Title
Full Generational Accounts: What Do We Give to the Next Generation?

Permalink
https://escholarship.org/uc/item/4rm8s7xf

Journal
Population and Development Review, 43(4)

ISSN
0098-7921

Authors
Lee, Ronald
McCarthy, David
Sefton, James
et al.

Publication Date
2017-12-01

DOI
10.1111/padr.12113

Peer reviewed
Generational Wealth Accounts: did public and private inter-generational transfers offset each other over the financial crisis?

David McCarthy, University of Georgia, dmccarth@uga.edu
James Sefton, Imperial College
Ronald Lee, University of California, Berkeley
Joze Sambt, University of Ljubljana

Abstract: We develop Generational Wealth Accounts (GWA): the first set of balance sheets, broken down by generations, to include all human capital; tangible wealth; financial wealth, and transfer wealth, and the uses to which these resources are put. We then use them to measure the size, nature (public or private; capital or current) and direction of inter-generational transfers and assess the sustainability of public and private consumption plans. We confirm that the public sector in the UK faces serious fiscal challenges but show that the private sector is close to balance. Although public sector finances worsened significantly over the crisis, the private sector balance improved and capital transfers to the young increased, more than fully offsetting this deterioration. We find that increases in house prices redistributed resources away from the young and towards the old but had little effect on overall sustainability.
1. Introduction

It has often been argued that younger generations will carry an outsize share of the cost of the financial crisis. Not only did the crisis lead to an increase in public debt (which will be serviced largely by the young), but since the crisis the young have benefited far less from the significant increase in private-sector wealth (which predominantly benefited the old). Yet this analysis ignores the ability of the generations to share resources with each other through inter-generational transfers. Up to now, the academic literature has only focused on individual components of these transfers (those through the public sector, or those through bequests) but has not integrated them into a single consistent framework. As a result, we do not have a comprehensive view of how much living generations transfer to or from future ones, how these transfers are made, and whether they are sufficient to support sustainable levels of consumption for future generations, or how all these transfers respond to macro-economic shocks such as the financial crisis. This is the focus of this paper.

Insert Figure 1 near here.

Figure 1 illustrates why it is necessary to examine inter-generational transfers at the level of the whole economy. Panel A shows that the public sector net worth of the UK has fallen from just below 100% of trend GDP to less than 0 over the last 30 years, largely due to increases in public debt. Yet, over the same period, the net worth of the UK private sector has risen from just above 300% to over 500% of trend GDP. Much of this growth in private wealth is likely due to life-cycle effects in an ageing population. But a substantial fraction will be bequeathed to future generations. It therefore seems plausible that increases in bequests may at least partly compensate the young for the rise in public sector debt. But whether this is actually so, and by how much, is still an open question. Indeed, Panel B also suggests that changes in public and private sector net worth are offsetting over shorter horizons as the changes are strongly negatively correlated.

In this paper, we develop and present Generational Wealth Accounts (GWA) in order to provide an integrated framework for studying inter-generational transfers. GWA allow us to measure how much current generations are likely to leave future generations, not only through the public sector but also through the private sector, and then whether as current or capital transfers (bequests and *inter-vivos* gifts). We then show how these accounts can be used to assess the aggregate sustainability of the consumption plans of current and future generations. We calculate GWA for the UK over the period 2005-2015 and use the results to measure how inter-generational transfers and sustainability changed in response to the financial crisis.
The GWA employ the framework of the National Transfer Accounts (NTA) of Lee and Mason (2011), to extend the public sector Generational Accounts (GA) of Auerbach, Kotlikoff and Gokhale (1991) to the whole economy. GWA’s are a balance sheet for a given year of the present value of all resources (assets) and uses (liabilities) belonging to each generation. They include human capital, all tangible forms of wealth (real estate, financial wealth), and transfer wealth – the capitalised value of public and private inter-generational transfers (Willis (1983) and Lee (1994)). We capture cohort differences by disaggregating age, period and cohort effects using a modified approach of Deaton and Paxson (1994). Using an intertemporal budget constraint for each generation, we then calculate a Savings Gap (SG), equal to the difference between the present value of that generation’s available resources and the uses to which those resources will be put.

In GWA, the sustainability of the generational consumption plans is tested through two inter-temporal budget constraints: one for the private sector and one for the public sector. The private sector constraint is that the economy’s aggregate SG (defined as the sum of all living and unborn generations’ SG’s) must equal zero. If this constraint is satisfied, the capital surpluses of some generations are sufficient to cover the deficits of others, and the private sector has sufficient total resources to cover the consumption plans of all generations. We therefore use the aggregate SG as our measure of the distance of the private sector from sustainability.

The GWA’s public sector inter-temporal budget constraint is the same as the constraint at the core of GA. Like them, we label any shortfall in the public sector as the Fiscal Gap (FG) and argue that it measures the distance of the public sector from sustainability. We call the sum of the aggregate SG and the FG the Consumption Gap (CG) and show why it is a natural measure of the distance of the whole economy from sustainability. Unlike simpler measures, such as the national savings rate, the CG takes account of future demographic development, public and private assets and liabilities, and future transfer flows in both the public and the private sectors.

Our first main finding is that private sector consumption plans are very close to being sustainable. Although older generations have large capital surpluses (negative SG’s: their resources exceed the present value of their future consumption), younger generations are in the opposite position (positive SG’s: the expected present value of their future consumption exceeds their available resources). Because surpluses must be passed down as bequests or inter-vivos capital transfers, and the combined surplus of the old almost equals the aggregate deficit of the young, the aggregate SG is close to 0. However, because we confirm previous results that public sector consumption

1 The NTA measure inter-generational transfers within a population in a given year. They include public and private transfers, but only focus on current transfers (so ignore capital transfers and bequests). NTA’s have been calculated for around 50 countries. See Lee and Mason (2014) and UN (2013) for details of the approach. A database of results can be found at www.ntaccounts.org.

2 We thank two anonymous referees for suggesting that we allow for cohort effects in the base case of our analysis.
plans are unsustainable (the FG is large), we find that aggregate consumption plans are, in fact, unsustainable (the CG is large).

Our second main finding relates to the off-setting nature of changes in public and private transfers over the financial crisis. We find that between 2005 and 2015, the FG increased sharply, reflecting a worsening in public sector finances. In large part, this was a result of the fiscal expansion following the financial crisis in 2008. In contrast, we find that over this period, the old increased their asset holdings substantially, but as we estimate they will only consume around 20% of this increase, the balance will be passed to the young. Overall, the deterioration in the sustainability of the public sector, although predominantly carried by the young, will be more than offset by a rise in private capital transfers down the generations. In our terminology, the aggregate SG fell by enough to offset the entire change in the FG. The CG was therefore marginally lower in 2015 than it was before the crisis in 2005, and the sustainability of aggregate consumption improved over the period.

To the best of our knowledge, this finding is new: no analysis of inter-generational interactions up to this point has simultaneously accounted for all intergenerational transfers – public and private, capital and current – in the context of population ageing. For example, many researchers have used GA to argue that because of the ageing of the population and the resultant rising fiscal demands, we will be leaving substantial public debts to our descendants that may be damaging to their wellbeing in both the UK and the US, a finding that our analysis of the public sector confirms. Others have examined sustainability in the private sector under the assumption that each cohort is self-sufficient, i.e. ignoring bequests and \textit{inter-vivos} transfers, either by trying to explain the aggregate savings rate or focusing more specifically on whether the older working generations are saving enough to support their retirement. However, bequests are found to be substantial, and in addition there is evidence that \textit{inter-vivos} transfers of a capital nature may be badly under-recorded in surveys.

We argue that because all of these prior analyses ignore elements of the possible off-setting nature of public and private sector transfers, they are incomplete. This is despite the long literature going back to Ricardo (1820/1951) stressing precisely this point. Since Barro’s (1974) formalisation

3 As discussed later, we recognise that this has important implications for intra-generational equity. However, the focus of this paper is on measuring inter-generational sustainability, and we leave considerations of fairness to future work.
5 See, for example, OBR (2016) for the UK and Gokhale et al. (1999), Batini et al (2011), GAO (2018), CBO (2019) for the US.
of Ricardo’s equivalence proposition, there has been considerable empirical work on whether
transfers in the public sector are offset by transfers in the private.10 de Mello \textit{et al} (2004) discuss
some of the difficulties with these empirical tests. They highlight that the tests are performed on
savings rates from national accounts and therefore struggle to incorporate changes in levels of
wealth. They also mention adjusting for corporate payout policy, the sometimes-marginal
distinction between consumption goods and investment goods and the impact of demographic
changes. Though we do not claim to have a panacea – far from it, as we need to make some
alternative assumptions, outlined below – we do claim that GWA suffers less from these particular
difficulties.11

While in principle, GWA’s could be calculated for subgroups of each cohort (and even for
individuals), in this paper we use a representative agent approach to focus on aggregate results.
We therefore abstract from intra-cohort heterogeneity in both public and private-sector inter-
generational transfers. While we acknowledge the importance of this issue, especially in the context
of the current high levels of inequality relative to the 1980s or 1990s12, we believe it is also important
to understand the distribution of resources across generations. As this paper shall demonstrate,
there are significant flows across the generations and any policy aimed at reducing inequality must
take account of this generational interconnectedness. We leave to future work an examination of
intra-cohort inequality within this context.

The structure of this paper is as follows. The next section provides the theoretical framework
underlying GWA’s, followed by a section discussing the data and methods we use for their
estimation. The fourth section reports our results, and the final section concludes. To improve
the readability of the paper, we relegate technical details, including robustness checks, to online
appendices.

2. Theoretical framework

We start this section by defining the reference and scope of the GWA. We then use the lifetime
inter-temporal budget constraint of each representative individual to define the savings gap (SG)
of their generation. Next, we develop the framework for private generational accounts and integrate

10 See, for example, the surveys of Seater (1993), Elmendorf and Mankiw (1999) and Ricciuti (2003), which empirically
test whether the private sector behaviour offsets any fiscal expansion or contraction of the public sector. More recently
de Mello, Kongsrud, Price (2004), and Rohn (2010) found evidence of ‘partial’ equivalence on data from all OECD
countries.

11 A separate, but related, literature concentrates more on the inter-generational impact of the great recession on the
different generations. See, for example, Glover, Heathcote, Krueger and Ríos-Rull (2020), Hur (2018), Peterman and
Sommer (2019). However, their focus is predominantly on the public sector and particularly on ability of social security
to share risk across the generations.

12 See Burkhauser et al (2016) for an examination of trends in inequality in the UK since the mid-1970’s. There was
in which they document increasing levels of intra-cohort inequality in the US.
these with the public generational accounts and the fiscal gap (FG) measure of Auerbach et al (1991). We use the inter-generational budget constraints of the private and public sectors to show how the SG and the FG measure the distance of the public and private sectors respectively from sustainability, as well as to show why the consumption gap (CG) measures the aggregate sustainability of the whole economy. Details of data and estimation are left to section 3.

2.1 Reference and scope

Individuals are the reference for GWA, not households; and so all flows must be allocated to individuals. Likewise, we examine all resource flows from the point of view of the individual – so cashflows or services received by individuals (denoted with a superscripted plus) have a positive sign and payments made (denoted with a superscripted minus) have a negative sign. We abstract from intra-generational inequality by using a representative agent for each generation. A generation comprises all residents of the country that were born in the same year\(^{13}\), so the total over all living generations is the resident population. We index generations by their year of birth, \(k\), and set the index to 0 in the base year of the GWA. So unborn generations will be labelled \(k=1,2,...\) and living generations will be labeled \(k=-\omega, -\omega+1,...,0\), where \(\omega\) is the oldest age that individuals are assumed to live to. We denote by \(\rho^\prime_k\) the demographically-adjusted discount factor for generation \(k\),

\[
\rho^\prime_k = \frac{N_{k,t}}{N_{k,\max(0,k)}} (1+r)^{-t},
\]

where \(N_{k,t}\) is the size of the resident population in year \(t\) of the cohort born in year \(k\). \(N_{k,t} = 0\) for \(t < k\). \(\rho^\prime_k\) takes account of the time value of money between time 0 and \(t\), as well as the demographic development of cohort \(k\) over this period due to mortality and migration.

The scope of the GWA is the same as the scope of the System of National Accounts (SNA)\(^{14}\). We have only two sectors – public and private. Public sector flows are denoted with a superscript \(g\) (for government) and private sector flows with an \(h\) (for household sector\(^{15}\)). How we map items in the SNA to each sector is discussed in the section on data and methods.

2.2 Public and private sector generational accounts

\(^{13}\) Thus, in a given year a generation includes all immigrants born elsewhere but now resident in that year, and excludes all emigrants born in the country but no longer resident in that year. This treatment is consistent with the definition of NNI in the SNA.

\(^{14}\) It therefore ignores the use of natural resources, the transmission between generations of intangibles such as language and culture, as well as transfers of time through the household production of unremunerated personal services.

\(^{15}\) We use \(h\) to denote the household sector, as in the UK National Accounts, but stress that the individual is the reference agent in the GWA.
To retain consistency with Lee (1994), we define the private generational account, \mathbf{gd}_k^h, as the demand for real and financial assets to support life-cycle consumption, after accounting for public and private transfer wealth, so:

$$\mathbf{gd}_k^h = \begin{bmatrix}
\text{PV of public consumption} & \text{PV of private consumption} & \text{Human capital} \\
\sum_{t=0}^{a+k} c_{k,t}^{g} \rho_{k,t}^g & \sum_{t=0}^{a+k} c_{k,t}^h \rho_{k,t}^h & -\sum_{t=0}^{a+k} y_{k,t}^j \rho_{k,t}^j \\
\text{Life cycle demand for assets} & \text{Public transfer wealth} & \text{Transfer wealth} \\
\sum_{t=0}^{a+k} (\tau_{k,t}^{h,+} - \tau_{k,t}^{h,-} - \tau_{k,t}^{h,\text{ROW}}) \rho_{k,t}^g + \sum_{t=0}^{a+k} (\tau_{k,t}^{g,+} - \tau_{k,t}^{g,-}) \rho_{k,t}^j \\
\text{Private transfer wealth} & \text{Public transfer wealth} & \text{Transfer wealth}
\end{bmatrix} \tag{2}$$

where the flows $c_{k,t}^{g}$ and $c_{k,t}^h$ are the public and private consumption respectively, and $y_{k,t}^j$ is the labour income of the representative member of generation k in year t.\(^{16}\) Public consumption consists mainly of age-specific public expenditure on education and health, as well as expenditure on public goods such as defence and the maintenance of law and order. We divide transfer wealth into private and public transfer wealth. Private transfer wealth is the present value of future private transfers received from residents (transfers received by the representative member of generation k in year t are denoted $\tau_{k,t}^{h,+}$) less private transfers paid to residents (denoted $\tau_{k,t}^{h,-}$),\(^{17}\) and net private transfers paid to the rest of the world ($\tau_{k,t}^{h,\text{ROW}}$).\(^{18}\) Similarly, public transfer wealth is the present value of future transfers received by the representative agent from the public sector ($\tau_{k,t}^{g,+}$) less transfers paid to the public sector ($\tau_{k,t}^{g,-}$).\(^{19}\)

The private generational account must be funded from either personal wealth holdings or capital transfers (bequests or \textit{inter-vivos} gifts) from other generations. These capital transfers will be

\(^{16}\) To allow us to examine the role played by housing in more detail, in our results we split private consumption into housing consumption (rents and imputed rents on owner-occupied housing) and non-housing consumption (everything else). For notational convenience, we do not show this split in the formulae.

