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ABSTRACT OF THE DISSERTAION 

Modeling Nonlinear Behavior of Dynamic Biological Systems 

by 

Maryam Masnadi-Shirazi 

Doctor of Philosophy in Electrical Engineering 

(Signal and Image Processing) 

University of California, San Diego, 2018 

Professor Shankar Subramaniam, Chair 

Professor Pamela Cosman, Co-Chair 

 

With the availability of large-scale data acquired through high-throughput technologies, 

computational systems biology has made substantial progress towards partially modeling 

biological systems. In this dissertation we intend to focus on deciphering the dynamics of such 

systems through data-driven analysis of multivariate time-course data. We develop integrative 

frameworks to study the following problems: 1) time-varying causal inference when the number 

of samples exceeds the number of variables (overdetermined case), 2) dynamic causal network 

reconstruction when the number of variables exceeds the data samples (underdetermined case), 3) 

forecasting the dynamic behavior of complex chaotic systems from short and noisy time-series 



xxi 
 

data. In the first problem we utilize the notion of Granger causality identified by a first-order vector 

autoregressive (VAR) model on phosphoproteomic measurements to unravel the crosstalk between 

various phosphoproteins in three distinct time intervals. In problem 2 we use a non-parametric 

change point detection (CPD) algorithm on transcriptional time series data from a mouse cell cycle 

to estimate temporal patterns that can be associated with different phases of the cell cycle. The 

second problem becomes more complex as the number of variables exceeds the number of time-

series data and we use a higher order VAR model to estimate causal interactions among cell cycle 

genes. To solve this ill-posed problem we use Least Absolute Shrinkage and Selection Operator 

(LASSO) and select the regularization parameters through Estimation Stability with Cross 

Validation (ES-CV) leading to more biologically meaningful results. LASSO + ES-CV is applied 

to temporal intervals associated with the G1, S and G2/M phases of the cell cycle to estimate phase-

specific intracellular interactions. In problem 3, we develop a nonparametric forecasting algorithm 

for chaotic dynamic systems, Multiview Radial Basis Function Network (MV-RBFN) that 

outperforms a model-free approach, Multiview Embedding (MVE). In this algorithm, the forecast 

skill of all possible manifolds (views) reconstructed from a combination of variables and their time 

lags is assessed and ranked from best to worst. MV-RBFN uses the top  views as the inputs of a 

neural network to approximate a nonlinear function .  that maps the past events of a dynamic 

system as the input, to future values as the output. 
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Chapter I  

Introduction 
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I.A Modeling the Dynamics of Biological and Ecological Systems from Time Series Data 

In recent years, high-throughput technologies such as nextgen sequencing, DNA 

microarray expression profiling, and high-content imaging have made it possible to make 

concurrent quantitative measurement of multiple cellular components including mRNA levels, 

protein phosphorylation and metabolites. The application of mathematical and statistical 

approaches to such data has been used widely to understand the relationship between different 

components in the cell to partially reconstruct data-driven networks. Conventional methods of 

network reconstruction such as correlation based methods (1, 2), principal component regression 

(PCR) (3), and partial least squares (PLS) (4) offer a static characterization of network topologies, 

devoid of any temporality which is an ingrained feature of biological systems. Boolean network 

(BN) and dynamic Bayesian learning provide a temporally evolving picture of the network but 

either require discretization of data values and thus oversimplification of the network topology (5), 

or perform poorly on high dimensional data (6).  

In the case of forecasting the behavior of complex natural systems, many studies assume 

linearity and use generalized linear models while such systems exhibit nonlinear dynamics with 

time lags, reciprocal feedback loops and unpredictable surprises (7). Equation based methods such 

as differential equations may also be used to model the dynamics of chaotic systems but require 

prior knowledge about the actual interaction of system components (8). Even if the underlying 

structure is known, dimensionality poses a challenge on accurate estimation of model parameters.  

An alternative equation-free method suitable for chaotic behavior is state space reconstruction 

(SSR) which provides substantial flexibility in the nonlinearity of the system (9).  

In this dissertation, we look into the following problems: 
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1. Estimating time-varying causal network from phosphoproteomic measurements in 

macrophage cells for a set of 17 phosphoproteins. 

2. Dynamic network reconstruction from RNA-sequencing data in mouse embryonic 

fibroblast primary cells for a set of 63 cell cycle genes.   

3.  Prediction of future behavior of chaotic dynamic ecological systems (using simulated 

and real data). 

In both problems 1 and 2, we assume that the corresponding biological systems 

(macrophage cells and embryonic fibroblast cells) have a stochastic behavior and assume linearity 

of the model structure and use the notion of Granger causality identified by vector autoregression 

(VAR) for causal inference (10). The first scenario is a simpler problem where number of data 

samples exceed the number of variables (overdetermined problem) and we use first-order vector 

autoregression (VAR) to model the system’s dynamics. The second problem becomes more 

complex as we consider higher-order VAR to model the cell cycle, resulting in an underdetermined 

problem that cannot be solved uniquely. In problems 1 and 2, we develop integrative frameworks 

to investigate the temporal behavior of the data-driven reconstructed networks.  In the third 

scenario, we no longer assume linearity of the model structure where we develop a nonparametric 

forecasting algorithm that takes advantage of the dimensionality of complex chaotic systems in 

nature. 
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I.B Contribution of the Dissertation 

 The contribution of this dissertation has three main components summarized in the 

following subsections. 

I.B.1 Time-varying Causal Inference from Phosphoproteomic Measurements in 

Macrophage Cells 

Protein phosphorylation is a key reversible modification that acts as a switch to turn “on” 

or “off” a protein activity or cellular pathway (11). Activation of proteins through phosphorylation 

serves as the flux in the signaling pathways; errors in transferring cellular information can alter 

normal function and may lead to diseases such as chronic anti-inflammatory diseases, 

autoimmunity and cancer. Since biological systems evolve through time, it is important to study 

the dynamic behavior of the topology of the signaling pathways and networks. Thus, we allow the 

network topology (the set of connections or edges presented in the network) to evolve with time. 

Our objective in this study is to derive a time-varying model for the phosphoproteomic network to 

understand the dynamics of signaling pathways using the notion of Granger causality. We have 

applied the notion of Granger causality and statistical hypothesis testing to estimate causal 

relationships between different phosphoproteins using time-series data.  

According to Granger’s definition of causality, it is said that signal  causes signal , 

if the future values of  can be better predicted using the past values of  and  than only 

using the past of itself (10). Utilizing the notion of Granger causality, we apply first-order vector 

autoregression (VAR) to infer causal relationships among phosphoproteins by analyzing the time-

varying fold changes of phosphoprotein n ns in response to single and double ligand stimuli. The 

quantitative levels of phosphoproteins are measured through western blot experiments in RAW 

264.7 macrophage cells.  
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The availability of multiple single and double experiments in the phosphoprotein time-

series provides more data samples and makes the VAR model an overdetermined problem that can 

be solved uniquely via Least Squares (LS) estimation. We further test the significance of predicted 

LS coefficients by performing a two-tailed t-test to infer statistically significant causal 

connections. Moreover, by partitioning the time-series data into three segments, we investigate the 

evolution of the underlying topology of the estimated phosphoprotein network in three distinct 

time intervals.  

I.B.2 Time-varying Causal Network Reconstruction of a Mouse Cell Cycle 

 The progression of a eukaryotic cell cycle is governed by a complex, dynamical network 

of molecular interactions that regulate a series of directional and irreversible events such as cell 

growth, DNA replication, mitosis, and cell division. The biochemical pathways controlling the 

order and timing of cell cycle phases, called cell cycle checkpoints, play an essential role in 

maintaining genomic stability of the cell. Dysregulation of these checkpoints can alter the ability 

of the cell to undergo cell-cycle arrest in response to DNA damage and may lead to cancer. 

Significant progress has been made in identifying molecular players and pathways involved in cell 

cycle mechanisms through extensive investigations on model systems like yeast. Protein assays, 

transcriptional studies, fluorescent imaging, and protein interaction mapping have all contributed 

to our current understanding of the cell cycle. From these studies and other phenotypic assays, 

molecular players engaged in distinct phases of the cell cycle, namely, G1, S, G2, and M phases, 

have been identified, resulting in a static pathway map of the cell cycle (12). These maps lack 

dynamical information, owing to the absence of systematic time series measurements. Fine-

grained time series measurements of a mammalian cell cycle, can enrich the understanding of 

dynamical networks through which the temporal relationships between molecular players and 
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modules can be inferred, and further provide insights into mechanistic causality. In this study, we 

present a systematic fine-grained RNA sequencing study of the transcriptional profiles during a 

mammalian cell cycle. Although these measurements are at the transcript level, we anticipate that 

given the strong transcriptional mechanisms that are concomitant with the cell cycle, these data 

have the potential to provide detailed dynamical mechanisms of the cell cycle. While there has 

been several attempts at identifying different regimes in long time-series, mainly in the signal 

processing community (13-15), they have not been used to further develop evolving dynamical 

models and networks for biological systems. 

 We have developed a framework to investigate the temporal changes in the cell cycle 

network using RNA-seq time series data from Mouse Embryonic Fibroblast (MEF) primary cells. 

We use a non-parametric change point detection (CPD) algorithm (16) based on Singular Spectrum 

Analysis (SSA) (17) to infer the mechanistic changes in the time-course data for a set of 63 cell 

cycle genes to estimate cell cycle phases. We also use the notion of Granger causality implemented 

through vector autoregressive (VAR) model (18) to predict the future expression levels of each 

gene as a function of the past expression levels of other genes yielding directionality of gene 

regulation among the 63 cell cycle genes. Furthermore, we utilize the concept of Minimum 

Description Length (MDL) (19) to use past expression levels of genes, up to 9 time lags (equivalent 

to 4.5 hours), to determine the minimum data information from past events required for a robust 

prediction of values at the current time. 

Considering the fact that we use a higher order VAR model to predict causality, the linear 

inverse problem becomes an undetermined problem that cannot be solved uniquely. However, if 

the solution is sufficiently sparse, it is actually possible to recover the solution by solving an ℓ -

norm regularization problem which is strictly related to the Least Absolute Shrinkage and 
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Selection Operator (LASSO) problem (20). The regularization parameter in LASSO sets a trade-

off between the fit error and the sparsity of the solution. The conventional methods in selecting 

the regularization parameters include Akaike’s information criterion (AIC) (21) and Bayesian 

information criterion (BIC) (22). These criteria can be easily computed but depend on model 

assumptions and even if the model assumptions are met, they may not be valid in the finite sample 

cases. The regularization parameter is often selected through the model-free Cross-validation (CV) 

approach (23,  24). When sample size is large, CV leads to estimators with good predictive 

performance. However, when sample size is small, CV does not yield an interpretable model since 

LASS+CV is unstable and not reliable for scientific interpretations (25). In this study we observed 

that using the Estimation Stability with Cross Validation (ES-CV) criterion (26) leads to more 

meaningful results that make biological sense. Estimation stability (ES) is based on the idea that 

the solution is not meaningful if it varies considerably from sample to sample.   

This computational scheme enables us to (i) estimate the timing of cell cycle phases, (ii) 

infer the duration of the G1, S and G2/M phases of the MEF cell cycle to be 14.5, 10 and 4 hours, 

respectively, (iii) reconstruct three successive directed graphs representing the key regulatory 

mechanisms among the 63 cell cycle genes in the G1, S and G2/M phases of the cell cycle, (iv) 

infer the temporal impact that biological processes have on one another, as well as the dynamic 

changes in temporal dependencies as the cell evolves through successive phases, and (v) reflect 

the chronological order of regulatory events that are crucial to cell cycle control. The main power 

of our work is its ability to capture key pathways and important causal interactions over time, 

providing a broad picture of the dynamics of a cell cycle regulatory network. We validate the 

reliability of our time-varying network for cell cycle progression by comparing the interactions 

detected in our results to the well-known regulatory pathways in the literature as well as estimating 
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temporal interdependences (time-delay) between important biological processes as the cell evolves 

through successive phases of the cell cycle.  

I.B.3 Multiview Radial Basis Function Network: A New Approach on Nonparametric 

Forecasting of Chaotic Dynamic Systems 

In recent years, the availability of large time-course datasets in multiple disciplines, 

including biology, ecology and finance has brought forth the problem of handling such data for 

scientific analysis (27-29). In many studies, generalized linear models and vector autoregressive 

models are used for structural estimation and inference, where such systems exhibit nonlinear 

dynamics with time lags, reciprocal feedback loops and unpredictable surprises (7, 30). On the 

other hand, equation-based models such as difference and differential equations may be used to 

analyze the evolution of a dynamic system, but often require some degree of prior knowledge 

about the nature of interactions among various system components (8), or even if the model 

structure is known, dimensionality poses a challenge on accurate parameter estimation of variables 

(31). Furthermore, prior work has established that ecological and biological models are often 

ineffective in predicting the future due to the highly nonlinear nature of component interactions 

(32, 33). 

An alternative equation-free approach suitable for non-equilibrium dynamics (including 

chaos) and nonlinearity is state space reconstruction (SSR) which is a model-free approach in the 

sense that there is no analytic formula assumption thus allowing substantial flexibility in the 

nonlinearity of the system (9, 34). SSR uses lagged coordinate embeddings to reconstruct attractors 

that map the time-series evolution from time domain into state space trajectories. In a notable 

theorem, Takens proved that the overall behavior of a chaotic dynamic system can be reconstructed 

from lags of a single variable (35). Later Takens’ theorem was generalized and it was demonstrated 
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that the information from a combination of  multiple time-series (and their lags) can be used in an 

attractor reconstruction to provide a more mechanistic model (36, 37). Nonetheless, since attractor 

reconstruction relies only on experimental data, the limitations of short or noisy time-series 

restricts the ability to infer system dynamics as a whole. Namely, SSR from short time series 

provide a scarce view of a system’s mechanism, diminishing reliability of inferences. In addition, 

when time-series data is corrupted with observational noise, data may become meaningless and 

irrelevant in providing useful information for predictability.  Ye et al. (2016) introduced an 

analytical approach, multiview embedding (MVE), which harnesses the complexity of short and 

noisy ecological time series as a way to improve forecasting (38). MVE is a method based on 

nearest neighbors that looks into the predictability of all possible manifold reconstructions using 

the method of simplex projection (34). In this work, we treat prediction of the dynamical system 

as an inverse problem that involves interpolation and approximating an unknown function from 

time series data. Instead of relying on single nearest neighbors of the top attractor reconstructions 

as carried out in MVE, here we introduce multiview radial basis function network (MV-RBFN) 

autoregressive model that calculates a distance-weighted average of all points in the top manifold 

reconstructions through a nonlinear kernel estimation method. Similar to MVE, attractors from 

combinations of variables and their lags are reconstructed. Each manifold (view) comprises 

information that is particular to that embedding. By ranking the reconstructed manifolds according 

to their forecast skill (prediction errors), and merging the top views and the information contained 

in them, MV-RBFN is capable of recovering the dynamics of the system in a manner that 

outperforms MVE and nonlinear univariate and multivariate autoregressive models.  

We show that our approach, multiview radial basis function network (MV-RBFN) provides  

a better forecast performance than that obtained using a model-free approach, multiview 
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embedding (MVE), owing to the universal approximation property of radial basis function 

networks. We demonstrate this for simulated ecosystems and a long term mesocosm experiment 

on a multi-species plankton community obtained from the Baltic Sea. By taking advantage of 

dimensionality, we show that MV-RBFN overcomes the shortcomings of noisy and short time-

series. 

I.C Organization of the dissertation 

 The rest of the dissertation is organized as follows. In Chapter II, we look into estimating 

time-varying causal network from phosphoproteiomic measurements in macrophage cells for a set 

of 17 phosphoproteins.  In Chapter III, we develop an integrative framework that deals with an 

undetermined inverse problem for dynamic network reconstruction from RNA-seq data in mouse 

embryonic fibroblast primary cells for a set of 63 cell cycle genes.  In Chapter IV, we develop a 

nonparametric forecasting algorithm that predicts future behavior of chaotic dynamic ecological 

systems (using simulated and real data). Finally in Chapter V, the conclusions of the dissertation 

are presented.  
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Chapter II  

Time-varying Causal Inference from 
Phosphoproteomic Measurements in 
Macrophage Cells 
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 II.A Introduction            

The understanding of cellular function at the molecular level involves the study of 

intracellular signaling, metabolic pathways and gene regulatory networks, through “omics” 

measurements on biological systems. Protein phosphorylation is one of the main steps in 

intracellular signaling from the activated proteins located at the plasma membrane to the cytosolic 

space and nucleus. Phosphorylation is one of the most studied post-translational modification of 

proteins since is it vital for many protein interactions that regulate cellular processes such as cell 

growth, cell differentiation and development to cell cycle control and metabolism (39). 

Phosphorylation is a key reversible modification with the combined involvement of protein kinases 

and phosphatases to activate and deactivate proteins (11). Phosphorylation mainly occurs on 

serine, threonine and tyrosine residues that can regulate enzymatic activity, subcellular 

localization, complex formation and degradation of proteins. Activation of proteins through 

phosphorylation serves as the flux in the signaling pathways. Several signaling pathways such as 

the nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and signal 

transducer and activator of transcription (STAT) play essential roles in transmitting signals that 

trigger the release of cytokines, which are central to the processes of inflammation and modulation 

of immune function (40). The signaling pathways act as modules to regulate the transcription and 

release of various cytokines, some of which are involved in the pathogenesis of many diseases, 

e.g., chronic inflammatory diseases, autoimmunity and cancer. Thus, reconstructing protein 

networks from “omics” measurements can help us not only understand and model cellular 

signaling pathways but also assist in uncovering the mechanisms of disease progression. Since 

knowledge of protein-protein interaction is sparse, it is difficult to simultaneously analyze the 

dynamics of various proteins in vitro or in vivo. High-throughput technologies, such as nextgen 
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sequencing, DNA microarray expression profiling, phosphoproteomics, metabolomics and high-

content imaging, have made it possible to make concurrent quantitative measurements of various 

components of the cell, including mRNA levels, protein phosphorylation and metabolites, enabling 

the reconstruction of large-scale cellular networks. Complexities such as feedback and feed-

forward loops and the cross-talk between different signaling pathways have hindered the problem 

of developing reliable mathematical approaches within an integrative framework, taking into 

account the dynamics of signaling networks (40). 

During the last decade, the application of mathematical and statistical approaches to high-

throughput biological data has been used extensively to decipher the relationship between different 

components in the cell to partially reconstruct intracellular networks. With the availability of large-

scale omics data, computational systems biology has made substantial progress towards modeling 

and reconstruction of data-driven networks using (1) input/output-based models such as Partial 

Least Squares (PLS) (4) and Principal Component Regression (PCR) (41), (2) probabilistic 

graphical models  such as Bayesian network-based models (42-44), probabilistic Boolean network 

models (45, 46), and (3) information theory-based methods such as integrated correlation and 

transfer entropy based approach (47) and C3NET (48, 49). Other approaches using differential 

equations (50), structural equation methods (51) and state-space models (52) have also been 

proposed during the past few years.  

 

Biological systems evolve through time and it is important to study the dynamic behavior 

of the topology of the signaling pathways/networks themselves (52). Thus, we allow the network 

topology (the set of connections/edges present in the network) to evolve with time. Our objective 

in this study is to derive a time-varying model for the phosphoprotein network to understand the 

dynamics of signaling pathways using the notion of Granger causality. Causality can be 



14 
 

determined by prior biological information. However, in many cases, no “a priori” knowledge is 

available to provide causal relationships in network reconstruction. Furthermore, it is appealing to 

discover new causal relationships, rather than already known ones. In the present work, we have 

applied the notion of Granger causality and statistical hypothesis testing to estimate causal 

relationships between different phosphoproteins using time-series data. According to Granger’s 

definition of causality, it is said that signal X(t) causes signal Y(t),  if future values of Y(t) can be 

better predicted using the past values of X(t) and Y(t) than only using the past of itself (10). 

