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Abstract

LLM-Coordination: Developing Coordinating Agents with Large Language

Models

by

Saaket Agashe

It is essential for intelligent agents to not only excel in isolated situations but also co-

ordinate with partners to achieve common goals. Current Multi-agent Coordination

methods rely on Reinforcement Learning techniques to train agents that can work to-

gether effectively. On the other hand, agents based on Large Language Models (LLM)

have shown promising reasoning and planning capabilities in single-agent tasks, at times

outperforming RL-based methods. In this study, we build and assess the effectiveness

of LLM agents in various coordination scenarios. We introduce the LLM-Coordination

Framework to enable LLMs to complete coordination tasks. We evaluate our method on

three game environments and organize the evaluation into five aspects: Theory of Mind,

Situated Reasoning, Sustained Coordination, Robustness to Partners, and Explicit As-

sistance. First, the evaluation of the Theory of Mind and Situated Reasoning reveals

the capabilities of LLM to infer the partner’s intention and reason actions accordingly.

Then, the evaluation around Sustained Coordination and Robustness to Partners further

showcases the ability of LLMs to coordinate with an unknown partner in complex long-

horizon tasks, outperforming Reinforcement Learning baselines. Lastly, to test Explicit

Assistance, which refers to the ability of an agent to offer help proactively, we introduce

viii



two novel layouts into the Overcooked-AI benchmark, examining if agents can prioritize

helping their partners, sacrificing time that could have been spent on their tasks. This

research underscores the promising capabilities of LLMs in sophisticated coordination

environments and reveals the potential of LLMs in building strong real-world agents for

multi-agent coordination.
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Chapter 1

Introduction

The need for coordination can arise from mundane tasks like cooking and

cleaning to more essential tasks like coordinated search-and-rescue operations. The

assimilation of AI tools and agents into the human experience cannot be complete

without AI agents being able to coordinate in a similar manner. Current methods

for Multi-Agent coordination predominantly utilize Reinforcement Learning approaches

that suffer from issues of sample efficiency, lack of robustness to new partners, and lack of

interpretability. More Recently, Agents based on Large Language Models have emerged

as a new paradigm for developing situated, task-oriented agents [36, 42]. LLMs are

capable of solving reasoning problems with minimal downstream training data due to

their pretraining and generate free-text explanations, making them promising candidates

for developing coordination agents. While the planning and reasoning abilities of Large

Language Models for common-sense and logical reasoning tasks have been extensively

studied, their emergent cooperative reasoning abilities are underexplored.
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In this study, we introduce the LLM-Coordination Framework to facilitate

multi-agent coordination using Large Language Models. We will refer to agents using

the LLM-Coordination framework as LLM-Co agents. The LLM-Co framework is an

Agent framework with the following features

• Programmatically converts real-time state information to textual description that

the LLM can parse.

• Generates feasible action space based on the current state.

• Parses LLM response and converts it to a sequence of low-level actions

• Maintains a memory of previous actions for the LLM

We then systematically evaluate the LLMs and the LLM-Co framework on the

following critical competencies required for effective coordination: Theory of Mind In-

ference (understanding others’ beliefs and intentions), Situated Reasoning (contextual

action analysis), Sustained Coordination (long-term action planning and adjustment),

Robustness to Partners (adapting to new collaborators), and Explicit Assistance (ac-

tively aiding partners).

We begin by conducting a preliminary study that allows us to determine the

baseline abilities of various Large Language Models and their suitability to be used in

the LLM-Coordination Framework. We do this by examining LLMs’ Theory of Mind

Inference and Situated Reasoning capabilities, which are foundational for coordination.

These abilities enable models to understand others’ intentions and contextualize these
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understandings within their environment. We introduce the ”LLM-ToM-Reasoning Test

Set,” comprising diverse scenarios from multiple coordination environments, to assess

LLMs’ performance in deducing optimal actions based on their partner’s intentions

and environmental context. Comparing four different LLMs (GPT-4, GPT-3.5-turbo,

Vicuna-33B, and Vicuna-13B), we find GPT-4 to be significantly superior, getting an

almost perfect score. The other LLMs cannot provide sufficient correct responses to be

suitable for following multi-turn coordination.

Next, we evaluate the sustained coordination abilities of LLM-Coordination

Agents. We use GPT-4 as the LLM of choice as it is the only candidate that pro-

vides acceptable ToM and Situated Reasoning scores. Providing the LLM with Task

Description, Turn-by-turn state information, action memory, and a list of feasible ac-

tions at each timestep, we explore the sustained coordination reasoning in LLMs on the

Overcooked-AI benchmark. We compare the performance of LLM Agents (w. GPT-4)

with Reinforcement Learning (RL) based baselines, which are the gold standards for

AI-AI gameplay. We then experiment with varying the partners in the Overcooked

Environment. We pair LLM-Co agents with proxy human agents to test the agents’

robustness to partners. We observe that LLM agents perform better than or equal to

the RL baselines in both AI-AI and AI-human proxy gameplay.

Previous works introducing novel methods for developing Collaborative Agents

[46, 21, 45] using LLMs do not test their abilities to understand the concept of common

payoff and proactively help their partners (Explicit Assistance). We introduce two new

layouts in the Overcooked environment, including a gate element that forces agents

3



to assist their partners in completing deliveries. Through experiments on these new

layouts, we discover that LLM agents can determine the right strategy needed to help

out their partners. However, they require a ”helper prompt” to be attentive to situations

where their partner may need such help. We train RL baselines on these new layouts

and discover that LLMs with helper directives outperform these baselines.

This research highlights the potential of LLMs in coordination reasoning and

contributes a novel perspective to the field of AI-agent collaboration. The LLM-Coordination

Framework opens new avenues in the development of AI agents capable of sophisticated,

context-aware, and coordinated decision-making, setting a foundation for future explo-

rations in multi-agent AI systems.