\(^{17}\) In any year the total of private transfers paid by residents to residents must equal the total of transfers received by residents from residents, so $\sum_{t=0}^{a+k} \tau_{k,t}^{h,+} = \sum_{t=0}^{a+k} \tau_{k,t}^{h,-}$. This leaves net transfers to the RoW as a balance in the private transfer system.

\(^{18}\) There is insufficient information to break down transfers to RoW into received and paid. We therefore simply allocate the net transfers paid, after splitting them between public and private. Private transfers are predominantly net remittances to families abroad.

\(^{19}\) Note that this excludes net public transfers to the RoW, which are pension or social benefits paid to individuals abroad plus transfers or contributions to other countries and international institutions such as the EU, the IMF or NATO, less any such transfers received. These are paid for by taxes on residents (or by borrowing), but unlike other forms of public consumption, are not received as a transfer by domestic households. We therefore account for these by capitalising them and adding them directly to the fiscal gap.
outflows if wealth holdings are more than is sufficient to fund the account, and will be inflows if
the wealth holdings are insufficient20.

To isolate the impact of these capital transfers, we define the per capita savings gap, denoted \(s_{g,k,0} \),
as the difference between the private generational account and the wealth actually owned by the
representative agent of generation \(k \) in the base year, denoted \(w_{k,0} \);21 so:

\[
s_{g,k,0} = \frac{g_{a,k,0}}{\text{Private generational account}} - \frac{w_{k,0}}{\text{Net Worth}}.
\]

(3)

The savings gap thus measures the extent to which the actual asset holdings of a representative
member of each cohort fall short of (or, if negative, exceed) their life-cycle demand for assets, after
allowing for any transfer wealth. Because transfer wealth only includes current transfers, the
savings gap measures the private funding gap of any one generation that must be filled through
capital transfers (bequests or \textit{inter vivos} gifts) from other generations22. In the GWA we make no
assessment of whether these capital transfers are accidental or desired; we simply quantify their
magnitude. Pure life-cycle savers expecting to receive or leave no bequests and with access to
perfect annuities markets would have savings gaps of zero at every age.

Note that the private sector generational account incorporates public transfer wealth. Other than
a change of sign (because of our focus on the individual, rather than the public sector), we follow
GA in defining the public sector per capita generational account as:

\[
g_{a,k,0}^g = \sum_{t=0}^{\omega_k} \left(r_{k,t}^{g,+} - r_{k,t}^{g,-} \right) p_{k,t}^r ,
\]

(4)

which is equivalent to the per capita public-sector transfer wealth.

In these equations, accounting for public consumption requires some care. It must be treated as if
there was a financial transfer to the individual (\(r_{k,t}^{g,+} \)) who then uses this transfer to buy
the consumption good (\(c_{k,t}^g \)). Public consumption is therefore both a resource and a use, nets out in
the individual’s inter-temporal budget constraint and does not affect their savings gap, but still
enters into the definition of public transfer wealth and the public sector generational account (4).
Note that public transfers to the RoW cannot be treated in this way and are therefore excluded

20 In Appendix A, we link the private generational account to the within-period flow balance used in the NTA.
21 To allow us to examine the role of housing in more detail, we split wealth between housing wealth gross of mortgage
debt, and other wealth (net of mortgage debt) in our tables. For notational convenience, this split is not shown in the
formulae.
22 This is a different approach to Gokhale \textit{et al} (1996) who impose a budget constraint on each generation by assuming
these capital transfers are zero or negligible.
from equation (4). As discussed in footnote 18, we capitalise these and include them in the fiscal gap directly.

2.3 The inter-generational budget constraints and consumption sustainability

To assess sustainability, we make use of the inter-temporal budget constraints for the public and private sectors. We first define the aggregate savings gap at time 0 as the sum of per capita savings gaps across all individuals in all current and future generations:

$$SG_0 = \sum_{k=-\infty}^{\infty} N_{k,\max(k,0)} s_{k,0} = \sum_{k=-\infty}^{\infty} N_{k,\max(k,0)} ga_{k,0} - \sum_{k=-\infty}^{0} N_{k,\max(k,0)} w_{k,0}$$

$$= \sum_{k=-\infty}^{\infty} GA_{k,0}^h - NW_0^h,$$

where $GA_{k,0}^h$ denotes the aggregate private generational account of generation k and NW_0^h is the net worth of the private sector (equal to the total value of assets held by the living generations, as the unborn by assumption own nothing), both at time 0. Sustainable private consumption plans would require that $SG_0 = 0$. We therefore use SG_0 as a measure of the distance of private consumption plans from sustainability.

Likewise, following GA, the FG is defined as the net public transfer deficit plus the capitalised value of unallocated consumption, in this case net public-sector transfers abroad, less the public sector net worth. In our notation, it can be expressed as:

$$FG_0 = \sum_{k=-\infty}^{\infty} N_{k,\max(k,0)} ga_{k,0}^g + \sum_{k=-\infty}^{\infty} N_{k,\max(k,0)} \sum_{t=0}^{\omega+k} t_{k,t}^{g,Row} \rho_{k,t} - NW_0^g$$

$$= \sum_{k=-\infty}^{\infty} GA_{k,0}^g + T_0^{g,Row} - NW_0^g,$$

where $T_0^{g,Row}$ is the present value of future net public-sector transfers to the RoW. A sustainable public sector would require that $FG_0 = 0$. We can therefore use FG_0 as a measure of the distance of public consumption plans from sustainability.

23 The FG is now reported annually by the UK (OBR, 2017) and US Governments (GAO, 2018), although definitions do vary slightly. Fiscal Gaps are sometimes measured over a finite horizon assuming a terminal debt to GDP ratio. Also we balance to Public Sector Net Worth and not the Public Sector Net Financial Liability, so including the value of non-financial assets held by the public sector.
We define the distance of the total economy from aggregate sustainability, called the consumption gap, as the sum of the savings and fiscal gaps, so $CG_0 = SG_0 + FG_0$. We use this terminology to emphasize that if the consumption gap is small, aggregate consumption plans are sustainable, even if some transfer of resources between the public and private sectors may be required at some point in the future to restore fiscal and savings balances.

To see why the consumption gap is a natural measure of aggregate sustainability, use the definitions of SG_0 and FG_0 from equations (5) and (6), substitute in the definitions of $GA^h_{k,0}$ and $GA^r_{k,0}$ from equations (2) and (4), switch the order of the summation for private transfer wealth, noting that by definition the aggregate total of private transfers between residents equals 0 in each future year, leaving only net transfers to the ROW24, cancel out public transfer wealth, and rearrange to give:

$$CG_0 = SG_0 + FG_0 = \sum_{k=-\omega}^{\infty} \sum_{t=0}^{\omega+k} N_{k,\max(k,0)} C_{k,t} \rho_{k,t}^r + \frac{T_{g,\text{RoW}}^r + T_{h,\text{RoW}}^r}{\text{P.V. of current transfers to RoW}} + \frac{\text{P.V. of current transfers to RoW}}{\text{P.V. of Total Consumption}}$$

$$= \frac{N_{k,\max(k,0)} Y_{k,t} \rho_{k,t}^r}{\text{Total Human Capital}} + \frac{NW^g_0 + NW^r_0}{\text{National Net Worth}}$$

where the present value of future private-sector net current transfers to the RoW is denoted $T_{0,\text{RoW}}^h$ and defined as:

$$T_{0,\text{RoW}}^h = \sum_{k=-\omega}^{\infty} N_{k,\max(k,0)} \sum_{t=0}^{\omega+k} r_{k,t}^h \rho_{k,t}^r$$

Thus, the consumption gap measures the shortfall in total resources needed to fund total consumption plans and net transfers to the rest of the world. We present SG_0, FG_0 and CG_0 as absolute values, adjusted for changes in productivity and prices, and, in the spirit of Blanchard et al. (1990), as a percentage of aggregate consumption.

2.4 Transfers between the generations

A central point of our analysis is transfers between the generations. The three transfer systems we examine are private current transfers, public transfers and capital transfers (bequests and inter vivos capital transfers).25 We focus on transfers between generations born before and after a

24 See footnote 17 for a clarification of this point.
25 Capital transfers in the public sector happen through changes in the public sector net worth.
particular year \(j \), and use the balancing conditions in the transfer systems as a whole to derive the following:

\[
T^h_0(j) = \sum_{k=-\infty}^{j} N_{k,0} \sum_{t=0}^{k+\infty} \rho_{k,t}^j \left(\tau_{k,t}^h - \tau_{k,t}^{h,ROW} \right),
\]

Net Private Transfers to those born after year 0

\[
T^g_0(j) = \sum_{k=-\infty}^{j} N_{k,0} \sum_{t=0}^{k+\infty} \rho_{k,t}^j \left(\tau_{k,t}^g - \tau_{k,t}^{g,ROW} \right),
\]

Net Public Transfers to those born after year 0

\[
K^h_0(j) = -\sum_{k=-\infty}^{j} SG_{k,0} \]

Net capital transfers to those born after year 0

respectively. In the results, we focus on transfers between the living and the unborn, \(T^h_0(0), T^g_0(0) \) and \(K^h_0(0) \), partly because this divide marks a logical break in the flow of the generations, partly as it maintains consistency with GA, but also because it emphases the point made in Lee et al (2017) that, in aggregate, the living transfer significant resources to the unborn (though not through the public sector).

3. Data and methods

In this section, we describe the data and methods we use to estimate the accounts described in the previous section. We first discuss how we obtain, from the national accounts, macro-economic aggregate controls for the income and expenditure components of net national income, by sector, then how we use survey and other data to split these aggregates into per capita age-related flows, which we call age profiles, followed by the estimation and projection approaches we use. Our central estimates are based on an age-period-cohort model, although we also report results using a simpler smoothing and projection procedure as a robustness check. We then discuss how we estimate the wealth profile in the base year. The final section discusses the population projections and discount rate.

3.1 Estimating macro-economic aggregate controls for flow items

As our focus is on residency, we start with net national income, and its components, obtained from the national accounts. We collapse the five sectors of the national accounts (Government, Households, Corporations, NPISH and the Rest of the World) into three (public sector, private sector and ROW) by piercing the corporate veil and allocating the corporate flows to the private
sector26, and by splitting NPISH into universities (allocated to the public sector) and other (allocated to the private).

Where possible, we follow the incidence assumptions used in GA and national accounting, so taxes are generally incident on those who pay them, and government transfers benefit those who receive them. We therefore assume that corporate taxes are incident on the corporate sector (although we reallocate these to individual owners of capital when we pierce the corporate veil). Exceptions are employer payroll taxes (which we assume are incident on labour), indirect taxes and subsidies on products (incident on consumers), and indirect taxes and subsidies on production (which we split between capital and labour in proportion to their share of national income).

Other adjustments, including the treatment of mixed income; the allocation of indirect taxes less subsidies on products and production; the use of basic rather than market prices, and the derivation of macro-controls for inter- and intra-household private transfers (for which no estimates can be obtained from the national accounts) are discussed in Appendix B.

3.2 Estimating age profiles for flow items

In general, we use survey or administrative data to decompose the macro-economic aggregates by age. For some economic flows this decomposition is relatively straightforward. For example, we estimate the average labour income of an individual of a given age in a given year using the Living and Food Cost Survey (LCFS), our primary data source. We then scale this profile so that, when weighted by the population at each age and summed, the total equals the macro-economic aggregate. For labour income this rescaling is modest and of the order of 3%; for others such as consumption of alcohol and tobacco the scaling was larger. Table B1 in Appendix B gives details of each aggregate, the surveys used to break it down by age, and the scaling used for each item in 2015.

For more complicated profiles, we follow the approach in the NTA manual (UN, 2013). The main difficulties relate to consumption flows recorded at household, rather than individual level (we use a household equivalence scale standard in the NTA project); the assignment of assets and inter-household flows to individual household members (we assume that all assets are owned by the household head, and that inter-household transfers occur only between the heads of different households); the calculation of intra-household private transfers (each household member transfers the surplus (or deficit) between their own income and consumption to the household head); the treatment of flows between households and institutions, and problems arising from the sampling scope of the LCFS. These and more minor issues are dealt with in detail in Appendix B.

26 When we split these aggregates by age we use a profile reflecting individual ownership of the corporate sector, therefore allocating corporate flows to owners of capital.
These unsmoothed but macro-controlled profiles between 1990 and 2015 are then used to estimate an age-period cohort model, to which we now turn. The model allows for changes in the ages of entry to, and exit from, the labour force. To aid explication, we deal with the APC approach before discussing our treatment of changes in the length of working life.

We first detrended all unsmoothed profile estimates from 1990 to 2015 by dividing by the average wage of a full-time, employed worker in each year, and fit the following model to these data:

$$\frac{x_{k,t}}{w_t} = \beta^x + \alpha_k^x + \gamma_t^x + \psi^x + \varepsilon_{k,t}^x$$

(9)

where the subscripts k and t are cohort and period, as before, $a = t - k$ is age, $x_{k,t}$ is the (undetrended) profile in question, w_t is the wage index used to detrend, and $\alpha^x, \gamma^x, \psi^x$ are the age, cohort and period dummies for profile x respectively.

