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ABSTRACT OF THE DISSERTATION

Structural Learning of Gaussian DAGs from Network Data

by

Hangjian Li

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Qing Zhou, Chair

Structural learning of Gaussian directed acyclic graphs (DAGs) or Bayesian networks has

been studied extensively under the assumption that data are independent. But in real

applications such as in biology and social studies observations generated from a Bayesian

network model are often mutually dependent and their dependence can be model by a second

network model.

In this dissertation, we generalize the existing Gaussian DAG framework by proposing

a new Gaussian DAG model for dependent data which assumes the observations are corre-

lated according to a given undirected network. Under this model, the dependent observations

jointly follow a matrix normal distribution with variance represented by the Kronecker prod-

uct of two positive definite matrices. The Cholesky factor of one of the matrices represent

the DAG structure in the feature space while the other encodes the conditional independen-

cies among the observations. We show that the proposed model also satisfies the desired

score-equivalence property under common likelihood-based score functions.

Based on the proposed model, we develop a block coordinate descent algorithm to esti-

mate the DAG structure given a topological ordering of the vertices. The proposed algorithm
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jointly estimates a sparse Bayesian network and the correlations among observations by op-

timizing a scoring function based on penalized likelihood. The algorithm is fast and can

scale to networks with thousands of nodes. We also established finite-sample error bounds

and large-sample consistency of the estimators. In particular, we show that under some mild

conditions, the proposed method produces consistent estimators for the DAG structure and

the sample covariances after one iteration. Extensive numerical experiments also demon-

strate that by jointly estimating the DAG structure and the sample correlation, our method

achieves much higher accuracy in structure learning than the competing algorithms. When

the node ordering is unknown, through experiments on synthetic and real data, we show

that our algorithm can be used to estimate the correlations between samples, with which

we can de-correlate the dependent data to significantly improve the performance of classical

DAG learning methods.
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CHAPTER 1

Introduction

Bayesian network (BN) has been a popular class of graphical models in statistical learning

and causal inference, and it is widely used in various applications including genetics [Hus03,

LKM96, ZBC13, VCC12], oncology [AFD18, SNB13], causal analysis [Pea95, YSW04], social

network analysis [PC10, But08], etc. The increasing popularity of Bayesian network has

spurred a wave of research on estimating its structure and parameters from data, especially

under the high-dimensional setting when the number of variables is greater than the number

of observations.

The classical problem of estimating the structure of BNs from observational data can be

summarized as follows. We observe a data matrix X ∈ Rn×p consisting of n i.i.d. samples

from a BN of p variables. We want to estimate the structure of a BN, including the set of

edges and the edge parameters, from X such that the underlying distribution of the data

factorizes according to the BN. Most of the time, we hope to estimate a sparse BN so that

more conditional independence information on the distribution is uncovered. The method

should preferably be fast and scalable because the size of the space of BNs is combinatorial

and scales super-exponentially. Moreover, the learning algorithm and the estimates should

have good theoretical properties such as fast-convergence, finite-sample error bounds, large

sample consistency, etc.

Many DAG learning methods (we discuss them in Section 1.1.2) have been developed

to solve the classical DAG learning problem and some do meet the requirements above.

However, a key assumption of the existing BN models and the learning algorithms we know
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x11 x12 x13

x21 x22 x23

L1 L2 L3

Figure 1.1: Causal Bayesian network with latent variables.

is sample independence — the n observations in X need to be i.i.d. In real applications,

however, it is common for observations to be dependent as in network data. For example,

when modeling the characteristics of an individual in a social network, the observed charac-

teristics from different individuals can be dependent because they belong to the same social

group such as friends, family, and colleagues, who often share similar characteristics. An-

other example appears when modeling a gene regulatory network from individuals that are

potentially linked genetically. When estimating brain functional networks, we often have a

matrix of fMRI measurements for each individual, X ∈ RT×ν , across T time points and ν

brain regions of interests. The existence of correlations across both time points and brain

regions often renders the estimates from standard graphical modeling methods inaccurate

[KR20].

In causal Bayesian network (CBN) models, the dependence among samples is usually

interpreted as a consequence of having unobserved confounders. For example, we can use

the CBN shown in Figure 1.1 with observed variables X = {X11, X12, X13, X21, X22, X23}

and latent variables {L1, L2, L3} to model two dependent samples each with three features.

The latent confounders do not have parents and their two children are both observed. Tian

and Pearl [TP02] called this type of CBN the semi-Markovian causal model. In general it is

difficult to learn the structure of the Bayesian network under the semi-Markovian framework

with only observational data.
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Motivated by these applications, we are interested in developing a BN model that can

take into account the dependence between observations. Based on this model, we will de-

velop a learning algorithm that can simultaneously infer the DAG structure and the sample

associations. Moreover, since many real-world networks are sparse, we also want our method

to be able to learn a sparse DAG and scale to large number of vertices. A sparsity constraint

on the estimated DAG can also effectively prevent over-fitting and greatly improve the com-

putational efficiency. Lastly, we would like to have theoretical guarantees on the consistency

and finite-sample accuracy of the estimators. With these requirements in mind, we seek to

1. Develop a novel Bayesian network model for network data;

2. Develop a method that can jointly estimate a sparse DAG and the sample dependencies

under the model;

3. Establish finite-sample error bound and consistency of our estimators;

4. Achieve good empirical performance on both synthetic and real data sets.

A key innovation in our proposed BN model for network data is the integration of both

Bayesian network and undirected graphical model. The two types of graphical models have

long been used to encode different types of conditional independencies and the undirected

graphical models are well suited for the undirectional independence relations among observa-

tions. However, combined with the BN model the structural estimation problem of both net-

works became significantly more complicated due to the lack of independent data. Since the

model we propose involves both a longitudinal (row-wise undirected graph) and a latitudinal

(column-wise BN) networks, the estimation problem is always high-dimensional. In order to

estimate sparse networks under the high-dimensional setting, we adopt the `1-regularization

technique which has been applied separately to the structural learning of Gaussian graphical

models [YL07, FHT08] and Bayesian networks [AZ15, FZ13] before. Our method combines

the two by optimizing a score function with `1-regularization terms on both network struc-

tures. Intuitively, the estimator should exhibit similar properties of the existing estimators
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developed separately for learning Gaussian graphical model and classical BNs. In this dis-

sertation, we will investigate this intuition and develop customized algorithm and estimators

for this new model. For the rest of the introduction, we cover necessary background and

introduce some previous results that our work build upon.

1.1 Bayesian networks

Graphical models are widely used to represent conditional independence among random vari-

ables. The two common branches of graphical models are directed and undirected graphical

models. An undirected graphical model (UGM) is a graph G = (V,E), where the vertices

V represent random variables and the undirected edges E ⊆ V × V encode the conditional

independence among the variables. A directed graphical model G = (V,E) consists of nodes

V and directed edges E ⊆ V ×V . Bayesian network is a particular type of directed graphical

model whose structure is represented by a directed acyclic graph (DAG). We first review the

concept of Bayesian networks.

Suppose X = (X1, . . . , Xp) is a p dimensional random vector follows distribution P. Let

G = (V,E) be a DAG whose p vertices are identified with the components in X. Define the

following terminology associated with G.

• There is a directed path from Xi to Xj, denoted by Xi → Xj, if we can go from vertex

Xi to vertex Xj following the directed edges.

• There is a path between Xi and Xj if either Xi → Xj or Xj → Xi.

• If (Xi, Xj) ∈ E, the Xi is a parent of Xj.

• The ancestors of Xj is denoted as an(Xj) = {Xi : Xi → Xj}.

• The descendants of Xi is denoted as de(Xi) = {Xj : Xi → Xj}.

• The non-descendants of Xj is denoted as nd(Xi) = V \ (de(Xi) ∪ {Xi}).

4



Definition 1 (Bayesian network). Given a distribution P over variables {X1, . . . , Xp} whose

density function is f , we define a Bayesian network of P as a DAG G = (V,E) such that f

factorizes according to G:

f(X1, . . . , Xp) =
∏
Xj∈V

fj(Xj | ΠGj ), (1.1)

where ΠGj = {Xi ∈ V : (Xi, Xj) ∈ E} is the set of parents of Xj and fj(Xj | ΠGj ) is the

conditional probability density for
[
j | ΠGj

]
.

We say a DAG G and a distribution P are compatible if P admits such a factorization

in (1.1) according to G. What really makes a BN model useful in practice is its ability to

encode conditional independence relations in a compatible distribution with the associated

DAG structure. And how a DAG encodes the conditional independence is made clear by the

local Markov property (LMP).

Definition 2 (local Markov property). We say a joint distribution P of X = (X1, . . . , Xp)

satisfies the local Markov property with respect to a DAG G if

Xi ⊥ nd(Xi) | ΠGi , ∀i = 1, . . . , p. (1.2)

LMP is a direct consequence of the factorization property in (1.1). Therefore, a BN

defined on the tuple (G,P) always satisfies LMP. It turns out that we can use LMP property to

discover more conditional independence in the underlying distribution through the structure

of a compatible DAG. This involves another concept of graph separation called d-separation.

Definition 3 (d-separation). A path γ from Xi to Xj is said to be blocked by S ⊂ V , if the

path contains a vertex Xk such that either (1) or (2) holds:

1. Xk ∈ S and the arrows in γ do not meet at Xk.

2. Xk ∪ de(Xk) 6∈ S and the arrows in γ meet at Xk.

5



Two subsets of vertices A and B are d-separated by S if all paths from A to B are blocked

by S. We denote it as A ⊥⊥d B | S.

We can directly identify conditional independence relations in P by looking for d-separated

vertices in a compatible DAG G thanks to the following theorem.

Theorem 4. [VP90] For any three disjoint subsets of nodes (X, Y, Z) in a Bayesian network

of distribution P whose structure is a DAG G, we have

X ⊥⊥p Y | Z =⇒ X ⊥ Y | Z.

Therefore, the structure of a Bayesian network defines a set of conditional independence

constraints that the underlying distribution must satisfy. This is called the soundness of d-

separation: any distribution P that factorizes according to G must satisfy all the conditional

independence implied by d-separation in G.

1.1.1 Structural Equivalence of DAGs

Two DAGs are considered Markov equivalent if they encode the same set of conditional

independence constraints implied by the Markov property. Let the skeleton of a DAG G be

the undirected graph obtained after removing all directions of the edges in G. A v-structure

in a DAG G is a node triplet (i, j, k) such that i → j ← k and i, k are not adjacent in G.

Verma and Pearl [VP90] proved the following theorem for identifying equivalent DAGs.

Theorem 5 (Markov equivalence). Two DAGs G and G ′ are Markov equivalent if they have

the same skeleton and v-structures.

Figure 1.2 is an example of three Markov equivalent DAGs with four vertices and four

edges. In this dissertation we denote two Markov equivalent DAGs G and G ′ as G w G ′.

This equivalence relation defines a set of equivalence class E over DAGs [Chi03] and one

6
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Figure 1.2: Markov equivalent DAGs.

can not distinguish the DAGs within the same equivalence class purely from observational

data [VP90]. The equivalence class can be summarized by a partially directed acyclic graph

(PDAG) which contains both directed and undirected edges but no directed cycles. In an

equivalence class E , all edges in a DAG G ∈ E can be categorized as either compelled or

reversible. A directed edge X → Y ∈ E(G) is compelled if X → Y ∈ G ′,∀ G ′ ∈ E .

The edge X → Y is reversible if it is not compelled, meaning there exists another DAG

G ′ ∈ E with an edge Y → X. If we orient all compelled edges in a PDAG and leave the

reversible edges undirected, we will obtain a complete PDAG (CPDAG). A CPDAG is a

unique representation of an equivalence class of DAGs [Chi03].

The existence of Markov equivalent DAGs plays an important role in the problem of

structural learning of BNs because it implies that two DAGs can possess exactly the same

statistical independence information even if some of their directed edges differ. As a result,

we are not able to always uniquely identify a DAG from observational data.

1.1.2 Structural Learning Algorithms

Many structure learning algorithms for BNs have been developed, which can be largely

categorized into three groups: score-based, constraint-based, and hybrid of the two.

Score-based

Score-based methods search for the optimal DAG by maximizing a scoring function such

7



as minimum description length [Roo17], BIC [E 78], and Bayesian scores [HGC95, CH92a]

with various search strategies, such as order-based search [SCC16, SNM07a, YAZ19], greedy

search [RGS17, Chi03], and coordinate descent [FZ13, AZ15, GFZ19]. The greedy equiva-

lence search (GES) algorithm developed by Meek [MM97] and further explored by Chickering

[Chi03] is one of the most successful score-based algorithms. It is a two-phase algorithm that

searches through the space of equivalence classes of DAGs by maximizing a Bayesian scoring

function and returns partially directed DAG (PDAG) that represents an equivalence class

E . An equivalence class E is a perfect map of distribution P if (1) every conditional in-

dependence constraint in P is implied by the d-separations in DAGs G ∈ E and (2) every

conditional independence implied by the structure of G ∈ E holds in P. Meek in 1997 [MM97]

proved that GES is optimal in the limit of large data sets as it returns the perfect map of

the underlying distribution P of the data.

Constraint-based

Constraint-based methods, such as the PC algorithm and the Fast Causal Inference

algorithm in [SGS00], perform conditional independence tests among variables to construct

a skeleton of a Bayesian network before orienting the edges following certain rules. Due to

the existence of Markov equivalence classes, some of the edges can not be oriented and these

algorithms will return a PDAG. One issue with constraint-based algorithms is that they tend

to work well only when n� p and under-perform compared to their score-based competitors

when p > n.

Hybrid methods

There are also hybrid methods such as the max-min hill-climbing in [TBA06] and H2PC

in [GAE14] that combine the above two approaches. They first prune the search space

using a constraint-based method and then search for a DAG structure by optimizing a score

function.
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1.1.3 Gaussian Bayesian Networks

In order for Bayesian network to be a useful modeling tool, we need to parameterize the

conditional densities in (1.1). In this dissertation, we focus on the Gaussian Bayesian network

where we assume the variables {X1, . . . , Xp} follow a multivariate Gaussian distribution. In

this case, given a DAG G = (V,E) we can parameterize the corresponding Bayesian network

as a system of linear structural equations with Gaussian noises:

Xj =
∑
i∈Πj

βijXi + εj, j = 1, . . . , p, (1.3)

where εj ∼ N (0, ω2
j ) and εj ⊥ Πj. The p × p matrix B = (βij) is the weighted adjacency

matrix (WAM) of G such that βij 6= 0 iff (i, j) ∈ E. βjj = 0. Let Ω = diag(ω2
1, . . . , ω

2
p).

Equation (1.3) implies that the random vector X = (X1, . . . , Xp) ∼ N (0,Ψ), where Ψ =

(I − B)−>Ω(I − B)−1. The representation of the distribution of X in (1.3) is known as the

linear structural equation model (SEM). And the Gaussian Bayesian network on X can be

completely characterized by an SEM with the corresponding DAG structure determined by

the WAM B. Therefore, the problem of structural learning of Gaussian BNs is the same

as estimating (B,Ω) in (1.3). Figure 1.3 gives an example of a Gaussian Bayesian network

model represented by four linear structural equations. X = (X1, X2, X3, X3) ∼ N (0,Σ) and

X = B>X + ε, ε ∼ N (0,Ω),

where Ω = diag(ω2
1, ω

2
2, ω

2
3, ω

2
4) and Σ = (I −B∗)−>Ω(I −B∗)>.

Any random variable following multivariate Gaussian distribution can be represented

by an SEM, and thus, can be modeled by a Bayesian network. Let X = (X1, . . . , Xp) ∼

N (0,Ψ). We pick a permutation of the node labels π and for each j ∈ [p], project Xπ−1(j)

onto {Xπ−1(1), Xπ−1(2), . . . , Xπ−1(j−1)}. Collect all the regression coefficients and form matrix

B = {βij} where βij is the coefficient of Xi after regressing Xj on all the proceeding variables.
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X3 X1

X4X2

B∗ =


0 0 0 −4
0 0 0 0
0 2 0 3
0 1 0 0


X1 = ε1

X3 = ε3

X2 = 2X3 +X4 + ε2

X4 = −4X1 + 3X3 + ε4

Figure 1.3: Linear structural equations.

In this case, B will be a strictly upper-triangular matrix. Consider the Gaussian Bayesian

network over p variables in (1.3). Let Pπ be a permutation matrix defined by the permutation

function π ∈ P , where P is the set of all permutation functions of indices {1, 2, . . . , p}. If

B is a weighted adjacency matrix, there exists a permutation π such that PπB is a strictly

upper-triangular matrix. PπB is the matrix obtained after permuting the rows and columns

of B according to π. And the permutation π is called a topological sort of the DAG defined

by B.

Definition 6 (Topological sort). A topological sort of a DAG G = (V,E) is a permutation

π of {1, . . . , p} such that if there is a path from i to j in G, then π−1(i) < π−1(j).

Example 1. The topological sort of B∗ from Figure 1.3 is π = [1, 4, 2, 3].

B∗ =


0 0 0 −4

0 0 0 0

0 2 0 3

0 1 0 0


π=[1,4,2,3]−−−−−−→ PπB

∗ =


0 0 −4 0

0 0 3 2

0 0 0 1

0 0 0 0

 .

With different permutations of the labels, the sequential projection method mentioned

in the previous paragraph will yield different SEMs, and thus, different DAGs, for the same

Gaussian random variable X. For a p dimensional Gaussian variable X, without extra

assumption we have at least p! different DAGs defined by the set of all permutations P .

In practice, we usually look for the sparsest DAG which contains the most conditional
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independence information about the underlying distribution with the fewest parameters.

1.2 An overview of score-based methods

Score-based methods for learning Bayesian networks usually consist of two components: a

score function over the space of DAGs and a search algorithm that searches over the space

for a DAG achieving the maximum score. The problem can be formalized as follows. Given

a data matrix X ∈ Rn×p containing n i.i.d. observations, find a DAG Ĝ such that

Ĝ = arg max
G∈Dp

g(G;X),

where Dp = {G(V,E) | |V | = p, E is acyclic} is the space of DAGs with p nodes and g is a

score function. With observational data, a score function evaluates the fitness of conditional

independence constraints encoded by a candidate DAG on the observed data set. There are

also score functions designed for causal DAGs that takes the causal semantics of the edges

into evaluation [SGS00, VP90, DS93, HS95]. But in this dissertation, we will not consider

causal BNs.

1.2.1 Common Score Functions

There are roughly two types of score functions for learning BNs. The first one is the Bayesian

score functions that measure how well the conditional independence constraints in a candi-

date structure fit the data under the posterior distribution. Examples include the BD and

BDe score [HGC95], K2 score [CH92b], BDeu score [Bun91], etc.

Example 2. (Bayesian score function)

g(G;X) := logP (X | G) + logP (G).
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In Example 2, P (X | G) is the probability of data given DAG G, and P (G) is a prior

probability on DAG structures and their parameters. With different choices of the prior

distribution, we will get different score functions such as the BD (Bayesian Dirichlet) score

function [HGC95] under Dirichlet prior and K2 score [CH92a] under a specially constructed

prior.

The second type is information-theoretical score functions that measure how much data

compression can be achieved via the conditional independence constraints in a candidate

DAG. A typical example in this category is the minimal description length (MDL) score

function [Ris86, Bou93]. Penalized likelihood criterion such as AIC [Aka74] and BIC [Sch78]

also fall into this category.

Example 3. (Minimum description length)

g(G;X) := − logP (X | G) + f(n) · |G|,

where |G| is a measure of network complexity (number of parameters) [Ris86] and f(n) is a

non-negative penalty function on the sample size n. f(n) = 1 corresponds to the AIC score

function [Aka74] and f(n) = 1
2

log(n) corresponds to the BIC score function [E 78].

Since most score functions evaluate the fitness of a DAG based on its conditional inde-

pendence constraints, it is preferable for a score function to assign the same score to DAGs

within the same equivalence class as they all encode the same set of conditional indepen-

dence constraints. This is a property called score-equivalence. Chickering [Chi95] showed

that BD/BD3, AIC, BIC, and MDL score functions mentioned above indeed have this prop-

erty. K2 [CH92a] is one example of those that are not score-equivalent.
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1.2.2 Penalized Likelihood of Gaussian BNs

Recall the Gaussian BN model defined by the structural linear equations in (1.3), where we

observe n i.i.d. samples from a Gaussian Bayesian network with p nodes parameterized by

(B,Ω). The negative log-likelihood function of the data matrix X ∈ Rn×p takes the following

form:

L(B,Ω | X) =
n

2
log det(Ω) +

p

2
tr(S(Ω, B)),

where S(Ω, B) is an n× n sample covariance matrix of (ε1/ω1, . . . , εp/ωp):

S(Ω, B) =
1

p

p∑
j=1

1

ω2
j

(Xj −Xβj)(Xj −Xβj)>.

