
Maximal Clique Enumeration with Data-Parallel Primitives

Brenton Lessley∗

University of Oregon

Talita Perciano†

Lawrence Berkeley Nat’l Lab

Manish Mathai‡

University of Oregon

Hank Childs§

University of Oregon

E. Wes Bethel¶

Lawrence Berkeley Nat’l Lab

Abstract

The enumeration of all maximal cliques in an undirected
graph is a fundamental problem arising in several research
areas. We consider maximal clique enumeration on shared-
memory, multi-core architectures and introduce an approach
consisting entirely of data-parallel operations, in an effort to
achieve efficient and portable performance across different
architectures. We study the performance of the algorithm via
experiments varying over benchmark graphs and architec-
tures. Overall, we observe that our algorithm achieves up
to a 33-time speedup and 9-time speedup over state-of-the-
art distributed and serial algorithms, respectively, for graphs
with higher ratios of maximal cliques to total cliques. Fur-
ther, we attain additional speedups on a GPU architecture,
demonstrating the portable performance of our data-parallel
design.

1 INTRODUCTION

Over the past decade, supercomputers have gone from com-
modity clusters built out of nodes containing a single CPU
core to nodes containing small numbers of CPU cores to
nodes containing many cores, whether self-hosted (i.e., Xeon
Phi) or from accelerators (typically GPUs). For software de-
velopers, this has led to a significant change. One decade ago,
software projects could target only distributed-memory par-
allelism, and, on a single node, could use a single-threaded
approach, typically with C or Fortran. Now, software
projects must consider shared-memory parallelism in addi-
tion to distributed-memory parallelism. Further, because the
architectures on leading edge supercomputers vary, software
projects have an additional difficulty, namely how to support
multiple architectures simultaneously. One approach to this
problem is to maintain separate implementations for sepa-
rate architectures. That is, to have a CUDA implementation
for NVIDIA GPUs and a TBB implementation for Intel archi-
tectures. That said, this approach has drawbacks. For one,
the software development time increases, as modules need
to be developed once for each architecture. Another problem
caused by this approach is a lack of future-proofing; as super-
computers adopt new processor architectures (e.g., FPGA),
the code for each module must be re-written, or possibly even
re-thought.

Data-parallel primitives (DPPs) [6] is an approach for de-
veloping a single code base that can run over multiple archi-
tectures in a portably performant way. DPPs are customiz-

∗e-mail:blessley@cs.uoregon.edu
†e-mail:tperciano@lbl.gov
‡e-mail:mmathai@cs.uoregon.edu
§e-mail:hank@cs.uoregon.edu
¶e-mail:ewbethel@lbl.gov

able building blocks, meaning the algorithm design consists
in composing these building blocks to solve a problem. To be
a DPP, an algorithm needs to execute in O(logN) time on an
array of size N, provided there are N or more cores to work
with. Well-known patterns, such as map, reduce, gather, scat-
ter, and scan, meet this property, and are some of the most
commonly used DPPs. While programming with DPPs re-
quires re-thinking algorithms, the payoff comes in reduced
code size, reduced development time, portable performance,
and the ability to port to new architectures with reduced ef-
fort.

With this paper, we explore the maximal clique enumera-
tion problem in the context of DPPs. Our motivator to pur-
sue this work was an image processing problem that required
maximal cliques and also aimed to support multiple archi-
tectures. In fact, very recent algorithms for the analysis of
experimental image data take advantage of graphical models
with maximal clique analysis and high performance comput-
ing techniques as in [37, 38]. That said, we have found that,
for certain conditions, our approach is competitive with lead-
ing maximal clique implementations. We focus our compar-
isons on state-of-the-art maximal clique solvers. In our exper-
iments, we find that our DPP-based algorithm is faster than
the leading solutions for some graphs, namely those with
higher ratios of maximal cliques to total cliques. Overall, the
contribution of this paper is an important demonstration that
the DPPs approach can work well for graphs, as well as a spe-
cific algorithm for maximal clique enumeration.

2 BACKGROUND AND RELATED WORK

2.1 Maximal Clique Enumeration

A graph G consists of a set of vertices V, some pairs of which
are joined to form a set of edges E. A subset of vertices C ⊆
V is a clique, or complete subgraph, if each vertex in C is con-
nected to every other vertex in C via an edge. C is a maxi-
mal clique if its vertices are not all contained within any other
larger clique in G. The size of a clique can range from zero—
if there are no edges in G—to the number of vertices in V,
if every vertex is connected to every other vertex (i.e., G is a
complete graph). The maximum clique is the clique of largest
size within G, and is itself maximal, since it cannot be con-
tained within any larger-sized clique. The task of finding all
maximal cliques in a graph is known as maximal clique enu-
meration (MCE). Figure 1 illustrates a graph with 6 vertices
and 9 undirected edges. An application of MCE on this graph
would search through 15 total cliques, of which only 3 are
maximal.

The maximum number of maximal cliques possible in G
is exponential in size; thus, MCE is considered an NP-Hard
problem for general graphs in the worst case [34]. How-
ever, for certain sparse graph families that are encountered
in practice (e.g., bipartite and planar), G typically contains
only a polynomial number of cliques, and numerous algo-
rithms have been introduced to efficiently perform MCE on
real-world graphs. A brief survey of prior MCE research, in-

1 2

0 5

3 4

Figure 1: Undirected graph with 6 vertices and 9 edges. This
graph consists of 15 total cliques, 3 of which are maximal
cliques. The maximal cliques are 2-5, 1-2-4, and 0-1-3-4, the
latter of which is the largest-sized clique in the graph. This
maximum clique is denoted with dotted edges. Refer to sub-
section 2.1 for details.

cluding the algorithms we compare against in our study, is
provided later in this section.

2.2 Related Work

2.2.1 Visualization and Data Parallel Primitives

While we are considering the DPP approach for a graph al-
gorithm, there have been several similar studies for scientific
visualization. In each case, they have studied a specific vi-
sualization algorithm: Maynard et al. for thresholding [32],
Larsen et al. for ray-tracing [24] and unstructured volume
rendering [23], Schroots and Ma for cell-projected volume
rendering [40], Lessley et al. for external facelist calcula-
tion [27], Lo et al. for isosurface generation [29], Widanaga-
maachchi et al. and Harrison et al. for connected compo-
nent finding [44, 15], Carr et al. for contour tree computa-
tion [8], and Li et al. for wavelet compression [28]. Moreover,
several DPP-based algorithms have been introduced for the
construction of spatial search structures in the visualization
domain (e.g., ray tracing), particularly for real-time use on
graphics hardware. These include k-d trees, uniform grids,
two-level grids, bounding volume hierarchies (BVH), and oc-
trees [29, 47, 19, 18, 17, 22, 25].

Finally, our experiments make use of the VTK-m frame-
work [36], which is the same framework used in several of
these scientific visualization studies. VTK-m is effectively
the unification of three predecessor visualization libraries—
DAX [35], EAVL [33], and PISTON [29]—each of which were
constructed on DPP with an aim to achieve portable perfor-
mance across multiple many-core architectures.

