Title
NUMERICAL APPLICATIONS OF CUBIC SPLINE FUNCTIONS.

Permalink
https://escholarship.org/uc/item/4rj746q5

Author
Young, Jonathan D.

Publication Date
1967-09-15
NUMERICAL APPLICATIONS OF CUBIC SPLINE FUNCTIONS

Jonathan D. Young

September 15, 1967

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUMERICAL APPLICATIONS OF CUBIC SPLINE FUNCTIONS

Jonathan D. Young

September 15, 1967
NUMERICAL APPLICATIONS
OF
CUBIC SPLINE FUNCTIONS

Jonathan D. Young
Lawrence Radiation Laboratory
University of California, Berkeley
September 15, 1967

ABSTRACT

This article describes the application of cubic spline fitting to
a set of points:

\[(t_i, x_i); i = 1, I \text{ with } I \geq 3\]

to obtain:

(1) a computational definition of a smooth curve, \(x(t) \);
(2) an estimate of the first derivative, \(x'(t) \), at each \(t_i \);
(3) an estimate of the second derivative, \(x''(t) \), at each \(t_i \);
(4) an interpolated value for \(x \) at any \(t, t_1 \leq t \leq t_I \);
(5) an estimate of the integral,

\[
\int_{t_1}^{t_I} x(t) \, dt.
\]

The \(t_i \) must be distinct and increasing with \(i \), but need not be uniformly
spaced.

INTRODUCTION

A \(t \)-dependent quantity, \(x(t) \), frequently is known (from observation,
from a table, etc) only in the discrete form as a set of points:

\[(t_i, x_i); i = 1, I.\]

with the \(t_i \) distinct and increasing with \(i \). The cubic spline function \(s(t) \)
which fits the table, \((t_i, x_i)\) has the following properties:

1. over any subinterval \([t_{i-1}, t_i]\); \(i = 2, I\) the function \(s(t)\) is a cubic in \(t\).

2. \(s(t_i) = x_i; \ i = 1, I\) (exact fit)

3. over the whole interval \([t_l, t_I]\) \(s\) has continuous first and second derivatives, \(s'(t)\) and \(s''(t)\)

4. \(\int_{t_l}^{t_I} [s''(t)]^2 \, dt\) is minimized.

By (1), we mean that for any \(i; \ i = 2, I - 1\) with \(s = s_\cdot \) on \([t_{i-1}, t_i]\) and \(s = s_+ \) on \([t_i, t_{i+1}]\) that \(s_\cdot\) and \(s_+\) are cubics (not generally identical), however by (3), \(s'_\cdot(t_i) = s'_+(t_i)\) and \(s''(t_i) = s''_+(t_i)\). By (4), we mean that for any function \(g(t)\) satisfying (2) and (3),

\[
\int_{x_1}^{x_I} [s''(t)]^2 \, dt \leq \int_{x_1}^{x_I} [g''(t)]^2 \, dt
\]

It is computationally convenient to assume that \(x(t) \equiv s(t)\) on \([t_l, t_I]\).

since \(s(t)\) is completely determined thereon by the known \((t_i, x_i); \ i = 1, I\) and by the readily computable

\(s'_i \equiv s'(t_i); \ i = 1, I\).

Recalling that \(s_i = x_i\) and that \(s\) is a cubic on each subinterval, simple computational processes on the values \((t_i, s_i, s'_i); \ i = 1, I\) provide for interpolation, second order differentiation, and integration.
CUBIC SPLINE FIT, FIRST DERIVATIVE

The problem of defining s is logically equivalent to finding s_i', $i = 1, I$ since for any $i; i = 2, I$, the cubic segment of s on the sub-interval $[t_{i-1}, t_i]$ is well defined by $(t_{i-1}, s_{i-1}, s''_{i-1})$ and (t_i, s_i, s''_i). We now describe the computation for the s_i'.

If x'_1 and x'_I are known, we set $s'_1 = x'_1$ and $s'_I = x'_I$ then solution of the linear system:

$$s'_1 = x'_1$$ (1)

$$(t_{i+1} - t_i) s'_{i-1} + 2 (t_{i+1} - t_{i-1}) s'_i + (t_i - t_{i-1}) s''_{i-1} = 3 \{(t_{i+1} - t_i)(x_i - x_{i-1})/(t_i - t_{i-1}) + (t_i - t_{i-1})(x_{i+1} - x_i)\}/(t_{i+1} - t_i) i = 2, I - 1$$ (2)

$$s'_I = x'_I$$ (3)

provides the values $s'_i; i = 1, I$.

In the (more common) case that the terminal derivatives x'_1 and x'_I are not known, replacements must be found for Equations (1) and (3).

Reference 1 imposes the condition that s have no curvature at t_1 and t_I; i.e., $s''(t_1) = 0$ and $s''(t_I) = 0$ which gives

$$2 s'_1 + s'_2 = 3 (x_2 - x_1)/(t_2 - t_1)$$ (1')

and

$$s'_{I-1} + 2 s'_I = 3 (x_I - x_{I-1})/(t_I - t_{I-1})$$ (3')

Solution of the linear system consisting of Equation (1'), Equations (2) and Equation (3') gives the s'_i subject to this condition.

