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Abstract: One of the risks of geologic carbon sequestration (GCS) is the leakage of injected CO into
overlying groundwater resources, resulting in potential deterioration of the quality of the groundwater
due to the increase in acidity, the release of trace metals and organic compounds, and potential
changes in microbial activities. A large number of studies have been conducted to evaluate various
aspects of the impact of CO, leakage on overlying aquifers using natural analog, laboratory
experiments, field tests, and numerical models. In this paper, we conducted an exhaustive review of the
published work, focusing on the statistical assessment of the risk posed by the trace elements
including Pb, As, Cd, Ba, and U and identifying the knowledge gaps. Key observations from the review
include the following: (1) Pb, As, and U are metals of primary concern because multiple cases showed
their concentration higher than maximum contaminant level (MCL) or other regulatory standards, (2)
carbonate aquifers seemed more vulnerable to Pb and As contamination but not to U, (3) Cd and Ba
are less a concern, only one case showed Cd/Ba concentration higher than MCL, (4) none of the field
studies showed the concentrations of Pb and As higher than MCL, although one push—pull field test
showed the concentration of U higher than MCL, (5) the order of aggressiveness in terms of releasing
trace metals was determined to be as follows: batch experiment > column experiment > field test, and
(6) there is no clear correlation between metal release and type of sediments, type of aquifer, the
content of carbonate and clay. Evaluation likely has to be done on a case-by-case basis. For further
operations of CO, storage overview and screening of potential sites, we suggest the use of an
eight-step environmental risk assessment procedure comprising laboratory experiment, screening
modeling work, and field testing for assessing the vulnerability of the overlying aquifers to degradation
from CO, leakage from the GCS site. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd.
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Introduction

arbon capture and storage (CCS) is a promising

technology to reduce net carbon dioxide (CO,)

emissions whereby CO, is captured from large
point sources, such as power plants, and injected into
deep geological formations. Geological carbon
sequestration (GCS) is intended to persist for
geological timescales'; however, unintended leakage of
injected CO, into overlying groundwater resources
could occur due to either short-term, sudden releases
of CO,, such as in the case of a subsurface blowout or
well failure, or due to slow, gradual leaks from
undetected fractures or faults.> When CO, dissolves
into groundwater, pH decreases, altering
hydrogeochemical processes and leading to a
subsequent mobilization of various ions,”® impacting
water quality. The potential impacts of underground
CO; storage on groundwater quality in the overlying
aquifer due to leakage is an obstacle to widespread
implementation.>>”® Therefore, a thorough
understanding of the potential impacts of underground
CO, storage on hydrogeochemical processes in
overlying groundwater is crucial.

A combination of lab-scale tests, field-based tests,
modeling, and analysis of natural analog sites provides
the most thorough understanding of the potential
impacts of CO, leakage on the groundwater quality of
the overlying aquifer. Lab-scale batch experiments
usually involve adding CO, to a preequilibrated
sediment 4 water system with a high water-to-rock
ratio and maximize the mobilization of ions from
sediment allowing for slow geochemical processes to
take place,” which provide useful screening of the
potential risk posed by the trace elements. Field-based
studies provide water-to-rock ratios closer to natural
systems and hydrological and geochemical conditions
are expected to be more similar to actual GCS leakage
scenarios.” Models based on lab and field studies can
be used to predict changes in groundwater quality
based on site-specific parameters including aquifer
mineral composition, flow rates, and CO, leakage rates.
Natural CO, storage analog sites provide examples of
both the long-term feasibility of GCS as well as
potential long-term environmental impacts should
leakage occur.'”

In this study, we systematically reviewed current
knowledge regarding the potential impacts of CO,
leakage on groundwater quality of overlying aquifer
that can be a resource for drinking water or other use.
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From our synthesis of 350 published studies on
groundwater quality impacts, we developed a workflow
applicable to risk assessment of GCS in terms of the
potential impact of leaking CO, on the overlying
aquifer. This paper starts with a summary of the
literature collected throughout this study, and then
synthesizes the previously published results of impacts
to groundwater from CO, leakage and identifies the
data gaps and research needs. Finally, we describe a
recommended workflow assessing the risk to shallow
groundwater of CO, leakage.

Summary of literature

In this report, we collected a total of 139 papers/reports
which encompass 350 cases. Note that one paper
sometimes contains multiple cases and not all
papers/reports are cited here. The break-down of these
cases are as follows:

190 natural analog

16 review papers

19 modeling studies

81 laboratory batch and/or column tests

42 Field tests

Eight studies motioned microbial activities:

- Two studies involve field test

- Two studies are related to deep storage formation
- Four are natural analog

¢ Five studies mentioned organics:

- Two modeling studies

- Two studies from the deep storage formation
- One batch experiment

Summary of literature: -In situ studies

Field injection and push-pull studies to determine the
effects of CO, leakage from storage formation on
overlying aquifer have been conducted around the
world. A summary of field studies is provided in
Table Al in Appendix. Aquifer lithology at study sites
includes chalk, granite, sandstone, gravel, and coarse
and fine sand of varying composition. The carbonate
composition of these aquifers ranges from undetectable
to over 95%. Carbonates are expected to play a major
role in ion mobilization during CO, leakage events, as
their dissolution buffers pH and can be a source of
released trace metals.'!

Overall, field studies found that simulated CO,
leakage universally decreases pH and generally
increases concentrations of water quality parameters
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such as electrical conductivity (EC), alkalinity, major
ions, and trace ions. In some studies, trace metals were
addressed and noted to increase in concentration, but
no numerical values were included.®'*"' When values
were provided, increases were typically minimal, or
concentrations were close to detection limits. Increases
in trace metal concentrations are likely due to
pH-induced desorption or ion exchange with Ca, and
Mg'”!® and dissolution of Fe and Mn oxides, as heavy
metals tend to adsorb to oxide surfaces.” Decreases in
Mn and Fe are theorized to be the result of
coprecipitations as impurities in gibbsite (Al(OH);) in
Vrogum studies®’; however, Mn and Fe show slight
increases at the Brandenburg site, while ZERT site
studies show fluctuations due to oxygenated water and
ion exchange processes.”’