1.1 Document Structure

• Chapter 2 will cover some prerequisite concepts and terminology about LLMs,

LLM Agents, and Multi-agent Coordination that will be used throughout the

document.

• Chapter 3 will discuss prominent related work that explores Large Language Mod-

els as agents acting in a situated environment and covers the current state of

Multi-agent Coordination Methods and Environments.

• Chapter 4 will introduce the LLM-Coordination Framework to enable LLMs to

complete coordination games.

• Chapter 5 will cover the environments we have used to conduct experiments, in-

4



cluding two text-based games, CollabCapture and CollabEscape, the Overcooked-

AI benchmark [5] and two newly introduced layouts for Overcooked which we

designed for proving explicit assistive abilities of LLM Agents.

• Chapter 6 covers the details of all the experiments for systematically evaluating

LLMs and the LLM-Co Framework on the five core competencies for Coordination.

• Chapter 7 consists of detailed results and implications of these results on the

suitability of LLMs for developing Coordination Agents.

• Chapter 8 discusses interesting qualitative case studies observed during experi-

ments on the LLM-Co Framework.

• Finally, Chapters 10 and 9 mentioned our conclusions and the current limitations

of our method.
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Chapter 2

Background

2.1 Autoregressive Large Language Models (LLMs)

Autoregressive Large Language Models are Transformer models trained on a

large amount of textual data. These models are distinguished by their extensive scale,

often comprising millions or billions of parameters. LLMs are exposed to internet-scale

data during their pretraining. Autoregressive implies that the models are trained to

generate the immediate next token (wk), given previous tokens (w0..(k−1)) as context

(For example GPT [28]). It has been observed that scaling Large Language Models

(LLMs) to billions of parameters with more training data results in emergent few-shot

reasoning abilities in LLMs [4].

The most recent paradigm shift in Large Language Models came from the in-

troduction of Reinforcement Learning from Human Feedback RLHF [23]. LLMs trained

with RLHF are capable of instruction following and verbal reasoning, going beyond mere

6



language comprehension. The reasoning and planning abilities of LLMs can be further

enhanced using the Chain-of-thought reasoning approach where the LLM is prompted

to ”think step by step” or provide an explanation before outputting the answer [38] or

Self-Reflection [43] which requires an agent to reflect on experiences during an episode.

2.2 Large Language Model Agents

Figure 2.1: A summary of LLM Agents and their components [39]

Large Language Models are only capable of generating textual tokens based on

context. Agent Frameworks enable LLMs to interact with the real world. These frame-

works typically augment a Large Language Model with Planning, Memory, and Tools.

Memory, including long and short-term memory, are summarized textual descriptions

of previous actions and interactions, which are provided as context to the LLMss. The

LLM agent can choose to use tools for performing specific tasks like arithmetic oper-
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ations, path search, code interpretation etc. Tools enable agents to reason based on

factually correct information and interact with the real world to gather information.

Planning includes strategies like Chain of Thoughts [38] or Self-Reflection [43] that en-

hance the reasoning abilities of LLMs in context. Figure 2.1 [39] shows an overview of

LLM Agents and their modules.

2.3 Multi-agent Coordination

A pure coordination game is a setting where all agents get a common payoff

as a reward. In such a setting, the best strategy for participating agents is to coop-

erate with their partners. As humans, we partake in multi-agent coordination in our

daily lives, from navigating traffic to saving lives. Multi-agent Reinforcement Learning

(MARL) methods are the current gold standard for navigating and solving Multi-agent

Coordination problems. These agents are trained using Self-Play, which means an agent

is paired up with another agent of the same type, and they learn to complete their ob-

jective together through online learning.

Zero-shot coordination [9] is a special case of Multi-agent coordination where

participating agents are paired up for the first time during evaluation and haven’t been

trained together. This ability is essential for agents to coordinate with new, unseen

agents in realistic scenarios.

8



2.4 Theory of Mind

Theory of Mind (ToM) is the ability of rational agents to comprehend the fact

that other agents have different beliefs from their own. ToM is critical to establishing

multi-agent coordination where agents need to frequently reason about their partner’s

beliefs and intentions before choosing their own next action. There have been recent

studies that show emergent Theory of Mind inference abilities in Large Language Models

[15]. We utilize the Theory of Mind inference as a core competency for evaluating Large

Language Models in our work.

9



Chapter 3

Related Work

3.1 Multi-agent Coordination

There are two types of works prominent in Multi-agent Coordination Problems,

the first include test environments and the latter includes developing MARL solutions.

Various benchmarks have been used to evaluate Multi-Agent Coordination abilities over

the years [20, 1]. In recent years, the Overcooked environment has emerged as a popular

testbed for coordination experiments [5, 41]. Our research leverages the Overcooked-AI

environment [6]. The foundational work by [5] emphasized the significance of incorpo-

rating human data for effective collaboration. Subsequent research has pivoted towards

enabling self-play-trained agents to coordinate seamlessly with humans within this en-

vironment. These studies employ various techniques, including self-play with past agent

checkpoints [33], centralized population entropy objectives [47], open-ended objectives

using graph theory [17], policy ensembles with context-aware mechanisms [19], and the

10



incorporation of human biases as linear hidden rewards [44], to enhance the training and

diversity of AI agents in different scenarios. Embodied environments usually set up in

household environments have also been recently used to study multi-agent coordination

[27, 12, 13, 8].

