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Abstract:  

Compact linear accelerators with beam energies in the keV to MeV range have applications in 

medicine, neutron/X-ray generation, surface modifications, etc. The size, weight and power of 

existing accelerators precludes them from mass availability in portable formats. This paper 

presents a specific implementation of an ion accelerator architecture based on planar wafers with 

accelerating and focusing sections. Our low cost approach allows the control of the final ion beam 

energy with potential applications, for example, for accelerator-based ion implantation. In this 

paper, we demonstrate two important waferscale modules required to build a linear particle 

accelerator these include (1) on-wafer voltage amplification for beam acceleration using Inductor-

Capacitor (LC) resonators and (2) waferscale electrostatic quadrupole arrays (ESQA) to re-focus 

the ion beams during transport. On-board LC resonators were developed using a Printed Circuit 

Board (PCB) fabrication processes to implement an LC element resonant at ~16.6 MHz with a 

quality factor of 25. An energy gain of ~250 electron volts was observed using a two wafer 

acceleration unit with an argon ion beam with 6.5 keV initial energy. A 3×3 ESQA was fabricated 

on a glass wafer with metal electrodes formed by depositing copper metal around the beam 

apertures.  The ESQA was used to focus and defocus an argon ion beam demonstrating a field 

gradient of ~500 V over a gap of ~250 microns. 

Index Terms— Linear RF accelerators, LC resonators, Electrostatic Quadrupole (ESQ), Ion beam.  

I. INTRODUCTION 

Compact linear accelerators, producing ions in the keV to MeV energy range have a variety of 

applications ranging from biomedical treatment and surface treatment to ion beam drivers for 

fusion  [1, 2]. In most of the applications there is a demand for portable, low cost, high efficiency 

accelerators [1-3]. Most of the commercially available accelerators use a single ion beam [1, 4, 
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and 5].  A large single ion beam requires high electric/magnetic fields to focus the ion beam during 

beam transport. Furthermore, the space-charge repulsion limits the maximal transportable beam 

current. Hence, it is difficult to achieve high current-densities in small footprint single beam 

accelerators. In this paper, a Multiple Electrostatic Quadrupole Array Linear Accelerator 

(MEQALAC) concept has been adopted to reduce the space-charge issues and improve the 

effective current density by relying on multiple beamlets [6]. Furthermore, this approach lends 

itself to reduce the total power required during acceleration and focusing [6]. Maschke et al. in 

1979 demonstrated the first MEQALAC concept using electrostatic focusing electrodes and 

showed that the beam current density scales favorable for smaller beam apertures [6]. Later, in 

1989 Urbanus et al. demonstrated the MEQALAC using four He+ ion beams of 2.2 mA per channel 

with channel diameter of 2.5 mm [7]. Due to the use of conventional machining, where relatively 

large gaps had to be applied to achieve uniform beams due to the manufacturing tolerances, both 

aforementioned MEQALAC concepts were limited by the achievable beam aperture diameter. In 

addition, the previous approaches used RF cavity resonators to accelerate the ion beams, and this 

led to increases in the total size of the accelerator. By utilizing modern fabrication methods we can 

now dramatically reduce these critical dimension and take better advantage of the scaling laws for 

this approach. 

Fig. 1 shows the concept of the wafer-based MEQALAC design used in this work. In general, the 

main components required to build a MEQALAC are an ion source, accelerating and focusing 

stages. In our recently published work, RF accelerating stages and beam focusing stages were 

demonstrated to build a compact MEQALAC [8]. Here, the RF accelerating wafers were fabricated 

by routing metal on FR4 and an external LC resonator circuit was used to drive high voltages on 

the RF wafers at frequencies around 15 MHz and to accelerate multiple ion beams in parallel [8]. 

