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ABSTRACT
Cohomological Kernels for Cyclic, Dihedral and Other

Extensions
by

Nathaniel Bryant Schley

Let F be a field andE an extension of F with [E ∶ F ] = d where the characteristic of F is zero
or prime to d. We assume �d2 ⊂ F where �d2 are the d2th roots of unity. This thesis studies the
problem of determining the cohomological kernelHn(E∕F ) ∶= ker(Hn(F , �d)→ Hn(E, �d))

(Galois cohomology with coefficients in the dth roots of unity) when the Galois closure ofE is a
semi-direct product of cyclic groups. The main result is a six-term exact sequence determining
the kernel as the middle map and is based on tools of Positelski [Pos05]. When n = 2 this kernel
is the relative Brauer group Br(E∕F ), the classes of central simple algebras in the Brauer group
of F split in the field E. In the case where E has degree d and the Galois closure of E, Ẽ has
Galois groupGal(Ẽ∕F ) a dihedral group of degree 2d, then work of Rowen and Saltman (1982)
[RS82] shows every division algebra D of index d split by E is cyclic over F (that is, D has
a cyclic maximal subfield.) This work, along with work of Aravire and Jacob (2008, 2018)
[AJ08] [AJO18] which calculated the groups Hn

pm(E∕F ) in the case of semi-direct products of
cyclic groups in characteristic p, provides motivation for this work.
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1. INTRODUCTION

This thesis studies cohomological kernels of field extensions. Historically, such kernels
have played a key role in the computation of relative Brauer groups, although the results pre-
sented here apply more generally to higher cohomology. Similarly, the computation of anal-
ogous cohomological kernels have played important roles in the development of the algebraic
theory of quadratic forms.

The Brauer group and central simple division algebras played a key role in the development
of local and global class field theory in the first half of the 20th century. One corollary of that
work was the discovery that finite dimensional division algebras over local and global fields
were all cyclic algebras (e.g. they had cyclic Galois splitting fields), and indeed, one of the
major accomplishments of global class field theory is the determination of the splitting fields of
a Brauer class in terms of its local data. Similar local-global principles are known for quadratic
forms. These accomplishments led to the investigation of these same problems over general
fields, not just local and global fields. By mid century a large body of work in the general case
began to develop, with A.A. Albert playing a major role in the study of central simple algebras
and E. Witt in the case of quadratic forms.

The second half of the 20th century witnessed progress on two main problems considered
by Albert, where in each case the role of understanding relative Brauer groups proved to be
essential. These questions involve determining the maximal subfields of division algebras and
determining generators for the Brauer group. The question of determining maximal subfields
is the question of determining those field extensions of degree equal to the index of the split-
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ting fields. Amitsur’s discovery of non-crossed product division algebras is probably the most
famous from this period. Albert’s question of whether or not division algebras of prime index
are cyclic (that is, have a cyclic Galois maximal subfield) remains open. Although the work
in this thesis does not consider this question directly, it does study cohomological kernels of
non-Galois extensions which could at some point provide an approach.

In 1980, the work of Merkurjev and Suslin on the conjecture of Albert showed that in the
presence of roots of unity, the Brauer group is generated by classes of cyclic algebras. In terms
of cohomology, this means that the cup product map H1(F , �d) ×H1(F , �d) → H2(F , �d) ≅

Brd(F ) is surjective. Their work was dependent upon detailed analyses of the K-theory of
Severi-Brauer varieties and the relationship between the Milnor K-theory of a field and its Ga-
lois cohomology. Initially in the context of quadratic forms, Milnor (1970) had asked if his map
sn ∶ KnF∕2KnF → Hn(F ,ℤ∕2ℤ) was an isomorphism. He also wondered if there existed a
well-defined map en ∶ InF∕In+1F → Hn(F ,ℤ∕2ℤ) (here, IF is the ideal of even-dimensional
forms in the Witt ringWF .) Building upon the work of Merkurjev and Suslin who had extended
their work to the case of n = 3 (1986), and the well-definition of e4, the fourth cohomological
invariant for quadratic forms (Jacob and Rost, 1989), Veovodski (1996) proved the Milnor Con-
jecture that sn and en are isomorphisms for all n, linking Milnor K-theory, Galois cohomology
mod 2 and the graded Witt Ring. Some time after that the Bloch-Kato conjecture generalized
the relationship between Milnor K-theory of a field and Galois cohomology in 2003. The proof
of the Bloch-Kato conjecture is essential to applications of the the results of Positselski’s work
that are used in this thesis. The work on the Milnor problems and the Bloch-Kato conjecture
all involve the study of cohomological kernels of function field extensions and as such use the
arithmetic geometry of the associated varieties.
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In 2005, Positselki studied cohomological kernels of biquadratic extensions and certain
degree 8 extensions [Pos05] using a four-term exact sequence of Galois group modules

0⟶M1 ⟶M2 ⟶M3 ⟶M4 ⟶ 0

with homotopy maps and some other properties to produce a six-term exact sequence of coho-
mology. Prior to his work, it was known by work analyzing the Witt ring that ifE = F (

√

a,
√

b)

is biquadratic then the kernel of the map H2(F ,ℤ∕2ℤ) → H2(E,ℤ∕2Z) is generated by the
images of “expected elements” (a) ⌣ (x) and (b) ⌣ (y) for x, y ∈ F [EL76] and that the
analogue of this expected result for triquadratic extensions was false [ART79]. The question
of determining the kernel of Hn(F ,ℤ∕2ℤ) → Hn(E,ℤ∕2ℤ) for n ≥ 3 in the separable bi-
quadratic case was considered by a number of researchers (Merkurjev, Tignol, Kahn), and it
is this problem that Positselski solved with his tools. Positselski’s tools also applied to dihe-
dral extensions of degree 8, indicating the applicability of these techniques to the non-Galois
case. Characteristic p versions of Positselski’s machinery have been constructed by Aravire
and Jacob (2012), for the separable biquadratic case and the dihedral and quaternion cases in
characteristic 2 (2016), and more generally for the cyclic by cyclic semi-direct product cases in
characteristic p > 2 by Aravire-Jacob-O’Ryan (2018). It is these latter constructions that this
thesis generalizes to the case where the characteristic is prime to the field degree d and the d2th
roots of unity are present in the field.

The key to this work is determining the appropriate modules M3 and M4 (see below for the
set-up) and establishing the requisite homotopies necessary to apply Positselski’s tools. This is
spelled out in Chapter 4. Chapters 2 and 3 develop the background as well as provide details
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necessary for the application of Positselski’s results that are not clearly spelled out in his paper.
In particular, the “connecting map” � ∶ Hn(,M4) → Hn+1(,M1) needs to be carefully
computed. This concludes with interpretations of the results.

1.1 NOTATION AND FURTHER BACKGROUND

Let F be a field, d ∈ ℕ with d > 1, we will assume that char(F ) = 0 or (char(F ), d) = 1,
and that �d2 ⊆ F , where �d2 are the d2 distinct d2th roots of unity. Let Fsep denote the separable
closure of F ,  = Gal(Fsep∕F ), and Hn(,M), the nth cohomology groups for any ℤ[G]-
module M [Ser97]. Let E∕F be an extension of degree d,  ⊆  be Gal(Fsep∕E). We will
also use the notation Hn(F ,M) = Hn(,M), so Hn(E,M) = Hn(,M). We also denote by
Hn(E∕F ,M) ∶= ker(Hm(F ,M)→ Hn(E,M)).

The groupsH0(F , �d) andH1(F , �d) have an interpretation from Kummer theory. Consider
the following short exact sequence of ℤ[]-modules

0⟶ �d
⊆

⟶ F ×
sep

⋅d
⟶ F ×

sep ⟶ 0

where the second map is multiplication by d over theℤ[]-modules. It is surjective becauseFsep

is separably closed. This short exact sequence of ℤ[]-modules yields a long exact sequence
of cohomology [Rot09].
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0 H0(, �d) H0(, F ×
sep) H0(, F ×

sep)

H1(, �d) H1(, F ×
sep) H1(, F ×

sep)

H2(, �d) H2(, F ×
sep) H2(, F ×

sep)

H3(, �d) ⋯

⊆ ⋅d

⊆ ⋅d

⊆ ⋅d

)

)

)

Note that Fix(�d) = �d and Fix(F ×
sep) = F × by Galois theory. Furthermore, H1(, F ×

sep) is
trivial by the cohomological version of Hilbert’s Theorem 90. This information gives the long
exact sequence.

0 �d F × F ×

H1(, �d) 0 0

H2(, �d) H2(, F ×
sep) H2(, F ×

sep)

H3(, �d) ⋯

⊆ ⋅d

⊆ ⋅d

⊆ ⋅d

)

)

)

In particular we have the following three results:

1. H0(F , �d) ≅ ℤ∕dZ.

2. H1(F , �d) ≅ F ×∕F ×d and
5



3. H2(F , �d) is the d-torsion of H2(F , F ×
sep).

For a ∈ F × we use (a) ∈ H1(F , �d) to denote the class that aF ×d ∈ F ×∕F ×d corresponds to in
the second identification. Since H2(F , F ×

sep) ≅ Br(F ) is the Brauer group (the cohomological
Brauer group and the Brauer group agree for fields), the third result will be of particular impor-
tance because it means H2(F , �d) picks out the d-torsion in Br(F ). We use ⌣ to denote the
cup product: ⌣∶ H r(F , �d) × H s(F , �d) → H r+s(F , �d), which makes sense in our context
because �d ⊂ F and therefore has trivial -action so �⊗2d ≅ �d as -modules.

1.2 THE PROBLEM STUDIED

The problem studied in this thesis is that of determining the kernels of scalar extension
(restriction in group cohomology),

resE∕F ∶ Hn(F, �d)⟶Hn(E, �d)

for various extensions E∕F of degree d. The case where E∕F is cyclic Galois is basic. Of
course, by definition, in the n = 2 case if the Brauer class of an F -division algebra D of
index d lies in H2(E∕F , �d), then this D is a cyclic algebra (with maximal subfield E.) More
specifically, we know that when E = F ( d

√

a) (recall �d ⊂ F ) we have H2(E∕F , �d) = (a) ⌣

H1(F , �d). The first basic result proved in this thesis, Theorem 13, is that in the cyclic case
this is valid for all n, namely Hn+1(E∕F , �d) = (a) ⌣ Hn(F , �d). The next cases generalize
this situation, where either the Galois closure of E is dihedral or E is an extension of degree
d that becomes a cyclic extension when F is extended by a cyclic extension of degree prime
to d. In this latter case the Galois group of the Galois closure of E is a cyclic by cyclic semi-
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direct product. In these latter cases one cannot describe the cohomological kernel as a cup
product by a class (a) (indeed, H1(E∕F , �d) = 0), but one does have the connecting map �
from Positselski’s theory to capture the kernel.

In order to compute these kinds of kernels in his work, Positselski used 4-term exact se-
quences of Galois group modules with homotopy maps and some other properties

0⟶M1 ⟶M2 ⟶M3 ⟶M4 ⟶ 0

to produce a six-term exact sequence of cohomology. Here with M1 ≅ �d and M2 an appro-
priately selected induced module with Hn(,M2) ≅ Hn(E, �n), so that the six-term sequence
can be used to compute the cohomological kernelHn(E∕F , �d). Aravire and Jacob [AJ08] and
Aravire, Jacob and O’Ryan [AJO18] have developed a variant of this machinery to compute
cohomologial kernels in characteristic p for E∕F of prime degree d = p with Galois closure
having Galois group a semi-direct product of two cyclic groups of order p and s, where s|(p−1).
This thesis gives an analogous result when E∕F is degree d, F has characteristic prime to d,
and the Galois closure of E∕F has Galois group a semi-direct product of cyclic groups of order
d and s, with s|�(d) (the Euler �-function) and ℤ∕sℤ acting faithfully on Aut(ℤ∕dℤ).

1.3 THE BRAUER GROUP

We briefly review here basic properties of central simple algebras and the Brauer group.
The Brauer group of a field F , denoted Br(F ), is the group of isomorphism classes of finite
dimensional central division algebras over F with a binary operation induced by the tensor
product of algebras. However, it may be easier to view the Brauer group as a partition of finite
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dimensional central simple algebras (FDCSAs) over F as follows: For any FDCSA A over
F , A ≅ Mn(D) from the Artin-Wedderburn theorem for unique n ∈ ℕ and a unique division
algebra D up to isomorphism. Two FDCSAs A1 and A2 are identified if and only if they are
isomorphic to matrices over the same division algebra, i.e. if and only if A1 ⊗

F
Mn(F ) ≅

A2 ⊗
F
Mm(F ) for some m, n ∈ ℕ. In this sense, the isomorphism classes of division algebras

over F are thought of as favored representatives of each Brauer group element. The binary
operation for the Brauer group is

[A1] ⋅ [A2] = [A1 ⊗
F
A2]

with F representing the identity and inverses given by opposite algebras, from the result that
A⊗

F
Aop ≅Mn(F ) with n being the dimension of A over F .

For any field extension E∕F , there is an induced homomorphism, called scalar extension,
⊗FE ∶ Br(F )⟶ Br(E), [A] ↦ [A⊗F E]. The kernel of ⊗FE is denoted Br(E∕F ) and is
commonly referred to as the relative Brauer group. The dimension of the smallest field E for
which an element of the Brauer group is sent to the identity is called the index, and the order
of an element of the Brauer group always divides its index [Jac80].

It is often useful to study the Brauer group using Galois cohomology, making use of the
isomorphism

Br(F ) ≅ H2(, Fsep)

8



where  = Gal(Fsep∕F ). This isomorphism is one through which the extension of scalars
homomorphism ⊗FE commutes with the restriction map in the diagram below [Ser97]

Br(F ) Br(E)

H2(, Fsep) H2(, Fsep)

⊗FE

res

≅ ≅

.

Because the order of an element of the Brauer group divides its index, E∕F having degree d
means that the Brauer kernel is contained in its d-torsion, i.e. Br(E∕F ) ⊆ Brd(F ).

