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EXECUTIVE SUMMARY

This report proposes and applies a model of traffic allocatlon

in multiple alrport systems (M_AS). Unllke most previous studles,

whlch focus on a passenger’s choice of alrport for a given set of

servlce attributes (frequency, fare, etc.), thls model assumes that

servlce attributes are endogenous to the system, and directly

related to alrport traffic volume. Thus a posltlve feedback exlsts

whereby an alrport becomes more attractive, the more traffic it

has. The dlstrlbutlon of trafflc in a ~iAS reflects the comblned

effect of travelers chooslng alrports closer to thelr trlp orlgln

and the posltlve feedback effect. Airports located more

convenlent!y to the market have an inltmal advantage stemming from

their greater accesSlblllty, whlch is then amplmfled by posltlve

feedback.

The model is applled to the San Francisco Bay Area, which is

served by three ma3or commercial alrports--Oakiand, San Franclsco

Internatlonal, and San Jose. We flrst estimate an airport cholce

mode], in which airport destlnatlon market traffic, total alrport

traffic, and travel tmme to the airport are mncluded as attrlbutes.

The model ymelds statistically signlfmcant coefficments of expected

signs. We then use the calibrated logit model, along wlth data

concerning the origln of amr passenger trips in the Bay Area, by

destLnatmon market, and ground access travel t~mes to each airport

to predlct equlllbrium market shares. We flnd good overall

agreement between the predicted shares and observed shares for

markets. The model predictmons are most accurate for markets wmth

large trafflc volumes, and more accurate for Oakland and San

Franclsco alrports than for San Jose. Statlstlcal tests reveal that

there ms a smgnmflcant relatmonship between predicted and actual

values, and that mf equmllbr~um share is treated as an explanatory

variable, it accounts for most of the varmatlon In actual share in

large markets. Flnaily, predicted market share is found to be a

statistmcal!y slgnmflcant predmctor of observed seat share,

supportlng the assumption that airport servmce attributes are to a



large extent endogenous.

The callbrated model is used to predlct the market share of

Buchanan fleld, an airport in Contra Costa county where commerclal

servlce has been offered sporadlcally. Predlcted shares of traffic

to Southern Cal!fornla are in the range of I0 to 25 per cent,

although actual market share never exceeded 3 per cent. We consider

several posslble explanations for this dlsparlty. One Is that

Buchanan’s dlrectors dld not support expandlng and improvlng the

alrport so that It could better accommodate commercial actlvlty. In

addition, there is evidence that many alr travelers were unaware of

the services available out of Buchanan. These explanations suggest

that our model Is applicable only to established airports that are

committed to provldlng commerclai servlce.

Our maln conciuslon is that the posltlve feedback process upon

whlch our model Is based plays a large role in determlnlng the

dlstrlbutlons of commerclal trafflc in a multiple alrport reglon.

Furthermore, the key exogenous factor in thls process, the reglonal

dlstrlbutlon of alr trlp orlglns, is found to vary slgnlflcantly

from one destlnatlon market to another° Thus good traffic forecasts

require market-speclflc predlctlons of these dlstrlbutlons. There

is a presslng research need to develop models that allow such

predictions. In addltlon, anaiysls of other multlple a!rport

systems is requlred to assess the transferablllty of the model~ and

also to improve our understandlng of how other factors not directly

In the model, such as capaclty llmltatlons, hubblng, and

accesszblllty by non-automobile modes, affect trafflc allocation.

With such improvements, planners and pollcy makers will be able to

use the model to determine how to most effectively balance the

competlng goals of accessiblllty, servlce quality, and

infrastructure cost in multi-airport systems.
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Modeling Multiple Airport Systems:
A Positive Feedback Approach

i. Introduction

Many of the world’s largest cities are served by more than one

commerclal airport° Such multiple airport systems (MAS) have

recently been the object of increased attention, for several

ceasonso From an academlc viewpoint, multlple airport systems are

interesting because they provide a window on the preferences of air

travelers -- partlcularly the relatlve values they attach to ease

of access to the airport versus the quality (and cost) of service

from it -- and the competitive strategies of alrlineso From a

practical standpoint, understanding muitl-airport systems is

important so that the consequences of various transportation supply

actions -- surface transportation improvements~ traffic caps or

service restrictions on "over-utilized" airports, creation of new

airports, or investments in existing ones -- can be assessed.

By far the most widely studied aspect of HAS is the air

traveler’s choice of airport. Studies by Harvey (1987), Ashford

(1989), and others have used data on passenger choice of airport 

explain how flight frequency, service directness, fare, and

accessibility influence these decisions. These models have

generally been successful, at least in the sense of yielding

plausible, statistically significant, coefficients that capture the

relative weights travelers place on different servlce attributes.

But while these studies contribute to the understanding of travel

behavior, they cannot by themselves explain or predict the behavior

of an HAS, since they treat the supply-side of the system as

exogenous.

TO date, efforts to incorporate both the demand and supply

sides of multl-alrport systems in a single framework have been

llmited. The Multiple Airport Demand Allocation Model, or MADAM, is

the best known effort to produce an operatlonal model in this areao

Other models, such as that offered by de Neufville and Gelerman

(1973), are intended to highlight general tendencies of MAS. 
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will argue below that neither of these models is adequate for

understanding or predicting the behavior of MAS.

This report proposes a new model of MAS. The model treats an

MAS as a posit±ve feedback system in which an airport’s

attractiveness to passengers is positively related to the volume of

its passenger traffic. The model presented is simple, easy to work

with, and based on plausible behavioral assumptions. It requires

relatively little input data, and ylelds accurate predictions of

airport market shares in the San Francisco Bay Area, the M_AS to

which the model is applied.

In addition to its methodological contribution, this report

shows thats in the Bay Area at least, the dlstribution of alr trip

origin locations varies across destinations, and that this

variation explains a large amount of the observed destination-to-

destination variatlon in airport market shares. The destination-to-

destinatlon variatlon in the relative accesslbllity of the Bay Area

airports is modest in itself, but when amp!Ified by the positive

feedback effect, it has a pronounced effect on airport market

shares.

The remainder of this report is organized as follows. Sectlon

2 contains a brief literature review. Section 3 presents the basic

structure and concepts of the proposed positive feedback model.

Section 4 describes model development and assesses model

performance. Sectlon 5 uses model results to analyze service

supply, while in Section 6 the model is used to predict market

share for a fourth Bay Area airport. Section 7 offers conclusions.



2. Literature Review

Prior models of multlpie alrport systems fall into two main

categories. The first category focusses on the choice of airports

by air travelers. Studies of this type examine how air travelers

choose between a set of airport alternatives, based on (i) the

servlces provided at the airports and (2) ease of ground access 

the airports. These factors are treated as exogenous. Thus, to use

such models predictively, one must make assumptions about airport

service and ground access characteristics. The second category of

multiple alrport system models treats certain alrport service

characteristics, most notably flight schedules, as endogenous to

the system. Obviously, this reduces the assumptions required for

predictive use of the models°

The first airport choice studies appeared in the mid-1970s.

Skinner (1976) developed a disaggregate airport choice model for

the Baltimore-Washington region. Multinomial logit models including

an airport level-of-service term, based on flight frequency, and

a ground access level-of-servlce term were estimated. Different

measures of both airport and ground access level-of-service were

considered, and separate models for business and non-business trips

were developed. Both level-of-service terms were found highly

signiflcant, and acceptable goodness-of-flt measures were obtained.

Model performance did not vary significantly wlth respect to the

specific level-of-service measures used.

Kanafanl et al. (1977) developed an aggregate choice model 

airport choice, based on data for the California corridor market

between San Francisco and Los Angeles. Since both of these regions

have more than one airport, analysis was based on the choice of

alrport on both ends of the trlp. Observed market shares of traffic

between different subareas of the two regions were related to total

estimated travel time and flight frequency for the varlous airport

pairs° The estimated coefficients were statistically significant

and of expected sign, and the calibrated model fit observed data

well.

More recently, Harvey (1987) estlmated an multinomial airport



choice model on data for the San Francisco Bay Area. The main

differences between the Harvey and Skinner models are that the

former includes airport dummy variables to capture airport-specific

factors that influence attractiveness to travelers~ and uses non-

linear transformations of the travel time and frequency variables.