2.2.2 Maximal Clique Enumeration

Several studies have introduced algorithms for MCE. These
algorithms can be categorized along two dimensions: traver-
sal order of clique enumeration and whether it is serial or
parallel.

Serial depth-first MCE uses a backtracking search tech-
nique to recursively expand partial cliques with candidate
vertices until maximal cliques are discovered. This process
represents a search forest in which the set of vertices along
a path from a root to a child constitutes a clique, and a path
from a root to a leaf vertex forms a maximal clique. Upon dis-
covering a maximal clique, the algorithm backtracks to the
previous partial clique and branches into a recursive expand
operation with another candidate vertex. This approach lim-
its the size of the search space by only exploring search paths
that will lead to a maximal clique.

The works in [5, 7] introduce two of the earliest serial
backtracking-based algorithms for MCE; the implementation
of the algorithm in [7] attained more prominence due to

its simplicity and effective performance for most practical
graphs. The algorithms proposed in [16, 20, 43, 26, 10, 31]
build upon [7] and devise similar depth-first, tree-based
search algorithms. Tomita et al. [42] optimize the clique ex-
pansion (pivoting) strategy of [7] to prune unnecessary sub-
trees of the search forest, make fewer recursive calls, and
demonstrate very fast execution times in practice, as com-
pared to [7, 43, 10, 31]. Eppstein et al. [13, 14] develop a
variant of [7] that uses a degeneracy ordering of candidate
vertices to order the sequence of recursive calls made at the
top-most level of recursion. Then, during the inner levels of
recursion, the improved pivoting strategy described in [42] is
used to recurse on candidate vertices. [14] also introduces
two variants of their algorithm, and propose a memory-
efficient version of [42] using adjacency lists. Experimen-
tal results indicate that [14] is highly competitive with the
memory-optimized [42] on large sparse graphs, and within a
small constant factor on other graphs.

Distributed-memory, depth-first MCE research has also
been conducted. Du et al. [12] present an approach that as-
signs each parallel process a disjoint subgraph of vertices
and then conducts serial depth-first MCE on a subgraph; the
union of outputs from each process represents the complete
set of maximal cliques. Schmidt et al. [39] introduce a par-
allel variant of [7] that improves the process load balancing
of [12] via a dynamic work-stealing scheme. In this approach,
the search tree is explored in parallel among compute nodes,
with unexplored search subtrees dynamically reassigned to
underutilized nodes. Lu et al. [30] and Wu et al. [45] both in-
troduce distributed parallel algorithms that first enumerate
maximal, duplicate, and non-maximal cliques, then perform
a post-processing phase to remove all the duplicate and non-
maximal cliques. Dasari et al. [11] expand the work of [14] to
a distributed, MapReduce environment, and study the per-
formance impact of various vertex-ordering strategies, using
a memory-efficient partial bit adjacency matrix to represent
vertex connectivity within a partitioned subgraph. Svendsen
et al. [41] present a distributed MCE algorithm that uses an
enhanced load balancing scheme based on a carefully chosen
ordering of vertices. In experiments with large graphs, this
algorithm significantly outperformed the algorithm of [45].

Serial breadth-first MCE iteratively expands all k-cliques
into (k + 1) cliques, enumerating maximal cliques in increas-
ing order of size. The number of iterations is typically equal
to the size of the largest maximal clique. Kose et al. [21]
and Zhang et al. [46] introduce algorithms based on this ap-
proach. However, due to the large memory requirements of
these algorithms, depth-first-based algorithms have attained
more prevalence in recent MCE studies [39, 41].

Shared-memory breadth-first MCE on a single node has
not been actively researched to the best of our knowledge.
In this study, we introduce a breadth-first approach that is
designed in terms of data-parallel primitives. These prim-
itives enable MCE to be conducted in a massively-parallel
fashion on shared-memory architectures, including GPU ac-
celerators, which are designed to perform this data-parallel
computation. We compare the performance of our algorithm
against that of Tomita et al.[42], Eppstein et al.[14] and Svend-
sen et al.[41]. These studies provide suitable benchmark com-
parisons because they each introduce the leading MCE im-
plementations in their respective categories: Tomita et al. and
Eppstein et al. for serial depth-first MCE and Svendsen et
al. for distributed-memory, depth-first MCE.

3 DATA-PARALLEL PRIMITIVES

The new algorithm presented in this study is described in
terms of data-parallel primitives, or DPPs. These primitives
provide high-level abstractions and permit new algorithms
to be platform-portable across many environments. The fol-
lowing primitives are used in our algorithm implementation:

• Map: Applies an operation on all elements of the input
array, storing the result in an output array of the same
size, at the same index;

• Reduce: Applies a summary binary operation (e.g., sum-
mation or maximum) on all elements of an input array,
yielding a single output value. ReduceByKey is a vari-
ation which performs Reduce on the input array, seg-
menting it based on a key or unique data value in the
input array, yielding an output value for each key;

• Exclusive Scan: Calculates partial aggregates, or a prefix
sum, for all values in an input array and stores them in
an output array of the same size;

• Scatter: Writes each value of an input data array into
an index in an output array, as specified in the array of
indices;

• Compact: Applies a unary predicate (e.g., if an input ele-
ment is greater than zero) on all values in an input array,
filtering out all the values which do not satisfy the pred-
icate. Only the remaining elements are copied into an
output array of an equal or smaller size;

• Unique: Ignores duplicate values which are adjacent to
each other, copying only unique values from the input
array to the output array of the same or lesser size; and

• Unzip: Transforms an input array of pairs into two ar-
rays of the same size, one with all the first components
and the other with all the second components.

Most DPPs can be extended with a developer supplied
functor, enabling custom operations. For example, if a devel-
oper wants to extract all perfect squares from an input array,
they can write a unary predicate functor that checks if the
fractional parts of the square root of each value is zero. The
Compact DPP then execute the functor over the entire input
array in parallel.

4 ALGORITHM

This section presents our new DPP-based MCE algorithm,
which consists of an initialization procedure followed by the
main computational algorithm. The goal of the initialization
procedure is to represent the graph data in a compact for-
mat that fits within shared memory. The main computational
algorithm enumerates all of the maximal cliques within this
graph. The implementation of this algorithm is available on-
line [4], for reference and reproducibility.

4.1 Initialization

In this phase, we construct a compact graph data structure
that consists of the following four component vectors:

• I: List of vertex Ids. The contents of the list are the
lower-value vertex Ids of each edge;

• C: List containing the number of edges per vertex in I;
• E: Segmented list in which each segment corresponds

to a vertex v in I, and each vertex Id within a segment
corresponds to an edge of v. The length of a segment is
equal to the number of edges incident to its vertex;

• V: List of indices into the edge list, E, for each vertex in
I. Each index specifies the start of the vertex’s segment
of edges.