One exception was Mo, which was observed to
decrease in concentration in the majority of studies
where it was measured. No clear trends regarding the
behavior of anions such as NO;~ and SO4>~ were
obvious, as concentrations increase, decrease, or
remain constant, depending on the study. K is relatively
unaffected by exposure to a CO, plume in studies done
at the ZERT site, Vrogum, and the Paris Basin,'”*’ and
shows increases in other studies, but is unmeasured in
most studies.

In carbonate-poor glacial and aeolian sands,
dissolved ions such as Ca, Mg, Na, Si, Ba, and Sr and
other water quality parameters such as EC and total
dissolved solids (TDS) typically follow a pulse-like
evolution trend, where concentrations rapidly increase
following exposure to a CO, plume and gradually
return to postexposure (or slightly elevated) levels after
the CO, plume has passed.'®*1*? A separate study by
Yang et al.'’ found that carbonate dissolution can play
a significant part in ion mobilization in aquifers that
are as little as 1% carbonates.

Studies in Svelvik, Norway demonstrated that isotope
analysis can be used to isolate changes in ion
concentrations due to water-rock interactions brought
on by CO; injections from the effects of saline and
freshwater mixing.?*~%°

Although in situ field injection studies provide
valuable data for the impacts of CO, leakage on
groundwater quality, challenges exist when interpreting
the data. Injection studies vary regarding the time
period over which CO; is injected and the mineralogy
of the target aquifers. Studies where CO, injection
occurs for only a few days may result in observed
changes to dissolved ion concentrations that appear as
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a pulse, but are actually due to the short duration of the
CO; injection, dilution, or flushing with fresh water.?!
Push-pull studies, though simpler than studies that
involve injection and monitoring, have limited time
for reactions between CO, saturated water and aquifer
minerals.?® These differences in injection periods and
timeframes complicate comparisons between studies
done in aquifers of similar composition. It is clear that
site-specific factors such as aquifer mineralogy, geology,
groundwater chemistry, and flow and leakage rates
result in varying responses to CO, leakage.®!”*427-31
In summary, field tests have the following features in
terms of aquifer response to CO, leakage:

e Increases in alkaline earth metals and alkali metals
were observed in most studies.

e Increases in trace metal (As, Pb, Cd, Ba, and U) had
been observed, but concentration remained below
MCL.

¢ Change in concentrations of Fe and Mn depended
on the condition of the test site and both increase
and decrease had been observed.

e Site-specific conditions dominated the response of
the aquifer to CO, leakage, conclusions from one
site do not apply to other sites.

Summary of literature: Lab studies

A summary of lab scale batch and column experiments
is provided in Table A2. Lab batch experiments used a
variety of aquifer samples from around the world
including sandstone, limestone, sand, basalt, and
modified or synthetic minerals. Lab batch experiments
typically utilized high water to rock ratio and allowed
time for samples to equilibrate under an N, or Ar
atmosphere, before pumping in CO,.

Across nearly all lab studies, a decrease in pH and
increase in alkalinity, TDS or EC, Na, Ca, Mg, Sr, Fe,
and Ba is observed and can be attributed to the
dissolution of carbonates such as calcite (CaCQO3) and
dolomite (CaMg(CO3),), Fe, and Mn-oxides, ion
exchange, and desorption.>*!*2-3* Laboratory batch
tests by Little and Jackson® is one of the
representatives of lab studies and they found that
concentrations of Co, U, and Ba continued to increase
beyond the 300-day CO, exposure window and that
Ca, Sr, Mn, and Ba fluctuated significantly over the
same period, indicating that long term lab experiments
and field monitoring are vital to accurately determine
the effects of CO, exposure on groundwater quality.
Laboratory batch tests by Little and Jackson®* also
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found that concentrations of Al, Cr, Co, Ni, Zn, As, and
Se were highest in aquifer samples with limited
carbonate minerals and, as a result, the lowest pH. U
was shown to be released under oxidizing conditions.
Variations in concentrations of released ions between
samples from the same aquifer can be indicative of
aquifer mineralogical heterogeneity.*

Despite studies showing a general increase in trace
element concentrations, only five studies we reviewed
exceed World Health Organization (WHO), European
Union (EU), or the United States Environmental
Protection Agency (US EPA) drinking water standards
for trace elements on the list of EPA primary drinking
water regulations. Elevated trace metal concentrations
during CO, leakage studies exceeded drinking water
standards for Pb in one study,*® As in three
studies,*****” Cd in one study,** U in one study,*® and
Ba in one study.*? One of the most significant increase
had been observed by Galeczka et al.** investigating
the effects of injecting CO, into a basalt aquifer saw a
decrease in pH from 9-10 to 4.5 and an over 100 times
increase in mobility in Sr, Fe, Al, Ca, Ba, Mn, and Mg.
Dissolved Al, Fe, Mn, and Cr concentrations exceeded
EU drinking water limits, with the majority of Al and
Cr being in the Al*? and Cr*? forms, respectively.
Carbonates such as calcite, siderite (FeCO3), and
ankerite (Ca(Fe,Mg,Mn)(COs3),) were found to be
supersaturated.

Although the increase in the concentration of major
ions and trace elements had been observed in most
cases, decreases in concentrations had also been
observed. For example, a study by Montes-Hernandez
et al.,’® found that goethite (a-FeO(OH))and calcite
could, under the right conditions, adsorb Cu(II),
Cd(11), Se(IV), and As(V) and prevent remobilization
during CO, exposure. Similarly, Shao et al.** observed
decreased concentrations in spiked Cd and As with
unconsolidated sand and gravel samples that contained
0-4% carbonates by weight after CO, exposure.

