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Abstract 
Anxiety disorders are among the most common psychiatric diagnoses worldwide and rank prominently 

among the World Health Organization’s leading causes of disability. Existing treatments for anxiety 

disorders are inconsistently effective and often cause adverse side effects, underscoring the need to 

develop clinical entry points that lead to new intervention strategies. In the past decade, clinical and 

basic research efforts have identified uncertain threat anticipation as causal in anxiogenesis and have 

established sensitivity to uncertain-threat anticipation as a transdiagnostic marker of anxiety disorders. 

Across a range of temporally “certain-vs-uncertain” threat paradigms in nonhuman animals and human 

participants alike, uncertain-threat contexts consistently elicit heightened behavioral, physiological, 

neurobiological, and (in the case of humans) emotional measures of anxiety. However, the research 

community has no compelling explanation as to why individuals become more anxious in uncertain-

threat contexts—possibly because the term “uncertainty” is sufficiently imprecise as to allow for many 

operationalizations. This dissertation builds toward a higher-acuity operationalization of “uncertainty” 

that enables sophisticated manipulations of its tractable features. Chapter 1 details our replication and 

extension of nonhuman-primate research into the neural substrates of threat processing. We used a 

novel machine-learning approach to uncover a new link between infant temperament and adolescent 

behavioral and neurobiological response to uncertain threat (N=18). In Chapter 2, we argue that the 

EAc has evolved to function as an arbiter of risk-vs-reward tradeoffs for survival optimization, propose 

a novel “feature-space” model to explain how distinct pathophysiologies can promote a common 

clinical phenotype, and discuss the implications of our model in the context of psychiatric disorder. 

Chapter 3 recounts our development of a computational model of uncertain-threat anticipation used 

to decompose “uncertainty” into two tractable features. We held one feature (i.e., discrete threat 

probability) constant while manipulating the other (i.e., hazard rate) in a statistical threat-learning study 

(N=42) in which our volunteers made risk-vs-reward tradeoffs during periods of uncertain-threat 

anticipation. Through this novel approach, we learned that hazard rate causally drives anxious 

behavioral and emotional responding during uncertain-threat anticipation, irrespective of discrete 

threat probabilities. Collectively, our work elucidates the neurocomputational architecture of anxiety.

iv 
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Rhesus Infant Nervous Temperament Predicts Peri-Adolescent Central Amygdala 
Metabolism & Behavioral Inhibition Measured by a Machine-Learning Approach 

Holley D*1,2, Campos LJ*1,2, Zhang Y3, Capitanio JP1,2, Fox AS1,2 
 
Anxiety disorders affect millions of people worldwide and impair health, happiness, and 

productivity on a massive scale. Developmental research points to a connection between early-

life behavioral inhibition and the eventual development of these disorders. Our group has 

previously shown that measures of behavioral inhibition in young rhesus monkeys (Macaca 

mulatta) predict anxiety-like behavior later in life. In recent years, clinical and basic researchers 

have implicated the central extended amygdala (EAc)—a neuroanatomical concept that includes 

the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST)—as a 

key neural substrate for the expression of anxious and inhibited behavior. An improved 

understanding of how early-life behavioral inhibition relates to an increased lifetime risk of anxiety 

disorders—and how this relationship is mediated by alterations in the EAc—could lead to 

improved treatments and preventive strategies. In this study, we explored the relationships 

between infant behavioral inhibition and peri-adolescent defensive behavior and brain metabolism 

in 18 female rhesus monkeys. We coupled a mildly threatening behavioral assay with concurrent 

multimodal neuroimaging, and related those findings to various measures of infant temperament. 

To score the behavioral assay, we developed and validated UC-Freeze, a semi-automated 

machine-learning (ML) tool that uses unsupervised clustering to quantify freezing. Consistent with 

previous work, we found that heightened Ce metabolism predicted elevated defensive behavior 

(i.e., more freezing) in the presence of an unfamiliar human intruder. Although we found no link 

between infant inhibited temperament and peri-adolescent EAc metabolism or defensive 

behavior, we did identify infant nervous temperament as a significant predictor of peri-adolescent 

defensive behavior. Our findings suggest a connection between infant nervous temperament and 

the eventual development of anxiety and depressive disorders. Moreover, our approach highlights 

the potential for ML tools to augment existing behavioral neuroscience methods. 

Author affiliations: 1University of California, Davis, Department of Psychology; 2California National Primate Research Center, 
Davis, California; 3Columbia University, Department of Statistics; *=contributed equally to this manuscript 
 

Abstract 
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Keywords: anxiety disorders, behavioral inhibition, BI, threat processing, amygdala, central 
extended amygdala, central nucleus, machine learning, statistical modeling  

Introduction 

Anxiety disorders are among the most prevalent psychiatric conditions, affecting an estimated 

one in four people during their lifetime1–3. These disorders are frequently comorbid with a wide 

range of other psychopathologies, including depression, as well as alcohol- and substance-abuse 

disorders4–7, and are considerably more prevalent in women than in men8. Although a complete 

understanding of the etiology of these disorders remains elusive, researchers have begun to 

characterize the risk factors that predict their onset. Identifying and investigating these risk factors 

promises to yield an improved understanding of anxiety disorders and will likely contribute to their 

treatment and prevention. 

 

An extremely inhibited or anxious temperament during childhood increases the risk of developing 

an anxiety disorder later in life9–13. Developmental researchers often evaluate inhibited or anxious 

temperaments by measuring a child’s behavioral inhibition (BI)—that is, their reactivity to novel 

stimuli, unfamiliar situations, and strangers11,14–16. Some aspects of BI emerge early in life and 

are trait-like and stable; for instance, a 4-month-old infant’s aversion to unfamiliar stimuli predicts 

composite BI measured years later17,18. Although high BI often predicts the eventual development 

of anxiety disorders9,19, researchers do not fully understand how infant temperament relates to 

childhood or adolescent BI, or its associated brain function. Because nonhuman primates (NHP) 

have a protracted development period, they are well-suited to build this understanding. 

 

Thanks to our relatively recent evolutionary divergence, NHPs and humans share a variety of 

socioemotional, anatomical, and genetic similarities that facilitate high-impact translational 

research, notably including an elaborated prefrontal cortex20–23. Because of this, NHPs are 
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excellent models for studying the mechanisms of early-life risk inherent to a range of disorders24–

30. To support such studies, researchers at the California National Primate Research Center 

(CNPRC) have, over the past 2 decades, evaluated over 5,000 infant (i.e., 3- to 4-month-old) 

NHPs as part of its BioBehavioral Assessment program (BBA)—a 25-hour battery that catalogs 

each animal’s physiological reactivity, emotionality, and temperament31. One of the temperament 

measures is based on behavior; four others are based on human handlers’ ratings of trait-like 

qualities32,33 and are similar to evaluations of BI in children15,16,34. These infant measurements 

complement measures of BI and anxious temperament in adult and adolescent rhesus monkeys 

(Macaca mulatta) and are thought to reflect a trait-like inhibited temperament defined by an 

enduring tendency to avoid novel and potentially threatening stimuli and situations13,35–40. 

 

Investigations into the neural substrates of anxiety disorders and BI in humans10,41–46, as well as 

inhibited temperament and BI in NHPs35,38,47–52, have implicated a distributed network of brain 

regions. Notably, this network includes the central extended amygdala (EAc): a neuroanatomical 

concept that encompasses the central nucleus of the amygdala (Ce) and the bed nucleus of the 

stria terminalis (BST). The EAc is central to threat processing53–57 and is well-positioned to 

orchestrate adaptive defensive physiology and behavior45,52,53,58–60. A range of sensory, 

evaluative, and contextual inputs converge on the EAc, which projects to downstream effector 

regions to initiate these defensive responses13,53,60,61. The EAc plays a role in the integration of 

emotion-relevant signals and produces scaled behavioral responses to a variety of stimuli—

including uncertain threat stimuli, which reliably elicit adaptive defensive responses like 

freezing62,63. Neuroimaging studies highlight the EAc’s role in threat responding: A study of 592 

peri-adolescent rhesus monkeys from the Wisconsin National Primate Research Center 

(WNPRC) and the Harlow Center for Biological Psychology, for example, linked individual 

differences in anxious temperament to variation in glucose metabolism in both the Ce and BST 

during exposure to an uncertain threat assay, such that more anxiety-like behaviors predicted 
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increased metabolism in those regions37. Additionally, this study found metabolism within different 

components of the EAc to be differentially sensitive to heritable and non-heritable influences. 

Metabolism in the BST was co-inherited with individual differences in freezing in response to a 

potential uncertain threat, whereas metabolism in the Ce was not37,64,65. This raises the intriguing 

possibility that Ce metabolism may be especially plastic and represent the environmental 

contributions to the risk of developing anxiety disorders. Notably WNPRC animals are raised in 

small, indoor groups. By comparison, CNPRC animals are raised in large, outdoor, naturalistic 

colonies, and thus can experience a broader range of socioemotional contexts. To maximally 

advance our understanding of inhibited temperament, its neural substrates, and its relation to the 

progression of BI across different early-life environments, it is critical to standardize the methods 

for cross-facility replication. The current gold standard used to measure defensive behaviors in 

NHPs is hand scoring, during which trained researchers watch video recordings of animals placed 

in mildly threatening contexts and denote the time, type, and duration of behaviors of interest, 

such as freezing episodes. Although hand scoring has been instrumental to our understanding of 

NHP behavior, it presents challenges to replicability and can demand large time commitments 

from expert-trained behavioral coders. The rise of computing speed, power, and availability 

presents an opportunity to develop tools that scale easily and improve study replicability. To aid 

in the replicable assessment of inhibited temperament in NHPs, we developed and validated UC-

Freeze, a semi-automated machine-learning (ML) approach that scores freezing behavior via 

unsupervised clustering (https://github.com/DanHolley/UC-Freeze). 

 

Here, we assessed brain metabolism and used UC-Freeze to objectively score freezing in 18 peri-

adolescent female rhesus monkeys during exposure to an uncertain threat (i.e., a human 

intruder). We analyzed the relationship between infant measures of BI (and, in exploratory 

analyses, temperament), and concurrent measures of peri-adolescent BI (i.e., freezing) and brain 
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metabolism (Fig. 1A). We hypothesized that alterations in the EAc would be associated with infant 

and peri-adolescent BI. 

Methods 

Animals & Selection Procedure 

Twenty peri-adolescent female rhesus monkeys (M. mulatta, M [SD]= 2.71 years [.44]) that 

previously underwent BBA testing during infancy (3- to 4-months) were selected from a pool of 

ninety-eight potential animals using a stratified sampling procedure, in which one animal was 

selected from each of 20 uniformly distributed bins based on BBA inhibited temperament scores 

(Fig. 1B). The stratified selection procedure yielded a subject pool that captured the full spectrum 

of variation in 3- to 4-month-old inhibited temperament. Because females are at increased risk of 

developing anxiety and depressive disorders as they transition to adolescence8,66,67, in this study 

we focused specifically on females. We subjected each animal to the NEC-FDG paradigm 

(described in detail below) and scored their behavior with UC-Freeze. Two subjects were 

excluded from our analyses due to problems with video capture that rendered their videos 

unusable, making the final number of subjects n=18. All housing and experimental procedures 

were conducted per guidelines set by the UC Davis Institutional Animal Care and Use Committee. 

 

Infant BioBehavioral Assessment 

The BBA is a 25-hour battery of emotional, cognitive, and biological assessments that evaluate 

qualities like resilience to mild challenges, willingness to interact with novel objects, memory, 

hypothalamic-pituitary-adrenal system regulation, and hematology33,68. CNPRC animals undergo 

BBA testing during infancy (i.e., between 3 and 4 months of age), and most live the majority of 

their lives in large, outdoor colonies of roughly 100 conspecifics. This approach has been 

described in detail elsewhere33 and has enabled CNPRC researchers to investigate relationships 
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between various infant measures and the eventual emergence of disorder-relevant phenotypes 

in naturalistic socio-environmental settings30,69–71.  

 

Relevant to this study, the BBA yields an inhibited temperament (IT) score for each animal 

(described in31,33,47) based on four factors: Activity in the first 15 minutes of day 1 and a period 

during day 2, and Emotionality during those same time points. These factors were previously 

identified through the factor analysis of roughly 2,000 animals72. Activity includes time locomoting; 

time NOT hanging from the top or side of the cage; rate of environmental exploration; and whether 

the animal drank water*, ate food*, or was observed crouching in the cage* (* = dichotomized due 

to rarity). Emotionality includes the animal’s rates of cooing and barking, as well as whether the 

animal lipsmacked*, displayed threats*, or scratched* (* = dichotomized due to rarity). Each 

animal’s early-life inhibition score was calculated as the mean of its z-scored day 1 and day 2 

Activity and Emotionality. 

 

At the end of BBA testing, before each animal was returned to its mother, the technician who 

administered testing rated each animal on four composite measures of trait-like infant 

temperament: vigilance, nervousness, confidence, and gentleness (see33, for a full description of 

the BBA’s temperament ratings). These measures are intended to accumulate across the full 25-

hour testing period, and reflect an expert primatologist’s cumulative assessment of the animal, 

akin to teacher or experimenter ratings in studies of children. 

 

NEC-FDG Paradigm: Measuring Peri-Adolescent Behavior & Brain Metabolism 

To evaluate the relationship between infant measures and peri-adolescent defensive behaviors, 

we used the well-validated no-eye- contact condition (NEC) of the human intruder paradigm37,73. 

In the NEC context, a human intruder enters the room and presents their profile to the animal 

while making no eye contact. Integrated brain metabolism during the NEC was measured using 
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[18F]fludeoxyglucose (FDG) positron emission tomography (PET). Specifically, each animal was 

injected with FDG immediately prior to behavioral testing and then placed in a test-cage for 

exposure to the 30-minute NEC context. Immediately after exposure, animals were anesthetized 

for PET scanning (Fig. 1A). Because of the time-course of FDG-uptake, this paradigm is ideal for 

identifying integrated brain metabolic differences between individuals during threat processing.  

