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EXECUTIVE SUMMARY

This report proposes and applies a model of traffic allocation
in multaiple airport systems (MAS). Unlike most previous studies,
which focus on a passenger’s choice of airport for a given set of
service attributes (fregquency, fare, etc.), this model assumes that
service attributes are endogenous to the system, and directly
related to airport traffic volume. Thus a positaive feedback exists
whereby an airport becomes more attractive, the more traffic it
has. The distribution of traffic in a MAS reflects the combined
effect of travelers choosing airports closer to their trip origin
and the positaive feedback effect. Airports located more
conveniently to the market have an initial advantage stemming from
their greater accessibility, whaich 1s then amplified by positive
feedback.

The model is applied to the San Francisco Bay Area, which is
served by three major commercial airports--Oakland, San Francisco
International, and San Jose. We first estimate an airport choice
model in which airport destination market traffic, total airport
traffic, and travel time to the airport are included as attributes.
The model yields statistically saignificant coefficients of expected
signs. We then use the calibrated logit model, along with data
concerning the origin of air passenger trips in the Bay Area, by
destination market, and ground access travel times to each airport
to predict equilibrium market shares. We find good overall
agreement between the predicted shares and observed shares for
markets. The model predictions are most accurate for markets with
large traffic volumes, and more accurate for Oakland and San
Francisco airports than for San Jose. Statistical tests reveal that
there 1s a significant relationship between predicted and actual
values, and that 1f eguilibr:um share is treated as an explanatory
variable, it accounts for most of the variation in actual share in
large markets. Finally, predicted market share 1s found to be a
statistically sagnificant predicter of observed seat share,

supporting the assumption that airport service attributes are to a
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large extent endogenous.

The calibrated model 1s used to pred:ict the market share of
Buchanan field, an airport ain Contra Costa county where commercial
service has been offered sporadically. Predicted shares of traffic
to Southern California are in the range of 10 to 25 per cent,
although actual market share never exceeded 3 per cent. We consider
several possible explanations for this disparity. One 1s that
Buchanan'’s directors did not support expanding and improving the
airport so that 1t could better accommodate commercial activity. In
addition, there i1s evidence that many air travelers were unaware of
the services available out of Buchanan. These explanations suggest
that our model i1s applicable only to established airports that are
committed to providing commercial service.

Our main conclusion is that the positive feedback process upon
which our model 1s based plays a large role in determaining the
distributions of commercial traffic in a multiple airport region.
Furthermore, the key exogenous factor in this process, the regional
distraibution of air trip origins, 1is found to vary signifaicantly
from one destination market to another. Thus good traffic forecasts
require market-specific predictions of these distributions. There
1S a pressing research need to develop models that allow such
predictions. In addition, analysis of other multiple airport
systems 1is required to assess the transferability of the model, and
also to improve our understanding of how other factors not directly
in the model, such as capacity limitations, hubbing, and
accessibility by non-automobile modes, affect traffic allocation.
With such improvements, planners and policy makers will be able to
use the model to determine how to most effectively balance the
competing goals of accessibility, service quality, and

infrastructure cost in multi-airport systems.
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Modeling Multiple Airport Systems:
A Positive Feedback Approach

1. Introduction

Many of the world’'s largest cities are served by more than one
commercial airport. Such multiple airport systems (MAS) have
recently been the object of increased attention, for several
reasons. From an academic viewpoint, multiple airport systems are
interesting because they provide a window on the preferences of air
travelers -- particularly the relative values they attach to ease
of access to the airport versus the quality (and cost) of service
from it -- and the competitive strategies of airlines. From a
practical standpoint, understanding multi-airport systems 1is
important so that the consequences of various transportation supply
actions -- surface transportation improvements, traffic caps or
service restrictions on "over-utilized" airports, creation of new
alrports, or investments in existing ones -- can be assessed.

By far the most widely studied aspect of MAS is the air
traveler’'s choice of airport. Studies by Harvey (1987), Ashford
(1989), and others have used data on passenger choice of airport to
explain how flight frequency, service directness, fare, and
accessibility influence these decisions. These models have
generally been successful, at least in the sense of yielding
plausible, statistically significant, coefficients that capture the
relative weights travelers place on different service attributes.
But while these studies contribute to the understanding of travel
behavior, they cannot by themselves explain or predict the behavior
of an MAS, since they treat the supply-side of the system as
exogenous.

To date, efforts to incorporate both the demand and supply
sides of multi-airport systems in a single framework have been
limited. The Multiple Airport Demand Allocation Model, or MADAM, is
the best known effort to produce an operational model in this area.
Other models, such as that offered by de Neufville and Gelerman

(1873), are intended to highlight general tendencies of MAS. We
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will argue below that neither of these models is adequate for
understanding or predicting the behavior of MAS.
This report proposes & new model of MAS. The model treats an

MAS as a positive feedback system in whichk an airport’'s

attractiveness to passengers is positively related to the volume of
1ts passenger traffic. The model presented is simple, easy to work
with, and based on plausible behavioral assumptions. It requires
relatively little input data, and yields accurate predictions of
airport market shares in the San Francisco Bay Area, the MAS to
which the model is applied.

In addition to its methodological contribution, this report
shows that, in the Bay Area at least, the distribution of air trip
origin 1locations varies across destinations, and that this
variation explains a large amount of the observed destination-to-
destination variaticn in airport market shares. The destination-to-
destination variation in the relative accessibility of the Bay Area
alrports 1s modest in 1tself, but when amplified by the positive
feedback effect, 1t has a pronounced effect on airport market
shares.

The remainder of this report is organized as fcllows. Section
2 contains a brief literature review. Section 3 presents the basic
structure and concepts of the proposed positive feedback model.
Section 4 describes model develcopment and assesses model
performance. Section 5 uses model results to analyze service
supply, while in Section 6 the model is used to predict market

share for a fourth Bay Area airport. Section 7 offers conclusions.



2. Literature Review

Prior models of multiple airport systems fall into two main
categories. The first category focusses on the choice of airports
by air travelers. Studies of this type examine how air travelers
choose between a set of airport alternatives, based on (1) the
services provided at the airports and (2) ease of ground access to
the airports. These factors are treated as exogenous. Thus, to use
such models predictively, one must make assumptions about airport
service and ground access characteristics. The second category of
multiple airport system models treats certain airport service
characteristics, most notably flight schedules, as endogenous to
the system. Obviously, this reduces the assumptions required for
predictive use of the models.

The first airport choice studies appeared in the mid-1970s.
Skinner (1976) developed a disaggregate airport choice model for
the Baltimore-Washington region. Multinomial logit models including
an ailrport level-of-service term, based on flight frequency, and
a ground access level-of-service term were estimated. Different
measures of both airport and ground access level-of-service were
considered, and separate models for business and non-business trips
were developed. Both level-of-service terms were found highly
significant, and acceptable goodness-of-fit measures were obtained.
Model performance did not vary significantly with respect to the
specific level-of-service measures used.

Kanafani et al. (1977} developed an aggregate choice model of
airport choice, based on data for the California corridor market
between San Francisco and Los Angeles. Since both of these regions
have more than one airport, analysis was based on the choice of
airport on both ends of the trip. Observed market shares of traffic
between different subareas of the two regions were related to total
estimated travel time and flight frequency for the various airport
pairs. The estimated coefficients were statistically significant
and of expected sign, and the calibrated model fit observed data
well.

More recently, Harvey (1987) estimated an multinomial airport

3



choice model on data for the San Franciscc Bay Area. The main
differences between the Harvey and Skinner mcdels are that the
former includes airport dummy variables to capture airport-specific
factors that influence attractiveness to travelers, and uses non-
linear transformations of the travel time and frequency variables.
In the case of travel time, Harvey found decreasing marginal
disutility, while for flight freguency he found decreasing marginal
utility.