The well-known issue with APC models is that in addition to dropping a single age, period and cohort dummy to avoid collinearity with the constant term, it is necessary to impose some further identification restriction to avoid collinearity around a time trend as $t = k + a$. Our procedure is to follow Deaton-Paxson (1994) in assuming that the average cohort effects are 0 and that there is no time trend in the cohort effects, but in addition we assume that the average period effect is zero and that there is no time trend in the period effect, so:

$$\sum_k \gamma_k^x = 0, \sum_k k\gamma_k^x = 0, \sum_i \psi_i^x = 0, \text{ and } \sum_i t\psi_i^x = 0.$$

(10)

To improve the stability of estimates, we used a weighted least squares approach by assuming that $\varepsilon_{k,t}^x \sim N\left(0, \left(\sigma^x_\varepsilon, \sigma^x \right)^2\right)$, where $\sigma^x_\varepsilon \approx \sqrt{\text{var}(x_{k,t} / w_t | k = t - a)}$ (the equality is not exact because we smooth the weighting function), and estimate a single cohort effect for groups of early and late cohorts, for whom there are not many observations. These cohorts are grouped to ensure that there is at least 20 observations per group, slightly less than the 25 observations for each cohort who live through the whole data sample from 1990-2015.

27 We thank two anonymous referees for making this suggestion.
28 Banks, Emmerson, Tetlow (2018) document changes in labour force participation by age and gender using the UK Labour Force Survey. For both men and women, the expansion of tertiary education has meant that, on average, individuals have entered the labour market increasingly later over this period. For women, and for men since 1995, they also report the trend towards higher participation rates at older ages.
29 The numbers are scaled by the rise in the average nominal wage from 2005 to 2015; estimated as total compensation of all employees (ONS series, DTWM) divided by the number of employees (MGRZ – MGRQ). This scaling factor of 1.269 is almost identical to the ratio of nominal GDP per capita between 2005 and 2015 of 1.266.
30 This is permitted by our use of detrended profiles. Removing time trends explicitly improves robustness by reducing the canonical correlation between the blocks of age, period and cohort dummies. We check this assumption by including time dummies in the regression (9) and testing their significance.
To account for expanding tertiary education and later retirement, before we fit (9) we allow the profiles to shift to the right by introducing entry and retirement breakpoints\(^ {31}\), labelled \(k_{i}^{x,E} \) and \(k_{i}^{x,R} \), \(i = 1,... \). We define the effective age \(a^{*} (a,k) \) of a generational member as

\[
a^{*} (a,k) = a + \sum_{i} 1(k \geq k_{i}^{x,E})I(a < 45) + \sum_{i} 1(k \geq k_{i}^{x,R})I(a \geq 45).
\]

(11)

Thus, for example, if we estimate an entry breakpoint in 1975 for the labour income profile, \(k_{1}^{x,E} = 1975 \), then anyone born on or after 1975 will on average have the same wage at age 26 (adjusted for productivity changes) as a 25 year old born before 1975. We then estimate the APC model but using the effective age \(a^{*} \) rather than actual age \(a = t - k \). To ensure that our cohort effect estimates \(\gamma_{k} \) pick up only changes in profiles that are not explained by changes in the start and end of working life, we adopt a two-stage procedure. We first estimate the breakpoints, following Bai and Perron (1998, 2003), by maximising the log-likelihood of (9) but without cohort effects (so setting \(\gamma_{k} = 0 \)). In the second stage we treat these breakpoint estimates as fixed and re-estimate the full model (9) including cohort effects, again by maximising the log-likelihood.

This procedure provided estimates of the age, cohort, and period dummies, a set of breakpoints, and a standard error \(\{\hat{\beta}^{x}, \hat{\alpha}_{a}^{x}, \hat{\gamma}^{x}_{k}, k_{i}^{x,E}, k_{i}^{x,R}, \hat{\sigma}^{x}\} \) for each profile \(x \). Detailed results of the estimations can be found in Appendix C.

3.3 Projecting the age profiles

To calculate the GWA we need a set of age profiles, starting in a base year \(0 \), for each year \(t \geq 0 \). We used the set of estimates obtained from our estimation procedure as follows:

\[
\hat{x}_{k,t} = w_{0}(1 + g)\left[\hat{\beta}^{x} + \hat{\alpha}_{a}^{x} + \hat{\gamma}^{x}_{k} + \hat{\psi}^{x}e^{-(\ln 2)/\theta}\right], \quad t > 0.
\]

(12)

Age and cohort effects were therefore assumed to be permanent, but period effects were assumed to decay over time with a half-life of \(\theta \) years. We set \(\theta = 7.5 \) years, around half the length of the business cycle of 15 years. The base level of the profile grows at rate \(g \), which we set equal to 1.5% p.a., the average growth of labour productivity over the last twenty years\(^ {32}\). In the projections, we assumed that the breakpoints were as estimated for each profile within our data frame, but that

\(^{31}\) Most profiles needed fewer than two entry breakpoints and no profile needed more than four retirement breakpoints.

\(^{32}\) The ONS series for output per hour worked for the UK economy, code LZVB, rose at an average rate of 1.52% p.a. between 1992 and 2012. Alternatively, output per capita (ONS GDP output series ABMI divided by resident population size EBAQ) has risen at 1.54% p.a. over the last 20 years, but has averaged 1.75% p.a. over the last 50 years.
all profiles had new retirement breakpoints at age 45 in (11) for those cohorts affected by future scheduled changes to the state pension age33.

As the demographic structure of the population changes, aggregate private transfers paid to residents will no longer balance to private transfers received from residents unless an adjustment is made. We therefore altered the level of each profile equally in each future year to ensure balance, thereby assuming that the demographic burden of changing populations was shared equally between parents and children.34

To test the robustness of our results to our baseline assumptions, we compare these results to results based on a simpler, smoothing-based approach. In this alternative, we smooth each profile in each year using a Gaussian kernel smoother, and project the forward end-of-sample profile forward assuming a constant rate of productivity growth g. This approach does not distinguish between cohort and time effects, thereby assuming that all changes in profiles are permanent. Results are reported in Appendix D.

3.4 Estimating the wealth profile

As we show in Appendix A, our approach does not require age profiles for asset-based flows (such as savings, asset income received or paid, or bequests and other capital transfers), as it deals with these through discounting and the inclusion of the savings gap. However, we do need a decomposition of wealth holdings by age in the base year. For our purposes, wealth includes financial wealth, real assets such as residential and commercial real estate, and accrued occupational pension rights owned by the cohort. We divide wealth into two categories: housing wealth, gross of mortgage debt, and all other wealth, net of any mortgages. We use the value of assets as reported in various waves of the Wealth and Asset Survey (WAS). This is usually, but not always, fair market value or some estimate thereof. Other than state pensions, which are treated as a public transfer received, we treat the three other types of pensions35 in an equivalent manner, with details available in Appendix B. Note that because WAS reports asset holdings at household rather than individual level, we adjust WAS profiles by household headship rates at each age to ensure consistency with our assumption that all assets are owned by the household head.

We balance private-sector worth to the total obtained from the WAS, and public sector worth to the Public Sector Net Worth, obtained from the Whole of Government Accounts produced by HM

33 The increase of the SPA to age 66 in 2019 is picked up by our estimation procedure (as the affected cohort is 45 inside our data frame), but we insert further breakpoints linked to the currently-scheduled increases in the SPA (to 67 around 2027, and to 68 around 2043).
34 The vast majority of private current transfers are from parents to their children. Literature on the quality-quantity trade-off suggests that this is not an inappropriate choice (see Lee and Mason, 2010)
35 The other three types are funded private pensions, and funded and unfunded occupational pensions for government employees.
We chose these sources to correctly incorporate the value of unfunded occupational pensions where the government is the employer and the value of fixed assets owned by government.

3.5 Population projections and discount rate

To project populations, we used the Office of National Statistics’ (ONS, 2017) principal population projections for the UK. These projections run out to 2114; after which, when necessary, we assume that the Total Fertility Rate (TFR), migration and mortality rates at each age remain constant at their 2114 value. Sensitivity to this assumption is negligible.

We assumed a real discount rate of 5% p.a. This is close to the average return on capital in the UK over the last twenty years (consistent figures on Net Worth of the UK are only available for 20 years). We discount all future resource flows at this rate. This deserves some comment. First, because the rates of return on fixed income securities are generally lower than the cost of capital, we make the assumption that these are held in zero net supply. This is clearly not true as some UK debt is held abroad, and UK residents hold some foreign debt, but the amounts are close to offsetting. As a result, returns to these securities net out and what matters at the aggregate level is the return on capital. Secondly, financial theory requires that the discount rate that should be applied to a given resource flow depends on how risky it is. Here, because all flows are assumed to grow in line with aggregate productivity, all can be regarded as being equally risky, and should be discounted at the same rate, the aggregate return on capital.

4. Generational Wealth Accounts for the UK

Table 1 presents the per capita private and public generational accounts for the UK in 2015 in GBP ’000. The components of the accounts are shown in rows and the different generations in columns, starting with the oldest in the left-most column, leading to the unborn at the far right. Panel A shows the private generational account and the savings gap. These tables show the first

36 Under ESA 2010, these are omitted from the core national accounts as both a liability of the government and an asset of the household. We treat these analogously to funded pensions by assuming that the government issues debt and fully funds them.
37 In Appendix B, we discuss the difference between these estimates of Net Worth and those in the National Accounts. But after adjusting for durables and other small differences, the estimates are in very broad agreement until 2008, and differ by less than 10% afterwards. We discuss the sensitivity of our results to this difference in Appendix D.
38 We calculate the returns to capital as net operating surplus (gross operating surplus, series ABNF in ONS (2018), plus 33% of mixed income, series QWLT, less total capital consumption, series NQAE), plus net property and entrepreneurial income received from the rest of the world, series HMBM, all divided by the Total UK Net Worth, series CGDA. The average over the period 1995-2015 was 5.44%, but between 2002 and 2015 it only averaged 4.62%. We used a discount rate of 5% p.a. as a round number within the likely range of possibilities. The Net return to Private Non-Financial Corporations, is (ONS series LRWW) is constant at just over 10% during this period, so the slight fall at the total economy level is due to the rise in value of non-produced non-financial assets. We return to this point in the discussion in section 4.2.
39 For a lengthier discussion on this issue see section 2.4 of Auerbach, Kotlikoff and Leibfritz (1999).
estimates of transfer wealth in the context of human capital, consumption and financial wealth. They therefore provide a measure of the inter-connectedness of the generations in a single framework, as well as a comprehensive balance sheet of UK birth cohorts.

Insert Table 1 near here

The first five rows of Panel A show the life-cycle demand for assets and its components. The present value of public consumption (line A) reflects peaks associated with medical spending in old age and education spending for the young. The present value of private non-housing and housing consumption (lines B and C), on the other hand, rise monotonically with year of birth, except at the youngest ages, where private consumption flows are small and discounting lowers the present value of private consumption later in life. Human capital (line D) has a hump-shaped profile with age, reflecting a present value at younger ages that heavily discounts prime age earnings, and low or zero earnings after retirement. The life cycle demand for assets (line E), the difference between the present value of consumption and human capital, is therefore positive for the very young, falls with increasing age until around age 30, and then rises again, reaching a peak around age 65 before falling again. This life-cycle demand for assets must be funded from either transfer wealth, public or private, or financial assets which in turn are either held or transferred from other generations.

The next three rows show the size and composition of transfer wealth by birth cohort. Transfer wealth is significant in magnitude, illustrating the importance of transfer systems in shifting resources over the lifecycle and between generations. Further, private transfer wealth and public transfer wealth are of similar order, although private transfer wealth is greater in absolute magnitude than public transfer wealth at most ages. Public transfer wealth (line F) follows the pattern of public spending. Private transfer wealth (line G), on the other hand, reflects the fact that in the UK private transfers flow largely from parents to children, and is therefore negative all ages except the very young and the unborn. Our estimates incorporate the effects of falling fertility, which reduces the costs of future child-rearing. The fact that transfer wealth is positive for the very young has the effect of increasing the economy’s aggregate wealth holdings ceteris paribus.\footnote{To understand this, assume the consumption path is the same whatever the transfer arrangements; reasonable given the small open economy, and accompanying exogenous interest rate, assumption. Transfers down the generations imply younger generations need to borrow less when young and simultaneously save more to be able afford these transfers to the younger generations when older. This unequivocally raises aggregate wealth. The argument is similar in a closed economy, but is more involved as now the interest rate will fall as wealth increases offsetting some of the need to save and perhaps altering the desired consumption profile, see Willis (1983).}

The private generational account (line I) shows the wealth that each person would need to hold on average at each age to meet that portion of the life-cycle demand for assets not met by transfer wealth. It is positive at all ages, showing that consumption plans cannot be financed by human capital and transfer wealth alone. The next two lines (lines J and K) show actual per capita wealth

40 To understand this, assume the consumption path is the same whatever the transfer arrangements; reasonable given the small open economy, and accompanying exogenous interest rate, assumption. Transfers down the generations imply younger generations need to borrow less when young and simultaneously save more to be able afford these transfers to the younger generations when older. This unequivocally raises aggregate wealth. The argument is similar in a closed economy, but is more involved as now the interest rate will fall as wealth increases offsetting some of the need to save and perhaps altering the desired consumption profile, see Willis (1983).
holdings (net worth) by age in 2015, split into housing and non-housing wealth. These rise with year of birth until retirement age, peaking at £466,000 (=£288,000+£178,000) for those in their sixties, and then fall monotonically with decreasing age (reflecting the process by which asset holdings are built up over during working life).

Line L shows the per capita savings gap, the difference between the private GA’s and the amount of wealth actually held by each cohort representative. For those over the age of 40, the savings gap is negative, and for those older than 60, is very large. Because these amounts will be passed as capital transfers to the young, these results show that inter-generational capital transfers are highly significant. Those younger than 40 have not accumulated enough wealth to meet their private GA’s, and have positive savings gaps. Yet this does not imply that their consumption plans are unsustainable, just that they will need to rely on capital transfers from the older generations if their consumption plans are to be realised. These results are particularly striking in the context of Gokhale, Kotlikoff and Sabelhaus (1996), who ignore capital transfers between generations (but do discuss the implications of this decision).