3.2 Planning and Reasoning with Large Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities

of reasoning in natural language [22, 24, 7]. These models have achieved state-of-

the-art performance across a spectrum of NLP tasks, showcasing their proficiency at

verbal reasoning. Strategies like Chain of thought prompting[38], which generates step-

by-step free-text explanations before coming to conclusions have further boosted the

reasoning capacities of LLMs. Approaches augmenting an LLM with memory, belief,

and tools have shown to be useful in multi-step problem-solving [25, 10, 29]. Isolated

LLM agents have shown to be capable of life-long learning and task completion in

open-domain survival games, outperforming existing SOTA Reinforcement Learning

methods [42, 36]. More recently, such LLM agents have been paired with rule-based

low-level planners to execute tasks in embodied environments [18, 32]. [46] demonstrated

efficiency increase in collaborative embodied multi-agent setting, and [21] have shown

the ability of collaborative manipulator motion planning using LLMs. The abilities of

LLM agents as coordination partners are still in the nascent stages. In this work, we

perform evaluations to systematically discover how current LLM-based agents reason

11



and plan while coordinating with partner agents.
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Chapter 4

Methodology

4.1 LLM-Coordination Framework

Figure 4.1: Visual summary of the LLM-Co framework. Our framework serves as the
backbone for an individual agent, focusing on bringing out its coordination ability. The
framework translates abstract game details into an LLM-compatible format and then
utilizes the generated LLM output to take actions in the game world.
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The LLM-Coordianation Framework is responsible for translating coordination

games into textual objectives compatible for LLMs. The details of the game along with

the rules and the layout of the map are condensed into a short Game Description

(G). Along with the game description, we also provide a set of Directives (Di) that

guide agent behavior. These descriptions are passed as initial prompts to the Large

Language Model.

At each turn, the LLM receives the current state description (D(S)) that is

programmatically obtained from the environment, and the player states S. Since LLMs

struggle with grid-based reasoning and navigation, we provide relative distances from

the agent to each location of interest in the state description. Along with player-specific

variables, other salient state variables are also included as natural language descriptions.

Finally, an agent is provided its partner’s inventory and relative position to allow it to

consider their intentions. The state information provided to the LLM is equivalent to

what a Reinforcement Learning agent would receive in the form of vectors.

The LLM operates at a medium-level action space which is made up of

verb-based actions like ”pick”, ”place”, ”move” etc. It is provided with a set of

feasible actions Mf to choose from to enable easier reasoning. The feasible action set

is decided on the basis of player inventory and accessibility of locations.

The LLM utilizes the information ⟨G,Di, S,Mf ⟩ to assess the situation and

generates an action m from the provided set Mf . We then use an Action Manager

to interpret the action based on the verb used and the location mentioned. The Action

Manager generates low-level actions needed to execute the medium-level action. In the

14



following experiments, we will refer to LLM Agents that use the LLM-Coordination

Framework as LLM-Co Agents. We will now dive deeper into the details of the

LLM-Coordination Framework.

4.1.1 Game and Layout Description

We use a general game description G that explains the rules and objectives of

overcooked. Since each layout has a different number of locations, like onion dispensers

and cookers, we include a succinct description of each environment Li, which includes

how many instances of particular facilities there are. For environments that include

partitions, we mention which partition each of the agents is situated in and what facilities

that agents can access. In addition, we also mentioned the shape of the environment.

4.1.2 State Representation

The State Representation Module programmatically converts the state infor-

mation into a natural language description D(S), which can be processed by a Large

Language Model (LLM). The state S includes variables that fully represent the neces-

sary details of the layout as well as the players. The information provided in D(S) is

equivalent to what would be accessible to a Reinforcement Learning (RL) agent in the

form of state representations. We refer to the Blue agent as Alice and the Green agent

as Bob. The following information is included in D(S):

Objects Held by Each Player The state description D(S) begins by detailing the

inventories Iα1 and Iα2 of Alice and Bob, respectively. Each inventory Iαi(where i ∈

15



{1, 2}) can contain one of the following items: {”onion”, ”plate”, ”cooked soup”}. This

inventory information is translated into natural language and incorporated into D(S)

in the format: “You are holding Iα1 . Bob is holding Iα2 .” Such information is vital for

inferring the likely subsequent actions of the partner agent.

Location of the Agent Controlled by LLM: Given the limitations of Large Lan-

guage Models (LLMs) in interpreting grid-based spatial information, we opt to provide

processed location data to the LLM. For each agent Pi (where i ∈ {1, 2}), and for each

location of interest denoted as loc, we calculate the distance d(Pi,loc) as the number of

steps required to reach loc from Pi using the shortest available path. The state de-

scription D(S) then includes this processed location information in the format: “loc is

d(Pi,loc) units away.” Here, loc can represent various points of interest such as onion

dispensers, plate dispensers, cookers, delivery areas, kitchen counters, or shared coun-

ters. If a location is either inaccessible or blocked by another agent, this is explicitly

stated in D(S). For example, if a location is blocked by Bob, it would be stated as “loc

is blocked by Bob.” To distinguish between the location information relevant to each

agent, D(S) prefixes the respective sections with “Your location information:” for the

agent controlled by the LLM and “Bob’s location information:” for the partner agent.

Cooker Information The state descriptionD(S) also incorporates information about

the cooker, which is central to the gameplay strategy. Specifically, for each cooker i,

D(S) includes the number of onions ni currently in the pot. Additionally, D(S) pro-

vides the operational state of the cooker, denoted as CookerStatei, which can be either

16



”Off” or ”On”. Lastly, the current condition of the soup in the cooker is represented by

SoupStatei, which can take one of the following values: ”Cooking”, ”Cooked”, or ”Not

Started”. Thus, the information for cooker ci is formatted as: “ci has ni onions. ci is

CookerStatei. Soup in ci is SoupStatei.”

Kitchen Counter Information The state description D(S) includes information

about kitchen counters, which are primarily used for temporary object storage. Specif-

ically, D(S) identifies the closest empty kitchen counter kempty and the set Kfilled of all

counters currently holding an object.

Shared Counter Information Shared counters serve as specialized kitchen counters

for object transfer between agents. For each shared counter i, D(S) includes the status

for si, as “s0 is empty” or “s1 contains onion,” to offer a complete environmental

overview. Unlike kitchen counters, where only the closest empty counter is mentioned,

all empty shared counters are mentioned.