Due to the fact that intracellular networks are not static, we use time series data in order to 

determine these dynamic changes in the network topology. In the present work, we use a vector 

autoregressive (VAR) model to infer relationships of Granger causality among phosphoproteins 

by analyzing the time-varying fold changes of phosphoproteins in response to single and double 

ligand stimuli. The quantitative levels of phosphoproteins were measured through western blot 

experiments by the Alliance for cellular Signaling (AfCS) (53) in RAW 264.7 macrophage cells. 

We infer the topology of the phosphoprotein networks in three distinct time intervals.  

II.B Approach 

II.B.1 Granger Causality 

Granger causality was first introduced by the Noble prize- winning economist, Clive 

Granger, and has proven useful for analyzing the relationships and influences among 

macroeconomic time series (e.g. income, exchange rate, etc.) (10). We note that Granger causality 

is not meant to be equivalent to the true causality, but is intended to provide useful information 

regarding causation and the direction of information flow. Formally, a time series  is said to 

Granger-cause a time series	 , if the future value of   can be predicted given the past values of 

 and , ( , , … , , , …), better than predicting the future of  given only the past 
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values of  ( , , …). Commonly, Granger causality is identified by VAR models (54). A 

VAR model of p-order and k-dimensional time series is given by: 

	. 	. 	. 	 	                         (II.1) 

where , , … ,  is a ( 1) random vector,  is the measurement at time t of the 

 random variable,  is a ( ) autoregressive coefficient matrix,   is a ( 1) vector of 

intercepts and , , … , ′ is a -dimensional error vector of random variables with zero 

mean and covariance matrix ∑. 

The optimal order of the VAR model can be found through approaches such as Minimum 

Description Length (19) which requires many samples in time. In the present work, since there are 

only three original samples in time, we consider the following first order VAR model:  

                    	 	                                                            (II.2) 

VAR allows identification of Granger causality for linear relationships. In order to find 

causal relationships, we analyze the elements of matrix . An important outcome of this approach 

is that the series  causes of  if and only if the  entry of matrix  is statistically significant. 

Therefore, it is sufficient to estimate the autoregressive coefficient matrix of the VAR model in 

order to identify the direction of Granger causality.  

This approach can be applied to the analysis of phosphoprotein time-course data to interpret 

functional connectivity between phosphoproteins to reconstruct their underlying network by 

testing the statistical significance of the estimated components of . Considering the time series 

, … , ) for each of the   variables, the  first-order VAR model in (2) can be written in the 

following matrix form (55): 

                                    	                                                           (II.3) 
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where , … ,  is a  matrix whose columns are time series for each of the  random 

variables with sample size , , ′ is a 1  matrix, , … , ′ is a 

1   matrix with	 1;	 , and , … , ′ is a  matrix. For each of the  

columns of matrices , , and , we can write the following linear regression model 

                                 ; 	 1, … , 		                                            (II.4) 

where vector   represents the  column of matrix , vector  is the  column of matrix  and 

vector   is the  column of matrix . In this linear model, we seek to estimate the unknown 

coefficients in matrix . We can use least squares (LS) estimation method in order to compute the 

unknown parameters/coefficients. Therefore, each column of matrix  is estimated through the LS 

estimation shown below: 

; 	 1, … , 			                                       (II.5) 

After estimating the coefficient vectors for each of the outputs, they can be concatenated 

to construct the estimated matrix , and therefore, the autoregressive coefficient matrix  can be 

computed. The proposed VAR model analyzes causality between different variables in terms of 

how the future of a variable can be predicted using the past values of itself and other variables. 

According to this model, as stated earlier, variable  is said to Granger-cause variable , if the  

entry of matrix  is nonzero. However, the least squares criteria favors solutions with many 

nonzero entries, which is contrary to the goal of finding purely zero entries to identify whether or 

not causations between pairs of variables exist. Hence, we need to apply statistical significance 

test to examine the significance of the estimated parameters. We know that LS estimation 

minimizes the root mean squared error (RMSE), and by computing the RMSE, we can perform a 

two-tailed t-test on the coefficients. The RMSE is computed as follows: 
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∑ 		                          (II.6) 

where  is the estimation of : 

 

	                                                              (II.7) 

Significant Connections: The standard-deviation of the model parameters are estimated as:  

, 	; 1                   (II.8) 

where  is the length of the time series,  is the number of variables, and  is defined as the degrees 

of freedom. Then the ratio  / ,  is computed for the  entry of the  column of the 

estimated matrix  and | | is compared against 1 /2, , where .  denotes 

the inverse of the cumulative t-distribution and 0.01 (two-tailed) for a confidence interval 

of	99%. The estimated coefficients are considered statistically significant if their corresponding 

ratios are greater than	  and insignificant otherwise (t-test on the model coefficients). We also 

computed the p-value, false-discovery rate (FDR) using the Benjamini–Hochberg (BH) method 

(56) for the connections retained. As presented in the Results section, the Benjamini-Hochberg 

FDR for the connections retained is less than 0.026. 

Performance Metrics: Type I error, Type II error, and accuracy of the network is 

computed (57) as follows using the False Positives (FP), False Negatives (FN), True Positives (TP) 

and True Negatives (TN) in the network identified: 

                              	 	                                                  (II.9) 

                                  	 	                                               (II.10) 

                                                                             (II.11) 
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II.B.2 Application of the VAR model to Phosphoproteomic Data 

We applied this method to time-course data on the level of phosphorylation of proteins in 

RAW 264.7 macrophages in response to stimuli, provided by the Alliance for Cellular Signaling 

(AfCS) (53) . This data set consists of fold changes of 21 phosphoproteins at 4 time points; i.e., 

data at 1,3,10 and 30 minutes, in response to treatments with 22 single ligands and their double 

ligand combinations measured using the western blot method. The fold changes of the 

phosphoproteins are determined by dividing the volume of each phosphoprotein band for the 

ligand-treated samples by the average volume of the corresponding bands for the untreated samples 

(volume is the sum of the image pixel values within the area of the band). The replicates for the 

experiments with unique combination of ligand(s) for each phosphoprotein were averaged. Out of 

327 unique ligand combinations, the number of combinations with 1, 2, 3, 4 and more than 4 

replicates was 68, 68, 123, 37 and 31, respectively. Thus, most ligand combinations have three 

replicates, hence resulting in only a small bias due to the difference in the number of replicates. 

Due to the fact that the time intervals are not equal, we interpolated the data using linear 

interpolation with steps of one minute. Other interpolation methods (e.g., cubic) may result in large 

deviations at the intermediate time points, and this may not be close to the real variation of the fold 

change of the phosphoproteins in the biological system. We excluded the last sample in the original 

data, since it was taken 20 minutes after the previous one, which is considered to be too large an 

interval for accurate interpolation. In these experiments, we had missing data for 4 of the 21 

phosphoproteins, signal transducer and activator of transcription (STAT) 3, STAT5, c-Jun N-

terminal kinases (JNK) long (JNKL) and JNK short (JNKS). Therefore, we excluded these 

variables from further analysis. We assumed that at a given time, the underlying phosphoprotein 

network that represents the structure or the topology of the biological system is the same across all 
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experiments, i.e., the topology of the phosphoprotein network representing the behavior of the 

biological system remains unchanged regardless of which ligand(s) is stimulating the system. 

Thus, to deal with the problem of rank deficiency of matrix  in (4), we stacked the data from 

multiple experiments for both the output data in matrix  (data related to present) and the input 

data in matrix  (data related to the past). This ensures that matrix  will have full column rank 

and there will be a unique solution to the least squares problem. Figure II.1 shows a schematic of 

how the input and output data from multiple experiments were stacked. Before implementing the 

VAR model, the data in matrix  was normalized and matrix  was mean-centered for each 

variable.  

 
Figure II.1 Schematic to show the stacking of the data matrices. Each column corresponds to the time series data 
of each of the  variables. 

 

In addition to implementing the VAR model, the correlation between the past and present 

values for each pair of variables was studied and the correlation matrix between the input and 

output variables was computed. Figure II.2 visualizes the correlation matrix as a heat-map, where 

the rows and columns of the heat-map are the input (at time t-1) and the output variables (at time 

t) for the whole time-series data, respectively. 
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Figure II.2 Heat-map of the correlation matrix between the input and output variables. This matrix contains the 
pairwise correlation coefficient between columns of matrix X and Y for the whole time series [1-10] minutes. 
 

In order to investigate how the underlying topology of the network is changing, we partition 

the time series for all the variables into three segments and then apply the VAR model for each 

segment separately. Since we are considering the time-course data for 1 to 10 minutes, and the 

granularity of the measurements is not fine, three overlapping segments, [1-4], [3-7] and [6-10] 

minutes were considered using interpolated data. Next, in order to investigate how the causal 

relationships are evolving with time, we estimate the causality coefficients and perform a statistical 

significance test (t-test) for each segment separately. We also compute the correlation matrix for 

each segment independently. It is expected that the results based on the interpolated data in the [3-

7] minute interval are more affected by the actual experimental value at 3 minute, whereas those 

based on [6-10] minute interval are more affected by the actual experimental value at 10 minute. 

Among the statistically significant causal relationships that were estimated through the VAR 

model, only those with high correlation coefficients (≥ 0.4; p-value is quite significant since the 

number of rows in the matrices X and Y, 2943, is very large) were selected to reconstruct the final 

network for each time interval. Therefore, the network identified contains likely causal connections 
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which also exhibit high correlation. 

It can be noted that since we are considering three separate time intervals to study the 

temporal evolution of the network, we expect that the information provided in the time series data 

may differ from stage to stage. Therefore, a causal relationship A → B that exists at an earlier 

stage need not exist at the following stage, i.e., the past value of A may no longer contribute to 

predicting the future value of B at the following stage. Thus, according to Granger’s definition of 

causality, there will be no causal relationship at the following stage. This implies that the weights 

of edges (resulting in fluxes through connections) change though time. For example, if the weight 

of a connection decreases and the corresponding p-value becomes more than the threshold of 0.01 

(for a confidence interval of 99%), we no longer consider that connection to exist as a strong causal 

relationship even though we may observe the connection in the underlying network.  

II. C Results and Discussion 

II.C.1 Graphical Network Reconstruction 

We have reconstructed the phosphoprotein signaling network that represents the underlying 

network corresponding to the full time series data shown in Figure II.3. In this network, out of 17 

× 17 possible connections, only 35 were significant, many of which have negative coefficients in 

matrix A1. Connections with negative coefficients are considered as inhibitory relationships shown 

in Figure II.3. Important inhibitory edges include AKT → GSKα/β (58-60), ERK1/2 → RSK (61, 

62). Different edge-widths are used to indicate edges with low, medium or high correlation. 
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Figure II.3 The reconstructed network for the underlying signaling network in RAW 264.7 macrophages. This 
network represents the cross-talk between phosphoproteins considering the whole time-series for [1-10] minute period. 
The pink connections are common edges in the underlying network and the timevarying network (Figure II.5). 
Different edge-widths are used to represent low (0.4  r < 0.5), medium (0.5  r < 0.75) and high (r  0.75) correlation 
coefficients corresponding to the edges. Inhibitory connections are shown with a blunt end instead of an arrow. 

 

To test the robustness of our model to the choice of  and correlation threshold, we used 

different correlation thresholds and confidence intervals (for the two tailed t-test) to reconstruct 

the underlying network. To evaluate the performance of each trial, we compared the significant 

connections identified for the underlying network to the true connections from the literature. 

Table II.1 implies that by increasing α from 0.01 to 0.02 and 0.05, i.e., reducing the confidence 

interval from 99% to 98% and to 95%, the number of False Positives increase and thus, Type I 

error increases. We also tested the results for different correlation thresholds that result in further 

trimming of the parameters. The optimal correlation threshold for which Type I and Type II errors 

are both minimized, is C = 0.4. 

 
TABLE II.1 
Robustness of Results of the Underlying Network to the Choice of Different Thresholds 

Correlation 
Threshold 

α Type I  
Error 

Type II 
Error 

Accuracy 

C=0.4 0.01 0.07  0.56  0.86 
C=0.5 0.05 0.05  0.66  0.86 
C=0.4 0.02 0.07  0.53  0.86 
C=0.4 0.05 0.10  0.48  0.84 
C=0.6 0.01 0.02  0.79  0.87 
C=0.7 0.01 0.02  0.84  0.86 
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We also studied the effect of more fine time-intervals. If we interpolate with steps of half 

a minute instead of one minute, the accuracy of the model does not change significantly. With a 

sample time of one minute, accuracy is 0.86, and with that of half a minute, accuracy is 0.87. We 

found that by using the cubic interpolation rather than linear interpolation, Type II error increases, 

justifying the use of linear interpolation. 

Many of the connections found using our approach (underlying network, Figure II.3) were 

also identified using a PLS-based approach (4). There are some differences between our network 

and the network obtained using the PLS approach. The connections p38 ↔ p65, p65 → ERK1/2 

and GSKα → RSK are found in our network (Figure II.3), but not in the PLS-based network. 

However, the connections PKCD → EZR, MOE/EZR → RSK and p38 → AKT are found using 

the PLS approach, but are absent in our network. 

The correlation coefficients with their corresponding p-values, along with the Benjamini-

Hochberg FDR and p-values based on the t-test on the model coefficients for the connections 

retained in the underlying network (Figure II.3) are listed in Table II.2. It can be noted, that the 

Benjamini-Hochberg FDR for all these connections/edges are less than 0.026. The distribution of 

the p-values (t-test on the model coefficients) from all 1717 possible connections for the 

underlying network is shown in Figure II.4 (implicitly used to calculate FDR).  
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Figure II.4 Histogram of the p-values (t-test on the model coefficients) for the underlying network generated 
from1717 p-value numbers. 
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TABLE II.2 
Correlation Coefficients and Statistical Significance of Edges Retained in the Underlying Network. 
Abbreviation: Benjamini-Hochberg (BH), false-discovery rate (FDR). 

Edges Correlation Based Model Coefficient Based 

Source 
Node 

Target 
Node 

Correlation 
Coefficient 

p-value FDR (BH) p-value 

ERK2 ERK1 0.96 0 3.75E-10 3.89E-11 
ST1A ST1B 0.96 0 1.11E-02 3.74E-03 
ERK1 ERK2 0.94 0 4.56E-09 5.52E-10 
MOE EZR 0.9 0 2.33E-08 2.98E-09 
EZR MOE 0.9 0 9.42E-03 3.00E-03 

ERK2 RSK 0.85 0 1.29E-06 1.92E-07 
P38 RSK 0.82 0 5.13E-03 1.56E-03 

ERK1 RSK 0.82 0 1.57E-06 2.44E-07 
P65 P38 0.81 0 0 0 
P38 ERK2 0.8 0 1.04E-03 2.83E-04 
P38 ERK1 0.77 0 1.89E-05 3.60E-06 
P38 P65 0.72 0 1.50E-06 2.28E-07 
P65 ERK2 0.62 0 0 0 
RSK S6 0.62 0 2.19E-04 4.99E-05 
S6 ERK1 0.59 1.19E-279 0 0 
S6 ERK2 0.59 1.21E-277 0 0 

P65 RSK 0.59 2.50E-270 0 0 
RSK PKCM 0.58 6.52E-269 2.60E-02 9.80E-03 
P65 ERK1 0.58 2.02E-262 0 0 
P38 PKCM 0.54 6.74E-227 1.42E-11 1.43E-12 
P38 GSKA 0.54 1.75E-218 4.38E-08 6.21E-09 
S6 RSK 0.53 6.00E-214 0 0 

PKCD SMD2 0.51 1.29E-197 0 0 
PKCM RSK 0.51 2.73E-196 5.74E-06 9.92E-07 
PKCM ERK2 0.51 7.58E-193 7.67E-06 1.38E-06 
GSKA RSK 0.5 9.80E-188 2.12E-02 7.78E-03 
PKCM ERK1 0.5 5.13E-182 1.09E-03 3.09E-04 
AKT GSKA 0.48 4.45E-166 1.91E-04 4.16E-05 

PKCM S6 0.46 3.36E-156 2.04E-02 7.33E-03 
P65 PKCM 0.45 7.45E-150 8.90E-04 2.34E-04 

AKT GSKB 0.45 5.72E-147 2.64E-06 4.39E-07 
P38 S6 0.45 5.40E-144 1.03E-03 2.78E-04 

GSKA MOE 0.45 1.49E-143 3.00E-04 7.05E-05 
PKCM P38 0.44 9.25E-139 9.85E-03 3.20E-03 
GSKA P38 0.44 3.39E-136 2.66E-03 8.00E-04 

 

We also present the dynamic evolution of the network in three temporal stages shown in 

Figure II.5. The topology of the phosphoprotein network changes through time. Figure II.5.a 

corresponds to the reconstructed network in the first stage of the network development. Figure 

II.5.b and Figure II.5.c correspond to the reconstructed phosphoprotein networks for the second 

and third stages of the network evolution, respectively. The inhibitory edges such as AKT → 

GSKα/β are shown in Figure II.5.  
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Figure II.5 Time-dependent cascade of the phosphoprotein signaling network in RAW 264.7 macrophages in 
three stages. (a) Reconstructed network in stage 1 related to [1-4] minute interval. (b) Reconstructed network in stage 
2 related to [3-7] minute interval. (c) Reconstructed network in stage 3 related to [6-10] minute interval. The pink 
connections are common to all the three networks as well as the underlying network (Figure II.3). Different edge-
widths are used to represent low (0.4  r < 0.5), medium (0.5  r < 0.75) and high (r  0.75) correlation coefficients 
corresponding to the edges. Inhibitory connections are shown with a blunt end instead of an arrow. 
 

Effect of single-ligand data vs. double-ligand data: To evaluate the consistency of the 

data across experiments involving different ligand combinations, we applied the VAR model to 

single ligand experiments (22 experiments). According to our results, the reconstructed network 

based on only single ligand experiments has higher Type I and Type II error. We also used only the 

double ligand experiments to model the network, and as we anticipated, the performance does not 

change significantly. It can be noted that the double ligand combinations result in activation of the 

signaling pathway in ways that are functionally distinct from single ligand experiments. 

Furthermore, as an estimate of the differences in the variability for different phosphoproteins 
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across time and treatment, we computed the ratio of the standard deviation of the standard 

deviation (std) to the mean of the std of every phosphoprotein (std is computed at every time for 

every treatment, using the replicate data), and found that this measure is of the same order (about 

1) for all phosphoproteins across experiments. 

II.C.2 Temporal Evolution of the Phosphoprotein Network 

In this subsection, we discuss the dynamic nature of the phosphoprotein network evolving 

in three successive temporal stages. For the sake of simplicity in our discussions, we treat each 

phosphoprotein as a node and each regulatory interaction as an edge in the network analysis. 