Innes and Doucet (1990) studied airport choice of travelers
originating from the northern half of New Brunswick, Canada. They
employed a binary logit model. Unlike the earlier studies, they did
not consider flight frequency, but rather aircraft type, service
directness, and flying time as airport level-of-service variables.
For ground access level of service they tried a number of
variables, all defined on the basis of distance from trip origin to
airport. Their estimation results suggested, implausibly, that
distance had a positive effect on utility, probably because of the
way in which they constructed the airport pairs used in the
analysis. The airport level-of-service variables were of the
expected sign, however, with aircraft type (jet versus non-jet) the
most important.

Ashford and Benchemam (1987) developed a choice model for
Central England. Unlike the other studies, this one included fare
along with flight freguency as an airport level-of-service
variable. The fare coefficient was negative and statistically
significant for international leisure and domestic travelers, but
positive for the international business and inclusive tour market
segments. Frequency and travel time were statistically significant
and of expected sign for all travel classes.

Table 1 presents a summary of comparable results from the
Skinner, Kanafani, Harvey, and Ashford models. The Harvey and
Ashford studies yield consistent travel time ccefficients that are
about twice the magnitude of those obtained by Skinner. The studies
are less consistent with respect to the frequency coefficients. In

addition to underlying differences 1n traveler preferences, these
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Pable 1.
Coefficient Estimates, Airport Choice Models

Variable Skinner Kanafani Harvey Ashford
(1976) (1977) (1987) (1987)
Travel Time (nun) -0 06 to -0 08 -0 10 01210 -017 -0.14 t0 -0 23
Frequency 009t0 012 | 0.003 to 0002 0to05 1.07 to 2.70
(per day)
p* 059 to 069 - 061t0077 0.84t0 092

Note
1 Esumated from Figure 4 of Harvey (1987) The lower value applies when frequencies exceed 8 per day,
and the higher values where daily frequencies are less than 6



disparities probably reflect the inappropriateness of including a
linear frequency term in the utility. Such a term implies that an
additional flight has the same impact on utility, whether it
increases frequency from 1 to 2 per day or 10 to 11 per day. Both
Skinner and Harvey estimate models that incorporate a non-linear
relationship between flight freguency and utility, but Ashford does
not. To maintain comparability, Table 1 is based on the versions of
the Skinner model with a linear frequency term. Since Harvey does
not consider such a model, we present derivatives of utility with
respect to frequency for "high" and *"low® values of this variable
as the linear coefficients.

As already noted, understanding travelers’ airport choices is
necessary but not sufficient to understand the behavior of multiple
airport systems. A few studies have attempted to go further by
considering both supply-side (airline) and demand side (traveler)
behavior in such systems. de Neufville and Gelerman (1573) were
among the first to attempt this. They argued that commercial air
traffic will inevitably concentrate at one dominant airport in a
multiple airport system. The basic reason for this is the "s-curve
effect," by which an airline or airport with a high (low) share of
flights in a given origin-destination market will attain an even
higher (lower) traffic share. Using a simpie game theory model, de
Neufville and Gelerman argue that these effects result in
competitive equilibria in which each airline concentrates its
flights at one airport. Further, if one airport has a locational
advantage, they claim that each carrier will select this airport as
the one at which to concentrate. Thus, in any multiple airport
system, a single airport will tend to dominate, with only a few
flights (resulting from "second order effects," according to the
authors) being offered from other airports.

de Neufville and Gelerman suggest a model of airport (airline)
choice that captures the s-curve effect. It is (p. 542):



FS,¥
MSA . N—
Y Fs,X
1

Where:

MS, is airport A’s market share;
FS, 1s its frequency share;

K is some exponent (which must be greater than 1 in order to
explain the s-curve effect).

Unlike the choice models documented above, this one considers the
region as a whole rather than a particular origin point in that
region. However, an origin-specific model embodying this postulated
relationship can be specified by using the logarithm of frequency
in the logit utility function, as Hansen (1990) dces in his route
choice model. Unfortunately, none of the origin-specific airport
choice models reported in the literature employ this form, making
it difficult to determine whether these models imply an s-curve
effect similar to that postulated by de Neufville and Gellerman.

Even i1f the s-curve relationship is correct, it is apparent
that the de Neufville/Gellerman theory is incomplete, because it
gives so little weight to airport accessibility. This is best seen
from the fact that the argument made to support the theory are not
in any way tied to the size of the region. If their argument
implies an urban area will tend to have one dominant airport, so
also does it suggest that a single airport will dominate a state,
country, continent, or larger geographical unit. Clearly, there is
a peint at which proximity to an airport outweighs tﬁe availability
of more £freguent service at other airports. Gellerman and de
Neufville offer no convincing reason why, if more than one airport
can exist in the United States, this cannot also occur in an urban
area.

In light of the above, it is evident that models of MAS must
be based on the specific geography of the region, particularly the

location of trip origins relative to the airports. The most well
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known model that does this is the Multiple Airport Demand
Allocation Model, or MADAM (National Capital Region Transportation
Planning Board (NCRTPB), 1985). The model works as follows:

1. Local passenger demand 1s allocated to airports, based
on the shortest dcor-to-door round trip ground access
time from local zone of origination. Passenger demand is
adjusted upward to account for non-local traffic.

2. Seats to be provided in each city-pair market £rom
each airport are calculated based on the airport’s
passengers in that market and typical locad factors. A
scheduling table determines the number of flights to be
offered, by size class, as a function of the seat volume
and stage length of the city pair market. A heuristic is
used to schedule the flights, based on a distribution of
preferred departure times.

3. An average waiting time for each airport and city-pair
market 1s calculated. This time, multiplied by a
weighting factor, is added to the door-to-~door round trip
time. An alrport-specific "facilitation time" may also be
added.

4. Passenger demand is reallocated, as in Step 1, except
that total time calculated in Step 3, rather than the
ground access time, is used.

5. The process continues until an equilibrium, or the
specified number of iterations, is reached.

6. If, after Step 5, there are airports whose passenger
capacity 1is exceeded, passengers are removed and
reallgcated to the other airports that are under
capacity.

The MADAM model is "calibrated"” using an airport-specific
ground access time correction and the waiting time multiplier (see
Step 3, above). These variables are set so that the model
predictions "replicate base year conditions as closely as possible
(NCRTPB, 1985, p. 44)." When applied to the Raltimore-Washington
area for 1981/82, the calibrated model predicted airport traffic
shares, both by local origin and external destination, that matched
observed data fairly closely.

There are numerous flaws with the MADAM model. The model has
weak behavioral underpinnings. The "all-or-nothing" method for



allocating passenger traffic from a given local origin to a given
external destination 1s implausible. The scheduling table used to
simulate the supply-side of the system 1is, at best, a rough
approximation of empirically observed patterns of airline behavior,
without any theoretical basis whatsoever. The model allocates
traffic based on i1ts non-stop, rather than i1ts final, destination,
and 1s therefore unable to deal with competition between non-stop,
direct, and connecting services. Indeed, non-stop traffic levels
depend on the outcome of such competition, since this will
determine how much of the traffic goes non-stop to final
destinations versus 1intermediate airports. Thus the demand
variables that MADAM assumes to be exogenous are actually
endogenous to a large extent.

In sum, the bulk of research in MAS has concerned the air
traveler’s choice of airport. While these studies have for the most
part vielded plausible and statistically robust results, they do
not address the supply-side of the system and are thus of little
predictive value. The few efforts to address both demand and supply
have not been convincing, whether because of their failure to
adequately account for the role of airport accessibility, the
implausibility of their behavioral assumptions, or failure to

correctly distinguish exogenous and endogenous variables.



3. Proposed Model

The proposed model is based on three propositions concerning
the preferences of air travelers in a MAS. First, travelers prefer
airports that are closer to their trip origins. Second, travelers
prefer airports with higher levels of traffic in their market with
the strength of this effect 1increasing with market distance.
(Throughout this paper, we use the term "market"”™ to mean true
origin-destination market, defined by the communities where an air
trip itinerary begins and ends). Third, travelers prefer airports
with higher 1levels of total traffic. The first of these
propositions is obvious and self-explanatory. The second and third
propositions reguire more explanation.