The role organics (including pristine organic acids
such as humic acid in an aquifer and organic
compounds from storage formation) play in releasing
metals when sediments were exposed to CO, was not
widely studied. A study by Lawter et al.*! for sediments
collected from the formation in between storage
formation and shallow aquifer examined the effects of
organic matter on the release of major and minor ions
during a lab column test and found that the presence of
organic matter slowed the release of S, Sr, Ba, K, Si, and
Ca and increased the rate of removal of As and Cd.

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104

Although laboratory studies provide valuable insight
into geochemical interactions within aquifers as a
result of CO, leakage, they are limited in their ability to
accurately replicate conditions within the aquifer of
study. Lab studies are often done using relatively small
samples of aquifer material that have been ground,
dried, and are constantly stirred with large
water-to-rock ratios. These conditions facilitate
water—rock interactions due to greater surface area to
volume ratios and results may not fully represent the
complex heterogeneous aquifer system and associated
reaction rates, microbial communities, and flow and
transport behaviors.>>*? Batch experiments, in
particular, fail to account for reactive transport and
changes in hydrogeochemical conditions downstream
which could result in reprecipitation or scavenging of
trace elements.” Additionally, CO, exposure and
postmonitoring in batch experiments typically occur
over the course of weeks, rather than months or years.
Furthermore, changes to redox conditions could
potentially occur during the collection of aquifer field
samples, affecting hydrogeochemical reactions and
associated lab results.® Thus, in situ field experiments
are necessary to confirm if laboratory studies reflect
aquifer conditions and thoroughly understand the
potential impacts of CO, leakage on groundwater
quality.

In summary, lab tests have the following features in
terms of aquifer response to CO, leakage:

e An increase in alkaline earth metals and alkali
metals was observed in most studies.

e An increase in trace metals (As, Pb, Cd, Ba, and U)
had been observed, some cases showed
concentration higher MCL or other regulatory
standards.

e Sediment-CO, reaction had been maximized during
most studies and therefore metals are typically more
aggressively released in comparison to field tests.

¢ The role of organics in releasing metals when
sediments were exposed to CO, was not widely
studied, but a few studies showed by organics could
suppress the release of metals.

e Artifacts in the experiment such as exposure to O,
lead to changes in the concentration of metals
unrelated to CO, exposure.

Summary of literature-analog sites

Natural CO, reservoirs exist worldwide and can be
classified into sites that show no evidence of leakage
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and sites that show leakage over time.!? These GCS
analog sites can provide useful information for
demonstrating the long-term feasibility of GCS as well
as the potential environmental impacts if leakage
should occur.

A summary of studies examining groundwater at
GCS analog sites is provided in Table A3. Large
variations are seen among the suite of water quality
parameters and ions measured among studies.
However, practically all studies report pH,
temperature, EC, or TDS, Na, Ca, Cl, Mg, Fe, and some
form of carbon. Nearly all natural analog sites exhibit
pH levels below 7.

In a study by Afsin et al.** of thermal mineral waters
in Turkey, samples with pH below 7 had elevated EC,
CO,, Ca, Mg, Na, Cl, S0,4%~,NO; 7, and to a lesser
degree Cd and K, compared to other mineral waters
from the same region. Similarly, in a study by Cruz
et al.** of waters from the Furnas volcano, samples with
pH below 7 had elevated alkalinity, EC, dissolved
inorganic carbon (DIC), total inorganic carbon (TIC),
Al, Fe, K, Mn, Na, SO,*7, SiO,, and NH,* compared
to other mineral waters from the same region. Studies
of the Vesuvius volcanic complex found that CO,-rich
groundwater has increased concentrations of trace
elements (As, Se, Mo, V, Li), and decreased levels of Al,
Pb, Co, and Mn compared to unleached host rocks.*
At Mt. Etna, Al, Th, Fe, and other poorly mobile
elements tended in retained in the host rock, while As,
Se, Sb, and Mo are more readily released.*® Other
metals such as Mn, Cr, V, Zn, and Cu are more
dependent on redox conditions and surface-related
processes.*

Studies by Arnérsson et al.*’ in Iceland found that
CO;-rich water (>200 ppm dissolved TIC) from basalt
aquifers are higher in Ca, Mg, Fe, As, Ba, Mn, Co, Nij,
and Sr, and are close to saturation with calcite and
amorphous silica compared to similar nonCO,-rich
waters. The authors suggest that the dissolution of
plagioclase is initially responsible for increased
concentrations of Ba and Sr, but that concentrations
decrease as they precipitate out as secondary
minerals.*” Keating et al.*® reported contrasting results
for a natural analog in New Mexico, USA, where the
pH depression and consequent trace element mobility
were relatively minimal due to the buffering capacity of
the aquifer, despite relatively high levels of dissolved
CO..

Studies by Pauwels et al.* and Lions ef al.*
thoroughly analyzed groundwater overlaying a natural
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CO,; reservoir in Montmiral, France. Despite
measuring high CO, fluxes, the isotopic analysis found
no evidence that CO, was leaking from the reservoir.
They suggested that high CO, fluxes could be
explained by carbonate dissolution and that changes in
Ca, Mg, K, and SO,4%~ could be due to Mg-calcite or
dolomite dissolution, and K-feldspar (KAISi;Og)
dissolution with subsequent kaolinite (Al,Si,Os(OH),)
precipitation.®** These results highlight the
importance of isotopic analysis alongside major ion
monitoring to ensure that CO, fluxes and associated
groundwater quality changes are due to CO, reservoir
leakage, instead of carbonate dissolution.