 

FDG-PET and MRI Acquisition  

Animals received an intravenous injection (IV) of [18F]fludeoxyglucose (M=7.449 mCi, sd=1.512 

mCi) immediately before their 30-minute exposure to the NEC context, during which FDG uptake 

occurred. After behavioral testing, animals were anesthetized, intubated, and transported to 

undergo a PET scan. Anesthesia was maintained using 1-2% isoflurane gas. FDG and 

attenuation scans were acquired using a piPET scanner (Brain Biosciences) located within the 

Multimodal Imaging Core at the CNPRC. Approximately 1 week after exposure to the NEC-FDG 

paradigm, anatomical 3D T1-weighted scans were obtained using a 3T Siemens Skyra scanner, 

a dedicated rhesus 8-channel surface coil, with inversion-recovery, fast gradient echo prescription 

(TI/TR/TE/Flip/FOV/Matrix/Bandwidth:1100ms/2500.0ms/3.65ms/7°/154mm/512×512/240Hz/Px

) with whole brain coverage (480 slice encodes over 144 mm) reconstructed to 0.3×0.3×0.3 mm 

on the scanner). 

 

FDG-PET and T1-MRI processing  

All T1-weighted images were manually masked to exclude non-brain tissue by LJC. A study 

specific T1 anatomical template was created using an iterative procedure with Advanced 

Normalization Tools74,75 (ANTS) in order to standardize our study-specific template for cross-

facility replication, we first aligned each subject’s T1 anatomical image to the National Institute of 

Mental Health Macaque Template (NMT) using a rigid body registration. The NMT template 

provides a common platform for the characterization of neuroimaging results across studies76. A 
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non-linear registration was then performed using a symmetric diffeomorphic image registration 

and a .25 gradient step size; a pure cross correlation with cost-function with a window radius 2 

and weight 1; the similarity matrix was smoothed with sigma=2; and the process was repeated at 

four increasingly fine levels of resolution with 30, 20, 20, and 5 iterations at each level, 

respectively. The average of all 20 individual subjects’ T1 images in NMT space was computed 

and taken to be the study-mean. Similarly, the non-linear deformation field was also averaged 

and taken to be the deformation mean. The deformation mean was then inverted and 15% of the 

deformation was applied to the study mean, to obtain the first iteration of the study specific 

template. This process of averaging was repeated four times to obtain a final study specific T1-

weighted MRI template that matched the NMT template, and optimally reflected the brain 

morphometry of subjects of this study.  

 

To get each subject’s FDG-PET scan into this template space, each animal’s FDG-PET image 

was aligned to its respective T1 anatomical image using a rigid body mutual information warp, 

and the transformation matrices from T1 to the study-specific NMT-template space was then 

applied to the FDG-PET image to obtain PET images in NMT template space.  

 

Once in standard space, the FDG-PET images were grand mean scaled to the average 

metabolism across the brain. To facilitate cross-animal comparisons, images were spatially 

smoothed using a 4-mm FWHM Gaussian kernel. 

 

A priori regions of interest (ROI) were drawn for the motor cortex, as well as the two major 

components of the EAc, the Ce and the BST. All ROIs were manually drawn on the study-specific 

T1 template according to the Paxinos atlas77 and verified by members of the team (LJC, DH, 

ASF). 
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UC-Freeze: An Unsupervised Clustering Approach to Measuring Freezing 

To accurately and reproducibly assess freezing behavior during the NEC, we developed UC-

Freeze: a semi-automated ML approach that uses unsupervised clustering to score freezing 

behavior. We targeted the definition of freezing used in previous NEC NHP studies35,37,65; that is, 

any period of 3 or more seconds during which the animal displayed a tense body posture and no 

movement, other than slow movements of the head. 

 

UC-Freeze assesses freezing by first de-composing 30-fps full-motion video collected from each 

subject into individual frames. It then converts the frames to grayscale and vectorizes them such 

that a two-dimensional array of numeric values corresponding to various shades of gray 

represents each frame’s pixels. UC-Freeze next computes the coefficient of determination (r2) 

between each pair of consecutive frames in order to quantify the degree of change between 

frames. We henceforth refer to these r2 values as similarity scores. Lower similarity scores 

correspond to larger differences between frames, which suggest the animal is in motion (Fig. 2A). 

To ensure robustness against dropped video frames and video aliasing that can occur as a 

function of lighting, UC-Freeze then denoises the signal by substituting outlier similarity scores 

(thresholded as any score at or below an r2 of .93) with the modal similarity score before passing 

the corrected vector through an adjustable median filter. (A 3-frame kernel was used in our 

analyses and is recommended as a default setting.) This process maintains sensitivity to the 

behavior of interest while buffering against frame-to-frame variation. These filtered similarity 

scores comprise the dataset that is passed into UC-Freeze’s unsupervised clustering algorithm 

(Fig. 2B), which leverages one-dimensional Gaussian mixture modeling (GMM). 

 

GMM is a form of unsupervised machine learning that assumes non-normal datasets are a 

mixture of standard normal distributions78. An advantage of GMM is its ability to cluster effectively 

by estimating probability densities of one-dimensional data, such as our subjects’ similarity 
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scores, before making probabilistic assignments to clusters based on probability-density 

estimates. GMM uses expectation-maximization (EM) to estimate the underlying Gaussian 

distributions that comprise a dataset. UC-Freeze adds similarity scores to the model one at a 

time. Before each new similarity score is added, EM’s expectation step estimates the model’s 

probability distributions. After a new similarity score has been added, EM’s maximization step 

refines the model’s distributions based on the inclusion of the new data. These processes are 

repeated until the model is stable; that is, until the expectation step correctly predicts the 

maximization step. UC-Freeze iterates over each subject’s similarity scores 300 times, each time 

randomizing the order of its input, to converge on a highly stable model unique to each subject 

(Fig. 2C, D). Here, we have calibrated UC-Freeze to cluster each animal’s similarity scores into 

three Gaussian distributions: the lowest of which is assumed to reflect freezing; the highest of 

which is assumed to represent motion; and, between them, a third distribution captures similarity 

scores that are too ambiguous to confidently classify as either freezing or motion, which makes 

UC-Freeze more robust against spurious classifications (Fig. 2E).  

 

Once a model has been created for a subject, UC-Freeze recursively queries the model to 

determine the posterior probability of every similarity score’s membership in its putative freezing 

and motion distributions. The posterior probabilities of every score’s membership in the motion 

distribution are summed to compute an objective measure of an animal’s motor activity. To 

objectively measure freezing, UC-Freeze then combines Tukey’s anomaly-detection79 with a 

thresholding operation to identify similarity scores that have a 95%-or-greater chance of belonging 

to the rightmost 25% of the freezing distribution’s probability density. If 90 or more consecutive 

frames (i.e., 3 or more seconds) meet this criteria, UC-Freeze automatically classifies that 

segment as freezing (Fig. 2F). Importantly, because this approach can fail if an animal very rarely 

or almost always freezes, this approach is not fully automated. Each video was reviewed, and the 

thresholding operation was manually adjusted in two cases to ensure edge cases did not disrupt 
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the data  (DH).  In  these  cases, neither animal moved sufficiently for UC-Freeze to create a 

GMM with meaningfully dissimilar distributions. 

 

Statistical Analyses 

Pearson correlation coefficient (r) values describing the relationships between infant measures, 

and peri-adolescent measures were performed in Python v3.8.3 using the statsmodels module80. 

Results of all relationships tested have been reported in the text and/or in figures 3, 5, and 6. 

Analyses of interrater reliability (IRR) used to validate UC-Freeze were performed in Python 

v3.8.3 using the sklearn.metrics module81. An independent-samples t-test to check for significant 

differences in animals’ freezing behavior between the first and second halves of the NEC context 

was performed in Python v3.8.3 using the scipy.stats module82. 

 

Relationships between brain metabolism and other phenotypic measures were performed based 

on a priori ROIs in the motor cortex, Ce, and BST. FDG-PET values were extracted from each 

ROI (bilaterally), and the mean metabolism within each region was computed. To ensure our 

results were robust to a voxelwise approach, exploratory voxelwise analyses were also performed 

using FSL’s nonparametric permutation inference tool randomise83. Voxelwise analyses were 

thresholded at p<.05, uncorrected.  

Results 

Validation: UC-Freeze Detects Established Brain-Behavior Relationships 

To validate UC-Freeze, we first examined the relationship between behavior and well-established 

metabolic correlates. Specifically, we looked for a relationship between subjects’ movement about 

their enclosures during the NEC, automatically coded by UC-Freeze as motor activity, and 

variation in glucose metabolism in subjects’ motor cortices using an a priori ROI. These results 

demonstrated a significant positive association between motor activity and motor cortex 
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metabolism, as expected (r=.55, p<.05; Fig. 3A). These results were corroborated by voxelwise 

analysis showing a significant relationship between motor activity and metabolism in motor cortex 

regions (p < .05, uncorrected; Fig. 3B). These proof-of-principle findings confirm that UC-Freeze 

can recapitulate a well-established brain-behavior relationship. 

 

Validation: Comparing UC-Freeze to Human Raters 

To further validate UC-Freeze’s ability to accurately and reliably score freezing behavior, we 

compared its semi-automated classifications to the manual classifications of three raters who had 

observed rhesus behaving in experimental and naturalistic conditions, and who were instructed 

on how to identify freezing in rhesus using criteria from previous publications35,37,65. We 

intentionally chose raters with a diversity of hand-scoring experience in order to model the 

challenges labs are likely to face as they seek to implement, or scale, studies that require hand 

scoring (i.e., the situations in which UC-Freeze would be most valuable). We randomly selected 

four animals for our analysis. From each animal’s NEC video, we randomly generated 20 3-

second video segments, 10 of which were classified by UC-Freeze as freezing, to yield a total of 

40 freezing segments and 40 non-freezing segments. The raters were not given any information 

about the proportion of freezing vs non-freezing segments, and worked in isolation to score every 

segment as either freezing or non-freezing. We evaluated interrater reliability (IRR) by calculating 

Cohen’s kappa values for UC-Freeze and each rater. In all three cases, UC-Freeze demonstrated 

“moderate to substantial” agreement with the rater, well above chance levels, and approximated 

human-level IRR (Fig. 3C). Next, we estimated UC-Freeze’s sensitivity and specificity—that is, its 

ability to detect true positives (freezing) and negatives (non-freezing), respectively. Because there 

was variation between raters’ scoring, we used consensus among raters for each video segment, 

calculated as the mode of scores, as a proxy for “true outcomes” (e.g., if Rater 1 scored freezing 

in a given video but Raters 2 and 3 did not, the “true outcome” was coded as non-freezing). Using 

this approach, UC-Freeze exhibited 84% sensitivity and 89% specificity. Finally, to evaluate 
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pairwise internal reliability we calculated the mean Cohen’s kappa derived from pairs of raters 

(kappa=.77, p<.001), and between UC-Freeze and the raters’ consensus (i.e., modal) 

classifications (kappa=.73, p<.001), confirming the substantial, above-chance agreement84 

between each pair of raters, and between the average rater and UC-Freeze (Fig. 3C). Taken 

together, these analyses validate UC-Freeze as a reliable, sensitive, and specific tool for 

classifying freezing behavior in rhesus, at a standard comparable to that of human raters. 

 

Exploring UC-Freeze Automated Measures 

To derive behavioral measures for subsequent correlational analyses, we used UC-Freeze to 

compute total freezing duration, number of freezing episodes, and mean freezing-episode during 

the NEC context for each animal (Fig 4A). We observed substantial variability between animals: 

UC-Freeze identified freezing episodes in all 18 subjects, ranging from 3 episodes in our most 

infrequent freezer, to 90 in our most prolific freezer. UC-Freeze detected 853 episodes (roughly 

3 hours 15 minutes) of total freezing across all animals, which accounted for 10.9% of their total 

behavior during the NEC. Although we hypothesized that animals would eventually habituate to 

the presence of the human intruder during the 30-minute NEC context, an analysis of the mean 

total duration our animals spent freezing during the first and second halves of the NEC suggested 

that the animals did not habituate (independent-samples t-test: t(34)=0.27, p=.79; Fig. 4B). UC-

Freeze detected large individual differences in animals’ split-halves freezing behavior: Some 

animals froze less during the second half of the NEC, others froze considerably more during the 

second half, and still others exhibited no notable difference in freezing between the two halves 

(Fig. 4B).  

 

To capitalize on the ability of UC-Freeze to analyze large datasets, we next examined freezing 

trends on a per-minute basis by calculating the grand mean average of the animals’ probability of 

freezing during each of the NEC context’s 30 1-minute bins. Like our split-halves analysis, 
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individual animal’s behavior varied widely, but no overall linear trend in minute-by-minute freezing 

was observed (r=-.25, p=.18). These findings are consistent with the view that, on average, our 

animals’ defensive posture did not substantially change during the NEC context. 

 

Infant Measures Predict Peri-Adolescent Defensive Behavior 

To test whether infant measures predict variation in defensive behavior in adolescence, we next 

compared our animals’ infant measures to their peri-adolescent freezing and motor activity 

measured during the NEC (Fig. 5A). We observed no significant relationship between infant 

inhibited temperament scores and peri-adolescent total number of freezing episodes (r=.37, 

p=.127), total freezing duration (r=.24, p=.328; Fig. 5B), or mean freezing-episode duration (r=-

.14, p=.580) during the NEC context. We further tested the relationships between freezing and 

BBA experimenter ratings  for trait-like vigilance, nervousness, confidence, and gentleness. 

Although the overall measure of inhibited temperament did not significantly predict a greater 

tendency to freeze during the NEC context, infant nervousness significantly predicted total 

freezing duration (r=.50, p<.05; Fig. 5C) and mean freezing-episode duration (r=.52, p<.05). 