Panel B of Table 1 shows the public generational accounts which provide more information about the composition of public transfer wealth in line E of Panel A. These are similar to those published in Carderelli, Sefton and Kotlikoff (2000) but abridged, updated to 2015, and oppositely-signed. The accounts show a large positive transfer for older generations, a negative transfer for working age living generations and positive again for younger and the unborn.

The position of the unborn requires some comment. Their per capita life cycle demand for assets is highly positive, indicating that their own labour income is not sufficient to finance their lifetime consumption plans. To some extent, this is unsurprising: children rely on transfers from their parents to finance their consumption in the first quarter of their lives. Yet Table 1 shows that on average, only around half of their life-cycle demand for wealth is financed by private transfer wealth. Roughly another ten percent is financed by public transfer wealth, with the remainder comprising the savings gap. The positive public transfer wealth of the unborn is suggestive of long-run sustainability problems in the public sector, although the age distribution of the population, and the current public-sector net worth, both only visible in aggregate accounts, will matter. Likewise, it does not follow from the positive savings gap of the young and the unborn that private sector consumption plans are unsustainable; the positive savings gap just shows that capital transfers from the old will need to be substantial for private-sector consumption patterns to be sustainable. Again, only aggregate accounts will indicate whether or not actual capital transfers will be sufficient to cover these shortfalls. We therefore move from per capita generational accounts to the aggregate GWA, presented in Table 2.

Insert Table 2 near here.
The left-hand part of Table 2, Panel A, shows the resources and the uses to which those resources are put, presented in the form of a comprehensive balance sheet for each generation. ‘Resources’ include human capital, net worth, the present value of public and private transfers received, and any positive savings gap. ‘Uses’ are the present value of public and private consumption, the present value of transfers made, and any negative savings gap. Each item is obtained by multiplying the corresponding per capita item in Table 1 with the appropriate population at each age, shown in the first row of the Table.

The broad patterns in Panel A of Table 2 are unsurprising given the population structure of the UK and the per capita patterns shown in Table 1. However, equation (8) shows how these aggregate results can be used to calculate the size of flows between the generations in the three transfer systems we examine. As an illustration, the next column (shown in italics because the figures in it are included in Panel A to the left) breaks out transfers between the living and the unborn. In PV terms, the unborn receive net £2,326bn (line C) in private transfers from those currently living, largely flows from living parents to their unborn children. On the other hand, the unborn transfer net £921bn to the living through the public transfer system (line M). This reflects the net reliance of living generations on future taxes paid by those not yet born. In current transfer terms, the unborn are therefore net recipients from the living (to the amount of £2,326bn−£921bn=£1,405bn), a finding consistent with the US (Lee et al, 2018). But in addition to these current transfers, because living generations have an aggregate savings gap of negative £1,783bn (a surplus, line F), this implies a positive capital transfer from the living to the unborn of this amount. Similar calculations can be carried out between any two sets of generations using equation (8).

Panel B of Table 2 uses the aggregate flows in Panel A to construct the fiscal gap and the aggregate savings gap from their various components. The first column shifts the public sector net worth from household non-housing wealth (where it is held as an asset) to the fiscal gap. The second records the present value of net public transfers made to the rest of the world, while the third moves the difference between the aggregate present value of public transfers made and received to the fiscal gap. The final column does the same for the savings gaps of each generation. These adjustments ensure that the total of housing and non-housing wealth in the far-right column balances to national net worth; the total of private (public) transfers made to residents equals the total private (public) sector transfers received, and the total of the positive savings gaps (shown as resources) equals the total of the negative savings gaps (shown as uses), so netting out. Consistent with equation (7), the aggregate total of human capital (line A), national net worth (lines D and E) and the savings and fiscal gaps (lines G and H) therefore equals the present value of public (line

41 We ignore foreign holdings of UK government debt because these are roughly offset by domestic holdings of foreign debt in household net worth.
J) and private (line K) consumption and public and private transfers made to the rest of the world (line O), and the accounts balance, as can be seen by comparing the total all-generation resources and uses of £85,395bn.

The final section of Table 2, included for information, shows the aggregate life cycle demand for assets, total transfer wealth, private generational accounts net worth and savings gap for each generation.

4.1 Sustainability

In 2015, the UK had a negative SG of £84bn (or 4% of GDP, 0.2% of the present value of consumption), indicating that private-sector consumption plans are slightly in surplus, despite the large per capita savings gap of the unborn. Older generations have more than sufficient resources to support their own consumption and can leave £4,249bn (the sum of negative savings gaps, row P) in bequests to younger generations. This flow is sufficient to cover the positive savings gaps of the living generations, as well as the unborn (the sum of row F), leaving an overall surplus of £84bn.

Our estimate of the future value of bequests (the sum of negative savings gaps, row N, £4,249bn) compares well with our estimate of the present value of bequest flows from HMRC data, and our estimate of *inter vivos* capital transfers. In 2015, HMRC estimates that the total value of all probated estates as £79bn. Atkinson (2018) suggests this is an undercount and recommends adding an additional 25% to the recorded total for years after 1995, so for 2015 £99bn is a better estimate of the annual flow. In addition, from the 5th wave of the WAS survey we estimate *inter vivos* capital transfers in 2015 at £11bn, leading to a total flow of £110bn in 2015. Working with the above estimates, the present value of an annuity of £110bn (£99bn bequests plus £11bn *inter vivos* transfers) growing at 1.78% with a discount rate of 5% is £3,416bn, close to the total savings gap of the older generations of £4,249bn.

42 'Inheritance tax statistics', Table 12.4, ONS (2016).
43 This is an underestimate of the total value of estates bequeathed, because estates in joint names (that is, bequests of jointly-owned property between spouses under UK law) or below £5,000 do not require probate. Karagiannaki (2015) estimates that only around 50% of estates by number go through probate. Atkinson (2018) observes that most of these non-recorded transfers are either “sideways transfers” (to spouses) and so can be ignored when the focus is on transfer down the generations, or of negligible value and likely to amount in total to less than 2% of the recorded transfers. However, Atkinson does make a significant adjustment for the exclusion (e.g trusts) and under-valuation (particularly houses) of some assets.
44 The survey asks all households to estimate the total value of gifts or loans over £500 received in the last 2 years. This amounted to a total of £22bn or £11bn per year. In these questions, responders tend to recall more recent transfers and further the question ignores gifts below £500.
45 Again, this may be a significant underestimate; both Karagiannaki (2015) and Wolff (1999) argue that *inter vivos* transfers are possibly more prone to underestimation than bequests. Wolff (1999) even suggests that the total sum transferred inter vivos could be as large as the sum transferred through bequests. Both Karagiannaki (2015) and Atkinson (2018) suggest inter vivos gifts add an extra 10% to transferred wealth; amounting to roughly £10bn in 2015.
46 Productivity growth of 1.5% plus population growth of 0.28%.
On the other hand, the FG in 2015 was positive £3,918bn (or 207% of GDP; 8.5% of the present value of consumption), comprising the public sector net liability of nearly £1,986bn, the present value of future deficits in public sector consumption plans of just over £1,387bn, and the capitalisation of public future transfers to the rest of the world of £545bn. To close this gap would require the sum of public and private consumption to be cut by 8.5%. This figure is not directly comparable to estimates by both the OBR (2017) and European Commission (2016) of the sustainability of the UK’s public finances: their projections incorporate some proposed budget tightening as well as different underlying economic assumptions. However, the OBR estimates a permanent tightening of 7% of GDP, whereas the EC estimates that 5.7% of GDP is necessary to close the fiscal gap.

The nominal UK CG in 2015, the sum of the SG and the FG, was therefore £3,834bn (2.3% of GDP). This is equivalent to a cut of 8.3% of the PV of all future public and private consumption. UK aggregate consumption plans were therefore unsustainable in 2015.

4.2 The Offsetting Nature of the Public and Private Sectors

We now turn to an examination of how these sustainability measures changed over the period of the financial crisis by estimating GWA for each year from 2005-2015. Figure 2 plots the SG, FG and CG (uprated to 2015 in line with productivity and prices) in each of these years. The productivity-adjusted FG and SG are strongly negatively correlated (-0.78 in levels; -0.49 in differences); this is similar to the correlation de Mello et al (2004) found between private and public sector savings rates for any of the 21 countries. However, of more interest is the CG over this period. This remained relatively stable, rising slightly between 2007 and 2008 before falling back to a lower level in 2015, lower than the prior minimum it achieved in 2007. As shown in Figure 1, over this period, yearly national savings in the UK economy fell by 3 percentage points of GDP. However, the CG suggests that the impact of the fall in savings rates was offset by increases in net worth and human capital.

47 Private consumption could be cut by raising taxes or by reducing public-sector cash transfers.
48 OBR assumes a productivity growth rate of 2%, a long run real interest rate of 2.6%. We discussed in Section 3.3, our reasons for discounting the future tax and public expenditure streams at the cost of capital not the risk-free rate. However, we show in Table 2 that the necessary % change in public consumption to close the gap is not particularly sensitive to the choice of interest rate. Another difference is the OBR assumes real public health expenditure grows faster than productivity growth rate due to health cost pressures over the medium to long term. We do not.
49 The closest equivalent figure in OBR (2017, p84, para 4.9) is denoted the Inter-temporal Budget Gap. In EC (2016, p303), the closest equivalent figure is the S2 indicator under the historical SPB scenario.
50 Though the correlations are obviously not directly comparable – our estimates take into account changes in net worth as well as changes in future government liabilities - they found a correlation of -0.63 for the UK over the period 1970-2002 and an average -0.53 for all 21 OECD countries.
51 The graph shows Changes in Net Worth at the economy level, which equals to (National Savings – Net Capital Transfers to the Rest of the World). Since net capital transfers to the rest of the world are relatively stable, most of the change is accounted for by changes in savings rates. Figures do not include capital appreciation.
To illustrate the components of these changes in more detail, Table 3 shows changes in the per-capita GWA’s between 2005 and 2015, in 2015 £’000’s. The 2005 numbers are adjusted for both price rises and productivity increases\(^{52}\). Savings gaps decreased at all ages, indicating an improvement in sustainability, but for different reasons. For those generations older than around 60, the most striking change is the increase in the value of per capita housing and other wealth. This is a consequence of both higher private savings rates over the period, shown in Figure 1, and capital appreciation of dwellings and to a far lesser extent financial assets. The present value of their private consumption also increased over this period but by proportionally less. Those aged over 60 in 2015 held on average\(^{53}\) £101,000 more in assets than the same age groups in 2005 once we have adjusted for productivity gains. The PV of their private consumption increased by £16,000 on average, which is 16% of the asset gain. Similar figures for those aged over 70 in 2015 are an increase of £74,000 in assets and of £18,000 (24% of assets) in private consumption. We therefore estimate that roughly 80% of the increase in assets of those older than 65 will be passed on as a capital transfer to younger generations. Increases in the present value of housing consumption only account for around 15% of the increase in housing wealth.

For those between 30 and 60, the causes of the fall in the savings gap was different. Although net worth increased for this group (by £13,000), the increase in human capital was £28,000, largely the result of later retirement. Private consumption fell by £11,000. For those younger than 30, sustainability increased largely because of reductions in the present value of consumption (£15,000 for public; £20,000 for private), offset by a reduction of £21,000 in human capital for these generations (partly due the postponement of entry into the labour force and partly because of lower wages).

4.3 The Role of Housing

Housing is a very important part of UK household portfolios, and house prices play an outsize role in public discussion of inter-generational issues. To allow us to examine the role played by housing in more detail, we separated housing and non-housing-related consumption and wealth in our analysis. Though the capital appreciation of dwellings might improve the financial position of one generation relative to another, one can show, albeit under strong economic assumptions\(^{54}\), that price changes alone will have no effect on sustainability. Between 2005 and 2015, aggregate gross housing wealth increased in 2015 productivity-adjusted prices from £5,248trn to £5,934trn (Table

\(^{52}\) See footnote 29 for the adjustment.
\(^{53}\) We use the population in 2015 to average the per capita numbers in Table 4; using the population in 2005 gives identical estimates.
\(^{54}\) Disney et al (2010) discusses these assumptions and gives a list of factors that could give rise to aggregate real effects.
Yet, over the same period, we show that the present value of all future consumption of housing services also increased (again in 2015 productivity-adjusted prices), from £8,688trn in 2005 to £9,190trn in 2015 (line L). In aggregate, the increase in the value of houses was thus largely offset by the increase in the present value of housing consumption, leaving sustainability little changed. Our reported improvement in the aggregate sustainability position is therefore mainly the consequence of the increase in total human capital (due predominantly to estimated later retirement), reductions in consumption (predominantly by the young) and increased non-housing wealth accumulation due to higher private-sector savings over this period.

However, Table 3 shows that the change in house prices did indeed redistribute resources between the generations from the young to the old: the value of per capita gross housing wealth increased faster than prices and productivity for the old, but relatively slower for the young (line K), while the present value of housing services increased relative to prices and productivity much more evenly across the generations (line E). However, this has no major impact on aggregate sustainability precisely because capital transfers offset most of this effect. We stress again that this result holds only at the aggregate cohort level, but says nothing about the likely distributional effects of house price changes within cohorts, a point to which we return in the conclusion.

In Appendix D, we report robustness checks and show that our conclusions are broadly unchanged regardless of the approach we use to project profiles, and the precise values of the financial and demographic assumptions we use.

7. Conclusion

In this paper, we provided an integrated framework for studying inter-generational transfers by developing and calculating Generational Wealth Accounts (GWA). The GWA employ the framework of the National Transfer Accounts (NTA) of Lee and Mason (2014), to extend the public sector Generational Accounts (GA) of Auerbach, Kotlikoff and Gokhale (1991) to the whole economy. GWA allow us to measure how much current generations are likely to leave future generations, not only through the public sector but also through the private sector, and there whether as current or capital transfers (bequests and inter-vivos gifts). We then showed how GWA can be used to assess the sustainability of the consumption plans of current and future generations. Unlike previous measures, GWA-derived measures of sustainability take account of population ageing, public and private sector assets and liabilities, and current and capital transfers within the public and private sectors.