A study by Heath et al.>! of multiple CO,-rich springs
and a geyser in the Paradox Basin of the Colorado
Plateau found the waters were slightly acidic (pH <
6.5), very saline (TDS >13850 mg L"), and had
elevated levels of HCO;~ (>3500 mg L™!). All
analyzed waters fell into the sodium-chloride chemical
facies and are supersaturated with calcite, aragonite
(CaCO:s), dolomite, and hematite (Fe,O3). Despite the
presence of surface travertine deposits, the system has
remained active for over 100 000 years, suggesting that
leaky reservoirs may continue to leak even when
mineralization is observed.

In addition to natural analog sites, multiple studies
have analyzed major and trace ions in bottled sparkling
waters and bottled mineral waters. A study by Fiket
et al.>? analyzed ions and trace elements in 10 different
brands of bottled sparkling spring and mineral waters
from Croatia; however, the study did not indicate if
sparkling waters were naturally or artificially
carbonated. A study by Allen et al.>> measured over 20
trace elements and ions in 16 different brands of
naturally sparkling bottled water from various regions
around Europe. Sparkling natural mineral waters had
pH values ranging from 5.8 to 7.8, with most falling
below 7. Alkalinity ranged from 60-3429 mg L™ as
CaCO;.

While analyzing analog sites for potential impacts of
subsurface CO, storage and leakage on overlaying
groundwater resources is valuable, it is not without
issues. The effects of natural CO, seepage on
groundwater resources at analog sites are difficult to
elucidate because studies do not always measure or
report groundwater quality parameters from similar or
nearby groundwater that is not impacted by CO,
seepage. Geological data regarding the composition
and relative abundance of minerals such as quartz
(Si0,), feldspars, and clays of aquifers or locations

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104



where water samples are collected is also limited. The
geological descriptions provided are not always
sufficient and limit the ability to draw direct
comparisons between analog sites and potential CO,
storage sites. Furthermore, studies often sampled
CO,-rich water from springs or geysers, where rapid
degassing of CO, can occur. Accurate measurements of
groundwater CO, concentrations and pH are vital for
determining mineral-water interactions.™

In summary, observations from analog sites have the
following features:

e Lower pH and elevated EC and major ions have been
observed in comparison to a typical groundwater
composition.

e While analog sites provided useful information
regarding the long-term impact of GCS, their
implication to GCS has to be taken with caution
because (1) the pristine condition before the
exposure of CO, is missing (2) data from nearby site
without CO, seepage which can serve as a are a
reference point for analog sites were usually missing,
(3) the time scale is too long for GCS operation.

Potential groundwater quality
impacts

One of the primary risks of CO, leakage on
groundwater quality is the release of trace elements and
contaminants naturally found within aquifer rocks.
These trace elements and contaminants are both
adsorbed to mineral surface sites and contained within
the minerals themselves.” Changes in
hydrogeochemical conditions (such as pH, redox
potential, water composition, and CO, partial
pressure) that promote the dissolution of aquifer
minerals or remobilization of adsorbed contaminants
are of high concern.

General water quality parameters

As groundwater is exposed to CO,, whether through
underground injection, leakage of CO,-rich brines, or
during lab-scale experiments, dissolved CO, increases,
and the formation of carbonic acid results in a decrease
in pH. A decrease in pH is observed in every CO, lab
and field experiment and is further supported by
modeling studies. This drop of pH is one of the major
driving factors in subsequent hydrogeochemical
reactions that affect groundwater quality after CO,
exposure.

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104
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The degree of decrease in pH is dependent on the
CO, partial pressure and the presence of carbonate
minerals such as calcite or dolomite, for which
dissolution is thermodynamically favorable under
acidic conditions, increasing alkalinity and buffering
capacity of the water.>®!73* Indeed, multiple studies
show a significant increase in alkalinity after CO,
exposure,®!>13°% even in aquifer samples that are less
than 4% carbonates.?**® Similarly, TDS and EC also
show similar increases after CO, exposure.

When reported, oxidation reduction potential (ORP)
also typically shows a slight decrease after CO,
injection. One likely explanation is that dissolved CO,
displaces O,, reducing ORP.® This effect may have been
lessened by the fact that many of the studies that
reported ORP took place in shallow, unconfined
aquifers. ORP plays an important role in determining
the speciation and subsequent mobility of some trace
elements of concern, such as As.>>?

General trends regarding polyatomic anions such as
SO,?~ and NO; ™~ are unclear, as they are observed to
both increase and decrease in various studies.
Although they are not directly affected by carbonates
equilibrium, they could be impacted by CO, indirectly
through mechanisms such as microbial activity.

General trends in major and trace
elements

Overall, concentrations of most major and trace
elements increase during CO, exposure studies.
Increases in trace elements brought on by a decrease in
pH due to dissolved CO, are thought to be caused by
desorption, and ion exchange reactions along with the
dissolution of carbonates, iron oxides, and
oxyhydroxides, and sulfides.>!*!*° Iron oxides and
hydroxides and clay minerals, when present, are often
the primary minerals responsible for
desorption/adsorption.” The effects of CO; on
elemental release generally decrease with CO,
pressure, an important factor to consider is that CO,
pressure decreases as a plume migrates upward.*’
Increases in Na, Ca, Mg, Sr, and Ba are commonly
observed in studies and are thought to be due to
carbonate dissolution and Ca-driven cation exchange
reactions.”'® Concentrations of Ca, Mg, Fe, and Mn
greatly increase in the majority of studies. This is
explained by the dissolution of various carbonate
species, such as calcite, siderite, magnesite (MgCO3),
and dolomite, as well as iron sulfides.>®%!7:>” Other
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elements such as Ba and Sr saw only slightly elevated
concentrations in comparison.*! This behavior is likely
because Ba and Sr are often present on the
exchangeable sites and as impurities in carbonate
minerals.>** The dissolution of plagioclase may also be
responsible for slow increases in Ca, Sr, and Ba due to
the Ca-driven cation exchange.®!®>° Trace elements
such as Cd, Co, Cr, and Ni often show rapid increases
in concentration following CO, exposure. Their rapid
mobilization can be explained by desorption from Fe
and Mn oxyhydroxides and clay minerals,>'® while
sustained steady increases in concentration are
attributed to the dissolution of containing minerals due
to a decrease in pH.* Increases in Si, Al, K, and to a
lesser extent Na, can be partially attributed to silicate
and clay dissolution.>*3°