In the case of travel time, Harvey found decreasing marginal

dlsutility, while for flight frequency he found decreasing marginal

utility.

Innes and Doucet (1990) studied airport choice of travelers

originating from the northern half of New Brunswick, Canada. They

employed a binary logit model. Unlike the earlier studies, they did

not consider flight frequency, but rather aircraft type; service

directness, and flying tlme as airport level-of-service variables.

For ground access level of service they trled a number of

variables, all defined on the basis of distance from trip origin to

alrport. Their estimation results suggested, implausibly~ that

distance had a positive effect on utillty, probably because of the

way in which they constructed the airport pairs used in the

analysis. The airport level-of-servlce variables were of the

expected sign, however, with aircraft type (jet versus non-jet) the

most important.

Ashford and Benchemam (1987) developed a choice model for

Central England. Unlike the other studies, this one included fare

along with fllght frequency as an airport level-of-service

variable. The fare coefficient was negatlve and statistically

slgnlficant for internatlonal leisure and domestic travelers, but

positlve for the international business and inclusive tour market

segments. Frequency and travel time were statistlcally significant

and of expected sign for all travel classes.

Table 1 presents a summary of comparable results from the

Skinner, Kanafani, Harvey, and Ashford models. The Harvey and

Ashford studies yield consistent travel time coefficients that are

about twice the magnitude of those obtained by Skinner° The studies

are less consistent with respect to the frequency coefficients. In

addition to underlying differences in traveler preferences, these



Table Io
Coefficient Estimates, Airport Choice Models

Variable Skinner Kanafani Harvey Ashford
(1976) (1977) (1987) (1987)

Travel Time (rmn) -0 06 to -0 08 -0 10 -0 12 to -0 17 -0.14 to -0 23

Frequency 0 09 to 0 12 0.003 to 0 002 0 to 051 1.07 to 2.70
(per day)

[02 0 59 to 0 69 0 61 to 0 77 0.84 to 0 92

Note
1 Esnmated from Figure 4 of Harvey (1987) The lower value apphes when frequenmes exceed 8 per day,
and the hxgher values where dmly frequenmes are less than 6



disparlties probably reflect the inappropriateness of including a

linear frequency term in the utility. Such a term implies that an

additional flight has the same impact on utility, whether it

increases frequency from 1 to 2 per day or 10 to ii per day. Both

Skinner and Harvey estimate models that incorporate a non-linear

relationship between fllght frequency and utility, but Ashford does

not. To maintain comparability, Table 1 is based on the versions of

the Skinner model with a linear frequency term. Since Harvey does

not consider such a model, we present derivatives of utility with

respect to frequency for "high" and "low" values of this variable

as the linear coefficients.

As already noted, understanding travelers’ airport choices is

necessary but not sufficient to understand the behavlor of multiple

airport systems. A few studies have attempted to go further by

considering both supply-side (airline) and demand side (traveler)

behavior in such systems, de Neufville and Geierman (1973) were

among the first to attempt this. They argued that commercial air

traffic will inevitably concentrate at one dominant alrport in a

multiple airport system. The baslc reason for this is the "s-curve

effect," by whlch an airline or alrport with a hlgh (low) share 

flights in a given origln-destination market will attain an even

higher (lower) traffic share. Using a simple game theory model, 

Neufville and Gelerman argue that these effects result in

competitive equillbria in which each airline concentrates its

flights at one airport. Further, if one airport has a locational

advantage, they claim that each carrier will select this airport as

the one at which to concentrate. Thus, in any multiple airport

system, a single airport will tend to dominate, with only a few

fllghts (resulting from "second order effects," according to the

authors) being offered from other airports.

de Neufville and Gelerman suggest a model of airport (airline)

cholce that captures the s-curve effect. It is (p. 542):

6



Where:

is airport A~s market share;

].s its frequency share;

is some exponent (which must be greater than 1 in order to
explain the s-curve effect).

Unlike the choice models documented above, this one considers the

region as a whole rather than a particular origin point in that

region. However, an origin-specific model embodying this postulated

relationshlp can be specified by uslng the logarlthm of frequency

in the loglt utility function, as Hansen (1990) does in his route

choice model. Unfortunately, none of the origin-specific airport

choice models reported in the literature employ this form, making

it dl[flcult to determine whether these models imply an s-curve

effect, similar to that postulated by de Neufville and Gellerman.

Even if the s-curve relationshlp is correct, it is apparent

that the de Neufville/Gellerman theory is incomplete, because it

gives so little weight to airport accessibility. This is best seen

from the fact that the argument made to support the theory are not

in any way tied to the size of the region. If their argument

implies an urban area will tend to have one dominant airport, so

also does it suggest that a single airport will dominate a state,

country, continent, or larger geographlca! unit. Clearly, there is

a point at which proximity to an airport outweighs the availabiilty

of more frequent servlce at other alrports. Gellerman and de

Neufville offer no convlncing reason why, if more than one airport

can exist in the United States, this cannot also occur in an urban

area.

Zn light of the above, it is evident that models of MAS must

be based on the specific geography of the region, particularly the

location of trip origlns relative to the airports. The most well

7



known model that does this is the Multiple Airport Demand

Allocation Model, or MAD~ (National Capital Region Transportatlon

Planning Board (NCRTPB), 1985). The model works as follows:

i. Local passenger demand is allocated to airports, based
on the shortest door-to-door round trip ground access
time from local zone of origination. Passenger demand is
adjusted upward to account for non-local traffic.

2. Seats to be provided in each city-pair market from
each airport are calculated based on the airport’s
passengers in that market and typical load factors° A
scheduling table determines the number of flights to be
offered, by size class, as a function of the seat volume
and stage length of the city pair market° A heuristic is
used to schedule the fllghts, based on a dlstributlon of
preferred departure tlmes.

3. An average waiting time for each airport and city-pair
market is calculated. This time, multiplied by a
weighting factor, is added to the door-to-door round trip
time. An airport-specific "facilitation tlme" may also be
added.

4. Passenger demand is reallocated, as in Step !, except
that total time calculated in Step 3, rather than the
ground access time, is used.

5. The process continues untll an equilibrium, or the
specified number of iterations, is reached°

6. if, after Step 5, there are airports whose passenger
capacity is exceeded, passengers are removed and
reailocated to the other airports that are under
capacity.

The MADAM model is "calibrated" using an alrport-specific

ground access time correction and the waiting time multiplier (see

Step 3, above). These variables are set so that the model

predictions "replicate base year conditions as closely as possible

(NCRTPB~ 1985, po 44)." When applied to the Baltimore-Washington

area for 1981/82, the calibrated model predicted airport traffic

shares, both by local origin and external destlnation, that matched

observed data fairly closely°

There are numerous flaws with the MADAM model. The model has

weak behavioral underpinnings. The "all-or-nothing" method for



allocating passenger traffic from a given local origin to a given

external destination is implausible. The schedullng table used to

simulate the supply-side of the system is, at best, a rough

approximation of empirically observed patterns of airline behavior,

without any theoretical basls whatsoever. The model allocates

traffic based on its non-stop, rather than its flnalf destlnatlon,

and is therefore unable to deal with competition between non-stop,

direct, and connecting services. Indeed, non-stop traffic levels

depend on the outcome of such competition, since this will

determine how much of the traffic goes non-stop to final

destinations versus intermediate airports. Thus the demand

variables that MADAM assumes to be exogenous are actually

endogenous to a large extent.

In sum, the bulk of research in MAS has concerned the air

traveler’s cholce of airport. While these studles have for the most

part yielded plausible and statistically robust results, they do

not address the supply-slde of the system and are thus of little

predictive value. The few efforts to address both demand and supply

have not been convincing, whether because of thelr fa!lure to

adequately account for the role of airport accessibility, the

implausibiilty of their behavioral assumptions, or fallure to

correctly distinguish exogenous and endogenous variables.

9



3. Proposed Model

The proposed model is based on three propositions concernlng

the preferences of alr travelers in a MAS. First, travelers prefer

airports that are closer to their trlp origins. Second, travelers

prefer airports wlth higher levels of trafflc in their market wlth

the strength of this effect Increasing with market distance.