Using this external resonator (voltage amplifier), an accelerator consisting of six accelerating gaps 

was demonstrated [9]. The external resonators will increase the size, power and cost of a complete 

accelerator system. The better approach is to directly integrate the high-voltage generation on the 

wafer. In the present work, we demonstrated an on-wafer voltage amplification scheme generating 

the accelerating electric fields directly near the acceleration gaps greatly reducing stray 

capacitances from cables needed to otherwise deliver the high voltage.  
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In addition to the accelerating fields, another important component required to build a 

wafer-based MEQALAC is the ESQA (ElectroStatic Quadrupole Array). ESQA are used to re-

focus the ion beams along the beam line, correcting for any spread due to space-charge forces [1, 

2]. To study the performance of the fabrication tolerance, robustness and breakdown issues of 

ESQA, in our previous work we demonstrated micromachined silicon, 3D-printed plastic, and PCB 

based approaches for ESQAs [8, 10, 11]. PCB ESQAs were fabricated using laser machining and 

sidewall metal deposition techniques [8]. Due to the laser fabrication, dimensional tolerances and 

sidewall roughness in the order of 10 micrometers, limit the accuracy with which the focusing 

parameters can be controlled. Furthermore, in PCB-based ESQA the polymer (FR4) outgassing 

rate can potentially effect the beam quality. Silicon ESQAs have the advantage of very good 

dimensional tolerance and sidewall roughness owing to the use of lithographic techniques with 

sub-micron precision. However, silicon processing can be time consuming to develop, and less 

resilient to shocks because silicon is brittle [10]. Recently, we reported on the ion beam focusing 

ability of a nickel coated 3D-printed monomer resins as an ESQA [11]. This approach, however, 

resulted in worse uniformity compared to other approaches and increased potential for outgassing. 

To provide good mechanical stability, high electrostatic field gradients, and low outgassing rates 

in this work, we explore the possibility of fabricating ESQA using glass wafers. Advantages and 

disadvantages of different ESQA approaches are listed in Table 1. 

To summarize, in this paper we demonstrate two alternative implementations required to build a 

waferscale MEQALAC. The first component demonstrated is an on-wafer voltage amplification 

concept using a LC resonator. The on-board inductor was fabricated on Rogers PCboard to achieve 

smaller RF loss in the PC board. To form the desired LC circuit, a capacitor/inductor wafer and 

ground wafer were assembled using precision washers. Using this planar inductor followed by a 

vertically integrated capacitor, a voltage amplification has been observed by accelerating an ion 

beams. The second component demonstrated is a glass-wafer ESQA to focus the ion beams. We 

describe the design and fabrication of the glass ESQA and show results on focusing of multiple 

argon ion beams.   

II. Principle of Operation 

A) LC-resonator  based accelerating structure 
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The planar structure used for accelerating consists of two wafers where the gap between the wafers 

contains the accelerating field. For an electrical model the gap can be modeled as a pure capacitor. 

In our implementation this capacitance is driven through an inductor fabricated on one of the 

wafers to achieve a high voltage through the voltage gain of a series LC tank circuit operating at 

resonance. Fig. 2A shows the schematic sketch of the assembled waferscale LC resonator, where 

an inductor wafer and a ground wafer are separated using precision washers to form a capacitor 

region. Fig. 2B shows the circuit diagram of the setup where the output voltage of the resonator 

across the capacitor is Quality factor (~Q) times the input RF voltage. Fig. 2C shows the electric 

field region in the LC resonator structure, where the acceleration of the ion/particle beam occurs 

due to the potential difference between the ground wafer and the inductor wafer. For the 

experimental ion beam acceleration setup, a double acceleration gap concept was used, where two 

acceleration gaps were driven using a single RF source [8]. Fig. 3 shows the 2D and 3D view of 

the assembled LC resonator structure with two acceleration gaps and a drift region in the middle. 

Two inductor wafers were placed facing away from each other to minimize the mutual inductance 

effect and ground wafers were assembled using precision washers to form the acceleration gaps. 

As we see from Fig. 3A, ions see ground potential when entering and leaving the acceleration unit 

cell, so that many accelerating stages can be cascaded.  The acceleration gap is designed to be 10% 

of the drift region (݀). For a given ion beam energy the length of the drift region was calculated 

using equation (1) [8].  