(0, 1)

(0, 3)

(1, 0)

(1, 2)

(1, 3)

(1, 4)

(2, 4)

(2, 5)

(4, 0)

(4, 1)

(4, 3)

Input

(0, 1)

(0, 3)

(0, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 4)

(2, 5)

(0, 4)

(1, 4)

(3, 4)

Reorder

(0, 1)

(0, 1)

(0, 3)

(0, 4)

(1, 2)

(1, 3)

(1, 4)

(1, 4)

(2, 4)

(2, 5)

(3, 4)

Sort

(0, 1)

(0, 3)

(0, 4)

(1, 2)

(1, 3)

(1, 4)

(2, 4)

(2, 5)

(3, 4)

Unique

I = [0 1 2 3]

C = [3 3 2 1]

V = [0 3 6 8]

E = [1 3 4
V0

2 3 4
V1

4 5
V2

4
V3

]

Output: v-graph

Figure 2: Initialization process to obtain a v-graph represen-
tation of the undirected graph from Figure 1. Starting with
an unordered set of (possibly) directed edges, we first reorder
the two vertices in each edge to ascending Id order. Second,
all edges are sorted in ascending order. Third, all duplicate
edges are removed, leaving unique undirected edges. These
edges are then further processed to construct the output v-
graph. Refer to subsection 4.1 for details.

This data structure is known as a v-graph [6] and it is con-
structed using only data-parallel operations. The compressed
form of the v-graph in turn enables efficient data-parallel op-
erations for our MCE algorithms.

We construct the v-graph as follows. Refer to algorithm 1
for pseudocode of these steps and Figure 2 for an illustration
of the input and output.

1. Reorder: Accept either an undirected or directed graph
file as input; if the graph is directed, then it will be con-
verted into an undirected form. We re-order an edge
(b, a) to (a, b) if b > a. This maintains the ascending
vertex order that is needed in our algorithms;

2. Sort: Invoke a data-parallel Sort primitive to arrange all
edge pairs in ascending order (line 9 of algorithm 1).
The input edges in Figure 2 provide an example of this
sorted order;

3. Unique: Call the Unique data-parallel primitive to re-
move all duplicate edges (line 10 of algorithm 1). This
step is necessary for directed graphs, which may contain
bi-directional edges (a, b) and (b, a);

4. Unzip: Use the Unzip data-parallel primitive to sepa-
rate the edge pairs (ai, ei) into two arrays, A and E, such
that all of the first-index vertices, ai, are in A and all of
the second-index vertices, ei, are in E (line 11 of algo-
rithm 1). For example, using the edges from Figure 2,
we can create the following A and E arrays:

[
0
1

0
3

0
4

1
2

1
3

1
4

2
4

2
5

3
4

]
Unzip−−−→

A : [0 0 0 1 1 1 2 2 3]

E : [1 3 4 2 3 4 4 5 4]

The array E represents the edge list in our v-graph struc-
ture;

5. Reduce: Use the ReduceByKey data-parallel primitive to
compute the edge count for each vertex (line 13 of al-
gorithm 1). Using the arrays A and E from step 3, this

Algorithm 1: Pseudocode for the construction of the v-
graph data structure, which consists of vertex Ids (I), seg-
mented edges (E), per-vertex indices into the edge list (V),
and per-vertex edge counts (C). M is the number of input
edges, Nedges is the number of output edges, and Nverts is
the number of output vertices. See Section 4.1 for details.

1 /*Input*/
2 Array: int edgesIn[M]
3 /*Output*/
4 Array: int C[Nverts], E[Nedges], I[Nverts], V[Nverts]
5 /*Local Objects*/
6 Array: int edgesOrdered[M], edgesSorted[M],

edgesUndirected[Nedges], A[Nedges]
7 Int: Nedges, Nverts

8 edgesOrdered←Reorder(edgesIn)
9 edgesSorted←Sort(edgesOrdered)

10 edgesUndirected←Unique(edgesSorted)
11 A, E←Unzip(edgesUndirected)
12 Nedges ← |E|
13 C, I←ReduceByKey(A, 1⃗)
14 Nverts ← |I|
15 V←ExclusiveScan(C)
16 //Continue with Algorithm 2 after returning.
17 return (C, E, I, V)

operation counts the number of adjacent edges from E
that are associated with each unique vertex in A. The
resulting output arrays represent the lists I and C in our
v-graph structure:

I : [0 1 2 3]

C : [3 3 2 1]

6. Scan: Run the ExclusiveScan data-parallel operation on
the edge counts array, C, to obtain indices into the edge
list, E, for each entry in I (line 15 of algorithm 1). This
list of indices represents the list V in our v-graph (see
Figure 2). In our running example, vertex 0 has 3 edges
and vertex 1 has 3 edges, representing index segments
0-2 and 3-5 in E, respectively. Thus, vertex 0 and vertex
1 will have index values of 0 and 3, respectively:

C : [3 3 2 1] ExclusiveScan−−−−−−−−→ V : [0 3 6 8]

4.2 Hashing-Based Algorithm

We now describe our hashing-based algorithm to perform
maximal clique enumeration, which comprises the main
computational work. This algorithm takes the v-graph from
the initialization phase as input. In the following subsections
we provide an overview of the algorithm, along with a more
detailed, step-by-step account of the primary data-parallel
operations.

4.2.1 Algorithm Overview

We perform MCE via a bottom-up scheme that uses multiple
iterations, each consisting of a sequence of data-parallel op-
erations. During the first iteration, all 2-cliques(edges) are
expanded into zero or more 3-cliques and then tested for
maximality. During the second iteration, all of these new 3-
cliques are expanded into zero or more 4-cliques and then
tested for maximality, so on and so forth until there are no

2-cliques: 0-1 0-3 0-4 1-2 1-3 1-4 2-4 2-5 3-4

3-cliques: 0-1-3 0-1-4 0-3-4 1-2-4 1-3-4

4-cliques: 0-1-3-4

Figure 3: Clique expansion process for the example undi-
rected graph of Figure 1. In the first iteration, only 2-cliques
(edge pairs) are considered. Then, these cliques are expanded
into larger 3-cliques. The 4-clique in the final iteration can-
not be expanded further since it is maximal; this clique also
cannot be expanded further because it is the maximum-sized
clique. All maximal cliques are denoted in boxes with bold
font. See subsubsection 4.2.1 for details.

0

3 4

1

(a) 3-cliques: 0-3-4, 1-3-4

0

3 4

1

(b) 4-clique: 0-1-3-4

Figure 4: Example of clique expansion. As shown in (a), the
set of four vertices, 0-1-3-4, is composed of two 3-cliques,
0-3-4 and 1-3-4. Both of these cliques share a common 2-
clique, 3-4, which is highlighted in bold. If (0, 1) is an edge
in the graph (dotted line), as shown in (b), then 0-1-3-4 is a
4-clique. Refer to subsubsection 4.2.2 for details.

newly-expanded cliques. The number of iterations is equal
to the size of the maximum clique, which itself is maximal and
cannot be expanded into a larger clique. Figure 3 presents
the progression of clique expansion for the example graph in
Figure 1.

During this process, we assess whether a given k-clique is
a subset of one or more larger (k+ 1)-cliques. If so, then the k-
clique is marked as non-maximal and the new (k + 1)-cliques
are stored for the next iteration; otherwise, the k-clique is
marked as maximal and discarded from further computation.

In order to determine whether a k-clique is contained
within a larger clique, we use a hashing scheme that searches
through a hash table of cliques for another k-clique with the
same hash value. These matching cliques share common ver-
tices and can be merged into a larger clique if certain crite-
ria are met. Thus, hashing is an important element to our
algorithm. Figure 4 illustrates the clique merging process be-
tween two different k-cliques.