The second proposition is based on the existence of econcmies
of scale at the origin-destination market 1level in air
transportation. As traffic levels to a particular destination
increase, costs per passenger associated with both airline and air
traveler-supplied inputs decrease. These economies have several
sources. First, load factor increases distribute the fixed costs of
aircraft operation over a large traffic base. Second, frequency
increases improve schedule convenience. Third, aircraft size
increases may result in lower unit operating costs for airlines and
a more comfortable cabin for passengers.

As a result of these economies, when traffic is too low,
scheduled non-stop service is not economically viable. As traffic
levels increase, therefore, so does the probability that non-stop
service will be available. Since passengers strongly prefer such
service (Hansen, 19%90), a strong feedback effect is expected when
traffic increases result in non-stop service becoming available.
Once non-stop service is available, further increases in traffic
increase attractiveness via the freguency and aircraft size
effects. In addition, there may be a fare reduction effect,
resulting either from reductions in airline costs or increases in
competition as more carriers can "fit" into the market.

We expect market distance to strengthen the positive feedback

effect, for two reasons. First, smaller aircraft tend to have
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shorter ranges. Thus, the minimum traffic necessary for non-stop
service to be economically viable increases with distance. Second,
service frequencies in long-haul markets tend to be lower, both due
to larger aircraft and higher load factors (Baily, Graham, and
Kaplar.,, 1985). Since there are diminishing returns to frequency in
its effect on service attractiveness, there should be a greater
gain 1n service attractiveness from a given percentage gain in
traffic in a long-haul market.

When non-stop service 1s unavailable or unattractive,
travelers may use connecting or multi-stop service. Even in this
case, market traffic may have some impact on service quality. For
example, shorter layover times may be available when the number of
connecting passengers in a market 1s larger. However, we also
expect traffic in other markets to affect the quality of this type
of service, as indicated by the third proposition above. At the
airport level, more traffic translates either into more
destinations to which service 1s available, or more average traffic
to each destination. The first effect will increase the number of
connecting routings available, while the second -- by virtue of the
scale effects discussed earlier -- makes the services on existing
routings more attractive. Conceivably, increased airport traffic
may also have other effects, both positive -- improved ground
access, better ailrport services -- and negative -- dJgreater
congestion and walking distances. On balance, however, we expect
the effect to be positive.

To operationalize the above propositions, we propcse a logit
model that predicts the probability that a traveler whose trip to
destination k originates from location i within the multiple

airport region will select airport j. The proposed model is:
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where:

PAX ., is total origin and destination passengers from airport
j to destination k;

NLPAX. is total nonlocal passenger traffic enplaning or stopping
over at airport j;

DIST, is the distance of destination k from the MAS;

ATIME,, is ground access travel time (or generalized cost)
between location k and airport i;

Y, is the utility constant for airport j

The market and airport traffic terms are included in the argument
of a single log function. The log transformation is used for two
related reasons. First, we expect diminishing returns -- as traffic
increases, 1its marginal impact of utility decreases. Second,
insofar as the traffic terms reflect the "size" of each alternative
-- the number of flights, airlines, and routings available -- the
theory of alternative aggregation in logit models indicates that
they should be incorporated in a logarithmic form. Both traffic
variables are included within a single log term because this
accords with our intuition about how the choice probability should
behave as the market traffic term approaches zero. Specifically, as
long as there 1s some traffic (and therefore some service) going to
other destinations, then there will be connecting possibilities
resulting in some finite probability that a passenger will select

a particular airport to go to a given destination, even if there is
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no other traffic going to that destination.

Airport traffic includes both non-local and local traffic. For
present purposes, we treat the non-local traffic as an exogenous
variable, although in reality there is a simultaneous relationship
between local and non-local traffic levels. To make non-local
traffic endogenous, we would have to model a much larger system,
including airports outside the MAS that compete with 1t for non-
local traffic. Furthermore, non-local traffic depends on airline
hubbing decisions of a strategic nature that are very difficult to
predict. Thus, treating non-local traffic as exogenous is a
necessary compromise to keep our modeling task tractable.

The second term in the utilaity function reflects the role of
market distance 1n strengthening the positive feedback effect.
Distance is included in logarithm form because we expect its impact
to fall off as distance increases. Traffic 1s included in
logarithmic form for the same reasons as it was in the first term.
Since our arguments concerning the effect of distance are based on
market, as opposed to airport, traffic, only the former is
included. However, we again want to allow the possibility of a
passenger choosing an airport for travel to a given destination
even when its traffic in that market is zero. Thus we add the value
1 to market traffic.

The third term in the utility function reflects the difficulty
of travel from zone 1 to airport j. The fourth term is an airport-
specific constant that captures the utility (or disutility)
associated with airport attributes not otherwise accounted for.
Such factors include the levels of landside, terminal, and airside
congestion, walking distances, and parking costs. In addition, the
constant captures any airport-to-airport differences in supply-side
behavior that result in certain airports having more attractive
service for a given traffic level.

Although the airport-specific constant may capture congestion
effects, the model does not explicitly include capacity constraints
or the tendency of airports to become less attractive as traffic

levels approach capacity. These are clearly limitations that must
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be addressed in future research. For the moment, the applicability
of our model 1s restricted tc MAS where capacity limitations are
not an overriding factor in determining traffic allocation. The San
Francisco Bay Area, to which we apply the model in this report,
meets this criterion.

For the MAS to be in equilibrium, the market passenger levels

must satisfy the following ecquations:

PAX3k=EPAX1 P, k) Vi, k (3)
1

PAX, | 1s total origin and destination passengers to destination
k originating from location i within the region.

The number of these equations is the prcduct of the number of
airports in the MAS and the number of destinations to which people
travel from the MAS. There are an egqual number of unknowns -- the
PAX ..

To illustrate the model, we consider a two-airport system in
a linear city of unit length along which air trips, all to the same
destination, are generated at a uniform rate, as shown in Figure 1.
The distance between the airports is also of unit length, but the
airports are offset from the ends of the city by a distance §. When
0>0, Airport 2 has a locational advantage over Alrport 1.

According to the proposed medel, passengers originating from
a given point in the city will choose between the two airports
based on their relative traffic levels and ground access time.
Assuming ground access time is proportional to access distance, the

model (stated in terms of the Airport 1 market share) becomes:

a M5, - B (x+6#%‘)

p(1lx) = °_ - (4)
aMs. - B (x46+-2-) e (1-MS,) - B (x—a——i)

e +e
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Airport 1

Airport 2

Figure 1. Geometry for Two-Airport System
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x=+1/2
us, = [ P(1lx)dx (5)

Xx=-1/2

where:
MS, is the market share of airport 1;
X is the location of the passenger’s origin, measured from

the center of the city.

Eguations 4 and 5 can be solved for the equilibrium market share
for Airport 1.

Figure 2 depicts the equilibrium values of MS, for 8=0 and
three different sets of o and P values. The curves i1n Figure 2
depict the relationship between market share, treated as an
independent variable, and the market share predicted by equations
4 and 5. The 45-degree line is the set of points where the two
market shares are equal. Since both axes measure the same variable,
only points on this line are feasible. Thus, equilibria occur when
the line intersects with the curve. In this example, equilibria
occur at MS;=0, MS,=0.5, and MS,=1. The first and third of these
will always be solutions, regardless of the values of o, B, 8. The
second solution reflects the symmetry of the system when 8=0. When
0#0, this solution may either be shifted tc another MS, value, or
cease to exist.

Eguilibria may be stable or unstable. If the curve cuts the
45-degree line from above as MS; increases at the intersection
point, the equilibrium is stable. Such a situation exists for the
MS,=0.5 solution when ®=0.5, for either PB=1 or PB=3. The stability
is illustrated for the case of B=1. Suppcse the system is in
disequilibrium, with MS,;=0.7. This leads to a new MS, of just over
0.6 -- closer to the 0.5 equilibrium wvalue. On the other hand,
consider the case where =2 and fB=1. In the situation illustrated,
a initial disequilibrium market share of 0.4 leads to a new market
share of 0.26, further from the 0.5 equilibrium, indicating that
MS,;=0.5 equilaibrium 1s unstable. One can also see that when the 0.5

equilibrium in stable, the 0 and 1.0 equilibria are unstable, and
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vice versa.