Stage 1 (Figure II.5.a) shows the initiation of interactions among phosphoproteins. Since this 

network captures the early phase of the response of the system to the ligands, there are very few 

interactions taking place in the network. Extracellular signal-regulated kinase (ERK) plays a 

crucial role in the regulation and phosphorylation of most of the proteins that are present in the 

first stage of the network including p38 MAP Kinase (p38),  p90 ribosomal S6 kinase (RSK), 

glycogen synthase kinase-3 (GSK), and protein kinase C (PKC) D. Ribosomal protein S6 (S6) 

affects ERK1 and ERK2. There is also a regulatory interaction between Nuclear Factor Kappa B 

(NF-κB p65) and p38. In addition, it is evident that Moesin (MOE) and Ezrin/Radixin (EZR) are 

part of the same pathway since a bidirectional link exists between them. As the network progresses 

to stage 2, several other interactions emerge. Figure II.5.b shows that protein kinase B (AKT) 

arises in stage 2 and regulates the phosphorylation of GSKα/β. The signal transducer and activator 

of transcription 1 A and B (STAT1A/B, also ST1A/B for short) pairs are variants of the same 

protein and are expected to be activating one another. Indeed, they show a bidirectional 

relationship. PKCD that was regulated by ERK2 in stage 1, now promotes the phosphorylation of 

EZR and mother against decapentaplegic homolog 2 (SMD2), as well as mutually regulating 
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neutrophil cytosolic factor 4 (p40). In stage 2, PKCM also appears and plays role in the regulation 

of RSK, S6 and ERK1/2, while being activated by p38. Role of S6 almost stays unchanged; i.e., it 

continues to regulate ERK1/2, except that as a result of the network progression from stage 1 to 

stage 2, we also see its interaction with RSK. This progression also brings about the 

phosphorylation of GSKα/β by RSK. In stage 1, p38 was activated by p65 and ERK2, whereas in 

the second stage, p38 regulates ERK1/2 along PKCM and gets involved in a mutual regulatory 

relationship with p65. p65 also affects ERK1/2 as well as RSK. 

The evolution of the network to stage 3 provides not only most of the links that existed in 

stage 2, but also includes some new interactions. For instance, AKT proceeds to phosphorylate 

GSKα/β, while other nodes such as p65, RSK and p38 start to have causal influences on the 

activation of GSKα/β. Furthermore, in this phase, PKCD is regulated with the activation of PKCM, 

p40, SMD2 and EZR. Another interesting change is that p65 takes part in the activation of PKCM 

and ERK1/2. Moreover, AKT, broadly known for the activation of GSK, gets involved in the 

activation of S6, while being activated by ERK2. 

Upon careful investigation of the time-dependent cascade of the network, we realize that 

there are very few stable interactions that exist in all three stages. Moreover, the well-known 

signaling pathways such as the MAPK, STAT1A/B, AKT/GSK and NF-κB pathways emerge only 

in the last two stages and not in stage 1. The few causal interactions that persist throughout the 

temporal progression of the network are S6→ERK1/2, EZR→MOE, p38→RSK and p65→p38.  

The time-varying succession of the significant interactions along with the related literature which 

validates some of these connections is shown in Table II.3. 
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TABLE II.3 
Comparison of our Results with the Current Literature 
Correlated 

pairs 
Stage 1  Stage 2  Stage  3 Underlying 

network 
Current 

knowledge 
References   

(GSK, 
AKT) 

— AKT → 
GSKα/β 

AKT → 
GSKα/β 

AKT → GSKα/β AKT → 
GSK 

(58-60) 

(GSK, 
RSK) 

— RSK → 
GSKα/β 

RSK → 
GSKα/β 

GSKα → RSK   RSK →GSK (63, 64) 

(GSK, P38) — P38 → GSKα P38 → GSKα/ 
β 

P38 ↔ GSKα P38 →  
GSK 

(65, 66) 

(GSK, 
ERK) 

ERK2/1 
→GSK

α/β 

ERK2 ↔ GSKβ — — ERK → 
GSK 

(67, 68) 

(GSK, P65) — — P65 → GSKα/β — GSK → P65 (69, 70) 

(RSK, S6) — S6 ↔ RSK S6 ↔ RSK S6 ↔ RSK RSK → S6 (62, 71) 

(RSK, 
ERK) 

ERK2 
→ RSK 

RSK → 
ERK1/2 

— ERK1/2 → RSK ERK → 
RSK 

(61, 62) 

(RSK, P38) p38 → 
RSK 

P38 → RSK P38 ↔ RSK P38 → RSK P38 → RSK (72) 

(PKC, S6) — PKCM → S6 PKCD → S6 PKCM → S6 PKC → S6 (73) 

(PKC, P38) — P38 → PKCM P38 ↔ PKCM P38 ↔ PKCM P38 → 
PKCM 

(74, 75) 

(PKC,ERK) — PKCM → 
ERK1/2 

PKCM → 
ERK1/2 

PKCM → 
ERK1/2 

PKCM → 
ERK 

(76-78) 

(PKC, 
EZR) 

— PKCD → EZR PKCD ↔ EZR — PKC → 
EZR 

(79, 80) 

(PKC, 
MOE) 

— — MOE → PKCD — PKC → 
MOE 

(79, 80) 

(PKC, P65) — — P65 → PKCM P65 → PKCM PKC → P65 (81-83) 

(PKC, 
RSK) 

— PKCM ↔ RSK PKCM → RSK PKCM ↔ RSK PKC → 
ERK →RSK 

(62, 84) 

(S6, ERK) S6 → 
ERK1/2 

S6 → ERK1/2 S6 → ERK1/2 S6 → ERK1/2 ERK → S6 (62, 85) 

(P65, RSK) — P65 → RSK P65 → RSK P65 → RSK RSK → P65 (86-88) 

(P65, ERK) — P65 → ERK1/2 ERK1 → P65 P65 → ERK1/2 P65 → ERK (89-91) 

(P65, P38) P65 → 
P38 

P65 ↔ P38 P65 ↔ P38 P65 ↔ P38 P65 → P38 (89-91) 

(P38, ERK) ERK2 
→ P38 

P38 → ERK1/2 P38 → ERK2 
P38 ↔ ERK1 

P38 → ERK1/2 P38 → ERK (92-94) 

(P38, S6) — — P38 → S6 P38 → S6 P38 → RSK 
→ S6 

(65, 95) 

(AKT, 
ERK) 

— — ERK2 → AKT — AKT → 
ERK 

(96, 97) 

(SMD, 
PKC) 

— PKCD → 
SMD2 

PKCD ↔ 
SMD2 

PKCD → SMD2 PKC → 
SMD 

(98, 99) 

(SMD, P40) — P40 → SMD2 — — — — 

(P40, PKC) — PKCD ↔ P40 PKCD ↔ P40 — PKC → P40 (100-102) 
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TABLE II.3 (Continued) 
Comparison of our Results with the Current Literature  
 
Correlated 

pairs 
Stage 

1  
Stage 2  Stage  3 Underlying 

network 
Current 

knowledge 
References     

(AKT, S6) — — AKT → S6 — AKT → RSK 
→ S6 

(62, 71, 103) 

(GSK,ERM) — GSKα → MOE GSK → EZR GSK → MOE — — 

 

II.C.3 Summary of Results 

We have used a linear-model structure, least-squares regression and statistical hypothesis 

testing (t-test) on the coefficients of the linear model to identify significant edges in the network. 

Two types of networks have been identified, (1) based on the entire (interpolated) time-course data 

during [1-10] min, referred to as the underlying network (Figure II.3), and (2) temporally evolving 

network, in three-stages, based on three overlapping temporal regimes (Figure II.5). There is 

considerable overlap between our networks and a network obtained by a PLS-based approach 

published in the literature. The temporally-evolving network of Figure II.5.a shows the initiation 

of interactions among the phosphoproteins in stage 1 (e.g., ERK → p38/RSK,/GSK/PKCD and S6 

→ ERK1/2), and the addition (e.g., AKT → GSKα/β and PKCM → RSK,/S6/ ERK1/2 during 

stage 1 → stage 2) or deletion (ERK2 → PKCD during stage 1 → stage 2) of specific connections  

with progress to stages 2 and 3. Persistent connections throughout the temporal progression of the 

network are S6 → ERK1/2, EZR → MOE, p38 → RSK and p65 → p38. We also found that the 

reconstructed network based on only single ligand experiments has higher Type I and Type II error 

as compared to using both single- and double-ligand data. 

II.D Validation of Results and Discussion 

The results shown above are acquired through data-driven reconstruction of the network 
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with no a priori information about the behavior of the underlying biological system. Here, we 

inspect our results and compare them with the existing information in the biology literature. In 

Table II.3, every causal relationship between pairs of phosphoproteins is shown by a directed 

arrow, and each mutual interaction is shown by a bi-directed arrow.  

Role of AKT/GSK: GSK mediates protein phosphorylation and is involved in various 

intracellular pathways, metabolism and cancer. In mammalian cells GSK is encoded by two genes 

GSKα and GSKβ, with similar biochemical and substrate properties. GSK targets proteins that are 

involved in Alzheimer’s disease and neurological disorders. AKT is broadly known for activation 

and inhibition of GSK phosphorylation in HEK293 (Human Embryonic Kidney 293) cells, 

zebrafish and xenopus embryo (58-60). We can readily see that the relationships AKT → GSKα 

and AKT → GSKβ, representing phosphorylation of GSKα and GSKβ by AKT, are captured in 

our model. Our results also indicate that the bidirectional connection AKT ↔ GSKβ exists in 

second and third stages. In addition to AKT, recent studies show that RSK plays a role in 

modulating the activity of GSK in cerebral granule neurons, xenopus development and 

intracellular neural signaling systems (104-106). There is also indication that the activation of RSK 

is responsible for the phosphorylation of GSKβ induced by epidermal growth factor (EGF) in 

human epidermoid A431 cells (63), and that GSKβ expressed in HeLa cells (from human cervical 

cancer cell line) is phosphorylated on Ser-9 by activation of p90Rsk (64). Our model suggests the 

connection RSK → GSKα/β in stages 2 and 3, and the reverse connection GSKα→RSK in the 

underlying network. In previous studies it has been discovered in vitro that GSK is differentially 

regulated by the stimulation of PKC in rabbit skeletal muscle cells, Sf9 cells and HEK293 cells 

(107-109).  

Another phosphoprotein involved in the regulation of GSK is p38. Recent studies indicate 
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that p38 induces GSK phosphorylation in brain, thymocytes and human breast cancer cells (MDA-

MB-231 cells) (65, 66) which is detected in the last two stages in our network. Furthermore, ERK 

activates GSK through phosphorylation in Hep-G2 cells and myocardial tissue cells in mice (67, 

68). We detect this relationship in the first two stages. Moreover, the existing knowledge illustrates 

that GSK is involved in the activation of p65 in hepatocytes from mice and HeLa cells (69, 70) 

while our model captures the reverse connection p65 → GSKα/β in stage 3. 

EZR and MOE: EZR and MOE are part of the same pathway, called Ezrin/radixin/moesin 

(ERM) protein pathway. The ERM proteins regulate actin cytoskeleton and are involved in 

signaling, transport, and structural functions of the cell (110, 111). As we can see in Figure II.2, 

the heat-map shows high correlation between these variables. In addition, the pairs ERK1/2 and 

STAT1A/B are variants of the same protein and are expected to be regulated similarly. Thus, as 

expected, high correlations and bidirectional causal relationships are observed between the 

members of each pair in Figure II.3 and 5. Despite the fact that the heat-map in Figure II.2 shows 

very high correlation between GSKα and β in all stages, we observe the connection GSKβ → 

GSKα only in stage 2. This is an interesting result confirming the fact that “correlation does not 

imply causality” in the sense that the two variables may be highly correlated but there is no 

information in the past of one of them that can be used to predict the future of the other. The same 

result was found for PKCD/M. The connection PKCM → PKCD was found only in stage 3. 

S6 and RSK: Ribosomal protein S6, which is involved in cell growth and regulation of 

cellular translation, is phosphorylated at several serine residues with mitogen stimulation by 

activation of one or more protein kinase cascades. It is well known that in mammalian cells, 

phosphorylation of ribosomal protein S6 in vitro and in vivo is regulated by the activation of RSK 

(62, 71), while our results indicate the existence of a bidirectional connection S6 ↔ RSK. RSK is 
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involved in receptor-mediated signal transduction. Phosphorylation of RSK, which promotes cell 

survival and proliferation, lies at the end of the signaling cascade mediated by ERK and is 

regulated through the activation of ERK subfamily of MAP kinases (61, 62). We observed this 

relationship in the first and second stages. Furthermore, our network suggests that RSK can be 

activated by p38 through the connection p38 → RSK in stages 1 and 2 and p38 ↔ RSK in stage 

3. In current literature there is some evidence confirming this interaction in HEK293 cells (72). 

Protein kinase C (PKC) is a family of fatty acid-activated protein kinase enzymes that is involved 

in regulating cell growth, learning and memory, transcription and mediating immune response. 

PKC which exists in various isoforms, is known to be involved in the activation of ERK in 

HEK293 cells (84), which then results in the activation of RSK through the MAP kinase pathway 

(62). Therefore it is anticipated that RSK and PKC have a hidden indirect relationship that was 

captured in our model where the connection PKCM → RSK is found in stage 3 and the underlying 

network and the connection PKCM ↔ RSK is found in stage 2. Our model still captured this 

connection by considering a faster time step (half a minute) in the model. In addition, PKC 

mediates the phosphorylation of S6 in vivo in HEK 293 cells (73). PKCM → S6 can be found in 

stage 2 and the underlying network and PKCD → S6 in stage 3. 

ERK and p38 (MAPK): There are three distinct subfamilies of MAPK pathway: ERK1/2, 

JNK and p38 MAP kinases that have substantial impact on mediating various cellular signaling 

functions and physiological processes. These three enzymes are part of a phosphorylation system 

in which they regulate and phosphorylate one another (112). In this study we do not analyze the 

role of JNK in the signaling pathway, and we focus on the role of ERK1/2 and p38 in regulation 

and phosphorylation of one another and other phosphoproteins. The activation or inhibition of p38 

potentiates the activation of ERK (92-94). Unlike other pathways that appear only in the last two 
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stages in our results, the crosstalk between ERK and p38 is found in all three stages. The activation 

of NF-kappa B (p65) can be triggered by the phosphorylation of ERK1/2 and recent research 

affirms the existence of cross-talk between ERK and p65 and between p65 and p38 (89-91) that 

can be seen in Figure II.5. p38 MAPK plays a critical role as   downstream effector of PKC 

enzymes in LNCaP human prostate cancer cells and SK-Hep-1 hepatocellular carcinoma cells (74, 

75). Our results indicate the connections p38 ↔ PKCM in stage 3 and the underlying network, and 

p38 → PKCM in stage 2. Furthermore, p38 modulates the phosphorylation of subfamilies of RSK 

such as 70 kDa ribosomal S6 kinase (p70S6K) and ribosomal S6 kinase 1 (S6K1) (65, 95) . We 

also know that RSK’s target substrate is S6 (62, 71). This implies that p38 may indirectly play a 

role in the phosphorylation of S6. Our findings indicate that the connection p38 → S6 exists in 

stage 3 and the underlying network. There is no evidence in the existing literature confirming this 

relationship. The correlation coefficients for these edges are close to the correlation threshold. 

With a faster time step in the model, this connection is no longer significant.  Hence, this 

interaction can be considered as false positive in our results. Moreover, phosphorylation of 

ribosomal protein S6 is known to be dependent upon the activation of ERK in HeLa cells and in 

mouse dentate gyrus (62, 85) whereas our model captured the reverse connection. 

Recent evidence implies that stimulation of PKC activates ERK1 and ERK2 in myocardial 

cells of rabbit, glomeruli of diabetic rats and glomerular mesangial cell cultures under high glucose 

conditions and in human neutrophil cells (76-78). In our results, this relationship arises in the last 

two stages. 

p65: Nuclear Factor Kappa B (NF-κB) exists in almost all animal cell types and is involved 

in mRNA transcription, regulation of inflammation, apoptosis and immune responses. There is 

some evidence that p65 NF-κB exists in the cytoplasm of unstimulated cells in an inactive form, 
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and that it can be activated by exposure to PKC in human YT cells (81-83), whereas our results 

captured the reverse connection p65 → PKCM. It is interesting that previous computational 

methods such as those in (4) also captured the same reverse connection. Furthermore, there is some 

evidence that activation of NF-κB requires RSK-dependent p65 phosphorylation in vascular 

smooth muscle cells (87, 88) but extended analysis is needed to thoroughly understand the role of 

p65 in the biological function of RSK (86). Our model estimated the opposite relationship p65 → 

RSK in stages 2, 3 and in the underlying network. Interestingly, in our analysis, the coefficient for 

RSK → p65 is just below the threshold and hence is not included in the network. 

Other Pathways: Recent studies show evidence that activation of AKT inhibits the 

activation of the ERK pathway in C2C12 mouse myoblast cells (97) and that specific drugs unravel 

the crosstalk between the AKT and ERK pathways in neural stem cells (96). In fact, we found the 

connection ERK2 → AKT in stage 3. SMD2 relays extracellular signals from transforming growth 

factor beta (TGF-β) ligands to the nucleus (113, 114). There is some evidence that activation of 

SMAD (SMAD2, also SMD2) is modulated by protein kinase C in NIH-3T3 cells (98, 99), while 

the connection PKCD → SMD2 in stage 2 and the underlying network and PKCD ↔ SMD2 in 

stage 3 is captured in our networks. Some evidence provide affirmation that phosphorylation of 

ezr/radixin/moesin (ERM) is dependent upon catalytic function of PKC in MCF-7 breast cancer 

cells and in endothelial cells (79, 80). Our network reconstruction captures PKCD → EZR in stage 

2, PKCD ↔ EZR and the reverse connection, MOE → PKCD, in stage 3. 

The current knowledge confirms that p40 is phosphorylated in vitro by protein kinase C in 

HL-60 cells and human neutrophils (100-102). The bidirectional connection PKCD ↔ p40 was 

found in stage 2 and 3 of our reconstructed network. Our model also captures the connection p40 

→ SMD2 in stage 2. 
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AKT → S6 appears in stage 3 of our networks. It is known that protein kinase B (AKT) 

plays a role in the phosphorylation of RSK in human 293 cells (103) and ribosomal protein S6 

(S6) is a substrate of RSK (62, 71). Thus, it can be anticipated that AKT is capable of having an 

indirect impact on the phosphorylation of S6. This connection is statistically significant even with 

a faster time step in the model. Another potential novel connection is the crosstalk between GSK 

and ezrin/radixin/moesin (ERM), GSK → ERM (4). 

Relationship of signaling pathways with diseases: Some of these pathways such as p38 

and NF-κB regulate the transcription of the cytokine tumor necrosis factor α (TNFα) which is a 

target for rheumatoid arthritis (115). NF-κB is involved in the regulation of pro-inflammatory 

chemokines and cytokines in meningitis (116). Furthermore, deviations in the levels of MAPKs 

from their normal cellular levels have been implicated in the development of cancer (117). 

 

II.E Conclusion 

 We have applied the notion of Granger causality through the vector autoregressive model 

to develop a novel framework for reconstructing dynamic networks from large-scale multi-

experiment multivariate high-throughput data sets. We used an approach based on a linear-model 

template and statistical hypothesis testing (t-test) of the coefficients of the model to find significant 

or potentially causal connections. We have applied this methodology to phosphoprotein time-

course data generated by the Alliance for Cellular Signaling (AfCS) in RAW 264.7 macrophage 

cells in single and double ligand experiments. We were able to predict connectivity, causality and 

dynamics of information flow in the progression of the phosphoprotein network. We also found 

that the reconstructed network based on only single ligand data has higher Type I and Type II error 

as compared to using both single- and double-ligand data. 
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Since the intracellular networks have a dynamic nature and their topology changes with 

time, in this work, our main goal was to investigate the temporal evolution of the phosphoprotein 

network. During the early stage, ERK plays an important role in regulating p38, RSK, PKCD and 

GSK, while ERK itself is regulated by S6. As the network evolves to the second and third stages, 

the well-known signaling pathways such as the MAPK, STAT1A/B, AKT/GSK and NF-κB 

pathways appear to play role in the network. These results have enhanced our knowledge about 

the important signaling pathways that activate macrophage cells and play an essential role in the 

secretion of cytokines during an inflammatory response, and may contribute to finding novel 

targets for inflammation-related diseases. 