4.2.2 Algorithm Details

Within each iteration, our MCE algorithm consists of three
phases: dynamic hash table construction, clique expansion,
and clique maximality testing. These phases are conducted
in a sequence and invoke only data-parallel operations; re-

Algorithm 2: Pseudocode for the hashing-based maximal
clique enumeration algorithm. See Section 4.2 for a de-
scription of this algorithm.

1 /*Input from Algorithm 1*/
2 v-graph: int C[Nverts], E[Nedges], I[Nverts], V[Nverts]
3 /*Output*/
4 Array: int[Nmaximal × NmaximalVerts]: maxCliques
5 /*Local Objects*/
6 int: Ncliques, NnewCliques, Nchains, Nmaximal , NmaximalVerts,

iter
7 Array: int[Ncliques]: cliqueStarts, cliqueSizes, cliqueIds,

sortedCliqueIds, newCliqueCounts, scanNew,
writeLocations

8 Array: float[Ncliques]: hashes, sortedHashes
9 Array: int[NnewCliques]: newCliqueStarts

10 Array: int[Ncliques × (iter + 1)]: newCliques
11 Array: int[Ncliques × iter]: cliques, isMaximal, hashTable
12 Array: int[NnewCliques × (iter− 1)]: repCliqueIds,

repCliqueStarts, localIndices, vertToOmit
13 Array: int[Nchains]: uniqueHashes, chainStarts,

chainSizes, scanChainSizes

14 iter ← 2
15 cliques←Get2-Cliques(E)
16 Ncliques ← Nedges

fer to algorithm 2 for pseudocode of these phases and oper-
ations. In the following description, the 3-cliques from Fig-
ure 3 are used as a running example. We start from iteration
3 with the linear array

cliques = [0-1-4 0-3-4 1-2-4 1-3-4 0-1-3].

of length (k = 3)× (numCliques = 5) = 15.

Dynamic Hash Table Construction: As our algorithm
uses hashing as an integral component, we discuss the op-
erations that are used to construct a hash table into which the
cliques are hashed and queried.

First, each clique is hashed to an integer (line 21 of algo-
rithm 2). This is done using the FNV-1a hash function [3], h,
and taking the result modulo the number of cliques. Further,
only the clique’s last k− 1 vertex indices are hashed. Only the
last (k− 1) vertices are hashed because we just need to search
(via a hash table) for matching (k− 1)-cliques to form a new
(k + 1)-clique. For example, cliques 0-3-4 and 1-3-4 both hash
their last two vertices to a common index, i.e., h(3-4), and can
combine to form 0-1-3-4, since leading vertices 0 and 1 are
connected (see Figure 4).

Next, we allocate an array, hashTable, of the same size as
cliques, into which the cliques will be rearranged (permuted)
in order of hash value. In our example, there are 5 cliques,
each with an Id in cliqueIds = [0 1 2 3 4]. After ap-
plying the hash operation, these cliques have the hash val-
ues, hashes = [1 0 4 0 1]. Sorting cliqueIds in order of
hash value (hashes), we obtain sortedIds = [1 3 0 4 2] and
sortedHashes = [0 0 1 1 4] (line 22 of algorithm 2). A Reduce-
ByKey operation (line 24 of algorithm 2) computes a count
for each unique hash value in hashes: unique = [0 1 4] and
count = [2 2 1]. A series of Scan, Map, and Scatter primi-
tives are then employed on cliqueIds and counts to construct
offset index arrays (of length numCliques) into hashTable, de-
noted as cliqueStarts and chainStarts, respectively (lines 26

17 while Ncliques > 0 do
18 cliqueStarts← [iter× i], 0 ≤ i < Ncliques;
19 cliqueSizes← [iteri], 0 ≤ i < Ncliques;
20 cliqueIds← [i], 0 ≤ i < Ncliques;
21 hashes←ComputeHash(cliques, cliqueStarts,

cliqueSizes);
22 sortedHashes, sortedIds←SortByKey(hashes,

cliqueIds);
23 hashTable←Permute(sortedIds, cliques);
24 uniqueHashes, chainSizes

←ReduceByKey(sortedHashes, 1⃗);
25 Nchains ← |uniqueHashes|;
26 scanChainSizes←ScanExclusive(chainSizes);
27 chainStarts← [scanChainSizes[i]× iter];
28 isMaximal← 1⃗;
29 newCliqueCounts, isMaximal

←FindCliques(v-graph, iter, cliqueStarts,
chainStarts, chainSizes, hashTable, isMaximal);

30 NnewCliques,
scanNew←ScanExclusive(newCliqueCounts);

31 writeLocations←Multiply(scanNew, iter + 1);
32 newCliques← 0⃗;
33 newCliques←GetCliques(v-graph, iter,

writeLocations, chainStarts, chainSizes, hashTable,
newCliques);

34 repCliqueIds← [i0 . . . iiter−2], 0 ≤ i < NnewCliques;
35 newCliqueStarts← [iter× i], 0 ≤ i < NnewCliques;
36 repCliqueStarts←Gather(repCliqueIds,

newCliqueStarts);
37 localIndices, vertToOmit←Modulus(iter− 1,

repCliqueIds);
38 isMaximal←TestForMaximal(repCliqueIds,

repCliqueStarts, iter− 1, localIndices, vertToOmit,
chainStarts, chainSizes, hashTable, isMaximal,
newCliques);

39 maxCliques = maxCliques + Compact(hashTable,
isMaximal, IsIntValue(1));

40 Ncliques ← NnewCliques;
41 iter ← iter + 1;
42 end
43 return (maxCliques)

and 27 algorithm 2). Permuting cliques by sortedIds (line 23
of algorithm 2), we obtain

hashTable = [0-3-4 1-3-4︸ ︷︷ ︸
Chain0

0-1-4 0-1-3︸ ︷︷ ︸
Chain1

1-2-4︸ ︷︷ ︸
Chain2

]

tableIndex = [0 1 2︸︷︷︸
Clique0

3 4 5︸︷︷︸
Clique1

6 7 8︸︷︷︸
Clique2

9 10 11︸ ︷︷ ︸
Clique3

12 13 14︸ ︷︷ ︸
Clique4

]

cliqueIds = [0 1 2 3 4]

chainIds = [0 0 1 1 2]

cliqueStarts = [0 3 6 9 12]

chainStarts = [0 0 6 6 12],

with three chains of contiguous cliques, each sharing the
same hash value. Since the cliques within a chain are
not necessarily in sorted order, the chain must be probed
sequentially using a constant number of lookups to find
the clique of interest. This probing is also necessary since
different cliques may possess the same hash value, resulting

in collisions in the chain. For instance, cliques 0-1-3 and 0-1-4
both hash to index h(1-3) = h(1-4) = 1, creating a collision
in Chain1. Thus, the hash function is important, as good
function choices help minimize collisions, while poor choices
create more collisions and, thus, more sequential lookups.

Clique Expansion: Next, a two-step routine is performed
to identify and retrieve all valid (k + 1)-cliques for each k-
clique in hashTable. The first step focuses on determining the
sizes of output arrays and the second step focuses on allocat-
ing and populating these arrays.