4.1.3 Feasible Action Generation:

Table 4.1 shows our full high-level action set used for the Overcooked envi-

ronment. These are directives that can be selected by the LLM based on the provided

state information. The action set is base on the planning objectives used by [5] in their

coupled planning gameplay. The action set is complete in the sense that an agent can

utilize the action set to complete multiple deliveries in the Overcooked AI environment.

The constrained action set generator verifies the feasibility of performing an
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action before making it available to the LLM. This is a rule-based program that reduces

the set of available actions. For example, It is not possible to pick up an onion or a

plate if the agent is already holding an onion. In such a case, we will remove actions

like “pick up onion from o0”, “pick up plate from p0” from the set of available actions,

which will be provided to the LLM along with the state description at each turn.

4.1.4 The Large Language Model

The LLM takes the game description, environment description, state descrip-

tion, and the feasible action set as its input, along with a history of the previous actions

(5 actions.) It then selects an action from the set of feasible actions and formats its

response as Analysis: ⟨analysis⟩. Action:⟨action⟩. The LLM is asked to elucidate the

current situation, including the environment state, a guess about the other player’s

intention (ToM), and the explanation behind their next action in the analysis section.

4.1.5 Action Manager

This module converts the high-level actions chosen by the Large Language

Model (LLM) into specific, executable steps. Upon receiving a directive from the LLM,

the module uses a Breadth-First Search algorithm to identify the shortest path to the

target. The immediate next step along this path is then selected as the agent’s action

for that moment.

The module maintains control until it fully executes a complex directive, such

as “place onion in c0”. This directive would include both the sequence of movements
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needed to reach the target location and the final action to complete the task, like placing

the onion. Once this directive is completed, control returns to the State Representation

Module, which then consults the LLM for the next high-level action.

The Action Manager also handles stalemate situations where both agents con-

tend for the same spot or each other’s spots using a combination of querying the LLM

for another action and deterministic move-away actions.

This design approach relieves the LLM from the complexities of low-level mo-

tion planning, an area where it typically struggles. It also reduces the number of calls

to the LLM, saving both time and computational resources.
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Table 4.1: Complete medium-level action set.

High-level Actions Description

pick up onion from oX. Pick up an onion from onion dispenser number X.

pick up plate from pX. Pick up a plate from plate dispenser number X.

put onion in cX. Place the onion into cooker number X.

put soup on plate from cX. Serve the soup from cooker number X onto a plate.

deliver soup in dX. Deliver the soup to delivery location number X.

pick up onion from sX. Pick up an onion from shared counter number X.

pick up plate from sX. Pick up a plate from shared counter number X.

place onion on sX. Place the onion on shared counter number X.

place plate on sX. Place the plate on shared counter number X.

pick up onion from kX. Pick up an onion from kitchen counter number X.

pick up plate from kX. Pick up a plate from kitchen counter number X.

place onion on kX. Place the onion on kitchen counter number X.

place plate on kX. Place the plate on kitchen counter number X.

open gX. Open gate gX.

wait. wait for one time-step.

move away. Randomly move away from the current location away

from the other agent.
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Chapter 5

Evaluation Environments

5.1 Collab Capture

Figure 5.1: The CollabCapture game involves two agents, Alice (Blue) and Bob (Green),
chasing a thief across multiple rooms. Some rooms are connected by doors, which can
be controlled by buttons in different rooms.

Collab Capture involves two agents trying to capture an adversary in a maze

of interconnected rooms. The rooms are connected by doors, which can be controlled

through access buttons that can be found in different rooms. The agent’s task is to

capture the adversary in the least amount of time using effective strategies, including
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cornering the adversary, disabling the adversary, or enabling their partners.

5.2 CollabEscape

Based on the popular Video Game ”Dead-by-Daylight”, Collaborative Escape

involves two agents trying to escape an adversary in a maze of interconnected rooms.

They need to fix two generators located in randomly selected rooms to open an exit

portal. The adversary tries to catch the agents, and the win condition is any one agent

escaping. This game requires strategies like luring the adversary away from the partner,

sacrificing for the partner’s safety, and manipulating the movement of the adversary.

5.3 Overcooked

Figure 5.2: All layouts from the overcooked environment we use for our tests. The two
agents Alice (Blue) and Bob (Green) need to collaborate to cook, plate, and deliver
onion soups. From Left to Right: Cramped Room, Asymmetric Advantages, Forced
Coordination, Coordination Ring, and Counter Circuit.

In the Overcooked-AI environment [5], two agents—Alice (Blue) and Bob

(Green)—collaborate to cook and deliver onion soups. Different environments feature

varying numbers of onion dispensers (o), plate dispensers (p), cookers (c), delivery areas

(d), and counters (k). Agents must load three onions into a cooker to start it, which
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takes 20 time steps to cook. Once done, an agent transfers the soup to a plate and

delivers it.

5.4 Overcooked-Explicit Assistance

Figure 5.3: Additional Layouts that require agents to explicitly help their partner com-
plete a delivery. These new layouts utilizewalls and gates to create situations requiring
explicit assistance.

The layouts in Overcooked-AI [5] are an excellent test for gauging the ability

of participating agents to sync their actions with their partners. It requires agents to

effectively navigate the layout and time their actions in response to their partners in

order to increase efficiency. However, none of these environments elicit the need for

agents to explicitly help out their partner sacrificing their own time.

We intend to evaluate LLM agents’ ability to make the choice to actively help

their partners. If the LLMs cannot make such a choice implicitly, we intend to see the

effect of tuning the directives to bring about such a cooperative intention. To elicit

situations that require one agent to drop their own cooking/delivery and help out their

partners, we extend the Overcooked environment by introducing 2 new facilities (Gates,

Walls) and 2 new layouts. We now introduce the two new layouts:
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5.4.1 Gated Delivery

Visualized in Figure 5.3, the Gated Delivery layout requires both agents to help

out their partners during soup delivery. The two gates, g0 and g1 make the delivery area

inaccessible. Gates can be opened by an agent, provided they are not holding anything

in their hand. Once opened, a gate remains open for a short time which is enough for

an agent to move through it but not enough for an agent to open it in advance before

picking up cooked soup for delivery. This necessitates an agent not holding cooked soup

in their hand to go and open the gate for the delivery agent. The kitchen counters are

replaced by walls to prevent the agents from taking the loophole of placing their soups

temporarily on counters to open the gates. In this environment, both agents are equally

placed, and they need to be acutely aware of their partner’s needs in order to complete

even a single delivery.