݀ ൌ
ఉఒ

ଶ
   (1) 

where λ is the RF wavelength, ߚ ൌ ߭ ܿ⁄ ,	with	ion	velocity,	ߥ,	and	speed	of	light,	c,	 d is the center 

to center distance between adjacent acceleration gaps consisting of the wafer thickness and the 

length of the drift region. Equation (1) ensures that the RF phase is suchs that ions being 

accelerated in the first gap are also accelerated when arriving at the  second acceleration gap. 

 

B) ESQ focusing wafer 

The ESQ structure requires a positive and a negative high voltage electrode. The high voltages 

have to be isolated using an insulating material, in this case consisting of glass. Fig. 4A shows the 

glass based ESQ structure. Here, metal electrodes are inserted into the glass wafer using a glass 

etching and metal electroplating process, described in the fabrication section. The metal electrodes 
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are encased in glass and not placed at the edge of the orifice, due to constraints of the fabrication 

process. The field generated across electrodes is not hindered by the glass dielectric, but the glass 

needs to be taken into account during the design stage. Fig. 4(A1) shows a round beam entering 

an ESQ with no potential applied on the electrodes therefore leading to no effects on the beam. 

Fig. 4(A2) and Fig. 4(A3) show the effect of the ESQs on a positively charged ion beam during 

application of voltages of alternative polarity on the electrodes resulting in beam focusing in one 

direction and defocusing in the other. The electrostatic forces on the positive ions will be repulsive 

towards positive electrodes and attractive towards negative electrodes. This results in an elliptical 

beam shape for an initial round beam. Combining two ESQs and placing them with a rotation of 

90 degrees with respect to each other, allows for an overall focusing effect [8, 11]. Fig. 4B shows 

a COMSOL model of an electrostatic field distribution in an ESQ. Fig. 4C shows the simulated 

electric field distribution on the x and y axis of an ESQ. For an ideal ESQ, the electric field at the 

center should be zero and the field should increase linearly towards the electrodes (Fig. 4C). As 

can be seen in the simulations, the fields show the as expected approximately linear relationship. 

The electric field in this architecture also extends in the glass area having a higher dielectric 

constant of ~3.9. This effectively can be compared to a glass and a vacuum capacitor in series, 

reducing the maximum possible field that can be achieved in the vacuum section of the ESQ.  

III. Device fabrication and testing 

a) The LC resonator fabrication 

Fig. 2 and Fig. 3 show the concept of waferscale LC-resonator sketch and the experimental setup 

used to achieve LC resonator based voltage amplification. On-wafer inductors were formed by 

patterning the metal on top of the PCB insulating substrate (Fig. 5) and capacitors were formed by 

assembling a pair of a ground wafer and an inductor wafer using precision washers. To achieve a 

high Q a Rogers board (RT 5880) with low loss tangent (0.0004) was used to fabricate both the 

inductor and ground wafers. We used a standard PCB fabrication process to fabricate inductor and 

ground wafers (Fig. 5). The fabrication process was started with double sided Rogers boards. 

Orifices are formed for the ion beam/particles to move through using a laser cutter. Next, the front 

side metal was patterned to form an inductor. Similarly, the metal on the opposite wafer side was 

patterned to reduce high electric field regions and stray capacitance. The ground wafer was 

fabricated using a similar approach. Fig. 6A shows the fabricated inductor wafer, ground wafer 

and assembled LC resonator structure and Fig. 6B shows their impedance and phase characteristics 
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measured using a network analyzer. The resonant peak and the zero crossing of the phase were 

observed at a frequency of ~16.6 MHz with a quality factor of ~30.  We measured on board 

inductor and capacitor values of 1.55 µH and 17.08 pF, respectively. 

B) ESQ fabrication Process  

Glass is used as the insulating substrate and Through-Glass-Vias (TGV) are used to form the 

electrodes. Glass based TGV are used commercially for electronics applications such as 

semiconductor packaging, 3D-IC stacking, fanout wafer level packaging etc [12]. This approach 

allows fabrication on a low cost substrate with smaller features than what might be possible with 

PCB [8]. Furthermore, the very good vacuum compatibility of glass and its high breakdown 

voltages are advantageous to obtain high field gradients. The basic steps of the process flow are 

illustrated in Fig. 7. The process was started by forming through holes using laser machining. Then 

parts of the holes are filled with a conductive slurry/epoxy through stencil masking and then cured. 