In the first step, a Map primitive computes and returns the
number of (k + 1)-cliques into which a k-clique can be ex-
panded (line 29 of algorithm 2). The first step works as fol-
lows. For a given k-clique, i, at cliqueStarts[i], we locate its
chain at chainStarts[i] and iterate through the chain, search-
ing for another k-clique, j, with (a) a larger leading vertex Id
and (b) the same ending (k − 1) vertices; these two criteria
are needed to generate a larger clique and avoid duplicates
(see Theorem 7.1 and Theorem 7.3). For each matching clique
j in the chain, we perform a binary search over the adjacent
edges of i in the v-graph edge list E to determine whether the
leading vertices of i and j are connected. If so, then, by Theo-
rem 7.1, cliques i and j can be expanded into a larger (k + 1)-
clique consisting of the two leading vertices and the shared
(k− 1) vertices, in ascending order. The total number of ex-
panded cliques for i is returned. In our example, this routine
returns a counts array, newCliqueCounts = [1 0 0 0 0], indi-
cating that only clique 0-3-4 could be expanded into a new
4-clique; Figure 4 illustrates the generation of this 4-clique.

In the second step, an inclusive Scan primitive is invoked
on newCliqueCounts to compute the sum of the clique
counts, numNewCliques (line 30 of algorithm 2). The second
step works as follows. This sum is used to allocate a new
array, cliques, of size numNewcliques · (k + 1) to store all of
the (k + 1)-cliques, along with a new offset index array with
increments of (k + 1). With these arrays, we invoke a parallel
Map operation that is identical to the Map operation of the
first step, except that, upon discovery of a new (k+ 1)-clique,
we write the clique out to its location in cliques (using the
offset array), instead of incrementing a newCliques counter
(line 32 of algorithm 2). For the running example, the new
cliques array consists of the single 4-clique, 0-1-3-4.

Clique Maximality Test: Finally, we assess whether each
k-clique is maximal or not. Prior to Clique Expansion, a bit
array, isMaximal, of length numCliques, is initialized with all
1s. During the first step of Clique Expansion, if a clique
i merged with one or more cliques j, then they all are en-
compassed by a larger clique and are not maximal; thus,
we set isMaximal[i] = isMaximal[j] = 0, for all j. Since
each (k+ 1)-clique includes (k+ 1) distinct k-cliques—two of
which are the ones that formed the (k + 1)-clique—we must
ensure that the remaining k− 1 k-cliques are marked as non-
maximal with a value of 0 in isMaximal. In our example, the
4-clique 0-1-3-4 is composed of 4 different 3-cliques: 1-3-4,
0-3-4, 0-1-4, and 0-1-3. The first two were already marked
as non-maximal, but the remaining two are non-maximal as
well, and need to be marked as so in this phase. Our ap-
proach for marking these remaining cliques as non-maximal
is as follows.

First, we use a custom modulus map operator (line 34
of algorithm 2) to construct, in parallel, an array of length
numNewCliques× (k− 1), with (k− 1) local indices per new
(k + 1)-clique: [20 . . . k0 . . . 2numCliques−1 . . . knumCliques−1].
Then, we parallelize over this index array via a Map opera-

tion (line 35 of algorithm 2) that, given an index 2 ≤ i ≤ k
and corresponding clique 0 ≤ t ≤ numCliques − 1, deter-
mines whether the k-clique formed by omitting vertex t[i] is
maximal or not. If the k-clique is discovered in hashTable (us-
ing the same hashing approach as in Clique Expansion), then
it is marked as 0 in isMaximal. A Compact primitive then re-
moves all k-cliques in hashTable that have isMaximal = 0,
leaving only the maximal cliques, which are appended in an
auxiliary array (line 36 of algorithm 2).

The algorithm terminates when numNewCliques = 0 (line
17 of algorithm 2). The generated cliques array of new
(k + 1)-cliques becomes the starting array (line 37 of algo-
rithm 2) for the next iteration (line 38 of algorithm 2), if the
termination condition is not met.

5 EXPERIMENTAL OVERVIEW

We assess the performance of our MCE algorithm in two
phases, using a collection of benchmark input graphs and
both CPU and GPU systems. In the first phase, we run
our algorithm–denoted as Hashing—on a CPU platform and
compare its performance with three state-of-the-art MCE
algorithms—Tomita [42], Eppstein [14], and Svendsen [41]. In
the second phase, we evaluate portable performance by test-
ing Hashing on a GPU platform and comparing the runtime
performance with that of the CPU platform, using a common
set of benchmark graphs. The following subsections describe
our software implementation, hardware platforms, and input
graph datasets.

5.1 Software Implementation

Both of our MCE algorithms are implemented using the
platform-portable VTK-m toolkit [4], which supports fine-
grained concurrency for data analysis and scientific visual-
ization algorithms. With VTK-m, a developer chooses data
parallel primitives to employ, and then customizes those
primitives with functors of C++-compliant code. This code is
then used to create architecture-specific code for architectures
of interest, i.e., CUDA code for NVIDIA GPUs and Threading
Building Blocks (TBB) code for Intel CPUs. Thus, by refac-
toring an algorithm to be composed of VTK-m data-parallel
primitives, it only needs to be written once to work efficiently
on multiple platforms. In our experiments, the TBB configu-
ration of VTK-m was compiled using the gcc compiler, the
CUDA configuration using the nvcc compiler, and the VTK-
m index integer (vtkm::Id) size was set to 64 bits. The imple-
mentation of this algorithm is available online [4], for refer-
ence and reproducibility.

5.2 Test Platforms

We conducted our experiments on the following two CPU
and GPU platforms:

• CPU: A 16-core machine running 2 nodes, each with a
3.2 GHz Intel Xeon(R) E5-2667v3 CPU with 8 cores. This
machine contains 256GB DDR4 RAM memory. All the
CPU experiments use the Intel TBB multi-threading li-
brary for many-core parallelism.

• GPU: An NVIDIA Tesla K40 Accelerator with 2880 pro-
cessor cores, 12 GB memory, and 288 GB/sec memory
bandwidth. Each core has a base frequency of 745 MHz,
while the GDDR5 memory runs at a base frequency of 3
GHz. All GPU experiments use NVIDIA CUDA V6.5.

Graph Collection V E Maxsize Cliquesmax Cliquesall Maxratio
amazon0601 Stanford 403,394 3,387,388 11 1,023,572 18,043,744 0.06
cit-Patents Stanford 3,774,768 16,518,947 11 14,787,032 36,180,638 0.41
email-Enron Stanford 36,692 183,831 20 226,859 107,218,609 < 0.01
loc-Gowalla Stanford 196,591 950,327 29 1,212,679 1,732,143,035 ≪ 0.01
soc-wiki-Vote Stanford 7,115 103,689 17 459,002 41,792,503 0.01
roadNet-CA Stanford 1,965,206 2,766,607 4 2,537,996 2,887,325 0.88

brock200-2 DIMACS 200 9,876 12 431,586 6,292,399 0.07
hamming6-4 DIMACS 64 704 4 464 1,904 0.24
MANNa9 DIMACS 45 918 16 590,887 160,252,675 < 0.01
p hat300-1 DIMACS 300 10,933 8 58,176 367,022 0.16
UG100k.003 DIMACS 100,000 14,997,901 4 10,589,956 19,506,096 0.54

Table 1: Statistics for a subset of the test graphs used in this study. Graphs are either from the Stanford Large Network Dataset
Collection [2] or the DIMACS Challenge data set [1]. V is the number of graph vertices, E is the number of edges, Maxsize is the
size of the largest clique, Cliquesmax is the number of maximal cliques, Cliquesall is the total number of cliques, and Maxratio is
the ratio of Cliquesmax to Cliquesall . Refer to subsection 5.3 for details.