(Throughout this paper, we use the term "market" to mean true

origln-destination market, defined by the communities where an air

trip itinerary begins and ends). Third, travelers prefer airports

with higher levels of total traffic. The first of these

propositions is obvious and self-explanatory. The second and third

propositions require more explanation.

The second proposition is based on the existence of economies

of scale at the origln-destination market level in air

transportation. As traffic levels to a particular destlnation

increase, costs per passenger associated with both airline and air

traveler-supplied Inputs decrease. These economies have several

sources. First, load factor increases distribute the flxed costs of

aircraft operation over a large traffic base° Second, frequency

increases improve schedule convenience. Third, aircraft size

increases may result In lower unlt operating costs for airlines and

a more comfortable cabin for passengers°

As a result of these economies, when traffic is too low,

scheduled non-stop service is not economically viable. As traffic

levels increase, therefore, so does the probability that non-stop

service will be available° Since passengers strongly prefer such

servlce (Hansen, 1990), a strong feedback effect is expected when

traffic increases result in non-stop service becoming available.

Once non-stop service is available, further increases in traffic

increase attractiveness via the frequency and aircraft size

effects. In addition, there may be a fare reduction effectt

resulting either from reductions in airline costs or increases in

competition as more carriers can "fit" into the market.

We expect market distance to strengthen the positive feedback

effect, for two reasons. First, smaller aircraft tend to have

10



shorter ranges. Thus, the mlnimum traffic necessary for non-stop

service to be economically vlable increases with dlstance. Second,

service frequencies in long-haul markets tend to be lower, both due

to larger aircraft and higher load factors (Baily, Graham, and

Kaplan, 1985). Since there are diminishlng returns to frequency in

its effect on servlce attractiveness, there should be a greater

gain In service attractiveness from a given percentage gain in

traffic in a long-haul market.

9~en non-stop service is unavailable or unattractlve,

travelers may use connecting or multi-stop service. Even in this

case, market traffic may have some impact on service quality. For

example, shorter layover times may be available when the number of

connecting passengers in a market is larger. However, we also

expect, traffic in other markets to affect the quality of this type

of service, as indicated by the third proposition above. At the

airport level, more traffic translates elther into more

destinations to which service is available, or more average trafflc

to each destlnation. The flrst effect will Increase the number of

connectlng routings available, while the second -- by virtue of the

scale effects dlscussed earlier -- makes the services on existing

routlngs more attractive. Conceivably, increased airport traffic

may also have other effects, both positive -- improved ground

access, better airport services -- and negative -- greater

congestion and walking dlstances. On balance, however, we expect

the e[fect to be posltlve.

To operationalize the above propositions, we propose a logit

model that pred!cts the probability that a traveler whose trip to

destination k originates from location i within the multiple

airport reglon will select airport jo The proposed model is:

ii



Vsj k = ~’Iog(PAX3k + O’(NLPAXj + E PAXjn)) 
n~k

~’log (DIST,) °log (1+PAX ~k) ~’ ATIMEsj + Y3
(2)

where :

PAX ~k

NLPAX.

DISTk

ATIME~

is total origin and destlnation passengers from airport
j to destlnation k;

is total nonlocal passenger traffic enplaning or stopping
over at airport j;

is the distance of destination k from the MAS;

is ground access travel time (or generalized cost)
between location k and airport i;

is the utility constant for airport j

The market and airport traffic terms are included in the argument

of a single log function. The log transformation is used for two

related reasons. First, we expect dimin!shing returns -- as traffic

increases, its marginal impact of utility decreases. Second,

insofar as the traffic terms reflect the "size" of each alternative

-- the number of flights, airlines, and routlngs avazlable -- the

theory of alternative aggregation in logit models indicates that

they should be incorporated in a logarithmic form. Both traffic

variables are included within a single log term because this

accords wlth our intuition about how the choice probabll!ty should

behave as the market traffic term approaches zero° Specifically, as

long as there is some traffic (and therefore some service) going 

other destinations, then there will be connecting possibilities

resulting in some finlte probability that a passenger will select

a partlcular airport to go to a given destination, even if there is

12



no other trafflc going to that destination.

Airport traffic includes both non-local and local trafflc. For

present purposes, we treat the non-local traffic as an exogenous

variable, although in reallty there is a simultaneous relationshlp

between local and non-local trafflc levels. To make non-local

traffic endogenous, we would have to model a much larger system,

including airports outside the HAS that compete wlth it for non-

local trafflc. Furthermore, non-local trafflc depends on airllne

hubbing decisions of a strategic nature that are very difficult to

predict. Thus, treatlng non-local traffic as exogenous is a

necessary compromlse to keep our modeling task tractable.

The second term in the utillty function reflects the role of

market distance in strengthening the positive feedback effect.

Distance is included in logarlthmformbecause we expect its impact

to fall off as distance increases. Traffic is included in

iogarltb_mic form for the same reasons as it was in the first term.

Since our arguments concernlng the effect of distance are based on

market, as opposed to alrport, traffic, only the former is

included. However, we agaln want to allow the possibility of a

passenger choosing an airport for travel to a glven destinat!on

even %~en its trafflc in that market is zero. Thus we add the value

1 to market traffic°

The third term in the utility function reflects the difficulty

of travel from zone i to airport j. The fourth term is an airport-

specific constant that captures the ut!llty (or dlsutllity)

associated with airport attributes not otherwise accounted for.

Such factors include the levels of landslde, terminal, and airslde

congestion, walking distances, and parking costs. In addition, the

constant captures any airport-to-airport dlfferences in supply-side

behavior that result in certain alrports having more attractlve

service for a given traffic level°

Although the airport-specific constant may capture congestion

effects, the model does not explicitly include capacity constraints

or the tendency of airports to become less attractive as traffic

levels approach capacltyo These are clearly limitations that must

13



be addressed in future research. For the moment~ the applicability

of our model is restricted to MAS where capacity limitations are

not an overriding factor in determlning traffic allocation° The San

Francisco Bay Area, to which we apply the model in this report~

meets this criterion.

For the MAS to be in equllibrlum, the market passenger levels

must satisfy the following equations:

PAX 3k = ~ PAX~ k’P(jli,k) Vj,k (3)
1

PAX~k is total origin and destination passengers to destination
k originating from locatlon i within the region°

The number of these equations is the product of the number of

airports in the MAS and the number of destinations to which people

travel from the M_AS. There are an equal number of unknowns -- the

P-~jk"

To illustrate the model, we consider a two-airport system in

a linear city of unit length along which air trips, all to the same

destination, are generated at a uniform rate, as shown in Figure i.

The distance between the airports is also of unit length~ but the

airports are offset from the ends of the city by a distance 6. When

8>0, Airport 2 has a locationai advantage over Airport io

According to the proposed model, passengers originating from

a given point in the city will choose between the two airports

based on their relative trafflc levels and ground access time.

Assuming ground access time is proportional to access distance, the

model (stated in terms of the Airport 1 market share) becomes:

l

p(llx) 
e (g)

+e
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Airport 2

Figure I. Geometry for Two-Airport System
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x=÷I/2

MSI = f p(llx) (S)

X=-I/2

where:

HSI

X

is the market share of airport i;

is the location of the passenger’s origin~ measured from
the center of the city.

Equations 4 and 5 can be solved for the equilibrium market share

for Airport i.

Figure 2 depicts the equilibrium values of MS~ for 5=0 and

three different sets of ~ and ~ values° The curves in Figure 2

depict the relationship between market share, treated as an

independent variable, and the market share predicted by equations

4 and 5° The 45-degree llne is the set of points where the two

market shares are equal. Since both axes measure the same variable,

only po!nts on this line are feasible. Thus, equilibria occur when

the line intersects with the curve. In this example, equilibria

occur at MS~=0, HSI=0o5, and MS~=!. The first and thlrd of these

will always be solutions, regardless of the values of ~, ~ 5. The

second solution reflects the symmetry of the system when 5=0. When

5~0, thls solution may either be shifted to another MSI value, or

cease to exist.