These findings point toward infant nervous temperament as a potential target of future studies 

aimed at identifying extremely early-life risk factors for the eventual development of anxiety 

disorders. 

 

Freezing and Concurrent FDG 

To test whether infant measures predict variation in regional brain metabolism during 

adolescence, we examined the relationship between EAc metabolism and subjects' defensive 

behavior as classified by UC-Freeze. Results revealed a significant relationship between animals’ 

integrated Ce metabolism and total time spent freezing, as well as the number of freezing 

episodes (Fig. 6A). There was no significant relationship between BST metabolism and total 

freezing duration (r=.32, p=.20), nor other UC-Freeze measures of defensive behavior.  
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ROI-based analyses supported by voxelwise analyses of subjects FDG-PET scans, obtained 

immediately after exposure to the NEC context (Fig. 1A), revealed a significant relationship 

between metabolism within an area of the dorsal amygdala encompassing the Ce and subjects’ 

total freezing duration (r=.48, p<.05), as well as their total number of freezing episodes (r=.48, 

p<.05). These findings are consistent with previous human42,85 and NHP studies35–37 documenting 

elevated Ce activation and metabolism, respectively, during threat processing.  

Discussion 

We developed, validated, and field-tested UC-Freeze, a machine-learning tool for analyzing 

anxiety-like behavior in rhesus through the  semi-automated classification of freezing. Consistent 

with well-established brain-behavior relationships, UC-Freeze uncovered a significant positive 

correlation between freezing behavior and increased metabolism in a dorsal amygdala region 

encompassing the Ce. Because of the increased risk of anxious psychopathology among 

adolescent females8, we focused exclusively on a peri-adolescent female cohort. By comparing 

subjects’ infant BI and temperament to their freezing behavior assessed via UC-Freeze, we were 

able to link infant differences in experimenter-rated BBA nervous temperament to peri-adolescent 

differences in defensive behavior: Higher nervous temperament ratings by CNPRC staff during 

infancy predicted more freezing during peri-adolescent exposure to the NEC context. 

 

Large-scale FDG-PET studies of young rhesus at the WNPRC and Harlow Labs have revealed a 

robust relationship between Ce metabolism and NEC-induced freezing37,65. We replicated this 

finding at the CNPRC—in animals that have had dramatically different upbringings—by identifying 

an area of the dorsal amygdala, encompassing the Ce, in which metabolic activity was a 

significant predictor of NEC-induced freezing. Further, we extended previous work by identifying 

infant temperament measures that predict peri-adolescent behavior and brain function. 
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Intriguingly, the Wisconsin researchers have also shown that Ce metabolism is largely attributable 

to non-heritable influences37,65, and can be altered by the overexpression of the plasticity-inducing 

gene, NTF3 (neurotrophic factor-3)86. In CNPRC animals, we found that Ce regional metabolism 

was associated with concurrent peri-adolescent freezing, but not significantly correlated with 

infant inhibited temperament. Other predicted relationships between infant inhibited temperament 

and peri-adolescent freezing, as well as BST metabolism, were not statistically significant. While 

we interpret these findings cautiously in light of our study’s limited statistical power, these 

outcomes hint at the Ce’s potential plasticity in response to environmental perturbations. In their 

large, outdoor, multi-generational social groups, the CNPRC’s animals learn from other 

conspecifics, each with their own idiosyncratic temperament, and experience the formative 

complexities of social bonds and hierarchies. Raised in this rich social setting, these animals are 

likely to develop nuanced ways of interacting with others in a variety of contexts, just as humans 

do. Because of that, the CNPRC’s naturalistic conditions provide a unique opportunity to 

investigate how complex social environments can influence individual differences in BI over 

time—possibly through Ce plasticity (among other mechanisms).  

 

Together, these observations point to the possibility that Ce metabolism may be particularly 

relevant to understanding how early-life experience and environment affect the risk of developing 

anxiety disorders. Future work will be necessary to test this hypothesis and build support for our 

reported non-significant relationships. Nevertheless, our findings continue to implicate the EAc—

and specifically the Ce—as prominently involved in the development of anxious pathology and 

the expression of defensive behavior. These findings should be considered alongside evidence 

implicating the EAc in a range of appetitive, consummatory, and addictive behaviors58,87-94, as we 

work toward a more refined understanding that can guide the development of novel interventions. 
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An improved understanding of extremely early-life risk factors for anxiety disorders could lead to 

premorbid interventions that prevent their onset. In both humans and rhesus, it is challenging to 

measure behavioral risk factors due to a general lack of motor coordination and the immaturity of 

threat-response repertoires56. Overcoming this challenge could lead to early interventions aimed 

at blunting organizing effects that contribute to increased risk. Our finding that experimenter-rated 

nervous temperament in infants predicts peri-adolescent BI in rhesus is consistent with human 

studies. Such studies have shown that human infants’ aversive reactions to negatively-valenced 

stimuli predict BI in childhood13,18 and foreshadow the development of anxiety disorders9,12,14,19. 

Our study contributes to an improved understanding of the development of anxiety by directly 

examining the relationship between infant temperament and peri-adolescent brain function during 

threat processing. These findings could provide targets for future studies evaluating the 

longitudinal effects of infant interventions on disordered brain-behavior relationships. 

 

UC-Freeze lowers the bar for other groups to replicate or extend these findings in animals with a 

diversity of early experiences. More generally, UC-Freeze demonstrates the potential for ML tools 

to augment existing behavioral neuroscience approaches. A reliance on hand scoring can make 

behavioral paradigms challenging to scale, since the time required to score each video may be 

several times greater than the duration of the video itself. Scoring behavior during a 30-minute 

paradigm administered to hundreds of animals—such as in Fox et al., 2015 (n=592)37—can 

impose a significant burden. Nevertheless, the benefit of increased statistical power provided by 

scale often justifies these efforts. One goal of our study was to provide a proof-of-principle solution 

to the hand-scoring bottleneck that can arise when behavioral studies are scaled to large cohorts. 

When video-capture conditions such as lighting and camera position are held constant, UC-

Freeze only needs to be manually adjusted in edge cases; for instance, to accurately score an 

animal that always, or never, freezes. Apart from these edge cases, UC-Freeze operates 
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automatically, trivializing the time commitment required to score behavior and freeing researchers 

to engage in other tasks. 

 

Scale can also improve ML accuracy. In an influential study on the effect of increasingly large 

corpora on the accuracy of competing ML techniques in a confusion-set dis-ambiguation task, 

Banko and Brill (2001)95 showed not only that the size of the dataset mattered much more in 

improving accuracy than the specific approach used, but also that the worst approach at a small 

data volume can emerge as the best approach as the size of the data set increases. With this in 

mind, another goal of our study was to produce large datasets per individual subject in order to 

maximally leverage the inherent quality of ML approaches to grow increasingly accurate and 

informative as datasets expand (see also96). By decomposing our subjects’ 30-fps videos into 

individual frames, we produced 54,000 similarity scores for each subject. This data-maximalist 

approach will allow us to develop increasingly granular assessments of subjects’ behavior at a 

temporal resolution that would be impractical and prohibitively time-consuming to achieve by 

hand. Such granularity will grow more important as NHP researchers continue developing neuro-

scientific strategies97,98 that enable millisecond-resolution techniques like optogenetics99 and fiber 

photometry100 in studies of NHP behavior. 

 

Although our study was reasonably well-powered by NHP neuroimaging standards, it was unlikely 

to detect anything less than a large effect as a significant predictor of brain-behavior 

relationships101. Contrary to our predictions, our study did not reveal a significant correlation 

between infant inhibited temperament and peri-adolescent defensive behavior (though it was in 

the predicted direction; Fig. 5B). However, we refrain from further interpreting this effect given the 

limited statistical power of our study. A power analysis revealed that, in our n=18 subjects, we 

had ~80% power to identify a correlation that accounted for ~36% variance (R Studio version 

1.0.153’s pwr package102). We remain interested in the potential relationship between inhibited 
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temperament and peri-adolescent defensive behavior, and are engaged in well-powered studies 

that explore it thoroughly. 

 

Our findings underscore the importance of examining the developmental time-course of BI. Peri-

adolescent BI reflects both inborn temperament and a multitude of environmental influences that 

accumulate during maturation. Moving forward, it will be important to scale-up these efforts, 

investigate sex differences, and integrate these findings with mechanistic studies.  

Acknowledgements 

We would like to thank the staff at the CNPRC. This work was supported by NIH grants to JPC 
(OD010962), ASF (R01MH121735), and the CNPRC (P51OD011107). DH thanks KMM for her 
support. 

Author Contributions 

Holley: methodology, software, validation, formal analysis, data curation, writing (original draft), 
visualization. Campos: methodology, validation, formal analysis, investigation, data curation, 
writing (original draft), visualization, project administration. Zhang: formal analysis. Capitanio: 
conceptualization (BBA program), data curation (BBA), methodology (BBA), resources (BBA 
data), writing (review and editing). Fox: conceptualization, supervision, validation, formal analysis, 
methodology, software, visualization, writing (original draft), writing (review and editing), 
supervision, project administration, funding acquisition. 

Conflict of Interest Statement 

The authors declare no conflicts of interest. 



 

 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study design and selection procedure. a) Study design: At 3 to 4 months old, all candidate animals 
were evaluated for a range of infant measures during the BBA. Relevant to our study, the BBA yields objective 
inhibition scores and other temperament ratings for each animal. At 2 to 3 years old, animals selected for our 
study were removed from their home colonies, injected with the radiotracer [18F]fludeoxyglucose (FDG), and 
behaviorally assessed via a 30-minute no-eye-contact (NEC) condition of the human intruder paradigm, after 
which PET scans were administered to evaluate glucose metabolism during the NEC. b) Selection procedure: 
The selection procedure for our study: 20 of 98 candidate peri-adolescent animals were initially selected based 
on a stratified sampling of 1 animal from each of 20 bins defined by z-scored inhibited-temperament scores, 
assessed during infancy as part of the BBA. 
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Figure 2. UC-Freeze: An unsupervised-clustering approach to semi-automated behavioral scoring. a) UC-Freeze 
decomposes 30fps video into individual frames, converts each frame to grayscale, and computes the coefficient of 
determination value (i.e., r2, or similarity score) for pairs of consecutive frames. b) UC-Freeze next filters the similarity 
scores and arrays them along the timecourse of the video, so that the full timecourse is described as a series of similarity 
scores. The similarity scores are then passed into our unsupervised clustering algorithm, which first c) arranges them 
as a histogram before d) computing a probability density function for the similarity scores by iterating over a randomly 
seeded one-dimensional GMM 300 times. In edge cases, the output of UC-Freeze can be manually overridden (see 
Methods). e) Example output: UC-Freeze generates a unique model for each subject. Our program then queries each 
subject’s similarity scores against the model’s putative freezing distribution and recapitulates the timecourse of the 
video as a series of posterior probabilities indicating each similarity score’s likelihood of belonging to that distribution. 
Finally, UC-Freeze uses a combination of anomaly-detection and thresholding operations to find 90-frame sequences 
during which the posterior probability of every score’s membership in the freezing distribution’s rightmost 25% density 
is 95% or greater, and classifies those events as freezing. 
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Figure 3. Validating UC-Freeze. a) Subjects’ motor activity, as coded by UC-Freeze, significantly predicted 
integrated motor cortex metabolism in a brain region of interest defined a priori by the coordinates x=-0.448, y= 
-2.785, and z=19.091 (inset). b) A posteriori voxelwise analyses revealed subjects’ motor activity as a significant 
predictor of integrated metabolism in regions of motor cortex (blue arrows). Together, these findings validate UC-
Freeze’s ability to recapitulate well-established brain-behavior relationships. c) Measures of interrater reliability 
(IRR), Cohen’s kappa84, computed in the scoring of 80 3-second video segments for freezing, showed that UC-Freeze 
had “moderate to substantial” interrater agreement with each of three human raters; performed best when compared 
to human raters’ consensus (magenta; kappa=.73, p<.001); and approximated mean human-vs-human IRR (grey; 
kappa=.77, p<.001), calculated by round-robin comparison. Together, these findings validate UC-Freeze as a reliable 
tool for scoring freezing in rhesus. 
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Figure 4. Exploring automated measures of freezing and activity. a) UC-Freeze detected varied total freezing 
durations, mean freezing-episode durations, total number of freezing episodes, and motor activity in all 18 subjects. 
b) A split-halves analysis revealed no overall trend in subjects’ freezing duration in seconds (s) between the first 
(M=299.88s, SD=303.25s) and second (M=273.12s SD=271.65s) halves of the NEC (independent-samples t-test: 
t(34)=0.27, p=.79), indicating that subjects generally did not habituate to the presence of the human intruder during 
the NEC context. 
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Figure 5. Infant nervous temperament predicts peri-adolescent defensive behavior. a) Heatmap of associations 
between infant BBA measures and peri-adolescent NEC measures (*=p<.05). b) We found no association between 
BBA inhibition and total NEC freezing duration (r=.37, p=.127). c) Experimenter-rated BBA nervousness, however, 
was a significant predictor of total NEC freezing duration (r=.50, p<.05). 
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Figure 6. Peri-adolescent Ce metabolism predicts infant BBA measures and concurrent defensive behavior. a) 
Heatmap of associations between PET-obtained, ROI-defined regional metabolism (y axis) and infant BBA measures 
(x axis, left) as well as concurrent NEC behaviors as automatically scored by UC Freeze (x axis, right; *=p < .05). b) 
The association between Ce ROI metabolism and BBA inhibition was not statistically significant (r=.32, p=.196). c) 
The association between Ce ROI metabolism and total freezing duration during the NEC, however, was significant 
(r=.48, p<.05). d) The location of the Ce (shown on the Paxinos et al. atlas, left) corresponds to a voxelwise analysis 
(middle and right) that revealed a significant correlation between NEC freezing behavior and integrated metabolism 
in a region of the dorsal amygdala encompassing the Ce (p<.05, uncorrected). No significant relationships were 
identified between BST metabolism and infant BBA measures or concurrent defensive behavior (not shown).  
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Abstract 
To thrive in challenging environments, individuals must pursue rewards while avoiding threats. 