Applying the trace trick and expand the log det(·) into summation,

L(B,Ω | X) =
1

2

p∑
j=1

n log(ω2
j ) +

1

ω2
j

‖Xj −Xβj‖2
2. (1.4)

The negative log-likelihood (NLL) function in (1.4) naturally serves as a score function over

the parameter space of (B,Ω) and we can define the estimators as

(B̂, Ω̂) := arg min
B∈D,Ω∈diag(Rp

++)
L(B,Ω | X), D : the space of WAM of DAGs. (1.5)

1.2.2.1 Natural Ordering of BNs

The issues with the optimization problem in (1.5) are that the score function L(B,Ω | X)

is non-convex and the space of WAM of DAGs with p vertices scales super-exponentially.

Many approaches have been proposed to modify the optimization task in (1.5) so that it

can be solved in practice. Städler et al. [SBV10] proposed the following reparameterization:
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ρj = 1/ωj and φij = βij/ωj, to convert the NLL in (1.4) into

L(Φ, R | X) =
1

2

p∑
j=1

−n log(ρ2
j) + ‖ρjXj −Xφj‖2

2. (1.6)

where Φ = [φ1 | . . . | φp] is the column-normalized WAM and R = diag(ρi). The score

function in (1.6) is jointly convex in (Φ, R). The support of matrix Φ can be used to identify

the DAG structure in the same way as the WAM B and Φ ∈ D if and only if the corresponding

B ∈ D.

Unfortunately, the constraint that Φ ∈ D is still non-convex. In order to reduce the

search space so that Φ is constrained to a smaller and convex set, we sometimes assume

the true DAG possess a natural ordering. A natural ordering is a topological sort π of the

vertices in the candidate DAGs that is known from prior knowledge. In many applications,

the variables modeled by a Bayesian network exhibits a natural ordering. For example, when

using Bayesian network to model gene transcription processes where each vertex represents

a gene’s expression level, the direction of information flow among the genes is usually known

from biological studies. Sometimes besides the observational data, we also have access to

additional experimental data that can be used to determine the ordering of the variables.

Recall the definition of a permutation matrix Pπ. Given a natural ordering π, we can define

a set of WAMs B(π):

B(π) := {B | PπB is strictly upper triangular} .

Conditioning on the natural ordering, the candidate set of Ψ in the minimization of the loss

function in (1.6) can be restricted to the set of upper triangular matrices. This can be solved

by a sequential regression method.
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1.2.2.2 `1-Regularized Likelihood

We can always optimize over the parameters of a complete DAG to achieve a high likeli-

hood score, but the estimated DAG will not provide any information on the conditional

independence among the variables. Therefore, we always would like to estimate a DAG that

is the most parsimonious representation of the independence constraints in the underlying

distribution. In order to promote sparsity and avoid over-fitting, people have introduced

complexity penalties to the likelihood score function, such as AIC, BIC, and MDL scores

introduced before.

Many learning methods have adopted a concave penalty function together with the likeli-

hood as the score function for BN learning. Examples include the Smoothly Clipped Absolute

Deviation (SCAD) penalty by Fan and Li [FL01] and the minimax concave penalty (MCP)

by Zhang ([Zha10]. Concave penalty functions have been a popular choice thanks to its

theoretical properties such as unbiasness, sparsity, and continuity. With the recent advance-

ment in Lasso theories [Tib96, GB09], `1-penalty function has been increasingly popular.

`1-penalty is a convex relaxation of the `0-penalty proposed by Van de Geer et al [GB13]

for learning sparse DAGs. Despite being biased, it can offer good theoretical guarantees on

the estimation and prediction consistency. The score function with `1-penalty also can be

optimized efficiently using computational methods such as block coordinate descent [WL08].

When the natural ordering π of the BN is given, the learning problem in (1.6) can be

formulated into p classical Lasso regression problems after reordering the columns in X

according to π. If we assume ω̂j is given for all j = 1, . . . , p, we can define the estimator

β̂j := arg min
β

‖Xj −Xβ‖2
2 + λ‖β‖1. (1.7)

Since the columns of X are ordered, we can set β̂kj = 0 for k ≥ j and the estimated WAM

B̂ =
[
β̂1 | β̂2 | . . . β̂p

]
is a strictly upper triangular matrix. The estimators β̂j’s in (1.7) will

share the theoretical proprieties of the Lasso estimator for regression problems [MB06] such
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as the finite sample deviation bound and the asymptotic consistency. For example, let β∗j

denote the true value of βj and s = maxj ‖β∗j ‖0 denote the sparsity constant. Suppose the

random matrix X defined in (1.3) satisfies the following restricted eigenvalue (RE) condition

[MB06] with high probability:

‖Xβ‖2
2

n
≥ c1‖

√
Ψβ‖2

2 − c2ρ
2(Ψ)

log p

n
‖β‖2

1 for all β ∈ Rp, (1.8)

where ρ2(Ψ) is the maximum diagonal entry of Ψ and c1, c2 are some positive constants. we

can prove the following lemma.

Lemma 7 (Lasso oracle inequality [Wai19]). Under the RE condition in (1.8) and pick

λ �
√

log p
n

, there exists a positive constant C > 0 such that the estimators β̂j in (1.7) satisfy

sup
j
‖β̂j − β∗j ‖2

2 ≤ C · s log p

n
. (1.9)

In this dissertation, we also focus on the `1-penalized log-likelihood as our choice of score

function. However, because we assume the observations are dependent, the i.i.d. assumption

that the Lasso estimator relies on will not hold. Therefore, we will investigate whether the

theoretical properties of the Lasso estimators can be generalized to our DAG estimators and

find out what extra conditions are required.

1.3 Gaussian Graphical Model

One way of modeling the sample dependency is using a Gaussian graphical model (GGM).

In this section, we review some key concepts of GGM and briefly introduce the idea of

modeling sample dependence using GGM under the Gaussian BN framework. Suppose we

have n univariate variables {ε1, . . . , εn} representing n observations from another model and

they jointly follow a zero-mean multivariate Gaussian distribution Nn(0,Σ). A Gaussian

graphical model on {ε1, . . . , εn} is specified by a conditional independence graph (CIG)
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G(V,E) with n vertices and a multivariate Gaussian distribution Nn(0,Σ). A CIG is defined

as follows:

Definition 8. (Conditional independence graph) A CIG is a graphical model with an undi-

rected graph G(V,E) and a distribution P such that

(i, j) 6∈ E =⇒ i ⊥ j | V \ {i, j}. (1.10)

Similar to Bayesian network model, if the vertices in the CIG G are identified with the

components in {ε1, . . . , εn}, then these random variables obey the conditional independence

constraints imposed by the CIG in the GMM. We summarize this property in Lemma 9.

Lemma 9. Suppose {ε1, . . . , εn} ∼ Nn(0,Σ) with Σ � 0 and let Θ = (θij)p×p = Σ−1 be the

precision matrix. Then

θij = 0⇐⇒ εi ⊥ εj | ε−{i,j}.

In other words, the support of the inverse covariance matrix Σ−1 of a GGM (G,N (0,Σ))

directly correspond to the set of edges in G.

1.3.1 Sparse Inverse Covariance Estimation

Suppose we observed p i.i.d samples E = [ε1 | ε2 | . . . | εp] from a GMM (G,Nn(0,Σ)) defined

on variables {Y1, . . . Yn}. The problem of estimating the structure of G is equivalent to

estimating Σ−1 according to Lemma 9. In order to avoid over-fitting and find an efficient

representation of the conditional independence relations in Nn(0,Σ), we prefer estimating

a sparse Σ−1. This task is called sparse inverse covariance estimation. Tackling the DAG

learning problem we consider in this dissertation will involve solving a version of the sparse

inverse covariance estimation problem.

The classical method for model selection in GMM is to use a greedy step-wise selection
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procedure that selects and deletes each edge using hypothesis testing. But it fails to con-

sider the effect of multiple-testing and has significant computational complexity. In 2001,

Meinshausen and Buhlmann [MB06] proposed a neighborhood selection method using Lasso

and showed that the estimated graph structure is consistent for large sparse graphs under

the high-dimensional setting. Yuan and Lin [YL07] later proposed to directly minimize the

`1-penalized negative log-likelihood function as in (1.11) over the space of inverse covariance

matrices. This allows estimating the edge set and the parameters of the GMM at the same

time. Let Θ = Σ−1 be the inverse covariance matrix. The penalized loss function proposed

in [YL07] is the following:

Θ̂ := arg min
Θ�0

− log det(Θ) + tr(SΘ) + λ‖Θ‖1, (1.11)

where ‖Θ‖1 denotes the sum of absolute values of the off-diagonal entries in Θ, λ is a tuning

parameter for the penalty term, and S is the sample covariance matrix defined as

S :=
1

p

p∑
k=1

εkε
>
k .

They showed that the loss function in the neighborhood selection method by [MB06] is similar

to a quadratic approximation of the objective in (1.11) and the optimization in [MB06] is

conducted over the space of symmetric matrices instead of positive definite matrices and is

less efficient. Other methods such as [BEd08, DVR08] are also based on exact minimization

of the `1-penalized likelihood loss.

In 2007, Friedman et al. [FHT08] proposed the graphical Lasso (GLasso) algorithm to

minimize the objective function in (1.11). The graphical Lasso method creatively converts

the optimization problem in (1.11) into a sequence of Lasso regression problems which can

be solved efficiently. Graphical Lasso uses a coordinate descent method to solve the “normal
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equation” below which a solution to (1.11) must satisfy:

−Θ−1 + S + λΓ = 0, (1.12)

where Γ is the matrix of sub-gradients:

γjk = sign(θjk) if θjk 6= 0,

γjk ∈ [−1, 1] if θjk = 0.

Following the notations in [MH12], let W = Θ−1 and consider a partition of Θ and Γ:

Θ =

Θ11 θ12

θ21 θ22

 , Γ =

Γ11 γ12

γ21 γ22

 ,

where Θ11 ∈ S(n−1)×(n−1), (θ12) ∈ Rn−1 and θ22 ∈ R is a scalar. If W and S are partitioned

in the same way, [MH12] showed that (1.12) implies

W11
θ12

θ22

+ s12 + λγ12 = 0. (1.13)

The graphical Lasso algorithm solves (1.13) with β = θ12/θ22 which is equivalent to solving

the following Lasso regression problem:

β̂ = arg min
β∈Rn−1

1

2
β>W11β + β>s12 + λ‖β‖1. (1.14)

The algorithm iterates through all n columns/rows of Θ and after each iteration, one col-

umn/row of the estimated precision matrix Θ̂ is updated. The algorithm cycles through the

blocks until convergence. The outline of the graphical Lasso is in Algorithm 1.

For Gaussian random vectors {Y1, . . . , Yn} and the observations E ∈ Rn×p, Ravikumar

et al. [RWR11] proved the consistency of the estimator Θ̂ in (1.11) under spectral norm if
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Algorithm 1: Graphical Lasso Algorithm [FHT08]

Input : S, λ

1. Initialize W = S + λIp

2. Cycle through the columns and perform the following steps until convergence:

(a) Rearrange the rows/columns so that the target column is last.

(b) Solve the Lasso problem in (1.14).

(c) Update the row/column of the covariance W using β̂.

(d) Save β̂ for the current column into a matrix B.

3. Finally, convert B into Θ̂.

Output: Θ̂

Y ′j s satisfy an mutual incoherence condition (MIC) (defined in Assumption 1 in [RWR11])

with parameter α.

Theorem 10 (Corollary 1 in [RWR11]). Suppose {ε1, . . . , εp} satisfies the incoherence con-

dition in Assumption 1 of [RWR11] with parameter α ∈ (0, 1]. If λp = (8/α)
√

log n/p. Then

if the sample size p is large enough, with probability 1− 1/pτ−2 → 1, we have:

‖Θ̂−Θ∗‖2 . m

√
log n

p
. (1.15)

The mutual incoherence condition is analogous to the incoherence condition for Lasso

[GB09] except it is imposed on the edge-based terms YjYk − E[YjYk] instead of on the node

variables Y ′j s. If the true edge set (supp(Θ)) of the GMM is known, the MIC will not be

required for consistency.

1.3.2 Sparse Matrix Graphical Model

The Gaussian graphical model can be used to model the dependencies between samples

generated from a Gaussian Bayesian network and the data in this case will follow a matrix-
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variate normal distribution. In this section, we discuss matrix graphical model and how

the covariance estimation problem can be generalized to this model. We defer the details

of modeling Gaussian BN with dependent data and its connection to the matrix normal

distribution to Chapter 2.

With two covariance matrices Ψ ∈ Sp×p++ and Σ ∈ Sn×n++ , the random matrix X ∈ Rn×p

follows a matrix normal distribution with parameters Ψ and Σ, denoted as

X ∼ Nn,p(0,Σ,Ψ), (1.16)

if

vec(X) ∼ Nnp (0,Ψ⊗ Σ) .

where vec(·) is the vectorization operator that stacks the p columns in X into an np × 1

column vector, and ⊗ is the Kronecker product.

Definition 11. (Kronecker product of matrices) The Kronecker product of A ∈ Rn×m and

B ∈ Rk×l is denoted by A⊗B. The result is an (nk)× (ml) matrix defined as

A⊗B =


A11B A12B . . . A1mB

A21B A22B . . . A2mB
...

...
. . .

...

An1B An2B . . . AnmB

 .

The matrix normal distribution is useful for representing the conditional independencies

in a random matrix variable. Let Θ = Σ−1 and Φ = Ψ−1 be the inverse covariance matrices

for the columns and rows of X, respectively. Similar to Gaussian graphical model for vector-

valued variables, the conditional independencies among the columns and rows in X are

coded by the zeros of Θ and Φ, respectively. In fact, the zeros in Φ⊗Θ define the pairwise

conditional independence of the corresponding variables conditioning on all other variables
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[Lau96]. Therefore, the model in (1.16) can be seen as a generalization of GMM to random

matrix variables. We call it the matrix graphical model (MGM). It is also called tensor

graphical model [LSW20], Kronecker product model [TH13], etc.

Similar to GMM, one of the main research direction for matrix graphical model is estimat-

ing the covariances Σ and Ψ upon observing i.i.d. samples from the model (1.16). Dutilleul

[Dut99] first presented an MLE estimate of the variance components for the Kronecker co-

variance matrix. He showed that if we observe m samples {X1, . . . , Xm} from (1.16), then

the MLE of Ψ and Σ exist if

m ≥ max

{
p

n
,
n

p

}
+ 1.

However, the MLEs Ψ̂ and Σ̂ are not unique and are defined up to a positive multiplicative

constant since for any constant a > 0, Ψ̂ ⊗ Σ̂ = aΨ̂ ⊗ 1/aΣ̂. Only the Kronecker product

Ψ̂⊗ Σ̂ is uniquely defined.

1.3.2.1 Kronecker Graphical Lasso

Applications of the matrix graphical models often come with the following challenges:

• The dimensions n and p of the data are usually very large. As a result, the number of

parameters scale up fast and the computational complexity is high.

• The underlying CIGs of the rows and columns are sparse.

• The number of samples from the matrix normal distribution is only one.

MGM is naturally a good fit for high-dimensional matrix data, because by assuming that the

np×np variance structure decomposes into a Kronecker product of two covariances matrices,

the number of parameters needed is reduced to n2 + p2. But developing computationally

efficient algorithms for learning sparse covariances in MGM, especially, when the sample size

is 1 is still challenging. The Kronecker Graphical Lasso (KGLasso) method proposed by
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Allen and Tibshirani [AT10] is one of the learning methods that aim to address all of these

challenges. The method was originally developed to solve the Netflix movie rating challenge

[BLN07]. In this challenge, researchers were asked predict user ratings for films based on

existing film ratings. There were hundreds of thousands of viewers (n) and movies (p) and

one viewer’s rating of particular movie is correlated with the viewer’s ratings of other movies

as well as the ratings of other similar viewers. Matrix graphical models are well suited for

this type of problems. Allen and Tibshirani [AT10] formulated this problem into a missing

value problem and used matrix graphical model to impute the missing ratings by estimating

the correlations among users and the ratings simultaneously. They proposed a transposable

regularized covariance model (TRCM) and defined the covariance estimators (Θ̂, Φ̂) as the

maximizer of the `1-penalized log-likelihood. Given X ∼ Nn,p(0,Σ,Ψ), Θ = Σ−1,Φ = Ψ−1,

the `1-penalized log-likelihood defined in [AT10] is

l(Θ,Φ) =
p

2
log det(Θ) +

n

2
log det Φ− 1

2
tr
(
ΘXΦX>

)
− ρr‖Θ‖1 − ρc‖Φ‖1. (1.17)

In this problem, only one ratings matrix X was observed. The authors adopted the graphical

Lasso framework and proposed an iterated algorithm based on graphical Lasso to estimate

the two covariances. The objective in (1.17) is not jointly convex in (Θ,Φ) but it is biconvex;

therefore, the flip-flop algorithm in [Dut99] can be used. Keeping one covariance fixed and

maximizing (1.17) w.r.t. the other covariance yields the following estimators:

Θ̂(Φ) = arg min
Θ

− log det(Θ) + tr (S1(Φ)Θ) + ρr‖Θ‖1, (1.18)

Φ̂(Θ) = arg min
Φ

− log det(Φ) + tr (S2(Θ)Φ) + ρc‖Φ‖1, (1.19)

where S1(Φ) := XΦX>/p and S2(Θ) := X>ΘX/n can be interpreted as sample covariance

matrices. The KGLasso algorithm is detailed in Algorithm 2.
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Algorithm 2: Kronecker Graphical Lasso Algorithm [AT10]

Input : X, ρr, ρc

1. Initialize Θ̂ = In.

2. Repeat until convergence:

(a) S2 ← X>Θ̂X/n.

(b) Compute Φ̂ by solving (1.19) with graphical Lasso.

(c) S1 ← XΦ̂X>/p.

(d) Compute Θ̂ by solving (1.18) with graphical Lasso.

Output: Θ̂⊗ Φ̂

1.4 Outline of the Dissertation

The remainder of the dissertation is structured as follows. In Chapter 2, we propose a novel

Gaussian DAG model for dependent data and discuss its connections with some existing

models. We also develop a structural learning algorithm under the proposed model and

discuss its properties. Chapter 3 reports numerical results of our method with detailed

comparisons with some competing methods on simulated and synthetic data. Section 3.3

presents an application of our method on a real single-cell RNA sequencing data set. Chapter

4 is devoted to our main theoretical results. We develop finite-sample error bounds for the

estimators and establish large-sample consistencies. In Chapter 5 we summarize our work

and discuss some potential research directions.
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CHAPTER 2

Model and Algorithm

2.1 Motivation

Because X is defined by the Gaussian noise vectors εj according to the structural equations

in (1.3), dependence among the rows of X may be introduced by modeling the covariance

structure among the variables ε1j, . . . , εnj in εj. Based on this observation, we will use an

undirected graph G∗ to define the sparsity pattern in the precision matrix of εj. When G∗ is

an empty graph, the variables in εj are independent as in the classical Gaussian DAG model.

However, when G∗ is not empty, X follows a more complex matrix normal distribution, and

the variance is defined by the product of two covariance matrices, one for the DAG G∗

and the other for the undirected graph G∗. As a result, estimating the structure of the

DAG G∗ as well as other model parameters under the sparsity constraints in both graphs

is a challenging task. We will start off by assuming that a topological ordering π∗ of G∗

is given so that the search space for DAGs can be largely reduced. However, due to the

presence of the second graph for network data, the usual likelihood-based objective function

used in traditional score-based methods is non-convex. The constraint-based methods do

not naturally extend to network data either due to the dependence among the individuals

in X, which complicates the conditional independence tests. In order to find a suitable

objective function and develop an optimization algorithm, we exploit the biconvex nature

of a regularized likelihood score function and develop an effective block-wise coordinate

descent algorithm with a nice convergence property. If the topological ordering of the DAG is

unknown, it is impossible to identify a unique DAG from data due to the Markov equivalence
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of DAGs [Chi03]. Moreover, due to the lack of independence, it is very difficult to estimate

the equivalence class defined by G∗. In this case, we take advantage of an invariance property

of the matrix normal distribution. Under some sparsity constraint on G∗, we show that even

with a random ordering, we can still get a good estimate of the covariance of εj, which can be

used to decorrelate X so that existing DAG learning algorithms can be applied to estimate

an equivalence class of G∗.