5.3 Test Data Sets

We applied our algorithm to a selected set of benchmark
and real-world graphs from the DIMACS Challenge [1] and
Stanford Large Network Dataset collections [2]. Table 1
lists a subset of these test graphs, along with their statis-
tics pertaining to topology and clique enumeration. For
each graph, we specify the number of vertices (V), edges
(E), maximum clique size (Maxsize), number of maximal
cliques (Cliquesmax), number of total cliques (Cliquesall), and
ratio of maximal cliques to total cliques (Maxratio). The
DIMACS Challenge data set includes a variety of bench-
mark instances of randomly-generated and topologically-
challenging graphs, ranging in size and connectivity. The
Stanford Large Network Data Collection contains a broad ar-
ray of real-world directed and undirected graphs from social
networks, web graphs, road networks, and autonomous sys-
tems, to name a few.

6 RESULTS

In this section, we present the results of our set of MCE ex-
periments, which consists of two phases: CPU and GPU.

6.1 Phase 1: CPU

This phase assesses the performance of our Hashing algo-
rithm on a CPU architecture with the set of graphs listed
in Table 2 and Table 3.

For each graph in Table 2, the total runtime (in seconds)
of Hashing is compared with that of Tomita and Eppstein,
two serial algorithms that have demonstrated state-of-the-
art performance for MCE. The set of graphs used for com-
parison was adopted from the paper of Eppstein et. al [14],
which compared the CPU results of three newly-introduced
MCE algorithms with that of the Tomita algorithm. In this
phase, we report the best total runtime among these three
algorithms as Eppstein. Moreover, we only test on those
graphs from [14] that are contained with the DIMACS Chal-
lenge and Stanford Large Network Data collections. Among
these graphs, 9 were omitted from the comparison because
our Hashing algorithm exceeded available shared memory
on our single-node CPU system (approximately 256GB). Each
of these graphs has a very large number of non-maximal
cliques relative to maximal cliques. Thus, most of these non-
maximal cliques are progressively expanded and passed on
to the next iteration of our algorithm, increasing the com-
putational workload and storage requirements. Reducing
our memory needs and formalizing the graph properties that

Graph Tomita Eppstein Hashing
amazon0601 ** 3.59 1.69
cit-Patents ** 28.56 3.27
email-EuAll ** 1.25 2.24
email-Enron 31.96 0.90 17.91
roadNet-CA ** 2.00 0.27
roadNet-PA ** 1.09 0.16
roadNet-TX ** 1.35 0.19
brock200-2 0.55 1.22 0.71
hamming6-4 < 0.01 < 0.01 < 0.01
johnson8-4-4 0.13 0.24 0.50
johnson16-2-4 5.97 12.17 5.10
MANNa9 0.44 0.53 27.74
p hat300-1 0.07 0.15 0.07
soc-wiki-Vote 0.96 1.14 6.14
keller4 5.98 11.53 7.22

Table 2: Total CPU execution times (sec) for our Hashing al-
gorithm as compared to the serial Tomita and Eppstein al-
gorithms, over a set of common test graphs. Results with
double asterisk symbols indicate that the graph could not be
processed due to memory limitations. Results in bold indi-
cate that Hashing achieved the fastest execution time for that
particular graph.

lead to a high memory consumption by our algorithm will be
investigated in future work.

From Table 2, we observe that Hashing performed com-
parably or better on more than half—8 out of 15—of the test
graphs. Using the graph statistics from Table 1, it is apparent
that our algorithm performs best on graphs with a high ra-
tio of maximal cliques to total cliques, Maxratio. This is due
to the fact that, upon identification, maximal cliques are dis-
carded from further computation in our algorithm. So, the
larger the number of maximal cliques, the smaller the amount
of computation and memory accesses that will need to be
performed. Tomita and Eppstein do not perform as well on
these types of graphs due to the extra sequential recursive
branching and storage of intermediary cliques that is needed
to discover a large number of maximal cliques. From Table 2
we see that Tomita exceeded the available shared memory of
its CPU system (approximately 3GB) for the majority of the
graphs on which we possess the faster runtime.

Next, we compare Hashing to the CPU-based distributed-
memory MCE algorithm of Svendsen et al. [41], which we re-
fer to as Svendsen. We use the set of 12 test graphs from [41],

Graph Svendsen Hashing
cit-Patents 109 3.27
loc-Gowalla 112 545.25
UG100k.003 353 5.39
UG1k.30 129 11.10

Table 3: Total CPU execution times (sec) for our Hashing al-
gorithm as compared to the distributed-memory Svendsen al-
gorithm, over a set of common test graphs. Results in bold
indicate that Hashing achieved the fastest execution time for
that particular graph.

Graph Tomita-
Eppstein

Hashing-
CPU

Hashing-
GPU

amazon0601 3.59 1.69 0.86
email-Enron 0.90 17.91 15.56
email-EuAll 1.25 2.24 1.52
roadNet-CA 2.00 0.27 0.17
roadNet-PA 1.09 0.16 0.11
roadNet-TX 1.35 0.19 0.13
brock200-2 0.55 0.71 0.45
p hat300-1 0.07 0.07 0.09
soc-wiki-Vote 0.96 6.14 4.78

Table 4: Total GPU execution times (sec) for our Hashing al-
gorithm over a set of test graphs. For comparison, the best
execution time between Tomita and Eppstein is listed, along
with the CPU execution time of Hashing. Results in bold in-
dicate that Hashing-GPU attained the fastest execution time
for that particular graph.

10 of which are from the Stanford Large Network Data Col-
lection and 2 of which are from the DIMACS Challenge col-
lection. As can be seen in Table 3, we attain significantly bet-
ter total runtimes for 3 of the graphs. Each of these graphs
have high values of Maxratio, corroborating the findings from
the CPU experiment of Table 2. For the remaining 9 graphs,
one completed in a very slow runtime (loc-Gowalla) and 8
exceeded available shared memory. We do not report the
graphs that failed to finish processing due to insufficient
memory; each of these graphs have low values of Maxratio.
The loc-Gowalla graph just fits within available device mem-
ory, but possesses a low Maxratio (see Table 1), leading to the
significantly slower runtime than Svendsen.