The method we have developed and applied here provides a strategy for reconstructing and 

analyzing dynamical networks in biological systems. In addition to providing networks in the 

temporal context, our method provides the directionality and potential causality of molecular 

interactions. We note that we built our methodology based on the notion of Granger causality, 

which is not meant to be equivalent to the true causality. 
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Chapter III  

Dynamic Causal Network Reconstruction of a 
Mouse Cell Cycle 
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III.A Abstract 

 Biochemical networks are often described through static or time-averaged measurements 

of the component macromolecules. Temporal variation in these components plays an important 

role in both describing the dynamical nature of the network as well as providing insights into causal 

mechanisms. In this study, we use well-constructed temporal transcriptional measurements in a 

mammalian cell during a cell cycle, to identify dynamical networks and mechanisms describing 

the cell cycle. The methods we have used and developed in part deal with Granger causality, vector 

autoregression and change point detection algorithms that are traditionally employed in 

engineering. From the temporal measurements in mouse embryonic fibroblasts, we identify 

precisely the timing of different phases of the cell cycle, namely, G1, S and G2/M phases, as well 

as the key regulators in each of the phases. We also pinpoint the temporal dependence of each of 

the proteins in the network on their own past and that of others that are causally linked to them. In 

addition, we provide a modular analysis of the temporal networks paving the way for design of 

precise experiments for modulating the regulation of the cell cycle. 

III.B Introduction 

 The progression of a eukaryotic cell cycle is governed by a complex, dynamical network 

of molecular interactions that regulate a series of directional and irreversible events such as cell 

growth, DNA replication, mitosis, and cell division. The biochemical pathways controlling the 

order and timing of cell cycle phases, called cell cycle checkpoints, play an essential role in 

maintaining genomic stability of the cell. Dysregulation of these checkpoints can alter the ability 

of the cell to undergo cell-cycle arrest in response to DNA damage and may lead to cancer. 

Significant progress has been made in identifying molecular players and pathways involved in cell 

cycle mechanisms through extensive investigations on model systems like yeast. Protein assays, 
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transcriptional studies, fluorescent imaging, and protein interaction mapping have all contributed 

to our current understanding of the cell cycle. From these studies and other phenotypic assays, 

molecular players engaged in distinct phases of the cell cycle, namely, G1, S, G2, and M phases, 

have been identified, resulting in a static pathway map of the cell cycle (12). These maps lack 

dynamical information, owing to the absence of systematic time series measurements. Fine-

grained time series measurements of a mammalian cell cycle, can enrich the understanding of 

dynamical networks through which the temporal relationships between molecular players and 

modules can be inferred, and further provide insights into mechanistic causality. In this work, we 

present a systematic fine-grained RNA sequencing study of the transcriptional profiles during a 

mammalian cell cycle. Although these measurements are at the transcript level, we anticipate that 

given the strong transcriptional mechanisms that are concomitant with the cell cycle, these data 

have the potential to provide detailed dynamical mechanisms of the cell cycle. 

 Inferring causality from time-series data poses considerable challenges; conventional 

methods of network reconstruction offer a static characterization of the network topologies, devoid 

of any temporality which is an ingrained feature of biological systems. For example, correlation-

based methods (1, 2), matrix-based methods such as least-squares, principal component regression 

(PCR) (3), and partial least squares (PLS) (4), L1-penalty based approaches such as least absolute 

shrinkage and selection operator (LASSO) and fused LASSO (118, 119), Gaussian graphical 

models (120), and information-theory based approaches relying on mutual information (121, 122) 

are among the methods primarily used for static network reconstruction. Boolean network (BN) is 

among the approaches proposed to model dynamic gene regulatory networks through parameter 

estimation (5, 123-125). Although BN captures temporal relationships, it requires discretization of 

gene expression levels to binary values and simplification of the network topology based on prior 



41 
 

knowledge to permit parameter estimation. Bucci et al. (2016) propose an approach called 

MDSINE that models and predicts the dynamics of microbial systems (126), but does not provide 

a time-varying view of the causal interactions. A dynamic Bayesian learning approach provides a 

temporally evolving picture of the network (6, 127), but is computationally expensive and tends 

to perform poorly on high dimensional data. Even though time series data can be used to easily 

construct correlation networks, developing quantitative models from these data is complicated due 

to the inherent nonlinearity of biological systems. However, it is possible to capture this 

nonlinearity using successive linear models over distinct time windows or temporal regimes. The 

assumption is that within a given regime, the topology of the network does not change. This is an 

alternative to building non-linear models which require substantially larger amounts of data due to 

the substantial increase in dimensionality even if only the quadratic terms are considered. While 

there has been several attempts at identifying different regimes in long time-series, mainly in the 

signal processing community (13-15), they have not been used to further develop evolving 

dynamical models and networks for biological systems. 

 We have developed a framework to investigate the temporal changes in the cell cycle 

network using RNA-seq time series data from Mouse Embryonic Fibroblast (MEF) primary cells. 

We use a non-parametric change point detection (CPD) algorithm (16) based on Singular Spectrum 

Analysis (SSA) (17) to infer the mechanistic changes in the time-course data for a set of 63 cell 

cycle genes to estimate cell cycle phases. We also use the notion of Granger causality implemented 

through a vector autoregressive (VAR) model (18) to predict the future expression levels of each 

gene as a function of the past expression levels of other genes yielding directionality of gene 

regulation among the 63 cell cycle genes. Furthermore, we utilize the concept of Minimum 

Description Length (MDL) to use past expression levels of genes, up to 9 time lags (equivalent to 



42 
 

4.5 hours), to determine the minimum data information from past events required for a robust 

prediction of values at the current time. 

 This computational scheme enabled us to (i) estimate the timing of cell cycle phases, (ii) 

infer the duration of the G1, S and G2/M phases of the MEF cell cycle to be 14.5, 10 and 4 hours, 

respectively, (iii) reconstruct three successive directed graphs representing the key regulatory 

mechanisms among the 63 cell cycle genes in the G1, S and G2/M phases of the cell cycle, (iv) 

infer the temporal impact that biological processes have on one another, as well as the dynamic 

changes in temporal dependencies as the cell evolves through successive phases, and (v) reflect 

the chronological order of regulatory events that are crucial to cell cycle control. The main power 

of our work is its ability to capture key pathways and important causal interactions over time, 

providing a broad picture of the dynamics of a cell cycle regulatory network. We validate the 

reliability of our time-varying network for cell cycle progression by comparing the interactions 

detected in our results to the well-known regulatory pathways in the literature as well as estimating 

temporal interdependences (time-delay) between important biological processes as the cell evolves 

through successive phases of the cell cycle.  

III.C Materials and Methods 

III.C.1    RNA-seq Data 

The gene expression profiles are acquired through a RNA-seq experiment for serum 

response of Cf-1 MEF primary cells (E13 embryos), the purpose being to transcriptionally 

characterize the changes in the cell cycle genes as the cell cycle progresses. After the cells have 

been incubated in starvation medium (0.5% FCS) for 36 hours, serum is added to reach 20%. RNA 

isolation is performed under Trizol RNA extraction protocol. The RNA-seq data is aligned using 
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the STAR RNA-seq aligner (128) and the read counts are normalized using the HOMER software 

(129). Samples are taken one hour before the addition of serum, right before the addition of serum 

and every half hour after serum addition. This sampling routine is carried out for approximately 

two cell cycles. The raw time-series data is then processed to determine the fold-change in 

expression for each gene by dividing the expression level of each sample by the average of the 

expression levels at samples taken one hour before serum addition and right before serum addition. 

III.C.2    Change Point Detection Algorithm 

 Change Point Detection (CPD) is a non-parametric method based on sequential application 

of Singular Spectrum Analysis (SSA) to detect changes in time-series (16, 130). SSA is a powerful 

method for time-series analysis that is based on applying principal component analysis to the 

trajectory matrix acquired from the original time series. Basic SSA has four main steps:  

1. Embedding 

Let , , … ,  be a time series of length , /2  be some integer called ‘lag’, 

and let 1. Define the trajectory matrix 

,

…
…

⋮ ⋮ ⋮ ⋱ ⋮
…

                                (III.1) 

 

Note that the columns of the trajectory matrix 	 1, … ,  are vectors that lie in an -

dimensional space space. 

 

2. Singular Value Decomposition 
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Let  be the lag-covariance matrix. The Singular Value decomposition (SVD) of 

 provides us with  eigenvalues, eigenvectors and principal components. , , … ,  

denote the eigenvalues of  and , , … ,  are the corresponding orthonormal 

eigenvectors of . If  is the number of non-zero eigenvalues, and  the eigenvector of 

, we have  for 1,… , . Then SVD of X will yield X

, ⋯ , 	 , where ; 1, . . , . 

3. Grouping The indices 1, 2, … ,  can be split into two groups , … ,  

4.  and ′ 1, … , \ . Matrices ∑ ∈  and ∑ ∉  correspond to group  

and ′ and lead to the decomposition . 

5. Diagonal Averaging (Hankelization) 

This step transforms each matrix of the grouped decomposition in the previous step into 

new time series of length  and is performed by averaging the diagonals  of 

the Hankel matrices,  and . Hankelization is an optimal procedure that uniquely 

defines the one-to-one correspondences between the Hankel matrices  and  and their 

respective time-series  and  of length , leading to the decomposition of series  into 

two series  and  

.				                                                    (III.2) 

 and the residual series  can be associated with signal and noise respectively. 

The SSA captures the structure of the time-series by selecting the  eigen-vectors, which 

span an -dimensional subspace. Figure III.1 shows the scree plot and explained variance of 

eigenvalues, respectively when SVD is applied to the time-course data of Cdkn2d. This helps 
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choose the number of eigenvalues that capture sufficient variation in the time series (see the trend 

of Cdkn2d time-series displayed by the three largest eigenvalues in Figure III.2).  

 

Figure III.1 Principal Components of Cdkn2d gene expression profile. (A) Scree plot of the Eigenvalues shows 
the ordered eigenvalues of the lag-covariance matrix corresponding to the gene expression profile of Cdkn2d. We can 
see a dramatic change in slope of the eigenvalue plot at the fourth component. Therefore, from what is observed in 
this plot, it is reasonable to retain the first three largest eigenvalues and group them together to select the set . (B) 
Explained variance for the first eight largest principal components that explain 95% of the cumulative variation. The 
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fourth and higher components explain very little variation and thus the first three largest eigenvalues can be grouped 
together in group . 

 

 

Figure III.2 Decomposition of Cdkn2d time series into the main signal and noise. This plot depicts the time series 
 for the gene expression profile of Cdkn2d (black curve), along with its decomposition into two time series  and 
.  (blue curve) corresponds to the time series reconstruction from matrix  that is built from the three largest 

eigenvalues of the lag-covariance matrix, and  (red dotted curve) corresponds to the time series reconstruction from 
matrix  that is built from the remaining eigenvalues of the lag-covariance matrix. 

 

The distance between the -dimensional subspace selected in step three of the basic SSA 

and the vectors  in equation III.1 should stay fairly small for , , if the time series ,

1, … ,   continutes for  and there is no change in the mechanism generating . Nonetheless, 

if at a certain time point  the mechanism generating  ( ) has altered, then we can 

expect to see an increase in the distance between the -dimensional subspace and the vectors  

for . This is equivalent to saying that a change in the structure of the time series pushed 

the vectors  out of the subspace.  
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Change point detection can be achieved by sequentially applying the SVD to the lag-

covariance matrices computed in time intervals of length , 1, , for each  to 

accommodate the change point detection algorithm to slow changes in the time series structure. 

Let , , … ,  be a time series of length . Let us choose two integers: the window width N 

(N≤T), and the lag parameter M (M≤N/2). Also, set K=N-M+1. The iterative change point 

detection algorithms has the following four steps. 

Step 1. Construction of the l-dimensional space 

1. For every suitable 0 we construct the trajectory matrix considering the time interval 

[n+1, n+N] 

	

…
…

⋮ ⋮ ⋮ ⋱ ⋮
…

                                    (III.3) 

These matrices are called base matrices. The columns of the base matrix  are vectors 

: 

, … ,  

2. For each n=0, 1,… we define the lag-covariance matrix . The singular 

value decomposition of  gives us a collection of M eigenvectors. 

3. We select a distinct group , … ,  of l<M of these eigenvectors; this determines 

an l-dimensional subspace ,  of the M-dimensional space  of the vectors	 . 

 

Step 2. Construction of the Test Matrix 
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Construct the matrix  of size M Q, whose columns are vectors , 

1,… , ; that is, 

…
…

⋮ ⋮ ⋮ ⋱ ⋮
…

                           (III.4) 

 

where . This matrix is called test matrix. 

 

Step 3. Computation of the Detection Statistics 

The detection statistics are: 

 , , , , the sum of squared distances between the vectors  , 1, … ,  and the 

l-dimensional subspace ,  of  is calculated as following: 

, , , ∑                                  (III.5) 

where  is the  matrix whose columns , … ,  are the orthonormal eigenvectors 

that span the ,  subspace. 

 , , , / , , the normalized sum of squares of distances. Here 

, , , , , ,                                                          (III.6) 

and ,  is an estimator of the normalized sum of squared distances , , ,  at the time 

intervals 1, 	where the hypothesis of no change can be accepted. It is suggested 

to use , , , ,  where  is the largest value of  so that the hypothesis of no 

change has been accepted. 

 Cumulative sum-type statistic 
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,    max	 0, 1/3 , 1.          (III.7) 

 

Step 4: Decision Rule 

The algorithm announces a structural change in the time series, if for some n we observe  

with the threshold 3 1 , where  is the 1 -quantile of the standard 

normal distribution. 

Choice of Parameters: Window length N and lag M have to be chosen reasonably. The 

choice of N determines the smoothness or the effect of changes in the time series, i.e., if N is too 

large then we may miss changes in the time series. Alternatively, if N is too small we can have too 

many false alarms and outliers will be recognized as structural changes in the time Series. M is 

usually chosen to be M=N/2. The choice of  is such that the largest  principal components provide 

a good description of the signal and the lower  components correspond to noise. It is advised 

to make a visual inspection of the SSA decomposition of the whole time series to choose . A 

general recommendation for the choice of  is that  so that the columns of the base and test 

matrices do not coincide and thus, the change point detection algorithm is more sensitive to 

changes.  

Figure III.1.A shows the plot of the ordered set of eigenvalues of the lag-covariance matrix 

corresponding to the gene expression profile (time-series) of Cdkn2d. We can notice that the fourth 

and higher components only explain 5-6% of the cumulative variation (Figure III.1.B). Therefore, 

the first three largest eigenvalues of the lag-covariance matrix will provide a good description of 

the original time series for Cdkn2d. Hence, it is appropriate to group the largest three eigenvalues 
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in set  and the remaining eigenvalues in set to decompose the time series of Cdkn2d into the 

main signal  and noise .  

Figure III.2 displays the decomposition of Cdkn2d time series into two separate time series 

that are reconstructed from the decomposition of the trajectory matrix  into  and .  is 

reconstructed from  which corresponds to group  of eigenvalues, and  corresponds to group 

 of the eigenvalues.  

The cumulative sum-type statistic 	is computed based on the distance between the -

dimensional subspace and the vectors  and compared against a threshold; every time the test 

statistic exceeds the threshold , a change point is detected. In the case of Cdkn2d time series, 

3 is chosen. Once  is chosen the CPD algorithm is performed on the time series data. Figure III.3 

depicts the detection of change points in the time-series for Cdkn2d time series. The change points 

detected are representative of a structural change in the mechanism generating the time-series. 
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Figure III.3 Plot of change points for Cdkn2d time series.  The black curve is the original RNA-seq time series 
data for Cdkn2d, . The pink curve corresponds to  which is the trend of the time series. The blue curve is the plot 
of the  test statistic calculated through the CPD algorithm. The dotted red curve is the threshold  which is used in 
the decision rule. Every time the  test statistic exceeds the threshold, a change point is selected (green dotted lines). 

 

III.C.3    Granger Causality 

Granger causality is a notion based on the ability to predict the future value of one process 

using the past values of another process (131). This notion was first introduced in macroeconomics 

and has proven useful in providing the direction of information flow, however it is not equivalent 

to true causality. Granger causality provides information about numerical information and 

prediction, while true causality is profoundly related to the influence of one variable onto another. 

Formally, a time series  is said to Granger-cause a time series  if the future value of  can be 

better predicted given the past values of   and , ( , , … , , , . . . , than predicting 

the future of  given only the past values itself, ( , , . . . . This statistical concept of 

causality can be well represented by the VAR model for linear relationships (18). A -order VAR 

model of a  dimensional time series is given by: 
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1 2 	. 	. 	. 	 	                 (III.8) 

where , , … ,  is a ( 1) random vector,  is the measurement at 

time t of the  random variable,  is a ( ) autoregressive coefficient matrix,   is a (

1)vector of intercepts and , , … ,  is a -dimensional error vector of 

random variables with zero mean and covariance matrix ∑. 

A necessary and sufficient condition for variable  to be Granger-causal for  is that the 

corresponding coefficient 	(  entry of , 	 1, … , ) is statistically significant (54, 132). 

Therefore, the direction of information flow can be determined by estimating the autoregressive 

coefficient matrices of the VAR model. The optimal order of the VAR model can be estimated via 

the minimum description length (MDL) principle. 

III.C.4    Estimation Stability with Cross Validation 

Considering the time series , … , ) for each of the  variables, the VAR model in 

Equation III.8 can be written compactly in the following matrix form (133): 

                                                                (III.9) 

where  , … ,  is a  matrix whose columns are time series for each of the  

random variables with sample size  , , … ,  is a 1   matrix 

with	 1; ; … ; 	 1 ,  , , , … ,  is a 1  coefficient 

matrix and , … ,  is a  matrix. For each of the  columns of matrices , , and 

, we have the following linear regression model: 

, 1, … ,                                                  (III.10) 

We are interested in recovering vector ∈  from the observation ∈  and . 

Since  ∈  , and ≪ 1, we have an underdetermined system of linear equations, 
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and this linear inverse problem cannot be solved uniquely. However, if  is sufficiently sparse, 

i.e., the support of  has small cardinality, it is actually possible to recover  by solving the 

following ℓ  minimization problem (134, 135): 

min || ||	 	 		 	 		 	, 1, … , 	                         (III.11) 

where 	|| || 	denotes the number of nonzero coefficients of . Since ℓ  minimization is an NP-

hard problem, it can be relaxed to an ℓ -norm regularization that can be a heuristic for finding a 

unique sparse solution (136): 

min 	|| || 	|| || 		, 1, … , 	                              (III.12) 

Note that ℓ -norm regularization in Equation III.11 is strictly related to the Least Absolute 

Shrinkage and Selection Operator (LASSO) problem (20): 

min || || 	|| || 	,			 1, … , 	                          (III.13) 

The regularization parameter  in the LASSO sets a trade-off between the fit error 

|| ||  and the sparsity of the signal . In order to choose the desired , one can use 

traditional model selection criteria, such as Akaike’s information criterion (AIC) (21) and Bayesian 

information criterion (BIC) (22). These criteria are easily computed, though are dependent on 

model assumptions and even if model assumptions are met, they may not be valid in the finite 

sample cases. The regularization parameter  is often selected through the model-free Cross-

validation (CV) approach (23, 24). CV often leads to estimators with good predictive performance 

when sample size is large. In the cases where sample size is small, CV does not  yield a good 

interpretable model because LASSO + CV is unstable and not reliable for scientific interpretations 

(25). In this work, we observed that selecting  through Estimation Stability with Cross Validation 

(ES-CV) leads to more meaningful and interpretable results (26). Estimation stability (ES) is based 
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on the idea that the solution is not meaningful if it varies considerably from sample to sample. The 

LASSO generates a family of solutions known as the solution path: 

	 || || 	 || ||                                 (III.14) 

We want to choose  in the solution path based on estimation stability. Since ES is tightly 

tied to the sampling scheme, we need multiple solution paths to evaluate stability. Cross-

validation data perturbation is used to randomly partition the  samples into V groups of pseudo 

data sets by leaving out one group at a time. Let ∗ , 	 ∗  represent the  pseudo data set 

(random partition) derived from  and , respectively. The pseudo solutions are given by: 

; || ∗ ∗ || 	 || ||                       (III.15) 

for	 1, … , , 1, … , . ES measures the stability or similarity of pseudo solutions across 

different groups of samples. For each , the stability of the following estimates   

; ; , 1, … , , 1, … ,                                (III.16) 

 

are studied by looking at the sample variance of the estimates            

∑ || ; || ,			 1, … , , 1, … ,                  (III.17) 

where 

∑ ; . 