55 Our wealth aggregates are obtained from the WAS, and are close to the change in the estimates of the value of land and dwellings in the UK National Balance Sheet (ONS series E46Y and E44R), from (productivity- and price-adjusted) £5.6tn in 2005 to £6.4tn in 2015.
We calculated GWA for the UK over the period 2005-2015 and used the results to measure how inter-generational transfers and consumption sustainability changed in response to the financial crisis. The GWA confirmed both the worsening in public sector finances, and the increase in private wealth. However, they revealed that because the elderly will likely consume only around a fifth of the increase in their private wealth, the balance will likely be transferred to the young through future capital transfers, largely offsetting, in aggregate, the dramatic worsening of the public finances. We found that despite the crisis, the sustainability of aggregate consumption plans in the UK actually improved between 2005 and 2015. This was due to several factors which include increased saving rates after the financial crisis, extensions in working life, and reduced consumption of the young. This was offset by an increase in consumption of the old, but an increase that was significantly less than their increase in wealth holdings.

These results do suggest tensions in the intergenerational contract. Public sector fiscal plans are unsustainable and are likely to leave increasing levels of debt to future generations unless there is a significant shift in policy. Further, we find evidence that younger generations are indeed consuming less than their predecessors did at similar ages. Our results suggest that the generation born in 1990 is consuming roughly 7.5% less than the generation born in 1970 did at the same age, after adjusting for productivity increases, in addition to reductions associated with the postponement of working life. Projected private sector surpluses – the consequence of higher asset accumulation, longer working lives and lower consumption of the younger cohorts – are not sufficient to offset public sector unsustainability. This suggests that not only will there need to be a rebalancing between the public and the private sectors, but also further reductions in overall consumption.

Our finding that private assets play a crucial role in offsetting the aggregate effects of fiscal unsustainability raises many important future research questions, of which we mention just two. Our analysis investigates whether there are sufficient resources at the aggregate cohort level to sustain future consumption patterns. But policies aimed at rebalancing between the private and public sectors will need to consider the distribution of these resources at both the intra- and inter-generational level. It seems likely to us that some members of each cohort – members of dynasties with large asset holdings – will consume substantially less than their sustainable level, while others – possibly those more reliant on public sector transfers – will consume substantially more than theirs. Population ageing may only exacerbate these differences as private wealth rises and population ageing places the public sector under increasing strain. The next stage of our work will therefore examine inter-generational transfers in the context of both intra- and inter-generational inequality.
Secondly, many researchers believe that population ageing may lead to capital deepening which, by raising the labour productivity of subsequent generations, could prolong the beneficial effects on economic growth of the middle stages of the demographic transition. Our current paper highlights the issue that rising public sector debt could crowd out capital formation and hinder capital deepening, increasing the burden of ageing. This paper suggests that research into the capital deepening associated with population ageing must consider not only private current and capital transfers, but also any potential off-setting effects between the public and private sectors.

8. References

Burkhauser, Richard V., Nicolas Hérault, Stephen P. Jenkins, and Roger Wilkins. (2016). ‘What has been happening to UK income inequality since the mid-1990s? Answers from reconciled and combined household survey and tax return data’, NBER Working Paper, No. 21991

56 Others disagree, pointing out the possibility of secular stagnation. See Lee (2016) for a discussion of these points.
57 Called the second demographic dividend. See Mason and Lee (2006).
58 Lee et al, (2014) show that optimal fertility rates are lower than the level required to sustain public sector transfer programs because savings in the private sector offset the higher costs of ageing to the public sector.

Table 1: Private and public generational accounts for the UK, 2015 (2015 GBP ‘000)

<table>
<thead>
<tr>
<th>PANEL A: Private generational account and savings gap</th>
<th>Year of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in 2015</td>
<td>90+</td>
</tr>
<tr>
<td>A. PV (Public consumption)</td>
<td>45</td>
</tr>
<tr>
<td>B. PV (Private non-housing consumption)</td>
<td>32</td>
</tr>
<tr>
<td>C. PV (Private housing consumption)</td>
<td>25</td>
</tr>
<tr>
<td>D. Human capital</td>
<td>0</td>
</tr>
<tr>
<td>E. Life-cycle demand for assets (A+B+C-D)</td>
<td>103</td>
</tr>
<tr>
<td>F. Public transfer wealth</td>
<td>56</td>
</tr>
<tr>
<td>G. Private transfer wealth</td>
<td>(3)</td>
</tr>
<tr>
<td>H. Total transfer wealth (F+G)</td>
<td>54</td>
</tr>
<tr>
<td>I. Private generational account (E-H)</td>
<td>49</td>
</tr>
<tr>
<td>J. Non-housing wealth*</td>
<td>117</td>
</tr>
<tr>
<td>K. Housing wealth*</td>
<td>160</td>
</tr>
<tr>
<td>L. Savings gap (I-J-K)</td>
<td>(228)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PANEL B: Public generational account (equals public transfer wealth above)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. PV (Public consumption)</td>
</tr>
<tr>
<td>N. PV (Public cash transfers received)</td>
</tr>
<tr>
<td>O. PV (Taxes paid)</td>
</tr>
<tr>
<td>P. Public generational account (K+L-M=E)</td>
</tr>
</tbody>
</table>

Note: Public consumption includes health, education, unallocated expenditure (e.g. defence and police) and social care. Private consumption is all other consumption. Human capital is defined as the expected discounted present value of wages. Half of the value of student loans issued are treated as public consumption at the time of issue, and half as private consumption, reflecting likely repayment behaviour. Public transfers received include the value of in-kind transfers (these comprise public consumption) and cash transfers, derived from a combination of the ETB tables, the LCFS and administrative data. Public transfers made are taxes and user charges (e.g. the BBC license fee) paid by the household sector to the public sector. Private transfers include inter-household and intra-household transfers, calculated as per the National Transfer Accounts (Lee and Mason, 2011) methodology. Private transfers to the ROW are allocated by age using the same profile as domestic private transfers. The per capita present values shown in the table (other than net worth) are calculated using profiles derived from the Living Cost and Food Survey (and its antecedents), balanced to macro-economic aggregates for 2015 obtained from the national accounts and projected using an APC model described in the text. Methodology described in the text and Appendix B, and detailed results available in Appendix C. Population projections are the principal projection of the ONS (2016). Net worth is derived from the Wealth and Asset Survey, and includes net financial wealth (including defined benefit and defined contribution occupational pensions), housing wealth, and the value of household contents (excluding automobiles). * Wealth data are sparse for the top two age groups, leading to increased uncertainty in wealth estimates at these ages.
Panel A: Year of birth

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (million)</td>
<td>0.56</td>
<td>2.55</td>
<td>4.89</td>
<td>7.12</td>
<td>8.52</td>
<td>8.93</td>
<td>8.46</td>
<td>8.74</td>
<td>7.37</td>
<td>7.98</td>
<td></td>
<td>65.11</td>
</tr>
</tbody>
</table>

A. Human capital

- Public transfers received
- Private transfers received
- Non-housing wealth
- Housing wealth
- Savings gap (+)
- Fiscal gap

B. Public transfer wealth (B+C)

<table>
<thead>
<tr>
<th>Year of birth</th>
<th>Public sector transfers to ROW</th>
<th>Net public transfers deficit</th>
<th>Net capital transfers deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1926-1935</td>
<td>545</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1936-1945</td>
<td>84</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>1946-1955</td>
<td>1,387</td>
<td>296</td>
<td>40</td>
</tr>
<tr>
<td>1956-1965</td>
<td>1,386</td>
<td>295</td>
<td>40</td>
</tr>
<tr>
<td>1966-1975</td>
<td>1,387</td>
<td>296</td>
<td>40</td>
</tr>
<tr>
<td>1976-1985</td>
<td>1,386</td>
<td>295</td>
<td>40</td>
</tr>
<tr>
<td>1986-1995</td>
<td>1,387</td>
<td>296</td>
<td>40</td>
</tr>
<tr>
<td>1996-2005</td>
<td>1,386</td>
<td>295</td>
<td>40</td>
</tr>
<tr>
<td>2006-2015</td>
<td>1,387</td>
<td>296</td>
<td>40</td>
</tr>
<tr>
<td>2015</td>
<td>1,386</td>
<td>295</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: Public sector net worth is obtained from the Whole of Government Accounts (WGA), and includes the unfunded portion of occupational pension promises where the public sector is the employer, and the value of assets owned by the public sector. Private sector net worth is obtained for the Wealth and Asset Survey and balanced to the implied survey total. Transfers to the ROW, line M, consist of both private and public transfers to ROW; transfers are allocated to generations, public transfers are capitalised assuming they grow in perpetually at rate $g=1.5\%$ per annum. See the note to Table 1 for details about assumptions underlying the calculation of present values.
![Table 3: Productivity-adjusted changes in public and private per-capita generational account, 2005-2015 (2015 GBP '000)](image)

Panel A: Private generational account and savings gap

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. PV (Public consumption)</td>
<td>(4)</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>(3)</td>
<td>(12)</td>
<td>(31)</td>
<td>(30)</td>
<td></td>
</tr>
<tr>
<td>B. PV (Private non-housing consumption)</td>
<td>(0)</td>
<td>9</td>
<td>18</td>
<td>10</td>
<td>(5)</td>
<td>(7)</td>
<td>(28)</td>
<td>(19)</td>
<td>(12)</td>
<td>(14)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>C. PV (Private housing consumption)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>D. Human capital</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>41</td>
<td>22</td>
<td>21</td>
<td>(37)</td>
<td>(21)</td>
<td>(2)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>E. Life-cycle demand for assets (A+B+C-D)</td>
<td>(2)</td>
<td>17</td>
<td>33</td>
<td>18</td>
<td>(47)</td>
<td>(21)</td>
<td>(44)</td>
<td>13</td>
<td>(4)</td>
<td>(44)</td>
<td>(46)</td>
<td></td>
</tr>
<tr>
<td>F. Public transfer wealth</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>24</td>
<td>(4)</td>
<td>(24)</td>
<td>(25)</td>
<td></td>
</tr>
<tr>
<td>G. Private transfer wealth</td>
<td>(3)</td>
<td>(6)</td>
<td>(1)</td>
<td>1</td>
<td>(12)</td>
<td>10</td>
<td>(14)</td>
<td>16</td>
<td>21</td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>H. Total transfer wealth (F+G)</td>
<td>(2)</td>
<td>(2)</td>
<td>11</td>
<td>9</td>
<td>(9)</td>
<td>(18)</td>
<td>(1)</td>
<td>40</td>
<td>17</td>
<td>(26)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>I. Private generational account (E-H)</td>
<td>(1)</td>
<td>19</td>
<td>23</td>
<td>9</td>
<td>(28)</td>
<td>(39)</td>
<td>(44)</td>
<td>(27)</td>
<td>(21)</td>
<td>(17)</td>
<td>(18)</td>
<td></td>
</tr>
<tr>
<td>J. Non-housing wealth*</td>
<td>50</td>
<td>43</td>
<td>53</td>
<td>96</td>
<td>38</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K. Housing wealth*</td>
<td>47</td>
<td>40</td>
<td>13</td>
<td>34</td>
<td>6</td>
<td>(6)</td>
<td>(17)</td>
<td>(13)</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Public generational account (equals public transfer wealth above)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M. PV (Public consumption)</td>
<td>(4)</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>(3)</td>
<td>(12)</td>
<td>(31)</td>
<td>(30)</td>
<td></td>
</tr>
<tr>
<td>N. PV (Public cash transfers received)</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>(4)</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>2</td>
<td>(1)</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>O. PV (Taxes paid)</td>
<td>(1)</td>
<td>11</td>
<td>9</td>
<td>(1)</td>
<td>12</td>
<td>13</td>
<td>(3)</td>
<td>(26)</td>
<td>(10)</td>
<td>(4)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>P. Public generational account (K+L-M=E)</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>24</td>
<td>(4)</td>
<td>(24)</td>
<td>(25)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows the changes in the per capita public and private generational accounts between 2005 and 2015, where the 2005 accounts have been uprated for changes in prices and productivity using the wage index described in footnote 27. A positive number indicates that the 2015 quantity is larger than the productivity- and price-adjusted 2005 quantity. * Wealth data are sparse for the top two age groups, leading to increased uncertainty in wealth estimates at these ages.
FIGURE 1: Net Worth of the Public and Private Sectors and the UK Total Economy 1987-2017 as % of trend GDP

A Total Net Worth

B Changes in Net Worth due to Net Saving

SOURCE: UK National Accounts. The Public Sector is defined as General Government plus Public, Non-Financial Corporations, and the Private Sector is the sum of all other sectors that comprise the UK Total Economy. The series ‘Total Net Worth’ in Panel A are sourced from the UK Balance Sheet, Table 9.1; the series ‘Changes in Net Worth due to Net Saving and Capital Transfers’ in Panel B are sourced from the UK National Accounts (NA), Table 1.7.7; all series are presented as a % of UK Trend GDP at market prices. Trend GDP is the exponential of the best linear fit to log GDP over this period; but the charts are insensitive to the choice of detrending approach.

FIGURE 2: Savings, Fiscal and Consumption Gaps 2005-2015

NOTE: For each year 2005-2015, the GWA are calculated following the APC approach used in our base case, described in the text. The chart plots the savings, fiscal and consumption indicators for each year normalised by the present value of total consumption in that year. Note that the figure is virtually identical (after appropriate changes in scale on the vertical axis) if either the gaps are plotted on productivity-adjusted basis or normalised by trend GDP.
Appendix A: The connections between NTA, GWA and GA

We first discuss connections between the National Transfer Accounts (NTA) and our Generational Wealth Accounts (GWA), before turning to connections with Generational Accounting (GA).

Connections with NTA

In this section we show how the inter-temporal budget constraint of the private sector (equation (1) in the text) is derived from the NTA flow equation, around which the NTA are constructed (Lee, 1994). For each member of generation k and each period t the following identity must hold

\[
(y_{k,t} + c_{k,t} + y_{k,t}^{\text{asset}} + s_{k,t}) = (c_{k,t} + \tau_{k,t} + s_{k,t})
\]

(A1)

where savings $s_{k,t}$ is ‘changes in net worth due to net savings and capital transfers’ as defined as in the SNA Capital Account. In the SNA, only the flow of income from assets, and not capital gains, is included in NNI. To reconcile net worth across consecutive years we must also consider ‘Other changes in assets’ which are predominantly re-evaluation effects recorded in the ‘Changes in Assets’ Account.