Equilibria may be stable or unstable. If the curve cuts the

45-degree line from above as MSI increases at the intersectlon

point, the equilibrium Is stable. Such a situation exists for the

MS~=0.5 solution when ~=0°5, for either ~=l or ~=3. The stability

is illustrated for the case of ~=I. Suppose the system is in

disequilibrium, with MS~=0o7. This leads to a new MSI of just over

0.6 -- closer to the 0.5 equilibrium value. On the other hand,

consider the case where 5=2 and ~=io In the situation illustrated,

a initlal disequilibrium market share of 0°4 leads to a new market

share of 0.26, further from the 0.5 equllibrlum, indicating that

MSI=0.5 equilibrium is unstable. One can also see that when the 0.5

equilibrlum in stable, the 0 and 1.0 equilibria are unstable, and
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vice versa.

When 5>0, Airport 2 has a locatlonal advantage, which the

positive feedback effect tends to magnify. Thls is illustrated in

Figure 3, where it is assumed that 5=0.1 and ~:io When ~ is small,

a stable equilibrium at 0<HSI<0o5 exists. As ~ increases, this

equillbrium disappears, and for a certain range the only stable

equilibrium is MSI=0. As ~ continues to increase, however, an

unstable equilibr!~mm at 0o5<MSI<I appears, and the previously

unstable equilibrium at MS!=1 becomes (locally) stable. Thus, 

positive feedback is strong enough, an pre-existing airport in a

less convenient location could maintain its position against a new,

better situated, airporto If the feedback is slightly less strong,

all traffic would migrate to the new airport, while an even weaker

feedback effect will result in a division of the market between the

two airports°

The effect of varylng the locational advantage of Airport 2 is

Illustrated in Figure 4o As 6 increases, the market share curve for

airport ! is pushed downward, resulting in a reduction of Airport

l’s equilibrium market share. When 5 increases beyond a certain

point, the intermediate equilibrium polnts disappear, leaving only

the stable equilibrium at MSI=0 and the unstable one at MS~=I.
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4. Application to the San Francisco Bay Area

4.1 Background

The positive feedback model was applied to the San Francisco

Bay Area. The Bay Area is served by three commercial airports --

San Francisco International (SFO), San Jose (SJC), and Oakland

(OAK). Another airport, Buchanan Field (CRC), has had sporadic

commercial service to Southern Callfornia, but is not considered in

thls section due to the lack of necessary data. A map of the Bay

Area with the location of these airports is shown in Figure 5. In

1991, SFO had 70 per cent of the reglon’s commerclal enplanements,

while SJC and OAK each had 15 per cent. SFO’s share of the domestic

market is somewhat less -- approxlmately 60 per cent.

The market shares of the three airports vary substantlally for

different destinations. Figure 6 shows SFO’s 1991 market share for

a set of 44 different domestic origin and destination markets.

Figure 6 shows a large variation in SFO’s market share, with a

range between 25 and 90 per cent. The flgure also shows that SFO’s

market share does not correlate with market size, but that it does

correlate somewhat wlth market distance. Even wlthln the distance

categories~ however, there is substantial variation.

The genesis of the positlve feedback model lies in our

attempts to explain this variation in market share. Our initial

focus was on market characteristics, such as size, distance,

proportion of trips originating in the Bay Area versus the

destination point, and so forth° While some factors -- notably

distance, as illustrated in Figure 6 -- had statistically

significant effects, the majorlty of the variation in market shares

remalns unexplained when these effects were controlled for.

Further, some of the effects that were observed lacked a clear

interpretatlon. For example, since all three airports have the

facilities to support long-haul flights, there is no obvious reason

why SFO would have a stronger advantage in long-haul markets.

One interpretation for this unexplained variation in airport

market share is that airlines~ through their service supply

decisions, exert a strong exogenous influence on the distribution
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of traffic in the Bay Area MAS° This impact is exogenous in the

sense that it cannot be readily explained by the inherent

characteristics of the markets being served. Examples of exogenous

influences on airline behavior include hubblng, hlstorical ties to

partlcular alrports, competitlve strategles (de Neufville and

Gellerman, 1973), and limited informat!on.

The positive feedback model implies an alternative

explanation. In thls model, variatlon in market share of the Bay

Area airports derives from variation in the relative proximity to

the trip origins, whlch in turn derlves from market-to-market

variation in trip origin locations in the Bay Area. This is the

same as the phenomenon as shown in Figure 4, !f one imagines

varlation In ~ resulting from dlfferences mn trmp orlgin rather

than airport locatlon.

In applying the positive feedback model, we adopt as a working

hypothesis that alrllne service supply, at least in the aggregate,

follows demand. Since supply variables are determined by passenger

traffic levels, they do not need to be introduced directly into the

model. While we recognize that the worklng hypothesls is not

literally true, our model will stmll have predictmve value so long

as a large proportlon of supply behavior ms endogenous. Later on,

we will return to this question by relating observed supply of

airline servlce to the passenger market share predictions obtained

from our model.

4.2 Data

To apply our model, we required information concerning the

origin locations of air trips between the Bay Area and different

destinations, on the cost of travel between origin points and the

three Bay Area airports, and on the choice of airport of

tripmakers, condltional on origin locatlon and trip destination.

This section describes how we assembled these data.

We estimated the distrlbution of passenger origins, by

destination, using the 1990 MTC Air Passenger Survey and the U.S°

DOT !0 per cent airline ticket survey (as obtained from the O&D
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Plus CD-ROM). The MTC survey was administered using in-person

interviews of departing passengers waltlng in passenger boardlng

areas at the three airports. 1400 flights were sampled during the

seven-day survey period beginning August 13, 1991. The survey was

designed to cover a representative set of flights from each

airport, but the sample obtained is not representative of Bay Area

alr travelers as a whole, since SJC and OAK passengers are

oversampled relative to SFO passengers. Sample slzes ranged from

5878 at SFO to 7895 at SJC. Table 2 summarizes and compares MTC and

U.S. DOT survey sample sizes, by airport, for 44 of the larger Bay

Area markets°

Surveyed passengers were asked to identify their trip origin.

This information was used to identify the MTC superdistrict from

which the trip origlnated. (MTC divides the Bay Area into 34 such

superdistrlcts, covering the entire nine-country region; see Figure

5). Since the survey oversamples SJC and OAK passengers, it is

necessary to make corrections in order to estimate the true

distribution of origin points° The corrections are based on the l0

per cent survey. These data were used to compute destination- and

airport-specific weights for MTC survey observations. Specifically,

the weight is calculated as:

PAXDOTjk
Wjk- PAXMTC~k (6)

where :

W~k

PAXDOT~k

PAXlVITC]k

is the weight for Bay Area airport j and destination k;

is the 1991 passengers from airport j to destination k,
as obtalned from the DOT I0 per cent survey;

is the 1991 passengers from airport j to destination k in
the MTC survey, excluding passengers whose origin in the
Bay Area could not be determined or whose origin was not
in the nmne-county region.

Uslng these weights, the dlstrlbutlon of passenger origin points i

25



Table 2.
Survey Responsess by Airport and Destination

San Francisco (SFO) Oakland (OAK) San Jose (SJC)

DesUnahon
Raho

27

58

138

99

122

62

112

50

49

97

82

63

63

108

82

49

62

82

85

59

143

56

87

78

80

59

202

O&D MTC O&D MTC O&D MTC
Survey Survey

48

188

Ra~o Surve~ Survey Ratio Survey Survey

ANCHORAGE 2238

92

13 41

14 160 613 28 22 351 13

ALBUQUERQUE 7229 24 301 3932 66 60 1553 27

ATLANTA 12817 42 305 ! 150 2O 58 1792 13

AUSTIN 3523 7 503 1193 13 92 2683 27

BOSTON 28012 58 483 1091 35 31 6843 56

CHICAGO 29887 181 165 5908 187 32 8109 131

CLEVELAND 5037 26 194 547 9 61 1117 10

DENVER 16944 51 332 5311 100 53 8OO8 159

DALLAS 12978 41 317 3303 54 61 6775 137

DETROIT 11461 37 310 1089 25 44 2231 23

EL PASO 2572 14 184 1986 19 I05 411 5

MIAMI 14383 31 464 857 9 95 I966 31

HOUSTON 14778 55 269 2195 32 69 1838 29

HARTFORD 4615 14 330 566 10 57 968 9

LOS ANGELES 19854 980 203 97527 t620 60 68378 830

LAS VEGAS 13700 64 214 7847 177 44 5888 119

KANSAS CITY 7461 16 466 1458 47 3I 1234 20

MINNEAPOLIS 10739 90 119 782 13 6O 3260 4O

NEW ORLEANS 6770 20 339 1104 22 5O 937 I1

NEW YORK [ 82697 285 29O 2086 56 37 5361 9I

OMAHA 1806 6 301 612 12 51 857 6

ONTARIO 15866 42 378 33156 356 93 11686 208

ORLANDO 9921 I8 551 881 13 68 2187 25

PHILADELPHIA 14149 71 199 1021 22 46 2093 27

PITTSBURGH 5397 42 129 324 19 17 720 9

PHOENIX 25547 70 365 23727 179 133 6899 117

SEATTLE 23705 207 115 10269 285 36 9642

SAN DIEGO 54406 204 267 29357 595 49 17314

SPOKANE 3386 37 92 543 22 25 528



San Francisco (SFO) Oakland (OAK) San Jose (SJC)