0 Br(E∕F ) Brd(F ) Brd(E)

0 Br(E∕F ) Br(F ) Br(E)

⊆ ⊗FE

⊆ ⊗FE

id ⊆ ⊆

Thus, the kernel of the map Brd(F )
⊗FE
⟶ Brd(E) will be studied, and more directly its cohomo-

logical version H2(, �d)
res
⟶ H2(, �d).

9



2. ARASON’S THEOREM

In his thesis, Arason [Ara] proved that the third cohomological invariant, e3 of quadratic
forms is well-defined. To accomplish this, he determined the cohomological kernel of a quadratic
extension away from characteristic two (an equivalent result in group cohomology was proved
independently by D.L. Johnson [Joh] at the same time.) We discuss Arason’s results here be-
cause the approach he took provides a model for understanding the work of Positselski, and
the computation of his connecting map lays a conceptual framework for the computation of
Positselksi’s connecting map �.

2.1 THE THEOREM

Let F be a field, char(F ) ≠ 2, E = F (
√

a) a quadratic extension, and Fsep the separable
closure of F . Let �2 be the square roots of unity±1; clearly �2 ⊆ F . This result of Arason [Ara]
is the following, a result which has a critical role in the algebraic theory of quadratic forms. It
is a cohomological analogue of an exact sequence for the Witt ring (see [Lam05] chap. 7 Sec.
3). We also sketch the proof.
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Theorem 1. Let F be a field, char(F ) ≠ 2, E = F (
√

a) a quadratic extension. There is a long

exact restriction/corestriction sequence

0 H0(F , �2) H0(E, �2) H0(F , �2)

H1(F , �2) H1(E, �2) H1(F , �2)

H2(F , �2) H2(E, �2) H2(F , �2)

⋯

res cor

res cor

res cor

)

)

)

.

where the connecting map ) is the cup product with the character function �E ∈ H1(F , �2),

which corresponds to the class (a) ∈ F ×∕F ×2.

Proof: (Sketch) This long exact sequence of Galois cohomology is induced from a short exact
sequence of Galois modules

0⟶ �2 ⟶ Ind
(�2)⟶ �2 ⟶ 0

that will give the restriction and corestriction once we replace the middle module with �2 on
E using the Shapiro isomorphism. Note that  = Gal(Fsep∕F ) and  = Gal(Fsep∕E) So the
induced module in the middle of the sequence is just the induced module of E over F for �2.
To make things easier, we will work additively, with the sequence

0⟶ ℤ∕2ℤ ⟶ ℤ∕2ℤ⊕ ℤ∕2ℤ ⟶ ℤ∕2ℤ ⟶ 0.

11



Here, ℤ∕2ℤ is a trivial -module, since the field elements (±1) are fixed by the Galois group.
And the induced module has a -action of permuting the two entries for any g ∈  ⧵ , and
trivial action for any ℎ ∈ . Then the maps are the diagonal map 1 ↦ 1 ⊕ 1 and the trace
x ⊕ y ↦ x + y, respectively, which happen to be the only non-zero choices of ℤ[]-module
homomorphisms.

We need to show that the two -maps in the short exact sequence induce maps that commute
with the restriction and corestriction through the Shapiro isomorphism, and we need to show
that the snake-lemma connecting map ) is the cup product with the character function �E . This
latter fact is pulled out as Theorem 2 below. The Shapiro isomorphism gives the following,

Hn(F , Ind
(ℤ∕2ℤ))

Hn(F ,ℤ∕2ℤ)

Hn(E,ℤ∕2ℤ)

Δ

Shap.
≅

res

The composition of the restriction with the Shapiro map is induced by the identity map on
ℤ∕2ℤ, followed by the diagonal map, which agrees with the induced map on the top.

Hn(F , Ind
(ℤ∕2ℤ))

Hn(F ,ℤ∕2ℤ)

Hn(E,ℤ∕2ℤ)

Tr

Shap.
≅

cor

12



The Shapiro homomorphism on ℤ[G]-modules is the diagonal map. When composed with the
trace 1 is sent to the sum of 1 over every coset. This is also the map that induces the corestric-
tion, and therefore the diagrams commute on cohomology. This concludes the proof sketch of
Theorem 1 □

It remains to interpret the connecting map in the long exact sequence. Arason describes this
as the cup product with the character function, and this will be shown next by direct computa-
tion.

2.2 THE CONNECTING MAP

Theorem 2. The connecting map ) in Theorem 1 (Arason’s Theorem) sends a cocycle � to

�E ⌣ �, the cup product with the character function, where the character function �E is the

unique non-trivial homomorphism from Gal(E∕F ) onto �2.

Proof: For the connecting map, we will compute it directly here. Let � ∈ Zn−1(F ,ℤ∕2ℤ). We
pick the liftingl of the trace map that sends 1 to 1⊕0. Sol(�)(g1,… , gn−1) = (�(g1,… , gn−1))⊕

0. Note that though l is not a -map (if it were, then the connecting map would be zero), l is
an abelian group homomorphism. We will use this fact in the next step of the computation.

13



The next step after the lifting l is the chain map �, which can be computed through the bar
resolution:

�(l(�))(g1,… , gn) = g1 ⋅ l(�(g2,… , gn)) − l(�(g1g2,… , gn)) +⋯ + (−1)nl(�(g1,… , gn−1))

= g1 ⋅ l(�(g2,… , gn)) − l(g1 ⋅ �(g2,… , gn)) + l(�(�)(g1,… , gn))

= g1 ⋅ l(�(g2,… , gn)) − l(g1 ⋅ �(g2,… , gn))

Note that everything is 2-torsion here, and ℤ∕2ℤ has a trivial -action. So

g1 ⋅ l(�(g2,… , gn)) − l(g1 ⋅ �(g2,… , gn)) = (g1 + 1)l(�(g2,… , gn)).

Furthermore, (ℎ+1) annihilates all of ℤ∕2ℤ⊕ℤ∕2ℤ whenever ℎ ∈ , and for every g1 ∉ ,
(g1 + 1)(1⊕ 0) = 1⊕ 1. Thus

(g1 + 1)l(�(g2,… , gn)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(g2,… , gn)⊕ �(g2,… , gn) if g1 ∉ 

0⊕ 0 if g1 ∈ 

This is the diagonal image of the function

�(g1) ⋅ �(g2,… , gn)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(g2,… , gn) if g1 ∉ 

0 if g1 ∈ 
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which completes the computation of the connecting map ). Therefore )(�) = � ⌣ �, the cup
product with the character function � , completing the proof of Theorem 2. □

These ideas in the proof of Theorem 2 will be generalized in the sections that follow when
we compute Positselski’s connecting map �.
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3. POSITSELSKI’S 6-TERM COHOMOLOGICAL SEQUENCE

If we attempt to construct a short exact sequence in the fashion of Arason’s theorem for a
cyclic extension of degree d > 2, then the dimensions of the modules over ℤ∕dℤ would be
1, d, 1, which makes exactness (and hence this approach) impossible. However, with the right
machinery we can create exact sequences with 4 terms with a connecting map whose image
is the cohomological kernel. Positselski’s theorem offers exactly this machinery. But we need
some additional conditions to be met [Pos05]. We collect these in the following definition.

Definition 3. Positselski’s Hypotheses: Let  be a pro-finite group, let d, n ∈ ℤ with d ≥ 2

and n ≥ 0, and let

0⟶ A2
d1
⟶ B2

d2
⟶ C2

d3
⟶ D2 ⟶ 0

be a 4-term exact sequence of free ℤ∕d2ℤ-modules with a discrete action of . Let ℎ1, ℎ2, ℎ3

be homotopy maps

A2
ℎ1
⟵ B2

ℎ2
⟵ C2

ℎ3
⟵ D2.

Furthermore, let A1, B1, C1, D1 be the d-torsion of A2, B2, C2, D2 (respectively).

If the homotopy maps satisfy the “prism” condition, that diℎi + ℎi+1di+1 = d ⋅ id for all

i ∈ {0, 1, 2, 3}, and if the Bochstein maps are 0 for all 4 modules, i.e. the kernel/cokernel short

exact sequences

0⟶ A1
⊆

⟶ A2
⋅d
⟶ A2 ⟶ 0

16



have 0 connecting maps ) ∶ Hn(, A2) ⟶ Hn+1(, A1) and the same thing applies for B,C

andD alike, then the four modules and their associated maps satisfy the Positselski Hypotheses.

Given the definition we can now state Positselksi’s main result [Pos05] Theorem 6.

Theorem 4. (Positselski) Given a 4 term exact sequence of -modules that satisfies the Posit-

selski hypotheses, there is a 6-term exact sequence of -cohomology

Hn(B1 ⊕D1) Hn(C1) Hn(D1)

Hn+1(A1) Hn+1(B1) Hn+1(A1 ⊕C1)

d2 + ℎ3 d3

d1 ℎ1 ⊕ d2

�

with the connecting map � defined as follows:

�(�) =
(

(d1)−1ℎ2�l
)

(�)

wherel is any lifting of d3 (not necessarily a homomorphism) and � ∶ Cn(, C1)⟶ Cn+1(, C1)

is the group cohomology coboundary map.

The reader may note that the only difference between this definition of � and the definition
of ) from the snake lemma is ℎ2 in the composition. ℎ2 connects the two middle terms of
the 4-term exact sequence, where the snake lemma has only 1 middle term in a 3-term exact
sequence. So in this sense they are as close as can be, given the different number of modules in
the exact sequence.

We will spend the remainder of this section setting up the framework for this 6-term exact
sequence as an exposition (and a few extra details) of how Positselski builds the framework
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in his paper [Pos05] as well as providing the tools we need for computing the map � in our
applications. This process begins with the following two technical lemmas and ends with a
proof of Theorem 4. This first lemma is based on Positselski’s Lemma 5 [Pos05].

Lemma 5. (Posetselski) LetX be a -module that is also a free ℤ∕d2ℤ-module. Then we have

a natural short exact sequence: 0 ⟶ X1 ⟶ X2 ⟶ X2 ⟶ 0 of -modules, where X2 is

d2-torsion, X1 is the d-torsion of X2, and X2 is the quotient group, must also be d-torsion and

isomorphic to X1. Suppose Y ,Z are short exact sequences defined in the same way, and that

0⟶ X
d1
⟶ Y

d2
⟶ Z ⟶ 0

is a short exact sequence of these short exact sequences with homotopy maps

X
ℎ1
⟵ Y

ℎ2
⟵ Z

that satisfy the prism condition diℎi+ℎi+1di+1 = d ⋅id for all i ∈ {0, 1, 2}. LetΦX ∶ X2 ⟶ X1

be the isomorphism defined as follows: For any x ∈ X2, find a (non-unique) x ∈ X2 such that

�(x) = x. Then multiply it by d. d ⋅ x is now unique, since any two such x’s differ by a

multiple of d. Furthermore, d ⋅x is a d-torsion element ofX2 and is therefore an element ofX1.

Let X ,Y ,Z denote the Bochstein homomorphisms, which are the snake-lemma connecting

maps: X ∶ Hn(X2)⟶ Hn+1(X1), etc. Finally, let ) ∶ Hn(Z2)⟶ Hn+1(X2). Then

1. There are well-defined homomorphisms ℎ̂2 ∶ Z1 ⟶ X1 and ℎ̂2 ∶ Z2 ⟶ X2 both

defined as d−11 ℎ2 = −ℎ1f , for any lifting f of d2.

2. ΦX) = ℎ̂2Z − Xℎ̂2
18



Proof:

1. Let f be a lifting of d2, which must exist because d2 is surjective, and let z ∈ Z1 or Z1.
Then

ℎ2(z) = ℎ2(d2(f ((z))))

= (ℎ2d2)f (z)

= d ⋅ f (z) − (d1ℎ1)(f (z))

= −d1(ℎ1(f (z)))

= d1(ℎ1(−f (z)))

which is in the image of d1. Furthermore, ker(d2) = im(d1) ⊆ ker(ℎ1) for both Y1 and Y2,
since both modules are d-torsion and ℎ1d1 = ⋅d. Thus, any two liftings of d2 differ by an
element in the kernel of ℎ1.

2. We assume without loss of generality that X ⊆ Y and d1 is the inclusion map. This al-
lows the the snake-lemma connecting maps to be computed by applying the coboundary
map � to any pre-image of a given cocycle. Computation will be done this way for both
Bochstein maps X , Z and for ). The inclusions also make ℎ1 = −ℎ2d2 in Y1 and Y2,
and furthermore ℎ1 restricted toX ⊆ Y is multiplication by d. Below is a diagram of the
exact square.
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X1 Y1 Z1

X2 Y2 Z2

X2 Y2 Z2

⊆ d2

⊆ ⊆ ⊆

⊆ d2

� � �

⊆ d2

Careful choices for liftings makes the computations easier. Let l be any lifting of d2 ∶
Y2 ⟶ Z2, and let l′ be a lifting of � ∶ Y2 ⟶ Y2 that maps X2 into X2. We define
a lifting for � ∶ Z2 ⟶ Z2 by l1 ∶= d2l′l, and a lifting for d2 ∶ Y2 ⟶ Z2 by
l2 ∶= l′l�. Let �z ∈ Zn(Z2), and let �y = l′(l(�z)) = l2(l1(�z)) ∈ Cn(Y2). The
liftings can be seen in the following diagram, with the liftings in the bottom right square
commuting.

X1 Y1 Z1

X2 Y2 Z2

X2 Y2 Z2

l2

l2

l
l1l′l′

Direct computation and an application of the prism condition yield the desired result as
follows, with (1) indicating part 1 of this lemma and (c) indicating for the commuting of
maps; either � with d2 or � with -module homomorphism.
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−X(ℎ̂2(�z)) = −X(ℎ2(�z)) = X(−ℎ2(�z))
(1)
= X(ℎ1l(�z))

= X(ℎ1�(�y))
(c)
= X(�ℎ1(�y)) = X�(ℎ1(�y))

= �(ℎ1(�y))
(c)
= ℎ1(�(�y))

ℎ̂2(Z(�z)) = ℎ̂2(Z(�d2(�y))) = ℎ̂2(Z�(d2(�y))) = ℎ̂2(��−1�d2(�y)))

= ℎ̂2(�(d2(�y)))
(c)
= (ℎ2d2)(�(�y))

ΦX()(�z)) = ΦX(�(l(�z))) = ΦX(�(�(�y))) = ΦX(�(�(�y)))

= (ΦX�)(�(�y))) = (⋅d�−1�)(�(�y)) = d ⋅ (�(�y)))

From the prism condition at Y1, it follows that

ΦX) = ℎ̂2Z − Xℎ̂2.