Notations For the convenience of the reader, we now summarize some notations to be used

throughout the paper. We write G∗ and G∗ for the true DAG and the true undirected graph,

respectively. Let Ω∗ := diag(ω∗2j ) be a p×p diagonal matrix of error variances, B∗ denote the

true WAM of G∗, and s := supj ‖β∗j ‖0 denote the maximum number of parents of any node in

G∗. Furthermore, Xj denotes the jth column of X for j = 1, . . . , p, and xi denotes the ith row

of X for i = 1, . . . , n. Given two sequences fn and gn, we write fn . gn if fn = O(gn), and

fn � gn if fn . gn and gn . fn. Denote by [p] the index set {1, . . . , p}. For x ∈ Rn, we denote

by ‖x‖q its `q norm for q ∈ [0,∞]. For A ∈ Rn×m, ‖A‖2 = supv{‖Av‖2 : ‖v‖2 ≤ 1, v ∈ Rm}

is the operator norm of A, ‖A‖f is the Frobenius norm of A, ‖A‖∞ = maxi,j |aij| is the

element-wise maximum norm of A, and |||A|||∞ = maxi∈[n]

∑m
j=1 |aij| is the maximum row-

wise `1 norm of A. Denote by σmin(A) and σmax(A), respectively, the smallest and the largest

singular values of a matrix A. Let |S| be the size of a set S.

2.2 A Novel Model for Network Data

We model sample dependency through an undirected graph G∗ on n vertices, with each

vertex representing an observation xi, i ∈ [n], and the edges representing the conditional

dependence relations among them. More explicitly, let A(G∗) be the adjacency matrix of G∗

so that

A(G∗)ij = 0⇒ xi ⊥⊥ xj|x\{i,j}, ∀ i 6= j.
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Figure 2.1: Markovian DAG model
in (1.3)

x11 x12 x13

x21 x22 x23

ε11 ε12 ε13

ε21 ε22 ε23

Figure 2.2: Semi-Markovian DAG
model in (2.1)

Suppose we observe not only the dependent samples {xi}ni=1 but also the graph (network)

G∗. We generalize the structural equation model (SEM) in (1.3) to

Xj =
∑
k∈Πj

β∗kjXk + εj, εj = (ε1j, . . . , εnj) ∼ Nn
(
0, ω∗2j Σ∗

)
, (2.1)

where Σ∗ ∈ Rn×n is positive definite. The support of the precision matrix Θ∗ = (Σ∗)−1 is

restricted by supp(Θ∗) ⊆ A(G∗). We fix ω∗1 = 1 so that the model is identifiable. Note that

when Σ∗ = In, the SEM (2.1) reduces to (1.3). Hence, the classical Gaussian DAG model in

(1.3) is a special case of our proposed model (2.1). Under the more general model (2.1), we are

facing a more challenging structural learning problem: Given dependent data X generated

from a DAG G∗ and the undirected graph G∗ that encodes the sample dependencies, we

want to estimate the DAG coefficients B∗, the noise variance Ω∗ = diag(ω∗2j ), and the

precision matrix Θ∗ of the samples. Before introducing our method, let us look at some

useful properties of model (2.1) first.

2.2.1 Semi-Markovian Model

The distinction between (1.3) and (2.1) becomes more clear when we regard (2.1) as a semi-

Markovian causal model [TKP06]. Following its causal reading [Pea95], we can represent
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each variable zi in a DAG G on vertices {z1, . . . , zp} using a deterministic function:

zi = fi(Πi, ui), i ∈ [p], (2.2)

where Πi is the set of parents of node zi in G and ui are noises, sometimes also referred to

as background variables. The model (2.2) is Markovian if the noise variables ui are jointly

independent, and it is semi-Markovian if they are dependent. Now for a data matrix X with

n = 2 and p = 3, consider the DAG models defined, respectively, by (1.3) and (2.1) over all

six random variables x11, x12, x13, x21, x22, x23. Under SEM (1.3) we model x1 = (x11, x12, x13)

and x2 = (x21, x22, x23) using the same SEM and assume they are independent, as shown in

Figure 2.1.1 In contrast, the model proposed in (2.1) allows observations to be dependent

by relaxing the independence assumption between ε1k and ε2k, k = 1, 2, 3. If we use dashed

edges to link correlated background variables, then we arrive at a semi-Markovian DAG

model as shown in Figure 2.2. In general, the variables xi1, . . . , xip in each individual under

the semi-Markovian model satisfy the same conditional independence constraints defined by

a DAG, while the background variables ε1j, . . . , εnj across the n individuals are dependent.

When estimating the DAG structure with such data, the correlations among individuals will

reduce the effective sample size. Therefore, we need to take the distribution of the correlated

εi into account.

2.2.2 Matrix Normal Distribution

Our model (2.1) defines a matrix normal distribution for X. To see this, note that ε =

(εij)n×p in (2.1) follows a matrix normal distribution:

ε ∼ Nn,p (0,Σ∗,Ω∗)⇔ vec(ε) ∼ Nnp(0,Ω∗ ⊗ Σ∗).

1Independent background variables are often omitted in the graph, but we include them here to better
illustrate the differences between the two models.
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Then, the random matrix X satisfies

X ∼ Nn,p(0,Σ∗,Ψ∗), (2.3)

where Ψ∗ = (I −B∗)−>Ω∗ (I −B∗)−1. From the properties of a matrix normal distribution,

we can easily prove the following lemma which will come in handy when estimating the row

covariance matrix Σ∗ from different orderings of nodes. Given a permutation π of the set

[p], define Pπ as the permutation matrix such that hPπ = (hπ−1(1), . . . , hπ−1(p)) for any row

vector h = (h1, . . . , hp).

Lemma 12. If X follows the model (2.1), then for any permutation π of [p] we have

XPπ ∼ Nn,p(0,Σ∗, P>π Ψ∗Pπ).

Although matrix normal distributions have been studied extensively in the past, the

structural learning problem we consider here is quite unique. First of all, previous studies

on matrix normal model usually assume we observe m copies of X and the MLE exists when

m ≥ max{p/n, n/p} + 1 [Dut99]. In our case, we only observe one copy of X and thus

the MLE does not exist without additional sparsity constraints. [AT10] proposed to use `1

regularization to estimate the covariance matrices when m = 1, but the estimation relies on

the assumption that the model is transposable, meaning that the two components (Σ,Ψ)

of the covariance are symmetric and can be estimated in a symmetric fashion. In model

(2.1), however, the two covariance components have different structural constraints and

cannot be estimated in the same way. Lastly, practitioners are often interested in estimating

large Bayesian networks with hundreds or more nodes under certain sparsity assumptions

on the WAM B. For example, for methods that minimize a score function to estimate the

covariances, adding a sparsity regularization term on Ψ = (I −B)−>Ω (I −B)−1 to the

score function does not necessarily lead to a sparse estimate of B. In this paper, we propose

a new DAG estimation method under the assumption that both the underlying undirected
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network among individuals and the Bayesian network are sparse. We are not interested in

estimating Ψ but a sparse factorization of Ψ represented by the WAM B. This would require

imposing sparsity constraints on B itself instead of on Ψ. This is different from the recent

work by [THZ13], [AT10], and [Zho14] on the Kronecker graphical lasso.

2.2.3 Score-equivalence

The likelihood function of the proposed model (2.1) also satisfies the desired score-equivalence

property. To see this, let βj = (β1j, . . . , βpj)
> be the jth column of the WAM B. Define an

n× n sample covariance matrix of ε1/ω1, . . . , εp/ωp from X as

S(Ω, B) =
1

p

p∑
j=1

1

ω2
j

(Xj −Xβj) (Xj −Xβj)> . (2.4)

Then the negative log-likelihood L(B,Ω,Θ | X) from (2.1) is given by

2L(B,Ω,Θ | X) = n log det Ω− p log det Θ + p tr(ΘS(Ω, B)). (2.5)

Due to the dependence among observations, it is unclear whether the well-known score-

equivalence property for Gaussian DAGs [Chi03] still holds for our model. Let (B̂(G), Ω̂(G), Θ̂(G))

denote the MLE of (B,Ω,Θ) given a DAG G and the support restriction on Θ. Then, the

following theorem confirms the score-equivalence property for our DAG model.

Theorem 13. (Score equivalence) Suppose G1 and G2 are two Markov equivalent DAGs on

the same set of p nodes. If the MLEs (B̂(Gm), Ω̂(Gm), Θ̂(Gm)), m = 1, 2, exist for the matrix

X = (xij)n×p, then

L(B̂(G1), Ω̂(G1), Θ̂(G1) | X) = L(B̂(G2), Ω̂(G2), Θ̂(G2) | X).

This property justifies the evaluation of estimated DAGs using common model selection
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criterion such as AIC and BIC. For examples, we show in Section 3.1 that one can use BIC

scores to select the optimal penalty level for our proposed DAG estimation algorithm.

2.3 Methods

We have discussed the properties of our novel DAG model for dependent data and the unique

challenges faced by the structural learning task. In this section, we develop a new method

to estimate the parameters in model (2.1). Our estimator is defined by the minimizer of a

score function that derives from a penalized log-likelihood. In order to explain our method,

let us start from the penalized negative log-likelihood function:

f(B,Ω,Θ) := 2L(B,Ω,Θ | X) + ρ1(B) + ρ2(Θ), B ∈ D, (2.6)

where D is the space of WAMs for DAGs and ρ1 and ρ2 are some penalty functions. This loss

function is difficult to minimize due to the non-convexity of L and the exponentially large

search space of DAGs. One way to reduce the search space is to assume a given topological

ordering. Recall that a WAM B is defined as (βkj)p×p such that βkj 6= 0 if and only if

(k, j) ∈ E(G); therefore, given a topological ordering π, we can define a set D(π) of WAMs

compatible to π such that all B ∈ D(π) are strictly upper triangular after permuting its rows

and columns according to π. Given a topological ordering π, the loss function (2.6) becomes

f(B,Ω,Θ) =− p log det Θ + n log det Ω +

p∑
j=1

1

ω2
j

‖LXj − LXβj‖2
2

+ ρ1(B) + ρ2(Θ), B ∈ D(π),

(2.7)

where L is the Cholesky factor of Θ (i.e. Θ = L>L). If ρ1(·) and ρ2(·) are convex loss

functions and the noise covariance matrix Ω = diag(ω2
j ) is known, (2.7) will be a bi-convex

function in (B,Θ), which can be minimized using iterative methods such as coordinate

descent. [Tse01] showed that the coordinate descent algorithm in bi-convex problems con-
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verges to a stationary point. Inspired by this observation, we propose the following two-step

algorithm:

Step 1: Pre-estimate Ω∗ to get Ω̂ = diag(ω̂2
j ).

Step 2: Estimate B̂ and Θ̂ by minimizing a biconvex score function derived from the

penalized negative log-likelihood conditioning on ω̂j.

Many existing noise estimation methods for high-dimensional linear models can be used to

estimate Ω̂ in Step 1 such as scaled lasso/MCP [SZ12], natural lasso [YB19], and refitted

cross-validation [FGH12]. We will present the natural estimator of Ω and discuss a few other

alternatives in Section 2.3.2. Importantly, the statistical properties of the chosen estimator

Ω̂ in Step 1 will affect the properties of the Θ̂ and B̂ we get in Step 2, and thus we must

choose the estimator carefully. We leave the detailed discussion of the theoretical properties

of Ω̂ and their implications to Chapter 4. Suppose Ω̂ is given, we propose the following

estimator for Step 2:

(
Θ̂, B̂(π)

)
= arg min

Θ�0,B∈D(π)

{
−p log det Θ +

p∑
j=1

1

ω̂2
j

‖LXj − LXβj‖2
2

+
λ1

ω̂2
j

‖βj‖1 + λ2‖Θ‖1

}
.

(2.8)

The `1 regularization on βj/ω̂
2
j not only helps promote sparsity in the estimated DAG but

also prevents the model from over-fitting variables that have small variances. The `1 reg-

ularization on Θ ensures that the estimator is unique and can improve the accuracy of Θ̂

by controlling the error carried from the previous step. We will discuss how to control the

estimation errors in more detail in Chapter 4.

In Section 2.3.1, we assume a topological ordering π∗ of the true DAG G∗ is known. In

this case, we will order the columns of X according to π∗ so that for each j, only the first

j − 1 entries in βj can be nonzero. When minimizing (2.8), we fix βjk = 0 for k ≥ j and the
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resulting B̂ is guaranteed to be upper-triangular. If π∗ is unknown, we show in Section 2.3.3

how the score function in (2.8) is still useful for estimating Θ∗ and describe a method of

de-correlation so that standard DAG learning methods can be applied on the de-correlated

data.

2.3.1 Block Coordinate Descent

We denote an estimate of the true precision matrix Θ∗ at iteration t by Θ̂(t). We also write

L̂(t) and L∗ for the Cholesky factors of the Θ̂(t) and Θ∗, respectively. Since (2.8) is biconvex,

it can be solved by iteratively minimizing over Θ and B, i.e., using block coordinate descent.

Consider the tth iteration of block coordinate descent. Fixing Θ̂(t), the optimization problem

in (2.8) becomes the standard Lasso problem [Tib96] for each j:

β̂
(t+1)
j = arg min

βj

1

2n
‖L̂(t)Xj − L̂(t)Xβj‖2

2 + λn‖βj‖1, λn = λ1/(2n), (2.9)

where Θ̂(t) = L̂(t)>L̂(t) is the Cholesky decomposition. Since the columns of X are ordered

according to π, we can set β̂
(t+1)
ij = 0 for i = j, j + 1, . . . , p and reduce the dimension of

feasible βj in (2.9) to j − 1. In particular, β̂
(t+1)
1 is always a zero vector. Fixing B̂(t+1),

solving for Θ̂(t+1) is equivalent to a graphical Lasso problem with fixed support [RWR11]

Θ̂(t+1) = arg min
Θ�0, supp(Θ)⊆A(G∗)

− log det Θ + tr(Ŝ(t+1)Θ) + λp‖Θ‖1, (2.10)

where Ŝ(t+1) = S(Ω̂, B̂(t+1)) and λp = λ2/p. The details of the method are given in Algo-

rithm 3.

As shown in Proposition 14, Algorithm 3 will converge to a stationary point of the

objective function (2.8). The stationary point here is defined as a point where all directional

directives are nonnegative [Tse01].

Proposition 14. Let {(B̂(t), Θ̂(t)) : t = 1, 2, . . .} be a sequence generated by the block coor-
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Algorithm 3: Block coordinate descent (BCD) algorithm

Input : X, Θ(0), Ω̂, ρ,A(G∗), T

while max
{
‖Θ̂(t+1) − Θ̂(t)‖f , ‖B̂(t+1) − B̂(t)‖f

}
> ρ and t < T do

for j = 1, . . . , p do

β̂
(t+1)
j ←− Lasso regression (2.9)

Θ̂(t+1) ←− graphical Lasso with support restriction (2.10)
t←− t+ 1

Output: B̂ ← B̂(t), Θ̂← Θ̂(t)

dinate descent Algorithm 3 for any λ1, λ2 > 0. Then for almost all X ∈ Rn×p, every cluster

point of {(B̂(t), Θ̂(t))} is a stationary point of the objective function in (2.8).

2.3.2 A Natural Estimator of Ω

We restrict our attention mostly to sparse undirected graphs G consisting of N connected

components, which implies that the row precision matrix Θ is block-diagonal:

Θ =


Θ1

Θ2

. . .

ΘN

 . (2.11)

The support of Θ inside each diagonal block Θi could be dense. This type of network is

often seen in applications where individuals in the network form clusters: nodes in the same

cluster are densely connected and those from different clusters tend to be more independent

from each other. The underlying network G will be sparse if the individuals are from a

large number of small clusters. In other words, the sparsity of G depends primarily on the

number of diagonal blocks in Θ. More general network structures also are considered in the

numerical experiments in Chapter 3.

Given the block-diagonal structure of Θ in (2.11), there are a few ways to estimate Ω. We
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use the natural estimator introduced by [YB19]. We estimate ω̂2
j using independent samples

in X according to the block structure of Θ∗. Let B ⊆ [n] be a row index set and AB denote

the submatrix formed by selecting rows from a matrix An×m with row index i ∈ B. We draw

one sample from each block and form a smaller N×p design matrix XB. It is not difficult to

see that XB
j = XBβ∗j + εBj . Next define the natural estimator of ω∗2j for j ∈ [p] as in [YB19]:

ω̂2
j = min

βj

{
1

N
‖XB

j −XBβj‖2
2 + 2λN‖βj‖1

}
, (2.12)

where λN > 0 is a tuning parameter. In Chapter 4, we discuss the estimation error rate of

Ω̂. Alternative methods, such as scaled lasso [SZ12] and the Stein’s estimator [BEM13], can

also be used to estimate ω2
j .

2.3.3 Estimating DAGs with Unknown Ordering

Given any permutation π of [p], there exists a DAG Gπ such that (i) π is a topological sort

of Gπ and (ii) the joint distribution P of the p random variables factorizes according to Gπ.

Under the assumption that the true DAG G∗ is sparse, i.e., the number of nonzero entries

in β∗j is at most s for all j, for any random ordering π′ we choose, the corresponding DAG

Gπ′ is also likely to be sparse where the number of parents for each node is less than some

positive constant s′. Following this intuition, we can randomly pick a permutation π′ for the

nodes and apply Algorithm 3 on Xπ′ := XPπ′ , where (XPπ′)ij = Xiπ′(j). If the sparsity s′ is

small compared to the sample size n, the estimate β̂′ij we get from solving the Lasso problem

(2.9) will be consistent as well (we discuss the error bound on β̂ij in details in Chapter 4).

Moreover, since the covariance Θ∗ is invariant to permutations by Lemma 12, the resulting

estimate Θ̂ under the random ordering π′ will still be a good estimate of Θ∗. With the

Cholesky factor L̂ of Θ̂, we de-correlate the rows of X and treat

X̂ = L̂X, (2.13)
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as the new data. Because the row correlations in X̂ vanish, we can apply existing structure

learning methods which require independent observations to learn the underlying DAG. We

find that this de-correlation step is able to substantially improve the accuracy of structure

learning by well-known state-of-the-art methods, such as the greedy equivalence search (GES)

[Chi03] and the PC algorithm [SGS00]. See Chapter 3 for more details.
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CHAPTER 3

Numerical Results

Under the assumption that observations generated from a DAG model are dependent, we will

evaluate the performance of the block coordinate descent (BCD) algorithm, i.e., Algorithm

3, in recovering the DAG compared to traditional methods that treat data as independent.

We expect that the BCD method would give more accurate structural estimation than the

baselines by taking the dependence information into account. When a topological ordering

of the true DAG is known, we can identify a DAG from data using BCD. When the ordering

is unknown, the BCD algorithm may still give an accurate estimate of the row correlations

that are invariant to node-wise permutations according to Lemma 12. The estimated row

correlation matrix can then be used to de-correlate the data so that traditional DAG learn-

ing algorithms would be applicable. We will demonstrate this idea of de-correlation with

numerical results as well.

3.1 Simulated Networks

We first perform experiments on simulated networks for both ordered and unordered cases.

To apply the BCD algorithm, we need to set values for λ1 and λ2 in (2.8). Since the support of

Θ∗ is restricted to G∗, we simply fixed λ2 to a small value (λ2 = 0.01) in all the experiments.

For each data set, we computed a solution path from the largest λ1 max, for which we get an

empty DAG, to λ1 min = λ1 max/100. The optimal λ1 was then chosen by minimizing the BIC

score over the DAGs on the solution path.
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We generated random DAGs with p nodes and fixed the total number of edges s0 in each

DAG to 2p. The entries in the weighted adjacency matrix B∗ of each DAG were drawn

uniformly from [−1,−0.1] ∪ [0.1, 1], and ω∗j ’s were sampled uniformly from [0.1, 2]. In our

simulations of Θ∗, we first considered networks with a clustering structure, i.e., Θ∗ was block-

diagonal as in (2.11). We fixed the size of the clusters to 20 or 30, and within each cluster,

the individuals were correlated according to the following four covariance structures.

• Toeplitz: Σ∗ij = 0.3|i−j|/5.

• Equal correlation: Σ∗ij = 0.7 if i 6= j, and Σ∗ii = 1.

• Star-shaped: Θ∗1j = Θ∗i1 = a, i, j ≥ 2, a ∈ (0, 1), and Θ∗ii = 1.