Destmahon O&D MTC O&D MTC O&D MTC
Survey Survey RaUo Survey Survey Ratao Survey Survey Ratio

SAN AN’I ONIO 4547 17 267 1401 15 93 834 7 119

ST LOUIS 7179 42 I71 1070 18 59 1994 32 62

TAMPA 4120 16 258 539 1I 49 978 9 109

TUCSON 28O5 9 312 1536 23 67 1802 18 109

DC 32754 68 482 1851 43 43 4212 35 120

ALBANY 1676 7 239 194 7 28 419 2 210

BALTIMORE 6703 I0 670 940 12 78 1719 I1 156

GRAND RAPIDS 1070 7 153 147 6 25 358 5 72

INDIANAPOLIS 4014 12 335 451 19 24 1007 2O 50

LrrTLE ROCK 856 4 214 340 7 49 281 4 7O

MILWAUKEE 4972 19 262 252 6 42 68t 9 76

PORTLAND 11480 t41 81 5272 203 26 7142 87 82

RENO 4301 15 287 10275 6 I713 2899 37 78

SALT LAKE 5467 26 210 2028 34 60 2061 48 43

TULSA 1613 9 [ 179 694 5 139 568 13 44
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over the MTC superdistricts was estimated as follows:

I

(7)

This procedure cannot be used when PAXMTC~k is zero, and is subject

to high errors when PAXMTC~K is small. To estab!Ish some minimal

level of accuracy, we eliminated from consideratlon all

destinations that did not have at least i0 MTC Survey passengers

for each airport. This leaves a total of 44 destinations -- the

ones included in Table 2 -- for use in the subsequent analysis.

Figure 7 illustrates the county distribution of trip origins

for several representative markets. As hypothesized, there is

marked variation in the distributions. For example, San Francisco

county originates the plurality of trlps to Los Angeles and San

Diego, while Sana Clara is the leading generator of Boston and

Phoenlx traffic. Among the smaller countles, Sonoma accounts for

just 2 per cent of Boston passengers, but 6 per cent of those going

to Ontarlo. The comparisons support the conclusion that varlation

in trip origin locatlons account for much of the variation in

airport market share.

The flnal data item requlred for the model is a measure of

travel cost between each MTC superdlstr!ct and each airport. For

this purpose, we used AM Peak period drive-alone travel times

skimmed for MTC’s transportation network. These travel times are

defined for MTCs 700 traffic analysis zones. We estlmated tlmes at

the superdistrict level to be those from the traffic analysis zones

containing the superdistrict centroidso Travel times are used as a

proxy for all costs associated with travel to the airport. Of

course, not all airport trips are made by auto, and not all are

made in the AM Peak° We argue below that systematic dlfferences

among alrports in the relation of the chosen travel cost metric to

the "true" travel cost may account for differences in the airport

specific utilities estimated in the airport choice model.
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4.3 Airport Choice Model

The first analytlcal step in the modelling process was to

estimate an airport choice model. The MTC Amr Passenger Survey was

used for this purpose. It was again necessary to adjust the survey

results to reflect the actual airport traffic levels, by

destination. Each individual passenger observation was therefore

weighted by a factor proportional to W~ but normalized so that the

sum of the welghts equaled the number of usable observations--

10,500.

The utility function in Equatlon 2 is not linear in the

parameter 8. Although the logit estlmatlon software (ALOGIT) has

the capability to estlmate coefficients of this type, efforts to do

so proved unsuccessful. This nay be because the tern 8 multiplies

is essentlally constant for each airport (actually, it varies

slightly since it includes all passengers other than those going to

destination k). Thus, the data set is lll-conditloned from the

standpoint of estlmatlng @. To overcome this problem, we performed

the analysis for several assumed @ values, rangmng from 0 to i0-i.

At @=0, only market trafflc influences the first term in the

utility functlon, while at 8=10 -I , this term is dominated by airport

trafflc except in the largest markets.

Table 3 summarizes logit est!mation results. All terms are of

expected sign and statistically significant at the .05 level in all

models, wlth the exceptlon of the distance term when @:I0 -4. The

performance of the models is fairly uniform, although there is some

fall-off in the log likelihood as @ increases beyond 10 .3 . The

travel time coefficient estimate is very stable across all models.

The airport constants are also fairly stable. It appears that,

ceteris paribus, OAK is most attractive to passengers, and SJC is

least so. Based on the ratlo of the alrport constants to the access

time coefficient, the advantage of OAK is equivalent to a 3-5

minute reduction in access time, while the disadvantage of SJC is

equivalent to a 4-5 minute increase in this time, relative to SFO.

As suggested above~ this could result from systematlc differences

in the relation between the access time measure used in the model

3O



and the actual cost of accessing the alrport. Other possible

explanations for these differences in airport attractlveness

include inter-alrport differences in airllne supply behavior,

congestion levels (Harvey, 1987), and amenity levels.

The value of @ has a pronounced effect on the coefficient

estimates in the two trafflc terms in the model° When 8=0, 10 -4 , and

10 -3 , (z, the coefficient on the first traffic term (that involving

@) in (I) is high, and increases with @. On the other hand, 

these @ values, ~, the coefflcient on the second traffic term (that

!ncluding distance), is low. For larger values of @, ~ decreases,

while ~ increaseso

Despite the substantial variation In coefficlent estimates,

the various models lead to very similar relationshlps between

airport utility and market traffic, except when market traffic is

small° To show this, in Figure 8 we plot the traff!c component of

the utility (that is, the sum of the two traffic terms in the

utlli~y function) 1 relatlve to a market trafflc level of 50

thousand passengers, against market traffic for the models with

8=0, 10 -3, and 10 -I When traffic is less than i0 thousand per year,

the models with higher @ yield a hlgher utility, but this

dlfference becomes negligible at higher traffic levels. Thus, as

intended, the effect of the 8 term is to Increase an airport’s

attractiveness when traffic is too low to support non-stop service.

Interestingly, however, the 8=10 -3 model yields higher utility at

low traffic levels than the 8=10 -~ model. This reflects the sharp

reduction ~ when @ is increased from 10 -3 to 10-I .

In terms of the log likelihood function, the model with 8=10-3

performs best. The performance of the modelg however, should be

judged according to the accuracy of the equilibrium market share

predictlons it yields as well as the log likelihood. We will see

below that other @ values yleld more accurate market share

predictions, and that consequently we cannot unambiguously identify

the "best" value for @.

The models presented in Table 3 are attribute-specific,

ref!ectlng the maintained hypothesis that the attractiveness of
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each airport is similarly affected by changes in the traffic and

access time variables. In order to conslder this hypothesis, we

also estlmated the model in alternative-specific form in whlch the

coefficients in the utility function are allowed to vary among the

three airports. A comparison of results, for the @=10 -2 model, is

presented in Table 4. The coefflcient estimates in the alternative

specific model are quite conslstent with those in the attribute

speciflc model, with deviatlons between estimates within standard

errors with the exception of the SJC constant. Since the arguments

underlying the model presuppose general, airport invariant,

relat5onshlps, thls consistency lends some support to them. The

hypothesis that the attribute-speclflc model explalns airport

choice as well as the alternative-specific one can be tested

formally, since twice the difference in the log likelihood

functions is Z 2 distributed with degrees of freedom equal to the

number of additlonal parameters in the alternatlve-specific model

(Ben-I~iva and Lerman, 1985). This test indicates that, despite the

slmllarity of estimates, the null hypothesis that the coefficients

are actually equal can be re3ected with a high (better than 99 per

cent) level of confidence. Nonetheless, since the attribute

speclflc model is simpler, more consistent with the underlying

theory, and has coefficients that are for the most part qulte close

to those in the alternative-speciflc model, we will employ them in

the subsequent analysls.