This concludes the proof of Lemma 5. □

This next lemma is critical to the description of the map � and uses a splitting of the four term
sequence into two three term exact sequences. It shows how � is related to the connecting maps
of these short exact sequences via the homotopies provided by the Positeselski Hypotheses.

Lemma 6. Using the language of the previous lemma and viewing the 4-term exact sequence

0⟶ A⟶ B ⟶ C ⟶ D ⟶ 0
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as two short exact sequences

0⟶ A⟶ B ⟶ Δ⟶ 0

0⟶ Δ⟶ C ⟶ D ⟶ 0

where Δ = im(d2) = ker(d3) ⊆ C , we have the following equivalent definitions of �:

−ℎ̂2)Δ1D1 = � = )A1Δ1ℎ̂3

where ℎ̂2 ∶= d−11 ℎ2 ∶ C ⟶ A for the first short exact sequence as in the previous lemma, and

ℎ̂3 ∶= ℎ3 ∶ D ⟶ Δ is the analogue of ℎ̂2 for the second short exact sequence.

Proof: The first equality follows immediately from the definition of �. The second equality
follows from direct computation.

−ℎ̂2)Δ1D1 = −(ℎ1d
−1
2 )(�d

−1
3 ) = (−ℎ1d

−1
2 )(�d

−1
3 ) = (d

−1
1 ℎ2)(�d

−1
3 )

= d−11 ℎ2�d
−1
3 = d−11 �ℎ2d

−1
3 = d−11 �(d

−1
2 d2)ℎ2d

−1
3

= (d−11 �d
−1
2 )(d2ℎ2d

−1
3 ) = )A1Δ1ℎ̂3

The third equality above already follows from the prism condition, the fifth equality from the
commutativity of the chain map with the homotopies, the sixth from the fact that with the
right choice of lifting (namely d−12 ), applying d2 and then the lifting is the same as the identity
(though any lifting of d2 would suffice up to coboundaries). The last equality follows from the
definitions of the connecting map )A1Δ1 and the homomorphism ℎ̂3 from D to Δ. Note that it
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may seem natural to define ℎ̂3 as ℎ2d−13 , but ℎ2 is a homotopy from C to B in the four-term
exact sequence, not from C to Δ ⊆ C . The first homotopy we need for the short exact sequence

0⟶ Δ
⊆

⟶ C
d3
⟶ D ⟶ 0

is d2ℎ2 ∶ C ⟶ Δ, and the fact that it satisfies the prism condition follows from the prism
condition being satisfied for the four-term exact sequence. This concludes the proof of Lemma
6. □

With Lemmas 5 and 6 proved, we move on to the proof of Positselski’s theorem.

Proof of Theorem 4: With � defined, it remains to show exactness at four terms of the 6-term
sequence.

Exactness of Hn(B1 ⊕D1)
d2+ℎ3
⟶ Hn(C1)

d3
⟶ Hn(D1): The composition d3d2 is the 0 map on

the modules, which makes it the zero map on cohomology as well. The composition d3ℎ3 is
also the 0 map because it is multiplication by d and D1 is d-torsion.

Now we show that d2 + ℎ3 maps onto the kernel of d3. Assume y ∈ Zn(C1) with d3(y) a
coboundary in Cn(D1). Let Δ1 = ker(d3) ⊆ C1. Then, adding a coboundary in Cn(C1) to y if
necessary, we may assume that y ∈ Zn(Δ1) ⊆ Zn(C1). Let y′ ∈ Zn(Δ1) be the corresponding
element to y from the isomorphism Δ1 ≅ Δ1. Then �C(y′) is a coboundary in Cn+1(C1) because
the Bochstein maps are 0 for A,B, C,D. Therefore �Δ(y′) is a coboundary in Cn(C1) as well
(though not necessarily a coboundary in Cn(Δ1)), so �Δ(y′) = )ΔD(x) for some x ∈ Zn(D1)

from the exactness of the long exact sequence induced by the Snake Lemma from the short
exact sequence.

0⟶ Δ1 ⟶ C1 ⟶ D1 ⟶ 0.
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With �Δ(y′) being in the image of )Δ1D1 , use can be made of the lemma 5 applied to the short
exact sequence

0⟶ A⟶ B ⟶ Δ⟶ 0

with the following result: Let the ℎ̂2 ∶ Δ1 ⟶ A1 be as in the lemma. Then the following
equalities hold up do coboundaries in Cn+1(A1).

)A1Δ1(y) = �Aℎ̂2(y
′) − ℎ̂2�Δ(y′) = −ℎ̂2�Δ(y′) = −ℎ̂2)Δ1D1(x) = �(x)

with the last equality following from the definition of �. Furthermore, the equivalent definition
of � as )A1Δ1ℎ̂3 yields the equality

)A1Δ1(y) = )A1Δ1ℎ̂3(x),

where ℎ̂3 comes from the short exact sequence

0⟶ Δ1 ⟶ C1 ⟶ D1 ⟶ 0.

The desired result follows from this equality, since )A1Δ1
(

y − ℎ̂3(x)
)

is a coboundary inCn(A1)

it follows that
(

y − ℎ̂3(x)
)

= d2(z) for some z ∈ Zn(B1). We conclude exactness at Hn(C1)

from the equivalent definition of � as )A1Δ1ℎ̂3 in Lemma 6.

Exactness of Hn(C1)
d3
⟶ Hn(D1)

�
⟶ Hn+1(A1): To show that �d3 = 0, let c ∈ Zn(C1). Then

�d3(c) = ℎ̂2)A1Δ1d3(c) = ℎ̂2�d
−1
3 d3(c) = ℎ̂2�(c) = ℎ̂2(0) = 0
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where �(c) = 0 because c is a cocycle.
Now suppose y ∈ Zn(D1) with �(y) = �(a) for some a ∈ Cn(A1). We know that d−13 (y) ∈

Cn(C1) exists because d3 is surjective. We just need to show that d−13 (c) is a cocycle for some
choice of lifting of d3. Because �(y) = )A1Δ1ℎ̂3(y) is a coboundary, ℎ̂3(y) = d2(b) for some
b ∈ Cn(B1), namely b = d1(a) suffices. Then from the commuting of the Bochstein maps we
have the following equalities up to coboundaries.

d2�B(b) = �Δd2(b) = �Δ(ℎ̂3(y))

From Lemma 5 the equalities

�Δℎ̂3(y) = �Δℎ̂3(y) − ℎ̂3�D(y) = )Δ1D1(y)

also follow up to coboundaries. Similarly, )Δ1D1(y) = �Ad2(b) = �Ad2d1(a) = 0 hold up to
coboundaries as well, and therefore y + Bn(D1) = d3(x) for some x ∈ Hn(D1).

Exactness of Hn(D1)
�

⟶ Hn+1(A1)
d1
⟶ Hn+1(B1): To show that d1� = 0, let y ∈ Zn(D1).

Then, using Lemma 6 to define �,

d1�(y) = d1(−)A1Δ1ℎ̂3)(y) = d1(−d
−1
1 �d

−1
2 )ℎ̂3(y) = −d1d

−1
1 �(d

−1
2 ℎ̂3(y)) = −�(d

−1
2 ℎ̂3(y))

and therefore d1�(y) is a coboundary.
Now suppose a ∈ Zn+1(A1) and d1(a) = �(b) for some b ∈ Cn(B1). From Lemma 5,

a = d−11 (�(b)) = )A1Δ1d2(b)
(5)
= �Aℎ̂2(d2(b) − ℎ̂2�Δ(d2(b)) = −ℎ̂2�Δ(d2(b)).
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Let c = d2(b). Then a = )A1Δ1(c) = −ℎ̂2�Δ(c) from the above equalities. Now, �Δ(c) may not
be a coboundary in Cn+1(Δ1), but it is a coboundary in Cn+1(C1) because in Cn+1(C1), �Δ(c) =
�C(c) with C having a vanishing Bochstein. Thus, �Δ(c) = )Δ1D1(y) for some y ∈ Zn(D1). So
a = −ℎ̂2�Δ(c) = −ℎ̂2)Δ1D1(y) for some y ∈ Zn(D1), as desired.

Exactness of Hn+1(A1)
d1
⟶ Hn+1(B1)

d2⊕ℎ1
⟶ Hn(A1 ⊕C1): Both of the compositions d2d1 and

ℎ1d1 are 0 maps. This comes from exactness in the first case, and from A1 being d-torsion in
the second case. It remains to show that for any t ∈ Zn+1(B1) such that d2(t) and ℎ1(d) are
coboundaries of Cn+1(C1) and Cn+1(A1) respectively, that up to a coboundary t is in the image
of d1. To do this, we will show that d2(x) a coboundary in Cn+1(Δ1).

It may benefit the reader to clarify that though d2(t) ∈ Zn(Δ1) becauseΔ1 is the image of d2,
the hypothesis only states that d2(t) = �(y) for some y ∈ Cn(C1) rather than some y ∈ Cn(Δ1).
To show that such a y ∈ Cn(Δ1) exists, we need to argue as follows:

Due to the fact that d2(t) ∈ Zn+1(Δ1) is a coboundary in Cn+1(C1), t = )Δ1D1(x) for some
x ∈ Zn(D1) up to a coboundary. Then the following equalities also hold up to coboundaries
from Lemma 6.

)A1Δ1ℎ̂3(x) = −ℎ2)Δ1D1(t) = −ℎ̂2d2(t) = −ℎ1(t) = 0

This is to say that ℎ̂3(x) is in the kernel of )A1Δ1 , so up to coboundaries ℎ̂3(x) = d3(z) for some
z ∈ Zn(B1). Finally, from Lemma 5 it follows that up to coboundaries,

d2(t) = )Δ1D1(x) = �Δℎ̂3(x) − ℎ̂3�D(x) = �Δℎ̂3(x) = �Δd2(z) = d2�B(z) = 0.
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Lemma 4 is applied to the short exact sequence.

0⟶ A⟶ B ⟶ Δ⟶ 0

which means d2(t) is a coboundary in Cn+1(Δ1), as desired. This completes the proof of Theo-
rem 4. □

Remark: Though the Bochstein maps were all required to be zero for the six-term sequence to
be exact, the proof of exactness at each term only required some of these to be zero. Exactness
at Hn(C1) only required that �A be zero, at Hn(D1) that �D be zero, at Hn(A1) that �A and �C
be zero, and at Hn(B1) that �D and �B be zero.
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4. THE GENERAL SETUP AND THE BOCHSTEIN MAPS

4.1 GENERAL SETUP

For the sections that follow we adopt the following notation:
Let G be a semi-direct product of ⟨�⟩ by ⟨�⟩ with |�| = d, |�| = s and ⟨�⟩ has a faithful

action on ⟨�⟩. We will be using this group for  = Gal(F sep∕F ) for some field F whose
degree d extension E is the extension we wish to study. Let Ẽ be the Galois closure of E∕F ,
 = Gal(F sep∕Ẽ) ⊲ . Assume further that G ≅ ∕ , E = F (�), Ẽ = F (�, �), and
let F̃ be the cyclic extension of F given by Fix(⟨�⟩) in this setup. Let  = Gal(F sep∕E),
 = Gal(F sep∕F0), H = ⟨�⟩ and J = ⟨�⟩ so that �(�) = � and �(�) = �. We also assume
that the dth roots of unity �d ⊆ F , and char(F ) does not divide d so that �d contains d distinct
roots of unity.

Fsep

Ẽ

E F̃

F

s d

d s

Fsep

Ẽ

E F̃

F



 

⟨�⟩ ⟨�⟩



G
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The following three sections will cover the cases of E∕F in increasing generality. In the
next section E∕F will be a cyclic extension so that Ẽ = E, F̃ = F and s = |�| = 1. In the
section that follows we assume s = |�| = 2 so that G is a dihedral group with d odd. Lastly we
let s = |�| be any even positive integer with s|(d − 1), hence d is still odd.

We denote by � ∶ {0, 1,… , d − 1} → {0, 1,… , d − 1} the conjugation in ⟨�⟩ by �, that
is, �� i�−1 = ��(i). We define �j by �j��−j = ��j (in fact �j = �j(1) where the latter is the
j’th iterate of �, but the notation �j is less cumbersome.) We assume that � has order s, that
is, conjugation by � on ⟨�⟩ has order s. As � has odd order this means � s

2 � i�−
s
2 = �−i for all i.

From this, �j+ s
2
≡ −�j (mod d) and since 0 < �j < d we must have �j + �j+ s

2
= d.

4.2 THE BOCHSTEIN MAPS

Part of the Positselski Hypotheses is the requirement that the Bochstein maps are zero for
the four modules in the exact sequence, and we will show that this is indeed the case for the
next three sections. We start by examining the long exact sequence over which the Bochstein
map is defined for the module �d2 for a given field F that contains those roots of unity. We
will be using M1 = ℤ as a trivial -module with M1.2M1 = ℤ∕d2ℤ ≅ �d2 in all three of the
following sections, and M2 will be an induced module with the same cohomology when taken
over a slightly larger field.

The long exact sequence associated with 0 → �d → �d2 → �d2∕�d → 0 is the following

⋯⟶ Hn(F , �d)
i

⟶ Hn(F , �d2)
�

⟶ Hn(F , �d2∕�d)
��d2
⟶ Hn+1(F , �d)⟶⋯
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and the relevant Bochstein map is the connecting map labelled ��d2 in this sequence. In this
case the vanishing of the Bochstein map is given next.

Lemma 7. Suppose F is a field with �d2 ⊂ F . Then the Bochstein map ��d2 associated with the

short exact sequence 0 → �d → �d2 → �d2∕�d → 0 is zero.