We shall make the following timeline assumptions: wealth is recorded at the beginning of period. Returns are received on both wealth holdings and any excess of income over consumption during the period. Further, in this section we shall only consider inter-household capital transfers through bequests. Inter-vivos capital transfers can be treated in a similar way to current transfers; we do include them in the next section when we discuss estimation of the capital transfer profiles.

Conditional on staying alive, the net-worth of a member of generation k in the following period is

\[
W_{k+1,t+1} = W_{k,t} + s_{k,t} + y_{k+1,t}^{\text{rev}} + \tilde{b}_{k,t}^{\text{rev}}
\]

(A2)

where $y_{k+1,t}^{\text{rev}}$ denotes the return predominantly coming from revaluing of assets and liabilities in the ‘Changes in Assets’ Account and $\tilde{b}_{k,t}^{\text{rev}}$ denotes bequests received at the end of period. Define ‘savings in hand’ at the beginning of the period, called $a_{k,t}$, as:

\[
a_{k,t} = W_{k,t} + y_{k,t} + c_{k,t} + \tau_{k,t} + \tau_{k,t}^{\text{rev}} - \tau_{k,t}^{\text{asset}}
\]

(A3)

This has caused considerable debate in the literature. Sefton and Weale (2006) documents this discussion and shows that if NNI is a given a welfare interpretation, NNI should not include capital gains. In a closed economy with constant returns to scale, the sum of factor price appreciation equals zero; hence in a two factor economy (capital and labour), capital gains are offset by price changes in human capital.
giving returns to assets as a result of income and revaluation as \(y_{k,t}^a = a_{k,t} r_{k,t}^a \) and \(y_{k,t}^{rv} = a_{k,t} r_{k,t}^{rv} \) respectively, where \(r_{k,t}^a \) is asset income returns and \(r_{k,t}^{rv} \) is the capital gains. If total returns, \(r_{k,t} = r_{k,t}^{rv} + r_{k,t}^a \), then substituting out for \(s_{k,t} \) in (A2) from (A1) and using (A3) and multiplying by the population at the end of the period gives the wealth evolution identity

\[
N_{k,t+1} w_{k,t+1} = (1 + r_{k,t}) N_{k,t+1} \left(w_{k,t} + y_{k,t}^a + \left(\tau_{k,t}^r - \tau_{k,t}^r \right) - c_{k,t} \right) + N_{k,t+1} \tilde{b}_{k,t} .
\]

(A4)

for those alive in generation \(k \) at time \(t+1 \). We now consider deaths. If we assume that the average wealth holdings of those dying is equal to average per capita wealth holdings of the cohort (or equivalently that mortality rates are uncorrelated with wealth holdings), then we can rewrite (A4) as

\[
N_{k,t+1} w_{k,t+1} = (1 + r_{k,t}) N_{k,t+1} \left(a_{k,t} + \frac{\left(N_{k,t} - N_{k,t+1} \right)}{N_{k,t}} \frac{b_{k,t}}{\text{Mortality rate}} \right) .
\]

(A5)

where \(b_{k,t} \) are inheritances received expressed in beginning of period terms. We define the last term, the average bequests made per capita, as \(b_{k,t}^r \):

\[
b_{k,t}^r = \frac{\left(N_{k,t} - N_{k,t+1} \right)}{N_{k,t}} a_{k,t} .
\]

(A6)

equal to the mortality rate times ‘savings in hand’. Capital transfers between generations must sum to zero over the living population

\[
\sum_{k=0}^\omega N_{k,t} \left(b_{k,t}^r - b_{k,t} \right) = 0
\]

(A7)

to retain the wealth balance at the aggregate level. Using the terminal condition – that the cohort will be extinct by time \(t=\omega+k+1 \): we iterate equation (A5) backwards to deliver the intertemporal budget condition that requires the per capita savings gap to be 0.

Connection with GA

The connection between the GWA and the GA is much simpler. The GA record the transactions between an individual and the public sector. In the NTA (and the GWA), these are subsumed within transfers, notably public transfers. The GA thus form part of the private-sector intertemporal budget constraint, although, as described in the text, the signs are different (the GWA and NTA record flows from the perspective of the household, whereas the GA from the perspective of the public sector). Further, unlike GA, we incorporate publicly-owned assets into the intertemporal budget condition of the public sector. This implies that for the public sector, as

60 We have rescaled inheritances by the factor \(N_{k,t} / (N_{k,t} (1+r)) b_{k,t} = \tilde{b}_{k,t} \) to simplify the expression. This scaling restates the inheritances in per capita terms from the beginning to the end of the period.
with the private sector in the GWA, that savings of the public sector are defined as the ‘changes in net worth due to net saving and capital transfers’; and asset income is net operating surplus plus net property income plus any revaluation returns on publicly held securities. In contrast, savings in the GA is ‘net lending or borrowing’ and asset income is just the net property income plus any revaluation returns on publicly held securities. The consistency between these two definitions can be understood if one recognises that in an efficient capital market the value of assets is equal to the present value of gross operating surplus minus investment.

We also note that in a closed economy, all debt of the public sector will be purchased by the private sector. Therefore, all interest paid on the debt will be received by the private sector and will net out at an economy level. The rate of interest paid on government debt (which is lower than the discount rate we use, since our discount rate reflects the return earned on privately-owned capital) is therefore not important, since discounting the portion of private-sector wealth held in government bonds at a lower rate is exactly equivalent to discounting the public sector net liability at a lower rate. Whatever discount rate is chosen for government debt, the choice will net out at the aggregate level. Note that we assume that the rate of return \(r \) is independent of age, so portfolio composition, including the proportion of assets held as government bonds, is implicitly constant across age.
Appendix B: More detail on sources and methods

As discussed in the text, the algorithm for calculating GWA accounts is as follows:

1. Calculate macro-controls for each item in our analysis from the national accounts.

2. Calculate per capita cross-sectional allocation profiles for the desired categories of resources and uses (referred to as per capita profiles, or simply profiles, hereafter) for the UK resident population in a given year, balanced to the National Account aggregates obtained in (1);

3. Project these profiles into the future taking account of long-run productivity changes, g, adjusted for age, period and cohort effects, as described in Appendix C;

4. Convert these into aggregate flows by multiplying by the population at each age in each future year;

5. Discount these aggregate totals back to the present using a discount rate, r;

6. Aggregate these present values of flows for each birth cohort across all years of their future lives;

7. Calculate a balancing item for each birth cohort, called the savings gap, and

8. Use the inter-temporal budget constraints of the public and private sectors to calculate the overall savings gap as the aggregate of each generation’s savings gaps, and the fiscal gap as the sum of the capitalised value of future domestic transfer deficits, plus the capitalised value of net public-sector flows to the rest of the world, less the current public sector net worth.

We discuss in the paper our sources for the population projections, and our estimate of the productivity growth and discount rate. We now discuss our calculation of the profiles in more detail.

Determination of macro-controls

Macro-controls for each item are calculated by collapsing the all sectors of the national accounts into three, Public, Private and the Rest of the World (ROW). The ROW remains the same (SNA code S.2), the public sector combines General Government (S.13), Public non-financial corporations (S.11001) and an estimate of the component of NPISH (S.15) that can be attributed to Universities. The Private Sector combines all remaining sectors.

Two thirds of mixed income is allocated to labour and one-third to capital (roughly the GDP share of each factor of production). We show all controls at basic rather than market prices by reallocating indirect taxes less subsidies on products and production. VAT, taxes and duties on imports and other taxes and subsidies on products are allocated to consumption; taxes and subsidies on production are split between capital and labour based on the approximate GDP share.
of each. Macro-controls for inter- and intra-household private transfers are taken from survey data adjusted to the population rather than the national accounts. Further details of this process are available in UN (2013).

Determining age profiles

For the purposes of the GWA, we estimated profiles for labour income, public sector cash transfers received, public sector in-kind transfers received, taxes paid, private sector transfers paid and received, and private consumption. Each profile was constructed using the procedures described in the NTA manual, UN (2013) and adapted in McCarthy and Sefton (2017) for calculating the NTA profiles for the UK. The procedures use a combination of survey and administrative data with aggregate totals balanced to controls obtained from the national accounts. The relevant data sources were official spending and revenue tables (available from, among others, HM Treasury, HMRC, departmental annual reports), age-related spending and revenue profiles as used in the generational accounts (Office for Budget Responsibility and ONS), the Wealth and Assets Survey (including up to the fifth wave, ONS) as well as the large UK cross-sectional surveys – the Living Cost and Food Survey (LCFS), the Family Resource Survey (FRS) and the General Household Survey (GHS), the Labour Force Survey (LFS) as well as administrative data from some government departments, particularly the Department of Health.

Our starting point for private consumption profiles was the Living Cost and Food Survey (LCFS) which is the UK survey used to estimate the consumption and expenditure portions of the National Accounts. The survey combines estimates of household consumption over a two-week period. Private consumption was disaggregated for estimation purposes into imputed rentals on owner-occupied housing, housing rental payments, alcohol and tobacco, and other consumption, divided into COFOG categories. Each of these (including each COFOG category) was balanced separately to National Accounting aggregates, with an appropriate VAT adjustment applied to each category. Backward-looking estimates of yearly income from the LCFS were used to calculate profiles of labour income. The LCFS also contains data on receipts of government benefits, which we used to estimate age profiles of government benefits received in cash. Each of the profiles was smoothed using a Gaussian kernel smoother (a standard deviation parameter of two years was sufficient in all cases to produce plausible profiles) and adjusted proportionally to ensure that their aggregate values, conditional on the UK population structure in each year, matched the corresponding aggregate totals in the National Accounts. Table B1 above shows the various profiles that were estimated. More detail on the components of each profile is given below.

Although the LCFS is the best available UK data source for estimating these profiles, there are some shortcomings with the survey which impact on the reliability of the estimates we have obtained. The first is that the income and expenditure variables in the LCFS are not contemporaneous. The income variable used is a backwards-looking variable, measured over one year, while the expenditure variables measure expenditure over a two-week period using a consumption diary. In using these data to calculate estimates for the GWA, we must therefore
make the assumption that, on average, family income over the last year is representative of income over the two-week consumption survey period. (Aggregate wage changes over the year do not matter provided there is no systematic relationship between the time of interview and labour income – which is unlikely – since we balance to National Accounts estimates anyway).

Importantly, the LCFS excludes individuals living in institutions, such as students, those in prison, and, most importantly, those living in residential care homes. While these are a small portion of the overall population, these could cause biases in our profiles, especially for those of student age and for the very old. We therefore adjust some of the profiles – notably private and public education expenditure – using enrollment data from the LFS.

Finally, the LCFS top-codes age at 80. We therefore have no information on people over the age of 80, and cannot estimate age profiles higher than this age. Since a substantial fraction of the UK is predicted to be over the age of 80 in the future, this is a serious shortcoming.

Public consumption profiles for education and health services were estimated using a combination of administrative data and survey data, as described below. A level profile was assumed for public consumption (e.g. law and order, courts etc) that cannot be allocated by age.

Consumption: The LCFS reports both individual and household-level consumption data. We divided household consumption into two main pieces: public consumption of services provided in-kind to households and private consumption of goods and services, which was paid for by the household. Private expenditure was divided into four parts: private expenditure on health, private expenditure on education, private expenditure on housing, and other private consumption, which included food, alcoholic beverages and tobacco, clothing and footwear, furnishings, household equipment and carpets, transport, communication, recreation, restaurants and hotels, and miscellaneous expenditure. Public consumption comprised consumption of health, education, social care, and other public services. A separate profile was estimated for alcohol and tobacco consumption, for which no consumption was allocated to under-18’s. Each COFOG component of consumption was macro-controlled separately to numbers from the National Accounts, but only the aggregate profile was smoothed.

For private consumption, other than education and health, we split household expenditure between individuals using an equivalence scale derived from an extensive search of the literature and which is common to NTA countries (see Lee and Mason, 2011). The scale assumes that newborns and children up to 4 years consume 0.4 of the consumption of an adult, that 20-year olds consume the same as an adult, and that from age 4 to age 20 this proportion increases linearly.

Consumption of residential housing: Private expenditure on housing included rental payments on property, gross of housing benefit, and, for owner-occupiers, imputed rent. Both primary and second dwellings were included. We estimated separate profiles for imputed rent and actual rent paid. Following Richardson and Dolling (2005), we estimated the imputed rent of owner-occupied
housing by setting it equal to predicted private rentals from a regression equation linking private rental data reported in the OFS to house characteristics (including the region in the country, whether there is central heating in the house or not, whether it is social housing or not, the number of rooms, and the type of house). The ONS made a significant revision in the calculation of imputed rentals in the National Accounts in ONS (2018). This increased the value of imputed rentals by 20% relative to previous estimates but was back-dated to 1987.

Consumption of private education and healthcare: The LCFS reports private education expenditure at a household, not at an individual level. To estimate this profile, we therefore used a regression approach, where we regressed the household’s total private education expenditure on the number of students of each age who were enrolled at school. Where coefficients from the regression were negative, we set these to zero. We then used the adjusted regression coefficients to reallocate total private education expenditure by age in each household and averaged across the sample to obtain a profile. We did not smooth the private education profile.

We followed a similar regression-based approach for private healthcare costs (although this profile was smoothed).

We found that the LCFS appears to significantly under-report expenditure on private school fees. We therefore used the LFS to calculate private school enrollment by age, and used estimates of average fees obtained from the Census of the Independent Schools Council for this portion of expenditure.

For student loans, we assumed that half of the student loan was treated as public expenditure on education, and half private at the time the loan was issued. This reflects current best estimates of the proportion of loans issued that will be repaid, and is the approach currently used by the ONS in the national accounts. Tertiary enrollment was again estimated using the LFS, as the LCFS under-samples students living in residences.

Consumption of public services: To estimate the consumption of public education services, we combined school and further education enrolment data from the Labor Force Survey with administrative data from the Department of Education, which estimates the annual cost of each student in full-time education. We used separate estimates for primary school, secondary school, and A-levels. We used one profile for further and higher education.