4.4 Calculation of Equilibria and Analysis of Model Performance

The logit model results, comblned wlth the information on the

distribution of passenger origin locatlons, were used to calculate

airport trafflc equilibria. The approach is similar to that

outllned in Section 2 (Equations 1-3), except that for each

individual market calculation, the observed alrport traffic to

other markets, rather than the traffic predlcted by the model was

used. In adopting this approach, we are in effect testing the

perfo:cmance of the model at the market, rather than the airport

level. This avoids the problem of error propagation arising when
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inaccurate predlctions in one market, by affectlng airport traffic,

cause inaccurate predictions in another market. Moreover, this

approach allows separate calculatlons of equilibria by market,

substantially reducing the computation burden involved°

To calculate the equlllbria, we took the actual airport market

shares as a starting point, and calculated new shares using

Equatlons 1 and 2. The new shares were then used in a second

airport market share calculation, and iteration continued until

stable market shares were obtalned. This procedure is much the same

as that depicted by arrows in Figure i, and will thus naturally

arrive at stable, rather than unstable, equilibria. If there are

multlpie stable e~ai!lbria, however, the procedure w11! tend to

identify those whlch are "closest" to the observed market shares.

We have not thoroughly explored the posslbility of multiple stable

equlilbria in a three-alrport MAS, but did conduct several

numerical exper!ments using dmfferent (non-zero) starting values

for market share, and always arrived at the same equilibrium

result.

Figures 9-16 compare the equilibrium traffic share to the

observed traffic share (based on the DOT I0 per cent survey). Two

plots are presented for each value of @ up to 10 -2 . In the first

plot, results for all 44 markets are included. In the second plot,

only the 13 largest markets (based on total traffic from all three

alrports) are shown. The equillbrium and observed values are

expected to be closer for the large markets for two reasons. First,

these market are better represented in the MTC survey, and thus the

dlstributlon of passenger origln locations can be estimated with

greater accuracy. Second, slnce these markets have more responses

in the DOT survey, airport market shares are also observed with

greater accuracy.

Inspection of the plots confirms this expectation. Predictions

for large markets correlate quite well with observation, while the

flt is much worse when all markets are consldered. Most

importantly, the large market plots reveal strong correlation of

predicted and actual markets shares for the individual airports,
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not just for the set of observatlons as a whole. This is crucial,

since by using airport constants in the loglt utility functlons, we

have essentially guaranteed that our model will correctly "predict"

mean market shares of the three alrports. The additional predictive

power of the model used here rests in its ablilty to explain

market-to-market varlation around the mean values.

Comparing the plots for all markets for the different @

values, it is apparent that the models wlth @=10-3 and 10 -2 have a

better fit than those with 8=0 and 10 .4 . The former models are more

likely to predict equ1!Ibria with market shares between 0 and i,

while the latter tend toward outcomes in which airports receive all

or none of the traffic. These results are consistent with Figure 4,

which shows that the models wlth 8=10 -3 and 10 -2 predict higher

utility levels for airports with low traffic than those with 8

values below or above this range° These higher utility levels allow

airports with low traffic levels in a glven market to retain some

market share. Since these differences are confined mamnly to low

traffic situations, model performance is much less variable when

only large markets are considered°

It is instructive to compare the plots for the various

positive feedback models with the results for a model in whlch only

access tlme (in addition to airport constants) is consldered 

that is, a model in which ~ and ~ in Equation 2 are assumed to be

0. Figures 17 and 18 present the plots for this case (the plots for

@=10-I look similar). It is clear that this model is inferior to the

models incorporatlng positive feedback. The former predicts a much

smaller amount of market share varlatlon than what is observed and

what the positive feedback models predict° Thls is precisely what

we should expect: the positlve feedback effect amplifies slight

market-to-market variation in airport accesslbility into much

larger differences in airport market share.

To more formally compare and assess the performance of the

models, we performed statistical tests of hypotheses pertaining to

their ability to explaln variation In airport market shares. For

reasons previously stated, we concern ourselves only with intra-
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airport variatlon.

Two different null hypotheses can be used to assess model

performance. The first, which we term "null hypothesis i," is that

our model predicts the market share of airport j in dest!natlon ks

MSjk, no more accurately than the model:

MSjk = MS3 (S)

where:

is the mean airport share of airport j over all markets.

An F-statlstlc can be used to test null hypothesis i. The test

statistic is glven by:

( s3k 2/n-l
f(n-l~n-l) k (9)(MS3k _ ^ m

Ms, k) 2/n-I
k

where:

^ m
MS~k

n

is the market share for airport j to destinatlon k

predicted by model mo

is the number of markets considered in the analysis
(n=44).

Tables 5 and 6 summarlze results for each airport, and for

each of the five models. Table 5 is based on all markets, and Table

6 on the 13 largest° The better performance of the models for large

markets is again evident~ It is also apparent that the model

performance varies according to the alrport, with OAK predictions

the best, followed by SFO, and finally SJCo For the former two

airports, and for all @ values, null hypothesis i can be re3ected

at a level of significance of 5 per cent or better. This null

hypothesis cannot be rejected for large markets in the case of SJC,

however. Models with larger @ values tend to perform somewhat

better for large markets, although no single model performs best
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for all three airports. Results are less convincing when all

markets rather than just the largest ones are considered. Null

hypothesls 1 can be rejected at a 5 per cent signiflcance level

only for the model with 8=10 -2 and only for OAK. This model yields

the best results for all three airports when all markets are

considered.

A second null hypothesls, "null hypothesls 2," Is that there

is no linear relationship between an airport’s market share and the

share predicted by our model. Thls translates to the hypothesis

that in the llnear model,

m
~3 = 0. Null hypothesis 2 is re3ected if there is a statistlcally

signlficant (and positive) linear relatlonship between the

predicted and observed market shares. Such a relationshlp can exist

even when dlfferences between predicted and observed values, upon

which the testlng of null hypothesis ! is based, are large.

Null hypothesis 2 was tested using linear regression. Tables

7 and 8 summarize the regression results. As before, the analysis

ms conducted for each airport and each model, using both the entire

set of 44 markets and the 13 largest markets. In general, these

results show that the null hypothesls must be rejected at the 1 per

cent slgnlficance level, for all models and airports, and whether

all markets of large markets are consmdered. Thus, even when

equilibrium market share is not itself an accurate predictor of

actual market share, there remains a strong linear relationship

between these variables.

The regression results dlsplay many of the same patterns as

the F-statistics discussed above. When all markets are considered,

the best results are for models with @=10-2 , but when large markets

are considered, the model with @=10-~ yields a somewhat higher R2.

Like the F-statlstics, the regression results show that market

shares in large markets can be predicted more accurately, and that

OAK predictions are the most accurate, followed by SFO, wlth
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Table 7 °
Regression Resultst All Markets

Airport Coefficient 0=0 0=10~ 0=10"3 0=10.2 0=10q

OAK INTERCEPT 0 053 0 050 0 034 0 030 0 043

SLOPE o5541 0 575 0 685 0 760 0 657
(093) (094) (097) (o lOO) (0 101)

R2 0 456 0 468 [ 0 541 0 528 0 500

SFO INTERCEPT 0 407 0 388 0 291 0 239 0 338

SLOPE 0417 0 448 0 598 0 657 0 507
((088) (090) (0 097) (096) (091)

R2 0.353 0 370 0 474 0 528 0 425

sJcI INTERCEPT 0 117 0 112 0 094 0 092 0 112

SLOPE 0 297 0319 0 416 0 450 0 346
(066) (069) (077) (079) (070)

R2 0 324 0 340 0 410 0 437 0 366

Standard errors m parantheses
Table 8.