The normalized version of the sample variance is defined as the estimation stability 

metric: 
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|| ||
                                                 (III.18) 

ES is the reciprocal of the test statistic for testing the null hypothesis :	 0, and can 

be viewed as a selection of  as a set of hypothesis tests; for each  we are testing to see if the fit 

 is statistically different from fitting the null model ( 0). 

The most statistically significant solution along the solution path is the one whose ES metric has 

the largest reciprocal. Therefore, the most statistically significant solution is the one that locally 

minimizes the ES metric. In the case where noise overwhelms the signal (high noise),  bears no 

relation to  and ES proposes inadvertent local minima. Thus, cross-validation is incorporated into 

finding the solution (ES-CV) (see Figure III.4.A). ES-CV further limits the choice of  to the local 

minimum of  that is greater than or equal to the choice of cross-validation (see Figure III.4.B) 

(25, 26). 
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Figure III.4 Estimation Stability with Cross Validation (ES-CV). The green curves are the plot of the ES metric. 
The black curves are the plot of mean squared error (MSE) through cross validation. The blue triangles identify the  
at which the local minima of the ES metric occur. The pink circles indicate the largest  such that MSE is within one 
standard error of the minimum MSE. (A) In the case where noise overwhelms the data, ES fails and CV is incorporated. 
We can note that between the choice of CV (pink circle) and the choice of ES (blue triangles), ES-CV picks the larger 

. (B) We can note that the ES-CV approach selects a larger  compared to the choice of cross validation. Hence, the 
choice of  selected through ES-CV leads to a sparser solution than that of CV. 
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III.C.5    Minimum Description Length 

 

The optimal order of the VAR model can be estimated through model selection approaches 

such as Minimum Description Length (MDL) (19). MDL selects a model that provides the shortest 

description of data. Description length for observations , , … ,  from a parametric 

family | :	 ∈ Θ  is , where the first term is the cost function 

and the second term is the cost of transmitting the estimated parameter . For a linear regression 

model in Equation (III.8), the observation  has the following description length: 

	 log log ; 		 1, 2, … ,                                (III.19) 

where  denotes the residual sum of squares and  is the order of the VAR model in Equation 

3. The optimal order is selected such that the code length in Equation III.19 is minimized: 

	 log log ; 		 1, 2, … ,                  (III.20) 

III.C.6    Evaluating Association between the Time-series of Two Cell Cycles 

The RNA-seq experiment was done for two cell cycles (for mouse embryonic fibroblast 

primary cells) following serum starvation and the addition of serum. Serum starvation and 

refeeding for mammalian cell division does not necessarily result in synchronization of the entire 

cell population (137, 138). Thus, the two time-series data acquired through RNA-seq does not 

reflect the behavior of synchronized cells, and therefore they may not have begun at the same 

occasion of measurements. The time interval separating the start of the two cell cycles is called 

delay or offset. A common approach to finding the association between events in two time-series 

is cross-correlation in which the Pearson product moment correlation is computed for the two time-

series (139). The offset is determined by finding the sample at which the highest cross-correlation 



58 
 

between the two time-series occurs. Figure III.5 shows the plot of the cross correlation of the two 

available time-series for Smc1a gene. 

 
Figure III.5 Cross correlation of two time-series of Smc1a gene. The cross correlation plot of the two time-series 
shows that maximal association for the two time-series occurs with an offset of 7 samples. 

 

III.C.7   Precision of Results 

Precision or confidence indicates the proportion of predicted positive edges that are real 

positives (140). In other words, Precision is a measure of accuracy of the predicted positives: 

	
	 	

 

III.D Results 

Gene expression in MEFs is measured at 96 different time points at intervals of 0.5 hr or 1 

hr (later interpolated to every 0.5 hr), covering more than one full cycle and the G1, S and part of 

G2/M phases of another cycle. Of the 4248 differentially expressed genes, i.e., genes whose 
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expression values change more than 2-fold as compared to that at t=0 at one or more time points, 

63 are cell-cycle genes included in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways database (12). We first detected the different stages of the cell cycle using the CPD 

algorithm. Then we developed a VAR model for each stage through the estimation of optimal time-

lags. Finally, we carried out an in-depth analysis of the temporally evolving networks as the cell 

cycle progresses. 

III.D.1    Detecting Temporal Changes and Stages in the Cell Cycle Time Series Data  

In order to synchronize the cell cycle, the MEF cells were serum starved and the time-

series RNA-seq measurements were initiated following the addition of serum to re-initiate the cell 

cycle. In order to identify different phases of the cell cycle from the time-series data, we use a 

model-free CPD algorithm (16) (discussed in the Materials and Methods section). The CPD 

algorithm captures the ongoing mechanistic changes as the cell cycle progresses and partitions the 

time series data into intervals with dominant trends, associated with cell cycle phases. It can be 

noted that no a priori assumptions on the duration of the cell cycle phases were incorporated in 

our analysis. In this study, we apply the CPD algorithm to 63 cell cycle genes presented in the 

KEGG pathway for mouse cell cycle (12). Table III.1 presents the list of these 63 cell cycle genes 

and their abbreviated gene symbols for mouse (mus musculus).  
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Table III.1 List of 63 cell cycle genes presented in the KEGG pathway (Mus musculus).  

Gene symbol Gene full name 
Abl1 Abelson murine leukemia viral oncogene homolog 1 
Anapc1 Anaphase-promoting complex subunit  
Atm Ataxia telangiectasia mutated 
Bub1 Mitotic checkpoint serine/threonine-protein kinase BUB1 
Bub1b Mitotic checkpoint serine/threonine-protein kinase BUB1 beta 
Bub3 Mitotic checkpoint protein BUB3 
Ccnb2 Cyclin B2 
Ccnd1 Cyclin D1 
Ccne1 Cyclin E1 
Ccnh Cyclin-H 
Cdc14b Cell division cycle 14B 
Cdc20 Cell division cycle 20 
Cdc25a Cell division cycle 25A 
Cdc25b Cell division cycle 25B 
Cdc45 Cell division cycle 45 
Cdc6 Cell division cycle 6 
Cdc7 Cell division cycle 7 
Cdh1 Cadherin 1 
Cdk1 Cyclin-dependent kinase 1 
Cdk2 Cyclin-dependent kinase 2 
Cdk4 Cyclin-dependent kinase 4 
Cdkn1a Cyclin-dependent kinase inhibitor 1A  
Cdkn1b Cyclin-dependent kinase inhibitor 1B 
Cdkn2a Cyclin-dependent kinase inhibitor 2A 
Cdkn2b Cyclin-dependent kinase inhibitor 2B 
Cdkn2c Cyclin-dependent kinase inhibitor 2C 
Cdkn2d Cyclin-dependent kinase inhibitor 2D 
Chek1 Checkpoint Kinase 1 
Crebbp CREB binding protein 
Dbf4 Dbf4 zinc finger 
E2f1 E2F transcription factor 1 
E2f4 E2F transcription factor 4 
Espl1 Extra spindle pole bodies 1, separse 
Gadd45a Growth arrest and DNA-damage-inducible 45 alpha 
Gsk3b Glycogen synthase kinase 3 beta 
Hdac2 Histone deacetylase 2 
Mad1l1 MAD1 mitotic arrest deficient 1-like 1 
Mad2l1 MAD2 mitotic arrest deficient-like 1 
Mcm3 Minichromosome maintenance complex component 3 
Mdm2 transformed mouse 3T3 cell double minute 2 
Myc Myelocytomatosis oncogene 
Orc1 Origin recognition complex, subunit 1 
Pcna Proliferating cell nuclear antige 
Pkmyt1 Protein kinase, membrane associated tyrosine/threonine 1 
Plk1 Polo-like kinase 1 
Prkdc Protein kinase, DNA activated, catalytic polypeptide 
Pttg1 Pituitary tumor-transforming gene 1 
Rad21 RAD21 cohesin complex component 
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Table III.1 (Continued) List of 63 cell cycle genes presented in the KEGG pathway (Mus musculus).  

Gene symbol Gene full name 
Rb1 Retinoblastoma 1 
Rbl1 Retinoblastoma-like 1 (p107) 
Sfn Stratifin 
Skp2 S-phase kinase-associated protein 2  
Smad2 SMAD family member 2 
Smad4 SMAD family member 4 
Smc1a Structural maintenance of chromosomes 1A 
Smc3 Structural maintenance of chromosomes 3 
Stag1 Stromal antigen 1 
Tfdp1 Transcription factor Dp 1 
Tgfb1 Transforming growth factor, beta 1 
Trp53 Transformation related protein 53 
Ttk Ttk protein kinase 
Wee1 WEE 1 homolog 1 
Zbztb17 zinc finger and BTB domain containing 17 

 

For every gene, the time-course data for approximately two consecutive cell cycles are 

available. We use cross-correlation between the two time-series data to obtain the offset between 

the two cycles by finding the time point at which the maximum association between the two time-

series occurs (see Figure III.5). When the offset is computed for every gene, the gene expression 

profile is derived by properly concatenating the two time-series according to the offset and then 

the CPD algorithm is applied. This algorithm may detect more than one change point in the 

expression profile of each of the 63 cell cycle genes.  

Figure III.6 is a radar chart that depicts the count of genes for which the CPD algorithm 

detects change points at every time point (1/2 hour) (data from 5 hours to 35 hours after the start 

of the first cell cycle is shown in Figure III.6). There are three significant peaks in the radar chart 

at 14.5, 24.5 and 28.5 hours at which the CPD algorithm detects change points for 29, 16 and 14 

genes, respectively. We consider these peaks as break-points between the consecutive G1, S and 

G2/M phases of the cell cycle. According to the radar chart in Figure III.6, the duration of the G1, 

S and G2/M phases of the cell cycle is estimated to be 14.5, 10 and 4 hours respectively. Therefore, 
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we presume the intervals [1-14.5], [14.4-24.5] and [24.5-28.5] hours represent the expression 

profile of genes in the G1, S and G2/M phases of the cell cycle. 

 

Figure III.6 Segmentation of MEF cell cycle data with the change-point detection algorithm. Radar chart displays 
the count of genes that were detected to have change points at every sample (1/2 hour) in the gene expression profiles 
of the 63 cell cycle genes.  

 
III.D.2    Network Reconstruction from Cell Cycle Time-series Data 

After detection of the major temporal intervals associated with cell cycle phases, the 

successive directed graphs reflecting causal relationships of 63 cell cycle genes are reconstructed 

as the cell progresses through the G1, S and G2/M phases. In this work, the notion of Granger 

causality is used to predict directionality of links in the networks. Based on the definition of 

Granger causality, a series  is said to cause series  if the future value of  is better 
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predicted using the past values of  and  than when the future value of  is predicted 

using only the past values of itself (10). With the assumption that gene expressions may be 

modeled through a linear regression, one can identify Granger causality through Vector 

Autoregressive (VAR) models (see Materials and Methods section). A -order VAR model of a  

dimensional time series is given by Equation III.8. Since the VAR model can be of any arbitrary 

order 1, 2, … , the question of what the optimal order is arises. The optimal order of a variable 

 in the VAR model determines the number of time-lags that is necessary to take into account, 

in order to extract sufficient information from the lagged values of all variables that can provide 

the most accurate prediction of . This optimal order is estimated with the Minimum 

Description Length (MDL) principle (19). Here we compute the description length of the VAR 

model for each gene separately up to order 9. Figure III.7 shows the plot of the description 

length of four genes in the estimated G1 phase. 
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Figure III.7 The plot of the description length for up to order  in the estimated G1 phase. The optimal 
order, shown in a red asterisk, is the order at which the description length is minimized. As shown, the description 
length is minimized when the expression profiles of Ccnh, Cdk2, Dbf4 and Mdm2 are modeled through VAR models 
of order 4, 5, 6 and 1 respectively. 

 

Once the optimal order for each gene is computed through MDL, we reconstruct three 

successive networks that reveal the evolution of the gene regulatory network of the 63 cell cycle 

genes through a complete cell cycle. Towards this, we use the expression profiles of genes for the 

three intervals [1-14.5], [1-24.5], and [1-28.5] hours derived through the CPD algorithm. Figure 

III.8.A depicts the gene regulatory network related to the [1-14.5] hour interval of the cell cycle 

associated with the G1 phase, Figure III.8.B shows the network reconstructed for the [1-24.5] hour 

interval associated with the G1 phase followed by the S phase, and Figure III.8.C illustrates the 

network representing the [1-28.5] hour interval related to the complete cell cycle (G1 and S phases 

followed by the G2/M phase). The resulting interactions have been validated with prior literature 
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and the interactions in the STRING database. Table III.2 presents the precision and false discovery 

rate of predictions in the reconstructed networks in Figures III.8.A, III.8.B and III.8.C. 

Table III.2 Statistics for the reconstructed network of the G1, S and G2 phases in Figure III.8. 

Reconstructed 

Network 

Number of true 

positive edges 

Number of false 

positive edges 

Precisions False Discovery 

Rate 

G1 phase 268 76 0.78 0.22 

S phase 198 78 0.72 0.28 

G2/M phase 203 103 0.61 0.39 
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 Figure III.8. Time-varying cascade of the MEF cell cycle network for G1, S and G2/M phases. (A) The graphic 
reconstruction of the network representing the causal interactions of 63 cell cycle genes obtained by using only the 
data samples in the interval [1-14.5] hour of the cell cycle associated with the G1 phase. (B) The network obtained by 
using only the data samples in the interval [1-24.5] hour of the cell cycle associated with the G1 phase followed by 
the S phase. (C) The network obtained by using the data samples in the interval [1-28.5] hour of the cell cycle 
associated with G1 and S phase followed by the G2/M phase. The blue edges represent the true positive (TP) 
connections validated though the known literature (STRING database). The green edges represent true indirect 
affinities between the pairs of genes they are connected to, and the gray edges are interactions captured in our model 
with no further evidence in the literature. The node colors denote the optimal time lag corresponding to every target 
gene in the VAR model. 
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III.D.3    Temporal Dependence of Biological Processes in the Cell Cycle 

In order to understand the temporal aspect of cell cycle processes, we analyze the transient 

length of influence of dynamic processes on one another; our primary question seeks to ask if one 

biological event induces the occurrence of another event in the cell, what is the duration of its 

influence? We sought to explore the temporal dependence of intracellular processes by considering 

16 time-dependent biological processes governing the progression of the cell cycle. S3 Table 

shows these biological mechanisms listed in the chronological order of their occurrence during a 

cell cycle along with their members (genes) according to the Reactome pathway database (141). 

In the three successive networks in Figure III.8, we group cell cycle genes that belong to each of 

the 16 biological processes into modules and infer the temporal dependence of modules on one 

another. The temporal interdependences of these processes are assessed by taking into account the 

average of directed edge time-lags between pairs of processes. For instance, Figures III.9.A, 

III.9.B, and III.9.C display the links from the nodes in G1/S transition module to the nodes in the 

G2/M DNA replication checkpoint mechanism as the cell goes through the G1, S, and G2/M 

phases, respectively. The numbers labeling these links denote the optimal number of time-lags 

required in the VAR model when assessing Granger causality. 
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Figure III.9 Temporal dependence of G2/M DNA replication checkpoint mechanism on the G1/S transition 
mechanism. Orange nodes are genes that take part in G1/S transition mechanism of the cell cycle and the green nodes 
are genes that take part in G2/M DNA replication pathway. Every edge label denotes the temporal dependence of the 
target node on the source node. In this example, the farthest dependence is 7 time lags. (A) Temporal dependence of 
G2/M DNA replication pathway on the G1/S-transition pathway in the [1-14.5] hour interval. (B) Temporal 
dependence of G2/M DNA replication pathway on the G1/S-transition pathway in the [1-24.5] hour interval. (C) 
Temporal dependence of G2/M DNA replication pathway on the G1/S-transition pathway in the [1-28.5] hour interval. 

 

The average time-lag of edges in the three graphs in Figures III.9.A, III.9.B, and III.9.C 

are 1.4, 2.67, and 3.62 respectively. Here, as the cell evolves through a complete cell cycle, the 

average time-lag of the causal effect the G1/S transition mechanism has on the G2/M DNA 

replication mechanism increases. To further explore the length of intertwined temporal 

dependence these biological processes have on one another, we extend this analysis to all 16 

intracellular processes listed in Table III.3. 
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 Figures III.10.A, III.10.B, and III.10.C show the heat map plot displaying the average 

time-lag of edges between each pair of the 16 processes as the cell completes the G1, S, and G2/M 

phases. The heat map images identify temporal dependence of biological events on one another in 

different stages of the cell cycle. 

 

Table III.3. List of time-dependent biological processes according to the Reactome pathway database. 

 Biological Process Members (Genes) 
1 G0 and Early G1 Cdk2; E2f4; Rbl1; Tfdp1; Ccne1 
2 G1 Phase Cdkn2b; Cdkn2c; E2f4; Skp2; E2f1; Cdkn2d; Ccnd1; Cdkn1b; 

Cdkn1a; Rb1; Cdkn2a; Cdk4; Ccnh; Tfdp1; Rbl1 
3 p53-Dependent G1 DNA 

Damage Response 
Ccne1; Trp53; Cdkn1b; Cdkn1a; Atm; Cdk2; Mdm2 

4 G1/S Transition Rb1; Skp2; E2f1; Cdkn1b; Cdc25a; Ccne1; Pkmyt1; Orc1; Cdk1; 
Cdk2; Dbf4; Tfdp1; Cdc45; Mcm3; Wee1; Ccnh; Cdkn1a; Cdc6; Cdc7 

5 G1/S DNA Damage 
Checkpoints 

Ccne1; Trp53; Cdkn1b; Cdc25a; Atm; Cdk2; Mdm2; Cdkn1a; Chek1 

6 p53-Independent DNA 
Damage Response 

Cdc25a; Atm; Chek1 

7 DNA Repair Pcna; Atm; Ccnh; Prkdc 
8 DNA Replication Pcna; Cdkn1b; Cdkn1a; Rb1; Orc1; Cdk2; Dbf4; Cdc45; Mcm3; Cdc6; 

Cdc7 
9 Unwinding of DNA Cdc45; Mcm3  
10 Removal of licensing factors 

from origins 
Cdkn1b; Cdkn1a; Rb1; Orc1; Cdk2; Mcm3; Cdc6 
  

11 G2/M DNA replication 
checkpoint 

Cdk1; Wee1; Pkmyt1; Ccnb2 

12 Mitotic G2-G2/M phases Ccnb2; E2f1; Plk1; Cdc25b; Cdc25a; Pkmyt1; Cdk1; Cdk2; Wee1; 
Ccnh 

13 G2/M Transition Ccnb2; Plk1; Cdc25b; Cdc25a; Pkmyt1; Cdk1; Cdk2; Wee1; Ccnh 
14 Mitotic Spindle Checkpoint Mad2l1; Bub3; Bub1b; Mad1l1; Cdc20; Anapc1  
15 Separation of Sister 

Chromatids 
Smc1a; Mad2l1; Bub1; Bub3; Bub1b; Mad1l1; Smc3; Stag1; Cdc20; 
Plk1; Espl1; Anapc1; Pttg1; Rad21 

16 M/G1 Transition Orc1; Cdk2; Dbf4; Cdc45; Mcm3; Cdc6; Cdc7 
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Figure III.10 Temporal interdependencies of biological processes as the cell goes through the G1, S and G2/M 
phases. Each row and column in the heat map represents one of the 16 time-dependent biological processes. The 
number in every pixel represents the average time-lag of edges sourcing from its corresponding row process and 
targeting its column process (one lag is equivalent to ½ hour). (A) Heatmap of temporal dependence of processes as 
the cell goes through the G1 phase, (B) Heatmap of temporal dependence of processes as the cell goes through the G1 
followed by the S phase. (C) Heatmap of temporal dependence of processes as the cell goes through the G1, S and 
G2/M phases.  
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III.D.4    G1 Phase 

The G1 phase, also known as the Gap 1 phase, is the first of the four phases that occur in 

one complete eukaryotic cell cycle. During the G1 phase, the cell grows in size and synthesizes 

mRNA and proteins required for DNA synthesis. In this section, we investigate the role of key 

regulatory proteins and their corresponding phase specific interactions found in the reconstructed 

G1 phase network (Figure III.8.A). The complete list of the edges estimated in the G1 phase 

network is presented in supplementary table G1_Phase_Interactions.xlsx. 