When 6>0, Airport 2 has a locational advantage, which the
positive feedback effect tends to magnify. This is illustrated in
Figure 3, where it i1s assumed that 8=0.1 and B=1. When o is small,
a stable ecquilibrium at O0<MS,;<0.5 exists. As @ increases, this
equilibrium disappears, and for a certain range the only stable
equilibrium is MS;=0. As o continues to increase, however, an
unstable equilibrium at 0.5<MS,<1 appears, and the previously
unstable equilibrium at MS;=1 becomes (locally) stable. Thus, if
positive feedback 1s strong enough, an pre-existing airport in a
less convenient location could maintain 1ts position against a new,
better situated, airport. If the feedback is slightly less strong,
all traffic would migrate to the new airport, while an even weaker
feedback effect will result in a division of the market between the
two airports.

The effect of varying the locational advantage of Airport 2 is
1llustrated in Figure 4. As & increases, the market share curve for
airport 1 1s pushed downward, resulting in a reduction of Airport
1’s equilibrium market share. When ¢ increases beyond a certain
peint, the intermediate eqguilibrium points disappear, leaving only
the stable equilibrium at MS,=0 and the unstable cne at MS;=1.
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4. Application teo the San Francisco Bay Area
4.1 Background

The positive feedback model was applied to the San Francisco
Bay Area. The Bay Area is served by three commercial airports --
San Francisco International (SFO), San Jose (SJC), and Oakland
{(OAK) . Another airport, Buchanan Field (CRC), has had sporadic
commercial service to Southern California, but is not considered in
this section due to the lack of necessary data. A map of the Bay
Area with the location of these airports i1s shown in Figure 5. In
1981, SFO had 70 per cent of the region’'s commercial enplanements,
while SJC and OAK each had 15 per cent. SFO’'s share of the domestic
market is somewhat less -- approximately 60 per cent.

The market shares of the three airports vary substantially for
different destinations. Figure 6 shows SFO’s 1991 market share for
a set of 44 different domestic origin and destination markets.
Figure 6 shows a large variation in SFO’s market share, with a
range between 25 and 90 per cent. The figure also shows that SFO'’s
market share does not correlate with market size, but that it does
correlate somewhat with market distance. Even within the distance
categories, however, there is substantial variation.

The genesis of the positive feedback model 1lies in our
attempts to explain this variation in market share. Our initial
focus was on market characteristics, such as size, distance,
proportion of trips originating in the Bay Area versus the
destination peoint, and so forth. While some factors -- notably
distance, as 1illustrated in Figure 6 -- had statistically
significant effects, the majority of the variation in market shares
remains unexplained when these effects were controlled for.
Further, some of the effects that were observed lacked a clear
interpretation. For example, since all three airports have the
facilities to support long-haul flights, there is no obviocus reason
why SFO would have a stronger advantage in long-haul markets.

One interpretation for this unexplained variation in airport
market share 1is that airlines, through their service supply

decisions, exert a strong exogenous influence on the distribution
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of traffic in the Bay Area MAS. This impact is exogenous in the
sense that it cannot be readily explained by the inherent
characteristics of the markets being served. Examples of exogenous
influences on airline behavior include hubbing, historical ties to
particular airports, competitive strategies (de Neufville and
Gellerman, 1973), and limited information.

The positive feedback model implies an alternative
explanation. In this model, variation in market share of the Bay
Area airports derives from variation in the relative proximity to
the trip origins, which in turn derives from market-to-market
variation in trip origin locations in the Bay Area. This is the
same as the phenomenon as shown in Figure 4, 1f one imagines
variation in 8 resulting from differences in trip origin rather
than airport location.

In applying the positive feedback model, we adopt as a working
hypothesis that airline service supply, at least in the aggregate,
follows demand. Since supply variables are determined by passenger
traffic levels, they do not need to be intrcduced directly into the
model. While we recognize that the working hypothesis is not
literally true, our model will still have predictive value so long
as a large proportion of supply behavior is endogenous. Later on,
we will return to this gquestion by relating observed supply of
airline service to the passenger market share predictions obtained

from our model.

4.2 Data

To apply our model, we reguired information concerning the
origin locations of air trips between the Bay Area and different
destinations, on the cost of travel between origin points and the
three Bay Area airports, and on the choice of airport of
tripmakers, conditional on origin location and trip destination.
This section describes how we assembled these data.

We estimated the distribution of passenger origins, by
destination, using the 1980 MTC Air Passenger Survey and the U.S.
DOT 10 per cent airline ticket survey (as obtained from the O&D
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Plus CD-ROM). The MTC survey was administered using in-person
interviews of departing passengers waiting in passenger boarding
areas at the three airports. 1400 flights were sampled during the
seven-day survey period beginning August 13, 1991. The survey was
designed to cover a representative set of £flights from each
airport, but the sample obtained is not representative of Bay Area
alr travelers as a whole, since SJC and OAK passengers are
oversampled relative to SFO passengers. Sample sizes ranged from
5878 at SFO to 7895 at SJC. Table 2 summarizes and compares MTC and
U.S. DOT survey sample sizes, by airport, for 44 of the larger Bay
Area rarkets.

Surveyed passengers were asked to identify their trip origin.
This i1nformation was used to identify the MTC superdistrict from
which the trip originated. (MTC divides the Bay Area into 34 such
superdistricts, covering the entire nine-country region; see Figure
5). Since the survey oversamples SJC and OAK passengers, it is
necessary to make corrections in order to estimate the true
distribution of origin points. The corrections are based on the 10
per cent survey. These data were used to compute destination- and
alrport-specific weights for MTC survey observations. Specifically,

the weight is calculated as:

_ PAXDOT,,

W = A0 (6)
Tk PAXMTC,,

where:
Wi is the weight for Bay Area airport j and destination k;

PAXDOT, is the 1991 passengers from airport j to destination Kk,
as obtained from the DOT 10 per cent survey:

PAXMTC, is the 1891 passengers from airport j to destination k in
the MTC survey, excluding passengers whose origin in the

Bay Area could not be determined or whose origin was not
in the nine-county region.

Using these weights, the distribution of passenger origin points i
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Table 2.
Survey Responses, by Airport and Destination