5.4.2 Locked

Visualized in Figure 5.3, features two agents in two partitions of the layout.

The agent in the left partition can access onions, plates, a cooker, and a delivery area.

The agent in the right partition has their delivery area access restricted. The agent in the

left partition has to understand that their partner is locked behind a closed gate, holding

a soup. In real-life scenarios, one collaborating partner might find themselves similarly

disadvantaged. To be a reliable partner, the advantaged agent needs to understand the

situation and make the choice to help out their partner since that provides a better

common payoff.
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Chapter 6

Experiments

6.1 Theory of Mind Inference and Situated Reasoning

A coordinating agent is expected to, first and foremost, be mindful of its

partner. Having made a guess about what their partner intends to do, an agent needs to

take environmental setup into consideration before coming to a rational decision. While

recent works have explored the Theory of Mind inference abilities in Large Language

Models, this analysis has been decoupled from situated reasoning abilities crucial for

coordination. We introduce the first LLM-ToM-Reasoning Test Set to systematically

evaluate the ability of Large Language Models to guess their partner’s intentions and

follow up with a reasonable explanation of the next step.

The LLM-ToM-Reasoning Benchmark comprises of three text-based game en-

vironments: CollabEscape, CollabCapture, and Overcooked. In CollabEscape, two co-

ordinating agents need to repair generators in a connected room environment to open an
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escape portal while evading an adversary. In CollabCapture, two agents work together

to corner, trap, and capture an adversary in a connected room environment with doors

and buttons. Finally, we use a text-based version of Overcooked, where two agents

must cook and deliver meals. The LLM-ToM-Reasoning Test Set includes a set of 18

situations extracted from these three imaginary scenarios, designed to evaluate ToM in-

ference and Situated Reasoning abilities of Large Language Models. It is important to

note that we only use the objectives and structures of these games to generate situations

that elicit coordination reasoning.

We evaluate the ToM inference and Situated Reasoning abilities of four dif-

ferent LLMs, namely Vicuna13B, Vicuna33B, GPT-3.5-turbo (ChatGPT), and GPT-4.

While the GPT-4 model has been extensively evaluated for its reasoning and plan-

ning abilities in single-agent and multi-agent scenarios, this is the first work extending

multi-agent coordination evaluation to open-source LLMs.

6.2 Sustained Coordination

While the LLM-ToM-Reasoning Benchmark evaluates single-turn coordination

reasoning in LLMs, ideal agents must be capable of sustained coordination over multiple

turns. The Overcooked-AI environment [5] has been used by several MARL methods

as the go-to evaluation suite for multi-agent coordination and Zero-Shot Coordination.

We utilize the five layouts Cramped Room, Asymmetric Advantages, Forced Coordina-

tion, Coordination Ring, and Counter Circuit, which feature a two-agent coordination
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gameplay for our evaluation.

We provide the LLM with structured inputs consisting of an initial Game

Description, a set of Directives to follow, summarized state information, action history

and a list of feasible medium-level actions at every turn. The LLM produces a medium-

level action and an optional analysis. An action manager interprets this medium-level

action, breaking it down into executable low-level actions based on the verb and location

provided by the LLM.

6.3 Robustness to Partners

It is essential for coordination agents to generalize to different partners. To

test the Robustness of LLM-Co Agents to the choice of partners, we pair them with

Human-proxy agents. These proxy agents utilize a Behavior Cloning model trained on

human-human trajectories collected by [5]. This setting of playing with proxy-human

agents has been used by preceding works [5, 33, 17, 47, 19, 44] as a standard test for

Zero-Shot Coordination (ZSC).

6.4 Explicit Assistance

We use our newly developed layouts for Overcooked (Locked and Gated De-

livery) as test-beds to study the ability of LLMs to recognize and provide explicit assis-

tance to their partners during coordination scenarios. The test settings are similar to

overcooked spanning 400 timesteps.
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Chapter 7

Discussion

Figure 7.1: LLMs performance on the LLM-ToM-Reasoning test set. Partner action
intent prediction accuracy shows the Theory Of Mind ability of LLMs under test and
the optimal action reasoning accuracy infers the Situated Reasoning effect of LLMs
under test. GPT-4 achieves the best performance among tested LLMs.
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7.1 Theory of Mind Inference and Situated Reasoning

To evaluate ToM inference and situated reasoning in LLMs, we propose the

LLM-ToM-Reasoning test set, which is a suite of 18 scenarios posed with questions

among all three games: Collaborative Capture, Collaborative Escape, and Overcooked.

The test set only includes scenarios hand-picked to represent pivotal situations that

require the agent under-test to first take their partner’s possible next actions into active

consideration, reason about the current state, and adjust their actions that ”indirectly”

lead to the best possible outcome. The agent includes both the ToM inference as well

as its own action prediction in the output.

7.1.1 Results

Comparative analysis of LLMs on the LLM-ToM-Reasoning test set We use

the collected LLM-TOM-Reasoning test set to scrutinize the LLMs in the Theory Of

Mind (ToM) and Situated Reasoning aspects, which respectively refer to the ability

to understand the beliefs and intentions of other entities and the ability to contextu-

alize this understanding within the environmental dynamics to formulate appropriate

responses. LLMs under-test are required to solve the questions in the LLM-TOM-

Reasoning test set, where the output answers to questions are manually compared

against the ground truth. First, we calculate the accuracy of the LLM predictions

concerning their partner’s actions to indicate the ToM ability. Then, the accuracy of

predictions for the next appropriate action and analysis of the current scenario shows
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the situated reasoning effectiveness. Figure 7.1 shows that GPT-4 outperforms the other

LLMs, GPT-3.5-turbo, Vicuna-33B, and Vicuna-13B, with only a marginal difference

to ideal responses, indicating a strong potential in understanding and implementing

continuous coordination tasks. This makes GPT-4 suitable for developing Coordination

Agents out of the box, with minimal engineering.