• Autoregressive (AR): Θ∗ij = 0.7|i−j| if |i− j| ≤ db/4e; Θ∗ij = 0 otherwise, where b is the

cluster size.

Toeplitz covariance structure implies that the observations are correlated as in a Markov

chain. Equal correlation structure represents the cases when all observations are fully con-

nected in a cluster. Star-shaped and AR structures capture intermediate dependence levels.

Besides these block-diagonal covariances, we also considered a more general covariance struc-

ture defined through stochastic block models (SBM), in which G∗ consists of several clusters

and nodes within a cluster have a higher probability to be connected than those from different

clusters. More explicitly, we generated Θ∗ as follows:

1. Let B1, . . . ,BL be L clusters with varying sizes that form a partition of {1, . . . , n},

where the number of clusters L ranges from 5 to 10 in our experiments. Define a

probability matrix P ∈ Rn×n where Pij = 0.5 if i, j ∈ Bl, l ∈ {1, . . . , L}; otherwise,

Pij = 0.1.

2. Construct the adjacency matrix A of G∗:

Aij ∼ Bern(Pij).
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3. Sample Θ′ij ∼ Unif[−5, 5] if Aij = 1. Otherwise, Θ′ij = 0. To ensure a positive-definite

Θ∗, we then perform the following transformations to get Θ∗:

Θ̃ = (Θ′ + Θ′
>

)/2

Θ∗ = Θ̃−
(
σmin(Θ̃)− 0.01

)
· In

(3.1)

Under the stochastic block model, two nodes from different clusters in G∗ are connected

with probability 0.1, so Θ∗ is not block-diagonal in general. As explained in Section 4.2, our

proposed BCD algorithm does not require Θ∗ to be block-diagonal in practice to produce

accurate estimates of B∗ and Θ∗. Our numerical experiments will confirm this theory and

demonstrate the robustness of the BCD method.

We compared the BCD algorithm with its competitors under both high-dimensional

(p > n) and low-dimensional (p < n) settings with respect to DAG learning. For each (n, p)

and each type of covariances, we simulated 10 random DAGs and then generated one data

set following equation (2.1) for each DAG. Thus, we had 10 results for each of the 2×5 = 10

simulation settings. In the end, we averaged the results over the 10 simulations under each

setting for comparison.

3.1.1 Learning with Given Ordering

Assuming the nodes in the DAG are sorted according to a given topological ordering, we

compared our BCD algorithm against a baseline setting which fixes Θ∗ = In. In other

words, the baseline algorithm ignores the dependencies among observations when estimating

the DAG with BCD. The block sizes in Θ∗ were set to 20 in all cases except SBM whose

block sizes ranged from 5 to 25. Among other estimates, both algorithms return an estimated

weighted adjacency matrix B̂ for the optimal λ1 selected by BIC. For the BCD algorithm,

we use B̂ and Θ̂ for B̂(∞) and Θ̂(∞) after convergence (see Algorithm 3). Note that, since

Θ̂(0) is initialized to In by default in the BCD algorithm, the estimated B̂ from the baseline
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algorithm is the same as the estimate B̂(1) from BCD after one iteration.

We also included the Kronecker graphical Lasso (KGLasso) algorithm [AT10, THZ13]

mentioned in Section 2.2 in our comparison, which estimates both Ψ̂ and Θ̂ via graphical

Lasso in an alternating fashion. When estimating Θ∗, KGLasso also makes use of its block-

diagonal structure. After KGLasso converges, we perform Cholesky factorization on Ψ̂ =

(I − B̂)−>Ω̂(I − B̂)−1 according to the given ordering to obtain B̂ and Ω̂. A distinction

between BCD and KGLasso is that KGLasso imposes a sparsity regularization on Ψ instead

of B, so the comparison between these two will highlight the importance of imposing sparsity

directly on the Cholesky factor.

Given the estimate B̂ from a method, we hard-thresholded the entries in B̂ at a threshold

value τ̄ to obtain an estimated DAG. To compare the three methods, we chose τ̄ such that

they predicted roughly the same number of edges (E). Then we calculated the number of

true positives (TP), false positives (FP) and false negatives (FN, missing edges), and two

overall accuracy metrics: Jaccard index (TP / (FP + s0)) and structural Hamming distances

(SHD = FP+FN). Note that, there were no reserved edges (i.e., estimated edges whose

orientation is incorrect) because the ordering of the nodes was given. Detailed comparisons

are summarized in Table 3.1 and Table 3.2. In general, the BCD algorithm outperformed

the competitors by having more true positives and less false positives in every case. Because

the KGLasso method does not impose sparsity directly on the DAG structure, it suffered

from having too many false negatives after thresholding when p > n. When p < n, the

correlations between observations had a more significant impact on the estimation accuracy

for DAGs. As a result, BCD and KGLasso which take this correlation into account performed

better than the baseline. In particular, BCD substantially reduced the number of missing

edges (FNs) and FDR, compared to the baseline. Both BCD and KGLasso yielded accurate

estimates of Θ̂ when n < p. When n > p, as the sample size p for estimating Θ∗ ∈ Rn×n

decreased relative to the dimension n, Θ̂ became less accurate. The difference in the accuracy

of Θ̂ = Θ̂(∞) and Θ̂(1) was not significant.
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Θ-Network Method (n, p, s0) E FN TP FDR JI SHD err(Θ̂) (err(Θ̂(1)))
BCD (150, 300, 600) 686.2 214.0 386.0 0.355 0.443 514.2 0.00034 (0.00032)

equi-cor Baseline (150, 300, 600) 642.4 240.3 359.7 0.383 0.410 523.0 —
KGLasso (150, 300, 600) 756.2 504.9 95.1 0.822 0.080 1166.0 0.00019

BCD (200, 400, 800) 535.0 306.4 493.6 0.077 0.586 347.8 0.00143 (0.00833)
toeplitz Baseline (200, 400, 800) 549.5 425.2 374.8 0.317 0.384 599.9 —

KGLasso (200, 400, 800) 550.6 634.3 165.7 0.698 0.139 1019.2 0.01617

BCD (200, 400, 800) 543.1 301.1 498.9 0.081 0.591 345.3 0.00006 (0.00051)
star Baseline (200, 400, 800) 515.7 338.3 461.7 0.103 0.541 392.3 —

KGLasso (200, 400, 800) 495.8 504.3 295.7 0.403 0.295 704.4 0.00233

BCD (100, 200, 400) 253.1 193.8 206.2 0.184 0.461 240.7 0.00247 (0.00219)
AR(5) Baseline (100, 200, 400) 245.8 208.9 191.1 0.217 0.420 263.6 —

KGLasso (100, 200, 400) 270.4 271.1 128.9 0.521 0.237 412.6 0.02587

BCD (100, 300, 600) 343.3 313.6 286.4 0.159 0.435 370.5 0.51266 (0.52297)
SBM Baseline (100, 300, 600) 344.6 338.4 261.6 0.233 0.383 421.4 —

KGLasso (100, 300, 600) 301.3 510.7 89.3 0.696 0.110 722.7 0.46201

Table 3.1: Results for ordered DAGs on simulated data when n < p. The last column shows
the `2-estimation errors of Θ̂ and Θ̂(1) normalized by the true support size. The numbers in
the brackets are errors after one iteration of BCD. Each number corresponds to the average
over 10 simulations.

Θ-Network Method (n, p, s0) E FN TP FDR JI SHD err(Θ̂) (err(Θ̂(1)))
BCD (200, 100, 200) 143.0 75.1 124.9 0.119 0.570 93.2 0.00211 (0.00199)

equi-cor Baseline (200, 100, 200) 140.0 103.8 96.2 0.305 0.394 147.6 —
KGLasso (200, 100, 200) 149.0 129.5 70.5 0.501 0.255 208.0 0.00207

BCD (200, 100, 200) 167.1 56.7 143.3 0.137 0.639 80.5 0.51735 (0.68703)
toeplitz Baseline (200, 100, 200) 166.7 104.8 95.2 0.425 0.351 176.3 —

KGLasso (200, 100, 200) 158.6 70.6 129.4 0.176 0.564 99.8 0.85023

BCD (200, 100, 200) 186.9 50.6 149.4 0.199 0.629 88.1 0.54769 (0.39316)
star Baseline (200, 100, 200) 171.7 69.2 130.8 0.236 0.543 110.1 —

KGLasso (200, 100, 200) 183.0 66.9 133.1 0.271 0.532 116.8 0.18472

BCD (200, 100, 200) 185.9 52.2 147.8 0.200 0.622 90.3 0.01644 (0.01184)
AR(5) Baseline (200, 100, 200) 180.1 66.2 133.8 0.253 0.545 112.5 —

KGLasso (200, 100, 200) 177.0 62.7 137.3 0.215 0.574 102.4 0.01038

BCD (300, 100, 200) 140.1 72.2 127.8 0.086 0.602 84.5 0.31189 (0.31448)
SBM Baseline (300, 100, 200) 139.9 85.7 114.3 0.181 0.507 111.3 —

KGLasso (300, 100, 200) 128.8 161.1 38.9 0.689 0.134 251.0 0.32263

Table 3.2: Results for ordered DAGs on simulated data when n > p.
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Figure 3.1 shows the ROC curves of all three methods over a sequence of τ̄ under the

10 settings. The τ̄ sequence contains 30 equally spaced values in [0, 0.5]. The BCD algo-

rithm uniformly outperformed the others in terms of the area under the curve (AUC) with

substantial margins when n < p. When n > p, the BCD still did better than the other

two most of the time but its lead over KGLasso and baseline was not as significant in some

cases. This was largely due to insufficient regularization on Θ̂. Fixing λ2 = 0.01 in this case

implies λp = 0.01/p = 0.0001 in the graphical Lasso step (2.10) of BCD, resulting in severe

overestimates of the magnitude of the entries in Θ∗. After we increased λp to 0.1 which is still

quite small, the BCD indeed outperformed the other two methods by much larger margins.

KGLasso also performed much better when n > p as shown in Table 3.2 and Figure 3.1. This

is expected because when n is large compared to p, the dependence among individuals will

have a larger impact on the accuracy of the estimation of DAGs. Since KGLasso is designed

to iteratively estimate Θ∗ and Ψ∗, the more accurate estimates of Θ∗ as reported in Table

3.2 compensated for the relatively inaccurate B̂.
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Figure 3.1: ROC curves of BCD, baseline, and KGLasso on simulated and sorted DAGs:
x-axis reports the number of false positive edges and y-axis true positive edges. Structure
of Θ∗ from left to right: equal correlation, Toeplitz, AR, star, and SBM. Top row: n < p.
Bottom row: n > p. Each data point in the ROC curves corresponds to the average over 10
simulations.

We also compared test data log-likelihood among the three methods. Specifically, under

each setting, we generated a test sample matrix Xtest from the true distribution for each

of the 10 repeated simulations and computed −L(B̂, Θ̂, Ω̂ | Xtest) using the estimates from

the three methods following equation (2.5). Figure 3.2 shows the boxplots of the test data

log-likelihood, normalized by
√
np after subtracting the median of the baseline method:

Lplot =
(
L0 −median(Lbaseline

0 )
)
/
√
np, where L0 is the original test data log-likelihood. The

top row shows the test log-likelihood when n < p, where we did not include the data for

KGLasso in four cases because its test data log-likelihood values were too small to fit in

the same plot with the other two methods. The bottom row shows the results for n > p.

For both cases, we see that the test data log-likelihood of the BCD method (in green) is

consistently higher than that of the other methods.

3.1.2 Learning with De-correlation

When the natural ordering is unknown, we focus on estimating the row-wise covariance

Σ∗. Given Σ̂ we can de-correlate the data by Equation (2.13) and apply existing structural
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Figure 3.2: Normalized test data log-likelihood of BCD and baseline methods on simulated
sorted DAGs. Top row: n < p. Bottom row: n > p. Each boxplot contains 10 data points
from the 10 repeated experiments.

learning methods. In this study, we compared the performances of three structure learning

methods before and after de-correlation: GES [Chi03] and sparsebn [AGZ19] which are score-

based methods implemented respectively in the R packages rcausal [RGS17] and sparsebn,

and PC [SGS00] which is a constraint-based method implemented in pcalg [KMC12]. All

three methods rely on the independent data assumption, so we expect the de-correlation

step to improve their performances significantly. Different from the previous comparison, the

ordering of the nodes is unknown so GES and PC return an estimated CPDAG (completed

acyclic partially directed graph) instead of a DAG. Thus, in the following comparisons, we

converted both the estimated DAG from sparsebn and the true DAG to CPDAGs, so that

all the reported metrics are computed with respect to CPDAGs.

As before, we divided the cases into n < p and n > p. The block size for the four

block-diagonal Θ was fixed to 30. The estimated Cholesky factor L̂ of Θ̂ used for de-

correlating X in (2.13) was calculated by our BCD algorithm with tuning parameter λ1

selected by BIC. Figure 3.3 shows the decrease in SHD and increase in Jaccard index via

de-correlation of GES, PC and sparsebn on 10 random DAGs, generated under each row-

covariance structure and each sample size. For almost all types of covariances and (n, p)
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Figure 3.3: Decrease in SHD (top row) and increase in Jaccard index (bottom row) via
de-correlation on simulated unsorted DAGs, with x-axis reporting the value of (n, p). In
each panle, the three boxplots on the left and the three on the right correspond to the cases
of n < p and n > p, respectively. Each boxplot contains 10 data points from 10 simulations.

settings we considered, there is significant improvement of all three methods in estimating

the CPDAG structures after de-correlation. Additional tables with detailed results can

be found in the Supplementary Material. Before decorrelation, GES and sparsebn, both

score-based methods, tend to significantly overestimate the number of edges, resulting in

high false positives, so does PC in some of the cases. After decorrelation, both GES and

sparsebn had significant improvements and outperformed PC, as long as Θ̂ was accurately

estimated. The test data log-likelihood (normalized by
√
np) of all three algorithms also

increased significantly after decorrelation as shown in Figure 3.4.

3.2 Experiments on Real Network Structures

In this section, we look at the performance of the BCD algorithm on real network struc-

tures. We took four real DAGs from the bnlearn repository [Scu10]: Andes, Hailfinder,

Barley, Hepar2, and two real undirected networks from tnet [Ops09]: facebook [OP09] and

celegans n306 [WS98]. Only the structures (supports) of these real networks were used and

the parameters of the edges were simulated as follows. Given a DAG structure, we sampled
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Figure 3.4: Increase in the normalized test data log-likelihood after decorrelation on simu-
lated unsorted DAGs. Top row: n < p. Bottom row: n > p.

the coefficients β∗j uniformly from [−1,−0.1]∪ [0.1, 1]. Given the support of Θ∗, we generated

Θ′ij uniformly from [−5, 5]. Then, we applied the transformations in (3.1) to get Θ∗. In order

to increase the size of the underlying DAG and show the scalability of the algorithm, we

duplicated the DAGs above to form larger networks. In Section 3.2.1 and 3.2.2, we again

consider undirected networks consisting of several disconnected subgraphs, corresponding to

a block-diagonal structure in Θ∗. Each of the subgraphs was sub-sampled from the origi-

nal real network. In Section 3.2.3 we present experiments on more general Θ∗ without a

block-diagonal structure. The ω∗j were uniformly sampled from [0.1, 2] as before. With these

parameters, we generated observational samples X following the structural equation (2.1).

3.2.1 Learning with Given Ordering

Similar to the previous section, we first looked at the results on ordered DAGs. We considered

four different combinations of network structures as shown in Table 3.5, with both n > p

and n < p. Because KGLasso does not scale well with n, we did not include it in our

comparisons. BCD continued to outperform the baseline method by modeling the sample

correlation. This improvement was more prominent when n > p, where BCD significantly
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Before decorrelation After decorrelation
Method Θ-Network (n, p, s0) E FN TP FDR JI R SHD E FN TP FDR JI R SHD

equi-cor (300, 100, 200) 222.4 100.2 99.8 0.550 0.310 30.6 253.4 123.2 85.9 114.1 0.070 0.550 29.1 124.1
toeplitz (300, 100, 200) 227.1 97.6 102.4 0.550 0.320 31.6 253.9 134.9 74.0 126.0 0.070 0.600 28.9 111.8

GES star (300, 100, 200) 136.8 77.9 122.1 0.110 0.570 29.1 121.7 132.5 76.0 124.0 0.060 0.590 26.5 111.0
AR(5) (300, 100, 200) 136.6 77.1 122.9 0.100 0.580 25.8 116.6 131.0 78.8 121.2 0.070 0.580 27.7 116.3
SBM (200, 100, 200) 169.3 110.2 89.8 0.469 0.322 34.8 224.5 76.8 139.6 60.4 0.187 0.279 31.6 187.6

equi-cor (300, 100, 200) 184.1 118.3 81.7 0.560 0.270 49.1 269.8 132.4 81.9 118.1 0.110 0.550 75.6 171.8
toeplitz (300, 100, 200) 192.5 115.9 84.1 0.560 0.270 50.9 275.2 139.0 78.0 122.0 0.120 0.560 76.6 171.6

PC star (300, 100, 200) 160.5 81.6 118.4 0.260 0.490 74.0 197.7 138.3 79.3 120.7 0.130 0.550 77.9 174.8
AR(5) (300, 100, 200) 167.5 82.6 117.4 0.300 0.470 71.0 203.7 138.5 79.0 121.0 0.130 0.560 78.1 174.6
SBM (200, 100, 200) 137.1 125.2 74.8 0.454 0.285 45.0 232.5 109.7 125.5 74.5 0.316 0.318 47.5 208.2

equi-cor (300, 100, 200) 202.5 113.7 86.3 0.570 0.280 36.0 265.9 126.4 97.8 102.2 0.180 0.450 38.2 160.2
toeplitz (300, 100, 200) 187.1 112.4 87.6 0.530 0.290 38.9 250.8 121.5 101.3 98.7 0.180 0.440 38.2 162.3

SBN star (300, 100, 200) 121.1 102.6 97.4 0.190 0.440 37.6 163.9 123.5 100.9 99.1 0.190 0.440 39.1 164.4
AR(5) (300, 100, 200) 118.8 103.7 96.3 0.190 0.430 35.6 161.8 111.1 108.0 92.0 0.170 0.420 35.4 162.5
SBM (200, 100, 200) 159.9 123.9 76.1 0.522 0.268 38.5 246.2 164.2 114.7 85.3 0.476 0.307 39.0 232.6

Table 3.3: Results for unordered DAGs on simulated data. The average number of pre-
dicted (P), true positive (TP), false positive (FP), reversed (R) edges, the average Jaccard
index (JI), and Structural Hamming Distance (SHD) for CPDAGs learned by the two BCD
algorithms. (Section 5.1.2)

reduced the number of false positive edges, achieving higher JI and lower SHD compared

to the baseline as well as to itself in the n < p case. Figure 3.5 compares the test data

log-likelihood of the two methods across 10 simulations, and BCD scored significantly higher

test data log-likelihood in all the cases. The ROC curves of the two methods is provided in

a figure in the Supplementary Material. Both figures indicate the BCD method indeed gives

better DAG estimates than the baseline method.