San Franasce (SFO) Oakland (QAK) San Jose (SJC)
Destination O&D MTC O&D MTC O&D MTC
Survey Survey Ratio Survey Survey Ratie Survey Survey Ratio
ANCHORAGE 2238 14 160 613 28 22 351 13 27
ALBUQUERQUE 7229 24 301 3932 66 60 1553 27 58
ATLANTA 12817 42 305 1150 20 58 1792 13 138
AUSTIN 3523 7 503 1193 13 92 2683 27 99
BOSTON 28012 58 483 1091 35 31 6843 56 122
CHICAGC 29887 181 165 5908 187 32 8109 131 62
CLEVELAND 5037 26 194 547 9 61 1117 HY 112
DENVER 16944 51 332 5311 100 53 8008 159 50
DALLAS 12978 41 317 3303 54 61 6775 137 49
DETROIT 11461 37 310 1089 25 44 2231 23 97
EL PASO 2572 14 184 1986 19 105 411 5 82
MIAMI 14383 31 464 857 9 95 1966 31 63
HOUSTON 14778 55 269 2195 32 69 1838 29 63
HARTFORD 4615 14 330 566 10 57 968 9 108
LOS ANGELES 19854 980 203 97527 1620 60 68378 830 82
LAS VEGAS 13700 64 214 7847 177 44 5888 119 49
KANSAS CITY 7461 16 466 1458 47 31 1234 20 62
MINNEAPOLIS 10739 920 119 782 13 60 3260 40 82
NEW ORLEANS 6770 20 339 1104 22 50 937 11 85
NEW YORK 82697 285 290 2086 56 37 5361 91 59
OMAHA 1806 6 301 612 12 51 857 6 143
ONTARIO 15866 42 378 33156 356 93 11686 208 56
ORLANDO 9921 18 551 881 13 68 2187 25 87
PHILADELPHIA 14149 71 169 1021 22 46 2093 27 78
PITTSBURGH 5397 42 129 324 19 17 720 9 80
PHOENIX 25547 70 365 23727 179 133 6899 117 59
SEATTLE 23705 207 115 10269 285 36 9642 202 48
SAN DIEGO 54406 204 267 29357 595 49 17314 188 92
SPOKANE 3386 37 92 543 22 25 528 13 41
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San Francisco (SFO) Oakland (OAK) San Jese (SJC}
Destination G&D MTC O&D MTC 0&D MTC
Survey Survey Ratio Survey Survey Ratio Survey Survey Ratio
SAN ANTONIO 4547 17 267 1401 15 93 834 7 119
ST LOUIS 7179 42 171 1070 18 59 1994 32 62
TAMPA 4120 16 258 539 11 49 978 9 109
TUCSON 2805 9 312 1536 23 67 1802 18 100
DC 32754 68 482 1851 43 43 4212 35 120
ALBANY 1676 7 239 194 7 28 419 2 210
BALTIMORE 6703 10 670 940 12 78 1719 11 156
GRAND RAPIDS 1070 7 153 147 6 25 358 5 72
INDIANAPOLIS 4014 12 335 451 19 24 1007 20 50
LITTLE ROCK 856 4 214 340 7 49 281 4 70
MILWAUKEE 4972 19 262 252 6 42 681 9 76
PORTLAND 11480 141 81 5272 203 26 7142 87 82
RENO 4301 15 287 10275 6 1713 2899 37 78
SALT LAKE 5467 26 210 2028 34 60 2061 48 43
TULSA 1613 9 179 694 5 139 568 13 44
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over the MTC superdistricts was estimated as follows:

PAX, , = ¥ PAXMTC,,, "W, (7)
J

This procedure cannot be used when PAXMTC,, is zero, and is subject
to high errors when PAXMTC,, is small. To establish some minimal
level of accuracy, we eliminated from consideration all
destinations that did not have at least 10 MTC Survey passengers
for each airport. This leaves a total of 44 destinations -- the
ones included in Table 2 -- for use in the subsequent analysis.

Figure 7 illustrates the county distribution of trip origins
for several representative markets. As hypothesized, there is
marked variaticn in the distributions. For example, San Francisco
county originates the plurality of trips to Los Angeles and San
Diego, while Sana Clara is the leading generator of Boston and
Phoenix traffic. Among the smaller counties, Sonoma accounts for
Jjust 2 per cent of Boston passengers, but 6 per cent of those going
to Ontario. The comparisons support the conclusion that variation
in trip origin locations account for much of the variation 1in
airport market share.

The final data item required for the model is a measure of
travel cost between each MTC superdistrict and each airport. For
this purpose, we used AM Peak period drive-alone travel times
skimmed for MTC’s transportation network. These travel times are
defined for MTCs 700 traffic analysis zones. We estimated times at
the superdistrict level to be those from the traffic analysis zones
containing the superdistrict centroids. Travel times are used as a
proxy for all costs associated with travel to the airport. Of
course, not all airport trips are made by auto, and not all are
made in the AM Peak. We argue below that systematic differences
among airports in the relation of the chosen travel cost metric to
the "true" travel cost may account for differences in the airport

specific utilities estimated in the airport choice model.
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4.3 Airport Choice Model

The first analytical step in the modelling process was to
estimate an airport choice model. The MTC Air Passenger Survey was
used for this purpose. It was again necessary to adjust the survey
results to reflect the actual airport traffic levels, by
destination. Each individual passenger observation was therefore
weighted by a factor proportional to W, but normalized so that the
sum of the weights equaled the number of usable observations--
10,500.

The utility function in Equation 2 is not 1linear in the
parameter 6. Although the logit estimation software (ALOGIT) has
the capability to estimate coefficients of this type, efforts to do
so proved unsuccessful. This may be because the term 6 multiplies
is essentially constant for each airport (actually, it wvaries
slightly since 1t includes all passengers other than those geing to
destination k). Thus, the data set is 1ll-conditioned from the
standpoint cf estimating 6. To overcome this problem, we performed
the analysis for several assumed 6 values, ranging from 0 to 107*.
At 6=0, only market traffic influences the first term 1in the
utaility function, while at 6=10"%, this term is dominated by airport
traffic except in the largest markets.

Table 3 summarizes logit estimation results. All terms are of
expected sign and statistically significant at the .05 level in all
models, with the exception of the distance term when 6=10"". The
performance of the models is fairly uniform, although there is some
fall-off in the log likelihood as 8 increases beyond 1073. The
travel time coefficient estimate is very stable across all models.
The airport constants are also fairly stable. It appears that,
ceteris paribus, OAK is most attractive to passengers, and SJC is
least so. Based on the ratio of the airport constants to the access
time coefficient, the advantage of OAX 1s equivalent to a 3-5
minute reduction in access time, while the disadvantage of SJC is
equivalent to a 4-5 minute increase in this time, relative to SFO.
As suggested above, this could result from systematic differences

in the relation between the access time measure used in the model
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and the actual cost of accessing the airport. Other possible
explanations for these differences in airport attractiveness
include inter-airport differences in airline supply behavior,
congestion levels (Harvey, 1987}, and amenity levels.

The value of 6 has a pronounced effect on the coefficient
estimates in the two traffic terms in the model. When 8=0, 107%, and
1073, o, the coefficient on the first traffic term (that involving
6) in (1) is high, and increases with 8. On the other hand, for
these 6 values, B, the coefficient on the second traffic term (that
1ncluding distance), is low. For larger values of 8, o decreases,
while B increases.

Despite the substantial variation in coefficient estimates,
the various models lead to very similar relationships between
airport utility and market traffic, except when market traffic is
small. To show this, in Figure 8 we plot the traffic component of
the utility (that is, the sum of the two traffic terms in the
utility function), relative to a market traffic level of 50
thousand passengers, against market traffic for the models with
6=0, 1073, and 107. When traffic i1s less than 10 thousand per vyear,
the models with higher 06 vield a higher wutility, but this
difference becomes negligible at higher traffic levels. Thus, as
intended, the effect of the 6 term is to increase an airport’s
attractiveness when traffic i1s too low to support non-stop service.
Interestingly, however, the 6=10"° model vields higher utility at
low traffic levels than the 6=10" model. This reflects the sharp
reduction o when 0 is increased from 107° to 107%.

In terms of the log likelihood function, the model with 6=107°
performs best. The performance of the model, however, should be
judged according to the accuracy of the equilibrium market share
predictions it yields as well as the log likelihood. We will see
below that other 6 values vield more accurate market share
predictions, and that consequently we cannot unambiguously identify
the "best" value for 6.

The models presented in Table 3 are attribute-specific,
reflecting the maintained hypothesis that the attractiveness of
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each airport is similarly affected by changes in the traffic and
access time variables. In order to consider this hypothesis, we
also estimated the model in alternative-specific form in which the
coefficients in the utility function are allowed to vary among the
three airports. A comparison of results, for the 6=10"2 model, is
presented in Table 4. The coefficient estimates in the alternative
specific model are quite consistent with those in the attribute
specific model, with deviations between estimates within standard
errors with the exception of the SJC constant. Since the arguments
underlying the model presuppose general, airport invariant,
relationships, this consistency lends some support to them. The
hypothesis that the attribute-specific model explains airport
choice as well as the alternative-gpecific one can be tested
formally, since twice the difference in the 1log 1likelihood
functions is %® distributed with degrees of freedom equal to the
number of additional parameters in the alternative-specific model
(Ben-Akiva and Lerman, 1985). This test indicates that, despite the
similarity of estimates, the null hypothesis that the coefficients
are actually egqual can be rejected with a high (better than 99 per
cent) 1level of confidence. Nonetheless, since the attribute
specific model is simpler, more consistent with the underlying
theory, and has coefficients that are for the most part quite close
to those in the alternative-specific model, we will employ them in

the subsequent analysis.