Rb1/Rbl1: In Figure III.8.A, we note Rb1 interacts with Cdkn1a, Cdkn2a, Skp2, Cdh1, 

and Anapc1. It is known that Cdkn1a forms a physical complex with Rb1 and can activate Rb1 to 

bring about cell cycle arrest (142, 143). Furthermore, Rb1 activity is mainly regulated by Cdkn2a’s 

inhibition of Ccnd1 to prevent phosphorylation of retinoblastoma (Rb) proteins, while Ccnd1 

initiates the phosphorylation of Rb1 in mid-G1 phase (144, 145). Rb1 also physically interacts 

with Skp2 to inhibit Cdkn1b ubiquitination and induce G1 arrest (146). Further, Anapc1 and its 

activator Cdh1 interact with Rb1 and are required for Rb1-induced cell cycle arrest which leads to 

Rb1-induced accumulation of P27 (Cdkn1b) during G1 arrest (147). Detection of the Rb1→Abl1 

edge is illustrated in Figure III.8.A. Rb1 is known to form a complex with Abl1 in the late-

G1/early-S-phase as a result of its hyperphosphorylation by the cyclin-D/cdk4-6 complex (148-

150). 

The Rb1→Tfdp1 and Rbl1→E2f1 edges are captured in the reconstruction of the network 

representing G1 phase in Figure III.8.A. It is widely accepted that Rb1 and Rbl1 genes negatively 

regulate the G1/S transition of the cell cycle and enable cell growth by targeting key transcription 

factors, including E2Fs and transcription factor DP subunits (151-153). In addition, trans-
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activation by  the E2f1-Tfdp1 heterodimers is known to be inhibited by the retinoblastoma protein 

family (154). 

E2F1-4: In Figure III.8.A, E2f1 is seen to interact with Mcm3, Cdc6, Orc1, and Cdc45. 

The E2F transcription factor upregulates the transcription of Mcm3 gene in the late G1 phase (155, 

156). Besides the minichromosome maintenance complex (MCM) genes, Cdc6, ORC, and Cdc45 

genes that are components of the pre-replication complex are well-known E2F-inducible genes 

during the late G1 and G1/S boundary in the cell cycle (157-160). The Tfdp1→ E2f1 interaction is 

also detected; it is widely established that Tfdp1 interacts and form heterodimers with E2f1 to 

regulate the cell cycle progression from G1 to S phase (161-163). 

Ccnd1/Cdk4: We can note the Ccnd1-Cdkn2b and Cdk4-Cdkn1b interactions in Figure 

III.8.A. Cdkn2b can physically interact with and inhibit the activity of D-type cyclin dependent 

kinases and Cyclin D/CDK complexes while the Cip/Kip proteins, including Cdkn1a and Cdkn1b, 

can inhibit G1 CDKs such as Cdk4 (144, 164-166). We also see the Ccnd1→Rbl1 and Cdk4→Rbl1 

interactions in Figure III.8.A. It is well-known that in late G1 phase, Cyclin D/Cdk4-6 complexes 

perform the main phosphorylation of Rbl1, a member of the retinoblastoma family, leading to 

dissociation of Rbl1 from Rb-E2F/DP complexes (167-169). Furthermore, the phosphorylation of 

Rbl1 by Cyclin D/Cdk4 complex inactivates Rbl1 to promote G1/S transition (169). 

Ccnd1→E2f1 and Ccnd1→Tgfβ1 interactions are seen in Figure III.8.A. E2f1 is known to 

promote cell cycle progression through the induction of G1 phase cyclin, Cyclin D1 (170, 171). 

Tgfβ1 blocks the progression of cell cycle during G1 and this is associated with Tgfβ1 inhibition 

of Ccnd1 expression (172). We also note the Ccnd1→Cdh1 and Cdk4→Cdh1 interactions; Cdh1 

is known to limit the accumulation of the G1 mitotic cyclin/CDK complexes to prevent pre-mature 

S-phase entry (173). Ccnd1→Ccne1 is also captured in Figure III.8.A. Analyses by Geng et al. 
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(1999) suggest that Cyclin E is a major downstream target of Cyclin D enabling the cell to progress 

through G1 and enter the S phase (174). 

Pre-Replicative Complex: The Orc1↔Mamc3, Orc1→Cdc6 and Mcm3→Orc1 

interactions are also seen in Figure III.8.A. According to multiple studies, in late mitosis and during 

G1 phase, Orc1 bound to replication origins recruits and serves as a platform for the assembly of 

Cdc6 followed by Mcm3 to form the pre-replicative complex (175-178). Orc1 interacts with Cdc6 

throughout the G1 phase but not during other phases (176). 

Kip/Cip Cyclin Dependent Kinase Inhibitors (Cdkn1a, Cdkn1b, and Cdkn2a): The 

Cdkn1b→Tgfβ1, Mdm2→Cdkn1a and Cdkn2a→Mdm2 regulatory links can be observed in Figure 

III.8.A. Tgfβ1 is reported to downregulate Cdkn1b during G1 phase (179) and Mdm2 has been 

shown to negatively regulate Cdkn1a and promote its proteasomal degradation which controls cell 

cycle progression during the G1 phase (180, 181). Several studies have shown that Cdkn2a 

physically interacts with Mdm2 to impede Mdm2-induced degradation of Trp53 and enhances 

Trp53 role in transcription and apoptosis (182, 183). This particular interaction stabilizes p53 and 

restores a p53-dependent G1 cell cycle arrest that is otherwise abrogated by MDM2 (166, 184, 

185). See S1 Text for extended description of interactions. 

Myc: In Figure III.8.A, we can see the connections Myc↔Cdc25a, Myc↔Cdkn2b, 

Myc←Cdkn1b and Crebbp→Myc. It is known that Cdc25a is capable of augmenting Myc-induced 

apoptosis in G1 (186). Myc represses cyclin dependent kinase inhibitors Cdkn2b during G1 arrest 

(187, 188) and takes part in Cdkn1b degradation (189, 190). Crebbp is known to regulate and 

stabilize Myc in G1 to prevent inappropriate S phase entry (191, 192). Furthermore, the Myc-

Smad2 interaction is captured, while Myc is known to physically interact with Smad2 to inhibit 

TGF  mediated induction of Cdkn2b in the G1 phase (193). 
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Smad2-4: We observe the Smad2→Cdkn1a, Smad4→Cdkn1b, Smad2→Rb1 and 

Skp2→Smad2 connections in Figure III.8.A (G1 phase). Studies show that Smad2 knockdown 

decreases Cdkn1a and releases G0/G1 arrest in mouse embryonic palate mesenchymal (MEPM) 

cells  (194, 195). Also, loss of Smad4 as a tumor suppressor is associated with Cdkn1b 

downregulation and decreases Rb1 phosphorylation that results in G1-S transition and cell 

proliferation (196). A recent study shows that Smad2 overexpression results in an increase in Rb1, 

leading to cell cycle arrest at the G1 to S phase boundary (197). Liu et al. (2007) have shown that 

Tgf -induced Skp2 degredation is mediated by the Smad cascade, thereby facilitating cell cycle 

arrest at the G1/S transition (198). 

Cyclin E/Cdk2: The interaction of Ccne1 with Cdk2, Mcm3, Cdc45 and Cdc6 can be 

noted in Figure III.8.A. It is well-known that Ccne1 forms a complex with Cdk2, whose activity 

is required for the G1/S transition (199). Li et al. (2011) have indicated that Mcm3’s 

phosphorylation by Cyclin E is involved in its loading onto the chromatin during G1 phase and 

before DNA replication (200) and that Cyclin E promotes chromatin loading of Cdc45 and 

phosphorylation of Cdc6 at the replication origins during the G1/S transition (201, 202). We can 

also notice the Cdk2→Trp53 interaction where it’s been shown  the activation of Trp53 tumor 

suppressor is required for Cdk2 phosphorylation and progression through G1 phase (203, 204). 

Pcna: The interaction of Pcna with Gadd45a and Trp53 can be observed in Figure III.8.A. 

Multiple studies have shown that Gadd45a binds to and interacts with Pcna (205-207) and inhibits 

entry of cell into S phase (208). Furthermore, studies have shown that Trp53 mediates the 

activation of Pcna expression leading to arrest of cell growth at late G1 phase (209-211). 

Abl1 and Hdac2: We can note the Abl1↔Mdm2, Bub3→ Hdac2 in Figure III.8.A. 

Research has revealed the role of Abl1 in phosphorylation of Mdm2 which neutralizes the 
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inhibitory effect of Mdm2 on Trp53 in response to DNA damage and stabilizes p53 in an active 

form (212-214). Yoon et al. (2004) have indicated that Bub3 directly interact with Hdac2 

sauggesting that the Bub3–HDAC complexes are constituitively present thoughout G1 and G2 

phases and may interact with Mad1l1 (215). 

III.D.5    S Phase 

 S (synthesis) phase is the second phase of the cell cycle occurring after the G1 phase and 

before the G2 phase in which DNA is replicated. Here we delve into the results for key S-phase 

proteins we obtained through our analysis (depicted in Figure III.8.B). The full list of the edges 

identified for S phase is presented in supplementary table S_Phase_Interactions.xlsx. 

 Chek1: We note the Chek1→Trp53 and Orc1→Chek1 edges in Figure III.8.B. It is well 

established that Chek1 regulates Trp53 activity during DNA damage-induced S and G2 phase 

arrests (216-218). Moreover, it has been extensively studied that cells with replicative initiation 

mutants defective in the Orc1 gene require the checkpoint kinase Chek1 during S phase to maintain 

cell viability by stabilizing DNA replication forks (219-221). One can note the interaction of 

Chek1 with Cdc45 and Cdk2 in Figure III.8.B. Cdc45 is a target of the Chek1-mediated S-phase 

checkpoint (222, 223). During the S-phase checkpoint, Chek1 activity increases which leads to 

Cdk2 inhibition and blockage of the S-phase transit in response to DNA damage (224, 225). We 

can further note that Chek1 interacts with Smc1a and Wee1 in Figure III.8.B. Syljuåsen et al. 

(2005) have shown that inhibition of Chek1 in S-phase cells triggers rapid phosphorylation of 

Smc1a, therefore suggesting a regulatory association between the two genes during S phase of the 

cell cycle to protect DNA breakage and promote DNA repair (223). Chek1 phosphorylates and 

positively regulates Wee1 in the DNA replication checkpoint (226) and in the G2 DNA damage 
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checkpoint (227). Additionally, Wee1 inhibition diminishes Chek1 phosphorylation in cells that 

are undergoing replicative stress (228). 

 Atm: We note the E2f4→Atm, Skp2→Atm and Cdc7→Atm edges in Figure III.8.B. E2F 

transcription factors not only regulate many genes required for entry into S phase, but also take 

part in DNA repair by transcriptionally regulating Atm (229). Wu et al. (2012) have examined the 

role of Skp2 in DNA damage response and repair by showing its recruitment and activation of 

Atm during DNA double-strand breaks (230). Cdc7, involved in initiation and progression of DNA 

replication during S phase, further plays role in DNA repair by activating the Atm/Atr-Chek1 

checkpoint pathway (231). 

 Trp53:  The interaction of Trp53 with Mcm3 and Orc1, both of which are key components 

of the pre-replicative complex, is shown in Figure III.8.B. Trp53 controls the initiation of 

replication and entry into S phase by regulating proliferation related genes such as Mcm3, Orc1, 

and Cdc6 (232, 233). Furthermore, the Pkmyt1→Trp53 interaction has been detected in the 

reconstruction of the S phase regulatory network. Price et al. (2002) have shown that Pkmyt1 can 

negatively regulate Trp53-induced apoptosis in response to DNA damage in the S phase or the G2 

phase (234). 

Mdm2: The Cdk1→Mdm2 and Ttk→Mdm2 interactions can be seen in Figure III.8.B. 

Mdm2 is known to be phosphorylated by Cyclin A-Cdk1 complexes at the onset of S phase to 

reduce its interaction with Trp53 (235). Moreover, Ttk phosphorylates Mdm2 which facilitates 

oxidative DNA damage repair and cell survival during the S-phase (236). 

Pre-replicative complex: We can see the interaction of Mcm3 with Cdc45 in Figure 

III.8.B. Mcm3 and Cdc45, both interacting components of the pre-replicative complex (237-239), 
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are known to dissociate from the origin DNA and associate with non-origin DNA and move with 

replication forks at the beginning of S phase (240, 241). In addition, Cdc45 loading onto the 

chromatin in the S phase is required to activate the helicase activity of the MCM complex (242, 

243). We further note the Cdc6→Cdk2 edge; Cdc6 has been shown to activate Cdk2 to initiate 

DNA replication and G1-S phase progression (202, 244). Cdc6 is also known to activate Cdk2 to 

prevent re-replication during S and G2 phases (245). Dbf4→Cdk1 can be seen in Figure III.8.B; 

Cdk1 is known to target the Dbf4-Cdc7 kinase at the end of S phase to prevent re-replication in 

G2/M (246, 247). 

III.D.6   G2/M Phase 

 G2 phase is the third phase of the cell cycle in which the cell rapidly grows, protein 

synthesis occurs, and the cell prepares to enter mitosis. During mitosis, the replicated 

chromosomes are separated into two nuclei and the cell is divided into two daughter cells. 

Supplementary table G2M_Phase_Interactions.xlsx, consists of the entire list of interactions 

estimated in reconstruction of the G2/M phases. In this section, we investigate the main G2/M 

signaling pathways predicted in our study (shown in Figure III.8.C). 

 Ttk: We note the Ttk→Bub1, Ttk→Mad2l1, and Ttk→Bub1b interactions in Figure III.8.C. 

Studies have revealed that Mph1 (Ttk homologue), which localizes to the kinetochores only at 

prometaphase (second phase of mitosis), is required for the recruitment of Bub1 and other spindle 

assembly checkpoint components (248, 249). Ttk promotes closed Mad2l1 production and 

subsequent assembly of the mitotic checkpoint complex (MCC) to activate the spindle checkpoint 

assembly (250). Huang et al. (2008) have reported that Ttk is one of the major kinases required 

for Bub1b phosphorylation which is essential for the mitotic checkpoint and also for kinetochores 

to establish microtubule attachments during G2/M (251). 
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 Mad2l1-Mad1l1: The Espl1→Mad2l1, Mad2l1→Bub1b, Bub3→Mad1l1, and 

Rad21→Mad1l1 edges can be seen in Figure III.8.C. The Espl1-Mad2l1 interaction has been 

confirmed as a regulatory mechanism required for sister chromatid segregation (252). Further, the 

spindle assembly checkpoint components Mad2l1 and Bub1b are known to act cooperatively to 

assemble the mitotic checkpoint complex and to prevent premature chromatid separation at the 

mitotic checkpoint (253-255). Multiple studies have indicated that Mad1l1 forms a complex with 

Bub3 during the cell cycle and is crucial for spindle checkpoint function (256-258). There is also 

evidence that knockdown of MAD proteins is correlated with Rad21 cleavage to promote sister 

chromatid segregation (259). 

 Bub1b-Bub1-Bub3: The Bub1b→Cdc20 and Bub1b→Plk1 edges can be seen in Figure 

III.8.C. Studies have shown that a checkpoint function of Bub1b is to inhibit the activity of 

Anaphase Promoting Complex (APC/C) by blocking the binding of Cdc20 to APC/C (260-262). 

Furthermore, Bub1b binds to Cdc20 to inhibit APC activity in interphase, allowing the 

accumulation of Cyclin B in G2 phase prior to M-phase entry (263). Bub1b localizes to 

centrosomes and suppresses centrosome amplification via regulating Plk1 activity during 

interphase (264). In addition, Bub1b brings about the action of Plk1 at kinetochores for appropriate 

chromosome alignment during prometaphase (265). 

 Cdk1: We can see the interaction of Cdk1 with Bub1b and Rbl1 in Figure III.8.C. 

Phosphorylation of Bub1b by Cdk1 is required for mitotic spindle checkpoint arrest and promotes 

the formation of the kinetochore during G2/M (266). It has been widely reported that Cdk1 

phosphorylates pRB (retinoblastoma protein) in mitotic cells (150, 267, 268), while our model 

captures the interaction of Cdk1 with the pRB-related protein, Rbl1. 
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The network of Figure III.8.C depicts the edges Cdk1→Ccnb2, Wee1→Cdk1, and 

Pkmyt1→Cdk1. B-type cyclins form a complex with Cdk1 and this complex accumulates through 

late S and G2 phases of the  cell cycle (269) and the activation of the Cyclin B-Cdk1 kinase is 

needed for entry into the G2/M phase (270, 271). It is widely accepted that Cdk1 activity is 

regulated through its inhibitory phosphorylation by Wee1 and Pkmyt1, leading to activation of the 

G2/M arrest which prevents premature entry into mitosis (272-275). 

 Ccnb2: We can see the Cdc20→Ccnb2 and Cdc25b→Ccnb2 edges in Figure III.8.C. It is 

known that APC/C-Cdc20 interaction can mediate cyclin B degradation which consequently 

prevents Cdk1 activity from reaching excessively high levels (276) and that the spindle assembly 

checkpoint acts on Cdc20 to block the degradation of Cyclin B during metaphase (277). The Cdc25 

phosphatases are known to dephosphorylate and therefore activate the Cdk1-Cyclin B complexes 

(278-280).  

Espl1: The Espl1→Ccnb2, Cdk1→Espl1, Espl1→Smc1a, and Espl1-Bub1 interactions are 

shown in Figure III.8.C. Espl1 binds to Cyclin B during anaphase, a required step in anaphase to 

shut down Cdk1 activity, to achieve abrupt and simultaneous separation of sister chromatids (281-

283). It is widely accepted that Espl1 triggers anaphase (fourth phase of mitosis) by initiating 

cleavage of cohesin multiprotein complex which includes the Smc1a subunit (284). Studies have 

determined the role of Bub1 in the timing of Espl1 activation and hence regulation of anaphase 

(285, 286). 