After cleaning/polishing, top and bottom metallization are done using physical vapor deposition 

and/or electroplating. This process was developed in collaboration with Triton Microtechnologies 

company. 

Fig. 8A shows the fabricated 3×3 glass ESQA with metal routing to connect positive and negative 

electrodes. The zoomed-in version of a single ESQ shows the aperture area (~0.5 mm) for the ion 

beams with top and bottom electrode routing. The measured electrical breakdown voltage for the 

fabricated glass ESQA in air and vacuum is more than 1 kV with > 1 MOhm resistance. Fig. 8B 

shows the schematic of 3×3 ESQA cross section with apertures to focus the ion beams.   

 

 IV. EXPERIMENTAL SETUP FOR ION ACCELERATION 

The cross sectional schematic of the ion source and the ion extraction unit are shown in Fig. 9A. 

Fig. 9B shows the assembled LC wafers before mounting inside the vacuum chamber (with 

alignment holes in-line with the ion beam extraction unit). A filament-driven multi-cusp ion-

extraction system was used to test the waferscale amplifier to accelerate the ion beams and to test 

the glass ESQA to focus the ion beams [13]. To achieve a stable plasma in the ion source the 

filament was driven with several amperes of current over several seconds and beam was extracted 

during a ~300 µsec pulse with a continuous argon gas flow. During the filament arc pulse, ions 

were extracted from the plasma using a three electrode system. During all experiments the plasma 
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facing electrode was floating. The second electrode was biased with a negative voltage relative to 

the source. The third electrode can be used to achieve shorter pulses, but for the experiments 

reported here was always biased slightly above the second electrode potential with the same 

polarity and therefore had no effect on the beam extraction. After the negatively biased third 

electrode, ions are accelerated toward the ground electrode and gain kinetic energy. As discussed 

in the aforementioned sections, the current study is focused on accelerating multiple parallel beams 

simultaneously to archive high current density in a compact setup. Hence, as a prototype, a 3×3 

beam aperture-based extraction system was used with 0.5 mm beam apertures and with center to 

center distance of 5 mm between the each aperture.  

Following extraction from the ion source, we used either the LC resonator assembly to accelerate 

the ion beam or a glass ESQA to focus the 3×3 array of ion beams. For the LC resonator test, the 

structure consisting of two acceleration gaps and one drift region (Fig. 3) was used. The drift region 

and acceleration gap were designed to match the injection energy of the argon ion beams of 6.5 

keV. The drift region was adjusted in such a way that the RF voltage phase changed by 180 degrees 

when the ions entered the second acceleration gap. Before mounting the wafers into the vacuum 

chamber, a bench test was carried out to find the resonance frequency and quality factor (voltage 

gain) of the fabricated LC resonators using a high voltage probe and the longer cables needed to 

connect the setup inside the vacuum chamber. Fig. 10A shows the measured voltages from the RF 

power amplifier and LC resonator at different frequencies. A voltage gain of ~30 was observed at 

22.7 MHz from the LC resonator during a bench test/ion beam test. The resonance frequency 

during the bench test/ion beam is different compared to the resonance frequency measured using 

the network analyzer. This is due the fact that the long wires and the vacuum chamber will 

introduce extra capacitance and inductance into the resonant circuit. This in turn will shift the 

resonance frequency and reduce the quality factor of the LC resonator. Fig. 10B shows the voltages 

used at the different amplification stages during the ion beam test from the external function 

generator and RF amplifier (manufactured by ENI) and the on-board LC resonator. A 200 mV 

input voltage (peak-to-peak) at 22.7 MHz was used from the external RF function generator, which 

was connected in series with an RF power amplifier. After the RF power amplifier, a voltage of 