3.2.2 Learning with De-correlation

When the ordering of the DAG nodes is not given, we compared the effect of decorrelation

as in Section 3.1.2. All network parameters were generated in the same way as before but we

randomly shuffled the columns of X. The decrease in the structural Hamming distance and

increase in Jaccard index from decorrelation over 10 simulations are summarized as boxplots

in Figure 3.7. PC performed uniformly better after decorrelation compared to before. GES

and sparsebn also improved after decorrelation in most cases. The changes in the test data

log-likelihood are shown in Figure 3.8, which are positive for almost all date sets, except two
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Before decorrelation After decorrelation
Method Θ-Network (n, p, s0) E FN TP FDR JI R SHD E FN TP FDR JI R SHD

equi-cor (100, 200, 400) 322.5 271.9 128.1 0.6 0.22 49.6 515.9 181.9 228.1 171.9 0.05 0.42 52.80 290.9
toeplitz (100, 200, 400) 395.9 279.7 120.3 0.70 0.18 45.8 601.1 196.1 214.2 185.8 0.05 0.45 48.8 273.3

GES star (100, 200, 400) 219.2 221.2 178.8 0.18 0.41 50.6 312.2 196.4 213.3 186.7 0.05 0.46 48.8 271.8
AR(5) (100, 200, 400) 221.7 217.2 182.8 0.18 0.42 48.9 305.0 196.7 215.7 184.3 0.06 0.45 49.60 277.7
SBM (100, 300, 600) 407.7 379.0 221.0 0.458 0.281 90.2 655.9 277.0 332.9 267.1 0.036 0.438 75.0 417.8

equi-cor (100, 200, 400) 188.9 298.9 101.1 0.46 0.21 65.3 452.0 223.8 224.7 175.3 0.22 0.39 112.8 386.0
toeplitz (100, 200, 400) 193.1 316.1 83.9 0.57 0.16 54.3 479.6 226.3 219.8 180.2 0.2 0.4 114.3 380.2

PC star (100, 200, 400) 244.6 239.0 161.0 0.34 0.33 101.6 414.2 228.6 219.8 180.2 0.21 0.4 112.0 380.2
AR(5) (100, 200, 400) 264.2 240.7 159.3 0.40 0.32 100.9 446.5 224.8 224.2 175.8 0.22 0.39 112.4 385.6
SBM (100, 300, 600) 313.8 421.2 178.8 0.429 0.243 115.0 671.2 356.4 327.4 272.6 0.235 0.399 177.2 588.4

equi-cor (100, 200, 400) 747.4 221.5 178.5 0.76 0.19 75.2 865.6 265.4 207.6 192.4 0.26 0.41 70.1 350.7
toeplitz (100, 200, 400) 1182.2 243.6 156.4 0.86 0.11 69.4 1338.8 309.6 188.1 211.9 0.3 0.43 75.8 361.6

SBN star (100, 200, 400) 340.0 211.4 188.6 0.43 0.34 67.5 430.3 277.5 201.3 198.7 0.27 0.42 68.1 348.2
AR(5) (100, 200, 400) 355.8 214.1 185.9 0.44 0.33 68.0 452.0 301.8 194.6 205.4 0.3 0.41 67.4 358.4
SBM (100, 300, 600) 356.1 428.5 171.5 0.516 0.219 90.9 704.0 332.5 320.1 279.9 0.158 0.429 105.9 478.6

Table 3.4: Results for unordered DAGs on simulated data. Block size is equal to 20. The av-
erage number of predicted (P), true positive (TP), false positive (FP), reversed (R) edges, the
average Jaccard index (JI), and Structural Hamming Distance (SHD) for CPDAGs learned
by the two BCD algorithms. (Section 5.1.2)

DAG Θ-Network Method (n, p, s0) E FN TP FDR JI SHD err(Θ̂) (err(Θ̂(1)))
BCD (100 446, 676) 440.9 314.7 361.3 0.176 0.478 394.3 0.03458 (0.03564)
Baseline (100 446, 676) 436.6 334.2 341.8 0.211 0.444 429.0 —

Andes facebook
(2) BCD (500 446, 676) 500.0 197.3 478.7 0.043 0.686 218.6 0.07816 (0.07758)

Baseline (500 446, 676) 499.1 206.4 469.6 0.058 0.666 235.9 —
BCD (100, 224, 264) 154.5 124.2 139.8 0.092 0.502 138.9 0.03922 (0.02167)
Baseline (100, 224, 264) 154.8 126.8 137.2 0.110 0.487 144.4 —

Hailfinder celegan n306
(4) BCD (500, 224, 264) 168.4 97.1 166.9 0.009 0.629 98.6 0.02010 (0.02138)

Baseline (500, 224, 264) 168.0 98.0 166.0 0.012 0.624 100.0 —
BCD (100, 192, 336) 211.0 150.5 185.5 0.119 0.513 176.0 0.01453 (0.00100)
Baseline (100, 192, 336) 211.9 156.2 179.8 0.150 0.489 188.3 —

Barley facebook
(4) BCD (500, 192, 336) 260.5 91.3 244.7 0.061 0.696 107.1 0.23144 (0.28172)

Baseline (500, 192, 336) 260.2 97.6 238.4 0.083 0.666 119.4 —
BCD (100, 280, 492) 366.7 234.5 257.5 0.295 0.428 343.7 0.05101 (0.03104)
Baseline (100, 280, 492) 373.9 238.0 254.0 0.314 0.416 357.9 —

Hepar2 celegan n306
(4) BCD (500, 280, 492) 417.5 122.2 369.8 0.114 0.685 169.9 0.00759 (0.00755)

Baseline (500, 280, 492) 417.1 126.0 366.0 0.122 0.674 177.1 —

Table 3.5: Results for ordered DAGs on real network data. Block size is 20 for n < p and
50 for n > p. The number under each DAG reports the number of times it is duplicated to
form a large DAG. All numbers represent the average over 10 simulations.

outliers (removed from plots) of sparsebn in the second and fourth panels in the top row.
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Figure 3.5: Test data log-likelihood normalized by
√
np on real sorted DAGs. Top row:

n < p. Bottom row: n > p.
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Figure 3.6: ROC curves of BCD and baseline methods on real networks across 50 threshold
values (τ̄) equally spaced from [0, 0.5]. Top row: n < p, n = 100, block size is 20. Bottom
row: n > p, n = 500, block size is 50. (Section 5.2.1)

3.2.3 Learning under General Covariance Structure

In the following experiments, we generated the support of Θ∗ without the block-diagonal

constraint by directly sampling the real undirected networks facebook and celegans n306.

49



0

50

100

150

(100, 446) (500, 446)

method

GES
PC
SBN

0

25

50

(100, 224) (500, 224)

method

GES
PC
SBN

−60

−30

0

30

60

(100, 192) (500, 192)

method

GES
PC
SBN

−25

0

25

50

75

(100, 280) (500, 280)

method

GES
PC
SBN

−0.05

0.00

0.05

(100, 446)(500, 446)

method

GES
PC
SBN

−0.04

0.00

0.04

0.08

(100, 224)(500, 224)

method

GES
PC
SBN

−0.03

0.00

0.03

0.05

0.08

(100, 192)(500, 192)

method

GES
PC
SBN

−0.03

0.00

0.03

0.05

(100, 280)(500, 280)

method

GES
PC
SBN

Figure 3.7: Experiments on real unsorted DAGs. Decrease in SHD (top row) and increase
in JI (bottom row) via de-correlation for real networks, where the x-axis reports the value
of (n, p). In each panel, the three boxplots on the left and the three on the right correspond
to cases of n < p and n > p, respectively.

In other words, the underlying undirected network may have only one connected subgraph

where all individuals are dependent. This setup poses major challenge particularly for the

estimation of Θ because its support becomes much larger, and as a result, we will need to

impose stronger regularization in the graphical Lasso step when n > p. For simplicity, we

focus on the setting p > n so that we can still fix λ2 = 0.01. Proceeding as before, we

generated B∗ from real DAGs with duplications: Andes, Hailfinder, Barley, and Hepar2.

First we assume that the DAG ordering is known and compare the BCD method against

the baseline method. In three out of the four cases we considered, BCD gave better estimates

of the DAG structure in terms of Jaccard index and structural Hamming distance as shown

in Table 3.7. Next, without assuming a known DAG ordering, we compare the performance

of GES, PC, and sparsebn before and after de-correlation. The first row in Figure 3.9 shows

the increase in the normalized test data log-likelihood after de-correlation, and the increases

are positive across all 10 simulations for each of the four scenarios. The second row shows
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Figure 3.8: Increases in test data log-likelihood on real unsorted DAGs. Top row: n < p.
Bottom row: n > p. Some outliers in the top panels are not shown for a better view of the
boxplots.
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Figure 3.9: Results on real unsorted DAGs with general Θ. Top row: increase in normalized
test data log-likelihood after de-correlation. Bottom row: Decrease in SHD after de-correla-
tion.
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Before decorrelation After decorrelation
DAG Θ-Network (n, p, s0) Method E FN TP FDR JI R SHD E FN TP FDR JI R SHD

PC 602.8 371.6 304.4 0.490 0.310 183.4 853.4 551.8 362.4 313.6 0.430 0.340 197.9 798.5
(100 446, 676) GES 359.6 355.1 320.9 0.110 0.450 92.8 486.6 339.0 361.0 315.0 0.070 0.450 96.3 481.3

SBN 456.4 361.2 314.8 0.310 0.390 147.7 650.5 397.5 363.4 312.6 0.210 0.410 153.6 601.9
Andes facebook

(2) PC 1005.6 189.8 486.2 0.520 0.410 292.8 1002.0 846.8 185.4 490.6 0.420 0.480 304.5 846.1
(500 446, 676) GES 508.5 200.9 475.1 0.070 0.670 74.0 308.3 504.8 201.2 474.8 0.060 0.670 72.3 303.5

SBN 396.9 349.0 327.0 0.170 0.440 153.9 572.8 395.8 348.6 327.4 0.170 0.440 153.6 570.6
PC 256.0 147.8 116.2 0.550 0.290 75.1 362.7 219.8 145.0 119.0 0.460 0.330 82.6 328.4

(100, 224, 264) GES 165.6 123.8 140.2 0.150 0.480 48.5 197.7 147.8 129.9 134.1 0.090 0.480 37.0 180.6
SBN 200.2 137.0 127.0 0.360 0.380 66.0 276.2 169.4 138.1 125.9 0.260 0.410 63.2 244.8

Hailfinder celegans n306
(4) PC 366.2 82.9 181.1 0.510 0.400 122.1 390.1 299.3 84.6 179.4 0.400 0.470 128.0 332.5

(500, 224, 264) GES 207.1 68.0 196.0 0.050 0.710 36.8 115.9 202.0 70.7 193.3 0.040 0.710 33.9 113.3
SBN 190.1 121.6 142.4 0.250 0.460 71.6 240.9 179.2 126.6 137.4 0.230 0.450 70.0 238.4
PC 205.6 196.1 139.9 0.320 0.350 89.4 351.2 189.2 194.5 141.5 0.250 0.370 93.9 336.1

(100, 192, 336) GES 191.5 178.6 157.4 0.180 0.430 56.7 269.4 183.8 181.1 154.9 0.160 0.420 52.3 262.3
SBN 242.1 178.2 157.8 0.340 0.380 70.0 332.5 248.3 172.4 163.6 0.330 0.390 72.5 329.6

Barley facebook
(4) PC 280.1 134.9 201.1 0.280 0.480 131.7 345.6 255.0 134.6 201.4 0.210 0.520 132.1 320.3

(500, 192, 336) GES 268.3 114.4 221.6 0.170 0.580 53.7 214.8 267.4 112.7 223.3 0.160 0.590 55.1 211.9
SBN 239.9 159.2 176.8 0.260 0.440 71.9 294.2 251.1 153.4 182.6 0.270 0.450 73.9 295.8
PC 297.9 338.1 153.9 0.480 0.240 94.5 576.6 265.0 335.8 156.2 0.410 0.260 96.0 540.6

(100, 280, 492) GES 294.9 270.8 221.2 0.250 0.390 72.8 417.3 276.0 276.4 215.6 0.220 0.390 76.3 413.1
SBN 608.0 280.5 211.5 0.480 0.290 95.3 772.3 565.5 277.2 214.8 0.410 0.320 98.3 726.2

Hepar2 celegans n306
(4) PC 395.4 254.2 237.8 0.400 0.370 145.8 557.6 351.0 252.4 239.6 0.320 0.400 148.4 512.2

(500, 280, 492) GES 398.0 155.4 336.6 0.150 0.610 77.6 294.4 391.2 157.4 334.6 0.140 0.610 82.4 296.4
SBN 385.4 240.0 252.0 0.350 0.400 105.2 478.6 364.0 252.4 239.6 0.340 0.390 108.4 485.2

Table 3.6: Results for unordered DAGs on real network data. The number under each DAG
reports the number of times it is duplicated to form a larger DAG. (Section 5.2.2)

the distribution of the decrease in SHD across 10 simulations after de-correlation. In most

cases, all three methods gave much more accurate estimates after de-correlation. We defer

the additional tables and figures containing more detailed results to the Supplementary

Material. The above results confirm that our methods can indeed improve the accuracy in

DAG estimation even Θ∗ is not block-diagonal, as suggested by the theoretical results in

Chapter 4.
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Figure 3.10: Normalized test data log-likelihood for ordered DAGs on real network data with
general Θ∗. (Section 5.2.3)
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DAG Θ-Network Method (n, p, s0) E FN TP FDR JI SHD err(Θ̂) (err(Θ̂(1)))
Andes facebook BCD (100 446, 676) 424.1 319.9 356.1 0.155 0.478 387.9 0.01531 ( 0.00288)
(2) Baseline (100 446, 676) 422.2 326.2 349.8 0.165 0.467 398.6 —

Hailfinder celegans n306 BCD (100,224,264) 122.0 163.0 101.0 0.172 0.354 184.0 0.08678 (0.08309)
(4) Baseline (100,224,264) 122.0 161.0 103.0 0.156 0.364 180.0 —

Barley facebook BCD (100,192,336) 252.6 147.3 188.7 0.248 0.471 211.2 0.08021 (0.08555)
(4) Baseline (100,192,336) 249.4 155.1 180.9 0.268 0.448 223.6 —

Hepar2 celegans n306 BCD (100, 420, 738) 492.3 386.7 351.3 0.285 0.399 527.7 0.03725 (0.03614)
(6) Baseline (100, 420, 738) 490.8 397.8 340.2 0.303 0.384 548.4 —

Table 3.7: Results for ordered DAGs on real network data without block structure.

Before decorrelation After decorrelation
DAG Θ-Network (n, p, s0) Method E FN TP FDR JI R SHD E FN TP FDR JI R SHD

PC 566.8 339.2 336.8 0.406 0.372 205.9 775.1 552.5 334.2 341.8 0.381 0.386 211.2 756.1
Andes facebook (100 446, 676) GES 379.7 321.9 354.1 0.067 0.505 101.1 448.6 375.8 322.2 353.8 0.059 0.507 108.5 452.7

(2) SBN 457.4 322.0 354.0 0.226 0.454 154.9 580.3 443.6 324.8 351.2 0.208 0.457 155.6 572.8

PC 354.7 393.2 221.8 0.374 0.297 130.8 656.9 349.2 394.4 220.6 0.367 0.297 130.0 653.0
Hepar2 celegans n306 (100 420, 738) GES 353.4 324.0 291.0 0.176 0.430 105.9 492.3 349.0 324.0 291.0 0.166 0.432 108.0 490.0

(6) SBN 308.2 389.7 225.3 0.269 0.323 119.8 592.4 302.0 392.5 222.5 0.264 0.321 117.7 589.7

PC 313.3 163.7 166.3 0.469 0.349 109.1 419.8 307.0 165.1 164.9 0.463 0.349 111.6 418.8
Hailfinder celegans n306 (100, 224, 264) GES 187.2 159.2 170.8 0.088 0.493 70.9 246.5 183.4 161.4 168.6 0.081 0.489 68.0 244.2

(4) SBN 215.0 169.9 160.1 0.255 0.416 86.4 311.2 207.1 171.0 159.0 0.232 0.421 90.3 309.4

PC 275.2 229.5 190.5 0.308 0.378 122.3 436.5 268.1 229.0 191.0 0.287 0.384 123.4 429.5
Barley facebook (100, 192, 336) GES 224.2 227.2 192.8 0.140 0.427 71.3 329.9 220.8 230.0 190.0 0.139 0.422 69.9 330.7

(4) SBN 184.6 272.4 147.6 0.200 0.323 79.3 388.7 182.9 272.3 147.7 0.192 0.325 79.2 386.7

Table 3.8: Results for unordered DAGs on real network data with general Θ∗. (Section 5.2.3)

3.3 Application on Single Cell RNA Data

Gene regulatory networks (GRNs) enable biologists to examine the causal relations in gene

expression during different biological processes, and are usually estimated from gene expres-

sion data. Recent advances in single-cell RNA sequencing technology has made it possible

to trace cellular lineages during differentiation and to identify new cell types by measuring

gene expression of thousands of individual cells. A key question arises now is whether we can

discover the GRN that controls cellular differentiation and drives transitions from one cell

type to another using this type of data. Such GRNs can be interpreted as causal networks

among genes, where nodes correspond to different genes and a directed edge encodes a direct

causal effect of one gene on another.

The RNA-seq data set used in this section can be found in NCBI’s Gene Expression
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Figure 3.11: Increase in JI after de-correlation on unordered DAGs with real network struc-
tures and general Θ∗. (Section 5.2.3)

Figure 3.12: Cluster dendrograms of H1 (left) and DEC (right) cells from hierarchical clus-
tering. The y-axis represents 1− ρ and the leaf nodes are individual cells.

Omnibus and is accessible through GEO series accession number GSE75748. The data set

contains gene expression measurements of around 20,000 genes from n = 1018 cells. Before

conducting the experiment, we processed the data according to [LL18] by imputing missing

values and applying log transformation. In this study, we focus on estimating a GRN among

p = 51 target genes selected by [CLZ16], while the rest of the genes, which we call background

genes, are used to estimate an undirected network for all 1018 cells.

3.3.1 Pre-estimate the Undirected Network

An essential input to Algorithm 3 is A(G∗), the adjacency matrix of a known undirected

network of observations (cells in this case). The 1018 cells in our data come from 7 distinct

cell types (H1, H9, HFF, TB, NPC, DEC, and EC), and it is reasonable to assume that the
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similarity between cells of different types is minimal. Therefore, we posit that the network

of the 1018 cell consists of at least 7 connected components, i.e. N ≥ 7, where N denotes

the number of diagonal blocks in Θ∗ as in Section 4.1. Since it is unlikely that all cells

of the same type are strongly associated with one another, we further divided each type

of cells into smaller clusters by applying classical clustering algorithm on the background

genes. More specifically, we randomly selected 8000 genes from the background genes and

applied hierarchical clustering on each type of cells. In this experiment, we used hierarchical

clustering with complete-linkage and a distance metric between two cells defined as 1 − ρ,

where ρ is the correlation between their observed gene expression levels. We verified our

choice of clustering algorithm by applying it on the entire data set, and it clearly grouped

the cells into 7 groups, coinciding with the 7 cell types. At the end of the hierarchical

clustering step, we needed to pick cutoff levels in order to finish clustering. Because the

levels of dependence among cells are quite different across cell types as shown in Figure 3.12,

we picked cutoff points separately for each cell type. Generally, we chose the cutoff thresholds

such that the largest cluster is smaller than p = 51, so λ2 can be set to 0.01. By shifting the

cutoff levels, we also obtained different number N of blocks in Θ∗. In the end, this clustering

process returns an adjacency matrix A of the estimated network defined by the N clusters.

In our experiments, we compared results from three choices of N ∈ {383, 519, 698}. The

cluster size varied from 1 (singleton clusters) to 43 across the three cases.

3.3.2 Model Evaluation

In this experiment, the input to the BCD algorithm is a data matrix X1018×51 and supp(Θ∗) ⊆

A estimated by the above hierarchical clustering. The matrix of error variances Ω̂ was

obtained following the method described in Section 2.3.2. The output is a solution path of

(B̂, Θ̂) for a range of λ1’s. We computed the corresponding MLEs (B̂MLE, Ω̂MLE) given the

support of each B̂ on the solution path. We picked the (B̂MLE, Ω̂MLE) with the smallest BIC

from the solution path as in Section 3.1 and used the corresponding Θ̂ to de-correlate X.
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Table 3.9 shows the results of GES, PC, and sparsebn before and after de-correlation. In each

case, we computed the BIC of the estimated GRN and we used the Likelihood Ratio (LR)

test to determine whether the increase in log-likelihood from de-correlation is significant or

not. The LR test statistic is defined as follows:

LR = 2(log p(X | Θ̂, B̂MLE
decor , Ω̂

MLE
decor )− log p(X | In, B̂MLE

baseline, Ω̂
MLE
baseline)) ∼ χ2

df ,

where (B̂MLE
baseline, Ω̂

MLE
baseline) and (B̂MLE

decor , Ω̂
MLE
decor ) denote the estimates from GES, PC, and

sparsebn before and after de-correlation, respectively. The degrees of freedom of the LR

statistic is

df =
| supp(Θ̂)| − n

2
+ | supp(B̂MLE

decor )| − | supp(B̂MLE
baseline)|.

