there is a similar diagrammatic formula that produces q-Gaussians from free

semicircular variables. These two together could solve the question of whether the

finitely generated q-Gaussians are isomorphic to the free group factors, and has been

the guiding thrust of this work.

2. Relatedly, there is the question of the optimal transport map from [GS12]. In partic-

ular, can a purely diagrammatic formula for this map be found (and is it equal to the

formula found by our method)? The program here is quite clear: Find a diagrammatic

formula for the operators N , Σ, and S from [GS12]. With this, obtain a formula for

the free Gibbs potential W , and then use the transport equation in the same to find

f . In particular, one hopes to be able to use the contraction mapping method to get

a diagrammatic formula. It is primarily in the second step that this effort has so far

been stymied. As with many of these diagrammatic calculations, the problem pro-

ceeds almost entirely by pattern recognition, with little in the way of formal methods

for calculation.
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3. To help solve the issues in the last two items, we think it is worth investigating semi-

knots as their own objects. The most obvious question is that of equivalence and

classifying invariants. By further restricting the axioms we can find easy invariants,

with all three axioms, it is not so clear. The authors also suspect that there are other

interesting applications of semi-knots, especially to optimal transport in quantum field

theory, and defining a notion of q-Brownian motion.

4. Can the tracial formula in the last section for the conjugate system be made more

comprehensible? If so, then, by a similar program to point 2, it might be possible

to construct a tracial formula for, e.g. the Wasserstein distance between an arbitrary

(finitely generated) von Neumann algebra and L(Fn). Optimistically, casting some of

the familiar free probabilistic objects in this language might make it easier to obtain

estimates for their value. There is a relationship between trace polynomials and dia-

grams that makes it easy to identify what trace polynomial a fully paired diagram can

come from (relating to the connected components of the diagram) so solutions to the

diagrammatic questions might help inform solutions to this question as well.

5. Can moment measures be framed in this diagrammatic language? The structure of the

moment measure result is very similar to that of [GS12], so if the former argument can

be adapted, then this should also be possible. There is also the question of whether the

moment measure results can be expanded to an approximating result for large random

matrices. In particular, we are curious about whether the classical moment measure

result applied to large random matrices will approximate the free moment measure

potential.
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Appendix A

Computing Free Gibbs Laws for

Single Variables

This section is intended as a quick overview to methods for solving the equation 2πH(ρ) = u′

among measures on R. We consider the Cauchy transform

Gρ(z) =

∫
1

z − t
dρ

which in particular satisfies

lim
y↓0

Gρ(x+ iy) = π(H(ρ)− iρ)(x)

We would like to find G using the fact that its real part is known, but we only know this

real part on the support of ρ (which is also, a priori, unknown). This is remedied by noticing

that G is an analytic function on the Riemann sphere minus the support of ρ. With convex

potentials, the support of ρ is connected, so we may assume that G is an analytic function

away from some compact subinterval of R. For the sake of brevity, we will assume that the

potential is even, so the measure is supported on a symmetric interval [−r, r]. We then try
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to find the Cauchy transform as

G(z) = F (R(z))

for some F , holomorphic on the interior of the disk, and

R(z) =

√
z2 − r2 − z

r

the Riemann mapping from S2 \ [−r, r] to the disk. We make note of the inverse of this map:

S(w) = −r(1 + w2)

2w
=

r
(
w+1
1−w

)2
+ r

1−
(
w+1
1−w

)2
The defining equation of ρ now gives that

lim
z→eiθ

F (z) = 1
2
u′(−r cos(θ))− iπsgn(sin(θ))ρ(−r cos(θ))

In particular, the real part is enough to compute the Taylor series for F ; if F =
∑

anz
n,

then

an =
1

π

∫
u′(−rcos(θ))e−inθdθ

What remains is to fix r; we consider a contour γϵ which traces the rectangle with sides

re(z) = ±r and im(z) = ±ϵ, oriented clockwise. Since we know the limit ofG as z approaches

the axis and that ρ is a probability measure, we can see on the one hand that

∫
γϵ

G(z)dz = −2πi

but on the other that

∫
γϵ

G(z)dz =

∫
γϵ

F (R(z))dz →
∫
S1

F (w)S ′(w)dw
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=
r

2

∫
S1

F (w)

(
1

w2
− 2w

)
= rπia1

Whence,

ra1 = −2

We illustrate the process with the potential u = x4/4 from section 2.5. We have that

Re(F (eiθ)) = − r3

2
cos3(θ) = − r3

8
(cos(3θ) + 3 cos(θ))

so a1 = −3
8
r3 and a3 = −1

8
r3, and all other Taylor coefficients are zero. We then fix r using

the equation

ra1 = −2 ⇒ r4 = 16
3

Then we see that

−π ∗ ν(−r cos(θ)) = Im(F (eiθ)) = − r3

8
(sin(3θ) + 3 sin(θ))

so

ν(x) = r3

8π

(
4
x2

r2
+ 2

)√
1− x2

r2
.
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