III.E   Discussion and Conclusion 

 Mammalian cell cycle is a dynamic process orchestrated by the activation of distinct 

molecular players across time. Canonical characterization of the cell cycle as a static network fails 
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to provide temporal mechanistic insights on the control exerted by the proteins during different 

phases of the cell cycle. In this study, we use an exhaustive and fine-grained time series expression 

dataset capturing the cell cycle of MEF primary cells to develop a temporally evolving dynamical 

network for the cell cycle progression. Using a set of 63 key cell cycle genes, we show that our 

causality-driven approach provides a temporal map of the phases of the cell cycle.  

 The mechanistic changes in the RNA-seq time-course data are identified by a change point 

detection algorithm which enables us to infer the timing of cell cycle phases and their duration 

with no prior biological knowledge. Through our computational analysis, the G1, S, and G2/M 

phases are estimated to be 14.5 hours, 10 hours, and 4 hours long, respectively. For a typical 

proliferating mammalian cell with an average cycle span of 24 hours, G1 phase lasts about 11 

hours, S phase about 8 hours, G2 phase about 3-4 hours, and M phase about one hour (287). 

However, cell cycle duration varies from one cell type to another; for instance, the average phase 

duration for the rat embryo PC12 cell line when serum starved for 24 hours and then serum treated 

for 37 hours, is roughly 15 hours, 13.3 hours, and 4 hours for the G1, S, and G2/M phases, 

respectively (288), whereas reports show that the average cell cycle length for MEF cell line is 

25.3 hours (289, 290). 

The three successive directed graphs depicted in Figure III.8, representing the interaction 

of cell cycle genes as the cell evolves through the G1, S and G2/M phases of the cell cycle, are 

derived by utilizing the notion of Granger causality identified by a VAR model. This enables us to 

detect the main regulatory pathways and checkpoints essential to cell cycle regulation and 

reconstruct phase-specific gene regulatory networks at each stage of the cell cycle. Moreover, this 

approach allows for the inference of temporal length of influences each gene has on others. The 

temporal dependencies are obtained by estimating the optimal order of the VAR model that reveals 
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the sufficient number of lags required to extract useful past information that may influence the 

expression of other genes. Figure III.11 shows the three successive networks with key regulatory 

interactions that have been detected in Figure III.8 for the networks capturing the G1, S, and G2/M 

phases. 

Figure III.11 Key signaling pathways captured in the G1, S and G2/M phases of the cell cycle. Diagram showing 
a subset of genes from the reconstructed networks in Figure III.8 depicting the key phase-specific regulatory 
interactions in the (A) G1 phase, (B) G1 phase followed by the S phase and (C) G1 and S phases followed by the 
G2/M phase. 

 

 Among the key G1 phase mechanisms (Figure III.11.A), we were able to detect the 

regulation of Rbl1 by Ccnd1 and Cdk4 as a promoting factor in the G1/S transition (169), the role 

of the retinoblastoma protein in enabling cell growth by targeting E2f and DP transcription factors 
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(151-153), as well as the function of cyclin dependent kinase inhibitors in inducing growth arrest 

in the G1 phase (165, 166). The Cdkn2a-Mdm2 interaction which stabilizes the tumor suppressor 

protein Trp53 (185), the Cyclin E-Cdk2 interaction required for G1/S transition (199), as well as 

Ccne1’s role in the loading of Mcm3 and Cdc45 onto the chromatin (200-202) were detected in 

our reconstruction of  the G1 phase network. We were able to detect the recruitment and assembly 

of Mcm3 and Cdc6 by Orc1 leading to the formation of the pre-replication complex and its 

assembly onto replication origins prior to S phase (175, 177). 

 The G1 phase events prepare the cell to initiate DNA replication in the S phase of the cell 

cycle. Regulated and monitored replication ensures the duplication of the entire genome in a timely 

fashion. The pre-replicative complex is assembled onto each origin prior to S phase and creates 

licensed origins that can initiate replication by origin firing. Once the cell transitions from G1 

phase to the S phase, the licensed origin are converted into active replication forks (291, 292). 

 Major S-phase regulatory pathways are shown in Figure III.11.B. The loading of the 

replicative polymerases through Mcm3’s recruitment of Cdc45  (293), along with the intra S-phase 

checkpoint exerted by Chek1’s targeting of Cdc45 and regulation of Cdk2 (222, 224), are among 

the major S-phase pathways. The network in Figure III.11.B further describes the role of Chek1 in 

stabilizing the replication forks and protecting against DNA breakage through its interaction with 

Orc1 and Smc1a (220, 223).  

During S-phase, Trp53 is involved in regulating initiation of replication by targeting 

replication-related genes Cdc6, Orc1, and Mcm3 (232). Furthermore, we detected Cdk1’s role in 

preventing re-replication during S phase by regulating Dbf4 (247), along with the function of Atm 

in regulation of DNA damage and DNA repair, captured through Atm’s interaction with Dbf4 and 

Skp2 (229, 230). 
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Figure III.11.C represents significant regulatory pathways characterized in the G2/M 

phases of the cell cycle such as spindle assembly checkpoint (SAC), mitotic checkpoint assembly, 

and chromosome segregation. Among these pathways, we detected the formation of mitotic 

checkpoint complex and the establishment of microtubule attachments during G2/M phases 

through the function of Ttk-Mad2l1 and Ttk-Bub1 interactions respectively (249, 251). Moreover, 

our proposed model for the G2/M phase identifies the Bub3-Mad1l1 interaction essential for 

spindle checkpoint function (256-258), the cooperative interaction of Mad2l1 and Bub1b that is 

required for prevention of premature sister chromatid segregation (254), as well as Mad2l1-Chek1 

interaction which ensures fidelity of mitotic segregation (294). In addition, we detected the 

interactions suggesting the blockage of premature entry into mitosis through Cdk1’s 

phosphorylation by Wee1 and Pkmyt1 (272-275). It is interesting that Cdk1’s phosphorylation not 

only happens at early G2 phase, but may also occur during late S phase (275) as shown in Figure 

III.11.B and Figure III.11.C. We detected Cdk1’s role in preventing re-replication during G2/M 

by targeting Cdc7 (246), along with the activation of the Cdk1-Cyclin B complex required for 

G2/M entry (270). Additionally, we spotted Plk’s regulation of Cdc20 which activates the 

anaphase promoting complex, triggering the separation of sister chromatids (295), Plk1’s role in 

mitotic exit through its interaction with Cdc25b (296), as well as the concurrent and abrupt 

segregation of sister chromatids through the Espl1-Ccnb2-Cdk1 pathway (281, 283) (Figure 

III.11.C). 

It is worth noting that some interactions that are described in the literature as specific to 

certain phases may be found in other phases of the cell cycle as well. For instance, Mad1l1-Bub3 

which is specific to G2/M, was also captured in G1 and S phase reconstruction. This is due to the 
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fact that such complexes/interactions are present throughout the cell cycle but exist at significantly 

higher levels during the phases they are generally known for (256). 

In summary, we reconstruct causal mechanisms and networks across time during a 

mammalian cell cycle. While our reconstruction is based on using the transcriptome, and there 

could be differences between the transcriptome and the proteome abundances (297-300), we 

believe that the broad conclusions are substantiated by mechanisms reported in the literature. For 

example, studies have revealed that certain classes of genes, such as cell cycle genes, have higher 

correlation of mRNA expression with the corresponding protein expression across a large number 

of genes (301, 302), validating our use of the transcriptome across time to investigate the cell cycle. 

Through our integrative framework, we are able to provide insights into the temporal behavior of 

the MEF cell cycle describing information such as duration of cell cycle phases, identification of 

phase specific regulatory networks, and detection of key regulatory interactions essential to 

passage of the cell through cell cycle checkpoints. Moreover, the utilization of higher order VAR 

models lead to determining the temporal dependencies between multiple biological pathways in 

the three successive cell cycle regimes. The causal and temporally-dependent pathways also point 

to potential temporally specific perturbations and potential therapeutic targets that can help with 

repairing aberrant cell cycle mechanisms associated with pathologies (300). 

III.F   Summary 

 Causal molecular mechanisms in cellular functions can only be inferred from temporal and 

longitudinal measurements. Few methods exist for analyzing time series data to identify distinct 

temporal regimes and the corresponding time-varying causal networks and mechanisms. In this 

study, we have developed an integrative framework that allows the detection of distinct temporal 

regimes, along with temporally evolving directed networks that provide a comprehensive picture 
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of the crosstalk among different molecular components (nodes) in each regime. We have applied 

our approach to RNA-Seq time-course data spanning nearly two cell cycles from Mouse 

Embryonic Fibroblast (MEF) primary cells. This strategy enabled us to, without any prior 

knowledge, extract information on duration and timing of cell cycle phases, phase-specific causal 

interaction of cell cycle genes as well as temporal interdependencies of biological mechanisms 

through a complete cell cycle. Our inference of dynamic interplay of multiple intracellular 

mechanisms can be used to predict time-varying cellular reponses and to explore the effect of drug 

dose and timing in therapeutic interventions. 
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Chapter IV  

Multiview Radial Basis Function Network: A 
New Approach on Nonparametric Forecasting 
of Chaotic Dynamic Systems 
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IV.A Abstract 

 The curse of dimensionality has long been a hurdle in the analysis of complex data in areas 

such as computational biology, ecology and econometrics. In this work, we present a forecasting 

algorithm that exploits the dimensionality of data in a nonparametric autoregressive framework. 

The main idea is that the dynamics of a chaotic dynamical system consisting of multiple time-

series can be reconstructed using a combinations of multiple variables. This nonlinear 

autoregressive algorithm uses attractors reconstructed from a combination of variables as the 

inputs of a neural network to predict the future. We show that our approach, multiview radial basis 

function network (MV-RBFN) provides a better forecast than that obtained using a model-free 

approach, multiview embedding (MVE). We demonstrate this for simulated ecosystems and a 

mesocosm experiment. By taking advantage of dimensionality, we show that MV-RBFN 

overcomes the shortcomings of noisy and short time-series. 

IV.B Introduction 

 In recent years, the availability of large time-course datasets in multiple disciplines, 

including biology, ecology and finance has brought forth the problem of handling such data for 

scientific analysis (27-29). In many studies, generalized linear models and vector autoregressive 

models are used for structural estimation and inference, where such systems exhibit nonlinear 

dynamics with time lags, reciprocal feedback loops and unpredictable surprises (7, 30). On the 

other hand, equation-based models such as difference and differential equations may be used to 

analyze the evolution of a dynamic system, but often require some degree of prior knowledge 

about the nature of interactions among various system components (8), or even if the model 

structure is known, dimensionality poses a challenge on accurate parameter estimation of variables 

(31). Furthermore, prior work has established that ecological and biological models are often 
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ineffective in predicting the future due to the highly nonlinear nature of component interactions 

(32, 33). 

An alternative equation-free approach suitable for non-equilibrium dynamics (including 

chaos) and nonlinearity is state space reconstruction (SSR) which is a model-free approach in the 

sense that there is no analytic formula assumption thus allowing substantial flexibility in the 

nonlinearity of the system (9, 34). SSR uses lagged coordinate embeddings to reconstruct attractors 

that map the time-series evolution from time domain into state space trajectories. In a notable 

theorem, Takens proved that the overall behavior of a chaotic dynamic system can be reconstructed 

from lags of a single variable (35). Later Takens’ theorem was generalized and it was demonstrated 

that the information from a combination of  multiple time-series (and their lags) can be used in an 

attractor reconstruction to provide a more mechanistic model (36, 37). Nonetheless, since attractor 

reconstruction relies only on experimental data, the limitations of short or noisy time-series 

restricts the ability to infer system dynamics as a whole. Namely, SSR from short time series 

provide a scarce view of a system’s mechanism, diminishing reliability of inferences. In addition, 

when time-series data is corrupted with observational noise, data may become meaningless and 

irrelevant in providing useful information for predictability. Ye et al. (2016) introduced an 

analytical approach, multiview embedding (MVE), which harnesses the complexity of short and 

noisy ecological time-series as a way to improve forecasting (38). MVE is a method based on 

nearest neighbors that looks into the predictability of all possible manifold reconstructions using 

the method of simplex projection (34). In this work, we treat prediction of the dynamical system 

as an inverse problem that involves interpolation and approximating an unknown function from 

time series data. Instead of relying on single nearest neighbors of the top attractor reconstructions 

as carried out in MVE, here we introduce a multiview radial basis function network (MV-RBFN) 
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autoregressive model that calculates a distance-weighted average of all points in the top manifold 

reconstructions through a nonlinear kernel estimation method. Similar to MVE, attractors from 

combinations of variables and their lags are reconstructed. Each manifold (view) comprises 

information that is particular to that embedding. By ranking the reconstructed manifolds according 

to their forecast skill (prediction errors), and merging the top views and the information contained 

in them, MV-RBFN is capable of recovering the dynamics of the system in a manner that 

outperforms MVE and nonlinear univariate and multivariate autoregressive models. 

IV.C Materials and Methods 

IV.C.1    Multiview Radial Basis Function Network (MV-RBFN) 

MV-RBFN utilizes radial basis function networks (RBFN) initially proposed to perform 

accurate interpolation of data points in the multidimensional space (303). Suppose we are 

interested in forecasting variable  in a three-species food chain with components , , and . By 

constructing the attractors from combination of variables of the three-species food chain, one can 

look into the forecast skill of each multivariate manifold (Figure IV.1). For example, the blue 

manifold in Figure IV.1.A is an embedding constructed from variables , , and variable  delayed 

by two time lags. Each multivariate embedding in Figure IV.1 is mapped using a Gaussian RBFN 

which approximates a nonlinear function that transforms the input space of past values in each 

manifold to the output space of future target values: 

1 ,					 1, 2, …                                (IV.1) 

 is a data matrix of nonlinear Gaussian kernel functions with the inputs being points 

on the  manifold , and  is a  dimensional vector of output weights that can be fixed such 

that the prediction error is minimized in the minimum mean squared error sense.  is the number 
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of centers in each manifold that can be chosen through a k-means clustering algorithm and  is 

the number of all possible manifold reconstructions from a combination of variables and their time 

lags. Given  variables and  lags for each variable, the possible number of reconstructions in an 

-dimensional space grows combinatorially: 

1                                                    (IV.2) 

where, the first term is the number of manifolds formed by choosing  of the  possible 

coordinates, and the second term is subtracted to account for the number of unacceptable manifolds 

where all  coordinates are lagged; an acceptable manifold is one with at least one coordinate at 

the current time . 

The black manifolds in Figure IV.1 are reconstructed from the actual future observations 

of variable  and the red dots are the predicted values. One can rank constructed embeddings based 

on their prediction accuracy (mean absolute error or correlation between observation and 

predictions) from the best (Figure IV.1.A) to the worst (Figure IV.1.C). 
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Figure IV.1 Schematic showing forecast skill of multivariate embeddings in the three-species food chain model. 
(A) Multivariate embedding reconstructed from (t),  and 2  in 3-dimensional space provides the best 
forecast of variable  using Gaussian radial basis functions with centers { , … , .(B) Multivariate embedding 
reconstructed from ,  and 2  in 3-dimensional space provides moderate forecast of variable  
using Gaussian radial basis functions with centers , … , . (C) Multivariate embedding reconstructed from 

2 ,  and 2  in 3-dimensional space provides the worst forecast of variable  using Gaussian radial 
basis functions with centers { , … , . 

 

Once all reconstructions are ordered based on their prediction skill in the in-sample portion 

of the data, one can identify the top  manifold , …	  in an -dimensional space that will 

further be used in the MV-RBFN forecast of the out-of-sample portion of the data. Figure IV.2.A 
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shows that the inputs of the MV-RBFN model are the top  manifolds in the prediction of variable 

 that are fed into the three-layer neural network. Each node in the hidden layer uses a Gaussian 

RBF with centers , 1, … ,  as nonlinear activation functions. The one-step forecast of 

 through the multiview RBFN, and the actual one-step-ahead observations of  are shown in 

Figure IV.2.B in the red and black curves respectively.  
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Figure IV.2 Multiview radial basis function network. (A) Three-layer neural network takes the best  predictive 
embeddings as its inputs. The nonlinear function .  is estimated by fixing the  weights through linear optimization. 
(B) The predicted forecast and future observation are shown by the red and black curve (manifold) in time domain (in 
state space) respectively. 

 

Given multivariate times series of  variables , , … ; 1, … , , 

the nonlinear multiview RBFN model maps the top  manifolds such that the likelihood of the 

nonlinear autoregressive model is maximized: 
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1 ,			 1, 2, … 	                                   (IV.3) 

where, 

1 1 	 2 …	                              (IV.4) 

	 … 	                                    (IV.5) 

	 …	                                                (IV.6) 

1 	 2 …	 , 1, 2, …                              (IV.7) 

				⋯

1
1

⋯ 1
⋯ 1

⋮ ⋮ ⋱ ⋮
⋯ 1

, 

, , 	 ∈ 1, 2, … ,  , ∈ 0, 1, … , 1                         (IV.8) 

	 …	 , 1, 2, … ,             (IV.9) 

exp	 || || /2 , 1, 2, …                 (IV.10) 

N is the number of variables in the chaotic system. T is the time-series length. The value 

of the  variable at time  is denoted by .  is the set of  centers in the space of  the 

 manifold  of the top  manifold reconstructions. The centers are determined by a k-means 

clustering procedure.  is the vector of weights between the target variable  and .  is the 

width or radii of the Gaussian RBF in the space of  which is selected as the average of the 

Euclidean distances between each center  and its nearest neighbor  (304).  is the 

weight corresponding to the kernel function . Here the type of the radial basis function 

	is taken as Gaussian kernels whose inputs are -dimensional vectors of a combination of 
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variables and time lags.  vectors are weights that are fixed such that the prediction error is 

minimized, and  denotes Gaussian white noise independent of the time series. In general, one 

can use the least squares method to adjust the  weights in the minimum mean squared error sense. 

Once the  vector is estimated via least squares on the library data that is selected randomly from 

the in-sample portion of the data, they are tested on the out-of-sample test set to calculate the out-

of-sample forecast. 

IV.C.2    Simulated Data 

The simulated data used in this work is generated from ecosystem simulations of a three-

species food chain (305), a three species couple logistic model (38), a flour beetle model (306) and 

a five species model (307).  

Three-species food chain model 

The following differential equations model a chaotic three-species food chain of variables 

, , and  (305): 

/ 1                                           (IV.11) 

/                                       (IV.12) 

/                                                (IV.13) 

with 

/ 1                                               (IV.14) 

The parameter values used in the simulations are as follows: 2.5, 0.1, 3.2, 

2, 0.2, and 0.015. The initial conditions used are 0.8, 0.2 and 8. 
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Three species coupled logistic model 

The three interacting species , , and  are model through the following coupled logistic 

map as mentioned in Ye et al. (2016): 

3.6
3
3

° °
1
1
1

1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

                         (IV.15) 

where ° is the entry wise product. The initial conditions used in the simulations are 
0.2
0.2
0.2

. 

Flour beetle model 

The chaotic behavior of an insect population, Tribolium Castaneum, is modeled through 

the following equations for different life stages (larvae, pupae, and adults) of flour beetle suggested 

by Dennis et al. (306): 

exp                                       (IV.16) 

1                                                    (IV.17) 

exp 1                                   (IV.18) 

with the following parameter values used in the simulations: 10.67, 0.1955, 0.96, 

0.01647, 0.01313, 0.35 . The initial values are 250, 5 and 

100. 

Five-species model 

The following equations identify a chaotic five-species competition model for variables , 

, , , and  suggested by Sugihara et al. (307): 
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4 4	 2	 0.4	                                                                   (IV.19) 

3.1 0.31	 3.1	 0.93	                                                     (IV.20) 

2.12 0.636	 0.636	 2.12	                                            (IV.21) 

3.8 0.111	 0.011	 0.131	 3.8	                        (IV.22) 

4.1 0.082	 0.111	 0.125	 4.1	                         (IV.23) 

with the initial conditions 1 =	 1 0.1, 1 =0.02, 1 1 =0.01. 