6.2 Phase 2: GPU

Next, we demonstrate and assess the portable performance
of Hashing by running it on a GPU architecture, using the
graphs from Table 4. Each GPU time is compared to both
the Hashing CPU time and the best time between the Tomita
and Eppstein algorithms. From Table 4 we observe that, for
8 of the 9 graphs, Hashing GPU achieves a speedup over
the CPU. Further, for 5 of these 8 graphs, Hashing GPU per-
forms better than both Hashing CPU and Tomita/Eppstein.
These speedups demonstrate the ability of a GPU architec-
ture to utilize the highly-parallel design of our algorithm,
which consists of many fine-grained and compute-heavy
data-parallel operations. Moreover, this experiment demon-
strates the portable performance of our algorithm, as we
achieved improved execution times without having to write
custom, optimized GPU functions within our algorithm; the
same high-level algorithm was used for both the CPU and
GPU experiments.

7 CONCLUSIONS AND FUTURE WORK

We have described a data-parallel primitive (DPP)-based al-
gorithm for maximal cliques that has shown good perfor-
mance on both CPUs and GPUs. The algorithm performs
well on graphs with a large ratio of maximal cliques to to-
tal cliques, and outperformed leading implementations on
standard data sets. Overall, the contribution of the paper is
not only a new algorithm for maximal clique enumeration,
but also significant evidence that the DPP approach can work
well for graphs.

In terms of future work, the memory requirements for our
approach prevented us from considering certain graphs, es-
pecially in a GPU setting. We would like to reduce overall
memory usage and also explore the usage of host memory
when running on the GPU, such as by leveraging the out-
of-core MCE techniques presented in Cheng et al. [9]. We
also hope to improve the algorithm to work better on denser
graphs with low ratios of maximal cliques to total cliques, via
pruning strategies for cliques that will eventually be covered
by larger non-maximal cliques. Finally, when our algorithm
cannot be further improved, we would like to formalize the
conditions for which it outperforms the current leading algo-
rithms.

APPENDIX

The following lemmas and theorem relate to properties upon
which our hashing and sorting-based algorithms are based.

Lemma 7.1. For k ≥ 2, a (k + 1)-clique is comprised of two k-
cliques that both share (k− 1) vertices.

Proof. Please refer to [21]. Figure 4 demonstrates this prop-
erty by creating a 4-clique, 0-1-3-4, from two 3-cliques, 0-3-4
and 1-3-4, both of which share the 2-clique 3-4. Effectively,
once two k-cliques with matching (and trailing) (k − 1) ver-
tices are found, we only need to test whether the leading ver-
tices are connected; if so, the two k-cliques can be merged
into a new (k + 1)-clique.

Lemma 7.2. An expanded (k + 1)-clique maintains the ascending
vertex order.

Proof. In our algorithm, a k-clique is only matched with an-
other k-clique that that a higher leading vertex Id. Both of the
leading vertices of these two k-cliques have lower Ids and are
distinct from the vertices of the matching (k − 1)-clique. By
induction, this (k− 1)-clique must also be in ascending ver-
tex order. Thus, the expanded (k + 1)-clique must possess an
ascending vertex Id order.

Theorem 7.3. During iteration k, there are no duplicate k-cliques.

Proof. We will prove by induction on the size k.

• Base case of k = 2. The starting set of 2-cliques are the
edges from the v-graph edge list, all of which are unique,
since duplicate edges were removed in the initialization
routine.

• Induction hypothesis. There are no duplicate k-cliques
in iteration k.

• Inductive step. No duplicate (k + 1)-cliques exist in it-
eration k + 1. In the previous iteration k, a (k + 1)-clique
was produced via a merging between two k-cliques that
shared a trailing (k− 1)-clique (see Theorem 7.1). If du-
plicate copies of this (k + 1)-clique existed, then dupli-
cate pairs of the k-cliques must have also existed, since

any two k-cliques can only produce one new (k + 1)-
clique in our algorithm (see proof of Theorem 7.2).
However, by the induction hypothesis, there are no du-
plicate k-cliques. Thus, by contradiction, a (k+ 1)-clique
cannot have duplicates.

References

[1] DIMACS - The Maximum Cliques Problem. http://iridia.

ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark,
June 2017.

[2] Stanford Large Network Dataset Collection. https://snap.

stanford.edu/data/, June 2017.
[3] The FNV Non-Cryptographic Hash Algorithm. https://

tools.ietf.org/html/draft-eastlake-fnv-13, June 2017.
[4] VTK-m. https://gitlab.kitware.com/vtk/vtk-m, June

2017.
[5] E. A. Akkoyunlu. The enumeration of maximal cliques of large

graphs. SIAM Journal on Computing, 2(1):1–6, 1973.
[6] G. E. Blelloch. Vector models for data-parallel computing, vol. 75.

MIT press Cambridge, 1990.
[7] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of

an undirected graph. Commun. ACM, 16(9):575–577, Sept. 1973.
[8] H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel

peak pruning for scalable SMP contour tree computation. In 6th
IEEE Symposium on Large Data Analysis and Visualization, LDAV
2016, Baltimore, MD, USA, October 23-28, 2016, pp. 75–84, 2016.

[9] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for max-
imal clique enumeration with limited memory. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, pp. 1240–1248. ACM, New
York, NY, USA, 2012.

[10] N. Chiba and T. Nishizeki. Arboricity and subgraph listing al-
gorithms. SIAM J. Comput., 14(1):210–223, Feb. 1985.

[11] N. S. Dasari, D. Ranjan, and Z. Mohammad. Maximal clique
enumeration for large graphs on hadoop framework. In Pro-
ceedings of the First Workshop on Parallel Programming for Analytics
Applications, PPAA ’14, pp. 21–30. ACM, New York, NY, USA,
2014.

[12] N. Du, B. Wu, L. Xu, B. Wang, and X. Pei. A parallel algorithm
for enumerating all maximal cliques in complex network. In
Sixth IEEE International Conference on Data Mining - Workshops
(ICDMW’06), pp. 320–324, Dec 2006.

[13] D. Eppstein, M. Löffler, and D. Strash. Listing All Maximal
Cliques in Sparse Graphs in Near-Optimal Time, pp. 403–414.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[14] D. Eppstein and D. Strash. Listing All Maximal Cliques in Large
Sparse Real-World Graphs, pp. 364–375. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011.

[15] C. Harrison, H. Childs, and K. P. Gaither. Data-parallel mesh
connected components labeling and analysis. In Proceedings of
the 11th Eurographics Conference on Parallel Graphics and Visualiza-
tion, EGPGV ’11, pp. 131–140. Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 2011.

[16] H. C. Johnston. Cliques of a graph-variations on the bron-
kerbosch algorithm. International Journal of Computer & Infor-
mation Sciences, 5(3):209–238, 1976.

[17] J. Kalojanov, M. Billeter, and P. Slusallek. Two-level grids for ray
tracing on gpus. Computer Graphics Forum, 30(2):307–314, 2011.

[18] J. Kalojanov and P. Slusallek. A parallel algorithm for construc-
tion of uniform grids. In Proceedings of the Conference on High
Performance Graphics 2009, HPG ’09, pp. 23–28. ACM, New York,
NY, USA, 2009.

[19] T. Karras. Maximizing Parallelism in the Construction of BVHs,
Octrees, and k-d Trees. In C. Dachsbacher, J. Munkberg, and
J. Pantaleoni, eds., Eurographics/ ACM SIGGRAPH Symposium
on High Performance Graphics, pp. 33–37. The Eurographics As-
sociation, 2012.