4.4 Calculation of Equilibria and Analysis of Model Performance
The logit model results, combined with the information on the
distribution of passenger origin locations, were used to calculate
airport traffic equilibria. The approach is similar to that
outlined in Section 2 (Equations 1-3), except that for each
individual market calculation, the observed airport traffic to
other markets, rather than the traffic predicted by the model was
used. In adopting this approach, we are in effect testing the
performance of the model at the market, rather than the airport

level. This avoids the problem of error propagation arising when
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inaccurate predictions in one market, by affecting airport traffic,
cause inaccurate predictions in another market. Moreover, this
approach allows separate calculations of equilibria by market,
substantially reducing the computation burden involved.

To calculate the equilibria, we took the actual airport market
shares as a starting point, and calculated new shares using
Equations 1 and 2. The new chares were then used in a second
airport market share calculation, and iteration continued until
stable market shares were obtained. This procedure is much the same
as that depicted by arrows in Figure 1, and will thus naturally
arrive at stable, rather than unstable, equilibria. If there are
multiple stable equilibria, however, the procedure will tend to
identify those which are "closest" to the observed market shares.
We have not thoroughly explored the possibility of multiple stable
equilibria 1in a three-airport MAS, but did conduct several
numerical experiments using different (non-zero) starting values
for market share, and always arrived at the same equilibrium
result.

Figures 9-16 compare the equilibrium traffic share to the
observed traffic share (based on the DOT 10 per cent survey). Two
plots are presented for each value of 8 up to 1072?. In the first
plot, results for all 44 markets are included. In the second plot,
only the 13 largest markets (based on total traffic from all three
alrports) are shown. The equilibrium and observed values are
expected to be closer for the large markets for two reasons. First,
these market are better represented in the MTC survey, and thus the
distribution of passenger origin locations can be estimated with
greater accuracy. Second, since these markets have more responses
in the DOT survey, airport market shares are also observed with
greater accuracy.

Inspection cf the plots confirms this expectation. Predictions
for large markets correlate quite well with observation, while the
fit is much worse when all markets are considered. Most
importantly, the large market plots reveal strong correlation of

predicted and actual markets shares for the individual airports,
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not just for the set of observations as a whole. This is crucial,
since by using airport constants in the logit utility functions, we
have essentially guaranteed that our model will correctly "predict"
mean market shares of the three airports. The additional predictive
power of the model used here rests in its ability to explain
market-to-market variation around the mean values.

Comparing the plots for all markets for the different 6
values, it is apparent that the models with 6=10"° and 1072 have a
better fit than those with 6=0 and 107*. The former models are more
likely to predict equilabria with market shares between 0 and 1,
while the latter tend toward outccomes in which airports receive all
or none of the traffic. These results are consistent with Figure 4,
which shows that the models with 6=10"% and 10? predict higher
utility levels for airports with low traffic than those with €
values below or above this range. These higher utility levels allow
airports with low traffic levels in a given market to retain some
market share. Since these differences are confined mainly to low
traffic situations, model performance is rwuch less variable when
only large markets are considered.

It 1s instructive to compare the plots for the wvarious
positive feedback models with the results for a model in which only
access time (in addition to airport constants) is considered --
that is, a model in which o and B in Equation 2 are assumed to be
0. Figures 17 and 18 present the plots for this case (the plots for
6=10"! look similar). It is clear that this model is inferior to the
models incorporating positive feedback. The former predicts a much
smaller amount of market share variation than what is observed and
what the positive feedback models predict. This is precisely what
we should expect: the positive feedback effect amplifies slight
market-to-market variation in airport accessibility intc much
larger differences in airport market share.

To more formally compare and assess the performance of the
models, we performed statistical tests of hypotheses pertaining to
their ability to explain variation in airport market shares. For

reasons previously stated, we concern ourselves only with intra-
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airport variation.

Two different null hypotheses can be used to assess model
performance. The first, which we term "null hypothesis 1," is that
our model predicts the market share of airport j in destinaticn k,

MS.,x, nc more accurately than the model:

MS,, = M3, (8)

MS is the mean airport share of airport j over all markets.

An F-statistic can be used to test null hypothesis 1. The test

statistic is given by:

3 (s, - MS))%/n-1

f(n-1,n-1) = X _ (2)
3 (M8, - M51)?/n-1
k

where:

Aﬁgl is the market share for airport j to destination k
predicted by model m.

n 1s the number of markets considered in the analysis

{n=44) .

Tables 5 and 6 summarize results for each airport, and for
each of the five models. Table 5 is based on all markets, and Table
6 on the 13 largest. The better performance of the models for large
markets is again evident. It is also apparent that the model
performance varies according to the airport, with OAK predictiomns
the best, followed by SFO, and finally SJC. For the former two
airports, and for all 6 values, null hypothesis 1 can be rejected
at a level of significance of 5 per cent or better. This null
hypothesis cannot be rejected for large markets in the case of SJC,
however. Models with larger 6 values tend to perform somewhat

better for large markets, although no single model performs best
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for all three airports. Results are less convincing when all
markets rather than just the largest ones are considered. Null
hypothesis 1 can be rejected at a 5 per cent significance level
only for the model with 6=10"? and only for OAK. This model yields
the best results for all three airports when all markets are
considered.

A second null hypothesis, "null hypothesis 2," 1s that there
is no linear relationship between an airport’s market share and the
share predicted by our model. This translates to the hypothesis
that in the linear model,

— pm m pfe~m m

n7 = 0. Null hypothesis 2 is rejected if there is a statistically
significant {(and positive) linear relationship between the
predicted and observed market shares. Such a relationship can exist
even when differences between predicted and observed values, upon
which the testing of null hypothesis 1 1s based, are large.

Null hypothesis 2 was tested using linear regression. Tables
7 and 8 summarize the regression results. As before, the analysis
is conducted for each airport and each model, using both the entire
set of 44 markets and the 13 largest markets. In general, these
results show that the null hypothesis must be rejected at the 1 per
cent significance level, for all models and airports, and whether
all markets of large markets are considered. Thus, even when
equilibrium market share 1is not itself an accurate predictor of
actual market share, there remains a strong linear relationship
between these variables.

The regression results display many of the same patterns as
the F-statistics discussed above. When all markets are considered,
the best results are for models with 6=10"%, but when large markets
are considered, the model with 6=10"! yields a somewhat higher RZ.
Like the F-statistics, the regression results show that market
shares in large markets can be predicted more accurately, and that
OAK predictions are the most accurate, followed by SFO, with
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Table 7.
Regression Results, All Markets

Airport | Coefficient 8=0 8=10" | 6=10° | 6=10" 6=10"
OAK INTERCEPT 0053 0050 0034 0030 0043
SLOPE 0554 0575 0685 0760 0657
(093) (094) (097) | (0 100) (0 101)
R? 0456 0468 0541 0528 0 500
SFO INTERCEPT 0 407 0388 0291 0239 0338
SLOPE 0417 0448 0598 0657 0507
(( 088) (090) | (0097) (096) (091)
R? 0.353 0370 0474 0528 0425
Sic INTERCEPT 0117 0112 0094 0092 0112
SLOPE 0297 0319 0416 0450 0346
(066) ( 069) (077) (079) (070)
R? 0324 0340 0410 0437 0 366
Standard errors in parantheses
Table 8.
Regression Results, Large Markets
Airport | Coefficient 8=0 6=10"% | 6=10° | =107 | 6=1¢"
OAK INTERCEPT 0037 0037 0037 0030 0025
SLOPE 0841 0.838 0839 0890 0916
(092) (092) (.088) (084) (.092)
R? 0 883 0884 0892 0910 0900
SFO INTERCEPT 0128 0.130 0132 0096 0080
SLOPE 0791 0.788 0784 0833 0857
(126) (126) (126) (117) (112)
R? 0783 0781 0778 0822 0842
SIC INTERCEPT 0.074 0075 0076 0 064 0056
SLOPE 0590 0.587 0.581 0656 0704
(205) (205) (.207) (211) (.204)
R? 0431 0428 0418 0469 0518

Standard errors in parantheses
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results for SJC the least satisfactory. On the other hand, whereas
F-statistics indicated that equilibrium market share is not itself
a good direct predictor c¢f SJC market shares, the regression
results show that a linear function of the eguilibrium market share
is a good predictor, explaining close to half the variation in the
observed value.