Extensive studies in animals and humans have identified the central extended amygdala (EAc)—

which includes the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis 

(BST)—as a conserved substrate for defensive behavior. These studies suggest the EAc 

influences defensive responding and assembles fearful and anxious states. This has led to the 

proliferation of a view that the EAc is fundamentally a defensive substrate. Yet mechanistic work 

in animals has implicated the EAc in numerous appetitive and consummatory processes, yielding 

fresh insights into the microcircuitry of survival- and emotion-relevant response selection. Coupled 

with the EAc’s centrality in a conserved network of brain regions that encode multisensory 

environmental and interoceptive information, these findings allude to a broader role for the EAc 

as an arbiter of survival- and emotion-relevant tradeoffs for action selection. Determining how the 

EAc optimizes these tradeoffs promises to improve our understanding of common psychiatric 

illnesses like anxiety, depression, alcohol- and substance-use disorders, and anhedonia. 
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Manuscript: 

Optimizing Survival-Relevant Tradeoffs in a Challenging World 

The natural world is an unforgiving place, where opportunities to acquire resources, reproduce, 

and explore must be balanced against ubiquitous threats like predation, starvation, and injury 

(Blanchard et al., 2011; Blanchard & Blanchard, 2008; Mobbs et al., 2009, 2015). An animal that 

grazes with reckless abandon might enjoy the short-term benefits of better nutrition, but it’s more 

likely than its vigilant conspecifics to be injured or killed by a predator (Cooper & Blumstein, 2015; 

Evans & Stempel et al., 2018). Conversely, an animal that tends to forgo its meals and flee at the 

faintest sign of danger might avoid predators in the short term, but it will eventually suffer 

malnourishment. Survival-relevant tradeoffs like these pervade the natural world (Fig. 1A, left), 

and the central nervous system evolved to manage them. The human brain also manages 

emotion-relevant tradeoffs, for example the decision of whether to socialize with others or avoid 

them (Fig. 1A, right). While some trepidation in approaching others can be adaptive, an extreme 

bias toward avoidance can be maladaptive and characteristic of anxiety-related psychopathology 

(Fox & Kalin, 2014; Shackman et al., 2016). Importantly, the same avoidant behavior could result 

from any of several biases in the response-selection process (Fig. 1B). How might this selection 

process be organized in the brain to promote survival in a world of innumerable possibilities? We 

posit that the brain dynamically integrates sensations, memories, homeostatic signals, 

preferences, expectations, and other factors into n-dimensional feature space where weighted 

environmental and interoceptive evidence (i.e., E*Wk
T) for survival- and emotion-relevant 

responses can be represented as values (i.e., V[Rk]) and compared (Fig. 1C). The brain must 

then resolve the feature space to select and trigger adaptive physiology, cognition, and behavior 

that promote survival and optimize well-being by striking the best balance between risks and 

rewards. 
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What constitutes “adaptive” depends on the feature-space inputs, which are unique to individuals 

at a given moment: Grazing for a few extra seconds as a predator approaches might be adaptive 

if an animal is especially hungry, if the quality of its food source is high, if its surroundings favor 

last-second escapes, if nearby conspecifics diffuse the likelihood of being attacked, if the predator 

is frail or immature, and so on. As the value of each input waxes and wanes, perturbations in the 

feature space nudge the probability of action selection toward one response or another. Input 

from a plethora of brain regions shapes the feature space. To avoid “paralysis by analysis” in the 

management of these high-stakes tradeoffs, specific substrates must integrate across this feature 

space to rapidly select the most adaptive response. The EAc is well-positioned for this role. 

 

Evidence for an Evolutionarily-Conserved Role for the EAc in Defensive Behavior 

In the crucible of natural selection, the primacy of survival has spurred the evolution of defensive 

adaptations across phylogeny. In mammals, the EAc is a conserved neural substrate that 

responds to both innate and learned threats. Situated at the center of a distributed network of 

brain regions that promote fitness in challenging contexts (Fox et al., 2015b; Mobbs et al., 2015), 

the EAc receives robust direct and indirect input from contextual, sensory, regulatory, and 

evaluative regions (de Olmos & Heimer, 1999; Swanson & Petrovich, 1998). Two of its major 

subcomponents—the Ce and the BST—form a functionally coupled circuit (Oler et al., 2012; Oler 

& Tromp et al., 2017; Tillman et al., 2018; Gorka et al., 2018; Avery et al., 2014) and exhibit similar 

patterns of gene expression (Bupesh et al., 2011; Fox et al., 2015b; Lein et al., 2007), 

neurochemistry (Gray & Magnuson, 1992), cellular composition (McDonald, 1982, 1983), and 

structural connectivity (Fox et al., 2015; Oler & Tromp et al., 2017; Roy et al., 2009). Direct 

projections from the EAc to effector regions like the periaqueductal gray (PAG) and parvocellular 

reticular formation (PCRt) trigger selected responses (Han et al., 2017; Tovote et al., 2016). The 

EAc is therefore well-positioned to synthesize environmental and interoceptive inputs into a 
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meaningful gestalt, rapidly select optimal defensive responses, and launch those responses into 

action (Fox et al., 2015b; Mobbs et al., 2015). 

 

Neuroimaging studies of threat-anticipation tasks in humans, and human neuroimaging papers 

that use the words “fear” and “anxiety,” often report significant activation in the Ce and BST (Fig. 

2A, top, adapted from Fox & Shackman, 2019, p. 60, Figure 2; Hur et al., 2020; Shackman & Fox, 

2016; Somerville et al., 2013; Hur et al., in press). In nonhuman primate (NHP) neuroimaging 

studies, individual differences in rhesus (Macaca mulatta) neuroendocrine and behavioral 

reactivity to potential threats are associated with increased [18F]fludeoxyglucose (FDG) 

metabolism in the Ce and BST (Fig. 2A, bottom; Fox et al., 2008; Fox et al., 2015a; Oler et al., 

2010), as well as increased functional connectivity between these regions (Fox et al., 2018; Oler 

& Tromp et al., 2017). Loss-of-function studies tell a similar story and induce a “threat blind” 

phenotype in NHPs: rhesus monkeys with gross amygdala lesions, which include the Ce, exhibit 

more affiliative and sexual behaviors toward intact conspecifics (Emery et al., 2001; Machado & 

Bachevalier, 2008), are more likely to consume unpalatable foods (Machado et al., 2010), and 

more readily interact with novel and potentially dangerous objects (Bliss-Moreau et al., 2010, 

2011; but see Charbonneau et al., 2021). Similarly, rhesus monkeys with spatially-precise Ce 

lesions show blunted freezing in response to potential threats and are quicker than intact 

conspecifics to reach past a snake and retrieve food rewards (Kalin et al., 2004). In rodents, 

decades of fear-conditioning and threat-related studies have built a foundation for investigating 

threat processing and have been instrumental to the formulation, testing, and refinement of 

hypotheses regarding individual responses of the Ce and BST to phasic and sustained threats 

(Davis et al., 2010; Walker et al., 2009; Walker & Davis, 2008; Marcinkiewcz et al., 2016; Tovote 

et al., 2016; Perusini & Fanselow, 2015). Despite long-standing evidence of its role in non-

defensive processes (e.g., Aggleton, 2000; Baxter & Murray, 2002; Whalen & Phelps, 2009), the 
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sheer volume of studies implicating the EAc in threat processing could lead one to conclude that 

it is fundamentally a defensive substrate. 

 

Rodent Studies Uncover the EAc’s Diverse Roles in Survival-Related Response Selection 

In the past decade, methodological advances have endowed researchers with tools that enable 

cell type-specific targeting, millisecond-resolution observation, and bidirectional control of neural 

populations (Chen et al., 2013; Deisseroth, 2011; Resendez & Stuber, 2015; Roth, 2016; Fox & 

Shackman, 2019). Coupled with well-validated fear-conditioning and threat-related assays, these 

methods are elucidating the mechanisms that subserve threat processing and have uncovered 

intermingled populations of EAc neurons that function as substrates for the selection of defensive 

responses. For example, cell type-specific manipulations within the mouse Ce have identified a 

competitive inhibitory microcircuit—comprised of intermingled corticotropin releasing hormone-

positive (CRH+) and somatostatin-positive (SST+) neurons—that rapidly selects between fleeing 

and freezing (Fadok et al., 2017; Fig. 3A). Similarly, distinct cell types have been implicated in 

competitive responses to learned vs. unlearned threats (Isosaka et al., 2015). Other studies have 

characterized a lateral Ce (CeL) microcircuit that gates conditioned freezing through projections 

to the medial Ce (CeM; Botta et al., 2015; Ciocchi et al., 2010; Haubensak et al., 2010). This work 

shows that “CeLoff” neurons—which express the anxiety-associated genetic marker protein kinase 

C-delta (PKC𝛿𝛿+)—form a reciprocal inhibitory microcircuit with intermingled “CeLon”/PKC𝛿𝛿-

negative (PKC𝛿𝛿-) neurons. Threat conditioning increases the basal firing rate of the 

“CeLoff”/PKC𝛿𝛿+ population, leading to stronger local inhibition of CeL-CeM projections and 

increased threat generalization—a transdiagnostic feature of anxiety disorders (Lissek et al., 

2010, 2014; Morey et al., 2020). These findings dovetail with work NHPs demonstrating that levels 

of the transcript encoding for PKC𝛿𝛿 in the CeL is associated with individual differences in threat 

responding (Kovner et al., 2020).  
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To understand how EAc alterations promote pathological anxiety, we need to carefully consider 

its broader role in arbitrating survival-relevant tradeoffs (i.e., its role in selecting adaptive behavior 

as a function of V[Ri], or f(V[R1], V[R2]; see Fig. 2B, C). For instance, researchers have shown 

that chemogenetic inhibition of CeL PKC𝛿𝛿+ neurons—the same cells that appear to play a 

mechanistic role in threat generalization—induces risky feeding behavior in mice, as measured 

by the consumption of bitter tastants that control animals tend to reject (Cai et al., 2014; Ponserre 

et al., 2020). Other studies have shown that gustatory cortical projections to the Ce encode—and, 

when manipulated, can even reverse—the hedonic value of bitter tastants (Wang et al., 2018). 

These studies of consummatory behavior are especially interesting in the context of survival-

relevant tradeoffs, since aversion to bitterness is an evolved safeguard against the consumption 

of toxic substances (Bachmanov et al., 2014). Intriguingly, they also hint toward the versatility of 

the EAc’s microcircuitry; that is, the ability of some populations of neurons to bidirectionally control 

divergent survival behaviors (e.g., eating, threat reactivity) depending on the current context (and 

experimental probe/assay). Context-dependent repurposing of microcircuits would be an efficient 

solution to the demands of flexibly responding to the innumerable feature-space perturbations 

that increase or decrease the adaptiveness of specific emotion-relevant responses. For example, 

while it may be generally maladaptive to graze while predators are nearby, specific constraints—

such as life-threatening malnutrition—may reshape the feature space so radically that grazing 

becomes the optimal response. In this case, perhaps “CeLon”/PKC𝛿𝛿- neurons suppress 

“CeLoff”/PKC𝛿𝛿+ neurons to reduce threat responding and promote risky feeding, triggering a “Hail 

Mary” response as an alternative to imminent death. It is also possible, however, that this 

appearance of multifunctionality could arise as a product of within-cell-type heterogeneity, and 

that intermingled groups of ostensibly specific EAc neurons might be further functionally 

dissociable (e.g., see Zeng, 2022). 
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An increasing number of studies remind us that the EAc is not a solely defensive substrate. For 

example, researchers investigating the neural substrates of predatory hunting have begun to 

dissect the Ce’s involvement in prey pursuit and capture. By stimulating the axon terminals of 

intermingled populations of Ce neurons in mice, Han and colleagues (2017) identified parallel 

pathways that control appetitive locomotion and consummatory behaviors: a Ce-PAG pathway 

motivates prey pursuit, while a Ce-PCRt motivates prey consumption. Even in sated animals, 

activating the Ce-PAG pathway triggers immediate predatory hunting of live or artificial prey, 

whereas activating the Ce-PCRt pathway triggers immediate biting attacks against these targets, 

as well as fictive feeding in the absence of prey. Fascinatingly, activating the Ce-PCRt pathway 

does not trigger attacks against other mice, indicating that it is not an indiscriminate “rage circuit,” 

but rather a context-specific circuit for food consumption. In the Kash Lab, researchers 

investigating the molecular substrates of binge eating discovered a population of prepronociceptin 

(Pnoc)-expressing neurons in the Ce that project food-palatability information to the ventral BST, 

parabrachial nucleus (PBN), and nucleus of the solitary tract (Hardaway et al., 2019). Activation 

of Ce Pnoc neurons was sufficient to motivate real-time place preference—a widely used index 

of reward value. Notably, however, the consequences of manipulating these neurons were 

specific to reward: inhibiting these cells failed to induce anxious behavior in the open field test, 

elevated plus maze, or other anxiogenic assays. Other work demonstrates that even the Ce's 

putatively "escape-related" CRH+ neurons can motivate reward seeking in specific contexts. For 

example, mice will optogenetically self-stimulate "escape-related" CRH+ Ce cells, suggesting an 

increase in appetitive motivation or hedonic pleasure (Kim et al., 2017). Self-stimulation of these 

cells has also been shown to increase the amount of effort that rats will expend to obtain sucrose 

rewards, implying a role in incentive motivation (Baumgartner et al., 2021). Other studies have 

implicated the EAc in a spectrum of roles ranging from mating behaviors (Wei et al., 2021) and 

social interaction (Flanigan & Kash, 2020), to binge drinking (Rinker et al., 2017) and nociception 

(Yu et al., 2021). 
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The BST, like the Ce, is enriched with distinct neuron populations that mediate several 

physiological and behavioral features of defensive responding (Kim et al., 2013), making it a 

priority target for dissecting the mechanisms of anxiety disorders. Moreover, an expanding 

literature on sex dimorphism in this region hints at its relevance to the profound sex differences 

in the prevalence of anxiety disorders, which are about twice as common in women compared to 

men (Lebow & Chen, 2016; Bandelow & Michaelis, 2015). Although less is known about the BST’s 

role in reward and another non-defensive processes, it boasts deep molecular heterogeneity, and 

its neurons express a range of neuropeptide markers that enable fine-grained modulation of 

physiological and behavioral survival-related tradeoffs (Gungor & Paré, 2016; Giardino et al., 

2018). In mice, for instance, parallel circuits comprised of genetically distinct, lateral 

hypothalamus (LH)-projecting BST neurons are differentially involved in promoting defensive and 

appetitive behaviors: one circuit, comprised of CRH+ neurons, promotes avoidance, whereas the 

other, comprised of cholecystokinin-positive (CCK+) neurons, promotes feeding and mate 

approach (Giardino et al., 2018). Intriguingly, the latter population may play a key role in addiction 

(Giardino & Pomrenze, 2021) and appears to interact with estradiol-2 in the presence of cocaine 

and opioids to reinforce drug-seeking behavior (Ma & Giardino, 2022). This not only highlights the 

involvement of the BST in non-defensive responding, but also underscores the importance of 

studying sex as a biological variable in neuroscientific research.  