IV.C.3    Real Data 

Mesocosm plankton community data 

The data drawn from the mesocosm 8-year experiment on a plankton community isolated 

from the Baltic Sea has been shown to represent the dynamics of a chaotic system. We use the 

transformed data of the abundance of Rotifers, Calanoid Copepods, Picocyanobacteria and 

Nanoflagellates from the supplementary material of Benica et al. (308).  The data transformation 

in Benica et al. is done such that the raw data is interpolated by hermite cubic interpolation to 

obtain data with equidistant time intervals of 3.35 days, and then rescaled by a fourth-root 

transformation to suppress sharp peaks. The transformed data is of length 794 samples. 

IV.C.4    Manifold Reconstruction 

As described in Ye et al. (38), the possible  number of 3-dimensional manifold 

reconstructions of combination of variables and their time lags of 0,  and 2  is: 

1                                              (IV.24) 
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where  is the number of variables in the dynamic system,  is the number of possible lags for 

each variable, and  is the embedding dimension. The first term is the number of manifolds formed 

by choosing  of the  possible coordinates, and the second term is subtracted to eliminate the 

number of invalid manifolds with  lagged coordinates. A valid manifold is one with at least one 

unlagged coordinate. For example, the possible number of valid manifold reconstructions for a 3 

and 4 variable system is 64, and 164 respectively. Unlike Ye et al. (38) that suggests √ , we 

found out that for the multiview radial basis function network (MV-RBFN) approach the best 

number of top  reconstructions to incorporate into MV-RBFN is , where  is the number 

of variables in the interconnected dynamic system. This is because for any -variate system, if we 

let  be equal to √  (√ ) we will have too many hidden units in the hidden layer of the 

radial basis function network. Particularly in cases where the time series is noisy, too many hidden 

units in the hidden layer of the neural network leads to overfitting of the training samples and poor 

generalization (309). In this work, we choose 1 and 3 for the ecosystem simulated data 

and mesocosm experiment data. 

IV.C.5    Out-of-sample Forecasting 

In order to quantitatively evaluate the one-step-ahead forecast skill of the MV-RBFN, we 

performed an out of sample forecast scheme on the simulated ecosystem data. We generated 3000 

samples for all variables in the simulated ecosystem models and discarded the first 500 samples to 

exclude the transient behavior of the time series. The last 500 samples [2501 to 3000] are kept as 

the out of sample test set. Radial basis function based autoregressive model is performed on each 

of the  manifold reconstruction to rank them based on their forecast skill in the in-sample portion 

of the data. For the simulated time series data, 100 libraries are randomly chosen in the in-sample 

portion of the data [501 to 2000]; the starting point of each library is chosen from a uniform 
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distribution distributed in the [501 to 2000] interval. The top  manifold reconstructions are 

selected to perform MV-RBFN forecasting (as shown in Figure IV.2). The forecast skill is then 

calculated by averaging the mean absolute values of the 100 randomly sampled libraries. The 

libraries are selected in various lengths of 25, 50, 75 and 100 samples. 

We use the same out-of-sample forecasting scheme to calculate the performance of the MVE 

approach proposed by Ye et al. (38). 

IV.C.6    Pseudo Out-of-sample Forecasting 

 Due to the limited length of the mesocosm data, we used a pseudo out-of-sample forecast 

scheme to evaluate the forecast performance of the MV-RBFN and multi-view embedding 

approaches; the first 3/4 of the time-series were used as the training set, and the last 1/4 portion of 

the data was used as the test set. This forecast scheme is also known as the method of time-series 

cross-validation for one-step ahead forecasts. In the pseudo-out-of-sample strategy, the one-step-

ahead forecast at time 1 is estimated using data through time , then moving forward to time 

1 and repeating until all test data samples are covered in the recursive estimation . In this work, 

we used an increasing data window in the recursive forecast of samples. 

 

 

 

 

 

 



102 
 

IV.D Results 

To assess the performance of the MV-RBFN approach, we compare the forecast 

performance (correlation) between the out-of-sample forecast estimates and the one-step-ahead 

observations using our proposed MV-RBFN autoregressive model with that of MVE proposed by 

Ye et al. (2016) (38). Figure IV.3 depicts the forecast skill (correlation) of the MV-RBF and the 

MVE approaches for simulated ecological systems with 10% added noise for a three-species food 

chain (305), a three-species coupled logistic and a three-stage flour-beetle model (306) (for 

additional details see Supplementary Materials). In almost all cases, MV-RBFN outperforms MVE 

resulting in better forecast skills with higher correlations. As expected, the forecast performance 

improves as the length of time-series increases.  
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Figure IV.3 Comparison of forecast performances for MV-RBFN and MVE in simulated ecological data with 
10% added noise.  (A to C) forecast skill (correlation between estimated forecast and one-step-ahead observation) 
versus length of the libraries for variables X, Y, and Z in three-species food chain model. (D to F) same as A to but 
for the three-species coupled logistic model. (G to I) same as A to C for the flour beetle model. Solid lines show the 
averaged values for 100 randomly selected libraries, and the dotted lines indicate the upper and lower quartiles. 
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To further assess the forecast skill of MV-RBF on real world data, we extend this analysis 

to time-series data from along term mesocosm experiment on a four-species marine plankton 

community obtained from the Baltic Sea (308). The mesocosm data consists of the plankton 

population of Nanoflagellates and Picocyanobacteria that fall prey to two predators, Rotifers and 

Calanoid Copepods. Coupling of predator-prey oscillations where preys have a causal effect on 

the predators exhibit chaotic patterns. Figure IV.4 shows the comparison of the forecast 

performances of MV-RBFN and MVE for the long-term plankton community data; for all four 

species, MV-RBFN outperforms MVE in forecasting. Using the MAE metric provides similar 

results when comparing MVE and MV-RBFN (Figures IV.5 and IV.6).  
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Figure IV.4 Comparison of forecast performance of MV-RBFN and MVE for the long-term mesocosm 
experiment. Correlation between the predictions and observations for plankton communities of calanoids, rotifers, 
nanoflagellates and picocyanobacteria. 
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Figure IV.5 Comparison of forecast performance (mean absolute error) for MV-RBFN and MVE in simulated 
ecological data with 10% added noise.  (A to C) forecast skill (mean absolute error  between estimated forecast and 
one-step-ahead observation) versus length of the libraries for variables X, Y, and Z in three-species food chain model. 
(D to F) same as A to but for the three-species coupled logistic model. (G to I) same as A to C for the flour beetle 
model. Solid lines show the average values for 100 randomly selected libraries, and the dotted lines indicate the upper 
and lower quartiles. 
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Figure IV.6 Comparison of forecast performance (mean absolute error) of MV-RBFN and MVE for the long-
term mesocosm experiment. Mean absolute error between the predictions and observations for plankton communities 
of calanoids, rotifers, nanoflagellates and picocyanobacteria.  

 

We compare the forecast skill of the MV-RBFN approach with that from a univariate radial 

basis function method and a multiview radial basis function approach using the best single view 

in terms of mean absolute error (MAE) and correlation ( ). Figures IV.7 to IV.10 show that MV-

RBFN yields a better forecast performance than that from the univariate RBFN approach and the 

best single view RBFN for the three-species models and a five-species model (307). Furthermore 

to study the modeling framework of MV-RBFN, we look into the effect of observational noise in 

the time-series data. Figures IV.11 to IV.16 indicate that as more noise is added to the data, the 

forecast error increases. 
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Figure IV.7 Forecast performance (mean absolute error) vs. time series length of libraries with 10% added 
noise. (A to C) average mean absolute error between predictions and observations for 100 randomly sampled libraries 
for variables , ., and  vs. length of the libraries in the food chain model. (D to F) same as A to C but for the 3 
species coupled logistic model. (G to I) same as A to C but for the variables larvae, pupae and adults in the flour 
beetle model. The solid black curves are the average mean absolute errors for the Multiview RBFN approach for the 
top  manifold reconstructions. The solid green curves are the average mean absolute errors for the univariate RBFN 
approach, and the solid pink curves are the average mean absolute error using the single best view (manifold) in the 
RBFN autoregressive approach. The dotted lines are the upper and lower quartiles. 
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Figure IV.8 Forecast performance (correlation) vs. time series length of libraries with 10% added noise. (A to 
C) average correlation between predictions and observations for 100 randomly sampled libraries for variables , ., 
and  vs. length of the libraries in the food chain model. (D to F) same as A to C but for the 3 species coupled logistic 
model. (G to I) same as A to C but for the variables larvae, pupae and adults in the flour beetle model. The solid black 
curves are the average correlation for the Multiview RBFN approach for the top  manifold reconstructions. The solid 
green curves are the average correlation for the univariate RBFN approach, and the solid pink curves are the average 
correlation using the single best view (manifold) in the RBFN autoregressive approach. The dotted lines are the upper 
and lower quartiles. 
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Figure IV.9 Forecast performance (mean absolute error) vs. time series length of libraries for the five-species 
model with 10% added noise. (A to E) average mean absolute error between predictions and observations for 100 
randomly sampled libraries for variables , , , ,  vs. length of the libraries. The solid black curves are the 
average mean absolute error for the Multiview RBFN approach for the top  manifold reconstructions. The solid green 
curves are the average mean absolute error for the univariate RBFN approach, and the solid pink curves are the average 
mean absolute error using the single best view (manifold) in the RBFN autoregressive approach. The dotted lines are 
the upper and lower quartiles. In figure panels D and E, the manifolds of the univariate and the best single view 
coincide. 
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Figure IV.10 Forecast performance (correlation) vs. time series length of libraries for the five-species model 
with 10% added noise. (A to E) average mean absolute error between predictions and observations for 100 randomly 
sampled libraries for variables , , , ,  vs. length of the libraries. The solid black curves are the average 
correlation for the Multiview RBFN approach for the top  manifold reconstructions. The solid green curves are the 
average correlation for the univariate RBFN approach, and the solid pink curves are the average correlation using the 
single best view (manifold) in the RBFN autoregressive approach. The dotted lines are the upper and lower quartiles. 
In figure panels D and E, the manifolds of the univariate and the best single view coincide. 
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Figure IV.11 Forecast performance (mean absolute error) vs. noise for the 3 species coupled logistic model. (A 
to C) average mean absolute error between predictions and observations for 100 randomly sampled libraries of length 
25 for variables , , and . (D to F) same as A to C but for 100 randomly sampled libraries of length 50. (G to I) 
same as A to C but for 100 randomly sampled libraries of length 100. The solid black curves are the average mean 
absolute errors for the Multiview RBFN approach for the top  manifold reconstructions. The solid green curves are 
the average mean absolute errors for the univariate RBFN approach, and the solid pink curves are the average mean 
absolute error using the single best view (manifold) in the RBFN autoregressive approach. The dotted lines are the 
upper and lower quartiles. 
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Figure IV.12 Forecast performance (mean absolute error) vs. noise for the food chain model. (A to C) average 
mean absolute error between predictions and observations for 100 randomly sampled libraries of length 25 for 
variables , , and . (D to F) same as A to C but for 100 randomly sampled libraries of length 50. (G to I) same as 
A to C but for 100 randomly sampled libraries of length 100. The solid black curves are the average mean absolute 
errors for the Multiview RBFN approach for the top  manifold reconstructions. The solid green curves are the average 
mean absolute errors for the univariate RBFNapproach, and the solid pink curves are the average mean absolute error 
using the single best view (manifold) in the RBFN autoregressive approach. The dotted lines are the upper and lower 
quartiles. 
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Figure IV.13 Forecast performance (mean absolute error) vs. noise for the flour beetle model. (A to C) average 
mean absolute error between predictions and observations for 100 randomly sampled libraries of length 25 for 
variables , , and . (D to F) same as A to C but for 100 randomly sampled libraries of length 50. (G to I) same as 
A to C but for 100 randomly sampled libraries of length 100. The solid black curves are the average mean absolute 
errors for the Multiview RBFN approach for the top  manifold reconstructions. The solid green curves are the average 
mean absolute errors for the univariate RBFN approach, and the solid pink curves are the average mean absolute error 
using the single best view (manifold) in the RBFN autoregressive approach. The dotted lines are the upper and lower 
quartiles. 
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Figure IV.14 Forecast performance (correlation) vs. noise for the 3 species coupled logistic model. (A to C) 
average correlation between predictions and observations for 100 randomly sampled libraries of length 25 for variables 

, , and . (D to F) same as A to C but for 100 randomly sampled libraries of length 50. (G to I) same as A to C but 
for 100 randomly sampled libraries of length 100. The solid black curves are the average correlation for the Multiview 
RBFN approach for the top  manifold reconstructions. The solid green curves are the average correlation for the 
univariate RBFN approach, and the solid pink curves are the average correlation using the single best view (manifold) 
in the RBFN autoregressive approach. The dotted lines are the upper and lower quartiles. 
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Figure IV.15 Forecast performance (correlation) vs. noise for the food chain model. (A to C) average correlation 
between predictions and observations for 100 randomly sampled libraries of length 25 for variables , , and . (D 
to F) same as A to C but for 100 randomly sampled libraries of length 50. (G to I) same as A to C but for 100 randomly 
sampled libraries of length 100. The solid black curves are the average correlation for the Multiview RBFN approach 
for the top  manifold reconstructions. The solid green curves are the average correlation for the univariate RBFN 
approach, and the solid pink curves are the average correlation using the single best view (manifold) in the RBFN 
autoregressive approach. The dotted lines are the upper and lower quartiles. 
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Figure IV.16 Forecast performance (correlation) vs. noise for the flour beetle model. (A to C) average correlation 
between predictions and observations for 100 randomly sampled libraries of length 25 for variables , , and . (D 
to F) same as A to C but for 100 randomly sampled libraries of length 50. (G to I) same as A to C but for 100 randomly 
sampled libraries of length 100. The solid black curves are the average correlation for the Multiview RBFN approach 
for the top  manifold reconstructions. The solid green curves are the average correlation for the univariate RBFN 
approach, and the solid pink curves are the average correlation using the single best view (manifold) in the RBFN 
autoregressive approach. The dotted lines are the upper and lower quartiles. 
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IV.E Discussion and Conclusion 

IV.E.1    Computational Complexity 

Ranking the manifold reconstructions in MVE algorithm involves using the Simplex 

Projection approach which is based on nearest neighbors. The search for the nearest neighbors in 

all valid manifold reconstructions in the simplex projection method leads to computational 

complexity of order . . , where  is the number of variables,  is the number of manifold 

reconstructions, and  is the number of samples in the time series. This computational complexity 

is of order . .  for the MV-RBFN algorithm, where .  is related to time needed to 

find the  centers (prototypes) in each of the  manifold reconstructions and .  is related to the 

computational time required for building Gaussian radial basis functions (activation functions). 

Since . . . . , MV-RBFN is of a lower computational complexity 

compared to MVE.  

IV.E.2    Forecast Skill 

In MVE, forecasting relies on the ranking of manifold reconstruction through simplex 

projection’s search for nearest neighbors, leading to higher computational complexity. In addition, 

the time-index of the true single nearest neighbors in MVE may be misplaced due to the effect of 

noise and therefore the MVE forecast may not accurately indicate resemblance to the target point. 

In contrast, MV-RBFN computes the distance-weighted average of all points in the top  

manifolds (Figure IV.2.A). The Gaussian radial basis function (activation function) in the hidden 

layer produces higher values when the distance between the data points in the input manifolds and 

their corresponding prototypes (centers) are small; the activation values fall off exponentially as 

the distance between data points and prototypes increases (310). 
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Similar to MVE, MV-RBFN exploits the pooled information contained in the top  

manifold reconstructions. When components of a complex dynamic system have cause-and-effect 

relationships with one another, relying on univariate information towards prediction of the 

system’s dynamics does not yield good prediction skills (Figures IV.7 to IV.10). The advantage of 

a multiview prediction scheme is particularly evident when the time series are short and noisy, 

which is very common in biological and ecological data sets. The estimated nonlinear function 

.  in MV-RBFN is a smooth map which produces better forecast performance than MVE due to 

the universal approximation property of radial basis function networks. 
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Chapter V  

Conclusions 
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In this dissertation we have looked into two temporal aspects of dynamic biological and 

ecological systems: 1) Estimating time-varying intracellular signaling pathways and regulatory 

interactions from data, 2) Forecasting the behavior of chaotic dynamic systems.  Towards this, we 

worked on three different projects. In the first two projects we used the notion of Granger causality 

to reconstruct time-varying intracellular networks from biological data to investigate the dynamics 

of signaling pathways and regulatory interactions within the cell. Whereas in the last project, we 

developed a nonparametric approach to improve the forecasting of the dynamic behavior of 

complex chaotic systems by exploiting the dimensionality of the system.  

In the first project, we applied the notion of Granger causality through the vector 

autoregressive model to develop a novel framework for reconstructing dynamic networks from 

large-scale multi-experiment multivariate high-throughput data sets. We used an approach based 

on a linear-model template and statistical hypothesis testing (t-test) of the coefficients of the model 

to find significant or potentially causal connections. Due to the availability of data from multiple 

experiments, this linear inverse problem was an overdetermined problem that could be solved via 

least squares estimation. We were able to predict connectivity, causality and dynamics of 

information flow in the progression of the phosphoprotein network.  

Causal molecular mechanisms in cellular functions can only be inferred from temporal and 

longitudinal measurements. Few methods exist for analyzing time series data to identify distinct 

temporal regimes and the corresponding time-varying causal networks and mechanisms. In the 

second project, we developed an integrative framework that allows the detection of distinct 

temporal regimes using a nonparametric change point detection algorithm, along with temporally 

evolving directed networks that provide a comprehensive picture of the crosstalk among different 

molecular components (nodes) in each regime. We applied our approach to RNA-Seq time-course 
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data spanning nearly two cell cycles from Mouse Embryonic Fibroblast (MEF) primary cells. Due 

to the limited data samples, the linear autoregressive model used to infer causality was an 

underdetermined problem where the number of parameters exceeded the number of samples. Using 

LASSO and Estimation Stability with Cross Validation (ES-CV), we were able to, without any 

prior knowledge, extract information on duration and timing of cell cycle phases, phase-specific 

causal interaction of cell cycle genes as well as temporal interdependencies of biological 

mechanisms through a complete cell cycle. Our inference of dynamic interplay of multiple 

intracellular mechanisms can be used to predict time-varying cellular reponses and to explore the 

effect of drug dose and timing in therapeutic interventions. 

In the third project, we developed a nonparametric forecasting algoirhtm, multiview radial 

basis function networks (MV-RBFN) that improves the forecast skill of chaotic dynamic systems 

in simulated ecosystem models and real data from a mesocosm experiment on plankton population. 

MV-RBFN exploits the dimnesionality of the complex dynamic systems by using the pooled 

information from attractors (manifolds) reconstructed from combination of variables and time lags 

as the inputs of a neural network. MV-RBFN approximates a nonlinear function .  from the 

time-series data that maps the input space of past values of a dynamic system into the future values 

using Gaussian radial basis function netoworks. We showed that MV-RBFN outperforms 

univariate RBFN and multivariate RBFN approaches as well as a model-free appraoch, multiview 

embnedding (MVE) which is a forecasting algorithms based on empirical dynamic modeling. The 

strength of MV-RBFN in providing better forecast skill is particularly evident when time-series 

are short and noisy which is very common in ecology and biology. The estimated nonlinear 

function .  in MV-RBFN is a smooth map which produces better forecast performance than 

MVE due to the universal approximation property of radial basis function networks.  
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