7.2 Sustained Coordination

Sustained coordination refers to the ability of agents to continuously collab-

orate and adapt their actions over extended periods. Robustness to Partners is about

an agent’s ability to adjust and adapt to interacting with new or unseen partners. We

use GPT-4 as the LLM of choice to test these aspects. The choice of LLM is dictated

by the fact that only GPT-4 is able to display satisfactory reasoning that will be re-

quired consistently for Sustained Coordination. We evaluate the LLM-Co agent on 400

timesteps of gameplay in the Overcooked-AI environment. The evaluation metric used

in Overcooked [5] is the sparse reward obtained when one whole delivery is completed

by the agents. Each delivery wins the agents 20 points.

7.2.1 Baselines

We use Self Play with Proximal Policy Optimization (PPO) and Population-

Based Training with PPO as the baselines for comparing AI-AI gameplay.

For benchmarking AI-Human Proxy gameplay, we pair our agents with Behav-

ior Cloning model trained on actual human trajectories collected by [5]. As a baseline
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Layouts

Agent Type Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.

PPOSP 198.8± 4.06 167.2± 3.63 190.8± 4.25 151.9± 3.28 122.3± 3.80

PBT 216.9± 1.31 190.1± 8.64 173.8± 18.27 169.5± 10.09 140.1± 13.86

LLM-Co 220± 0 280± 0 180± 0 200± 0 160± 0

Table 7.1: Comparison of game play between self-play baselines (PPO, and PBT) and
LLM-Co Agents. LLM-Co agents outperform RL methods on 4 out of 5 layouts, demon-
strating highly effective reasoning under sustained coordination.

for comparison, we use the method of using a PPO agent trained with a human

model established in [5] and observed in the follow-up works [17, 47, 19, 44] approaching

Zero Shot Coordination.

7.2.2 Results

The LLM-Co agent efficiently completes the Overcooked-AI challenge over

a long horizon We pair two LLM-Co agents together to jointly coordinate and com-

plete the cooking and delivery task in Overcooked-AI. This is analogous to testing

agents trained with self-play methods being asked to jointly perform the task. We ob-

serve through visualizations of the gameplay that LLM-Co agents make effective use of

all resources available to them to complete multiple deliveries effectively. In fact, with-

out being trained or fine-tuned for the task, LLM-Co agents outperform or nearly match

Self-Play baselines trained using Proximal Policy Optimization [30] or Population-Based

Training [11] which are the gold standard for Multi-Agent Tasks on. Table 7.1 shows
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a numerical summary of the scores obtained by agents. These scores represent aver-

ages obtained from 100 runs across with standard deviation across 5 seeds for MARL

agents. For LLM-Co agents, the score obtained by agents for a fixed game descrip-

tion and directives remains the same as the agent always chooses to take the same

medium-level action for a given state and history. This outcome is noteworthy because

it demonstrates that Language Learning Models (LLMs), specifically GPT-4 [22] in this

case, can outperform RL agents at cooperative multi-agent tasks with minimal scaffold-

ing. We observed that LLM Agents are capable of achieving sustained coordination,

adjusting to their partners, and correcting their own actions consistently.

The LLM-Co agent generates explainable outputs through free-text Rein-

forcement Learning (RL-based) agents cannot provide an underlying rationale for

their actions, making it challenging to understand how their actions contribute to

broader objectives. This understanding is crucial for the development of safer and more

reliable agents, as well as for debugging when unexpected behaviors occur. The LLM-Co

agent addresses this gap by generating medium-level actions and providing high-level

reasoning for such a selection. This allows us to extract comprehensive insights into the

decision-making processes under given conditions by examining the ”explanation” gen-

erated by the language model during gameplay. We observed that LLM-Co agents (w.

GPT-4) always select an action from the provided set of feasible actions without hallu-

cinations across all layouts. The explanation itself serves as Chain-of-Thought strategy

for enabling better reasoning in the LLM.
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Layouts

Agents Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.

BC 103.5± 3.38 136.5± 7.00 59.0± 5.38 20.5± 4.33 38.0± 3.99

PPOBC 156.4± 1.48 72.6± 19.44 126.4± 3.24 58.9± 2.98 69.5± 2.18

LLM-Co 160± 0 180± 0 160± 0 120± 0 140± 0

Playing from swapped positions:

BC 110.0± 3.39 137.5± 8.40 70.0± 4.00 31.0± 5.00 44.0± 3.02

PPOBC 163.9± 1.61 178.8± 2.65 129.8± 3.59 76.9± 2.29 57.6± 2.50

LLM-Co 180± 0 140± 0 160± 0 80± 0 120± 0

Table 7.2: Comparison of AI-Human Proxy Game play. We compare Behavior Cloning
Agents, PPO BC Agents with LLM-Co agents utilizing the GPT-4 LLM. The LLM-Co
agents are able to outperform or match the performance of Reinforcement Learning
models, indicating that LLM agents are robust to the choice of partner agents.

7.3 Robustness to Partners

7.3.1 Results

The LLM-Co agent is robust to the choice of partner. It is highly likely that an

agent is paired up with a biased or sub-optimal partner. It is known that self-play agents,

when paired with humans, tend to struggle because their behavior diverges from what

they consider to be the optimal strategy [5]. The LLM-Co agent, on the other hand,

does not face this issue. Their actions are based on verbal reasoning, and they adapt

to the current situation rather than adhering to a determined policy. Consequently,
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they outperform Self-play-based methods trained with human data at AI-human proxy

gameplay as shown in table 7.2. The table describe the average score obtained by agents

over 400 timesteps when paired up with the proxy human agent from both positions.