 

These findings motivate our view that distinct alterations across or within several EAc circuits 

could give rise to nearly indistinguishable clinical phenotypes, for instance by increasing 

avoidance (Giardino et al., 2018), dampening incentive motivation (Mahler & Berridge, 2012; 

Warlow & Berridge, 2021; Baumgartner et al., 2021), shaping hedonic values (Wang et al., 2018), 

moderating reward-reinforcement signaling (Hardaway et al., 2019), or some combination thereof. 

Taken together, recent studies of predation and reward demonstrate that the EAc plays a critical 
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role in both aversive and appetitive survival-related functions—and that the functional "identity" of 

specific neuron populations is highly context dependent. On balance, these observations render 

views of the EAc’s specificity to threat processing untenable and require us to fundamentally 

reconsider what the EAc is doing in threatening contexts. 

 

Biological Degeneracy Ensures Partial Redundancy for EAc-Mediated Processes 

The EAc does not have a monopoly on selecting between survival-relevant tradeoffs. For 

instance, in a laboratory paradigm used to induce panic via the inhalation of carbon dioxide (CO2)-

enriched air, even patients with focal bilateral amygdala damage can mount adaptive panic 

responses (Khalsa et al., 2016). And in freely-behaving mice, a feed-forward excitatory circuit 

projecting from the dorsomedial superior colliculus (dMSC) to the PAG encodes threat levels and 

initiates rapid escapes in response to threat stimuli that are parametrically modulated for saliency 

(Evans & Stempel et al., 2018). Redundancies and “emergency brakes'' are to be expected, since 

evolution favors biological degeneracy—that is, “the ability of elements that are structurally 

different to perform the same function or yield the same output” (Edelman & Gally, 2001, p. 

13,763)—over single points of failure. This is consistent with survival as a core determinant of 

brain evolution across phylogeny. Still, the EAc is uniquely poised to function as an arbiter for 

survival-relevant tradeoffs. It integrates a wealth of information from myriad regions necessary to 

encode a survival-relevant feature space (i.e., by computing f(V[R1], V[R2], …V[Rk]), forms 

numerous microcircuits capable of rapidly selecting between competing physiological and 

behavioral responses, and projects to regions that can trigger those responses. Importantly, it is 

precisely these physiological and behavioral tradeoffs that are shared between survival- and 

emotion-relevant responses. Therefore, we expect the function of the EAc in survival to be 

particularly relevant for understanding pathological anxiety and other psychiatric illnesses 

characterized by prominent alterations in emotion and motivation (e.g., depression, alcohol- and 
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substance-use disorders, anhedonia). While the EAc is not required to mount innate, largely 

reflexive responses like those we’ve described here, it seems to be involved in processing both 

learned (Li, 2019; Fadok et al., 2017; Sanford et al., 2017; Yu, 2017) and unlearned (Isosaka et 

al., 2015) threats. The Ce exhibits activity-dependent synaptic plasticity (Samson & Paré, 2005), 

and our work in nonhuman primates suggests that it represents the contributions of learning and 

experience to the risk of developing anxiety disorders (Holley & Campos et al., 2022; Fox et al., 

2015a). 

 

Characterizing Response-Selection Mechanisms in the EAc 

We hypothesize that the EAc encodes an n-dimensional feature space, where multiple inputs 

from across the brain converge to form an integrated view that enables adaptive responding to 

both threats and opportunities. The EAc is hypothesized to play a critical role in normative fear 

and anxiety (Davis et al., 2010; Fox et al., 2015b; Fox & Shackman, 2019), as well as anxiety-

related psychopathology (Avery et al., 2016; Clauss, 2019; Morey et al., 2020; Shackman & Fox, 

2021). Although scores of studies document the relationship between alterations in the EAc and 

differences in threat processing, an expanding mechanistic literature reminds us that the EAc is 

not threat-specific, and that it guides survival-relevant response selection more broadly. 

Importantly, lesion studies that find preferential deficits in threat responding do not imply that this 

region is uninvolved in triggering other responses. The historical tendency to focus on threat 

processing could reflect experimental biases, or some underlying threat-bias in the EAc’s 

response selection mechanisms. To better understand response selection mechanisms within the 

EAc must be thoroughly characterized. It is possible, for instance, for dissimilar mechanisms to 

have the same net effect, thereby promoting a somewhat uniform anxious phenotype via distinct 

EAc alterations. In fact, we expect this to be the case, and to contribute to the challenges in the 

pharmacological treatment of anxiety disorders (Garakani et al., 2020; Koen & Stein, 2011). For 

example, a competitive microcircuit that selects between two mutually exclusive behaviors, such 
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as the Ce CRH+/SST+ microcircuit that selects between fleeing and freezing (Fadok, 2017), could 

feature any of several alterations that would dispositionally bias an individual toward one behavior 

over another. A maladaptive bias toward defensive freezing, which is thought to underlie 

temperamental behavioral inhibition and the risk to develop anxiety-related psychopathology (Fox 

& Kalin, 2014), could be driven by 1) a preponderance of SST+ neurons (Fig. 3C, top), 2) 

disproportionately strong inhibitory SST+ projections onto CRH+ neurons (Fig. 3C, middle), or 3) 

the tendency of a third population of neurons to inhibit CRH+ neurons (Fig. 3C, bottom). Similar 

outcomes could arise via alterations in the aforementioned “CeLon”/PKC𝛿𝛿- and “CeLoff”/PKC𝛿𝛿+ 

microcircuit. These illustrative mechanisms might respond differently—or not at all—to a common 

intervention, underscoring a major barrier to the development of one-size-fits-all treatments for 

psychopathology. 

 

The implications of this within-region cell-type heterogeneity present a challenge for the 

neuroimaging community. A voxel, the smallest unit of spatial resolution in functional magnetic 

resonance imaging (fMRI), may represent the activation of hundreds of thousands of neurons. 

Because of this, blood oxygen level-dependent signal (BOLD) responses collected from 

intermingled neuron populations that form competitive microcircuits for response selection might 

look identical in the scanner even when subjects exhibit opposite responses to a given stimulus. 

But because this heterogeneity is unlikely to be uniform across voxels, it can also lend to the 

development of hypotheses that move beyond univariate relationships between regional signals 

and fear/anxiety measures. For example, based on findings from mice, we might hypothesize that 

the voxels of the basal and lateral regions of the amygdala each contain some mixture of reward- 

and threat-sensitive cells. With this hypothesis in mind, we might not expect to see differences in 

activation across these amygdala voxels in a straightforward test of reward vs threat. However, 

we might expect multivoxel pattern analysis (MVPA; Norman et al., 2006) to reveal dissociable 

patterns of activation that are characteristic of reward or threat processing, because each voxel 
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has a different mixture of cell types. By parametrically modulating reward or threat information, 

we may be able to detect changes in patterns—not in any one voxel, but across voxels. Such 

research could extend MVPA’s many contributions (e.g., Chang et al., 2015; Frick et al., 2014; 

Liu et al., 2015; Norman et al., 2006; Woo et al., 2017) by evaluating hypotheses that posit a 

conserved organization of reward- and threat-sensitive cells across species. This approach could 

also be coupled with pharmacological methods: By combining perturbations of the EAc’s feature 

space (i.e., by modulating reward or threat evidence) with drugs believed to target a subset of cell 

types, we should be able to test hypotheses derived from rodent literature concerning the 

relationship between specific cell types and the function of the EAc. Such drugs may be useful 

for these studies, even if they have side-effects or lack clinical efficacy, and include those that 

target specific serotonin (Sharp & Barnes, 2020), oxytocin (Quintana et al., 2021), and CRH 

receptors (Zorrilla & Koob, 2010), among others (e.g., neuropeptide Y, cannabinoids, 

vasopressin, substance P, etc.). These examples illustrate the types of approaches we expect to 

enable key advances in precision psychiatric diagnostics and treatment in the years to come. 

Creative study design centered on cross-modality approaches like these are needed to help blunt 

the enormous public-health burden of anxiety disorders (Beddington et al., 2008) and improve the 

effectiveness and availability of treatment to the untold millions who suffer their effects (Bandelow 

& Michaelis, 2015; U.S. Burden of Disease Collaborators, 2018). 

 

Toward an Improved Understanding of Common Psychiatric Disorders 

In a seminal review, Rangel, Camerer, and Montague (2008) laid out the processes necessary 

for action selection to take place in the brain, noting that each process is experimentally tractable: 

(1) representation of a problem, (2) assignment of values to possible options, (3) selection and 

implementation of a winning option, (4) evaluation of the outcome, and (5) feedback to enable 

learning and refinement. These functions are not unique to a single brain region. Here, we have 

argued that the EAc integrates salient environmental and interoceptive features in an n-
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dimensional space (akin to steps 1 and 2, above), and guides adaptive responses to challenges 

and opportunities alike by resolving that feature space to select winning strategies (akin to step 

3, above). Although it lies beyond the scope of our mini-review, recent work suggests that the 

EAc is well-suited to perform steps (4) and (5), for example, via inputs from the PBN (Palmiter, 

2018) and ventral tegmental area (Li, 2019), respectively. Moreover, the EAc is differentiated from 

other brain systems involved in action selection by its direct projections to the effector regions 

that can induce specific aspects of an emotional response, including species-typical physiological 

changes (e.g., cardiorespiratory and skin-conductance responses) and behaviors (escape, 

pursuit, freezing, etc.).  

 

The EAc is uniquely poised to perform survival- and emotion-relevant action selection, and so it 

is a priority target for understanding psychiatric disorders characterized by prominent alterations 

in emotion or motivation. However, our expanding knowledge of its neuron populations and their 

multifunctional, context-dependent involvement in defensive and non-defensive processes should 

give us pause as we carefully rethink what these findings mean for the study of mental illness. 

This may require a conceptual reframing of how EAc alterations contribute to pathophysiology. 

Here, we have proposed approaching survival- and emotion-relevant tradeoffs (Fig. 1) as the 

outputs of an n-dimensional feature space that is encoded and resolved by the EAc (Fig. 2B). 

This computational approach to understanding survival- and emotion-relevant response selection 

in the EAc is intended to complement and integrate with other theories of how the brain 

implements these tradeoffs (e.g., Mobbs et al., 2015; Perusini & Fanselow, 2015; LeDoux & Pine, 

2015; etc.). 

 

A major implication of this conceptual reframing is that the same disordered phenotype could 

arise from alterations in distinct cellular/molecular substrates, which presents challenges for the 

development of effective treatments. Because the mechanism(s) that the EAc uses to compare 
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feature vectors for survival- and emotion-relevant decisions are presently unknown (Fig. 2B, 

middle), investigations that parametrically modulate feature-space inputs will be especially 

valuable in elucidating the mechanisms that select between the EAc’s response sets—and, when 

imbalanced, contribute to maladaptive responding (Fig. 3B). Importantly, there are likely to be 

many-to-one and one-to-many relationships between biological dysregulation and psycho-

pathology. As outlined in Figure 3, multiple, distinct biological mechanisms within the EAc could 

lead to the same output. (Similarly—although not discussed in detail here—a common CeL 

alteration might differentially bias physiological, cognitive, and behavioral outputs via distinct 

alterations in downstream mechanisms, for example in regions innervated by CeM outputs). A 

current challenge for human research is to develop and test hypotheses derived from animal 

studies to understand the role of the EAc in human psychopathology. Here, NHP studies of the 

EAc’s non-defensive functions (e.g., Parkinson, 2001) will be instrumental in understanding how 

mechanistic discoveries in rodents relate to the disordered emotion-relevant responses common 

to clinical populations. A focused effort toward characterizing how the EAc’s feature-space inputs 

are encoded and what the comparison process for response selection entails will enable targeted 

manipulations of specific cells, genes, and molecules and uncover clinical entry points in the 

development of new interventions for a range of common psychiatric disorders. 
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Figure 1. In nature and society, behavior is characterized by risk-vs-reward tradeoffs. a) Adaptive 
responses are selected from competing options. A hungry gazelle detects a predator and must 
select between grazing and freezing (left)—neither of which is inherently maladaptive. This 
selection process can be defined as a function of the value of each response, i.e., f(V[R1], V[R2]). 
While we are agnostic about the specific computations underlying the tradeoffs inherent to 
response selection, these choices can be conceptualized with simplified drift-diffusion models 
(DDM; Ratcliff & McKoon, 2008) in which responses are triggered as accumulating evidence 
surpasses a decision threshold, represented here as dashed lines bisected by a grey line 
indicating the indifference point. In humans, the systems that underlie these survival-relevant 
selection processes can select emotion-relevant responses (right). b) Different underlying 
processes can trigger the same response. Even with a simplified two-option DDM—which has 
been useful for characterizing multi-alternative valuation decisions (Krajbich & Rangel, 2011)—
different underlying processes can bias individuals toward the same response: an innate or 
learned tendency toward one response over another (left), an attentional bias that leads to 
disproportionate accumulation of evidence in favor of one response over another (middle), or 
differences in the valuation of evidence between responses (right) illustrate sources of bias toward 
response R2. c) Response selection as a computational process in an n-dimensional feature 
space. The value of any response (e.g., V[R2]) can be conceptualized as the product of all 
available evidence (e.g., [E1, E2... Ek]) times the context-specific weight afforded to each piece of 
evidence (e.g., [W21, W22... W2k]