Proof. The Bloch-Kato Conjecture, proved by Veovodski in 2003, states that the norm residue
homomorphisms below are surjective since (char(F ), d) = 1. Furthermore, the identity map
commutes with the canonical quotient map through the norm residue homomorphism. This
means we have a commutative diagram.

KM
n KM

n

Hn(F , �d) Hn(F , �d2) Hn(F , �d2∕�d) Hn+1(F , �d)

id

⊆ � ��d2

sn,d2 sn,d

Therefore the map � is surjective as well, so that ��d2 = 0 by exactness. This proves the lemma.

□

With the Bochstein map for M1 = ℤ checked, we move on to M2. M2 ≅ Ind
(ℤ) in every

case, which means that Hn(,M2∕d2M2) ≅ Hn(, �d2) from Shapiro’s lemma, and the field
E may be used instead of F with Lemma 7 to obtain the result of �M2

being 0. Now for just the
cyclic case, M3 =M2 and M4 =M1, so all the Bochstein maps are zero. For the dihedral and
semi-direct cases, the lemma below will be used to show that M3 and M4 have zero Bochstein
maps in their modular framework sections.
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Lemma 8. Let  ⊆  be an index s subgroup, X2 a free ℤ∕d2ℤ-module with a discrete action

of  with (s, d) = 1. If � ,X = 0 then �,X = 0 as well.

Proof: The restriction map res ∶ Hn(, X2)⟶ Hn( , X2) is injective because cor◦res = ⋅s,
which is invertible because (s, d) = 1. Now, we have the following commutative diagram

Hn(, X1) Hn(, X2) Hn(, X2)) Hn+1(, X1)

Hn( , X1) Hn( , X2) Hn( , X2)) Hn+1( , X1)

i � �,X

i � � ,X

res res res res

in which case
res◦�,X = � ,X◦res = 0◦res = 0

means �,X = 0 because the restriction is injective. This concludes the proof of Lemma 8. □

With the previous discussion and the lemma proved, we have the framework necessary to
show that all four modules have zero Bochstein maps for all three cases considered in this thesis.
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5. THE CYCLIC CASE

We begin our analysis with the Cyclic case, namely whenE∕F is cyclic Galois. In this case
the kernel H2(E∕F , �d) has been understood since the early days of Class Field Theory. For
suppose E = F ( d

√

a). Then one has the well-known exact sequence

H1(E, �d)
NE∕F
⟶ H1(F , �d)

(a)⌣
⟶ H2(F , �d)

iE∕F
⟶ H2(E, �d)

which describes cohomology classes in H2(F , �d) that vanish in E as those corresponding to
“symbol algebras” of the form (a, b)F for some b ∈ F . This result also encodes the classes
(a, b)F which vanish in H2(F , �d) as those where b ∈ NE∕F (E×), that is b is a norm from E.
This section generalizes this classical information to all higher cohomology. It may be that this
result is known in some circles via folklore, but we do not know of a reference and because it
requires the Positselski machinery for its proof we believe the result is new. One interesting
feature of the proof is that the four term module sequence used is nothing other than a module
formulation of the classical Hilbert 90 sequence. Of course, the H2 result just mentioned is a
consequence of Hilbert’s Theorem 90 so this is not a surprise. Moreover, the generalization of
Hilbert’s Theorem 90 to higher K-theory is essential to Voevodsky’s work, so this is also to be
expected.

32



5.1 THE 4-TERM EXACT SEQUENCE WITH HOMOTOPIES

LetE∕F be a cyclic extension of degree d, with dth roots of unity �d ⊆ F and Gal(E∕F ) =
G ≅ ∕ = ⟨�⟩. Let Fsep denote the separable closure of F . BecauseE∕F is cyclic, the Galois
closure Ẽ of E∕F is E, and F̃ = F , simplifying the general setup.

Fsep

E

F
d

Fsep

E

F
G





It would be nice to use the restriction, corestriction sequence in Arason’s theorem, but for a
sequence of the form

0⟶ ℤ
Δ

⟶ Ind
(ℤ)

T r
⟶ ℤ ⟶ 0

to be exact, d − 2 = 0 is a necessary condition because the ℤ-dimensions of the -modules are
1, d, and 1 respectively. And this fails for all d > 2. We remedy this by applying Positselski’s
machinery to the following 4-term exact sequence of -modules,

0⟶ ℤ∕d2ℤ
Δ

⟶ Ind
(ℤ∕d

2ℤ)
(1−�)⋅
⟶ Ind

(ℤ∕d
2ℤ)

Tr
⟶ ℤ∕d2ℤ ⟶ 0
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where the maps Δ and Tr are defined in Definition 10 below.
In the notation of this sequence the trivial -module ℤ∕d2ℤ acts as a vessel for the short

exact sequence
0⟶ �d

⊆
⟶ �d2

�
⟶ �d2∕�d ⟶ 0

making the -module homomorphisms chain maps for these short exact sequences. To do this,
we identify the roots-of-unity short exact sequence with the short exact sequence

0⟶ dℤ∕d2ℤ
⊆

⟶ ℤ∕d2ℤ
�

⟶ ℤ∕dℤ ⟶ 0.

Further, because all the arithmetic works without needing to mod out by d2ℤ, we use ℤ as
a vessel for ℤ∕d2ℤ. We need a characterization of the induced module in order to facilitate
computations in the four-term sequence given in Definition 10 below. This is the subject of the
next lemma.

Lemma 9. We denote by �̃ be a lifting of � to Fsep, and let G = ⟨�⟩ = ⟨�̃⟩ = ∕. Define

� ∶ Ind
(ℤ) ⟶ ℤ[G] as follows: For any f ∶  ⟶ ℤ with the property f (ℎg) = ℎ ⋅ f (g)

for every g ∈ , ℎ ∈ ,

�(f ) =
d−1
∑

i=0
f (�̃ i)�−i

Then � is an isomorphism of -modules, that is, Ind
(ℤ) ≅ ℤ[G].

Proof: � is a bijection between ℤ-basis elements of the two -modules, so it is a ℤ-module
isomorphism. We need only check that the action is preserved. Every g ∈  can be expressed
as g = ℎ�̃k, where ℎ ∈ . Let ℎi = �̃ iℎ�̃−i ∈  for each i ∈ {0,… , d − 1} (these will be used
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to “hop over” the �̃ terms). Then

�(ℎ�̃k ⋅ f ) =
d−1
∑

i=0
(ℎ�̃k ⋅ f )(�̃ i)�−i =

d−1
∑

i=0
f (�̃ iℎ�̃k)�−i =

d−1
∑

i=0
f (ℎi�̃ i�̃k)�−i

=
d−1
∑

i=0
ℎi ⋅ f (�̃ i�̃k)�−i =

d−1
∑

i=0
f (�̃ i�̃k)�−i =

d−1
∑

j=0
f (�̃j)�−(j−k)

= �k
d−1
∑

j=0
f (�̃j)�−j = �̃kℎ ⋅ �(f )

This concludes the proof of Lemma 9. □

We next give the four term sequence in the cyclic case. We will define the homotopies and
verify the computational conditions for Positselski’s 6-term sequence in the group ring ℤ[G] in
Theorem 11 below.

Definition 10. Let G be as above with ℤ a trivial G-module and with ℤ[G] a G-module (and

therefore a -module) via multiplication on the left. We define G-module maps

Δ ∶ ℤ ⟶ ℤ[G], n↦ ⊕
g∈G

ng, and

Tr ∶ ℤ[G]⟶ ℤ, ⊕
g∈G

cgg ↦
∑

g∈G
cg.

The Positselski modules M1,M2,M3,M4 and maps d1, d2, d3 for the cyclic case are defined as

follows:

0⟶ ℤ
Δ

⟶ ℤ[G]
⋅(1−�)
⟶ ℤ[G]

Tr
⟶ ℤ ⟶ 0.
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The homotopies ℎ1, ℎ2, ℎ3 are defined as follows:

ℤ
Tr
⟵ ℤ[G]

⋅
∑

−i� i
⟵ ℤ[G]

Δ
⟵ ℤ.

Remark: The -module homomorphism d2 = (1 − �) ∶ Ind
(ℤ) ⟶ Ind

(ℤ) is multiplica-
tion on the left by (1 − �) in the group ring ℤ[G] for the Hilbert 90 sequence, which is also
multiplication on the right by (1 − �) since ⟨�⟩ is abelian. For the more general cases, we will
use this last convention, which can also be thought of as the unique -module homomorphism
that sends 1 to (1 − �). And more generally, multiplication on the right is always a -module
homomorphism. So we adopt this convention now and do the same with ℎ2 = ⋅∑−i� i.

Theorem 11. The dis are exact, and the ℎis satisfy the prism condition.

Proof: Exactness follows from the usual Hilbert’s Theorem 90 projective resolution argument
for a cyclic extension. To show the prism condition,

ℎ2d2 = d2ℎ2 = (1 − �)
d−1
∑

i=0
−i� i =

d−1
∑

i=0
−i� i +

d−1
∑

i=0
i� i+1

= −0�0 +
d−1
∑

i=1
−i� i +

d−1
∑

i=1
(i − 1)� i + (d − 1)�d =

d−1
∑

i=1
−� i + d

while d1ℎ1 = ℎ3d3 =
∑d−1

i=1 �
i. Therefore d1ℎ1 + ℎ2d2 = ℎ2d2 + d3ℎ3 = d⋅. Furthermore, the

fact that
TrΔ = d⋅
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is the prism condition for ℎ2d1 = d3ℎ3, which follows from d = [,].
This concludes the proof for Theorem 11. □

The only remaining requirement to check for the Positselski hypotheses is the Bochstein
maps being zero. In the cyclic case, all four modules are either ℤ or Ind

(ℤ), with each modded
out by d2ℤ to represent �d2 with a trivial action, both of which have been shown to have a zero
Bochstein map in Lemma 8. Therefore the Positselski Hypotheses are satisfied by the 4 term
exact sequence with homotopies defined in this section.

5.2 THE CONNECTING MAP FOR THE CYCLIC CASE

Now we compute the connecting map �. Let M i ∶= Mi∕dMi for i ∈ {1, 2, 3, 4} and let
c ∈ Zn−1(F ,M4). We define a lifting l of d3 by sending x ∈ M4 to x = x ⋅ 1G ∈ M3. The
connecting map � applied to c is the composition d−11 ℎ2�l, where � is the chain complex map
from Galois cohomology, for which the Bar Resolution is used. The next lemma will greatly
reduce the complexity of the computation of �.

Lemma 12. The following computational results are true.

1. �(l(c))(g1,… , gn) = −d2
(

∑k−1
i=0 �

i ⋅ l(c(g2,… , gn))
)

,

where k ∈ {0,… , d − 1} such that g1 = �k.

2. ℎ2d2 ≡ −d1ℎ1 (mod dM2).

Proof: (2) follows from the prism condition atM2. To prove (1), we will start by using a similar
argument to that used in the connecting map ) for Arason’s theorem, using the fact that l is an
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abelian group homomorphism to make the computation of �(l(�)) easier:

�(l(c))(g1,… , gn) = g1 ⋅ l(c(g2,… , gn)) − l(g1 ⋅ c(g2,… , gn))

= �k ⋅ l(c(g2,… , gn)) − l(c(g2,… , gn))

= (�k − 1) ⋅ l(c(g2,… , gn))

= −(1 − �)

(

k−1
∑

i=0
� i ⋅ l(c(g2,… , gn))

)

= −d2

(

k−1
∑

i=0
� i ⋅ l(c(g2,… , gn))

)

.

□

This next Theorem describes the connecting map in the cyclic case.

Theorem 13. Let � ∶  ⟶ ℤ∕dℤ denote the character function that factors through the

isomorphism ∕
≅

⟶ ℤ∕dℤ, namely �(�k) = k. Let ⌣ denote the cup product. Then

�(c) = � ⌣ c.

Proof: Since l(c(g2,… , gn) = c(g2,… , gn), equality

� i ⋅ c(g2,… , gn) = c(g2,… , gn)� i
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follows. The rest is making use of parts (1) and (2) of Lemma 12 as follows.

�(c)(g1,… , gn) = d−11 ℎ2�l(c)(g1,… , gn)
(1)
= −d−11 ℎ2d2

(

k−1
∑

i=0
� i ⋅ l(c(g2,… , gn))

)

= −d−11 ℎ2d2

(

k−1
∑

i=0
c(g2,… , gn)� i

)

(2)
= d−11 d1ℎ1

(

k−1
∑

i=0
c(g2,… , gn)� i

)

= ℎ1

(

k−1
∑

i=0
c(g2,… , gn)� i

)

= T r

(

k−1
∑

i=0
c(g2,… , gn)� i

)

=
k−1
∑

i=0
c(g2,… , gn) = kc(g2,… , gn) = (� ⌣ c)(g1,… , gn).

This concludes the proof of Theorem 13. □

In view of Theorems 11 and 13 the machinery in Theorem 4 gives the following result.

Theorem 14. In the cyclic case we have the following 6-term exact sequence.

Hn(E, �d)⊕Hn(F , �d) Hn+1(E, �d) Hn(F , �d)

Hn+1(F , �d) Hn+1(E, �d) Hn(F , �d)⊕Hn(E, �d)

d2 + ℎ3 d3

d1 ℎ1 ⊕ d2

�

where d3 is the norm, �(c) = � ⌣ c and d1 is scalar extension.
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6. THE DIHEDRAL CASE

We noted in the introduction that the case where [E ∶ F ] = 4 and Gal(Ẽ∕F ) is the dihedral
group of order 8 was handled by Positselski in [Pos05]. In this section we turn to the dihedral
case where [E ∶ F ] = d is odd.

6.1 THE 4 TERM EXACT SEQUENCE WITH HOMOTPIES

For this section, we have the following notation. Let G be a dyhedral group, G = ⟨�, �⟩

with |�| = d, |�| = 2 and the relation �� = �−1�. We use the notation described earlier. In this
case the diagrams of fields and groups are as follows.

Fsep

Ẽ

E F̃

F

2 d

d 2

Fsep

Ẽ

E F̃

F



 

⟨�⟩ ⟨�⟩



G

Before the module structure is set up for the Positselski machinery, the author would like
to comment about the exact sequences of modules up until this point in order to communicate
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some motivation for the generalizations in this section and the next.