7.4 Explicit Assistance

Layouts

Conditions Locked Gated Delivery

Without Helper Directive 160 0

With Helper Directive 240 180

Table 7.3: Comparison of Gameplay in the Overcooked-Assistance Layouts with and
without Helper Directive. The results indicate that the Large Language Model needs
to be prompted to be aware of situations where their partner might need assistance in
order to be effective in the Overcooked-Assistance layouts.

Finally, we test the ability of the LLM-Co agent to provide explicit assistance

to their partners in the new Overcooked layouts defined in 5.4, where proactive help is

necessary to complete the task.

7.4.1 Results

the LLM-Co agent requires a helping directive to choose to help The LLM-

Co agent, provided with the same prompt and directives as used in Overcooked-AI,

struggles to recognize and help their partner agents in Locked and Gated Delivery

environments. However, a simple directive informing the LLM-Co agent to ”help their
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partners when the situation demands” makes them actively look for opportunities to

help their partners. We see that agents tend to help partner agents during the time

they are waiting for their own soup to be cooked by choosing the open gates for the

waiting agent. While this is not the most efficient strategy, which would have been to

always help out a waiting agent, it still points to the agent’s ability to explicitly help

out during coordination. Table 7.3 shows scores obtained by agents over 400 time steps.

Layouts

Agents Locked Gated Delivery

PPOSP 132.83± 7.31 134.88± 5.99

PBT 175.8± 1.69 178.6± 9.76

LLM-Co 220± 0 180± 0

Table 7.4: Comparison of Gameplay on Overcooked-Assistance Layouts between RL
baselines and LLM Agents. The RL baselines being able to effectively solve the deliveries
indicates that the environments are solvable through self-play training. The high scores
achieved by LLM agents demonstrate that LLM agents are capable of reasoning for
providing explicit assistance to their partners.

The LLM-Co agent outperforms MARL methods at Overcooked-Co-op lay-

outs Table 7.4 shows the performance of Self Play agents trained using PPO and PBT

and compares it with the abilities of the LLM-Co agent provided with a helper directive.

Since a reward is provided to both agents for delivery in Self Play training, we expected

to see them gain the ability to open gates as it results in a reward after a short delay.

In spite of this, the LLM-Co agent has the upper hand in their ability to deduce the
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right actions required to facilitate their partners.
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Chapter 8

Case Studies

Figure 8.1: The LLM-Co agent (Blue) understands that its partner has already picked up
an onion and will probably end up placing it in the cooker to complete the requirement.
So, it chooses to ”pick up a plate” which would help in the next stage.

LLMs perform long-term reasoning while considering their partner’s in-

tentions. The Overcooked-AI environment and cooperative tasks in general require

agents to plan ahead while considering their partner agents’ intentions. Figure 8.1 pro-

vides a visual summary of the LLM-Co agent’s rationale behind selecting the action

”pick up a plate from p0” when there are already two onions in the pot with the part-
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ner agent having already picked up the third one. The LLM-Co agent reasons that

their partner is probably going to place their onion in the cooker next and consequently

decides to take the preemptive action of picking up a plate.

Figure 8.2: The LLM-Co Agent (Blue) thinks about the partner’s mind states (shown
in red) and makes an informed decision (highlighted in green) to move away to make
way for the partner agent)

LLM-Co Agents enable their partners. Effective coordination requires agents to

have an understanding of how they might be inhibiting their partners. Figure 8.2 shows

the LLM-Co agent’s reasoning in a situation where two cookers are located in a corner

(Coordination Ring environment), and one of them is cooking the soup while the other

is missing some onions. Since the soup is not cooked, the agent with a plate is just

waiting near the cooker to load the soup onto the plate. However, this time could be

used by the other agent to put an onion in the adjoining cooker. In this situation, the

LLM-Co agent is able to realize that it needs to move away to enable its partner.

LLM-Co agents are sensitive to their partner’s actions and correct their

behaviors based on the resulting state changes. In the Overcooked-AI environ-
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Figure 8.3: The LLM-Co Agent (Blue) realizes that the onion it picked up cannot be
used and decides to correct itself by placing it on the kitchen counter to free up its
hands.

ment, each agent gets to perform one action at every time step. This leads to situations

where an agent might end up taking an action that seems optimal in the situation but

is soon realized to be sub-optimal due to their partner’s action. A situation like this is

demonstrated in Figure 8.3. The Blue agent has picked up an onion but needs a plate.

In such a situation we observe that the agent is able to realize its sub-optimal action

selection and notice that a plate has been made available by the other agent. In this

case, the LLM-Co agent places the object on the nearest available counter, freeing its

hands. In the subsequent step, it goes and picks up a plate to load the soup.
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Figure 8.4: The LLM-Co Agent (Blue) recognizes that its partner is stuck behind a
closed door an chooses to open the gate g0 to enable them.

LLM-Co agents explicitly help out their partners by opening gates Figure

8.4 shows a visual summary of the reasoning followed by LLM-Co agents before choosing

to open gates. It can be clearly seen that they realize the imminent rise in efficiency

that will result from allowing their partners to access the delivery areas and recognize

that the right way to do this is by opening the gate for them.
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Chapter 9

Limitations

While LLM agents are a promising avenue for developing coordination agents,

it is important to point out some limitations of these methods. First, LLM agents are

much more expensive, in terms of latency as well as memory, compared to Reinforcement

Learning agents, which are usually much smaller models. This limitation makes it

difficult to utilize LLM Agents off the shelf in an online system.