T). In the case of our gazelle, E1 might represent predator 
proximity, and W22 the gazelle’s sensitivity to predator proximity in the context of escape 
decisions. Of note, the weights may comprise a sparse matrix; that is, many pieces of evidence 
may have no (or little) bearing on a specific response.  
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Figure 2. The EAc selects defensive and non-defensive responses. a) Studies of humans and 
rhesus monkeys implicate the EAc in uncertain threat response. As reported in Shackman and 
Fox, 2016, a Neurosynth-enabled (Yarkoni et al., 2011) automated meta-analysis of “fear” and 
“anxiety” neuroimaging studies in humans reveals Ce and BST activation (top), and large-scale 
(N=592) nonhuman primate neuroimaging studies of response to uncertain threat (Fox et al., 
2015a) show that rhesus anxious temperament predicts elevated EAc metabolism during 
exposure to an uncertain threat represented by an unfamiliar human intruder (bottom). b) Feature-
space model of EAc-implemented function for selecting between graze (R1), flee (R2), and freeze 
(R3) responses based on the weighted valuations of those responses in each context. In this 
simplified three-choice model, 1) feature-space inputs encoding salient, weighted environmental 
and interoceptive evidence converge on the EAc; 2) the EAc represents and resolves the feature 
space through an unknown selection function (shown here as a placeholder function to represent 
what is almost certainly a more complicated process; see Krajbich & Rangel, 2011) to guide 
survival-relevant and emotion-relevant tradeoffs for action selection and adaptive physiology; and 
3) instructions to enact the winning response are pushed downstream to effector regions capable 
of triggering changes in physiology, cognition, and behavior. c) An illustrative list of defensive and 
non-defensive EAc roles highlights the EAc’s involvement in diverse response sets. Of note, we 
use the terms “defensive” and “non-defensive” to be inclusive of physiological, cognitive, and 
behavioral changes, as well as the phenomenological states that elicit EAc involvement.  
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Figure 3. Genetically dissociable microcircuits provide a substrate for response selection through 
the implementation of a selection function (e.g., f(V[R1], V[R2], ...V[Rk]; see Fig. 2B). a) Mutually 
inhibitory neural activity in the mouse Ce. A competitive inhibitory microcircuit composed of 
intermingled, competing populations of SST+ and CRH+ neurons select between freezing and 
fleeing responses, respectively (adapted from Fadok et al., 2017). The activity of either population 
generates strong inhibitory postsynaptic currents that suppress the other population, thereby 
serving as a rapid, winner-take-all mechanism for selecting between active and passive threat 
response. b) Possible mechanisms for response selection. Several distinct mechanisms could 
dispositionally bias an individual toward passive threat response (i.e., maladaptive freezing), 
characteristic of behavioral inhibition (Roelofs, 2017; Roelofs, Hagenaars, & Stins, 2010); for 
example: a preponderance of SST+ neurons (top), disproportionately strong SST+ to CRH+ 
projections (middle), or the presence of a third population of neurons that co-inhibits CRH+ 
neurons (bottom). Importantly, while we have highlighted the SST+ and CRH+ microcircuit in the 
mouse Ce, it is likely that imbalances in other microcircuits—for example, the aforementioned 
“CeLon”/PKC𝛿𝛿- and “CeLoff”/PKC𝛿𝛿+ microcircuit—could drive similar tendencies. We hypothesize 
similar alterations in other EAc regions, such as the BST.  
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Reimagining “uncertainty” in the study of threat anticipation: 
A statistical-learning approach 

Holley, D, & Fox, AS 
 
Abstract 
Anxiety disorders are among the most common psychiatric conditions and impair the well-being 

of individuals, organizations, and society as a whole (Bandelow & Michaelis, 2015; Kessler et al., 

2012; Beddington et al., 2008). Refining our understanding of the processes that make us anxious 

and contribute to these disorders promises to inform new treatment and prevention approaches 

that blunt their deleterious effects. In the past decades, sensitivity to uncertainty has emerged as 

a transdiagnostic marker of anxiety disorders (Grupe & Nitschke, 2013). In laboratory studies, 

uncertain-threat conditions are consistently found to be more anxiogenic than certain-threat 

conditions (Schmitz & Grillion, 2012; Somerville et al., 2013; Hur et al., 2020). However, we 

currently have no explanation as to why individuals become more anxious in uncertain-threat 

contexts. One way to approach this challenge is to parameterize components of uncertainty and 

test their effects on behavioral and emotional outcomes. Here, we developed and validated a 

computational model of uncertain-threat anticipation that isolates the hazard rate—that is, the 

evolving probability that a threat will occur, taking past information into account—from 

experimenter-defined momentary threat probabilities [i.e., P(shock)] at specific timepoints. By 

manipulating the hazard rate while holding P(shock) constant in a statistical threat-learning task 

in which participants balanced the risk of receiving aversive shocks against the pursuit of cash 

rewards (N=42), we showed that the hazard rate drives threat avoidance and subjective anxiety 

on a momentary basis, irrespective of P(shock). These findings suggest that individuals compute, 

track, and leverage specific environmental threat statistics to optimize risk-vs-reward tradeoffs. 

Our results shed new light on the computational architecture of threat processing and set the 

stage for model-based studies into the effects of statistical manipulations on anxiety and its 

neurobiological substrates. 

Author affiliations: Department of Psychology and the California National Primate Research Center at the University 
of California, Davis, Davis, CA, 95616 
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Introduction 

Anxiety disorders affect an estimated 1 in 3 people during their lifetime and are a leading cause 

of disability worldwide (Bandelow & Michaelis, 2015; World Health Organization, 2017). Anxiety 

is characterized by a behavioral tendency to avoid potential threats, and a concomitant emotional 

experience (Davis, Walker, Miles, & Grillion, 2010). When it is adaptive, anxiety can focus our 

attention and prime our bodies and minds to meet challenges and seize opportunities. However, 

when anxiety is extreme, prolonged, or contextually inappropriate, it can lead to disorders that 

impair our ability to function and thrive (Fox & Kalin, 2014; Shackman et al., 2016; Meacham & 

Bergstrom, 2012). These disorders rarely occur in isolation and are commonly comorbid with 

depression (Gorman, 1996; Garber & Weersing, 2010; Wu & Fang, 2014) and substance use 

disorders (Swendsen et al., 2010). They predict a range of adverse life outcomes, such as suicidal 

ideation and suicide attempts (Nepon, Belik, Bolton, & Sareen, 2010; Sareen et al., 2005), and 

are substantially more prevalent in women than in men (McLean, Asnaani, Litz, & Hoffman, 2011). 

Because existing treatments are inconsistently effective and often cause adverse side effects 

(Bystritsky, 2006; Griebel & Holmes, 2013), building an improved understanding of the 

pathophysiology of anxiety disorders is imperative and has the potential to guide new treatments 

and prevention strategies. Despite this need, key aspects of anxiety are poorly understood. 

Decomposing “Uncertainty” into a Set of Tractable Parameters 

Heightened sensitivity to uncertain-threat anticipation is a transdiagnostic marker of anxiety that 

cuts across phenotypes (Grupe & Nitschke, 2013; Yassa, Hazlett, Stark, & Hoehn-Saric, 2012; 

Krain et al., 2008; Simmons, Matthews, Paulus, & Stein, 2008), paradigms (Shackman et al., 

2016), and theoretical perspectives (Hur et al., 2020; Grupe & Nitschke, 2013; Blanchard, Griebel, 
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Pobbe, & Blanchard, 2011; Moors, Ellsworth, Scherer, & Frijda, 2013; Barrett, Quigley, & 

Hamilton, 2016; Anderson, Carleton, Diefenbach, & Han, 2019; Mobbs et al., 2009; Mobbs et al., 

2015; Moscarrello & Penzo, 2022). However, “uncertainty” in the context of psychological and 

neuroscientific research is often vaguely defined, leading to an unreliable literature and presenting 

barriers to experimental replication, extension, and cross-species translation. Furthermore, 

although uncertain-threat anticipation is widely accepted as intrinsically more anxiogenic than 

certain threat anticipation, virtually nothing is known about why this is the case. This may be 

because the term “uncertainty” is sufficiently imprecise as to allow for multiple interpretations. To 

elucidate the relationships between environmental stimuli and anxiogenesis, we must first identify 

precise, tractable “uncertainty”-associated parameters. 

 

Computational psychiatry is ideally suited to advance our understanding of uncertain-threat 

anticipation through model-based approaches that parameterize “uncertainty,” thereby enabling 

characterizations of aberrant processes that contribute to disorder (Montague, Dolan, Friston, & 

Dayan, 2012). Statistical characterizations of the environment have led to radical advances in our 

understanding of language (Kuhl, 2004), vision (Krajbich & Rangel, 2011), and behavioral 

economics (Krajbich, Lu, Camerer, & Rangel, 2012; Rangel, Camerer, & Montague, 2008), 

highlighting the utility of computational approaches in the study of psychological phenomena. By 

contrast, clinical studies of anxiety disorders often focus on contexts that elicit disordered 

responses (e.g., social anxiety disorder), or features of the disordered response (e.g., panic 

attack). Computational psychiatry approaches aim to integrate with the extant literature and 

augment future studies by bringing a higher degree of statistical sophistication to these efforts, 

thereby helping move the field beyond coarse, categorical variables (i.e., “certain” vs “uncertain”) 

and toward the parametric manipulation of specific anxiogenic components. To extend previous 

work centered on comparisons between “certain” and “uncertain” conditions (e.g., Somerville et 

al., 2013; Hur et al., 2020), we identified features of the statistical environment that were 
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confounded in certain-vs-uncertain paradigms, and developed a task that enabled us to dissociate 

and manipulate those features in novel “uncertain A”-vs-“uncertain B” comparisons (Fig. 1). 

A Computational Model of Uncertain-Threat Anticipation 

Using a theory-based approach, we reasoned that anxiety may increase during uncertain 

anticipation because people update their expectations as time passes. We posit that tracking the 

probability dynamics of potential threats is necessary to optimize adaptive responses in real-time, 

because doing so allows individuals to appropriately balance risk-vs-reward tradeoffs. Notably, 

the probability dynamics over time are dramatically different in certain and uncertain contexts. In 

the context of certain-threat anticipation, the computation governing these estimates would be 

straightforward: If an individual knows that a countdown will end with a shock at time 0, then 

P(shock) at timepoints 3, 2, 1, and 0 would equal 0, 0, 0, and 1, respectively (Fig. 1A, B). The 

computation becomes more complex—and, for our purposes, more interesting—during a period 

of uncertain-threat anticipation, when the individual knows that a shock will occur sometime during 

the countdown, but not necessarily at 0. In this case, the individual must draw from experience to 

continuously estimate the evolution of P(shock) over time. For example, in the above countdown, 

at time 3 the shock could occur at one of four potential times, whereas at time 1, the shock could 

only occur at one of two times. Assuming uniform-distributed P(shock) values of .25 at each of 

four timepoints during a period of uncertain-threat anticipation, the hazard rate (Goel, Khanna, & 

Kishore, 2010)—that is, P(shock), given that shock has not occurred yet—for timepoints 3, 2, 1, 

and 0 would equal .25, .33, .5, and 1, respectively (see Methods). These statistical dynamics 

motivate our interest in exploring the dissociable contributions of P(shock) values (in the above 

example, [.25, .25, .25, .25]) and hazard-rate values (i.e., [.25, .33, .5, 1]) to anxious behavioral 

and emotional responses in uncertain-threat contexts. 



 

 57 

Our Approach 

Uncertain-threat anticipation elicits characteristic avoidant behaviors and concomitant emotional 

responses (Davis et al., 2010; Shackman et al., 2016). To test the individual contributions of 

P(shock) and hazard-rate values to anxious behaviors and feelings, we designed a statistical 

threat-learning task that allowed us to hold momentary P(shock) values constant while 

manipulating the hazard rate (Fig. 1C, D; detailed in Methods) as participants made decisions 

about whether to persist (and earn greater rewards) or escape (and avoid shocks) in distinct 

uncertain-threat environments. 

 

Shock Workups and Training Phase 

In our study, N=42 participants first underwent a shock workup to determine a shock voltage that 

was “uncomfortable but not unbearable.” Next, they underwent a roughly 30-minute training phase 

during which two innocuous shapes were paired, at random, with two statistically distinct 

uncertain-threat environments that were matched for P(shock) but which differed in hazard rate 

(Fig. 1D). In the training phase, participants saw each shape 50 times, in a predetermined and 

pseudo-randomized trial order. Each trial ended in the administration of an aversive electrical 

shock at one of six timepoints: 5, 10, 15, 20, 25, or 30 seconds after the shape appeared. 