In most cases, we saw significant improvements, in terms of both the BIC and the χ2 statistic,

in all three DAG estimation methods by de-correlating X using the estimated Θ̂ from the

BCD algorithm. This confirms the dependence among individual cells and implies that our

proposed network model fits this real-world data better. Figure 3.13 shows the estimated

CPDAGs after de-correlation for the case N = 383, which corresponds to the minimum

BIC for all three methods in our experiments. It is interesting to note that a directed edge

NANOG→POU5F1, between the two master regulators in embryonic stem cells, appears in

all three estimated CPDAGs, consistent with previously reported gene regulatory networks

[CXY08, ZCM07].
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model type N BIC(baseline) BIC(decor) ll(baseline) ll(decor) LR χ2 df p-value

GES

383

-35036.60 -41799.39 17593.30 22667.70 10148.79 3386 0

PC -14102.81 -32274.01 7102.91 17901.01 21596.19 3425 0

sparsebn -28553.26 -37894.85 14336.13 20697.42 12722.59 3381 0

GES

519

-35036.60 -33312.95 17593.30 17597.47 8.34 1732 1

PC -14102.81 -18738.62 7102.91 10297.31 6388.81 1753 0

sparsebn -28553.26 -28797.87 14336.13 15324.43 1976.61 1732 0

GES

698

-35036.60 -34921.63 17593.30 17879.82 573.03 688 1

PC -14102.81 -16959.60 7102.91 8879.30 3552.79 696 0

sparsebn -28553.26 -29751.59 14336.13 15273.80 1875.33 677 0

Table 3.9: BIC scores and log-likelihood(ll) values from GES, PC, and sparsebn before and
after de-correlation. N denotes the number of clusters among cells.
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Figure 3.13: Estimated gene regulatory networks (CPDAGs) after de-correlation, with E
edges and U undirected edges colored in red. Left: GES (E = 131, U = 5), middle: PC
(E = 119, U = 1), right: sparsebn (E = 90, U = 0).
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CHAPTER 4

Theory

In this section, we present our main theoretical results for Algorithm 3 assuming a true

ordering is given. Section 4.1 is devoted to the error bounds of Ω̂ using the natural estima-

tor. We state our main theorem, Theorem 17, in Section 4.2, along with some important

corollaries. Finally, in Section 4.3, we compare the error rates of our estimators with those

in related problems. Before we start, let us introduce some additional notations used in this

section.

Notations Let the errors of L̂ and Θ̂ be defined as ∆̂chol := L̂ − L∗ and ∆̂prec := Θ̂ − Θ∗.

Let ∆̂j := β̂j − β∗j ∈ Rp denote the estimation error of the jth column of B∗. Let

β̄ = sup
1≤i,j≤p

|β∗ij|, ω̄ = sup
1≤j≤p

ω∗j , ψ̄2 = sup
1≤j≤p

Ψ∗jj,

where Ψ∗ = (I−B∗)−>Ω∗(I−B∗)−1. In the proofs, we also use Xi· and X·j to denote the ith

row and jth column of X, respectively. Let X̃ = L∗X ∼ N (0,Ψ∗⊗In) and ε̃ = L∗ε. Then the

rows of X̃, i.e. x̃i, i ∈ [n], are i.i.d from N (0,Ψ∗). Let m denote the maximum degree of the

undirected graph G∗, which is allowed to grow with n. Following the setup in [RWR11], the

set of non-zero entries in the precision matrix is denoted as supp(Θ∗) := {(i, j) | Θ∗ij 6= 0}.

Let us use the shorthand S and Sc to denote the support and its complement in the set
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[n]× [n], respectively. Define the following constants:

κΣ∗ := |||Σ∗|||∞ = max
1≤i≤n

n∑
j=1

|Σ∗ij|,

Γ∗SS :=
[
Θ∗−1 ⊗Θ∗−1

]
SS
∈ R(|S|+n)×(|S|+n),

κΓ∗ :=
∣∣∣∣∣∣(Γ∗SS)−1

∣∣∣∣∣∣
∞.

(4.1)

4.1 Error Bound on Ω̂ under Block-diagonal Θ∗

Recall from Section 2.3 that Ω̂ is pre-estimated at Step 1 in our two-step learning procedure.

As we will discuss in more detail in Section 4.2, the accuracy of Θ̂ obtained in Step 2

using Algorithm 3 depends on the accuracy of Ω̂. Existing methods for estimating the error

variance in linear models, such as the scaled Lasso [SZ12], square-root lasso [BCW11], and

natural lasso [YB19], often assume independence among samples, which is not necessarily

true under our network setting. However, if we assume the network of the samples is block

diagonal and the samples form many small clusters, we would be able to collect independent

samples from different clusters. This intuition suggests that existing methods are readily

applicable in our setting to get consistent estimates of Ω∗, as long as there are enough

independent clusters in the undirected network G∗.

Formally, suppose Θ∗ has a block-diagonal structure defined in (2.11). Let N be the

number of blocks. If we use the natural estimator from [YB19] (described in Section 2.3) to

get ω̂j, then we have the following error bound:

Lemma 15. Let X be generated from (2.1) and assume Θ∗ is block-diagonal with N blocks.

Recall that s = supj ‖β∗j ‖0. Let Ω̂ be the natural estimator defined in (2.12) with

λN = 12ψ̄ω̄

(√
2 log p

N
+

√
2 log 2 + 4 log p

N

)
,
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then with probability at least 1 + 1/p2 − 3/p,

sup
1≤j≤p

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣ ≤ λNsβ̄ + 4ω̄

√
log 2 + log p

N
.

Lemma 15 shows that the maximum error of ω̂j is upper bounded by C ·s
√

log p/N where

C > 0 is constant, and thus is consistent as long as s
√

log p/N → 0. When p is fixed and N

increases, there are more diagonal blocks in Θ∗, indicating more independent samples, and

thus, ω̂2
j will be more accurate. When N = n, Θ∗ becomes a diagonal matrix and the rows

of X become i.i.d. Another useful quantity for our subsequent discussion is the estimation

error of 1/ω̂2
j . Let r(Ω̂) be defined as:

r(Ω̂) := sup
1≤j≤p

∣∣∣∣ 1

ω̂2
j

− 1

ω∗2j

∣∣∣∣. (4.2)

We can easily show that the following lemma holds:

Lemma 16. Suppose 1
2

inf1≤j≤p ω
∗2
j − sup1≤j≤p

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣ > b > 0. Then

r(Ω̂) ≤ 1

b4
sup

1≤j≤p

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣.
When s(log p/N)1/2 is small enough, Lemma 15 implies that b can be taken as a positive

constant with high probability.

4.2 Error Bounds and Consistency of B̂(1) and Θ̂(1)

Applying Algorithm 3 with a pre-estimated Ω̂ as input gives us B̂(t) and Θ̂(t). In this

section, we study the error bounds and consistency of B̂(t) and Θ̂(t). Although Algorithm 3 is

computational efficient and has a desirable convergence behavior as described in Proposition

14, there are technical difficulties in establishing the consistency of B̂(∞) and Θ̂(∞) after
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convergence, due to the dependence between (B̂(t), Θ̂(t)) across iterations. However, we show

that as long as we have a suitable initial estimate satisfying Assumption 1, Algorithm 3 can

produce consistent estimators after one iteration, i.e., (B̂(1), Θ̂(1)) is consistent.

Assumption 1. There exists a constant 0 < M ≤ σ2
min(L∗), such that the initial estimate

Θ̂(0) satisfies

‖Θ̂(0) −Θ∗‖2 ≤M.

Assumption 1 states that the initial estimate Θ̂(0) is inside an operator norm ball centered

at the true parameter Θ∗ with a radius smaller than a constant M . The constant M is less

than or equal to the smallest eigenvalue of Θ∗. Assumption 1 may not be easy to verify in

practice, but since it only requires Θ̂(0) to be within an `2-ball of constant radius around

Θ∗, it is not difficult for Assumption 1 to be met if Θ∗ is sparse and normalized. Under

Assumption 1 we can establish finite-sample error bounds for (B̂(1), Θ̂(1)). Recall that m

denotes the maximum degree of the undirected graph G∗ and s = sup1≤j≤p ‖β∗j ‖0. Define

R̄(s, p, n) := max

{
6ω̄r(Ω̂),

72ω̄ψ̄s

b

√
log p log(max{n, p})2

n

}
, (4.3)

which depends on r(Ω̂), the error of Ω̂ defined in (4.2).

Theorem 17. Consider a sample matrix X from model (2.1). Let Θ̂(1), B̂(1) be the estimates

after one iteration of the Algorithm 3, given initial estimator Θ̂(0) satisfying Assumption 1.

Suppose b > 0 as defined in Lemma 16. Pick the regularization parameters in (2.9) and

(2.10) such that

λn ≥ 12ψ̄ω̄

(√
2 log p

n
+

√
2 log 2 + 4 log p

n

)
,

λp ≥ 40
√

2

√
τ log n+ log 4

p
+ R̄(s, p, n),
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where τ > 2 and r(Ω̂) is defined in (4.2). Let κ̄ = σmin(Ψ∗). Then for some positive constant

c1, we have

sup
j
‖β̂(1)

j − β∗j ‖2 ≤
√
s

c1κ̄
λn,

with probability at least (1− 2/p)2−{1/(exp{n/32} − 1) + 1/nτ−2 + 5n2/max{n, p}4}. If in

addition n, p satisfy

3200 log(4nτ ) max {160, 24mC} ≤ p,

max

r(Ω̂),
4sω̄3

b

√
log p log2 max{n, p}

n

 ≤ 1/(24C),
(4.4)

where C = max {κΣ∗κΓ∗ , κ
3
Σ∗κ

2
Γ∗}, we also have

‖Θ̂(1) −Θ∗‖2 ≤ 4κΓ∗mλp,

with the same probability.

We leave the detailed proof for Theorem 17 to the Appendix. The quantities κΓ∗ and κΣ∗

defined in (4.1) measure, respectively, the scale of the entries in Σ∗ and the inverse Hessian

matrix Γ∗−1
SS of the graphical Lasso log-likelihood function (2.10), and they may scale with

n and p in Theorem 17. To simplify the following asymptotic results, we assume they are

bounded by a constant as n, p → ∞; see [RWR11] for a related discussion. In addition,

assume κ̄, ψ̄, ω̄ stay bounded as well. Then, under the conditions in Theorem 17, we have

for fixed positive constants c2, c3, c4 that

sup
j
‖β̂(1)

j − β∗j ‖2
2 ≤ c2s

log p

n
,

‖Θ̂(1) −Θ∗‖2 ≤ c3m

√τ log n

p
+ max

r(Ω̂), c4s

√
log p log2 max{n, p}

n


 , (4.5)
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with high probability. For simplicity, we assume that Θ∗ consists of N blocks as in (2.11)

hereafter. If Ω̂ satisfies the convergence rate specified in Lemmas 15 and 16, i.e., r(Ω̂) .

s
√

log p/N , then the sample constraints in (4.4) are satisfied as long as

m log n . p, s2 log p . N, s2 log3 max{n, p} . n. (4.6)

As a result, we have the following two asymptotic results. The first one considers the scaling

p� n under which DAG estimation is high-dimensional. The second one considers the case

n� p so that the estimation of Θ∗ is a high-dimensional problem.

Corollary 18. Suppose the sample size and the number of blocks satisfy

p� N log2 p & n & N � log p→∞.

Assume β̄, ω̄, ψ̄, κΓ∗ , κΣ∗ < ∞ as n, p → ∞ and r(Ω̂) . s
√

log p/N . Then under the same

assumptions as Theorem 17, we have

sup
j
‖β̂(1)

j − β∗j ‖2
2 = Op

(
s

log p

n

)
,

‖Θ̂(1) −Θ∗‖2 = Op

ms
√

log3 p

n

 .

Corollary 19. Suppose the sample size and block numbers satisfy

n� s2p log p log n & N & s2p→∞.

Assume β̄, ω̄, ψ̄, κΓ∗ , κΣ∗ < ∞ as n, p → ∞ and r(Ω̂) . s
√

log p/N . Then under the same
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assumptions as Theorem 17, we have

sup
j
‖β̂(1)

j − β∗j ‖2
2 = Op

(
s

log p

n

)
,

‖Θ̂(1) −Θ∗‖2 = Op

(
m

√
log n

p

)
.

Remark 20. Although we derived the consistency of Θ̂(1) and B̂(1) in the above two corollar-

ies under the setting where Θ∗ is block-diagonal, these consistency properties still hold even

when Θ∗ is not block-diagonal. The main purpose of the block-diagonal setting is to provide

an example where we can conveniently control the error of Ω̂. But in practice Θ∗ does not

have to be block-diagonal. In particular, we did not assume any block-diagonal structure of

Θ∗ for the error bounds in Theorem 17. It can be seen that the error bound of B̂(1) does not

depend on the error of Ω̂ at all. Hence, the accuracy of Ω̂ has no impact on the accuracy

of B̂(1). The error bound of Θ̂(1) in (4.5) is determined by the trade-off among three terms,

one of which is the error rate r(Ω̂) as in (4.2). This is supported by our numerical results

as well. In Chapter 3, we demonstrate, with both simulated and real networks where Θ∗ is

not block-diagonal, that our proposed BCD method can still accurately estimate Θ∗ and B∗

whenever a relatively accurate Ω̂ is provided.

4.3 Comparison to Other Results

If the data matrix X consists of i.i.d. samples generated from the Gaussian linear SEM

(1.3), assuming the topological sort of the vertices is known, the DAG estimation problem

in (2.8) is reduced to solving the standard Lasso regression in (2.9) with L̂(t) = In, and

thus independent of the initial Θ̂(0) estimator. Under the restricted eigenvalue condition and

letting λn �
√

log p/n, it is known the Lasso estimator has the following optimal rate for `2
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error [GB09]:

sup
j
‖β̂j − β∗j ‖2

2 = Op

(
s

log p

n

)
.

When the data are dependent, Theorem 17 shows that the estimator from Algorithm 3 can

achieve the same optimal rate if we make the extra assumptions above. In particular, what

we need is a reasonably good initial Θ̂(0) estimate such that ‖Θ̂(0) − Θ∗‖2 ≤ M for a small

positive constant M .

On the other hand, if the underlying DAG is an empty graph and Ω∗ = Ip, the problem

of estimating Θ∗ can be solved using graphical Lasso in (2.10) because the data (columns in

X) are i.i.d. The sample variance Ŝ would also be an unbiased estimator of Σ∗. In this case,

[RWR11] showed that

‖Θ̂−Θ∗‖2 = Op

(
m

√
log n

p

)
.

This results does not require knowing supp(Θ∗) but assumes a mutual incoherence condition

on the Hessian of the log likelihood function. In our case, Ŝ(1) is biased due to the accumu-

lated errors from the previous Lasso estimation as well as Ω̂. As a result, there is an extra

bias term R̄(s, n, p) in ‖Ŝ(1) − Σ∗‖∞ (see Lemma 32 in Appendix 4.4.1.2) compared to the

i.i.d. setting:

‖Ŝ(1) − Σ∗‖∞ = δ̄f (p, n
τ ) + R̄(s, n, p),

where δ̄f (p, n
τ ) �

√
log n/p is the classical graphical Lasso error rate, and

R̄(n, p, s) � max
{
r(Ω̂), s

√
log p log max{n, p}/n

}
depends on the estimation errors of B̂(1) and Ω̂. When n � p and r(Ω̂) is dominated by
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√
log(n)/p, we get the same rate for the `2 consistency of Θ̂ (Corollary 19) under slightly

more strict constraint on the sample size (4.6). If n� p, then the `2 error rate is determined

by max{r(Ω̂), s(log3 p/n)1/2}. Suppose Θ∗ is block-diagonal. If the number of blocks N

is much smaller than n, then the `2 rate will be dominated by r(Ω̂) � s
√

log p/N , which

could be slower than the optimal graphical Lasso rate. But that is expected due to the error

introduced in the DAG estimates B̂(1) and Ω̂.

4.4 Proofs

4.4.1 Some Auxiliary Results

Here we introduce four lemmas that we use to establish the error bounds of Θ̂(1) and B̂(1). Let

us start by deriving an upper bound on the `2 deviation of L̂(0) from L∗ under Assumption

1.

Lemma 21. Suppose Assumption 1 holds and let L∗, L̂(t) be the Cholesky factors of Θ∗ and

Θ̂(t), respectively. Let ∆̂
(t)
chol = L̂(t) − L∗. Then,

‖∆̂(0)
chol‖2 ≤

M

2σmin(L∗)
,

where σmin(L∗) is the smallest singular value of L∗, and M is from Assumption 1.

To generalize the basic bound on ‖β̂lasso− β∗j ‖2 from [BG11] to dependent data, we need

to control the `∞-norm of an empirical process component 2X>Θ̂(0)εj/n. Let us start with

the case when the data are independent. Define the following events, where X̃ = L∗X

represents the independent data as explained in Chapter 4:

E :=

p⋂
k=1

{
‖X̃k‖2 ≤ 6ψ̄

√
n

}
. (4.7)

Then the following lemma follows from X̃ being sub-Gaussian.
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Lemma 22. Let α > 2 be an integer. If n > 2
√

2α log p, then the event E defined in (4.7)

holds with probability at least 1− 1/pα−1.

Next, let X̃[j−1] denote the first j − 1 columns in X̃ and define the following events that

depend on λn

Tj :=
{

2‖X̃>[j−1]ε̃j‖∞/n ≤ λn

}
, j = 1, . . . , p

T :=

p⋂
j=1

Tj. (4.8)

Lemma 23. Let X̃k consist of n i.i.d sub-Gaussian random variables with parameter ψ̄2 for

k = 1, . . . , p. If

λn = 12ψ̄ω̄

(√
2 log p

n
+

√
2 log 2 + 4 log p

n

)
,

then the probability of T satisfies

P(T ) ≥
(

1− 1

p

)2

.

Lemma 23 implies that if λn �
√

log p
n

, then the error terms will be uniformly under

control with high probability, especially when both n and p are large.

Lemma 24 (Maximal inequality). Let xi = (xi1, . . . , xip) be a random vector where each

element xij is sub-Gaussian with parameter ψ̄2, then

P
(
‖xi‖∞ ≥ 2ψ̄

√
log p

)
≤ 2/p.

From model (2.3), it is clear that each row in X̃ is sub-Gaussian with parameter ψ̄2. By

Lemma 24, we have ‖x̃i‖∞ .
√

log p w.h.p.
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4.4.1.1 Error Bound of B̂(1)

The estimation error bound for the classical Lasso problem where samples are i.i.d. was

established by choosing a penalty coefficient that dominates the measurement error term.

Specifically, as shown in Lemma 23, this can be achieved with high probability by setting

λn �
√

log p
n

. In order to prove the consistency of B̂(1) from Algorithm 3, we need to control

a similar error term which depends on Θ̂(0). Notably, such error can be controlled under the

same rate as λn, see Theorem 25.

Theorem 25 (Control the empirical process). Let λn be the same as in Lemma 23. Suppose

the initial estimator Θ̂(0) satisfies Assumption 1. Then

P

(
sup
j∈[p]

2‖X>Θ̂(0)εj‖∞/n ≤ λn

)
≥
(

1− 1

p

)(
1− 2

p

)
. (4.9)

Next, we show that the random matrix L̂(0)X satisfies the Restricted Eigenvalue (RE)

condition [Wai19] w.h.p. Towards that end, we define the event K as in Theorem 7.16 from

[Wai19] given as

K :=

{
‖X̃β‖2

2/n ≥ c̃1‖
√

Ψ∗β‖2
2 − c̃2ρ

2(Ψ∗)
log p

n
‖β‖2

1

}
, (4.10)

where ρ2(Ψ∗) is the maximum diagonal entry of Ψ∗ and X̃ = L∗X is the de-correlated data.

Lemma 26 (Restricted eigenvalue condition). Consider a random matrix X ∈ Rn×p, which

is drawn from a Nn×p(0,Σ∗,Ψ∗) distribution. Let Θ̂(0) be the initial estimate of Θ∗ = Σ∗−1

satisfying Assumption 1, L̂(0) be the Cholesky factor of Θ̂(0), and ρ2(Ψ∗) be the maximum

diagonal entry of Ψ∗. Then under event K defined in (4.10), there are universal positive

constants c1 < 1 < c2 such that

‖L̂(0)Xβ‖2
2

n
≥ c1‖

√
Ψ∗β‖2

2 − c2ρ
2(Ψ∗)

log p

n
‖β‖2

1, (4.11)
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for all β ∈ Rp.

The probability of event K can be found in Theorem 7.16 from [Wai19] . This event is a

restriction on the design matrix X̃ and it holds with high probability for a variety of matrix

ensembles. Note that the restricted eigenvalue (RE) condition proved in Lemma 26 implies

that all sub-design matrices [X1] , [X1 | X2] , [X1 | X2 | X3] , . . . , [X1 | . . . , | Xp] involved in

the Lasso iteration in Algorithm 3 also satisfy the required RE condition. With Theorem 25

and Lemma 26, it is possible to prove an oracle inequality for the dependent Lasso problem,

which yields a family of upper bounds on the estimation error.

Theorem 27 (Lasso oracle inequality). Consider the Lasso problem in (2.9) for t = 0.