Secondly, as of now, the action space of the LLM is hand-curated, as LLMs are

not the best option for directly generating low-level control actions due to both latency

and their inability to navigate in an environment.
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Chapter 10

Conclusion

In this study, we probe the reasoning abilities of Large Language Models for

achieving Multi-agent coordination. We introduce the LLM-Co Framework to augment

large language models to complete multi-agent coordination games. We evaluate LLM

Agents across five aspects of Coordination, namely Theory of Mind Inference, Situated

Reasoning, Sustained Coordination, Robustness to Partners, and the ability to provide

Explicit Assistance. We also designed the LLMToM-Reasoning set to assess and com-

pare the Theory of Mind inference and Situated Reasoning Abilities of various Large

Language Models. We show that LLM-Coordination Agents are capable of Sustained

Coordination in the Overcoked Environment and are Robust to the choice of partner.

Finally, we introduce two new layouts to the Overcooked-AI environment and demon-

strate the ability and conditions required for Large Language Models to provide explicit

assistance to their partners during coordination games.
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Appendix A

Prompt Details

A.1 Overcooked Game Description Prompts

Overcooked Task Description Prompt

In the game Overcooked, I am Alice, my teammate is Bob.

LAYOUT DESCRIPTION.

We must coordinate to make onion soups with 3 onions each. Once a soup is cooked it

needs to be placed on a plate and delivered. I can only carry one item at a time. My

goal is to maximize the number of deliveries. I want to be efficient and prepare for the

next soup while the current soup is cooking. I’ll provide my action history, current state,

teammate’s status, and my possible actions. Help me select the best action from the

list. Format your response as: Explanation:⟨Brief explanation for next action including

a prediction of Bob’s next action⟩. Action: ⟨action⟩. Only select one action. Do not

say anything else. Got it?
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Overcooked Task Description Prompt with Helper Directive

In the game Overcooked, I am Alice, my teammate is Bob.

LAYOUT DESCRIPTION.

We must coordinate to make onion soups with 3 onions each. Once a soup is cooked

it needs to be placed on a plate and delivered. I can only carry one item at a time.

My goal is to maximize the number of deliveries. I want to be efficient and prepare for

the next soup while the current soup is cooking. I’ll provide my action history, current

state, teammate’s status, and my possible actions. I want to prefer helping the other

player with their cooking and delivery if the situation arises. Help me select the best

action from the list. Format your response as: Explanation:⟨Brief explanation for next

action including a prediction of Bob’s next action⟩. Action: ⟨action⟩. Only select one

action. Do not say anything else. Got it?

A.2 Overcooked Layout Prompts

Cramped Room

The environment is rectangular with 2 onions dispensers (o0, o1), cooker (c0), plate

dispenser (p0) and delivery area (d0). Additionally there are kitchen counters (k0 to

k8) which can be used to temporarily store onions and plates while you do something

else. Objects on counters can be picked up later and should be considered as they may

be closer than items in dispensers.

Asymmetric Advantages

54



There are two partitions in the current environment. Bob is in the left partition with

access to onion dispenser (o0), delivery area (d0), plate dispenser (p0) and kitchen

counters (k0, k1, k2, k3, k4, k11, k12, k16, k18, k20, k21, k22, k23). Alice is in the

right partition and has access to onion dispenser (o1), delivery area (d1), plate dispenser

(p1) and kitchen counters (k6, k7, k8, k9, k10, k14, k15, k17, k19, k25, k26, k27, k28).

Both have access to both cookers (c0, c1). Kitchen counters (k0 to k28) can be used to

temporarily store onions and plates while you do something else. Objects on counters

can be picked up later and should be considered as they may be closer than items in

dispensers.

Forced Coordination

The environment is split into two partitions, one with each player. In the right partition,

Alice has access to cookers (c0, c1), delivery area (d0) and kitchen counters (k6, k8,

k12). In the left partition, Bob has access to onion dispensers (o0, o1), plate dispenser

(p0) and kitchen counters (k1, k10). Kitchen counters can be used to temporarily store

onions and plates while you do something else. Both players have access to shared

counters (s0, s1, s2) which can be used to transfer onions and plates depending on the

situation. Note that the objects on the shared counters can be accessed by both players.

Objects on counters can be picked up later and should be considered as they may be

closer than items in dispensers.

Coordination ring

The environment is narrow and circular, with onion dispensers (o0, o1), plate dispenser

(p0), cookers (c0, c1), and a delivery area (d0). Additionally there are kitchen counters
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(k0 to k10) which can be used to temporarily store onions and plates while you do

something else. Objects on counters can be picked up later and should be considered

as they may be closer than items in dispensers.

Counter Circuit

The environment is circular with two onion dispensers (o0, o1), plate dispenser (p0),

cookers (c0, c1) and delivery area (d0). There are also the shared counters (s0, s1, s2,

s3) which can be used to pass objects from one player to the other. Additionally there

are kitchen counters (k0 to k15) which can be used to temporarily store onions and

plates while you do something else. Objects on counters can be picked up later and

should be considered as they may be closer than items in dispensers.

Gated Delivery

The environment is rectangular with 2 onions dispensers (o0, o1), cooker (c0) and plate

dispenser (p0). The delivery area (d0) is inaccessible behind closed gates and can be

accessed by opening one of the gates (g0, g1). A gate can only be opened by a player

if they are not carrying an object. Once the gate is opened it will only stay open for a

brief time and then close on its own.

Locked

The environment is divided into 2 partitions. Alice is in the left partition with access

to onion dispenser o0, plate dispenser p1, cooker c0, and delivery area d0. Bob is in

the right partition with access to onion dispenser o1, plate dispenser p0, and cooker c1.

The two partitions are connected by gate g0 which can be opened if a player is holding

nothing. Opening the gate will allow players to move freely between partitions. The
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gate will close after enough time automatically.
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Appendix B

Details of LLMs used in Experiments

We use the following Large Language Models in our Experiments

• GPT-4: We use the gpt-4-0613 [22] model from OpenAI through their API.

• ChatGPT: We use the gpt-3.5-turbo-0613 [23] model from OpenAI through their

API.

• Vicuna13b, Vicuna33b: The Vicuna models developed by [7] are based on the

LLaMA [34] architecture. We use the huggingface [40] library to implement the

Vicuna models.
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