[20] I. Koch. Enumerating all connected maximal common sub-
graphs in two graphs. Theoretical Computer Science, 250(1):1 –
30, 2001.

[21] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing
plant metabolomic correlation networks using cliquemetabolite
matrices. Bioinformatics, 17(12):1198–1208, 2001.

[22] A. Lagae and P. Dutré. Compact, fast and robust grids for ray
tracing. In ACM SIGGRAPH 2008 Talks, SIGGRAPH ’08, pp.
20:1–20:1. ACM, New York, NY, USA, 2008.

[23] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, and H. Childs.
Volume Rendering Via Data-Parallel Primitives. In Proceedings
of EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), pp. 53–62. Cagliari, Italy, May 2015.

[24] M. Larsen, J. Meredith, P. Navrátil, and H. Childs. Ray-Tracing
Within a Data Parallel Framework. In Proceedings of the IEEE
Pacific Visualization Symposium, pp. 279–286. Hangzhou, China,
Apr. 2015.

[25] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast bvh construction on gpus. Computer Graphics
Forum, 28(2):375–384, 2009.

[26] E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Generating all
maximal independent sets: Np-hardness and polynomial-time
algorithms. SIAM Journal on Computing, 9(3):558–565, 1980.

[27] B. Lessley, R. Binyahib, R. Maynard, and H. Childs. Ex-
ternal Facelist Calculation with Data-Parallel Primitives. In
Proceedings of EuroGraphics Symposium on Parallel Graphics and
Visualization (EGPGV), pp. 10–20. Groningen, The Netherlands,
June 2016.

[28] S. Li, N. Marsaglia, V. Chen, C. Sewell, J. Clyne, and H. Childs.
Achieving Portable Performance For Wavelet Compression Us-
ing Data Parallel Primitives. In Proceedings of EuroGraphics Sym-
posium on Parallel Graphics and Visualization (EGPGV), pp. 73–81.
Barcelona, Spain, June 2017.

[29] L.-t. Lo, C. Sewell, and J. P. Ahrens. Piston: A portable cross-
platform framework for data-parallel visualization operators.
In EGPGV, pp. 11–20, 2012.

[30] L. Lu, Y. Gu, and R. Grossman. dmaximalcliques: A distributed
algorithm for enumerating all maximal cliques and maximal
clique distribution. In 2010 IEEE International Conference on Data
Mining Workshops, pp. 1320–1327, Dec 2010.

[31] K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. pp. 260–272. Springer-Verlag, 2004.

[32] R. Maynard, K. Moreland, U. Atyachit, B. Geveci, and K.-L. Ma.
Optimizing threshold for extreme scale analysis. In IS&T/SPIE
Electronic Imaging, pp. 86540Y–86540Y. International Society for
Optics and Photonics, 2013.

[33] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros. EAVL: The
Extreme-scale Analysis and Visualization Library. In H. Childs,
T. Kuhlen, and F. Marton, eds., Eurographics Symposium on Par-
allel Graphics and Visualization. The Eurographics Association,
2012.

[34] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of
Mathematics, 3(1):23–28, 1965.

[35] K. Moreland, U. Ayachit, B. Geveci, and K. L. Ma. Dax toolkit:
A proposed framework for data analysis and visualization at
extreme scale. In 2011 IEEE Symposium on Large Data Analysis
and Visualization, pp. 97–104, Oct 2011.

[36] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pug-
mire, J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-
M. Chen, R. Maynard, and B. Geveci. VTK-m: Accelerating
the Visualization Toolkit for Massively Threaded Architectures.
IEEE Computer Graphics and Applications (CG&A), 36(3):48–58,
May/June 2016.

[37] T. Perciano, D. Ushizima, H. Krishnan, D. Parkinson, N. Larson,
D. Pelt, W. Bethel, F. Zok, and J. Sethian. Insight into 3d micro-ct
data: exploring segmentation algorithms through performance
metrics. Journal of Synchrotron Radiation, 24(5), Sept 2017.

[38] T. Perciano, D. M. Ushizima, E. W. Bethel, Y. D. Mizrahi,
D. Parkinson, and J. A. Sethian. Reduced-complexity image
segmentation under parallel markov random field formulation

http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://tools.ietf.org/html/draft-eastlake-fnv-13
https://tools.ietf.org/html/draft-eastlake-fnv-13
https://gitlab.kitware.com/vtk/vtk-m

using graph partitioning. In 2016 IEEE International Conference
on Image Processing (ICIP), pp. 1259–1263, Sept 2016.

[39] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park.
A scalable, parallel algorithm for maximal clique enumeration.
Journal of Parallel and Distributed Computing, 69(4):417–428, 2009.

[40] H. A. Schroots and K.-L. Ma. Volume Rendering with Data
Parallel Visualization Frameworks for Emerging High Perfor-
mance Computing Architectures. In SIGGRAPH Asia 2015 Vi-
sualization in High Performance Computing, SA ’15, pp. 3:1–3:4.
ACM, 2015.

[41] M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining max-
imal cliques from a large graph using mapreduce: Tackling
highly uneven subproblem sizes. Journal of Parallel and Dis-
tributed Computing, 79:104–114, 2015.

[42] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time
complexity for generating all maximal cliques and computa-
tional experiments. Theor. Comput. Sci., 363(1):28–42, Oct. 2006.

[43] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new al-
gorithm for generating all the maximal independent sets. SIAM
Journal on Computing, 6(3):505–517, 1977.

[44] W. Widanagamaachchi, P. T. Bremer, C. Sewell, L. T. Lo,
J. Ahrens, and V. Pascuccik. Data-parallel halo finding with
variable linking lengths. In 2014 IEEE 4th Symposium on Large
Data Analysis and Visualization (LDAV), pp. 27–34, Nov 2014.

[45] B. Wu, S. Yang, H. Zhao, and B. Wang. A distributed algorithm
to enumerate all maximal cliques in mapreduce. In Proceedings
of the 2009 Fourth International Conference on Frontier of Computer
Science and Technology, FCST ’09, pp. 45–51. IEEE Computer So-
ciety, Washington, DC, USA, 2009.

[46] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A.
Langston, and N. F. Samatova. Genome-scale computational
approaches to memory-intensive applications in systems biol-
ogy. In Proceedings of the 2005 ACM/IEEE Conference on Super-
computing, SC ’05, pp. 12–12. IEEE Computer Society, Washing-
ton, DC, USA, 2005.

[47] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree con-
struction on graphics hardware. In ACM SIGGRAPH Asia 2008
Papers, SIGGRAPH Asia ’08, pp. 126:1–126:11. ACM, New York,
NY, USA, 2008.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Maximal Clique Enumeration
	Related Work
	Visualization and Data Parallel Primitives
	Maximal Clique Enumeration

	DATA-PARALLEL PRIMITIVES
	ALGORITHM
	Initialization
	Hashing-Based Algorithm
	Algorithm Overview
	Algorithm Details

	EXPERIMENTAL OVERVIEW
	Software Implementation
	Test Platforms
	Test Data Sets

	RESULTS
	Phase 1: CPU
	Phase 2: GPU

	CONCLUSIONS AND FUTURE WORK