Elements of concern, such as As and Pb saw increases
in some studies and decreases in others. One study has
shown that As and Pb desorb from illite and smectite
when pH decreases, which increases aqueous
concentrations of As and Pb.”® Furthermore, increased
concentrations of HCO;~ have been shown to facilitate
the desorption of arsenic and uranium from the
surfaces of metal oxides and other aquifer minerals and
clays.? Other studies have found that As(V) and other
metals such as Cu(II), Cd(II), and Se(IV), can be
immobilized by the presence of carbonates after
exposure to CO,.***" Al and oxyanion-forming trace
elements including As, Se, Sb, Mo, V, and Cr can be
immobilized in oxidizing, moderately acidic aqueous
systems but can see increased mobilization under
highly acidic conditions.*>* Other hazardous
elements, such as U, were shown to be mobilized
under oxidizing conditions.*> Concentrations of Mo
decrease in some CO, exposure studies,®*17-27-38:60
and increase in others.***>*” It is hypothesized
that Mo adsorbs to sulfides and iron oxides at low
PH-41

Although increases are observed in many major and
trace elements, it is important to note that reactive
transport mechanisms, including water-rock
interactions downstream of the CO, leakage or
injection site, can buffer pH and result in contaminant
removal through scavenging or the precipitation of
secondary minerals, release or scavenging is the result
of a delicate dynamic balance of reactions such
precipitation/dissolution, adsorption/desorpotion,’
natural attenuation can apparently alleviate the release
of trace metals.

9
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A statistical assessment of the risk
associated with trace elements

Based on the data collected in the current work, we
conducted a statistical assessment of the risk associated
with trace elements, that is, among all the studies, how
many of them showed the risk of trace elements. The
risk was grouped in the following three categories
based on the EPA regulated MCLs:

e Green flag: There is no change of concentration of
trace metals when CO, was added to the system, or
trace metals were not detected either in the
background or after CO, was added.

e Yellow flag: Changes in the concentration of trace
metals were detected, but the level of change was
lower than MCL.

¢ Red flag: Concentrations increase to a level higher
than MCL.

The studies selected for such statistical assessments
are laboratory experiments and field tests. However,
modeling studies, natural analog studies, and lab
studies on pure minerals to study release processes
(e.g., Montes-Hernandez et al.*) are not included.

Pb was the focal point for risk assessment of GCS
sites in terms of impact on shallow groundwater since
the issue of GCS impact on shallow groundwater was
brought up in some early studies (e.g., Zheng et al.>®).
Among all the 21 eligible cases, four of them show a
red flag for Pb (Table 1) and all of them are from
column tests of samples from Edward aquifer, an
unconfined carbonate aquifer.*®

Many studies measure As and 11 out of 60 studies
show a red flag for As (Table 2), which were reported in
Lu et al.,** Wunsch et al.,*”*” and Wang et al.*® The red
flag cases are not clearly related to any type of features
of the aquifer, except that all these studies are batch
experiments.

Cd seems not to pose a great risk to the aquifer—only
one out of 44 cases shows a red flag for Cd (Table 3)
and it is a quite unusual type of aquifer: basalt.*?

Ba is quite ubiquitously observed in studies—40 out
of 43 studies show the yellow flag for Ba (Table 4),
Increase in concentrations of Ba had been observed but
was not above MCL. The only red flag for Ba was
observed in a lab test with basalt.*?

Seven out of 46 studies show a red flag for U (Table 5).
It is noteworthy that two of these red-flag cases are field
push—pull tests®® for sediments about 240-300 m
deep.
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Table 1. Summary of risk of contamination in terms of Pb and some relevant aquifer characteristics.

Total eligible studies (21) Green Yellow Red

Case/sample 9 8 4

Type of sediments Two limestone, 7 sandstone 7 sandy sediment or Sandstone 4 Edward aquifer, carbonate
and 1 Limestone aquifer

Carbonate rich (>5%) 6 1

Carbonate poor (<5%) 3 7

Lab or field 5 field, 4 lab 5 Lab and 3 Field 4 Column tests

Confined/unconfined 4 confined, 3 unconfined 2 confined, 5 unconfined 4 unconfined

Clay% 3 studies <1%; 6 studies >1%; 1 study <1%; 3 studies >1%; 4 0 studies <1%:;2 studies
not reported (NR) >1%; 2 NR*

Table 2. Summary of risk of contamination in terms of As and some relevant aquifer characteristics.

Total eligible studies (60) Green Yellow Red

Case/sample 24 25 11

Type of sediments 1 limestone, 23 sandstone 21 sandy sediment or Sandstone 9 limestone, 2 sandstone

and 4 Limestone

Carbonate rich (>5%) 4 4 9

Carbonate poor (<5%) 17 10 2

Lab or field 4 field, 20 lab 22 Lab and 3 Field Batch experiments

Confined/unconfined 14 confined, 2 unconfined, 8 not 7 confined, 7 unconfined, 11 NR 0 confined, 4 unconfined,
reported (NR) 4 NR

Clay% 2 studies <1%; 3 studies >1%; 19 1 studies <1%; 6 studies >1%; 2 studies <1%; 5 studies
NR 18 NR >1%; 4 NR

Table 3. Summary of risk of contamination in terms of Cd and some relevant aquifer characteristics.