Importantly, participants did not have access to any timekeeping devices to track shock timing. In 

the early-threat environment (indicated in our figures by the pink circle), shock timing was drawn 

from a statistical distribution such that, at the aforementioned six timepoints, P(shock)EARLY=[.35, 

.13, .13, .13, .13, .13]; in the late-threat environment (indicated in our figures by the gray square), 

shock timing was defined by P(shock)LATE=[.13, .13, .13, .13, .13, .35] (Fig. 1D, top). Critically, 

between 5 and 25 seconds, P(shock) values in both the early- and late-threat environments were 

held constant, but the hazard rates differed (Fig. 1D), allowing us to dissociate these tractable 

features of uncertain-threat anticipation. 
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Post-Training Questionnaire 

Our goal in the testing phase was to evaluate the effects of statistical threat-learning on avoidance 

behaviors and concomitant emotional responses in uncertain-threat environments. To ensure 

learning occurred during training, before beginning the testing phase we asked our participants 

to estimate the statistics of the early- and late-threat environments (N=42, counterbalanced), via 

an online questionnaire. Participants estimated a mean shock-delivery time of 9.46s (SD=4.62s) 

in the early-threat environment and a mean shock-delivery time of 20.40s (SD=6.99s) in the late-

threat environment. Ground-truth means were 14.75s and 20.25s, respectively. Interestingly, the 

subjects significantly underestimated the average time of shock-delivery in the early-threat 

environment only (independent-samples t-test = 7.15, p<.001), which is aligned with recent 

findings reporting similar time-contraction effects during induced-anxiety tasks (Sarigiannidis et 

al., 2020). We then asked our participants (N=33) to estimate the number of shocks that occurred 

in each of the six epochs for both environments. Of note, participants’ estimates were unbounded. 

The estimates revealed a right-skewed early-threat distribution and a left-skewed late-threat 

distribution (Fig. 2D) that roughly approximated the mirror-inverse symmetry of our ground-truth 

P(shock) distribution (Fig. 1D, top). By the 16-20s epoch, participants reliably expected there to 

be fewer shocks administered in the early-threat environment (independent-samples t-test = 3.61, 

p<.001). Collectively, our post-training data indicated that our participants had learned about the 

statistics of the threat environments. 

 

Testing Phase 

Following the questionnaire, participants underwent a testing phase that allowed us to evaluate 

the impacts of statistical threat-learning on risk-vs-reward tradeoffs in distinct uncertain-threat 

environments. During the testing phase, volunteers earned $0.01 for every second that a shape 

was on-screen. At the 5-second mark of each trial, if a participant had not yet been shocked they 
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gained volitional control over “escape” decisions; that is, the participant could press the spacebar 

at any time to end the current trial and advance to the next trial, thereby foregoing future gains in 

that trial in favor of avoiding being shocked. Critically, measuring the timing of escape decisions 

afforded us an objective measure of anxious behavior with strong ecological footing (Cooper, 

William, & Blumstein, 2015; Blanchard et al., 2011), making it amenable to a variety of cross-

species translational approaches (Evans & Stempel, 2018; Choi & Kim, 2010). Before beginning 

the testing phase, volunteers were informed that “the shapes would be the same ones that they 

learned about in the training phase,” and were instructed to “use what they learned about the 

shapes to decide whether and when to escape.” Participants accrued cash rewards on a second-

by-second basis until the end of the trial, regardless of whether it ended with shock administration 

or escape (Fig. 2E). 

Results 

Higher Hazard Rates Causes More Avoidance Behavior 

In the testing phase, participants’ behavioral responses reflected our computational model of 

uncertain-threat anticipation and supported the hypothesis that differences in hazard rate drive 

differences in escape behavior irrespective of P(shock). When P(shock) was held constant, 

differences in hazard rate caused significant differences in avoidance behavior: Participants were 

much more likely to forego potential future gains and escape from the early-threat environment, 

where the hazard-rate is always higher than that of the late-threat environment during the 

P(shock)-matched epochs (Figs. 1D, 3A; independent-samples t-tests, N=42: [6-10s: t=8.09, 

p<.001], [11-15s: t=7.80, p<.001], [16-20s: t=4.71, p<.001], [21-25s: t=8.30, p<.001]). Critically, 

participants were more likely to escape during the 16-20s and 21-25s epochs, even though they 

reliably reported receiving fewer shocks in the early-threat environment during this period, 

underscoring the potential for anxious anticipation to elicit maladaptive avoidance. Moreover, the 
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escape trends of each environment during the P(shock)-matched epochs revealed a pattern of 

avoidance behavior that conspicuously resembled each environment’s hazard rate (Figs. 1D, 3A). 

These effects reversed when the hazard rate and P(shock) values converged on 1 during the final 

26-30s epoch. Because of this convergence, our model made no predictions about volunteers’ 

behavioral or emotional responses for this epoch. We hesitate to interpret this effect since, in this 

epoch, hazard rate and P(shock) are confounded. 

 

To further examine the differences in behavioral responses elicited between the early- and late-

threat environments, we used Kaplan-Meier survival analysis (KMSA) to compare the time course 

of escape behavior while accounting for trials that were “censored” by shocks (Fig. 3B). KMSA 

provides a versatile means of analyzing a range of time-to-event data (e.g., Goel et al., 2010; Lim, 

2020). Importantly, because participants could not escape from any trial until after the first 5-

second epoch had passed, their escape decisions began at the outset of a 20-second period 

during which P(shock) values in both early- and late-threat environments were held constant, but 

during which the early-threat environment’s hazard rate was always higher. We hypothesized that 

participants would behave as though the early-threat environment was more threatening, and be 

more motivated to avoid the potential threat (i.e., by escaping), even though the initial spike in 

momentary threat probability in the early-threat environment had already passed by the time they 

were permitted to escape. As predicted, KMSA confirmed that when participants gained volitional 

control over their escape decisions (see Fig. 2E and Methods), their survival rates differed 

dramatically between environments, with significantly lower survival at all timepoints of the early-

threat environment (log-rank test, N=21, 𝜒𝜒2=259.30, p<.005). If P(shock) per se drove anxiety and 

guided escape behavior, the survival curves should not have significantly differed across the four 

epochs during which those values were matched between environments (Fig. 1D, top). These 

findings were further supported by logistic regression analyses examining the main effect of 

hazard rate on escape decisions across conditions. These analyses revealed a significant effect 
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of hazard rate (z=20.67, p<.001), which survived after controlling for environment (z=21.02, 

p<.001) and was significant in each environment alone (z-statistics > 5.03, p values < .001). 

Together, these findings indicate that participants’ avoidance behavior was driven by changes in 

hazard rate, irrespective of P(shock). 

Higher Hazard Rates Elicit Greater State Anxiety 

Finally, we sought to test the critical hypothesis that the early-threat environment would be 

perceived as more anxiogenic, despite both environments being uncertain and all trials ending 

with a shock (if a participant chose not to escape). In a final, 30-second inescapable trial for each 

environment (counterbalanced), administered at the end of the testing phase (see Methods), 

participants reported significantly greater anxiety following shock administration in the early-threat 

environment (Wilcoxon rank-sum test, N=21, U=328.5, p<.005). And in a two-response, forced-

choice question posed at the conclusion of the study—“Overall, which shape made you more 

anxious?”—90.4% of participants identified the shape representing the early-threat environment 

as more anxiogenic (binomial test, N=21, p<.001). Collectively, our findings indicate that the 

hazard rate is sufficient to drive changes in the emotional experience of anxiety—even when 

P(shock) is held constant. 

Discussion 

“Uncertainty” is Amenable to Computational Modeling 

Among anxiety researchers, “uncertainty” is accepted as intrinsically more anxiogenic than 

certainty (Grupe & Nitschke, 2013)—yet previous research has provided no compelling 

explanation for why this is the case. If uncertainty is indeed important in anxiogenesis and anxious 

pathology, then a concrete understanding of why it makes us more anxious is imperative. One 

approach to this challenge is to build computational models that decompose “uncertainty” into 
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tractable parts. We have begun that effort by developing and validating a computational model of 

uncertain-threat anticipation. We used our model to evaluate the differences in anxious behavioral 

and emotional responses to innocuous visual stimuli that had been paired with aversive electrical 

shocks in a statistical threat-learning paradigm. By decomposing “uncertainty” into two precise 

components—that is, P(shock) and hazard rate—and holding the former constant while 

parametrically manipulating the latter, we uncovered previously undocumented relationships 

between environmental threat statistics, avoidant behavior, and anxious phenomenology. 

Fascinatingly, our results indicate that participants (1) track a relatively accurate approximation of 

the hazard rate as the probability dynamics of a temporally uncertain threat evolve over time, (2) 

that they use that information to optimize risk-vs-reward tradeoffs in uncertain-threat 

environments, and (3) that they feel more anxious in uncertain-threat environments characterized 

by higher hazard rates. Our results can complement and integrate with existing theories of how 

the brain implements survival- and emotion-relevant tradeoffs across a range of contexts (e.g., 

Mobbs et al., 2015; Perusini & Fanselow, 2015; LeDoux & Pine, 2015; Cooper et al., 2015; Choi 

& Kim, 2010). Moreover, our findings can guide computationally sophisticated, model-based 

research into the neural substrates of survival optimization. 

Identifying the Neural Substrates of Hazard Computations and Survival Optimization 

Our findings set the stage for studies using functional neuroimaging (e.g., fMRI) to probe the 

neural substrates that compute, track, and leverage threat environments’ hazard rates to optimize 

survival. Such studies could incorporate hazard-rate regressors in voxelwise mass-univariate 

analyses to identify regions where variation in blood oxygen level-dependent (BOLD) response 

covaries with the hazard rate. We suspect that the central extended amygdala (EAc)—which 

includes the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis 

(BST), and which is strongly implicated in threat responding (Clauss, 2019; Fox et al., 2015a; Fox 

et al., 2015b; Hur et al., 2020; Avery, Clauss, & Blackford, 2016; Somerville et al., 2013; 
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Shackman et al., 2016; Holley & Campos et al., 2022)—may emerge as one substrate where the 

hazard rate is integrated into a computation for selecting optimal survival- and emotion-relevant 

responses to a variety of defensive and non-defensive contexts (Holley & Fox, 2022). Although 

not designed for this purpose, our post-hoc analyses on a previously published dataset derived 

from a certain-vs-uncertain threat-anticipation task support this hypothesis: We found that a 

distributed network of brain regions implicated in threat processing and including the BST tracked 

hazard rate on a moment-to-moment basis, above and beyond the effect of uncertainty as it is 

frequently modeled (Fig. 4; Hur et al., 2020; unpublished data). Functional neuroimaging studies 

designed to test the effect of  hazard rate could help resolve inconsistencies in the extant 

literature; namely, the tendency of some studies (e.g., Somerville et al., 2013; Somerville, Whalen, 

& Kelley, 2010), but not others (e.g., Hur et al., 2020; Fox & Shackman, 2019), to reveal greater 

sustained activation in BST compared to Ce during uncertain-threat anticipation. Insofar as 

behavioral and emotional responses are driven by activity in the brain, our findings indicate that 

accounting for the hazard rate will be vital to the interpretation of this literature, and that it must 

be considered in future research. Importantly, because the BST is sexually dimorphic (Allen & 

Gorski, 1990; Chung, De Vries, & Swaab, 2002), and because anxiety disorders are significantly 

more prevalent in women than in men (McLean et al., 2011), a focused effort to identify sex 

differences in hazard-rate sensitivity could provide fresh insights into to the relationships between 

BST functional dimorphism and the risk of psychopathology. 

Clinical Implications of Increased Computational Sophistication in Uncertainty Studies 

As functional-neuroimaging studies in humans elucidate the relationships between hazard rate 

and BOLD response, the synergistic efforts of rodent researchers will lead to the discovery of 

specific mechanisms in the brain that compute, track, and leverage the hazard rate to guide 

behavior. This would open the door to studies that manipulate specific circuits, cells, and 

molecules to modulate anxious behavior by effectively changing how the hazard rate is weighted 
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in computations that select behavior, potentially uncovering new clinical entry points (Holley & 

Fox, 2022; Moscarello & Penzo, 2022). Critically, we expect that alterations in these mechanisms 

are likely to account for the avoidant behavior and pervasive worry characteristic of anxiety 

disorders (Davis et al., 2010; Grupe & Nitschke, 2013). Building a high-acuity understanding of 

the aberrant computations that drive avoidant behavior in uncertain-threat contexts could be 

critical to advancing precision psychiatric approaches (Fernandes et al., 2017; Friston, Redish, & 

Gordon, 2017). This will grow increasingly important as we refine our understanding of how 

different pathophysiologies might give rise to a common disordered phenotype, thereby ensuring 

that “one-size-fits-all” treatments will benefit only a fraction of patients (Holley & Fox, 2022). A 

focused effort to understand the neurocomputational architecture of threat processing, on the 

other hand, would aid in the development of new diagnostic and treatment approaches that target 

aberrant, anxiogenic computations at their source. Our work is a step in this direction. 

 

In closing, we have shown that “uncertainty” is unequivocally not categorical. Rather, tractable 

components of uncertainty—here, P(shock) and hazard rate—can be parametrically modulated 

to drive significant differences in emotional and behavioral response to conditioned threat stimuli. 

There are likely to be numerous other components of uncertainty that, when identified, will be 

amenable to manipulations like ours. This should be considered both in study design and literature 

review. By reimagining uncertainty and exploring its computational architecture and aberrations, 

we stand to learn not only why uncertainty makes us so anxious, but how we can restore 

psychosocial functioning to the countless millions who suffer under anxiety’s yoke. 
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Methods 

Participants 

A total of 53 adults volunteered for our study. All volunteers were recruited via UC Davis’ SONA paid 

research participation system. Our inclusion criteria were age (18-40), vision (20-20 or corrected to 20-20), 

and English language fluency. Our exclusion criteria were ongoing psychiatric treatment, history of 

psychiatric disorder or neurological disorder/injury, ongoing illicit drug use, and pregnancy or possibility of 

pregnancy. All activities were approved by, and conducted in strict accordance with, the policies of the UC 

Davis Institutional Review Board under authorization 1716796-1. Because our study featured aversive 

electrical shocks, in addition to informed consent all participants were repeatedly reminded that they could 

withdraw at any time. Data from initial participants (5F/4M, mean age = 23.11 years, SD=3.37 years) were 

used for protocol refinement and are not included in our analyses. Of the 44 participants who volunteered 

thereafter, our team involuntarily withdrew 2 participants whose shock tolerance exceeded our paradigm’s 

maximum shock level, bringing our total cohort to N=42 (31F/11M, mean age = 21.68 years, SD=3.12 

years). 