Unfortunately, the LCFS does not contain any health utilisation data. We tried two approaches. The first relied on health utilisation data from the General Household Survey (GHS), which reports the number of GP visits, the number of overnight stays in hospital and the number of prescriptions for each respondent over a calendar year. We obtained unit cost estimates of each type of care using data from the Department of Health, and combined these with the utilisation data into age profiles which we then smoothed using a Gaussian kernel smoother and combined into an aggregate health care utilization profile. We used separate profiles for men and women to take account of
their different age profiles of health utilisation. Our unit cost approach makes the assumption that there is no systematic relationship between the cost of a particular intervention and the age or sex of a patient. A second approach that we investigated was to use the Earnings, Tax and Benefit survey, produced by the ONS. This maps consumption of all public services to households within the LCFS. We used a regression approach to estimate costs for males and females of different ages, and constructed profiles using these estimates. Unfortunately, methodological changes over the period of the ETB sample meant that these profiles were not consistent over the period of our study and could not be used for our purposes.

Consumption of public services enters into both the resources and the uses side of the GWA’s. This profile is therefore used as the profile for public sector transfers received and public consumption.

Income: We divided income into three components – employment income, self-employment income, which were derived from variables in the LCFS, and fringe benefits, which was the value of National Insurance and pension contributions paid by employers as a portion of remuneration. Each profile was adjusted to the corresponding estimate from National Accounts data. The LCFS does not report pension compensation separately, so it was assumed that the age distribution of the value of employer-provided pension contributions was the same as that of employment income. In the case of defined benefit pension plans – still common in the public sector, and prevalent among older workers in the private sector in 2012, this assumption may not hold, since pension entitlements paid to older workers are more valuable than those paid to younger workers in a DB scheme. We smoothed the labour income profiles using a weighted Gaussian kernel smoother, again with a smoothing parameter of 2 years.

Public transfers: The LCFS has a reasonably detailed list of government benefits which are paid as cash to different households. Following practice derived from the NTA, benefits – including any child benefits – were allocated to the individual who received the payment, rather than the individual to whom the benefit was targeted. Benefits included Injury Disablement Benefit, Jobseekers Allowance, Income Support and Incapacity Benefit, Guardian Allowance, Child Benefit, Widow’s Benefit, War Pensions, Invalid Tax Allowance, any Tax Credits received as benefits, Christmas Bonus, Disability Living Allowance, Maternity Grant, Severe Disablement Benefit, Attendance Allowance, and any other benefits. Tax credits not paid as benefits were treated as negative taxes, rather than benefits. The profile was smoothed in the usual way.

A separate profile was estimated for government retirement pensions, which included any National Insurance Retirement pension and Widow’s pension, but not occupational pensions where the government was the employer. This profile was also smoothed.

Taxes: Separate profiles were estimated using LCFS data for Income Tax, National Insurance contributions (including employees, employers and the self-employed), Council Tax, and other direct taxes (such as Television Licenses and Road Tax). Corporation Tax was allocated across
age using the reported investment income received by individuals, although it could also reasonably
have been allocated by consumption or labour income. Indirect taxes (mainly Value Added Tax
(VAT)) were allocated according to consumption of VAT-able goods, at the appropriate rate for
each COFOG category. Each tax profile was smoothed.

Inter-household transfers: The LCFS reports some data on cash transfers between households,
although the accuracy and completeness of these data is unclear. Since the definition of the
variable we use measuring outflows (“Money given to those outside the household”), appears more
comprehensive than the variable we use to measure inflows (“Regular allowances received from
outside the household”), we adjust the level of the profile of reported inflows so that it matches,
in aggregate, the net transfer to and from households balances the net private transfers to the rest
of the world reported in the National Accounts. Rest of the world transfers are allocated using
the transfers paid profile, in the absence of any other information.

Intra-household transfers: A key component of our work is the estimation of transfers of resources
within households. There are many ways of estimating these. We follow the standard approach
adopted by the NTA project, which is to assume that all household assets are owned by the
household head, and that the household head receives all cash surpluses of income over cash
consumption from household members, and makes payments to all household members to meet
good any deficits of cash consumption over income. (The LCFS defines the household head to be
that individual in the household who either owns the house or who is legally responsible for the
rent. If there are joint householders then the household head is the individual with the higher
income.) Any household deficit or surplus is assumed to represent either saving or dissaving by
the household head, or to be paid for by investment income received by the household, which
together represent the balancing item in household income statements.

A consequence of this assumption is that the incidence of any government benefit or tax is shared
across the household in proportion to the consumption of the individuals in the household.
There is no macro control for these profiles, although macro-control-adjusted raw variables are
used to calculate the cash deficit or surplus for each individual in the household to ensure
consistency of these profiles with macroeconomic aggregates. The intra-household transfer profiles
are smoothed.

Assets: We use wealth profiles obtained from the Wealth and Asset Survey (WAS), produced by
the ONS. The most important reason underlying this choice is that the WAS is survey-driven,
allowing us to disaggregate total UK household wealth, and its composition, between different
generations. We use the total of physical, financial, pension and real-estate wealth, but excluded
the value of motor vehicles and personalized number plates owned by the household. The WAS
only surveys Great Britain, so we adjusted the total pro-rata to include Northern Ireland. Profiles
were smoothed using a Gaussian kernel smoother. A smaller smoother parameter was used at very
young ages (<25), shifting via a linear weighting function to a larger smoothing parameter at older
ages (>35) to accurately record assets held at the youngest ages.
We note that there are some differences between the WAS values and those included in the national balance sheet produced as part of the national accounts. In general, reconciling survey estimates of household wealth with aggregate totals is difficult, and the focus of much current work. A detailed discussion of this point is therefore beyond the scope of this paper. Some general points relevant to this paper follow.

The National Accounts data focus on aggregates and imputations from administrative data, while the WAS is derived from surveys. While both the National Accounts and the WAS aim to measure market value, there are differences in underlying methodologies used to estimate the value of untraded assets, especially pensions and residential housing.

Quantitatively possibly the most significant difference between the two is that the WAS includes, as an asset, in estimates of household wealth the value of all occupational pensions, including unfunded DB civil service, police, firefighters and NHS pensions. The national accounts, to be consistent with ESA guidelines, do not include unfunded pensions in the main estimates, whether they are occupational pensions or state pensions. Somewhat anomalously, the national balance sheet does include the liabilities of funded or partly-funded public-sector occupational schemes in the Government sector, notably the Local Authorities Pension Scheme.61

There are two official estimates of the size of these liabilities. One, produced by Her Majesty’s Treasury as part of the Whole of Government Accounts (WGA), uses IFRS principles to calculate the liability as around £1.3trn in 2013 (HM Treasury, 2017). The other, a supplementary table to the National Accounts produced by the ONS in terms of ESA 2010 standards records them, at the end of 2010, as £852bn.

The WAS deals with the value of these – and other – pensions as an asset in the hands of the household sector. Because the measures of Government expenditure we use to calculate GWA profiles include only the actual benefit payments made by public-sector unfunded schemes, not the present value of future benefits, we need to include the unfunded public sector occupational pension liability with other public sector debt in the transversality condition for the public sector.

Historical asset profiles: Historical data on asset holdings by age is scarce. The BHPS measures wealth – other than the PV of occupational pensions – in 1990 and 1995. We estimated pension wealth using profiles of flows of pension income and contributions from survey data and an

61 Unfunded public-sector occupational schemes in the UK generally collect payroll contributions from both employers and employees. These contributions are recorded as ‘social contributions’ in the national accounts. Once in the scheme, these contributions are then used to pay pensions to retired members in terms of scheme rules. Any cash-flow surplus (or shortfall) is then returned to the Treasury (or received from it). Most of these schemes are still in significant cash surplus, meaning that the annual contribution flow exceeds the cost of annual benefits being paid. This surplus, remitted to the Treasury, reduces the public sector borrowing requirement, but gives rise to long-term public-sector liabilities. Since 2014, the value of these liabilities has been reported in a supplementary table in line with ESA 2010 rules, but not in the main accounts. The Universities Superannuation Scheme, also partly funded, is included in the NPISH sector rather than in the Government sector.
inventory approach, starting with known profiles from the first available WAS profile, and balanced these to aggregate totals obtained from National Accounts estimates. Other profile shapes were interpolated between the known BHPS and WAS profiles, and balanced to national accounts aggregates in each year.

Public-sector net worth: The UK produces two measures of public sector net worth: one from the national accounts, and one from the WGA, discussed above. A full reconciliation between the two values can be found in HMT (2017), and a useful description in the Fiscal Sustainability Report, published by the OBR (2019). The primary differences between the two are the treatment of the occupational pension liabilities of unfunded schemes, discussed above in the context of the pension wealth of the household sector, and the treatment of fixed assets, such as property, plant and equipment. The national accounts do not include the value of fixed property in their estimate of the net worth of the public sector, recording this as a non-financial asset instead. The WGA, on the other hand, includes the value of these assets in the aggregate net worth figure. There are also differences in the valuation methodologies used. For the purposes of our work, we have decided to use the WGA estimate. Firstly, it includes the value of fixed property owned by the public sector, which is undoubtedly an asset passed on to future generations, and secondly, it is consistent with our treatment of occupational pension liabilities in the wealth of the household sector derived from the WAS. On this measure, the net worth of the UK public sector is a liability of £1 628bn in 2012. The public sector is £329bn less indebted on the national accounts measure than on the WGA one. See footnote 26 for more details on this implications of these choices.
<table>
<thead>
<tr>
<th>Profile</th>
<th>Main data source</th>
<th>Macro control</th>
<th>Adjustment factor in 2015‡</th>
<th>GWA profile</th>
<th>Notes and sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Income: employment</td>
<td>LCFS</td>
<td>The sum of all income profiles is adjusted to equal the compensation of employees plus 2/3 of mixed income plus taxes less subsidies on income. Includes employer contributions to NI and employer pension contributions.</td>
<td>1.142</td>
<td>Human capital</td>
<td>Fringe benefits are not recorded in LCFS. We allocate them in proportion to the sum of employment and self-employment income.</td>
</tr>
<tr>
<td>2. Income: self-employment</td>
<td>LCFS</td>
<td></td>
<td>1.50</td>
<td>Human capital</td>
<td></td>
</tr>
<tr>
<td>3. Income: fringe benefits</td>
<td>-</td>
<td></td>
<td>n/a</td>
<td>Human capital</td>
<td></td>
</tr>
<tr>
<td>4. Private consumption: education</td>
<td>LCFS / LFS</td>
<td>Private consumption on education plus half of student loans issued in the year for fees</td>
<td>2.43</td>
<td>Private consumption</td>
<td>Enrolment data from LFS plus administrative data from Independent Schools Council Census on private school fees. National Accounts treatment of student loans due to change in June 2019 to this approach (the adjustment factor is for non-student loan expenditure).</td>
</tr>
<tr>
<td>6. Private consumption: imputed rentals on owner-occupied housing</td>
<td>LCFS</td>
<td>Imputed rentals. No adjustment for indirect taxes.</td>
<td>1.27</td>
<td>Private consumption</td>
<td></td>
</tr>
<tr>
<td>7. Private consumption: market rentals on rented housing</td>
<td>LCFS</td>
<td>Actual rentals. No adjustment for indirect taxes.</td>
<td>1.16</td>
<td>Private consumption</td>
<td></td>
</tr>
<tr>
<td>8. Private consumption: alcohol and tobacco</td>
<td>LCFS</td>
<td>Basic prices derived by applying VAT rates</td>
<td>2.3</td>
<td>Private consumption</td>
<td>Distributed equally to all adults in HH over 18 rather than using the HH equivalence scale.</td>
</tr>
<tr>
<td>9. Private consumption: other</td>
<td>LCFS</td>
<td>Each COFOG category macro-controlled separately at basic prices derived by applying VAT adjustment appropriate for each category.</td>
<td>1.07*</td>
<td>Private consumption</td>
<td></td>
</tr>
<tr>
<td>10. Government consumption: education</td>
<td>Administrative data / LCFS / LFS</td>
<td>Public consumption on education plus block grants to universities (in NPISH in NA) plus half of student loans issued for fees.</td>
<td>1.16</td>
<td>Government consumption, in-kind benefits received</td>
<td>National Accounts treatment of student loans due to change in June 2019 to this approach. LFS used for participation in F/HE</td>
</tr>
<tr>
<td>11. Government consumption: health</td>
<td>Administrative data / ETB</td>
<td>Public consumption on health plus block grants to NHS Trusts</td>
<td>1.46</td>
<td>Government consumption, in-kind benefits received</td>
<td>ETB allocates government expenditure to households in the LCFS. A regression approach allocates to individuals. Includes all non-health and education in-kind expenditure that is age-related</td>
</tr>
<tr>
<td>12. Government consumption: social care</td>
<td>Administrative data / ETB</td>
<td>Public consumption on social care plus half of maintenance grants</td>
<td>2.9</td>
<td>Government consumption, in-kind benefits received</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government consumption: other</td>
<td></td>
<td>All other public consumption</td>
<td></td>
<td>Government consumption, in-kind benefits received</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Equal allocation</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Government transfers: corporation tax</td>
<td>Using dividends received</td>
<td>Corporation tax receipts plus other taxes on production less subsidies on production</td>
<td>11.12†</td>
<td>Taxes paid</td>
</tr>
<tr>
<td>15.</td>
<td>Government transfers: income tax</td>
<td>LCFS</td>
<td>Income tax receipts</td>
<td>1.44</td>
<td>Taxes paid</td>
</tr>
<tr>
<td>16.</td>
<td>Government transfers: property tax</td>
<td>LCFS</td>
<td>Council tax receipts plus rates in NI</td>
<td>1.00</td>
<td>Taxes paid</td>
</tr>
<tr>
<td>17.</td>
<td>Government transfers: indirect taxes</td>
<td>Using consumption</td>
<td>VAT plus duties (incl customs & excise)</td>
<td></td>
<td>Taxes paid</td>
</tr>
<tr>
<td>18.</td>
<td>Government transfers: National Insurance contributions</td>
<td>LCFS</td>
<td>Social contributions</td>
<td>1.20</td>
<td>Taxes paid</td>
</tr>
<tr>
<td>19.</td>
<td>Government transfers: other taxes</td>
<td>Using consumption</td>
<td>Road tax, vehicle excise duties, TV license</td>
<td>1.43</td>
<td>Taxes paid</td>
</tr>
<tr>
<td>20.</td>
<td>Government transfers: non old-age related benefits</td>
<td>LCFS</td>
<td>Include Injury Disablement Benefit, Jobseekers Allowance, Income Support and Incapacity Benefit, Guardian Allowance, Child Benefit, Widow’s Benefit, War Pensions, Invalid Tax Allowance, any Tax Credits received as benefits, Christmas Bonus, Disability Living Allowance, Maternity Grant, Severe Disablement Benefit, Attendance Allowance.</td>
<td>2.38</td>
<td>Government cash transfers received</td>
</tr>
<tr>
<td>21.</td>
<td>Government transfers: old-age related benefits</td>
<td>LCFS</td>
<td>Basic State Pension, State Second Pension</td>
<td>1.050</td>
<td>Government cash transfers received</td>
</tr>
<tr>
<td>22.</td>
<td>Inter-hh transfers: in</td>
<td>LCFS</td>
<td>There are no macro-controls for these profiles. The profiles of inter-hh transfers received was adjusted to make the aggregate balance to the private sector’s balance with RoW.</td>
<td>n/a</td>
<td>Private transfers received</td>
</tr>
<tr>
<td>23.</td>
<td>Inter-hh transfers: out</td>
<td>LCFS</td>
<td>There are no macro-controls for these profiles. The profiles of inter-hh transfers received automatically sum to zero given the intra-hh allocation model</td>
<td>n/a</td>
<td>Private transfers received</td>
</tr>
<tr>
<td>24.</td>
<td>Intra-hh transfers: in</td>
<td>NTA model</td>
<td>There are no macro-controls for these profiles. The profiles of intra-hh transfers received automatically sum to zero given the intra-hh allocation model</td>
<td>n/a</td>
<td>Private transfers paid</td>
</tr>
<tr>
<td>25.</td>
<td>Intra-hh transfers: out</td>
<td>NTA model</td>
<td>There are no macro-controls for these profiles. The profiles of intra-hh transfers received automatically sum to zero given the intra-hh allocation model</td>
<td>n/a</td>
<td>Private transfers paid</td>
</tr>
<tr>
<td>26.</td>
<td>Asset holdings</td>
<td>WAS</td>
<td>Total of physical wealth (excluding automobiles), pension wealth, real estate wealth and net financial wealth from survey</td>
<td>n/a</td>
<td>Private assets</td>
</tr>
</tbody>
</table>