Total eligible studies (44) Green Yellow Red
Case/sample 18 25 1
Type of sediments 5 limestone, 13 sandstone 24 sandy sediment or Sandstone Basalt
and 1 Limestone
Carbonate rich (>5%) 10 2
Carbonate poor (<5%) 6 16
Lab or field 4 field, 20 lab 21 Lab and 4 Field Column experiments
Confined/unconfined 9 confined, 7 unconfined, 2 not 11 confined, 6 unconfined, 8 NR 1NR
reported (NR)
Clay% 2 studies <1%; 5 studies 1 studies <1%; 6 studies >1%; 1 NR
>1%; 11 NR 18 NR
In summary, the following observation can be drawn e Carbonate aquifers seemed more vulnerable to Pb
from the statistical analyses: and As contamination, but not to U.
¢ Cd and Ba are less a concern: only one out of 44
e Pb, As and U are metals of primary concern: four of cases for Cd and one of 43 cases for Ba showing the
21 cases showing Pb concentration above MCL, 11 red flag and both for one study on basalt.
of 60 cases for As, and seven of 46 cases for U show e None of the field studies show the red ﬂag of Pb and
red flags. As, one push-pull field test showed a red flag for U.

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104 17147



1142

L Zheng et al.

Table 4. Summary of risk of contamination in terms of Ba and some relevant aquifer characteristics.

Total eligible studies (43) Green
Case/sample 2

Type of sediments 2 limestone,

Carbonate rich (>5%) 2

Carbonate poor (<5%) 2

Lab or field 2 lab

Confined/unconfined 0 confined, 2 unconfined
Clay% 1 studies <1%; 1 studies >1%;

Yellow Red

40 1

33 sandy sediment or Sandstone Basalt

and 7 Limestone

12
20
21 Lab and 4 Field Column experiments
17 confined, 11 unconfined, 12 1NR
not reported (NR)
1 studies <1%; 11 studies >1%; 1NR

28 NR

Table 5. Summary of risk of contamination in terms of U and some relevant aquifer characteristics.

Total eligible studies (46) Green

Case/sample 14

Type of sediments 3 limestone, 11 sandy

sediments

Carbonate rich (>5%) 3

Carbonate poor (<5%) 11

Lab or field 1 field, 3 column and 10 batch

Confined/unconfined 5 confined, 4 unconfined, 5 not
reported (NR)

Clay% 0 studies <1%; 2 studies

>1%; 12 NR

¢ Order of aggressiveness in terms of releasing trace
metals: Batch > column > field.

* Releasing of organics were not reported for shallow
aquifer (there was one study for Frio formation at
1500 m showing increasing organics).

e There is no clear correlation between metal release
and type of sediments, type of aquifer, the content of
carbonate and clay. Evaluation likely has to be done
case by case.

Microbial impacts on water quality

Data regarding the effects of microbial communities on
changes to groundwater quality due to CO, leakage is
limited, partially because lab-scale studies purposefully
limit microbial activity by drying samples and sed-
iments before CO, experimentation.*> Although there
are relatively few studies investigating the effects of
CO; leakage on microbial communities in aquifers with
respect to water quality, it is clear that changes in micro-

Yellow Red

25 7

23 sandy sediment with clay

5

Sedimentary formation mixed with
sand and clay (2); Sand from the
shallow formation (5)

1

and 2 Limestone

20 6

24 batch and 1 Field

12 confined, 5 unconfined, 8

1 studies <1%; 6 studies

1 field and 6 batch experiments
5 confined, 0 unconfined, 2 NR
NR

2 studies <1%; 1 studies >1%; 4

>1%; 18 NR NR

bial communities brought on by the leakage of CO, into
overlying groundwater have the potential to negatively
impact water quality and must be further studied.
Leakage of CO, into groundwater is expected
to impact microbial activity by altering environmental
conditions or penetrating cells and interfering with
metabolic functions.” Increases in CO, concentration
are generally expected to negatively impact microbial
activity.” Indeed, a field injection of CO, in Escatawpa,
Mississippi analyzed by Gulliver et al.®! found an
overall decrease in microbial diversity with increased
CO, concentrations, but also found increasing evidence
of CO, fixation, methanogenesis, and the oxidation
of reduced organics including nitrogen, hydrogen,
sulfur, and iron species, impacting water quality.
Studies by Kirk et al.®*®* of the Frio Formation and
the ZERT site found that in lab batch experiments with
lower partial pressures of CO,, SO4*~ reducing
bacteria were dominant, while Fe(III) reducers were

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104



dominant in high partial pressure CO, experiments.
Injection of CO, and subsequent drop in pH increases
the energy available for microbial Fe(III) reduction and
has been shown to increase CO, trapping®>®* through
the biomineralization of siderite and calcite.®
However, these same conditions also led to the increase
in Fe(II) and dissolution of goethite and sulfide
minerals such pyrite (FeS,), minerals that play an
important role in adsorbing trace elements such as
As.526395 In aquifers where iron oxides and
oxyhydroxides are present and natural Fe(III)
reduction is normally limited, the introduction of
subsurface CO, can increase microbial activity and
lead to negative impacts on groundwater quality.®>6%6°
In a push-pull study in the Newark Basin by O’Mullan
et al.*? increases in the concentration of U by up
to 100-fold were likely caused by enhanced desorption
due to uranyl carbonate complex formation, however,
increases in bacterial communities associated with
anaerobic oxidation of U were also observed during
the early and mid-phases of injection and may have
also contributed to the increase in U. No significant
changes were observed in levels of As, but bacterial
communities shown to mobilize arsenic under sulfide
oxidizing conditions. Under the right conditions,
these bacterial communities could play a significant
role in trace metals geochemistry during CO, leakage.
Subsurface microbial activity is generally slow and
changes in groundwater quality due to CO,-induced
microbial activity may be minimal during short-term
lab and field injection experiments.5*°

Organic matter

There are two types of organic matters that could affect
the response of groundwater quality to CO, leakage:
one is the pristine soil organic matters such as humic
and fulvic acid in the aquifer, which could affect the
release of trace metals because of their association with
metals in groundwater, the other is organic compounds
that usually exist in the deep formation such as BTEX.
The current review did not find studies regarding soil
organics, but there are a few studies that examined the
effects of organic compounds of deep sources on the
impacts of CO, leakage on groundwater quality. It is
generally agreed that mobilization of BTEX and other
non- to moderately polar organic compounds from
reservoir rock due to supercritical CO, injection is a
possibility.>!*¢7-70 This is of particular concern for
CO; injection for EOR, but also has implications for
injection of CO; into nonoil-bearing saline aquifers.”