Remark: Each 4-term exact sequence can be seen as being made from 2 short exact sequences.
In the previous cyclic case, when G = ⟨�⟩, we can make a connection to the following: There
is a projective resolution for ℤ commonly used in a proof of Hilbert’s Theorem 90 for cyclic
Galois extensions that has a repeating pattern

⋯⟶ ℤ[G]
⋅(1−�)
⟶ ℤ[G]

⋅T�
⟶ ℤ[G]

⋅(1−�)
⟶ ℤ[G]

⋅T�
⟶ ℤ[G]T� ⟶ 0

where T� is the “trace” element 1 + � +⋯ + �d−1 that yields the norm map when acting on a
multiplicative field element. This long exact sequence can be viewed as two alternating short
exact sequences:

0⟶ ℤ[G]T�
⊆

⟶ ℤ[G]
⋅(1−�)
⟶ ℤ[G]⟶ 0

and
0⟶ ℤ[G](1 − �)

⊆
⟶ ℤ[G]

⋅T�
⟶ ℤ[G]T� ⟶ 0

These short exact sequences are exactly the two that make up the 4-term exact sequence in the
cyclic case. For the more specific case where d = 2 with �2 being our roots of unity, both
sequences are the same, allowing us to both begin and end with ℤ∕2ℤ as a trivial G-module
and avoid the need for Positselski’s machinery altogether. This is one way of viewing Arason’s
sequence.
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With the above remark in mind, we will introduce the modular framework for the dihedral
case. It will be a 4-term exact sequence comprised of the two short exact sequences.

0⟶ ℤ[G]T�T�
⊆

⟶ ℤ[G]T�
⋅(1−�)
⟶ ℤ[G]T�(1 − �)⟶ 0

and
0⟶ ℤ[G](1 − �)B

⊆
⟶ ℤ[G]B

⋅T�
⟶ ℤ[G]T�B ⟶ 0

where T� is the corresponding “trace” for �, (1 + �), and B = (1 − ��) ∈ ℤ[G]. Of course, we
need ℤ[G]T�(1 − �) ≅ ℤ[G](1 − �)B for the two short exact sequences to build a 4-term exact
sequence, and in fact T�(1 − �) = (1 − �)B. Thus, the 4-term exact sequence is

ℤ
Δ

⟶ IndG(ℤ)
⋅(1−�)
⟶ ℤ[G]B

⋅T�
⟶ ℤ[G]BT� .

Our first lemma describes the induced module Ind
 needed for this case and relates it to

ℤ[G]T� for computation.

Lemma 15. Let �̃ and �̃ be liftings of � and � to . Then for the trivial ℤ[]-module ℤ, the

map � ∶ Ind
(ℤ) ≅ ℤ[G]T� given by

�(f ) =
d−1
∑

i=0
f (�̃ i)�−iT�

is an isomorphism of ℤ[G]-modules.

Proof: The proof is similar to that for the cyclic case. Note that this type of proof would not
work using ℤ[⟨�⟩] instead of ℤ[G]T� because in this case  is not a normal subgroup of .
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However,  is normal in  and we will use this fact. The general bijection statement will be
skipped and we proceed to check the compatibility of-actions. Every element of has a unique
expression n�̃m�̃k, n ∈  . Let �m ∶ ℤ∕dℤ ⟶ ℤ∕dℤ the �m-conjugation automorphisms so
that �m� i = ��m(i)�m and � i�m = �m��−m(i). And let ni,m = �̃ in�̃m�̃�−m(−i)�̃−m ∈  so that
�̃ in�̃m = ni,m�̃m�̃�−m(i). Then

�(n�̃m�̃k ⋅ f ) =
d−1
∑

i=0
(n�̃m�̃k ⋅ f )(� i)�−iT� =

d−1
∑

i=0
f (�̃ in�̃m�k)�−iT�

=
d−1
∑

i=0
f (ni,m�̃m�̃�−m(i)�k)�−iT� =

d−1
∑

i=0
(ni,m�̃m) ⋅ f (�̃�−m(i)�k)�−iT�

=
d−1
∑

i=0
f (�̃�−m(i)+k)�−iT� =

d−1
∑

j=0
f (�̃j)�−�m(j−k)T� =

d−1
∑

j=0
f (�̃j)�−�m(j−k)�mT�

=
d−1
∑

j=0
f (�̃j)�m�−(j−k)T� =

d−1
∑

j=0
f (�̃j)�m�k�−jT� = (�m�k) ⋅ �(f )

= (n�m�k) ⋅ �(f ).

This completes the proof of Lemma 15. □

Remark: The fact that |�| = 2 was not used in this proof. And indeed, this same proof can be
used in the analogous claim in the more general semi-direct case later. We will therefore refer
to this lemma for the Semi-direct case as well.

With ℤ[G]T� ≅ Ind
(ℤ) established, we move on to defining the homomorphisms.

Definition 16. Let d1, d2, d3 be the maps

0⟶ ℤ[G]T�T�
⊆

⟶ ℤ[G]T�
⋅(1−�)
⟶ ℤ[G]B

⋅T�
⟶ ℤ[G]BT� ⟶ 0 (6.1)

43



Let ℎ1, ℎ2, ℎ3 be the homotopy maps

ℤ[G]T�T�
⋅T�
⟵ ℤ[G]T�

ℎ2
⟵ ℤ[G]B

⊇
⟵ ℤ[G]BT� (6.2)

where

ℎ2(B) =
d−1
∑

i=0

(d − 1
2

− i
)

� iT� .

Observation: ℤ[G]T�T� = ℤ[G]
(
∑

g∈G g
)

≅ ℤ is a trivial ℤ[G]-module, while ℤ[G]BT� has
a trivial �-action but � and �� act as multiplication by (−1).

The main result needed for applying Positselski’s machinery is given next.

Theorem 17. The sequence (6.1) is an exact sequence, and the homotopy maps in sequence

(6.2) satisfy the prism condition. Furthermore, d1, d2, d3, ℎ1, ℎ2, ℎ3 are ℤ[G]-module homo-

morphisms.

Proof: The exactness of the di’s follows from the remark at the beginning of this section, so we
move on to checking the prism condition. For the first and last modules, we have multiplication
by d because T�T� = dT� . For the second module, d1ℎ1(T�) = T�T� and

ℎ2d2(T�) = ℎ2(T�(1 − �)) = ℎ2((1 − �)B) = (1 − �)
d−1
∑

i=0

(d − 1
2

− i
)

� iT�

= (1 − �)
d−1
∑

i=0
(−i) � iT� = (d − T�)T�
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Therefore (d1ℎ1 + ℎ2d2)(T�) = T�T� + (d − T�)T� = dT�. To verify the prism condition for the
third module, ℎ3d3(B) = BT� = T�B and

ℎ2d2(B) = d2

(

d−1
∑

i=0

(d − 1
2

− i
)

� iT�

)

=
d−1
∑

i=0

(d − 1
2

− i
)

� iT�(1 − �)

=
d−1
∑

i=0

(d − 1
2

− i
)

� i(1 − �)B =
d−1
∑

i=0
(−i) � i(1 − �)B

= (d − T�)B

Therefore (ℎ3d3 + ℎ2d2)(B) = T�B + (d − T�)B = dB.
Every one of these maps except for ℎ2 is defined by left multiplication in the group ring

ℤ[G], so it remains to check that ℎ2 preserves action by . ℎ2 is also map from a cyclic ℤ[G]-
module to a cyclic ℤ[G]-module defined by sending one generator to another, it need only be
checked that the annihilator of B, which is ℤ[G](1 + ��), also annihilates the image of ℎ2. We
will check this by showing that ℎ2 preserves the action of ��.

�� ⋅ ℎ2(B) = ��
d−1
∑

i=0

(d − 1
2

− i
)

� iT� = �
d−1
∑

i=0

(d − 1
2

− i
)

� i+1T�

=
d−1
∑

i=0

(d − 1
2

− i
)

�d−(i+1)�T� =
d−1
∑

i=0

(d − 1
2

− i
)

� (d−1)−iT�

=
d−1
∑

i=0

(

−d − 1
2

+ ((d − 1) − i)
)

� (d−1)−iT� =
d−1
∑

j=0

(

−d − 1
2

+ j
)

� iT�

= −
d−1
∑

j=0

(d − 1
2

− j
)

� iT� = ℎ2 (−B) = ℎ2 (�� ⋅B)

This concludes the proof of Lemma 17. □
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The only remaining requirement to check for the Positselski hypotheses is that the Bochstein
homomorphisms are zero. The first two modules are isomorphic to ℤ and the induced mod-
ule Ind

(ℤ) respectively. Both of these modules were shown to have zero Bochstein maps in
the general setup section. For M3 and M4, we will show that as  -modules, M3 ≅ ℤ[J ] ≅

Ind
 (ℤ) and that M4 ≅ ℤ as a trivial  -module. Then Lemma 8 will imply that the Bochstein

map to vanishes for M3 and M4. The isomorphisms to be defined send B ↦ 1 ∈ ℤ[ ] and
BT� ↦ 1 ∈ ℤ respectively.

Lemma 18. As  -modules,

1. M3 = ℤ[G]B ≅ Ind
 (ℤ)

2. M4 = ℤ[G]BT� ≅ Ind
 (ℤ)

Proof: There are two steps.

1. We begin with the observation that

M3 = ℤ[G] ⋅ (1 − ��) = ℤ[⟨�⟩] ⋅ (1 − ��).

The second equality above follows from

� i�(1 − ��) = � i+1 ⋅ ��(1 − ��) = −� i+1(1 − ��)

and hence

(

d−1
∑

i=0
ci,0�

i +
d−1
∑

i=0
ci,1�

i�

)

(1 − ��) =

(

d−1
∑

i=0
(ci,0 − ci,1�)� i

)

(1 − ��) ∈ ℤ[⟨�⟩](1 − ��).
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Furthermore, the set {� i(1−�� | 0 ≤ i ≤ d−1} is a ℤ-basis forM3, with �j ⋅� i(1−��) =
�j+i(1 − ��).

2. Similarly

M4 = ℤ[G](1−��)T� = ℤ[⟨�⟩](1−��)T� = ℤ[⟨�⟩]T�(1−��) = ℤT�(1−��) = ℤ(1−��)T�

and ℤ(1 − ��)T� ≅ ℤ via the  -module isomorphism (1 − ��)T� ↦ 1.

This concludes the proof of Lemma 18. □

Now, with M3 isomorphic to ℤ[J ] and M4 isomorphic to ℤ as  -modules, the fact that
Ẽ∕F̃ is a cyclic extension allows the application of Lemma 8 to reduce the problem to the cyclic
case. This makes the Bochstein maps zero for M3 and M4 as well as M1 and M2. Therefore
the Positselski Hypotheses are satisfied by the four module exact sequence with homotopies
defined in this section.

6.2 THE CONNECTING MAP FOR THE DIHEDRAL CASE

Now we compute the connecting map �. Let M i ∶= Mi∕dMi for i ∈ {1, 2, 3, 4}. In
this section we will use the exact sequence of modules with homotopies defined in the previous
section to describe the connecting map � ∶ Hn−1(,M4)⟶ Hn(,M1) given by Positselski’s
machinery.

Definition 19. : Given the above notation we define the following.

1. l ∶M4 ⟶M3, the d3-lifting defined as l(zBT�) = zB for any z ∈ ℤ∕dℤ.

2. � ∶ Cn−1(,M3)⟶ Cn(,M3) the cochain map from the bar resolution.
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3. �̃l = �̃ ∶ Zn−1(,M4)⟶ Zn(,M1), �̃(c) ∶= d−11 ℎ2�l(c).

4. � ∶ Hn−1(,M4)⟶ Hn(,M1), �([c]) ∶= [�̃(c)].

Observation: Our choice of lifting l is a ℤ-module homomorphism, though it is not a ℤ[G]-
module homomorphism. Note, for x ∈ im(d1), we let d−11 (x) denote the unique preimage
element.

We collect some basic properties of these maps next.

Lemma 20. Let c ∈ Zn−1(,M4) be a cocycle, g1,… , gn ∈ , and let c′ ∈ ℤ∕dℤ such that

c(g2,… , gn) = c′ ⋅BT� . Let (��)j� i, an element of ∕ , be the coset of g1. Then

1. �(l(c))(g1,… , gn) = g1 ⋅ l(c(g2,… , gn)) − l(g1 ⋅ c(g2,… , gn))

= (��)j
(

−
∑i−1

k=0 �
k
)

⋅ c′(1 − �)B.

2. For any x ∈ Cn(,M2) such that �(l(c)) = d2(x), �̃(c) = −ℎ1(x).

Proof: For the first part, by definition,

�(l(c))(g1,… , gn) = g1 ⋅ l(c(g2,… , gn)) − l(c(g1g2,… , gn)) +⋯ ± l(c(g1,… , gn−1))

We will next subtract an expanded form of l(�(c))(g1,… , gn) from the right side of this equa-
tion. This term is 0 because l is a ℤ-homomorphism and c is a cocycle. Subtracting the
expanded form will leave us with only two remaining terms. The expansion is as follows.
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l(�(c))(g1,… , gn)

= l(�(c)(g1,… , gn))

= l
(

g1 ⋅ c(g2,… , gn) − c(g1g2,… , gn) +⋯ ± c(g1,… , gn−1)
)

= l(g1 ⋅ c(g2,… , gn)) − l(c(g1g2,… , gn)) +⋯ ± l(c(g1,… , gn−1)))

We can now subtract and simplify

�(l(c))(g1,… , gn)

− 0

= �(l(c))(g1,… , gn)

− l(�(c))(g1,… , gn)

= g1 ⋅ l(c(g2,… , gn)) − l(c(g1g2,… , gn)) +⋯ ± l(c(g1,… , gn−1))

− l(g1 ⋅ c(g2,… , gn)) + l(c(g1g2,… , gn)) −⋯ ∓ l(c(g1,… , gn−1))

= g1 ⋅ l(c(g2,… , gn))

− l(g1 ⋅ c(g2,… , gn))

This shows the first equality in part (1) of the lemma.