~10 V (peak-to-peak) was obtained at 22.7MHz. This 10 V voltage at 22.7MHz was then used to 

drive the on-board LC resonator. Fig. 9A shows the accelerator setup, where the fabricated 

waferscale LC resonator assembly is placed in-line with the beam extraction unit followed by a 
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retarding grid assembly and a Faraday cup used to measure the ion current above a given ion 

kinetic energy [8]. The bias on the retarding grid was scanned and from the measured decrease of 

the ion beam current in the Faraday cup one can calculate ion beam energy distribution. First a 

measurement without applied RF was taken to confirm the initial ion energy and then a 

measurement with RF voltages applied was used to measure the energy gain due to acceleration in 

the two acceleration gaps where RF high voltages were generated by the LC-resonators. A voltage 

gain of ~25 was observed from the fabricated LC resonator during the ion beams test and the 

resulting kinetic energy gain is plotted in Fig .11. Apart from particle accelerator, the waferscale 

high gain radio frequency resonators developed in the present work have potential application in 

developing waferscale EPR/NMR spectroscopies [14-17]. 

In a similar experiment the ion source and ion extraction system was used to test the ESQA (Fig. 

9A). Here, the accelerating wafers and Faraday cup were replaced by glass ESQAs and a 

scintillator (RP 400 plastic scintillator) together with a fast image intensifying camera (Princeton 

instruments) [9]. After mounting the ESQA, the positive and negative bias on the ESQA electrodes 

were swept to observe the focusing/defocusing effect. Fig. 12 shows the captured focusing and 

defocusing images using the image intensifying camera for a bias voltage of ±200V on the ESQA 

electrodes. The fabricated ESQA had a resistance of >1 MOhm and a leakage current of ~0.1 mA 

during initial beam tests. This leakage current is likely due to current paths due to leftover metal 

slurry, and could be reduced in the future. 

V. RESULTS AND DISCUSSION 

Ion beams were extracted in a 3×3 array from a multi-cusp ion source [8] and injected into the 

wafer structure where ions were accelerated by the RF high voltages generated with the on-board 

LC resonators. Fig. 11 shows the increase of the ion energy from the initial energy of 6.5 keV to 

an energy of 6.75 keV.  Here, acceleration was driven by two acceleration gaps (Fig. 9A) with 

locally generated RF voltages from the on-board LC resonators. An acceleration of 125V/gap at 

22.7 MHz was observed, in total an increase of 250 V ion kinetic energy was observed in a two 

stage acceleration setup. The measurement also shows some ions losing kinetic energy which is 

due to ions arriving at the wrong phase of the RF. In a final acceleration implementation one would 

only inject ions during the correct phase or bunch the beam before injection to avoid this problem. 

The voltage gain factor or quality factor achieved from the fabricated LC resonator during ion 
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beam test is ~25 and this can be further improved by designing a better impedance matching circuit 

between the LC resonator and RF amplifiers. Also, the quality factor can be improved by reducing 

metal losses, dielectric losses and tangent loss in the wafer-scale resonators.  

We then conducted beam focusing tests with a 3×3 array of glass ESQA. Fig. 12 shows the 

measured beam focusing and defocusing effects. Argon ions with a beam energy of 12 keV were 

used to demonstrate focusing effects. Light from the ion source filament interfered with the camera 

images during beam spot measurements and we had to block four of the nine beam apertures to 

reduce the interference from ion source light emission, leaving a set of five beams. Fig. 12A shows 

the ion beams when there is no electric potential applied on the ESQA. Fig. 12B and Fig. 12C 

shows focusing and defocusing of positive argon beams when voltages of ± 200V were applied on 

the ESQA. One can cleary see the elongated beam spots when a voltage is applied and that the 

focusing direction changes when the polarity is flipped. To achieve an overall focusing effect in 

both direction one would mount two ESQAs that are rotated 90 degree in respect to each other [8, 

11].    

 

VI. CONCLUSIONS AND OUTLOOK  

In this work we have demonstrated waferscale approaches to implement components for a multi-

beam accelerator. We have implemented acceleration units consisting of on-wafer LC resonators 

and glass ESQA to focus ion beams. The developed on-board resonators to amplify voltage locally 

shows a very promising result for the development of very compact waferscale accelerators. 