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104
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Migration of CO,-rich brine high in toxic organic
compounds such as BTEX can negatively impact
overlaying groundwater quality.>'*%"~"! In these cases,
understanding the redox conditions of the aquifer is
important for determining the biodegradation
potential and persistence of organic contaminants.?
Few studies detected elevated concentrations of
organic compounds during CO, injection. One notable
field study that detected elevated BTEX levels after CO,
injection determined that the source was contaminated
CO,, rather than mobilization from reservoir rock.'”¢
Fewer studies have investigated the effects of organic
matter on the release of major and trace elements
during CO, exposure. One key lab study by Lawter
et al.*! found that concentrations of Ca, Mo, Ba, Si, K,
Sr, and S were lower and removal rates of As and Cd
were slightly increased in CO, exposure tests with
increased levels of organic matter (toluene spike).
Decreases in trace elements due to organic matter are
typically attributed to surface adsorption.” Note that
Lawter et al.,*! tested sediments collected from the
formation in between storage formation and the
shallow aquifer that is a groundwater resource.

Data gaps and further research

Inconsistencies between studies, such as variations in
CO; injection and post monitoring time frames for
both field and lab studies, variations in the major and
minor ions measured or reported, and the lack of data
reporting consistency (e.g., ion concentration data
presented in chart form only), hinder the ability to
compare study results. The limited time frames of
post-CO, exposure monitoring, in particular, limits
data regarding the post CO, exposure behavior of
mobilized trace metals and time frames required to
return to background levels after pH and dissolved
CO, concentrations also return to background levels.?
Furthermore, studies sometimes omit a detailed
breakdown of aquifer mineralogy according to
carbonate, quartz, clay, k-feldspars, plagioclase, and
other relevant minerals, as well as elemental
composition. As discussed previously, aquifer
mineralogy plays an important role in contaminant
mobilization, and information regarding mineral
composition would facilitate analyzing and comparing
the effects of various aquifer mineralogies on
contaminant mobilization from CO, exposure.”
A thorough review of available studies regarding
impacts on groundwater quality from CO, injection

94
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Cumulative Effort

Figure 1. Summary of eight-step procedure for assessing the vulnerability of the

shallow aquifer overlying the GCS site.

reveals that significant data gaps still exist. While the
release of trace metals has been studied extensively, the
response of microbial communities to CO,; intrusion
into aquifer and their role in the mobilization of trace
metals requires further study. Organic matter, either as
contaminants or an agent that enhance the
mobilization of trace metals warrant further studies.
Even for trace metals, a major hurdle is that aquifer
responses to CO, injection or leakage are
site-specific.>>2>68

The knowledge gap regarding organics has two folds:

1. Impact of organic matter preexisting in the
impacted aquifer in the response to CO, intrusion.
e Impact on buffering capacity
® Impact on CEC
e Impact on supporting microbial activity

2. Impact of organics that carried by leaking CO, onto
the aquifer.
e CO, leaching of cap rock materials
e Transportability of leached species
e Decomposition pathways of released organics
e Sorption/desorption behavior of released

organics

The knowledge gap regarding microbial activities is
about assessing the effects of CO,-induced changes in
the microbial community and Fe cycling in
GCS-relevant aquifer sediments.

1144

Proposed site assessment
procedure

Based on the risk that CO, leakage could poise on
shallow aquifers and the various studies in this regard
that have been conducted, we propose the following
eight-step procedure for assessing the vulnerability of
the shallow aquifer overlying the GCS site. The
procedure uses activities with different levels of effort,
for example, from batch experiments and simple
models to field tests and complex site models to screen
the potential risk by gradually reducing the
uncertainties with increasing effort (Fig. 1).

Step 1: Site survey

The purpose of Step 1 is to gather information from a

literature survey in preparation for sample collection

and testing/modeling in the next steps. Specifically,

Step 1 is composed of the following tasks:

e Gather as much existing information on the site as
possible, primarily through a literature survey;,
including hydrological and geochemical conditions.

e Based on current knowledge, perhaps supplemented
by a geophysical survey, a statistically valid sampling
procedure to obtain aquifer materials will be
determined.

e Use statistical decisions and collected sediment
samples from the aquifer to plan the next steps in the
procedure.

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104



Note that in Step 1, the work can be conducted for
multiple sites simultaneously.

Step 2: Groundwater survey and sediment
characterization

Unless thorough information can be collected in Step
1, it is likely that a groundwater survey and sediment
characterization has to be conducted, which is the
purpose of Step 2:

e If the concentration of a contaminant in the
groundwater is below the detection limit in
groundwater, the chance that this contaminant will
rise above MCL upon the leakage of CO, is very low,
but an increase in concentration is still possible (e.g.,
Varadharajan et al.”> and Zheng et al.>).

e Knowledge of the mineralogical composition of the
sediment can be a useful indicator of potential
contamination:

- The existence of clay minerals indicate potential
cation exchange and desorption, leading to the
release of Ba, Cd, Pb, and As.