Suppose the inequality (4.11) and the event in (4.9) hold. Let κ̄ = σmin(Ψ∗). For j ∈ [p] and

any β∗j ∈ Rp, if

λn ≥ 12ψ̄ω̄

(√
2 log p

n
+

√
2 log 2 + 4 log p

n

)
,

then any optimal solution β̂
(1)
j satisfies:

‖β̂(1)
j − β∗j ‖2

2 ≤
768λ2

n

c2
1κ̄

2
|S|+ 64λn

4c1κ̄
‖β∗j,Sc‖1 +

128c2

c1

ρ2(Ψ∗)

κ̄

log p

n
‖β∗j,Sc‖2

1, (4.12)

for any subset S with cardinality |S| ≤ c1
64c2

κ̄
ρ2(Ψ∗)

n
log p

. Let L̂(0) be the Cholesky factor of

Θ̂(0). Then,

‖L̂(0)X
(
β̂

(1)
j − β∗j

)
‖2

2/n ≤ 6λn‖β∗j ‖1. (4.13)

Theorem 27 implies supj∈[p] ‖β̂
(1)
j − β∗j ‖2

2 ≤
768λ2n
c21κ̄

2 s � s log p
n

, where s is the maximum

in-degree of the true DAG.
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4.4.1.2 Error Bounds of Θ̂(1)

Recall that s denotes the maximum number of nonzero entries in β∗j for j ∈ [p]. In order to

control ‖Θ̂(1)−Θ∗‖2, we need to rely on certain type of error bound on Ŝ(1)−Σ∗, where Ŝ(1)

is the sample covariance defined in (2.10) when t = 0. Therefore, we adopt the definition of

tail condition on the sample covariance from [RWR11].

Definition 28. (Tail conditions) We say the n × p random matrix X from model (2.1)

satisfies tail condition T (f, v∗) if there exists a constant v∗ ∈ (0,∞] and a function f :

N× (0,∞)→ (0,∞) such that for any (i, j) ∈ [n]× [n],

P
[
|Ŝ(1)
ij − Σ∗ij| ≥ δ

]
≤ 1/f(p, δ) ∀δ ∈ (0, 1/v∗].

We require f(p, δ) to be monotonically increasing in p, so for a fixed δ > 0, define the

inverse function

p̄f (δ; r) := arg max {p | f(p, δ) ≤ r} .

Similarly, f should be increasing in δ for each fixed p, so we define an inverse function in the

second argument:

δ̄f (p; r) := arg max {δ | f(p, δ) ≤ r} . (4.14)

Under the setting of a Gaussian DAG model, we can derive a sub-Gaussian tail bound.

Lemma 29. Let X be a sample from our Gaussian DAG model (2.1). The sample covariance

matrix

Σ̂ =
1

p

p∑
j=1

1

ω2∗
j

(
Xj −Xβ∗j

) (
Xj −Xβ∗j

)>
, (4.15)
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satisfies the tail bound

P
(

sup
i,j
|Σ̂ij − Σ∗ij| > δ

)
≤ 4 exp

{
− pδ2

3200

}
,

for all δ ∈ (0, 40).

Corollary 30. If f(p, δ) = 4 exp
{

pδ2

3200

}
, then the inverse function δ̄f (p;n

τ ) takes the fol-

lowing form,

δ̄f (p;n
τ ) = 40

√
2

√
τ log n+ log 4

p
.

Based on the tail bound in Corollary 30, we can control the sampling noise Σ̂−Σ∗ as in

Lemma 31.

Lemma 31 (Lemma 8 in [RWR11]). Define event

A =
{
‖Σ̂− Σ∗‖∞ ≤ δ̄f (p;n

τ )
}
, (4.16)

where δ̄f (p;n
τ ) = 40

√
2
√

τ logn+log 4
p

. For any τ > 2 and (n, p) such that δ̄f (p;n
τ ) ≤ 1/40,

we have

P [Ac] ≤ 1

nτ−2
→ 0.

Recall r(Ω̂) defined in (4.2) and the constant b defined in Lemma 16.

Lemma 32. Suppose b > 0 and

sup
j
‖β̂(1)

j − β∗j ‖2
2 ≤ c · s log p

n
, (4.17)
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for a fixed positive constant c. Let Ŵ (1) := Ŝ(1) − Σ∗. Then, we have

‖Ŵ (1)‖∞ ≤ 40
√

2

√
τ log n+ log 4

p
+ max

6ω̄r(Ω̂),
72ω̄ψ̄s

b

√
log p log2 max{n, p}

n


with probability at least 1− 1/nτ−2 − 5n2/max{n, p}4.

Theorem 33. Assume B̂(1) satisfies (4.17) and b > 0. Let

R̄(s, p, n) = max

6ω̄r(Ω̂),
72ω̄ψ̄s

b

√
log p log2 max{n, p}

n

 ,

δ̄f (p;n
τ ) = 40

√
2

√
τ log n+ log 4

p
.

Consider the graphical Lasso estimate Θ̂(1) from Algorithm 3 with λp = δ̄f (p;n
τ ) + R̄ for

τ > 2. Assume

p̄f (1/max {160, 24mC} , nτ ) ≤ p and R̄ ≤ 1

24C
, (4.18)

where C = max {κΣ∗κΓ∗ , κ
3
Σ∗κ

2
Γ∗}. Then, with probability at least 1−1/nτ−2−5n2/max{n, p}4,

we have

‖Θ̂(1) −Θ∗‖∞ ≤ 4κΓ∗
(
δ̄f (p;n

τ ) + R̄
)
,

‖Θ̂(1) −Θ∗‖2 ≤ 4κΓ∗(m+ 1)
(
δ̄f (p;n

τ ) + R̄
)
.

where m is the maximum degree of the undirected network G∗.

4.4.2 Proofs of Main Results

We collect the proofs of our main theoretical results here, including the proofs of Theorem 13

in Section 2.2, Proposition 14 in Section 2.3, and Theorem 17, Corollary 18 and Corollary 19

72



in Section 4.2.

Proof of Proposition 14

Proof. First, notice that, with probability one, X has full column rank. Also, because

the Cholesky factor L̂(t) is always positive definite for each iteration, L̂(t)X is in general

position a.s. Note that the first three terms of (2.8) are differentiable (regular) and the

whole function is continuous. Furthermore, solving (2.8) with respect to each variable gives

a unique coordinate-wise minimum. Therefore, by Theorem 4.1 (c) in [Tse01], the block

coordinate descent converges to a stationary point.

Proof of Theorem 13

Proof. By Theorem 3 from [Chi03], there exists a finite sequence of covered edge reversals

in G1 such that at each step G1 w G2 and eventually G1 = G2. Hence it suffices to show the

result for those G1 and G2 that differ only by one edge reversal.

Before we show the main result, let us first prove that given the same initial Θ0, the BCD

algorithm will generate the same limiting estimate (Θ̂, B̂, Ω̂). This limit point is a stationary

and partial optimal point for (2.5) by proposition 14. To do this, it suffices to show that the

sample covariance matrices calculated from (2.4) (appear in the trace term tr(SΘ)) for the

two networks are equal: SG1 = SG2 .

Suppose Xi and Xj are two nodes in the DAGs and the edges between them have opposite

directions in G1 and G2. We assume the nodes follow a topological order, and let Z denote

the common parents of Xi and Xj. The sample covariance matrix S(B̂, Ω̂) is defined for a

DAG G as the following:

SG =

p∑
k=1

1

(ω̂Gk )2
εGkε

G
k
>,

where εk is the residual after projecting Xk onto its parents (given by a DAG). Also, ω̂2
k =
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‖εGk‖2
2/n. In our case, we simply need to show that

1

(ω̂G1i )2
εG1i ε

G1
i
> +

1

(ω̂G1j )2
εG1j ε

G1
j
> =

1

(ω̂G2i )2
εG2i ε

G2
i
> +

1

(ω̂G2j )2
εG2j ε

G2
j
>, (4.19)

because all other terms in the summation are equal for both DAGs.

Let X⊥i , X
⊥
j be the respective residuals in the projection of Xi and Xj to the span(Z), and

X̃⊥i , X̃
⊥
j be the normalized X⊥i and X⊥j . Then if we let Xi −→ Xj in G1 and Xj −→ Xi in G2,

we have

LHS of (4.19) = X̃⊥i X̃
⊥
i
> +

(
X⊥j − 〈X⊥j , X̃⊥i 〉X̃⊥i
‖X⊥j − 〈X⊥j , X̃⊥i 〉X̃⊥i ‖

)
·

(
X⊥j − 〈X⊥j , X̃⊥i 〉X̃⊥i
‖X⊥j − 〈X⊥j , X̃⊥i 〉X̃⊥i ‖

)>
.

(4.20)

Denote 〈X̃⊥i , X̃⊥j 〉 = cos θ, and notice that

(4.20) = X̃⊥i X̃
⊥
i
> +

(
X⊥j − 〈X⊥j , X̃⊥i 〉X̃⊥i

)
·
(
X⊥j − 〈X⊥j , X̃⊥i 〉X̃⊥i

)>
‖X⊥j ‖2 sin2 θ

= X̃⊥i X̃
⊥
i
> +

X̃⊥j X̃
⊥
j
>

sin2 θ
+
X̃⊥i X̃

⊥
i
> cos2 θ

sin2 θ
+ A shared term

=
X̃⊥j X̃

⊥
j
> + X̃⊥i X̃

⊥
i
>

sin2 θ
+ A shared term. (4.21)

Since (4.21) is symmetric in i and j, we have that LHS of (4.19) = RHS of (4.19). In other

words, given the same initial Θ̂0, the iterative algorithm will generate the same sequence of

(B̂, Ω̂, Θ̂), thus the same limiting point.

Note that the MLE estimates for G1 and G2 are also limiting points given some initial Θ.

Let us suppose the MLE exists and (Θ̂1, B̂1), (Θ̂2, B̂2) are the MLEs for G1,G2, respectively,

then according to the results above we have

LG1(Θ̂1, B̂1(G1)) = LG2(Θ̂1, B̂1(G2)) ≤ LG2(Θ̂2, B̂2(G2)) = LG1(Θ̂2, B̂2(G1)).
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Therefore,

LG1(Θ̂1, B̂1(G1)) = LG2(Θ̂2, B̂2(G2)).

Thus, all MLEs for G1 yield the same likelihood value which is equal to the likelihood value

of any MLE for G2.

Proof of Theorem 17

Proof. We first prove the consistency in B̂(1). Under Assumption 1, Theorem 25 shows that

for the given λn, the empirical process term of the noises can be uniformly bounded with

high probability. Therefore, in order to obtain the conclusion in Theorem 27, we only need

the inequality (4.11) in Lemma 26 to hold. Since the event K in (4.10) holds with high

probability by Theorem 7.16 in [Wai19], (4.11) holds by Lemma 26. Next, we show Θ̂(1) is

consistent by invoking Theorem 33. For the chosen λp and under the constraint on (n, p)

specified in (4.4), the sample size requirement in (4.18) is satisfied. Therefore, the results

follow from Theorem 33. Combining Theorem 27 and 33, we get the desired results.

Proof of Corollary 18

Proof. The rate of supj ‖β̂
(1)
j − β∗j ‖2

2 follows directly from the choice of λn �
√

log p
n

. Since

r(Ω̂) = Op

(
s
√

log p
N

)
and p� n,

‖Θ̂(1) −Θ∗‖2 = Op

m
√ log n

p
+ smax


√

log p

N
,

√
log3 p

n




= Op

msmax


√

log p

N
,

√
log3 p

n


 (n & N)

= Op

ms
√

log3 p

n

 (N log2 p & n).
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Proof of Corollary 19

Proof. The rate of supj ‖β̂
(1)
j − β∗j ‖2

2 can be derived in the same way as in the proof of

Corollary 18. Since r(Ω̂) = Op

(
s
√

log p
N

)
and n� p,

‖Θ̂(1) −Θ∗‖2 = Op

m
√ log n

p
+ smax


√

log p

N
,

√
log p log2 n

n




= Op

m
√ log n

p
+ smax


√

log p

N
,

√
log p log2 n

n




N & s2p =⇒
√

logn
p

&
√

s2 log p
N

and n� s2p log p log n =⇒
√

logn
p

&
√

s2 log p log2 n
n

. Thus,

‖Θ̂(1) −Θ∗‖2 = Op

(
m

√
log n

p

)
.

4.4.3 Proofs of Intermediate Results for Theorem 17

We include the proofs for all the intermediates results that lead to Theorem 17 in this section.

Proof of Theorem 25

Proof. For any j = 1, . . . , p,

2

n
‖X>Θ̂(0)εj‖∞ =

2

n
‖X>(Θ∗ + ∆̂(0)

prec)εj‖∞ ≤
2

n
‖X̃>ε̃j‖∞ +

2

n
‖X>∆̂(0)

precεj‖∞

≤ 2

n
‖X̃>ε̃j‖∞ +

2

n
‖X̃>L∗−>∆̂(0)

precL
∗−1ε̃j‖∞.
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Let K̂(0) = L∗−>∆̂
(0)
precL∗−1. Then following Assumption 1,

‖K̂(0)‖2 ≤ ‖∆̂(0)
prec‖2/σ

2
min(L∗) ≤M/σ2

min(L∗).

Under event E defined in (4.7), for j ∈ [p],

‖K̂(0)X̃j‖2 ≤ 6ψ̄M
√
n/σ2

min(L∗) ≤ 6ψ̄
√
n.

For j ∈ [p], define the event T j as the following

T j :=
{

2‖X̃>K̂(0)ε̃j‖∞/n < λn/2
}
.

Similar to the proof of Lemma 23, we can show

P

(
p⋃
j=1

T
c

j | E

)
≤ 1

p
,

and

P
(
T
⋂

T
)
≥ P

(
T
⋂

T | E
)
P (E ) ≥ (1− 1

p
)(1− 2

p
) ≥ (1− 2

p
)2,

where T is defined in Lemma 23.

Proof of Lemma 26
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Proof. We observe that

‖L̂(0)Xθ‖2/
√
n ≥ ‖L∗Xθ‖2

√
n− ‖∆̂(0)

cholXθ‖2/
√
n

= ‖L∗Xθ‖2/
√
n− ‖∆̂(0)

cholL
∗−1L∗Xθ‖2/

√
n

≥
(

1− ‖∆̂(0)
chol‖2/σmin (L∗)

)
‖L∗Xθ‖2/

√
n

≥
(

1− M

2σ2
min (L∗)

)
‖X̃θ‖2/

√
n (By Assumption 1 and Lemma 21)

≥ 1

2
√
n
‖X̃θ‖2,

when n is sufficiently large. Since event K defined in (4.10) holds, by Theorem 7.16 in

[Wai19], we have

‖L̂(0)Xθ‖2
2

n
≥ 1

4

(
c̃1‖
√

Ψ∗θ‖2
2 − c̃2ρ

2(Ψ∗)
log p

n
‖θ‖2

1

)
≥ c1‖

√
Ψ∗θ‖2

2 − c2ρ
2(Ψ∗)

log p

n
‖θ‖2

1.

Proof of Theorem 27

Proof. Consider the penalized negative likelihood function from (2.9):

L(βj, λn) =
1

2n
‖L̂(0)Xj − L̂(0)Xβj‖2

2 + λn‖βj‖1.

For simplicity, we drop the superscript (t) in β̂(1) and L̂(0). Let ρ stand for ρ(Ψ∗), β∗j ∈ Rp ,

and ∆̂j = β̂j − β∗j . We start from the basic inequality [Wai19]:

L(β̂j, λn) ≤ L(β∗j , λn) =
1

2n
‖L̂εj‖2

2 + λn‖β∗j ‖1.
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After rearranging some terms,

0 ≤ 1

2n
‖L̂X∆̂j‖2

2 ≤
ε>j Θ̂X∆̂j

n
+ λn

(
‖β∗j ‖1 − ‖β̂j‖1

)
. (4.22)

Next, for any subset S ⊆ [p], we have

‖β∗j ‖1 − ‖β̂j‖1 = ‖β∗j,S‖1 + ‖β∗j,Sc‖1 − ‖β∗j,S + ∆̂j,S‖1 − ‖∆̂j,Sc + β∗j,Sc‖1. (4.23)

Combined (4.22) with (4.23), and apply triangle and Hölder’s inequalities,

0 ≤ 1

2n
‖L̂X∆̂j‖2

2 ≤
1

n
ε>j Θ̂X∆̂j + λn

(
‖∆̂j,S‖1 − ‖∆̂j,Sc‖1 + 2‖β∗j,Sc‖1

)
≤ ‖X>Θ̂εj‖∞/n‖∆̂j‖1 + λn

(
‖∆̂j,S‖1 − ‖∆̂j,Sc‖1 + 2‖β∗j,Sc‖1

)
≤ λn

2

(
‖∆̂j‖1 + 2‖∆̂j,S‖1 − 2‖∆̂j,Sc‖1 + 4‖β∗j,Sc‖1

)
≤ λn

2

[
3‖∆̂j,S‖1 − ‖∆̂j,Sc‖1 + 4‖β∗j,Sc‖1

]
, (4.24)

‖∆̂j‖1 ≤ 4
(
‖∆̂j,S‖1 + ‖β∗j,Sc‖1

)
.

This inequality implies (apply Cauchy-Schwarz inequality)

‖∆̂j‖2
1 ≤

(
4‖∆̂j,S‖1 + 4‖β∗j,Sc‖1

)2

≤ 32
(
|S| ‖∆̂j‖2

2 + ‖β∗j,Sc‖2
1

)
. (4.25)

Next, from (4.11) and (4.25), we know,

‖L̂X∆̂j‖2
2

n
≥
(
c1κ̄− 32c2ρ

2|S| log p

n

)
‖∆̂j‖2

2 − 32c2ρ
2 log p

n
‖β∗j,Sc‖2

1

≥ c1κ̄

2
‖∆̂j‖2

2 − 32c2ρ
2 log p

n
‖β∗j,Sc‖2

1, (4.26)

where the last inequality comes from the condition |S| ≤ c1
64c2

κ̄
ρ2(Ψ∗)

n
log p

. Now let’s analyze

the following two cases regarding (4.26):
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Case 1. Suppose that c1κ̄
4
‖∆̂j‖2

2 ≥ 32c2ρ
2 log p

n
‖β∗j,Sc‖2

1, then from (4.24) we can get

c1κ̄

4
‖∆̂j‖2

2 ≤ λn

(
3
√
|S|‖∆̂j‖2 + 4‖β∗j,Sc‖1

)
.

Solving for the zeros of this quadratic form in ‖∆̂j‖2 yields

‖∆̂j‖2
2 ≤

48λ2
n

c2
1κ̄

2
|S|+

16λn‖β∗j,Sc‖1

c1κ̄
.

Case 2. Otherwise, we have c1κ̄
4
‖∆̂j‖2

2 ≤ 32c2ρ
2 log p

n
‖β∗j,Sc‖2

1.

After combining the two cases, we obtain the claimed bound in (4.12). To get the

prediction bound in (4.13), we first show ‖∆̂j‖1 ≤ 4‖β∗j ‖1. From basic inequality, we have

0 ≤ 1

2n
‖L̂X∆̂j‖2

2 ≤
ε>j Θ̂X∆̂j

n
+ λn

(
‖β∗j ‖1 − ‖β̂j‖1

)
.

By Hölder’s inequality and Theorem 25,∣∣∣∣∣ε>j Θ̂X∆̂j

n

∣∣∣∣∣ ≤
∥∥∥∥∥X>Θ̂εj

n

∥∥∥∥∥
∞

‖∆̂j‖1 ≤
λn
2

(
‖β∗j ‖1 + ‖β̂j‖1

)
.

Combine the two inequalities above, we get

0 ≤ 3λn
2
‖β∗j ‖1 −

λn
2
‖β̂j‖1,

which implies ‖β̂j‖1 ≤ 3‖β∗j ‖1. Consequently, we have

‖∆̂j‖1 ≤ ‖β̂j‖1 + ‖β∗j ‖1 ≤ 4‖β∗j ‖1.
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Return to the basic inequality, we have

‖L̂X∆̂j‖2
2

2n
≤ λn

2
‖∆̂j‖1 + λn

(
‖β∗j ‖1 − ‖β∗j + ∆̂j‖1

)
≤ 3

2
λn‖∆̂j‖1 ≤ 6λn‖β∗j ‖1.

Proof of Lemma 29

Proof. The proof follows a similar approach as the proof for Lemma 1 in [RWR11].