For the next equality, we replace g1 with �j� i, g1’s coset representative in ∕ , and use the
fact that l preserves the action by ��, which is also multiplication by (−1) for both B ∈ M3
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and BT� ∈M4.

�(l(c))(g1,… , gn) = g1 ⋅ l(c(g2,… , gn)) − l(g1 ⋅ c(g2,… , gn))

= (��)j� i ⋅ l(c(g2,… , gn)) − l((��)j� i ⋅ c(g2,… , gn))

= (��)j� i ⋅ l(c(g2,… , gn)) − l((��)jc(g2,… , gn))

= (��)j� i ⋅ l(c(g2,… , gn)) − l((−1)jc(g2,… , gn))

= (��)j� i ⋅ l(c(g2,… , gn)) − (−1)jl(c(g2,… , gn))

= (��)j� i ⋅ l(c(g2,… , gn)) − (��)jl(c(g2,… , gn))

= (��)j
(

� i ⋅ l(c(g2,… , gn)) − l(c(g2,… , gn))
)

= (��)j(� i − 1) ⋅ l(c(g2,… , gn))

= (��)j(� i − 1) ⋅ c′B

= (��)j
(

−
i−1
∑

k=0
�k
)

(1 − �) ⋅ c′B

= (��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 − �)B

This proves the first statement of the lemma.
The second part of the lemma follows from the prism condition. Mod d,

d1ℎ1 + ℎ2d2 = ⋅d = 0

This means
ℎ2d2 = −d1ℎ1
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And hence

�(c) = (d−11 )(ℎ2(�(l(c)))

= (d−11 )(ℎ2(d2(x)))

= (d−11 )(−d1(ℎ1(x)))

= −ℎ1(x)

This concludes the proof of Lemma 20. □

As an application we obtain a description of the connecting map � in this case. Although it
is not a cup product, its description is almost one.

Corollary 21. Let c ∈ Zn−1(,M4), g1, g2,… , gn ∈ , c′ ∈ ℤ∕dℤ such that c(g2,… , gn) =

c′BT� . Let �i�j , an element of ∕ , be the coset of g1. Then

�̃(c)(g1,… , gn) = ic′ ∈M1.

Proof: From part (1) of Lemma 20, we know that

�(l(c))(g1,… , gn) = (��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 − �)B.
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We will first find an x ∈M2 with this d2-image, and then use part (2) of Lemma 20 to compute
�̃(c) by finding −ℎ1(x). This process begins by showing that (��)j

(

−
∑i−1

k=0 �
k
)

⋅ c′(1 + �) is a
suitable choice for x.

�(l(c))(g1,… , gn) = (��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 − �)B

= (��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 + �)(1 − �)

= (��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 + �)(1 − �)

= d2

(

(��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 + �)

)

Applying part (b) allows the computation of �(c)(g1,… , gn) as follows.

�̃(c)(g1,… , gn) = −ℎ1

(

(��)j
(

−
i−1
∑

k=0
�k
)

⋅ c′(1 + �)

)

= −(��)j
(

−
i−1
∑

k=0
�k
)

c′ ⋅ ℎ1 (1 + �)

= −(��)j
(

−
i−1
∑

k=0
�k
)

c′ ⋅ 1

= ic′ ⋅ 1

= ic′

This concludes the proof of Corollary 21 . □

Let � ∶  ⟶ ℤ∕dℤ be defined by �((��)j� i ) = i. It should be noted that in this case
� is no longer a character because it is not a homomorphism. However, the Corollary shows
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that the map � can be understood through a cup-product like structure which we denote by ⌣′

whereby (� ⌣′ c)(g1,… , gn) = �(g1) ⋅ c(g2,… , gn).
In view of Theorem 17 and Corollary 21 the machinery in Theorem 4 gives the following

result.

Theorem 22. In the dihedral case we have the following 6-term exact sequence.

Hn(E, �d)⊕Hn(,M4) Hn(,M3) Hn(,M4)

Hn+1(F , �d) Hn+1(E, �d) Hn+1(F , �d)⊕Hn+1(,M3)

d2 + ℎ3 d3

d1 ℎ1 ⊕ d2

�

where �(c) = � ⌣′ c and d1 is scalar extension.

Corollary 23. � induces an isomorphism

Hn(,M4)

d3Hn(,M3)

≅
⟶ Hn(E∕F ).

In Theorem 46, it will be shown that Hn(F̃ , �d) maps onto Hn(,M4) in such a way that
the image of the corestriction from Hn(Ẽ, �d), corẼ∕F̃ , maps onto the image of d3 from M3.
This will be used to characterize the cohomological kernel for the dihedral setup as follows:

Hn(F̃ , �d)

corẼ∕F̃Hn(Ẽ, �d)
≅ Hn(E∕F ).
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7. THE SEMI-DIRECT CASE

This section expands the ideas of the previous section. Technically, the previous two sec-
tions could be interpreted as applications of the results contained in this section with T� = B = 1

in the cyclic case, but for this thesis we decided it would be convenient to spell them out to il-
lustrate the development.

7.1 THE 4 TERM EXACT SEQUENCE WITH HOMOTOPIES

For this section we adopt the following notation: G is a semi-direct product of ⟨�⟩ by ⟨�⟩.
We assume the order of � is d, the order of � is s and we will assume that s is even and divides
d − 1 (so d is odd.) We denote by � ∶ {0, 1,… , d − 1} → {0, 1,… , d − 1} be defined by
conjugation in ⟨�⟩ by �, that is, �� i�−1 = ��(i). We define �j by �j��−j = ��j (in fact �j = �j(1)
where the latter is the j’th iterate of �, but the notation �j is less cumbersome.) We assume
that � has order s, that is, conjugation by � on ⟨�⟩ has order s. As � has odd order this means
�

s
2 � i�−

s
2 = �−i for all i. From this, �j+ s

2
≡ −�j (mod d) and since 0 < �j < d we must have

�j + �j+ s
2
= d. Here are the diagrams of the fields and Galois groups.
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Fsep

Ẽ

E F̃

F

s d

d s

Fsep

Ẽ

E F̃

F



 

⟨�⟩ ⟨�⟩



G

In order to generalize from the dihedral case a special element Bd,s = B ∈ ℤ[G] is the
essential tool. It is described next.

Definition 24. For � and � as above,

Bd,s = B = (1 − �
s
2 )�

d+1
2

s
2−1
∑

j=0

(�j−1
∑

i=0
� i
)

�j .

We set T�,s = T� = 1 + � + �2 +⋯ + �s−1 and define

Cd,s,i = Ci = � iT�(1 − �).

We begin with basic properties of these elements.

Lemma 25. Given the above assumptions and notation we have,

(i) �
s
2 ⋅B = −B.

(ii) (1 − �)B = C d+1
2

.
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Proof: Part (i) is clear by the definition of B since � s
2 (1 − �

s
2 ) = −(1 − �

s
2 ).

For (ii) we begin with some facts that facilitate the proof. Because �� s
2 = �

s
2 �−1, it follows that

(1 − �)(1 − �
s
2 ) = 1 − � + �

s
2 �−1 − �

s
2 = (1 + �

s
2 �−1)(1 − �).

This allows us to make the substitution

(1 − �)(1 − �
s
2 )�

d+1
2 = �

d+1
2 (1 + �

s
2 )(1 − �)

Now, multiplying the inner sum in the defintion of B by (1 − �) results in

(1 − �)

(�j−1
∑

i=0
� i
)

= 1 − ��j .

These facts allow us to show (ii) as follows.

(1 − �)B = (1 − �)(1 − �
s
2 )�

d+1
2

s
2−1
∑

j=0

(�j−1
∑

i=0
� i
)

�j

= �
d+1
2 (1 + �

s
2 )(1 − �)

s
2−1
∑

j=0

(�j−1
∑

i=0
� i
)

�j

(1)
= �

d+1
2 (1 + �

s
2 )

s
2−1
∑

j=0

(

1 − ��j
)

�j

(2)
= �

d+1
2 (1 + �

s
2 )

s
2−1
∑

j=0
�j (1 − �)

= �
d+1
2 T� (1 − �)

= C d+1
2
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with (1) using the geometric series identity (1 − �)∑�j−1
i=0 �

i = 1 − ��j and (2) following from
(1 + �

s
2 )
∑

s
2−1
j=0 �

j being the sum of every power of �, i.e. T�. This shows directly that C d+1
2
=

(1 − �)B giving (ii). □

We next define the modules we need.

Definition 26. As in the dihedral case, we define all four modules to be submodules of ℤ[G],

defined as follows.

M1 = ℤ[G]T�T� ≅ ℤ as a trivial -module

M2 = ℤ[G]T� =
d−1
∑

i=0
ℤ� iT�

M3 = ℤ[G]B =

s
2−1
∑

j=0
ℤ[⟨�⟩]�jB

M4 = ℤ[G]BT� =

s
2−1
∑

j=0
ℤ ⋅ �jBT�

Lemma 15 (using the remark afterward) implies that Ind
(ℤ) ≅ ℤ[G]T� . This next lemma

gives key properties of the modules.
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Lemma 27.

ℤ[G]B = ℤ[G](1 − �)B⊕ ℤ[⟨�⟩]B

= M ′
3 ⊕MB

where M ′
3 =

d−1
∑

i=0
ℤ ⋅ � iT�(1 − �) and

MB =

s
2−1
∑

j=0
ℤ ⋅ �jBd,s and the direct sum is that of

ℤ − modules, not of -modules.

Proof: For the (additive) direct summands of M3, the first identification

ℤ[G](1 − �)B =
d−1
∑

i=0
ℤ ⋅ � iT�(1 − �)

follows from Lemma 25(i) while the second identification

ℤ[⟨�⟩]B =

s
2−1
∑

j=0
ℤ ⋅ �jB

follows from Lemma 25 (ii). □

We also note that the ℤ-ranks ofM1, M2, M3, andM4 are, respectively 1, d, d −1+ s
2
, and

s
2

(although for the latter, one has to check the linear independence of the �jB from M ′
3.) We

next define the di maps, which are essentially the same as those from the dihedral case.
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Definition 28. The di ∶Mi →Mi+1 are as follows:

d1 ∶M1 ⟶M2 is the inclusion ℤ[G]T�T�
⊆

⟶ ℤ[G]T�.

If we view M1 as ℤ, then d1(n) =
∑d−1

i=0 n�
iT� .

d2 ∶M2 →M3 is given by ⋅(1 − �) ∶ ℤ[G]T� ⟶ ℤ[G]T�(1 − �) ⊆ ℤ[G]B.

with “⊆” coming from the identity ℤ[G]T�(1 − �) = ℤ[G](1 − �)B in Lemma 25 ii).

d3 ∶M3 →M4 is given by ⋅T� ∶ ℤ[G]B ⟶ ℤ[G]BT� .

We note that each map is a -module homomorphism. The map d1, which is an inclusion,
can be thought of as the diagonal embedding if M1 is viewed as ℤ, with an image that has a
trivial -action. The map d2 is right mulplitplication by (1 − �) and hence is a -map. By
constructionM ′

3 is the image of d2. The map d3 is right multiplication by T� and can be viewed
as a trace map on the right summand of M3. The trace and is therefore trivial on M ′

3 and need
only be defined on MB. We finally note that M4 ↪ ℤ[G]T� = ℤ[G∕⟨�⟩] ≅ Ind

 (ℤ) by
BT� ↦ (1 − �

s
2 )T� ∈ ℤ[G]T� .

The ℎi maps are given next.

Definition 29. The ℎi ∶Mi+1 →Mi are as follows:

ℎ1 ∶ ℤ[G]T� ⟶ ℤ[G]T�T� ∶= ⋅T� is given by xT� ↦ xT�T� .

ℎ2 ∶ ℤ[G]B ⟶ ℤ[G]T� is given byℎ2(xB) = x
∑d−1

i=0 (
d−1
2
−i)� i�

d+1
2 T� for every x ∈ ℤ[G].

ℎ3 ∶ ℤ[G]BT�
⊂

⟶ ℤ[G]B is the inclusion.

The next result verifies that the maps just defined are what is needed to satisfy the Positselski
hypotheses.

Theorem 30. In the semi-direct case, given the above definitions we have the following.
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1. The di’s are exact

2. ℎ2 is well-defined

3. The prism condition is satisfied at all 4 modules.

Proof: For part (1), exactness follows from extending the Hilbert 90 sequence discussed in the
dihedral case,

0⟶ ℤ[⟨�⟩] ⋅ T�
⊆

⟶ ℤ[⟨�⟩]
⋅(1−�)
⟶ ℤ[⟨�⟩](1 − �)⟶ 0.

Here we replace ℤ[⟨�⟩] with ℤ[G]T�, which is isomorphic as a ℤ[⟨�⟩]-module to ℤ[⟨�⟩].
For part (2), we will show that the left annihilator of B is in the left annihilator of ℎ2(B).

Let x ∈ ℤ[G] such that xB = 0. We will use the direct sum decomposition of ℤ[G] to express
x as follows:

x = x1(1 − �)⊕ x2,

where x1 ∈ ℤ[G] and x2 ∈ ℤ[⟨�⟩]. We take the direct sum decomposition of ℤ[G] into the
direct sum composition of M3:

xB = x1(1 − �)B⊕ x2B = 0⊕ 0.

and we will use the facts that x1B = 0 and x2B = 0.
Before applying ℎ2 to each of these direct summands, first note two things.

i) x1�
d+1
2 T� = kT� for some k ∈ ℤ.

This follows because once x1�
d+1
2 T� is multiplied by (1 − �), we get 0. And the left-

annihilator of (1 − �) in ℤ[G] is ℤ[G]T� . The fact that we get 0 follows from the compu-
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ation below:
x1�

d+1
2 T�(1 − �) = x1(1 − �)B = 0

with the first equality following from Lemma 25 (ii).

ii) x2 is a left-multiple of (1 + � s
2 ). This follows from direct sum decomposition

ℤ[⟨�⟩]B = ⊕
s
2−1
j=0ℤ�

jB.