Reference 2 imposes the condition of constant curvature very near t_1 and t_I by requiring that s'_1 be the slope of a circle passing through
(t₁, x₁) and (t₂, x₂) having the slope s₂ at t₂ and that s₁ be the slope of a circle passing through (t₁₋₁, x₁₋₁) and (t₁, x₁) having the slope s₁₋₁ at t₁₋₁ which gives:

\[s₁ = \frac{2(x₂ - x₁)/(t₂ - t₁) + s₂^2 \left[(x₂ - x₁)^2/(t₂ - t₁)^2 - 1 \right]}{(1 + s₂^2)^2} \]

\[(4) \]

\[s₁' = \frac{2(x₁ - x₁₋₁)/(t₁ - t₁₋₁) + s₁₋₁^2 \left[(x₁ - x₁₋₁)^2/(t₁ - t₁₋₁)^2 - 1 \right]}{(1 + s₁₋₁^2)^2} \]

\[(5) \]

Unfortunately, Equations (4) and (5) are not linear in s₂ and s₁₋₁, respectively; hence, the system (4), (2), (5) cannot be solved as a linear system. The reference proposes an iterative process whereby first estimates is made for s₂ and s₁₋₁, Equations (4) and (5) are solved for s₁ and s₁₋₁. Equations (2) can then be solved as a linear system for sᵢ, i = 2, I - 1. Then, the new values of s₂ and s₁₋₁ can be used in Equations (4) and (5) and iteration continued until s₂ and s₁₋₁ no longer change appreciably.

The authors assure us that the process is rapidly convergent.

We propose the condition that s is a cubic at t₁ and tᵢ whose slope sᵢ is dependent on (t₁, x₁), (t₂, x₂), and (tᵢ₊₁, xᵢ₊₁) and whose slope sᵢ₋₁ is dependent on (tᵢ₋₁, xᵢ₋₁), (tᵢ₋₁₋₁, xᵢ₋₁₋₁) and (tᵢ₋₂, xᵢ₋₂) which gives:

\[sᵢ' + a₁ s₂' = b₁ s₁ + c₁ s₂ + d₁ s₃ \]

where

\[d₁ = (t₂ - t₁)^2/\{(t₃ - t₁)^3 - 2(t₂ - t₁)(t₃ - t₁)^2 + (t₂ - t₁)^2(t₃ - 1) \} \]

\[c₁ = d \{ 2(t₃ - t₁)^3 - 3(t₂ - t₁)(t₃ - t₁)^2 \}/(t₂ - t₁)^3 \]

\[b₁ = -c₁ - d₁ \]

\[a₁ = d(t₃ - t₁) + c(t₂ - t₁) - 1 \]

and
Equations (1") and (3") are linear; hence, Equation (1"),
Equation (2), and Equation (3") constitute a linear system which can be
solved for \(s_i' \); \(i = 1, I \).

SECOND DERIVATIVE

The values of the second derivative

\[s''_i = s''(t_i) \]

can be readily computed from the set:

\[(t_i, s_i, s_i'); i = 1, I \]

by

\[s''_i = \left\{ 6 \left(s_k - s_i \right) / (t_k - t_i) + 2 s_k' + 4 s_i' \right\} / (t_k - t_i) \]

where \(t_k \) is adjacent to \(t_i \). The formula is exact for a cubic between \(t_k \)
and \(t_i \). For \(i = 2, I - 1 \), the \(k \) may be either \(i - 1 \) or \(i + 1 \). The result
will be the same for either choice since the cubic on \([t_{i-1}, t_i]\) has the
same second derivative at \(t_i \) as the cubic on \([t_i, t_{i+1}]\).

INTERPOLATION

Interpolation for \(x(t^*) \) with

\[t_1 < t^* < t_I \]

is accomplished by computing \(s(t^*) \) by Hermite interpolation. For some
\(i; i = 1, I - 1 \) we have

\[t_i \leq t^* \leq t_{i+1} \]

Let

\[h = t^* - t_i \quad \quad H = t_{i+1} - t_i \]
then let

\[a = \frac{(3 h^2 H - 2 h^3)}{H^3} \]

\[b = 1 - a \]

\[c = \frac{(h^3 - h^2 H)}{H^2} \]

\[d = h - h^2 / H + c \]

and finally,

\[s(t^*) = a s_i + b s_i + c s_i + d s_i \]

This formula is exact for cubics; hence, the value \(s(t^*) \) is exact for \(s \) and is an estimate for \(x(t^*) \).

INTEGRATION

The integral

\[
\int_{t_1}^{t_I} s \, dt = \sum_{i=1}^{I-1} \int_{t_i}^{t_{i+1}} s \, dt. \tag{6}
\]

On each of the subintervals \([t_i, t_{i+1}] ; i = 1, I - 1 \), the function \(s \) is a cubic and

\[
\int_{t_i}^{t_{i+1}} s \, dt = (t_{i+1} - t_i)(s_{i+1} + s_i)/2 + (t_{i+1} - t_i)^2(s_i - s_{i+1})/12
\]

is exact for cubics. The sum of all such subintegrals gives

\[
\int_{t_1}^{t_I} s \, dt
\]

which can be used as an estimate for

\[
\int_{t_1}^{t_I} x(t) \, dt.
\]

CONCLUSION

The cubic spline \(s(t) \) is a computationally convenient fit for a table.
(\(t_i, x_i\); \(i = 1, I; I \geq 3\).

It lends itself conveniently to numerical differentiation, interpolation and numerical integration.

The cubic spline fit having a continuous second derivative and piecewise constant third derivative is much smoother than polygonal (broken line) fitting which is continuous and has a piecewise constant first derivative and smoother than local cubic fitting which has a continuous first derivative and piecewise constant second derivatives.

Exact polynomial fitting of \((t_i, x_i)\) may introduce many inflection points and extreme curvature over a short arc. The minimization property (4) of spline fitting tends to prevent such occurrences.

Cubic spline fitting is exact on \((t_i, x_i)\) in contrast to least square fitting which admits residual errors. These residual errors, particularly if they alternate in sign from point-to-point, may introduce unreasonable variation in derivative values.

REFERENCES

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.