All regressions yield positive intercepts and slopes less than
1. This pattern admits of both a substantive and a statistical
explanation. The substantive interpretation 1i1s that positive
feedback effects are somewhat damped by other factors not accounted
for in our model. We have already discussed in general terms how
airport market shares are influenced by "exogenous" airline actions
which we have intentionally omitted. Such influence would be
expected to attenuate the relationship between actual market shares
and those predicted by our model in the manner the regression
results suggest. Alternatively, the regressions estimates could be
distorted by error-in-variables bias. Specifaically, calculated
equilibria are subject to error because they are based on estimates
of the distribution of trip origins that are subject to error. When
there is significant measurement error in an independent variable
used in a regression, it is expected that the estimated coefficient
on the variable will be of smaller absolute value than the true
value of the coefficient. This is the probable explanation for the
slope estimates being greater in the large market analyses, where
a greater number of MTC responses results in a smaller error in the
estimated distribution of trip origins.

Before leaving this section, we consider the question of which
0 value is "best®. Different criteria favor different values. The
best logit results are obtained for the smaller 6 values -- 0, 107%,
and 10°. Higher © values -- 1072 and 10" -~- vyield models that
predict market shares more accurately. The probable reason for this
conflict is related to the error-in-variables problem. Although
models with smaller 8 predict airport choice somewhat better,
models with larger 6 may be mcre robust with respect to errors in

trip origin distribution. In any case, application of the model to
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a single MAS does not provide an adequate basis to determine 6, or
even to decide whether the 6 term is appropriately specified.
However, we have chosen the 6=10"° model for use in the subsequent
sections of this paper. Since this model is arguably the best in
cerms of market share prediction, and only slightly below the best
as measured by logit model performance, it seems the most
reasonable compromise. All the other models are decidedly inferior

with respect to one or the other of these criteria.
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5. Equilibrium Market Share and the Supply of Air Service

As discussed in Section 2, our model 1is based on the
maintained hypothesis that the supply of air service is endogenous
-- determined by traffic rather than vice versa. The high
correlation between predicted and observed market shares found in
the last section lends some credibility to this assumption. In this
section, we examine this matter further by considering
relationships between service supply and predicted market share.

Our measure of service supply 1s available non-stop seats, as
obtained from the USDOT service segment data base. We consider the
relationship between an airport’s share of non-stop seats and
market share in the 13 largest Bay Area markets. In general, supply
of non-stop seats in these markets was well 1in excess of origin-
and-destination passengers, reflecting the presence of considerable
non-local traffic on these segments. This in turn is a result of
hubbing, both through the Bay Area airports SJC and SFO, and at the
destination airport. Overall there were between 2 and 3 times as
many seats as local passengers in these markets, with SJC having
the highest ratio, followed by SFO. OAK, the conly Bay Area airport
not used as a hub, had the lowest ratio.

Figure 19 plots observed seat share against the equilibrium
market share (based on the model with 6=1072%). The plot confirms
that these wvariables are correlated, both overall and at the
airport level. The relationship between seat share and market share
1is observed to differ according to the airport. SFO shares are
highly correlated, with the seat share generally higher than the
market share. OAK shares are also highly correlated, but in this
case the market share is typically higher than the seat share. SJC
displays noticeably weaker correlation than the other airports.
Like SFO, its seat share generally exceeds 1its market share.
Regression results, summarized 1in Table 9, confirm these
impressions. It 1is clear from these results that for a given
equilibrium market share, OAK has a lower expected seat share than
either SFO or SJC.

These results closely parallel those in the last section,
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Table 9.
Regression Results, Seat Share Models

Linear Log-Linear
Coefficient Model Model

Intercept -0315 0100
Sfdummy 0133 0084

(0 165) (0 051)
Qadummy -0 192 -0 043

(0 116) (0.034)
Predicted 0740 0660
Traffic Share (G 146) © 134)
R® 071 075

Standard errors in parantheses
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where it was found that observed market share is more highly
correlated with equilibrium market share in the case of CAK and
SFO. Tals suggests that the weaker predictive performance of the
positive feedback model in the case of SJC stems for the failure of
the supply side of the system to respond to local demand. One
possible reason for this may be that in the 1991 time period we are
analyzing American Airline’s SJC hub was fairly new, and the
airline has thus not had sufficient time to tailor its schedule to
local market demand. Alternatively, it may be that American’s
service supply decisions at SJC were dominated by connecting market
considerations, substantially weakening the tie between local
traffic and service. In any case, 1t is interesting that the San
Jose hub has come to be seen as a failure, and operations there
have been sharply curtailed at the time of this writing.

Figure 19 reveals some markets in which the market and seat
shares diverge significantly. While we cannot offer definitive
explanations of these divergences, consideration of a few specific
cases may prove illuminating. Data points corresponding to four
such divergent markets are identified in Figure 19. Solid
rectangles indicate the Washington, D.C. market, in which SFO has
100 per cent of the seats, but a predicted market share of 82 per
cent. This is an example of a long-haul market in which non-stop
service may not be economically viable from SJC or OAK. Passengers
using these airports to travel to Washington would be forced to
rely on multi-stop or connecting service. A somewhat similar story
holds for the Boston market, data for which is indicated by a solid
circle in Figure 19. In this case, OAK, which 1s expected to garner
less than 1 per cent of the market, could not support service, but
3JC, for which a 28 per cent market share is predicted, does have
service. SJC has a smaller share of non-stop seats than traffic,
however, for two possible reasons. First, the amount of non-stop
service is such that a sizable fraction of SJC passengers to Boston
opt for cther services. Second, SFO may be dominating the non-local
passenger traffic in this market.

In the third example, Dallas {(indicated by an oval), SFO has
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a smaller gshare of seats (55 per cent) than of egquilaibrium
passengers (70 per cent), with the reverse holding for both SJC and
OAK. The probable explanation for this is that many passengers out
of the OAK and SJC hub through DFW on their way to destinations in
the south and east which to which SFO has non-stop service (for
example, Washington, as discussed above). DFW would be a
particularly attractive hub for travelers out of SJC, since
American has hubs at both lccations.

Finally, Phoenix, indicated by a dashed rectangle, is another
case 1n which SFO has a higher seat share (50 per cent) then
predicted market share (36 per cent). The apparent explanation for
this disparity is that United used its SFO hub to connect Phoenix
with cities in the Pacific Northwest such as Portland and Seattle,
while little connecting traffic on the America West and Southwest
flights out of SFO and SJC.

The above remarks i1llustrate how hub-and-spoke networks and
traffic thresholds for economically viable services create
disparities between airline seat shares and the market shares
predicted by our model. These disparities in turn result in
differences between observed and predicted market shares. The
suggested explanations are admittedly speculative, and further
analysis is reguired to confirm them. The more important result is
that the factors suggested in this discussion play a comparatively
minor role, compared to those included in the positive feedback

model, in shaping the distribution of traffic in MAS.
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6. Predictions for a Fourth Airport

We used the model to forecast equilibrium market share for
Buchanan Field (CRC), an airport in Central Contra Costa County,
about 30 miles from San Francisco. The airport has received
sporadic commercial service in the past. The enplanements at
Buchanan peaked at 59 thousand in 1988. Subseguently the two
airlines serving Buchanan, PSA and USAir, merged, and USAir then
retrenched from the Bay Area market. These events virtually
eliminated commercial activity at Buchanan. In 1891, total
enplanements numbered just 5,600.