- The existence of sulfide minerals is an indicator of
a potential release of As and Pb (also Cu and Zn).

- The amount of carbonate minerals is related to the
aquifer pH buffering capacity and the degree of
metal release is related to the magnitude of pH
drop driven by CO, dissolution.

e Sediment titration to assess buffering capacity is a
key test to evaluate the aquifer response.

e Selective extraction is recommended because it
reveals the metal-mineral associations which are
good indicators of potential contamination.

Step 3: Batch experiments

The batch experiments in which sediments are mixed
with field or synthetic groundwater and reacted with
CO, are recommended in Step 3:

e If contaminants are released in the batch
experiment, further studies are warranted.

o If contaminants are NOT released in the batch
experiments, further studies are NOT warranted.

Step 4: Screening model

The purpose of Step 4 is to screen the potential risk
before investing in expensive experimental work. It has
the following two substeps:

e Prepare the screening model

© 2021 Society of Chemical Industry and John Wiley & Sons, Ltd. | Greenhouse. Gas. Sci. Technol. 11:1134-1166 (2021); DOI: 10.1002/ghg.2104
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The geochemical model will be built based on all the
information collected in Steps 1-3, that is, the
groundwater survey, sediment characterization,
metal-mineral association revealed by sequential
leaching.

- Establish contaminant release
mechanisms/reaction network
- Calibrate key parameters such as pH buffering
capacity, parameters related to
adsorption/desorption, and kinetic reaction
rates
e Screening model
- 1D, horizontal homogenous
- Pore velocity from ambient flow gradient and
estimated hydraulic conductivity and specific
charge
Typical average aquifer mineralogy/ geochemical
properties
- Test many combinations of key input parameters

Step 5: Flow-through column experiment
The purpose of Step 5 is to assess the risk of
contamination at the solid-to-liquid ratio close to the
aquifer.

e Design column tests to validate and explore the
results of the screening model
e Because of the large liquid to solid ratio, batch
experiments are very aggressive in releasing
contaminants, column experiments provide
conditions more similar to field conditions in terms
of liquid to solid ratio
- Pay special attention to the contaminants released
in batch experiments or screening model runs
- If contaminants are released in the batch
experiment with less than a moderate increase in
concentration and are not released in column
experiments, further studies are NOT warranted.
- If contaminants are released in column
experiments, further studies are warranted.

Step 6: Preliminary site model

The purpose of Step 6 is to further evaluate the risk
without resorting to expensive field tests. The model
has the following features:

¢ 2D horizontally homogenous

e Vertically heterogenous

e Permeability and flow rate yield ambient typical pore
velocity range

1145
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e Distinct zones of average aquifer mineralogy and
geochemical properties

e Evaluate different leakage scenarios

e Understand the long-term behavior.

Step 7: Field test

The ultimate measure of risk assessment is to conduct a
field test at the GCS site.

e Field tests are warranted if column tests and reactive
transport modeling show release of contaminants,
especially to a level higher than MCL.

e Use the preliminary site model to design a field test.

¢ A closed-loop experiment like the Mississippi field
test (Trautz et al.®; Zheng et al.>) is recommended to
constrain the CO, plume, but the induced
groundwater flow rate should not be much higher
than ambient conditions (ideally about the same).

¢ Groundwater monitoring for an extended period
before the test is necessary to provide good baseline
data.

Step 8: Working site model

The working site model can be used to interpret the
data from the field test and eventually developed into
the model of the GCS site. It has the following features:

Full 3-D heterogenous model

Calibrated and refined from the field test
Used for monitoring and risk assessment
Complexity limits the number of uncertainty
analyses.

Conclusion

In this paper, we collected data for 350 cases that were
documented in 139 papers/reports, with 81 cases of
laboratory batch and/or column tests and 42 cases of
field tests. In general, we observed that:

e Increases in alkaline earth metals and alkali metals
were observed in most studies.

¢ Solid phase aquifer chemistry and mineral phases
are dominant factors in the release of major and
trace elements.

In light of the release of trace metal from sediment
upon the intrusion of CO; into the shallow aquifer,
there are the following general observations:

e An increase in trace metals (As, Pb, Cd, Ba, and U)
had been observed, some cases showed

L Zheng et al.

concentration higher MCL or other regulatory
standards.

e Pb, As and U are metals of primary concern: four
cases have Pb concentration higher than MCL, and
11 for As; seven for U.

e Carbonate aquifers seemed more vulnerable to Pb
and As contamination, but not to U.

e Cd and Ba are less a concern, only one of 44 case
show Cd concentration higher than MCL, and
one of 43 cases has Ba concentration higher than
MCL.

e None of the field studies show the concentration of
Pb and As higher than MCL; one push-pull field
test showed the concentration of U higher than
MCL.

e Order of aggressiveness in terms of releasing trace
metals: Batch experiment> column experiment >
field test.

e There is no clear correlation between metal release
and type of sediments, type of aquifer, the content of
carbonate and clay. Evaluation likely has to be done
on a case-by-case basis.

Despite a large number of studies being conducted,
there are still knowledge gaps: one is about organics, in
light of the impact of organic matter preexisting in the
aquifer in the response to CO, intrusion and the
impact of organics that carried by leaking CO, on the
shallow aquifer. Another knowledge gap regards
microbial activities; further studies are needed to assess
the effects of CO,-induced changes in the microbial
community and Fe cycling in GCS-relevant aquifer
sediments.

Based on the literature review, using MCL as a simple
risk assessment threshold, an 8-step risk assessment
procedure was proposed to assess the risk of GCS site
on overlying groundwater aquifers:

e Step 1: Site survey

e Step 2: Groundwater survey and sediment
characterization

Step 3: Batch experiments

Step 4: Screening model

Step 5: Flow-through column experiment
Step 6: Preliminary site model

Step 7: Field test

Step 8: Working site model
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