Regression Results, Large Markets

Airport Coefficient 0=0 0=10.4 0=10.3 0=10.2 0=10"I

OAK INTERCEPT 0 037 0 037 0 037 0 030 0 025

SLOPE 0 841 0.838 0 839 0 890 0 916
(092) (092) (.088) (084) (.092)

R2 0 883 0 884 0 892 0 910 0 900

SFO INTERCEPT 0 128 0.130 0 132 0 096 0 080

SLOPE 0 791 0.788 0 784 0 833 0 857
(126) (126) (126) (117) (112)

R2 0 783 0 781 0 778 0 822 0 842

SJC INTERCEPT 0.074 0 075 0 076 0 064 0 056

SLOPE 0 590 0.587 0.581 0 656 0 704
(205) (205) (.207) (211) (.204)

0 431 0 428 0418 0 469 0 518

Standard errors m parantheses
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results for SJC the least satisfactory. On the other hand, whereas

F-statistics indlcated that equilibrium market share is not itself

a good direct predictor of SJC market shares, the regression

results show that a linear function of the equillbriummarket share

is a good predictor, explalning close to half the variation in the

observed value.

All regressions yield positive intercepts and slopes less than

i. This pattern admits of both a substantive and a statistical

explanation. The substantive interpretatlon is that positive

feedback effects are somewhat damped by other factors not accounted

for in our model. We have already discussed in general terms how

airport market shares are influenced by "exogenous" airline actlons

whlch we have intentlonally omltted. Such influence would be

expected to attenuate the relationshlp between actual market shares

and those predicted by our model in the manner the regresslon

results suggest. Alternatlvely, the regressions estimates could be

distorted by error-ln-variables bias° Speclflcally, calculated

equliibria are subject to error because they are based on estimates

of the dlstribution of trip origins that are subject to error. When

there is significant measurement error in an independent variable

used in a regression, it is expected that the estimated coefficient

on the varlable will be of smaller absolute value than the true

value of the coefficient. This is the probable explanation for the

slope estimates being greater in the large market analyses, where

a greater number of HTC responses results in a smaller error in the

estimated distribution of trip orlgins.

Before leaving this section, we consider the question of which

@ value is "best" Different criteria favor dlfferent values. The

best logit results are obtained for the smaller @ values -- 0, i0-4~

and 10 -3 . Higher @ values -- 10 -2 and i0 -~ -- yleld models that

predict market shares more accurately. The probable reason for this

conflict is related to the error-in-variables problem. Although

models with smaller @ predict airport cholce somewhat better~

models with larger @ may be more robust wlth respect to errors in

trip origin distribution. In any case, appllcation of the model to
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a single ~AS does not provide an adequate basis to determine 8, or

even to decide whether the 8 term is appropriately specified.

However, we have chosen the @=10.2 model for use in the subsequent

sections of this paper. Since thls model is arguably the best in

~erms of market share prediction, and only slightly below the best

as measured by logit model performance, it seems the most

ceasonable compromlse. All the other models are decidedly inferior

with respect to one or the other of these criteriao
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5. Equilibrium Market Share and the Supply of Air Service

As dlscussed in Section 2, our model is based on the

maintained hypothesis that the supply of air service is endogenous

-- determined by traffic rather than vice versa. The high

correlation between predicted and observed market shares found in

the last section lends some credibility to this assumption. In this

section, we examine this matter further by considerlng

relationships between servlce supply and predicted market share.

Our measure of service supply is available non-stop seats, as

obtained from the USDOT service segment data base. We conslder the

relationship between an airport’s share of non-stop seats and

market share in the 13 largest Bay Area markets. In general, supply

of non-stop seats in these markets was well in excess of origin-

and-destination passengers, reflecting the presence of conslderable

non-local traffic on these segments. Thls in turn is a result of

hubbing, both through the Bay Area airports SJC and SFO, and at the

destination alrport. Overall there were between 2 and 3 times as

many seats as local passengers in these markets, with SJC having

the hlghest ratio, followed by SFO. OAK, the only Bay Area airport

not used as a hub, had the lowest ratio.

Figure 19 plots observed seat share against the equllibrlum

market share (based on the model wlth 8=10-2). The plot confirms

that these varlables are correlated, both overall and at the

airport level. The relationship between seat share and market share

is observed to differ according to the alrport. SFO shares are

highly correlated, with the seat share generally higher than the

market share. OAK shares are also hlghly correlated, but in this

case the market share is typically higher than the seat share. SJC

displays noticeably weaker correlation than the other airports.

Like SFO, its seat share generally exceeds ItS market share.

Regresslon results, summarized in Table 9, confirm these

impressions. It is clear from these results that for a given

equilibrium market share~ OAK has a lower expected seat share than

either SFO or SJC.

These results closely parallel those in the last section,
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Table 9.
Regression Results, Seat Share Models

Linear Log-Linear
Coefficient Model Model

Intercept -0 315 0 100

Sfdummy 0 133 0 084
(0 165) (005t)

Oadummy -0 192 -0 043
(0 116) (0.034)

Predmted 0 740 0 660
Traffic Share (0 146) (0 134)

R2 071 0 75

Standard errors m parantheses
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where it was found that observed market share is more highly

correlated with ecfuillbrlum market share in the case of OAK and

SFOo This suggests that the weaker predictive performance of the

positive feedback model in the case of SJC stems for the failure of

the supply side of the system to respond to local demand. One

possible reason for this may be that in the 1991 tlme period we are

analyzing American Airline’s SJC hub was fairly new, and the

airline has thus not had sufficient time to tailor its schedule to

.Local market demand. Alternatlvely, it may be that American’s

service supply decislons at SJC were domlnated by connecting market

conslderations, substantially weakening the tie between local

traffic and service. In any case~ it is interesting that the San

Jose hub has come to be seen as a failure, and operations there

have been sharply curtailed at the time of this wrlting.

Figure 19 reveals some markets in which the market and seat

shares diverge signiflcantly. While we cannot offer definitive

explanations of these divergences, consideration of a few specific

cases may prove iiluminatlng. Data points corresponding to four

such divergent markets are identlfied in Figure 19. Solid

rectangles indicate the Washington, D.C. market, in which SFO has

[00 per cent of the seats, but a predlcted market share of 82 per

cent. This is an example of a long-haul market in which non-stop

service may not be economically vlable from SJC or OAK. Passengers

using these airports to travel to Washington would be forced to

rely on multl-stop or connectlng service. A somewhat similar story

holds for the Boston market, data for which is indicated by a solid

clrcle in Figure 19. In this case, OAK, which is expected to garner

less than 1 per cent of the market, could not support service, but

SJC, for which a 28 per cent market share is predicted, does have

service. SJC has a smaller share of non-stop seats than traffic,

however, for two posslble reasons° First, the amount of non-stop

service is such that a sizable fractlon of SJC passengers to Boston

opt for other servlces. Second, SFO may be dominating the non-local

passenger trafflc in this market.

In the third example, Dallas (indicated by an oval), SFO has
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a smaller share of seats (55 per cent) than of equillbrium

passengers (70 per cent), with the reverse holding for both SJC and

OAK. The probable explanation for thls is that many passengers out

of the OAK and SJC hub through DFW on their way to destinations in

the south and east whlch to which SFO has non-stop service (for

example, Washlngton~ as discussed above). DEW would be 

particularly attractive hub for travelers out of SJC, since

Amerlcan has hubs at both !ocatlonso

Finally, Phoenix, indicated by a dashed rectangle, is another

case in which SFO has a higher seat share (50 per cent) then

predicted market share (36 per cent). The apparent explanation for

this dlsparity is that Unlted used its SFO hub to connect Phoenlx

with cities in the Paciflc Northwest such as Portland and Seattle,

while little connectlng trafflc on the America West and Southwest

flights out of SFO and SJC.

The above remarks 111ustrate how hub-and-spoke networks and

traffic thresholds for economlcally vlab!e services create

disparities between alrline seat shares and the market shares

predicted by our model° These disparities in turn result in

differences between observed and predicted market shares. The

suggested explanations are admittedly speculative, and further

analysis is required to confirm them. The more important result is

that the factors suggested in thls discussion play a comparatively

mlnor role; compared to those included an the posltive feedback

model, in shaping the distribution of traffic in MAS.
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6. Predictions for a Fourth Airport

We used the model to forecast equilibrium market share for

Buchanan Field (CRC), an airport in Central Contra Costa County,

about 30 miles from San Francisco. The alrport has received

sporadic commercial servlce in the past. The enpianements at

Buchanan peaked at 59 thousand in 1988. Subsequently the two

airlines serving Buchanan, PSA and USAir, merged, and USAir then

retrenched from the Bay Area market. These events vlrtualiy

eliminated commercial activity at Buchanan. In 1991, total

enplanements numbered just 5,600.