We calculated Buchanan’s equilibrium market share £for two
destinations: Los Angeles and San Diego. We treated each market in
1solation--as though it were the only one served from this airport.
Thus each market share is calculated assuming that there is no
traffic in any other market using Buchanan. Since we lacked an
airport-specific utility term for Buchanan, we carried out the
analysis parametrically, allowing this utility value to range from
-0.5 (the SJC value) to +0.4 (the OAK value).

The results are shown in Figure 20. Equilibrium market shares
for Buchanan range between 15 and 26 per cent for San Diego, and
between 11 and 17 per cent for Los Angeles. This substantial market
penetration reflects the fact that Buchanan is advantageously
located. Of the four airports being considered, Buchanan is the
closest to the North Bay and much of Contra Cost County.
additionally, it is fairly far from SFO, and thus offers a
pronounced travel time advantage over that facility to a sizable
fraction of the Bay Area market.

But while the large predicted market shares for Buchanan are
reasonable, they are not born out by experience. Even in the peak
year of 1987, CRC captured only 3.3 per cent of the Los Angeles
market and less than 1 per cent of San Diego traffic. What
happened? One explanation is that Buchanan never reached the point
where it was considered as a potential alternative by most
travelers. Whereas virtually any Fast Bay traveler will consider

OAK, and any South Bay traveler will consider SJC, when making
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travel plans, we suspect that the possibility of using CRC never
crossed the minds of most travelers in its market area. Indeed, a
survey conducted by CRC revealed that many respondents did not know
of the availability of commercial service there (White, 1993).

A second reason was inadeguate alrport infrastructure. In the
late 1980s, the only commercial jet aircraft that could operate
From CRC’'s 4600 foot runway was the BAE 146. While assessments of
the mechanical reliability and performance of this aircraft vary,
it was not widely prevalent in the fleets of U.S. domestic
carriers, and this may have discouraged more widespread entry.
Furthermore, parking was limited, and there was no permanent
terminal building.

Finally, these was strong political opposition to further
commercial development at CRC. The CRC Board imposed tight
limitations on the number of flights, and generally discouraged
airlines from expanding commercial service. This political
opposition is one reason why steps were not taken to remedy the
infrastructural deficiencies.

Thus, it appears that a combination of lack of passenger
awareness, inadequate infrastructure, and lack of political support
prevented CRC from reaching i1ts potential as a commercial airport.
Of these reasons, the first is perhaps the most significant, for it
speaks to an additiocnal type of feedback effect not captured in our
model. While OAK, SFO, and SJC are all well established commercial
airports of which virtually all travelers are aware, CRC never
attained this status. Only when this information bias 1s overcome
is it possible for a new airport to compete on equal terms with

established competitors.
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7. Conclusions

We have developed a simple model that contributes to the
understanding of the allocation of passenger traffic among the
three main commercial airports of the Bay Area. Our model is based
on an accessibility effect, which makes airpcrts close to passenger
trip origins more attractive, and positive feedback effect, which
makes airports with more traffic more attractive. We have shown
that a model incorporating these effects explains much of the wide
market-to-market variation in airport market shares cbserved in the
Bay Area. The model works particularly well for large markets, for
which 1t is possible to accurately estimate 1ts main exogenous
input, the distribution of locations from which air travelers begin
their journeys. The mcdel yields egquilibrium market shares which
are themselves fairly good predictors of observed values; even
better predictions are obtained using linear models relating actual
market share to the egquilibrium share.

The most important implication of this research is that the
locational distrabution of trip origins plays a major rocle 1in
determining ailrpecrt traffic allocation. Indeed, it appears that
this factor is more important than "exogenous" airline behavior.
Also, at least in the Bay Area, there is substantial market-to-
market variation in this locational distribution. This suggests
that regional airport planners need to consider regional air travel
patterns at a zone-to-destination level, and that such patterns
cannot  be accurately estimated by simple region-to-zone
apportionment schemes. The modelling of travel patterns at the
zone-to-destination level is thus an important area for future
research.

The positive feedback effect amplifies the accessibility
effect. From a regional perspective, SFO has a modest accessibility
advantage over OAK and SJC. The access time to SFO for the average
Bay Area passenger 1is 46 minutes, only 8 minutes less than the
average to OAK and SJC. Because of the positive feedback effect,
this advantage translates into a much larger market share
differential. This poses a difficult challenge from a planning
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standpoint, since 1t i1implies that slight changes 1in zone-to-
destination trip changes can sharply alter the distribution of
traffic among airports. But it also means that transportation
planners can exert considerable leverage on ailrport traffic
distribution by taking steps to increase (or decrease) airport
accessibility.

A potential objection to our analysis 1is that it does not
sharply delineate cause and effect. This 1s a recurring issue in
positive feedback models, which by definition see cause and effect
in the same wvariables. It must therefore be emphasized that the
positive feedback model is used tc calculate an eqguilibrium, and
the equilibrium state 1s determined solely by the Ilocational
distribution of trip origins. Thus the only potential source of
"reverse causality"™ 1s 1if the locational distribution 1s itself
endogenously determined -- for example, 1f more people from East
Bay fly toc Reno because OAK has better service to that destination.
Although we cannot dismiss this possibility entirely, it seems
implausible that airport access considerations would play more than
a marginal role in shaping zone-to-destination travel patterns.
Although often unpleasant, airport access represents a small
fraction of the total cost of a typical air trip. It is far more
likely that travelers consider access aissues 1in selecting an
airport than in deciding whether or where to fly. This conclusion
is supported by the high incidence of cases in which passengers
select an airport with less accessibility but better service.

We do not claim that our model 1s a complete representation of
the behavior of MAS. Our results reflect this 1ncompleteness in a
nunmber of ways. First, our logit model results and overestimates of
market share for Buchanan field show the importance of airport-
specific effects. From the airport constants in the logit model, we
learn that, ceteris paribus, OAK is the most attractive Bay Area
airport, with an advantage equivalent to a 4 minute differentaal
over SFO, and a 9 minute differential over SJC. Further research is
needed to explain why. Likewise, further work is required to

explain why Buchanan field failed to reach the market potential
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predicted by our model. While there is interesting anecdotal
evidence on this point, we cannot yet incorporate factors suggested
by this evidence into a predictive model.

Comparisons of non-stop seat shares with predicted market
shares show how factors related to hub-and-spoke route systems
affect traffic in the Bay Area. In the case of SJC, it appears that
American’s hub had -- at least temporarily -- attenuated the
linkage between service supply and the local traffic base. In
several other instances, seat shares diverged from market shares as
a result either of routing of non-local traffic through Bay Area
airports, or the routing of local traffic through other hubs. It is
not surprising that such effects exist. What 1s more remarkable is
that relatively accurate predictions of Bay Area airport market
shares can be made without taking them into account.

Future research should be devoted to several areas. First, the
basic findings of this study should be verified through application
of the model to other MAS. In addition to determining whether the
positive feedback mechanism plays as important a role in other MAS
as 1t does in the Bay Area, such application will reveal the
transferability of model parameters, and shed additicnal light on
the nature of airport-specific effects. Second, a more explicit
representation of supply-side behavicr should be considered as an
alternative to the implacit, traffic-based, representation
presented here. Such a representation should take into account
threshold effects on non-stop service availability, pricing, and
the impacts of hubbing. Third, as already noted, the market-to-
market wvariation in trip origin daistributions warrants further
study. If the importance of such variation 1s as great as our
results suggest, it will have serious implications for the nature
and difficulty of the task of predicting airport traffic in an MAS.
Finally, the model should be extended to explore how capacity
limitations affect traffic distribution in an MAS, and identify
how, in such circumstances, planning and policy interventions can
lead to multiple airport systems that optimally balance the

competing goals of accessibality, service quality, and
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infrastructure cost.
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