We first compute ℎ2(x1(1 − �))B.

ℎ2(x1(1 − �)B = x1(1 − �)
d−1
∑

i=0

(d − 1
2

− i
)

� i�
d+1
2 T�

= x1�
d+1
2

(

(1 − �)
d−1
∑

i=0

(d − 1
2

− i
)

� i
)

T� = x1�
d+1
2
(

d − T�
)

T�

= x1�
d+1
2 T�

(

d − T�
) i)
= kT�(d − T�) = k(dT� − T 2� )

= k(dT� − dT�) = 0

And for ℎ2(x2B), we compute the following.

ℎ2(x2B)
ii)
= ℎ2(x′2(1 + �

s
2 )B) = x′2(1 + �

s
2 )

d−1
∑

i=0

(d − 1
2

− i
)

� i�
d+1
2 T�

= x′2(d − 1)T� + x
′
2(1 + �

s
2 )

d−1
∑

i=0
(−i) � i�

d+1
2 T�

= x′2(d − 1)T� + x
′
2

d−1
∑

i=0
(−i) � i�

d+1
2 T� + x′2

d−1
∑

i=0
(−i) �−i�

d−1
2 �

s
2T�

∗
= x′2(d − 1)T� + x

′
2(−(d − 1))T� = 0
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For the second to last equality above (*), note that the coefficients in the two summands add to
−(d −1) for each power of �. With x1(1 − �) and ℎ2(x2) both in the left-annihilator of what we
call ℎ2(B), we have shown that ℎ2 is well-defined.

For part (3), the prism condition at M1 (which is ℎ1d1 = ⋅d) holds because T� ⋅ T� = d ⋅ T� ,
as ℎ1d1 = ⋅T� . The same goes for the prism condition at M4, since d3ℎ3 = ⋅T� as well. The
prism condition at M2 holds from the following calculations: (d1ℎ1)(T�) = T� ⋅ T� , while

(ℎ2d2)(T�) = ℎ2(T�(1 − �)) = ℎ2((1 − �)�
d−1
2 B) = (1 − �)�

d−1
2

d−1
∑

i=0

(d − 1
2

− i
)

�
d+1
2 +iT�

= (1 − �)
d−1
∑

i=0
(−i) � iT� = −T�T� + d ⋅ T� .

Therefore
(d1ℎ1 + ℎ2d2)(T�) = T�T� − T�T� + d ⋅ T� = d ⋅ T� .

The prism condition holds atM3 from the following calculations: (ℎ3d3)(B) = B ⋅T� = T� ⋅B,
while

(d2ℎ2)(B) = d2

(

d−1
∑

i=0

(d − 1
2

− i
)

�
d+1
2 +iT�

)

=

(

d−1
∑

i=0

(d − 1
2

− i
)

�
d+1
2 +iT�

)

(1 − �)

d−1
∑

i=0

(d − 1
2

− i
)

� i(1 − �)B =
d−1
∑

i=0
−i� i(1 − �)B =

(

−T� + d
)

B.

Therefore
(d2ℎ2 + ℎ3d3)(B) = T� ⋅ +

(

−T� + d
)

B = d ⋅B.
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And finally, d3ℎ3(BT�) = d3(BT�) = BT�T� = dBT� . This concludes the proof of Theorem
30. □

The only remaining part to check for the Positselski hypotheses is that the Bochstein ho-
momorphisms are zero. The first two modules are ℤ as a trivial -module and the induced
module Ind

(ℤ) respectively, each to be modded out by d2ℤ to represent �d2 with a trivial -
action. Both of these modules were shown to have zero Bochstein maps in the general setup
section. For M3 and M4, we will show that as  -modules, M3∕dM3 ≅ ℤ[J ]∕d2ℤ[J ] ≅

⊕
s
2−1
j=0 Ind

 (ℤ∕d
2ℤ) and that M4∕dM4 ≅ ⊕

s
2−1
j=0ℤ∕d

2ℤ as a trivial  -module. The isomor-
phisms are defined by B ↦ 1 ∈ ℤ[ ] and BT� ↦ 1 ∈ ℤ respectively.

Lemma 31. As  -modules,

1. M3 = ℤ[G]B ≅ ⊕
s
2−1
j=0 Ind

 (ℤ)

2. M4 = ℤ[G]BT� ≅ ⊕
s
2−1
j=0 Ind

 (ℤ)

Proof: Both parts of this lemma follow from the fact that

ℤ[G]B = ⊕
s
2−1
j=0 �

jℤ[⟨�⟩]B

followed by the arguments in Lemma 18 applied to each direct summand. Note that in the di-
hedral case, s = 2 and therefore � = � s

2 . So � s
2 must be used to apply the same arguments. □

Thus, the Bochstein maps have component maps for each direct summand that are identical
to those in the dihedral case. And the dihedral Bochstein maps were shown to be zero. Therefore
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the Bochstein maps are zero on M3 and M4. This completes the verification of the Positselski
hypotheses for the 4-term exact sequence of -modules.

7.2 THE CONNECTING MAP FOR THE SEMI-DIRECT CASE

Now we compute the connecting map �. Let Mi ∶= Mi∕dMi for i ∈ {1, 2, 3, 4}. In this
section we will use the exact sequence of modules with homotopies defined in the previous
section to describe connecting map � ∶ Hn−1(,M4)⟶ Hn(,M1).

Definition 32. Given the above notation we define the following.

1. l ∶ M4 ⟶ M3, the d3-lifting defined by l
(

∑

s
2−1
j=0 xj�

jBT�
)

=
∑

s
2−1
j=0 xj�

jB for xj ∈

ℤ∕dℤ.

2. � ∶ Cn−1(,M3)⟶ Cn(,M3) the cochain map from the bar resolution.

3. �̃l = �̃ ∶ Zn−1(,M4)⟶ Zn(,M1), �̃(c) ∶= [d−11 ℎ2�l(c)].

4. � ∶ Hn−1(,M4)⟶ Hn(,M1), �([c]) ∶= �̃(c).

Our choice of lifting l is a ℤ-module homomorphism, though it is not a ℤ[G]-module
homomorphism. We will see in a moment that l is a module homomorphism for a larger
subring of ℤ[G] than just ℤ. Note, for x ∈ im(d1), we let d−11 (x) denote the unique preimage
element.

The analogue to this next lemma used a similar idea in the dihedral case as well, however
there was no need to spell it out because � had order 2. The proof comes down to � s

2 acting as
⋅(−1) on B.

Lemma 33. l is a ℤ[⟨�⟩]-module homomorphism.
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Proof: We will show that l preserves action by �.

l
⎛

⎜

⎜

⎝

� ⋅

s
2−1
∑

j=0
xj�

jBT�
⎞

⎟

⎟

⎠

= l
⎛

⎜

⎜

⎝

s
2−2
∑

j=0
xj�

j+1BT� + x s
2−1
�

s
2BT�

⎞

⎟

⎟

⎠

= l
⎛

⎜

⎜

⎝

s
2−2
∑

j=0
xj�

j+1BT� − x s
2−1

BT�
⎞

⎟

⎟

⎠

=

s
2−2
∑

j=0
xj�

j+1B − x s
2−1

B =

s
2−2
∑

j=0
−xj�j+1B + x s

2−1
�

s
2B

=

s
2−1
∑

j=0
xj�

j+1B = � ⋅

s
2−1
∑

j=0
xj�

jB = � ⋅ l
⎛

⎜

⎜

⎝

s
2−1
∑

j=0
xj�

jBT�
⎞

⎟

⎟

⎠

.

This proves the lemma. □

We now can characterize the connecting map in the semi-direct case.

Lemma 34. Let c ∈ Zn−1(,M4) be a cocycle, g1,… , gn ∈ , and let c′ ∈ ℤ∕dℤ such that

c(g2,… , gn) = c′ ⋅BT� . Let �j� i, an element of ∕ , be the coset of g1. Then

1. �(l(c))(g1,… , gn) = g1 ⋅ l(c(g2,… , gn)) − l(g1 ⋅ c(g2,… , gn))

= �j
(

� i − 1
)

⋅ l(c(g2,… , gn)).

2. For any x ∈ Cn(,M2) such that �(l(c)) = d2(x), �̃(c) = −ℎ1(x).

Proof: The first equality follows from the fact that l is a ℤ-module homomorphism, and hence
the proof is identical to the analogous proof in the previous section. The second equality follows
from l being a ℤ[⟨�⟩]-module homomorphism and � acting trivially on M4. Note that � acts
trivially on M4 because T� is in the center of ℤ[G] because ⟨�⟩ is normal in G, and �T� = T� .
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We use these two reasons in tandem to show the second equality:

g1 ⋅ l(c(g2,… , gn)) − l(g1 ⋅ c(g2,… , gn)) = �j� il(c(g2,… , gn)) − l(�j� i ⋅ c(g2,… , gn)

= �j� i ⋅ l(c′) − �j ⋅ l(� ic′)

= �j� i ⋅ l(c′) − �j ⋅ l(c′)

= �j(� i − 1) ⋅ l(c′).

The second part follows from the prism condition, and is also identical to the analogous
proof in the previous section. This concludes the proof of Lemma 34. □

As a corollary we obtain a characterization of the connecting map. As in the case for the
dihedral extensions, this connecting map behaves like a cup product.

Corollary 35. Let g1, g2,… , gn, c, c′, i, j be defined as in Lemma 34, and let cm ∈ ℤ∕dℤ such

that c(g2,… , gn) =
∑

s
2−1
m=0 cm�

mBT� . Then

�̃(c)(g1,… , gn) = i

s
2−1
∑

m=0
cm(�s−m − 1)T�T�

Proof: From part (1) of Lemma 34, we know that

�(l(c))(g1,… , gn) = �j
(

−
i−1
∑

k=0
�k
)

⋅ (1 − �)c′B.

We will first find an x ∈M2 with this d2-image, and then use part (2) of Lemma 34 to compute
�̃(c) by finding−ℎ1(x). We begin by showing that �j

(

−
∑i−1

k=0 t
k
)

∑

s
2−1
m=0 cm�

m
(

∑�−1m −1
r=0 �r

)

�
d+1
2 T�

is a suitable choice for x:
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�(l(c))(g1,… , gn) = �j
(

� i − 1
)

⋅ l(c(g2,… , gn))

= �j
(

−
i−1
∑

k=0
tk
)

(1 − �) ⋅ l(c′)

= �j
(

−
i−1
∑

k=0
tk
)

(1 − �) ⋅

s
2−2
∑

m=0
cm�

mB

= �j
(

−
i−1
∑

k=0
tk
) s

2−2
∑

m=0
cm�

m(1 − ��−1m )B

= �j
(

−
i−1
∑

k=0
tk
) s

2−2
∑

m=0
cm�

m(1 − ��−1m )B

= �j
(

−
i−1
∑

k=0
tk
) s

2−1
∑

m=0
cm�

m
⎛

⎜

⎜

⎝

�−1m −1
∑

r=0
�r
⎞

⎟

⎟

⎠

(1 − �)B

= �j
(

−
i−1
∑

k=0
tk
) s

2−1
∑

m=0
cm�

m
⎛

⎜

⎜

⎝

�−1m −1
∑

r=0
�r
⎞

⎟

⎟

⎠

�
d+1
2 T�(1 − �)

= d2
⎛

⎜

⎜

⎝

�j
(

−
i−1
∑

k=0
tk
) s

2−1
∑

m=0
cm�

m
⎛

⎜

⎜

⎝

�−1m −1
∑

r=0
�r
⎞

⎟

⎟

⎠

�
d+1
2 T�

⎞

⎟

⎟

⎠

.

With a suitable x found, we compute −ℎ1(x):

−ℎ1(x) = −ℎ1
⎛

⎜

⎜

⎝

�j
(

−
i−1
∑

k=0
tk
) s

2−1
∑

m=0
cm�

m
⎛

⎜

⎜

⎝

�−1m −1
∑

r=0
�r
⎞

⎟

⎟

⎠

�
d+1
2 T�

⎞

⎟

⎟

⎠

= −�j
(

−
i−1
∑

k=0
tk
) s

2−1
∑

m=0
cm�

m

(�s−m−1
∑

r=0
�r
)

�
d+1
2 T�T�

= − (−i)

s
2−1
∑

m=0
cm

(

�s−m − 1
)

T�T� = i

s
2−1
∑

m=0
cm

(

�s−m − 1
)

T�T�
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This concludes the proof of Corollary 35. □

In view of Theorem 30 and Corollary 35 the machinery in Theorem 4 gives the following
result.

Theorem 36. In the semi-direct case we have the following 6-term exact sequence

Hn(E, �d)⊕Hn(,M4) Hn+1(,M3) Hn(,M4)

Hn+1(F , �d) Hn+1(E, �d) Hn(F , �d)⊕Hn(M3, �d)

d2 + ℎ3 d3

d1 ℎ1 ⊕ d2

�

where � is as described in Corollary 35 and d1 is scalar extension.

Corollary 37. � induces an isomorphism

Hn(,M4)

d3Hn(,M3)

≅
⟶ Hn(E∕F ).

It will be shown as part of the interpretation that there is an exact sequence

Hn(,M4)

corẼ∕F̃Hn(Ẽ, �d)
⟶ Hn(F , �d)⟶ Hn(E, �d).

with the corestriction being mapped from F̃ into the image of d3.
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7.3 SOME EXAMPLES

We conclude this section with computation of � ∶ Hn(,M4) ⟶ Hn+1(F , �d) for n = 0
and n = 1.

1. � for n = 0
In the semi-direct case, s is even and the non-trivial action of � s

2 on M4 is multiplication
by (−1). Hence M4 has no fixed points with d being odd, and therefore � = 0 because
H0(,M4) is trivial.

Note that this is not true for the cyclic case, where s = 1 is not even. In the cyclic case,
H0(,M4) = H0(, �d) = �d and � is the well-known cup product with the character ��
defined by the extension E∕F = F (�)∕F .

2. � for n = 1
Let � ∈ Z1(,M4) be a crossed homomorphism. Then the identity � ⋅ �(�) = �1�(�)

may be deduced as from the cocycle condition as follows.