We calculated Buchanan’s equilibrium market share for two

destinations: Los Angeles and San Diego. We treated each market in

isolation--as though it were the only one served from this airport.

Thus each market share is calculated assuming that there is no

traffic in any other market using Buchanan. Since we lacked an

airport-speclfic utility term for Buchanan, we carried out the

analysis parametrlcaily, allowing this utllity value to range from

-0.5 (the SJC value) to +0.4 (the OAK value).

The results are shown in Figure 20. Equilibrlum market shares

for Buchanan range between 15 and 26 per cent for San Diego, and

between Ii and 17 per cent for Los Angeles. This substantial market

penetration reflects the fact that Buchanan is advantageously

located. Of the four alrports belng consldered, Buchanan is the

closest to the North Bay and much of Contra Cost County.

Additionally, it is fairly far from SFO, and thus offers a

pronounced travel tlme advantage over that facility to a sizable

fraction of the Bay Area market.

But while the large predicted market shares for Buchanan are

reasonable, they are not born out by experience. Even in the peak

year of 1987r CRC captured only 3.3 per cent of the Los Angeles

market and less than 1 per cent of San Diego traffic. What

happened? One explanation is that Buchanan never reached the point

where it was consldered as a potential alternative by most

travelers° Whereas virtually any East Bay traveler will consider

OAK, and any South Bay traveler will conslder SJC, when making
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i~ravel plansr we suspect that the possibility of uslng CRC never

crossed the mlnds of most travelers in its market area. Indeed, a

survey conducted by CRC revealed that many respondents dld not know

of the availability of commercial service there (White, 1993).

A second reason was inadequate airport infrastructure. In the

late 1980s, the only commercial 3et alrcraft that could operate

from C’~C’s 4600 foot runway was the BAE 146. While assessments of

the mechanical reliability and performance of thls aircraft vary,

it was not widely prevalent in the fleets of U.S. domestic

carrlers, and this may have dlscouraged more widespread entry.

Furthermore, parking was limlted, and there was no permanent

terminal bulldlng.

Finally, these was strong political oppositlon to further

commercial development at CRC. The CRC Board imposed tight

limitations on the number of flights, and generally dlscouraged

airlines from expanding commercial service. This political

opposltlon is one reason why steps were not taken to remedy the

infrastructura! deficiencies.

Thus, it appears that a combination of lack of passenger

awareness, inadequate infrastructurer and lack of political support

prevented CRC from reaching its potential as a commercial airport.

Of these reasons, the first is perhaps the most significant, for it

speaks to an additional type of feedback effect not captured in our

model. While OAK, SFO, and SJC are all well established commercial

airports of which virtually all travelers are aware, CRC never

attalned this status. Only when this information bias is overcome

is it possible for a new airport to compete on equal terms with

established competitors.
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7. Conclusions

We have developed a simple model that contributes to the

understanding of the allocation of passenger trafflc among the

three main commercial airports of the Bay Area° Our model is based

on an accesslbility effect, which makes airports close to passenger

trip origins more attractive, and positive feedback effect, which

makes airports with more traffic more attractive. We have shown

that a model incorporating these effects explains much of the wide

market-to-market variation in airport market shares observed in the

Bay Area. The model works particularly well for large markets, for

which it is posslble to accurately estimate its main exogenous

input, the distribution of locations from which air travelers begin

their journeys. The model yields equilibrium market shares which

are themselves fairly good predictors of observed values; even

better predictions are obtained using linear models relating actual

market share to the equilibrium share°

The most important implication of thls research is that the

locational distrlbutlon of trip origins plays a ma3or role in

determining airport traffic allocation. Indeed, it appears that

this factor is more important than "exogenous" alrline behavior.

Also, at least in the Bay Area, there is substantlai market-to-

market variation in this locatlonal dlstrlbution. Thls suggests

that regional airport planners need to consider regional air travel

patterns at a zone-to-destlnation level, and that such patterns

cannot be accurately estimated by slmple region-to-zone

apportionment schemes. The modelllng of travel patterns at the

zone-to-destination level is thus an important area for future

research.

The positive feedback effect amplifies the accessibility

effect. From a regional perspective, SFO has a modest accessibility

advantage over OAK and SJC° The access time to SFO for the average

Bay Area passenger is 46 mlnutes, only 8 minutes less than the

average to OAK and SJCo Because of the positlve feedback effect,

this advantage translates into a much larger market share

differential. This poses a difficult challenge from a planning
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standpoint, since it implles that slight changes in zone-to-

destination trip changes can sharply alter the distributlon of

traffic among airports° But it also means that transportation

planners can exert considerable leverage on airport traffic

distribution by taklng steps to increase (or decrease) airport

accessibility.

A potential objectlon to our analysis Is that it does not

sharply delineate cause and effect° This is a recurring issue in

positive feedback models, which by definition see cause and effect

in the same variables. It must therefore be emphasized that the

positive feedback model is used to calculate an equllibrlum, and

the equilibrium state is determined solely by the locatlonal

dlstribution of trip orlgins. Thus the only potential source of

"reverse causality" is if the locational dlstributlon is itself

endogenously determlned -- for example, if more people from East

Bay fly to Reno because OAK has better servlce to that destination°

Although we cannot dismiss this possibility entlrely, it seems

Implausible that alrport access considerations would play more than

a marginal role In shaplng zone-to-destination travel patterns.

Although often unpleasant, airport access represents a small

fractlon of the total cost of a typlcal air trlp. It is far more

llkely that travelers consider access issues in selecting an

airport than in deciding whether or where to fly. This conclusion

is supported by the high incidence of cases in which passengers

select an alrport with less accessib!lity but better service.

We do not claim that our model is a complete representation of

the behavior of MAS. Our results reflect this Incompleteness in a

number of ways. First, our logit model results and overestlmates of

market share for Buchanan field show the importance of airport-

specific effects. From the airport constants in the logit model, we

learn that, ceteris paribus, OAK is the most attractlve Bay Area

airport, with an advantage equivalent to a 4 minute differentlal

over SFO, and a 9 mlnute dlfferential over SJC° Further research is

needed to explain why. Likewise, further work is requlred to

explain why Buchanan fleld failed to reach the market potential
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predicted by our model. While there is interesting anecdotal

evidence on this polnt, we cannot yet incorporate factors suggested

by this evidence into a predictive model.

Comparisons of non-stop seat shares wlth predicted market

shares show how factors related to hub-and-spoke route systems

affect traffic in the Bay Area. In the case of SJC, it appears that

American’s hub had -- at least temporarily -- attenuated the

linkage between service supply and the local traffic base. In

several other instances, seat shares diverged from market shares as

a result either of routing of non-local traffic through Bay Area

airports, or the routing of local traffic through other hubs° It is

not surprising that such effects exist° What is more remarkable is

that relatively accurate predictions of Bay Area airport market

shares can be made without taklng them into account.

Future research should be devoted to several areas° First, the

basic findings of this study should be verifled through appllcation

of the model to other HAS. In addltion to determining whether the

positive feedback mechanlsm plays as important a role in other MAS

as it does in the Bay Area, such application will reveal the

transferability of model parameters, and shed additional light on

the nature of airport-specific effects. Second, a more explicit

representation of supply-side behavior should be considered as an

alternative to the implicit, traffic-based, representation

presented here° Such a representation should take into account

threshold effects on non-stop service availability, pricing, and

the impacts of hubbing. Third, as already noted, the market-to-

market variatlon in trip orlgin d~strlbut!ons warrants further

study. If the importance of such variation is as great as our

results suggest, it will have serious implications for the nature

and difficulty of the task of predicting airport traffic in an MAS.

Finally, the model should be extended to explore how capacity

limitations affect traffic distribution in an MAS, and identify

how, in such circumstances, planning and policy interventions can

lead to multiple airport systems that optimally balance the

competing goals of accessibility, servlce quality, and
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infrastructure cost.
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