Proof of Corollary 30

Proof. A little calculation using Lemma 29 and Definition 28 shows that the corresponding

inverse functions for data from the Gaussian DAG model (2.1) are:

δ̄f (p; r) = 40

√
2 log(4r)

p
, and p̄f (δ; r) =

3200 log(4r)

δ2
.

Setting r = nτ yields the desired result.

Proof of Lemma 32

Proof. Let Ŝ
(t)
ij denote the (i, j) entry of the sample variance matrix Ŝ(t) defined in (2.10).

Let Xi· and X·j denote the ith row and jth column of X, respectively. Let ε∗ik := Xik−Xi·β
∗
k

where β∗k is the kth column of B∗, ρ∗k = 1/ω∗2k , ρ̂k = 1/ω̂2
k, ∆̂

(t)
k := β̂

(t)
k −β∗k , and δ̂k = ρ̂k−ρ∗k.
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Then,

Ŝ
(1)
ij =

1

p

p∑
k=1

ρ̂k

(
Xik −Xi·β̂

(1)
k

)(
Xjk −Xj·β̂

(1)
k

)
=

1

p

p∑
k=1

ρ̂k

(
ε∗ik −Xi·∆̂

(1)
k

)(
ε∗jk −Xj·∆̂

(1)
k

)
= Σ̂ij +

1

p

p∑
k=1

ρ∗k

(
−ε∗ikXj·∆̂

(1)
k − ε

∗
jkXi·∆̂

(1)
k +Xi·∆̂

(1)
k Xj·∆̂

(1)
k

)
+

1

p

p∑
k=1

δ̂k

(
ε∗ik −Xi·∆̂

(1)
k

)(
ε∗jk −Xj·∆̂

(1)
k

)
= Σ̂ij +

1

p

p∑
k=1

ρ̂k

(
−ε∗ikXj·∆̂

(1)
k − ε

∗
jkXi·∆̂

(1)
k +Xi·∆̂

(1)
k Xj·∆̂

(1)
k

)
+

1

p

p∑
k=1

δ̂kε
∗
ikε
∗
jk.

If we let Rij = 1
p

∑p
k=1 ρ̂k

(
−ε∗ikXj·∆̂

(1)
k − ε∗jkXi·∆̂

(1)
k +Xi·∆̂

(1)
k Xj·∆̂

(1)
k

)
+ 1

p

∑p
k=1 δ̂kε

∗
ikε
∗
jk, we

can upper bound |Rij| by dividing it into three terms and controlling each term separately.

Part 1.

We observe that

∣∣∣∣1p
p∑

k=1

ρ̂kε
∗
ikXj·∆̂

(1)
k

∣∣∣∣ =

∣∣∣∣1p
p∑

k=1

(
ρ∗k + δ̂k

)
ε∗ikXj·∆̂

(1)
k

∣∣∣∣
≤
∣∣∣∣1p

p∑
k=1

ρ∗kε
∗
ikXj·∆̂

(1)
k

∣∣∣∣+

∣∣∣∣1p
p∑

k=1

δ̂kε
∗
ikXj·∆̂

(1)
k

∣∣∣∣.
If ∆̂

(1)
k and δ̂k satisfy (4.17), both ρ∗k and δ̂k can be bounded by positive constants (r(Ω̂)� 1).
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Define the following events:

B1 =
n⋃
i=1

{
‖εi·‖∞ ≥ 6ω̄

√
log max{n, p}

}
,

B2 =
n⋃
k=1

{
‖ε∗k·‖2 ≥ 6ω̄

√
p

}
,

B3 =
n⋃
k=1

{
‖Xk·‖∞ ≥ 6ψ̄

√
log max{n, p}

}
.

Under event B1, B2, and B3,

∣∣∣∣1p
p∑

k=1

ρ̂kε
∗
ikXj·∆̂

(1)
k

∣∣∣∣ ≤ 2

b
sup
k
|ε∗ikXj·∆̂

(1)
k |

≤ 12ω̄

b

√
log max{n, p} sup

k
‖Xj·‖∞‖∆̂(1)

k ‖1 (By Hölder’s Inequality and B1)

≤
12ω̄s

√
log p log max{n, p}

b
√
n

‖Xj·‖∞ (From ‖∆̂(1)
k ‖1 ≤ 4

√
2s‖∆̂(1)

k ‖2)

≤ 72ω̄ψ̄s

b

√
log p log2 max{n, p}

n
(By event B3).

The second last inequality comes from ‖∆̂(1)‖1 ≤ 4
√

2s‖∆̂(1)‖2 in the proof of Theorem 27.

Part 2

Notice that

∣∣∣∣1p
p∑

k=1

ρ̂kXi·∆̂
(1)
k Xj·∆̂

(1)
k

∣∣∣∣ ≤ 2

b
sup
k
|Xj·∆̂

(1)
k ||Xi·∆̂

(1)
k |

≤ 2s2 log p

bn
‖Xj·‖∞‖Xi·‖∞

≤ 12ψ̄s2

b

√
log2 p log2 max{n, p}

n2
.
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Part 3

By Lemma 16, ‖δ̂‖∞ = supk |ρ̂k − ρ∗k| = supk |1/ω̂2
k − 1/ω∗2k | = r(Ω̂). Combining with B2, we

have

∣∣∣∣1p
p∑

k=1

δ̂kε
∗
ikε
∗
jk

∣∣∣∣ ≤ 1

p
‖δ̂‖∞

p∑
k=1

|ε∗ikε∗jk| ≤
1

p
‖δ‖∞‖ε∗i·‖2‖ε∗j·‖2 ≤ 6ω̄‖δ̂‖∞ = 6ω̄r(Ω̂).

Combine all three parts, we have

|Rij| ≤ max

6ω̄r(Ω̂),
72ω̄ψ̄s

b

√
log p log2 max{n, p}

n

 .

Using Lemma 24 and Lemma 22, we can derive the upper bound for the probabilities of

B1,B2,B3:

P (B1) ≤ 2/max{n, p}4,

P (B2) ≤ 1/max{n, p}4 if n > 2
√

10 log max{n, p},

P (B2) ≤ 2/max{n, p}4,

P

(
3⋃
l=1

Bi

)
≤ 5/max{n, p}4.

Applying union bound,

‖R‖∞ ≤ max

6ω̄r(Ω̂),
72ω̄ψ̄s

b

√
log p log2 max{n, p}

n

 ,

with probability at least 1− 5n2

max{n,p}4 . Take event A from Lemma 31 into account and apply

union bound one more time, we arrive at the desired conclusion.

Proof of Theorem 33

Proof. Let R̄(s, p, n) and δ̄f (p;n
τ ) be defined as stated, then the monotonicity of the inverse
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tail function (4.14) and condition (4.18) on (n, p) implies that δ̄f (p;n
τ ) ≤ 1/40. Lemma 31

and Lemma 32 imply that the event A defined in (4.16) and the events B1,B2,B3 defined in

the proof of Lemma 32 hold with high probability. Conditioning on these events, we have

‖Ŵ (1)‖∞ ≤ δ̄f (p;n
τ ) + R̄(s, p, n).

Choose λp = δ̄f (p;n
τ ) + R̄. By Lemma 32 and condition (4.18) we have that

2κΓ∗

(
‖Ŵ (1)‖∞ + λp

)
≤ 4κΓ∗

(
δ̄f (p;n

τ ) + R̄
)
≤ min

{
1

3κΣ∗m
,

1

3κ3
Σ∗2κΓ∗m

}
.

Applying Lemma 6 in [RWR11] we obtain

‖Θ̂(1) −Θ∗‖∞ ≤ 4κΓ∗
(
δ̄f (p;n

τ ) + R̄
)
,

‖Θ̂(1) −Θ∗‖2 ≤ ‖A‖2‖Θ̂(1) −Θ∗‖∞ ≤ (m+ 1)‖Θ̂(1) −Θ∗‖∞.

4.4.4 Proofs of Other Auxiliary Results

This section includes the proofs for Lemma 15 and 16 as well as the four lemmas introduced

in Section 4.4.1.

Proof of Lemma 15

Proof. From Lemma 1 in [YB19] we know that if λN ≥ N−1‖X(B)>ε
(B)
j ‖∞, then

∣∣∣∣ω̂2
j −N−1‖ε(B)

j ‖2
2

∣∣∣∣ ≤ 2λN‖β∗j ‖1 ≤ λNsβ̄.

Pick λN = 12ψ̄ω̄

(√
2 log p
N

+
√

2 log 2+6 log p
N

)
, then applying the Chernoff bound for sub-
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Gaussian random variables (e.g., see proof of Lemma 23) we can show that

λN ≥ sup
j
N−1‖X(B)>ε

(B)
j ‖∞.

holds with probability at least (1− 1
p
)2. This proves the first inequality. To prove the second

inequality, notice that

sup
j

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣ = sup
j

∣∣∣∣ω̂2
j −
‖ε(B)

j ‖2
2

N
+
‖ε(B)

j ‖2
2

N
− ω∗2j

∣∣∣∣
≤ sup

j

∣∣∣∣ω̂2
j −
‖ε(B)

j ‖2
2

N

∣∣∣∣+ sup
j

∣∣∣∣‖ε(B)
j ‖2

2

N
− ω∗2j

∣∣∣∣.
From χ2 concentration inequality, (e.g. [Wai19] Example 2.11)

∣∣∣∣ω∗2j − 1

N
‖ε(B)

j ‖2
2

∣∣∣∣ ≥ 2
√

2ω̄

√
log 2 + 3 log p

N
with probability at most 1/p3,

sup
j

∣∣∣∣ω∗2j − 1

N
‖ε(B)

j ‖2
2

∣∣∣∣ ≥ 2
√

2ω̄

√
log 2 + 3 log p

N
with probability at most 1/p2.

Combining all the inequalities, we can show that the second inequality holds with probability

at least (1− 1/p)2 − 1/p.

Proof of Lemma 16

Proof. Simply notice that

sup
1≤j≤p

∣∣∣∣ 1

ω̂2
j

− 1

ω∗2j

∣∣∣∣ = sup
1≤j≤p

∣∣∣∣ 1

ω̂2
jω
∗2
j

∣∣∣∣ sup
1≤j≤p

∣∣∣∣ω∗2j − ω̂2
j

∣∣∣∣ ≤ 1

b4
sup

1≤j≤p
|ω∗2j − ω̂2

j |.

Proof of Lemma 21
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Proof. The claim follows since

‖∆̂prec‖2 = ‖Θ̂−Θ∗‖2

= ‖
(
L∗ + ∆̂chol

)> (
L∗ + ∆̂chol

)
− L∗>L∗‖2

= ‖L∗>∆̂chol + ∆̂>cholL
∗ + ∆̂>chol∆̂chol‖2

≥ max
x∈Sn−1

x>
(
L∗>∆̂chol + ∆̂>cholL

∗ + ∆̂>chol∆̂chol

)
x

≥ max
x∈Sn−1

x>
(
L∗>∆̂chol + ∆̂>cholL

∗
)
x (as ∆̂>chol∆̂chol < 0.)

= ‖L∗>∆̂chol + ∆̂>cholL
∗‖2

≥ 2σmin (L∗) ‖∆̂chol‖2.

Proof of Lemma 22

Proof. Notice that X̃k ∈ Rn is a sub-Gaussian random vector with variance smaller than ψ̄.

By Theorem 1.19 in [Rig15a], we have that

P
(
‖X̃k‖2 > 4ψ̄

√
n+ 2ψ̄

√
2 log(1/δ)

)
≤ δ.

Setting δ = 1/pα and using union bound we obtain the desired conclusion.

Proof of Lemma 23

Proof. Lemma 22 implies that with probability at least 1− 1/p,

‖X̃k‖2 ≤ 4ψ̄
√
n+ 2ψ̄

√
2 log p ≤ 6ψ̄

√
n, (4.27)

for all k. Under event the E defined in (4.7), ‖X̃>[j−1]ε̃j‖∞/n corresponds to the absolute

maximum of j − 1 zero-mean Gaussian variables, each with variance at most 36ψ̄2ω̄2/n.
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Next, we calculate the probability of the event T ∩ E , where δ = 1/p2. We also let

t =

√
2 log 2 + 4 log p

n
,

λn = 12ψ̄ω̄

(√
2 log p

n
+ t

)
.

Because both X̃ and ε̃ are random, we use the equivalence: p(y) = Ep(x) [p(y | x)] to apply

the properties of fixed-design Lasso: Let X[j−1] denote the first j − 1 columns in X,

1− P(Tj | E ) = EX[j−1]
P
{

2‖X̃>[j−1]ε̃j‖∞/n > λn | X[j−1],E
}

= EX[j−1]
P

{
2‖X̃>[j−1]ε̃j‖∞/n > 6ψ̄ω̄

(√
2 log p

n
+ t

)
| X[j−1],E

}

≤ 2 exp

{
−nt

2

2

}
= 1/p2.

where in the last inequality we apply the Chernoff standard Gaussian tail bound. Hence,

1− P (T | E ) = 1− P

(
p⋂
j=1

Tj | E

)
= P

(
p⋃
j=1

T c
j | E

)
≤ 1

p
. (4.28)

Finally, by Lemma 22 with α = 2 we get

P(T ) ≥ P(E )P (T | E ) ≥
(

1− 1

p

)2

. (4.29)

Proof of Lemma 24

Proof. By the sub-Gaussian maximal inequality (e.g., Theorem 1.14 in [Rig15b]), we know

that if X1, . . . XN are random variables such that Xi ∼ sub-Gaussian with parameter σ2,
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then for any t > 0,

P
(

max
1≤i≤N

|Xi| ≥ t

)
≤ 2N exp

(
− t2

2σ2

)
.

Letting t =
√

4ψ̄2 log p and taking σ2 = ψ̄2, we arrive at the desired result.
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CHAPTER 5

Summary and Discussion

5.1 Summary of Contributions

In this paper our main goal is to generalize the existing Gaussian DAG model to dependent

data. We proposed to model the covariance between observations by assuming a non-diagonal

covariance structure of the noise vectors. This generalization is related to the semi-Markovian

assumption in causal DAG models. Our main contributions include the development of a

consistent structural learning method for the DAG and the sample network under sparsity

assumptions and finite-sample guarantees for the estimators.

Our proposed BCD algorithm is built upon existing Lasso regression and graphical Lasso

covariance estimation methods. When a topological ordering of the true DAG is known, it

estimates the covariance between the observations Σ and the WAM of the DAG B in an

iterative way. The method is fast and often converges in a few iterations. Our theoretical

analysis shows that the estimates after one iteration are `2-consistent under various asymp-

totic frameworks including both n � p and n � p, assuming a proper initialization of the

precision matrix Θ̂(0). The estimate of the DAG WAM B̂(1) achieves the optimal rate as

Lasso estimators. The estimate of the precision matrix Θ̂(1) achieves the same optimal rate

as the graphical Lasso method when n � p and there are sufficiently many independent

subgroups within the data. Otherwise, it has a slightly worse rate due to the bias of the

sample covariance matrix. When the DAG ordering is unknown, we showed the covariance

Σ is invariant under permutations of the DAG nodes. Therefore, if the true DAG is sparse,
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our BCD algorithm can still give a good estimate of Θ which can be used to decorrelate the

data. In addition to the theoretical analysis, we conducted extensive experiments on both

synthetic and real data to compare our method with existing methods. When a true ordering

of the DAG was given, the BCD algorithm significantly improved the structural estimation

accuracy compared to the baseline method which ignored the sample dependency. When the

ordering was unknown, classical DAG learning methods, such as GES, PC, and sparsebn,

can all be greatly improved with respect to structural learning of CPDAGs by using our

proposed de-correlation method based on the BCD algorithm. In all cases, our estima-

tion methods under the proposed network Gaussian DAG model yielded significantly higher

test data log-likelihood compared to other competing methods, indicating better predictive

modeling performance.

5.2 Future Directions

There are several unexplored directions from our research and we discuss some of them here.

5.2.1 Algorithm and Optimization

In this project we primarily focused on the cases when a natural ordering of the DAG is given

and the error bounds and consistency results we had are also based on this assumption. In

practice, however, it can be hard to obtain the ordering in advance. The main reason that

we needed a natural ordering is to reduce the search space of possible DAGs (O(p!2(p
2))) to

a much smaller space. To avoid searching through the DAG space, people have proposed

approximate algorithms to search through the p! orderings instead [SNM07b, TK05]. But

these methods usually do not scale up to more than a hundred nodes. Recently, Niinimäki et

al. proposed an MCMC method to sample partial orderings of DAGs. It would be interesting

to see if we can combine partial order sampling with our method and extend the theoretical

results.
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Another way of bypassing the search space barrier for score-based methods is formulating

the acyclicity constraint into a smooth function so that classical optimization algorithms can

be directly applied. Recently, a breakthrough method called NOTEARS [ZAR18] converts

the acyclicity constraint into a continuous function based on the trace of the adjacency

matrix B of the candidate DAGs:

h(B) := tr [(I + αB ◦B)p]− p = 0, ∀α > 0.

It then minimizes a least-square loss to get B̂ subject to the constraint. The method is fast

and the estimates, which are stationary points of the objective function, are close to the

global optimal solution based on empirical studies. It might be possible to apply this idea

to our DAG learning problem with dependent data.

5.2.2 Nonlinear and Discrete Data

In this dissertation, we focused on Bayesian networks whose nodes are linear functions of

other nodes and the noise terms follow Gaussian distribution. In the next step, we can

generalize our model to other functional and distributional assumptions under the network

data framework. For example, we can start by considering nonlinear structural equations.

Our model in (2.1) assumes X satisfies the following linear structural equation:

X := (In −B>)−1E, E = [ε1 | . . . | εp], εj ∼ N (0, ω2
jΣ).

We can generalize it to

X := f
(
(In −B>)−1E

)
, E = [ε1 | . . . | εp], εj ∼ N (0, ω2

jΣ). (5.1)

where f is an unknown non-linear function. If f is invertible, model (5.1) is equivalent to

f−1(X) = B>f−1(X) + E. The two functions f and its inverse f−1 can be any nonlinear
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function such as two deep neural networks. In this case, we can estimate the parameters

using variational auto-encoder such as in [YCG19].

Another direction is to consider discrete or binary data. The variational method men-

tioned above can be directly applied after assuming a factored categorical distribution p(X |

E) with probabilities equal to softmax
(
f
(
(In −B>)−1E

))
. For binary data, we can also use

a two-layer model with a truncation layer. Suppose the data Y = [Y1 | . . . | Yp] ∈ {0, 1}n×p

are binary. Let η(x; τ) = I(x < τ) be the hard thresholding function. Then we can model

Y as

Yj = η(X; τj), j = 1, . . . , p, (5.2)

where X is generated by the original model (2.1). The model parameters can be estimated

using the hierarchical Bayes method.

5.2.3 Alternative Ways of Estimating Ω∗

The proposed BCD algorithm minimizes the objective function in (2.8) which is different from

the penalized negative log-likelihood in (2.7). Ideally, we would like to estimate (Ω, B,Θ)

jointly by directly minimizing (2.7). One of the ways we explored was to reparameterize

the model by letting ρj = 1
ωj

and φj =
βj
ωj

as in [SBV10], and optimize a reparameterized

log-likelihood function:

L(Φ, P,Θ) =− p log det Θ− n log detP +

p∑
j=1

‖ρjLXj − LXφj‖2
2

+ ρ1(Φ) + ρ2(Θ), Φ ∈ D(π),

(5.3)

where π is a permutation of the DAG nodes, P = diag(ρj), and Φ = (φij). The objective

function (5.3) is not exactly equivalent to (2.7) since ρ(Φ) is different from ρ(B). L(Φ, P,Θ)

in (5.3) is also a biconvex function in all three estimators and thus can be minimized using
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block coordinate descent. The numerical results proved that by minimizing (5.3), we can also

get more accurate estimators for the DAG and row correlations compared to the benchmark

methods. However, we found it difficult to establish the consistency of the estimators,

especially the consistency of P̂ = Ω̂−1. In the future, it is worth investigating the conditions

under which P̂ would be consistent when jointly estimating all three parameters.

5.2.4 Theory

Our current theoretical results are only for estimators obtained after one iteration of the

BCD algorithm. However, our numerical results showed that the estimators (B̂(∞), Θ̂(∞))

obtained after convergence are also very accurate. Therefore, it would be interesting to

investigate the theoretical properties of those estimators and compare them with the global

optimal value. Finally, the theoretical properties we obtained for B̂(1) and Θ̂(1) replies on

a consistent Ω̂ estimator. In order to control the error of Ω̂, we currently assume Θ∗ has

a block-diagonal structure with N blocks. It would be interesting to explore other ways of

deriving consistent Ω̂.
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