� ⋅ �(�) = � ⋅ �(�) + �(�) − �(�) = �(��) − �(�) = �(��1�) − �(�)

= ��1 ⋅ �(�) + �(��1) − �(�) = ��1 ⋅ �(�) + (��1−1 +⋯ + 1) ⋅ �(�) − �(�)

(∗)
= 1 ⋅ �(�) + (�1) ⋅ �(�) − �(�) = �1�(�)

where the equality (∗) comes from � acting trivially on M4. So for a unique t ∈ ℤ∕dℤ,

�(�) = t

s
2−1
∑

m=0
�−m1 �mBT�
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where t may be thought of as the �0BT�-coefficient of �(�).

The author has not found quite such luck expressing �(�), even after considering normal-
ization by different coboundaries. So �(�) will be expressed as follows: Let s ∶ ℤ ⟶

ℤ∕dℤ such that sm+ s
2
= −sm for every m ∈ ℤ so that

�(�) =

s
2−1
∑

m=0
sm�

mBT�

and more generally,
�(�) =

∑

s
m�

mBT�

for any choice of representatives 
1,… , 
 s
2−1

∈ ℤ of the cosets ℤ∕( s
2
)ℤ. Suppose g1 =

�j� i and g2 = �k�l. Then

�(g1, g2) = k ⋅ �(�) +

(

l−1
∑

�=0
��
)

⋅ �(�) =

s
2−1
∑

m=0

(

kt�m−1 +
l−1
∑

�=0
sm−�

)

�m

and hence
cm = kt�m−1 +

l−1
∑

�=0
sm−� .

The connecting map formula in Corollary 35 may be applied to yield

�̃(g1, g2) = i

s
2−1
∑

m=0

(

�−m1 − 1
)

cm = i

s
2−1
∑

m=0

(

�−m1 − 1
)

(

kt�−m1 +
l−1
∑

�=0
sm−�

)

.
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8. INTERPRETING THE SEQUENCES

In this section we record some consequences of the sequences in Theorems 13, 22, and 36.
As noted in the introduction, whenE∕F is cyclic one has the classical description of the relative
Brauer group,

F ×

NE∕F (E×)
≅ ker(BrdF → BrdE).

As an immediate consequence of Theorem 13, this classical result generalizes as follows.

Theorem 38. If E∕F is cyclic with [E ∶ F ] = d and �d2 ⊂ F we have a description of the

cohomological kernel for all n ≥ 0,

Hn(F , �d)
corE∕FHn(E, �d)

≅ ker(Hn+1(F , �d)→ Hn+1(E, �d)).

The goal in this section is to find what generalizations of Theorem 38 are possible in the
dihedral and semi-direct product cases considered in the previous two sections. We continue to
assume the notation of the last section. To better understand M3 and M4 we need to introduce
more induced modules and subgroups.

Definition 39. We set T2 ∶= J +�
s
2J ∈ Indℤ and then set 2 ∶=

∑

s
2−1
j=0 ℤ ⋅�

jT2 ⊂ Ind

ℤ. We

note that 2 is a -submodule of Indℤ with �
s
2T2 = T2. We set  ′ to be the unique group in

 of index s
2

containing  and denote by J ′ the corresponding subgroup of G where one notes

J ′ = ⟨�, �
s
2
⟩.
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By Galois theory, since J ′ has index s
2

in G,  ′ = Gal(Fsep∕F ′) where [F ′ ∶ F ] = s
2

and
F ⊂ F ′ ⊂ F̃ = F (�) (since F̃∕F is cyclic, F ′ is the unique such intermediate extension.) We
have the following.

Lemma 40. Given the above definitions.

(i) As -modules, 2 ≅ Ind

 ′ℤ.

(ii) As -modules, M4 ∶=M3∕M ′
3 ≅ Ind


ℤ∕2.

In particular we have an exact sequence of -modules.

0 → Ind ′ℤ → Indℤ →M4 → 0.

Proof. We note that Ind ′ℤ ≅ ⊕
s
2−1
j=0ℤ ⋅ �

jJ ′ with � acting cyclicly and � acting trivially on the
summands. This is exactly how G acts on the summands of 2 and the map �jT2 ↦ �j ′ gives
the isomorphism required by (i).

For (ii), by definition M4 is the free ℤ-module with basis B, �B,. . . ,� s
2−1B, with trivial

�-action and with � acting cyclically except with � s
2B = −B. From this it follows that the map

�jJ ↦ �jB defines aG-map Indℤ →M4 with kernel 2 (the latter as J +� s
2J ↦ B+�

s
2B =

B −B = 0 ∈M4.) This gives the lemma. □

Remarks. (i) The ℤ-ranks of the modules Ind ′ℤ, Ind ′ℤ,M4 are, respectively, s
2
, s, and s

2
.

(ii) Of course, all of these modules can be taken (mod d) and the same results apply.

The cohomology of M4 can be interpreted using the sequence of Lemma 40. By definition
we have F ⊆ F ′ ⊆ F̃ where [F̃ ∶ F ] = s and [F ′ ∶ F ] = s

2
. Computing cohomology in �d

and using the fact that (d, s) = 1 we know that Hn(F ′, �d) → Hn(F , �d) must be injective for
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all n. In particular the long exact sequence in cohomology gives exact sequences

0 → Hn(F ′, �d)→ Hn(F̃ , �d)→ Hn(,M4)→ 0.

This means if we let Hn
(F , �d) ∶= cok(Hn(F ′, �d) → Hn(F̃ , �d)) then the Positselski con-

necting map in Theorem 36 gives a map � ∶ Hn
(F̃ , �d)→Hn+1(F , �d) that computes the coho-

mological kernels as noted next.

Theorem 41. With the above notation we have an exact sequence,

H
n
(F̃ , �d)

�
→ Hn+1(F , �d)→ Hn+1(E, �d).

To understand the kernel of � one needs to further understand the cohomology of M3 and
how it maps into the cohomology of M4. For this purpose, if �∗ ∶ Hn(F̃ , �d)→ Hn(,M4) is
the induced map, we shall denote by

Nn
3 (E∕F ) ∶= �

∗−1(im(Hn(,M3)→ Hn(,M4))) ⊆ Hn(F̃ , �d)

and then Theorem 36 gives the following result.

Theorem 42. Given the above notation we have the following characterization of the cohomo-

logical kernel Hn+1(E∕F , �d),

Hn(F̃ , �d)
iF̃∕F ′Hn(F ′, �d) +Nn

3 (E∕F )
≅ ker(Hn+1(F , �d)→ Hn+1(E, �d)).
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When interpreted loosely, this result can be understood as the analogue of Theorem 38 in
the more general case case. (When E∕F is cyclic of degree d and s = 1 we would have F̃ = F

and Nn
3 (E∕F ) = corE∕FH

n(E, �d). Also, the subfield F ′ doesn’t exist in the cyclic case.)

Next we turn to M3 ⊂ ℤ[G]. We set ′ ∶= ⟨ , ��⟩ = Gal(Fsep∕E′) where E′ is discussed
above. We know by Lemma 31 the modules M3 = ℤ[G] ⋅ B, M ′

3 = ℤ[G] ⋅ (1 − �)B and
M4 = ℤ[G] ⋅ T�B. By Lemma 40 we have the following.

Theorem 43. The following diagram ofG-modules andG-maps is commutative with exact rows

and columns.

0 0 0

0 ′  Ind ′ℤ 0

0 ℤ[G](1 − �) ℤ[G] ℤ[G]T� 0

0 M ′
3 M3 M4 0

0 0 0

⊆ ⋅T�

⊆ ⋅T�

⊆ ⋅T�

⊆

⋅B

⊆

⋅B

⊆

⋅B

The right column is that of Lemma 40, where Ind ′ℤ = ℤ[G] ⋅ T�(1 + �
s
2 ), and Indℤ =

ℤ[G] ⋅ T� . Here  ∶= ker(⋅B ∶ ℤ[G] → M3) and ′ ∶= ker(⋅B ∶ ℤ[G] ⋅ (1 − �) → M ′
3).

Moreover, the ℤ-ranks of ′, ℤ[G] ⋅ (1 − �), M ′
3 are (s − 1)(d − 1), s(d − 1), (d − 1), resp.,
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the ℤ-ranks of , ℤ[G], M3 are sd − s
2
− (d − 1), sd, s

2
+ (d − 1), resp., and the ℤ-ranks of

Ind ′ℤ, ℤ[G] ⋅ T� , M4 are s
2
, s, s

2
, resp.

Proof. For commutativity, as the first set of rightarrows are inclusions as are the first downar-
rows, the only question is the lower right square. But T� is central in ℤ[G] so B ⋅ T� = T� ⋅ B

and this square commutes.
The bottom row is exact by earlier constructions. Since elements of G can be expressed

uniquely in the form �j� i for 0 ≤ j < s and 0 ≤ i < d, together with (1−�)T� = 0 and T� being
central, using the usual proof the middle row is exact. Lemma 31 shows the bottom vertical
maps are surjective, and therefore by Lemma 40 and the definitions of  and ′ the rows are
exact. It then follows by the usual diagram chase that the first row is exact.

Finally the ℤ-ranks of the bottom row are given in the remark following Lemma 40. The
ℤ-ranks of the two right columns are clear by previous work, so the ranks of  and ′ follow
by arithmetic. □

As an application of Theorem 43 we can characterize Nn
3 (E∕F ) via the corestriction.

Theorem 44. Given the above notation we have the following exact sequence calculating the

cohomological kernel Hn+1(E∕F , �d),

Hn(F̃ , �d)

corẼ∕F̃Hn(Ẽ, �d)
→ Hn+1(F , �d)→ Hn+1(E, �d).

The first map is injective provided Hn+1(,)→ Hn+1(Ẽ, �d) is injective.
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Proof. Consider the following diagram.

Hn(Ẽ, �d)

��

cor //Hn(F̃ , �d)

��

Hn(,M3)

��

//Hn(,M4)

��

//Hn+1(F , �d) //Hn+1(E, �d)

Hn+1(,)

��

//Hn+1(F1, �d)

��

Hn+1(Ẽ, �d)
cor //Hn+1(F̃ , �d)

The middle row is exact by Theorem 36. The two columns are exact by the long exact se-
quence of cohomology applied to the right two columns of the diagram in Theorem 43. The
diagram commutes since all maps are those induced by the diagram in Theorem 43. The map
Hn+1(F1, �d) → Hn+1(F̃ , �d) is injective since [F̃ ∶ F1] is prime to d. Therefore the map
Hn(F̃ , �d)→ Hn(,4) is surjective. This gives a surjective mapHn(F̃ , �d)→ ker(Hn+1(F , �d)→

Hn+1(E, �d)).The exactness of the sequence follows by noting the diagram shows corẼ∕F̃ (Hn(Ẽ, �d))

has trivial image in Hn+1(F , �d). For the second statement, if Hn+1(,) → Hn+1(Ẽ, �d) is
injective then Hn(Ẽ, �d) → Hn(,M3) is surjective and the result follows by the exactness of
the middle column of the diagram in Theorem 43. □

Remark. It is reasonable to conjecture that Hn+1(,) → Hn+1(Ẽ, �d) is injective. But we
need to understand  better. This question will be studied in future work.
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The section closes by looking at the case where s = 2. We have (1+�)(1−�) = (1+�)(1−
��) = (1 − �)(1 − ��) and we find

Ci = � i(1 + �)(1 − �) = � i(1 − �)(1 − ��) = � i(1 − �)(1 − ��)

B = (1 − �)�
d+1
2 = �

d+1
2 − �−

d+1
2 � = �

d+1
2 (1 − �−1�) = �

d+1
2 (1 − ��).

From this we find that M3 = ℤ[J ] ⋅ (1 − ��) = ℤ[J ] ⋅ B. Looking at M3 in this way may
make what is going on when s = 2 more transparent (in particular the relationship to E′.)
Even more, we have noted earlier that both ℤ[J ] ⋅ (1 ± ��) have ℤ-rank d, and therefore as
(1 − ��)(1 + ��) = 0 we know the kernel of the map ⋅(1 ± ��) is ℤ[J ] ⋅ (1 ∓ ��). This leads to
the following result.

Lemma 45. When s = 2 we have two exact sequences

0 →M3 → ℤ[G]→ Ind′ → 0

and

0→ Ind′ → ℤ[G]→M3 → 0.

The second sequence coincides with the middle row of the diagram of Theorem 43 up to an

automorphism of M3 and therefore  ≅ Ind′ in this case.

Proof. We know that ℤ[J ] ⋅ (1 + ��) ≅ Ind′ and M3 = ℤ[J ] ⋅ (1 − ��). The exact sequences
follow as the kernel of the map ⋅(1 ± ��) is ℤ[J ] ⋅ (1 ∓ ��). For the second statement, in
Theorem 43 the map ℤ[G] → M3 is multiplication ⋅B where B = �

d+1
2 (1 − ��), whereas it is
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multiplication by (1 − ��) in the lemma. However, multiplication by � d+1
2 is an autormorphism

of M3 so the result follows. □

In the dihedral case (s = 2), the exact sequence of Lemma 45 and the long exact cohomology
sequence give the first column of the diagram in the proof of Theorem 44,

⋯ → Hn(E′, �d)→ Hn(Ẽ, �d)→ Hn(,M3)

→ Hn+1(E′, �d)→ Hn+1(Ẽ, �d)→ Hn+1(,M3)⋯ .

However, [Ẽ ∶ E′] = 2 and d is odd, so we know Hn+1(,) = Hn+1(E′, �d) → Hn+1(Ẽ, �d)

is injective. This gives the following application of Theorem 44.

Theorem 46. In the dihedral case (s = 2) the cohomological kernel Hn+1(E∕F , �d) is given

by

Hn(F̃ , �d)

corẼ∕F̃Hn(Ẽ, �d)

≅
⟶ ker

(

Hn+1(F , �d)⟶ Hn+1(E, �d)
)

.

Proof. Since the map Hn+1(,) = Hn+1(E′, �d) → Hn+1(Ẽ, �d) is injective the result is
immediate by Theorem 44. □
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