During the beam test a voltage amplification of ~25 per acceleration gap was obtained using on-

board LC resonators. We discussed routes to further increase the voltage amplification and 

acceleration gradient from currently 125 V/gap. We also note that the on-board LC-circuits we 

describe here can be combined with near-board sources for high RF acceleration voltages for 

specific applications. The developed glass ESQAs also shows very promising results to hold high 

voltage of more than ~1kV in air and vacuum that enable efficient re-focusing and transport of 

ions in a compact, low cost linear accelerator. Our results show a path forward to build an 

integrated wafer scale compact linear accelerators that is fully compatible with silicon batch 

fabrication processes for massive scaling at low cost. A next step will be the integration of 
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acceleration and focusing stages to form a complete wafer based MEQALAC with high beam 

current (scaled by the number of beams) and high ion energy (scaled by the number of acceleration 

stages) for applications in basic and applied science and industrial processes.     
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Figure Captions:  

Fig. 1. 3D schematic of the multi beam accelerator concept with ion source, accelerating 

resonators and focusing stages.  

Fig. 2. High voltage generation across an acceleration gap using a wafer-based LC resonator (A) 

3D view of the assembled LC resonator design (B) Schematic of the LC resonator (C) Cross 

section of the assembled LC resonator with electric field lines 

Fig 3 (A) cross sectional view of the single acceleration unit cell using 4 wafers with two LC 

tank wafer unit. (B) 3D view of the assembled single acceleration unit cell 

Fig.4. Electric field distribution of glass ESQ (A) Effect of electrode potential on the ion beam 

(B) COMSOL simulation of the electric field distribution in glass ESQ (C) Simulated electric 

field distribution in x and y axis shows the zero electric field at the center of the  ESQ   

Fig. 5. Fabrication procedure for RF wafers and ground wafers: (a) the process starts with a double 

side copper coated Rogers RT 5880 board that is cut in the shape of a 4 inch wafer. (b) Holes are 

formed into the board by laser drilling. (c) The top metal layer is patterned (inductor coil for 

inductor wafer and metal around aperture for ground wafer). (d) The bottom metal is patterned 

using alignment with fiducials.  

Fig. 6. (A) Fabricated spiral inductor and ground wafer that form an LC-resonator. (B) 

Impedance and phase characteristics of the fabricated LC resonator show the resonance 

frequency and quality factor of the device. the holes on the edges were used to align the wafer 

structure on guide posts with the beam extraction unit.     

Figure 7: Glass ESQA fabrication - laser micromachining and metal deposition technique.   

Fig.8. (A) Fabricated glass ESQA with aperture and top and bottom metal routing; zoomed-in 

version on a single ESQ on the right (B) Cross section of the 3×3 ESQA with argon ion beam 

moving in ESQ aperture.  

Fig. 9 (A) Experimental setup for beam tests. (B) Assembled LC-resonator for beam tests.   

Fig.10. (A) Voltage gain during bench testing of the LC resonator at different frequency (B) 

Voltages obtained from function generator, external RF amplifier and LC resonator during bench 

test/ion beam test 
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Fig.11. Scans of ion current (Amperes) as a function of retarding grid bias showing ion energy 

gain due to acceleration by RF high voltages from on-board LC resonators.  Argon ions were 

injected with a kinetic energy of 6.5 keV and we observed acceleration by 250 V in two 

acceleration gaps.   

Fig. 12. Beam focusing and defocusing using glass ESQAs.  The beam spots are 5 mm apart. 

Due to interference from light from the ion source filament, four beam spots had to be blocked. 

 

Table Captions:  

Table 1: Comparison of different ESQA performance with respect to their fabrication tolerance, 

voltage holding, mass fabrication compatibility and mechanical stability 

 

 

Material Fabrication 

tolerance 

(High to Low) 

Breakdown 

voltage  

(High to Low) 

Mass 

fabrication 

(Difficult to easy)

Mechanical 

stability 

(High to Low) 

PCB [8] High Low Difficult Medium  

Plastic [10] Medium Medium Difficult Medium 

Silicon [11] Low Medium Easy Low  

Glass 

(present work) 

Medium High Difficult  High 
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