Shock Equipment 

To administer shock stimuli, we used the STMEPM-MRI System (Biopac), which consists of a constant-

voltage Stimulator Module (STM100C; range: ±10 V), Stimulus Isolation Adapter (STMISOC), Isolated 

Power Supply (IPS100C), and MRI-compatible Filter/Cable Set (MECMRI-STMISO). The Stimulator 

Module provides safe, fully programmable, real-time computer control over the electrical stimulus train (i.e., 

pulse duration, repetition, onset, and amplitude). The STMEPM-MRI System is intrinsically safe—despite 

possible errors in user stimulation setup or programming—under all operating conditions. Specifically, the 

strongest possible pulse under open-circuit conditions (160 mJ at 500 ohms, or 200 V) is well below the 

levels detailed in IEC 60601-2-10:2015 (max allowed: 300 mJ at 500 ohms, or 500 V), the harmonized, 

international regulatory standard relating to the safety of nerve and muscle stimulators. Stimuli were 

delivered to the musculature of the hand, between thumb and forefinger, via disposable electrodes. The 

timing and maximum number of shocks were strictly controlled by our predetermined experimental 
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schedule. The duration of every shock administered during the study was 0.1s. Volunteers were fully 

informed of these aspects of shock delivery, without deception, during the informed consent process and 

again before data collection. During the informed consent process and prior to data collection, our team 

repeatedly stressed that participants could stop at any time. 

Shock Workups 

We used a progressive workup method to determine an appropriate shock value for each participant. 

Participants were instructed to help us identify a shock level that was “uncomfortable but not unbearable” 

and were reminded that they “should prefer to not receive the shock.” To find this level, we began with a 

device output of 20 V and worked up as necessary in increments of 20 V toward a maximum of 200 V, 

administering two shocks at each intensity and obtaining positive consent from the participant at each step 

before increasing the value. Once we arrived at the appropriate shock level, confirmed by each participant, 

we entered that value for the training and testing phases of our study. Participants were informed that their 

shock level could not be changed midway through the experiment, but that they were free to withdraw at 

any time if the shocks became too intense or, conversely, were insufficient to motivate engagement in the 

task. 

‘Escape from the Shocks’ Paradigm 

Our paradigm consists of a training phase and testing phase. The training phase lasts roughly 30 minutes 

and is intended to teach participants about the temporal threat statistics of two “environments”—one in 

which shocks tend to occur early (early), and another in which the shocks tend to occur late (late), as shown 

in Figures 1B and 1C. Each environment was represented by one of two distinct shapes, which were 

randomly assigned for each participant (Fig. 2A). During training, participants sat in front of a computer 

screen and were connected to the shock equipment. Watches, mobile phones, and other distracting and/or 

timekeeping devices were silenced, collected, and secured. Participants saw 50 presentations each of the 

early and late shapes in an order that was predetermined by a randomly-selected trial structures drawn 

from six available structures (each created using the approach detailed below in Block Generation). Each 

shape appeared on screen following a 1-second intertrial interval (ITI, indicated by a + symbol in our 
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figures), remained on screen for 5 to 30 seconds, and then disappeared with the administration of a shock, 

followed by the next ITI (Fig 2C). All stimulus feedback was administered at 5-second intervals to facilitate 

modeling in future fMRI studies. During training, participants had no volitional control over whether they 

would be shocked (i.e., they could not “escape”); this was visually represented by a lock icon in the upper-

left corner of the screen. Importantly, participants were not given any specific information about the timing 

distributions of shocks or how those distributions related to the shapes, although they were instructed to 

pay close attention and told that “depending on the shape, the timing of the shocks might be different” (akin 

to instructions provided to participants in a reward-focused statistical-learning task conducted by McGuire 

and Kable, 2015). We measured attention to infer learning by asking a one-back memory question—i.e., 

“Which shape did you just see?”—after every third shape. Participants were informed that failing to answer 

at least 75% of these questions correctly would result in withdrawal from the study, although no participants 

were withdrawn under this criterion. After the training phase, participants estimated the average shock 

timing of each of the shapes and the number of shocks delivered by each shape during each of the six 5-

second bins (Fig 2D). Following a break, the participants completed the testing phase. 

 

During the testing block, participants once again saw 50 presentations of each of the early and late shapes, 

with presentation order and shock timing once again predetermined by a second trial structure, randomly 

drawn from the five available structures that were not chosen for the training phase. An example of a testing-

phase trial is shown in Figure 2E. In the testing phase, participants earned $0.01 per second while shapes 

were on screen. If a trial continued beyond 5 seconds (i.e., if a shock had not yet been delivered), the 

aforementioned lock icon in the upper left corner of the screen would disappear, and pressing the 

computer's spacebar would then bypass shock administration and advance the program to the next ITI. 

This was fully explained to participants, who were told, “If you are not shocked within the first 5 seconds, 

the lock icon will disappear, and then you can decide whether and when to escape” by pressing the 

spacebar. Participants were told that they would still earn rewards even if they received a shock on a given 

trial and were instructed to use what they learned about the shapes during training to strike whatever 

balance between risks and rewards they found appropriate. Participants were again asked to perform a 

one-back attention task after every third trial. (Again, all participants scored above our threshold 75% 
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accuracy.) At the end of the training phase, a cross-section of N=21 participants performed a final, 

inescapable trial for each of the two shapes. Each shape (counterbalanced) was presented for the 

maximum time (30s) and terminated with the delivery of an inescapable shock. Participants rated their 

anxiety from 1 (none) to 5 (extreme) immediately following each shock. These same participants (N=21) 

also answered a two-option, forced-choice question, “Overall, which shape made you more anxious?” 

(counterbalanced). 

Block Generation 

To create blocks of trials that recapitulated the statistical dynamics of our model, we first built a “perfect” 

exemplar block in which the probabilities for early and late threat stimuli adhered exactly to our model at all 

timepoints. As an unbiased approach to adding random noise to our environments, we generated 10,000 

block structures consisting of 50 early and 50 late stimuli with timing randomly generated but bounded by 

the discrete probabilities of our exemplar’s bins (Fig. 1D, top). We then narrowed these 10,000 randomly 

generated blocks down to 21 candidate blocks that were at least 99% correlated to the statistics of our 

exemplar. Since each subject would experience two block schedules, we incorporated a process to ensure 

diversity between the order of stimuli in the blocks. To do this, we repeatedly computed a pairwise 

correlation matrix for the candidate blocks, beginning with all 21 candidates and systematically eliminating 

the most highly correlated candidates until 6 “most dissimilar” candidates remained. All simulations and 

analyses were conducted in Python 3.8.3 using the pandas and NumPy libraries. An example of one of the 

6 block schedules used in our study is shown in Figure 2B. 

Statistical Analyses 

All statistical analyses were performed in Python v3.8.3. Parametric (i.e., independent-samples t-tests) and 

nonparametric (i.e., Wilcoxon rank-sum tests) hypothesis tests were performed using associated modules 

from the scipy.stats library (i.e., ttest_ind and mannwhitneyu, respectively). Kaplan-Meier survival analyses 

were performed using Python’s lifelines library (v0.27.1; Davidson-Pilon, 2019), and differences between 

the curves were evaluated via a log-rank test using lifelines’ statistics.logrank_test function. The following 

logistic regression analyses were performed using Pythong’s statsmodels library v0.13.2: smf.logic(“escape 
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~ hazard_vector”, df); smf.logit(“escape ~ hazard_vector+threat_env”, df);  smf.logit("escape ~ 

hazard_vector ", df[df['threat_env']=='late_threat']); and smf.logit("escape ~ hazard_vector ", 

df[df['threat_env']=='early_threat']). 

Threat-Probability Dynamics of Time-to-Event Analyses 

Here, we investigate the impact of the evolving probability of an outcome during a period of anticipation. 

These values—i.e., the hazard rate, [h]—can be computed for any point in the anticipation period as: 

 

 

 

Where, h(t) is the hazard rate, p(t) is the probability of the event occurring at this specific moment in time, 

and P(t) is the probability that the event will occur in a given time interval, i.e. up to time t. This cumulative 

probability, P(t), is defined as the sum of the perceived probability, p(t) from time 0 to t: 

 

 

During anticipation of an event where the exact time of the outcome is known, P(t) will equal zero until the 

delivery of the outcome. During anticipation of an event where the distribution of the negative event is 

uncertain, P(t) will increase over the interval in which p(t) is greater than 0. Thus, the denominator of h(t) 

decreases over time, resulting in the same probability [p(t)] being associated with increased hazard rate 

[h(t)] until the anticipation period ends. The cumulative hazard rate throughout a time interval is: 
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Notably, the H(t) is unconstrained, meaning that it could increase without being bound by some maximum 

value. This means that, unlike the actual probability [p(t)] or the cumulative probability [P], the cumulative 

hazard rate [H] can exceed 100% by the time that an outcome occurs (i.e., t=T). We hypothesized that 

participants would use the hazard rate, as opposed to the experimenter-defined momentary probability of 

threat, or P(shock), to guide behavior, and that environments with a higher hazard rate would elicit more 

anxiety than those with a lower hazard rate.  

Codebase and Systems 

The codebase for our study’s shock-workup, stimulus-presentation, and shock-delivery software can be 

found here: https://github.com/DanHolley/Escape-the-Shocks-study 

 

We built our study interface using Python 3.8.3 on a 2017 MacBook Pro with a 2.8 GHz Quad-Core Intel i7 

CPU and a Radeon Pro 555 2 GB GPU, running MacOS 11.2.3. We relied on a variety of libraries to support 

device drivers, stimulus presentation, and human-computer interaction. Please refer to the codebase for 

our requirements, while keeping in mind that requirements may differ across systems.  
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Figure 1. A computational approach to the study of uncertain-threat anticipation. a) studies 
of threat anticipation often compare a certain condition and an uncertain condition. b) In certain-
vs-uncertain comparisons P(threat) and hazard rate values are confounded, prohibiting causal 
investigation about the contributions of either to the behavioral expression or emotional 
experience of anxiety. In the certain-threat condition, note that both P(threat) and hazard-rate 
values remain at zero until the final epoch, when they peak at 1.  c) We addressed this confound 
by comparing two uncertain conditions. d) In these conditions, we held P(shock) constant across 
several time bins while manipulating the hazard rate, thereby allowing us to dissociate the effects 
of hazard rate from the effects of P(shock) values.  
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Figure 2. ‘Escape from the Shocks’ paradigm. a) We paired randomly assigned, innocuous 
visual stimuli with shocks during periods of uncertain-threat anticipation. Shock timing was 
dictated by the statistical dynamics of early- and late-threat environments, shown in Figure 1D. b) 
An example of a block schedule used in our study. At the outset of the study, each participant 
was assigned two schedules, randomly drawn without replacement from six pseudo-randomized 
block schedules that recapitulated our early- and late-threat environments’ P(shock) values and 
hazard rates. Bold lines show the 5-trial rolling mean of shock-administration times. c) In the 
training phase, participants are exposed to each shape 50 times in a predetermined, pseudo-
randomized order, with all trials ending in shock administration at a pre-set, individually titrated 
intensity. d) Participants’ post-training estimates of environmental statistics, such as the mean 
number of shocks administered per epoch, indicate that learning occurs over the course of the 
training phase. e) An illustrative example of a testing-phase trial, with possible outcomes depicted 
based on shock timing and the participant’s risk-vs-reward decisions.  
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Figure 3. Higher threat hazard rates cause significantly more anxiety. a) In epochs during 
which P(shock) values were matched but hazard rates varied (see Fig. 1D), participants were 
significantly more likely to escape from the early-threat environment, where the hazard rate was 
higher at all P(shock)-matched timepoints (independent-samples t-tests, N=42: [6-10s: t=8.09, 
p<.001], [11-15s: t=7.80, p<.001], [16-20s: t=4.71, p<.001], [21-25s: t=8.30, p<.001]). Escapes 
were locked in 0-5s epoch. Although data is shown our model makes no predictions for escape 
behavior during the final epoch, during which P(shock) values and hazard rates converge on 1 
and are therefore confounded. Although the escape trend reversed and was significant in this 
epoch (independent-samples t-test, t=18.22, p<.001), we refrain from interpreting these effects. 
b) Kaplan-Meier (KM) survival analysis revealed a significant difference between escape activity 
at all timepoints along the early- and late-threat environments’ respective KM curves (log-rank 
test, N=42, 𝜒𝜒2=259.3, p<.005). c) In a final, 30-second, inescapable trial for each environment 
(counterbalanced), participants reported significantly more anxiety in the early-threat environment 
(Wilcoxon rank-sum test, N=21, U=328.5, p<.005) d) In a two-response, forced-choice test to 
determine which shape caused more anxiety overall (counterbalanced), participants showed a 
significant bias toward the shape paired with the early-threat environment (binomial test, N=21, p 
< .001). Legend: ** = p<.005, *** = p<.001  
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Figure 4. A distributed network of threat-sensitive brain regions tracks the hazard rate on 
a momentary basis. As a proof-of-principle test of our model in a functional-neuroimaging 
context, our collaborators at University of Maryland (see Acknowledgements) performed 
voxelwise mass-univariate analyses to test a hazard-rate regressor derived from our model 
against data from their certain-vs-uncertain threat-anticipation paradigm, the Maryland Threat 
Countdown (MCT; Hur et al., 2020; N=220, thresholded at t>10). Although the MTC was not 
designed to test our hypotheses, our regressor identified a main effect of hazard rate, collapsed 
across conditions, and captured BOLD variation across a distributed network of regions implicated 
in threat processing (e.g., see Mobbs et al., 2015): The anterior insula (AI; left), BST (middle), 
and periaqueductal gray (PAG; right) tracked the hazard rate on a moment-to-moment basis.  
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