Note: ‡ A value greater than 1 reflects under-reporting in the survey relative to National Account totals, and a value less than 1 the opposite. National Accounts aggregate totals are usually derived from a host of sources and methods, only one of which is the survey(s) we use. * The reported macro control adjustment is the adjustment for the consolidated private other consumption profile rather than the individual COFOG categories. Individual macro-adjustment factors for each COFOG category vary widely. † The high macro-control adjustment reflects the low proportion of dividends and interest that are paid directly to households.
Appendix C: Detailed APC results

The text describes the APC approach we used to estimate and project the profiles. The approach produces a set of age, cohort, and period dummies, and a set of breakpoints \(\{\beta_i^t, \alpha_i^t, \gamma_i^t, \psi_i^t, k_i^{x,E}, k_i^{x,R}\} \) as well as a standard error \(\sigma_i^t \), for each profile. This section presents detailed results for each profile we estimated.

Detailed values of the age, period and cohort parameters for each profile can be obtained from the authors on request, or from the Economic Journal website.

TABLE C1: OVERALL ESTIMATION RESULTS

<table>
<thead>
<tr>
<th></th>
<th>(\beta^t)</th>
<th>Breakpoints (YoB)</th>
<th>(\sigma^t)</th>
<th>Time trend</th>
<th>(R^2) (no time trend)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private non-housing consumption</td>
<td>0.127748</td>
<td>1975, 1980</td>
<td>1940, 1944,</td>
<td>0.025351</td>
<td>-3254.33, 0.994866</td>
</tr>
<tr>
<td></td>
<td>0.127748</td>
<td>1947, 1960</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private housing consumption</td>
<td>0.042406</td>
<td>1979, 1982, 1984</td>
<td>1947, 1951,</td>
<td>0.007572</td>
<td>-3042.32, 0.997479</td>
</tr>
<tr>
<td></td>
<td>0.042406</td>
<td>1951, 1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public consumption</td>
<td>0.135736</td>
<td>-</td>
<td></td>
<td>0.0153</td>
<td>-3252.32, 0.997108</td>
</tr>
<tr>
<td>Labour income</td>
<td>0.069412</td>
<td>1981, 1992</td>
<td>1941, 1946,</td>
<td>0.061266</td>
<td>-2163.38, 0.992544</td>
</tr>
<tr>
<td></td>
<td>0.069412</td>
<td>1952, 1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labour income taxes</td>
<td>0.009149</td>
<td>1983, 1988</td>
<td>1942, 1942,</td>
<td>0.021163</td>
<td>-2457.22, 0.983331</td>
</tr>
<tr>
<td></td>
<td>0.009149</td>
<td>1947, 1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other taxes paid</td>
<td>0.030676</td>
<td>1975, 1981</td>
<td>1939, 1946,</td>
<td>0.053226</td>
<td>-2122.79, 0.934392</td>
</tr>
<tr>
<td></td>
<td>0.030676</td>
<td>1951, 1953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public cash transfers (non-pension)</td>
<td>0.008172</td>
<td>1947, 1950, 1950, 1959</td>
<td>0.017652</td>
<td>-2599.05, 0.963863</td>
<td></td>
</tr>
<tr>
<td>Public pensions</td>
<td>0.002937</td>
<td>-</td>
<td></td>
<td>0.009805</td>
<td>-968.736, 0.996427</td>
</tr>
<tr>
<td>Private transfers paid (within households)</td>
<td>0.014274</td>
<td>1979</td>
<td>1940, 1942,</td>
<td>0.027703</td>
<td>-2412.2, 0.988225</td>
</tr>
<tr>
<td>Private transfers paid (within households)</td>
<td>0.014274</td>
<td>1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private transfers received (within households)</td>
<td>0.190893</td>
<td>1976, 1983</td>
<td>1943, 1945,</td>
<td>0.021571</td>
<td>-2997.75, 0.991962</td>
</tr>
<tr>
<td>Private transfers paid (between households)</td>
<td>0.001943</td>
<td>1973</td>
<td>1940, 1942,</td>
<td>0.006754</td>
<td>-1713.16, 0.684932</td>
</tr>
<tr>
<td>Private transfers paid (between households)</td>
<td>0.000843</td>
<td>1984</td>
<td>1944, 1946,</td>
<td>0.003466</td>
<td>-1987.55, 0.576051</td>
</tr>
<tr>
<td>Private transfers paid (between households)</td>
<td>0.000843</td>
<td>1950, 1962</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Robustness checks

In this appendix, we subject our results to various reasonability checks and sensitivity analysis. We first consider changes in the methodology we used to project the profiles into the future. We then consider changing financial and demographic assumptions. Finally, we compare bequest profiles implied by our measures of wealth, and show that they match well with HMRC data on bequests. The capitalized value of these profiles also compares well with our estimate of the present value of bequests passed down.

D.1 Projection methodology

We calculate the savings and fiscal gaps using the simpler projection methodology, referred to in the text, where we just smoothed all profiles in each base year using a Gaussian kernel smoother and projected them forward from that base year growing at the annual rate of productivity growth g. This abstracts from cohort and period effects and assumes the shape of all age profiles remains constant from the base year. However, we assumed that labour income and labour income tax profiles had future retirement breakpoints corresponding to future scheduled increases in the State Pension Age.

Table D.1 repeats Table 1 of the main paper, and Table D.2 repeats Table 3 of the main paper, both using this alternative assumption. The main difference between these results and the results in the paper is that younger generations are projected to consume more than under our main results, both in the public and the private sectors. This leads to a slightly positive savings gap (of 2% of the PV of future consumption), indicating that the private sector is now no longer at a slight surplus, but rather that it has a small deficit. The fiscal gap also worsens slightly, and the consumption gap by around 3 percentage points of the PV of total consumption. However, our conclusions regarding the relative changes in these gaps over the period of our study remain broadly unchanged.

Panel A of Table D.3 calculates the three gaps (savings, fiscal and consumption) under the main and alternative projection methodologies, with and without projected increases in the State Pension Age. These highlight the relative contributions of changes in working life and changes in consumption patterns to our results.

D.2 Financial assumptions

Panel B of Table D.3 calculates the three gaps (savings, fiscal and consumption) under different interest rate and productivity assumptions. As expected (see Carderelli et al. (2000)), the FG, and especially the proportional FG, is relatively insensitive to the choice of discount and productivity growth rates. Changes in the discount and productivity growth rates have roughly the same proportional effect on the PV of the public revenues and expenditures, leaving the FG unchanged.
In contrast, the SG is sensitive to changes in the difference between the discount rate and productivity growth rate, but not to the actual level of these rates. A larger difference between the rates reduces the SG; whereas a smaller one raises it. This can be explained with reference to the perpetual growth model. The PV of a growing cash flow is equal to the initial cash flow divided by the difference between the discount rate and the growth rate. If the difference in rates stays constant, then the PV of the private sector income and expenditure flows will remain roughly constant and so Net Worth will continue to balance the private sector budget. If the difference in rates changes, the relative size of the PV of these flows to Net Worth changes and so the SG is affected.

We can also use the perpetual growth model to support our choice of a discount rate of 5% and growth rate of 1.5%; or more precisely the choice of a difference of 3.5% between these rates. The market value of the Net Worth should be approximately equal to the PV of the free cash flows generated from these assets; in the case of housing, the rental income minus any housing investment, and in the case of the capital stock, the gross profits minus gross investment. We, therefore, verify this is the case for an interest rate of 5% and growth rate of 1.5%

D.3. Changing demographic assumptions

In Panel C of Table 4, we investigate the sensitivity of the indicators to changes in the population projections. The projection scenarios are published by the ONS and consist of a high/low life expectancy, high/low fertility and high/low population variant; where the final two variants are the combination of high (respectively low) life expectancy, fertility and immigration. Longer life expectancy results in both a higher fiscal and savings gaps. Higher fertility rates also increase both the fiscal and savings gap; unborns have both a negative private and public generational account (Table 1 of the main paper). In all cases, the impact is not large, primarily because changes lie far in the future and are heavily discounted.

62 We use a perpetual growth model to verify the balance approximately holds at our choice of a 5% interest rate, 1.5% productivity growth rate and a 0.28% population growth rate (the average growth of the total population over the next 100 years in the ONS population projections). In 2015, total rents (imputed plus actual rents) for the UK was £275.7bn (ONS (2018) series, ADFT + ADFU) and GFCF on new dwellings was £67.9bn (DFDK). Based on a perpetual growth model, the fair value of UK Dwellings would be £6.5tn ((275.7-67.9)/0.0322). This is close to the estimate in National Balances sheets of £6.4tn (E46Y+E44R). Similarly at the UK economy level in 2015, total gross output in 2015 was £617bn (ABNF) plus a 1/3 of mixed income £40bn (QWLT) minus GFCF of £326bn(NQFM) giving an estimate of total net worth of £10.2tn ((617+40-326)/0.0322) which again compares closely to our estimate of Net Worth from the Wealth and Asset Survey and Whole of Government Accounts of £9.6tn.
Appendix References

Note: All references not listed here are included in the references section of the main paper

Table D.1: Private and public generational accounts for the UK, 2015 (2015 GBP ‘000), smoothed profiles projected forward at rate \(g \)

<table>
<thead>
<tr>
<th>PANEL A: Private generational account and savings</th>
<th>Year of birth</th>
<th>Age in 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. PV(Public consumption)</td>
<td>90+</td>
<td>80-89</td>
</tr>
<tr>
<td>B. PV(Private non-housing consumption)</td>
<td>26</td>
<td>45</td>
</tr>
<tr>
<td>C. PV(Private housing consumption)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. Human capital</td>
<td>117</td>
<td>198</td>
</tr>
<tr>
<td>E. Life-cycle demand for assets (A+B+C-D)</td>
<td>65</td>
<td>107</td>
</tr>
<tr>
<td>F. Public transfer wealth</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G. Private transfer wealth</td>
<td>117</td>
<td>198</td>
</tr>
<tr>
<td>H. Total transfer wealth (F+G)</td>
<td>65</td>
<td>107</td>
</tr>
<tr>
<td>I. Private generational account (E-H)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J. Non-housing wealth*</td>
<td>117</td>
<td>198</td>
</tr>
<tr>
<td>K. Housing wealth*</td>
<td>65</td>
<td>107</td>
</tr>
<tr>
<td>L. Savings gap (I-J-K)</td>
<td>(228)</td>
<td>(176)</td>
</tr>
</tbody>
</table>

| PANEL B: Public generational account (equals public transfer wealth above) |
|---|---------------|-------------|
| M. PV(Public consumption) | 54 | 88 | 119 | 134 | 137 | 134 | 128 | 125 | 146 | 183 | 185 |
| N. PV(Public cash transfers received) | 40 | 70 | 110 | 135 | 122 | 119 | 128 | 129 | 119 | 87 | 77 |
| O. PV(Taxes paid) | 28 | 50 | 90 | 147 | 227 | 287 | 327 | 333 | 298 | 233 | 210 |
| P. Public generational account (K+L-M=E) | 65 | 107 | 138 | 122 | 33 | (35) | (71) | (78) | (34) | 38 | 52 |
Table D.2: Changes in productivity- and price-adjusted public and private generational accounts for the UK, 2005-2015, smoothed profiles projected forward at rate g

Panel A: Private generational account and savings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. PV (Public consumption)</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>(3)</td>
<td>(9)</td>
<td>(11)</td>
<td>(17)</td>
<td>(17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. PV (Private non-housing consumption)</td>
<td>6</td>
<td>12</td>
<td>23</td>
<td>33</td>
<td>29</td>
<td>7</td>
<td>(13)</td>
<td>(43)</td>
<td>(36)</td>
<td>(23)</td>
<td>(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. PV (Private housing consumption)</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>(0)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Human capital</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>57</td>
<td>41</td>
<td>23</td>
<td>(24)</td>
<td>(24)</td>
<td>(15)</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Life-cycle demand for assets (A+B+C-D)</td>
<td>10</td>
<td>22</td>
<td>41</td>
<td>39</td>
<td>(15)</td>
<td>(28)</td>
<td>(33)</td>
<td>(28)</td>
<td>(21)</td>
<td>(22)</td>
<td>(26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Public transfer wealth</td>
<td>(1)</td>
<td>1</td>
<td>(1)</td>
<td>(10)</td>
<td>(31)</td>
<td>(7)</td>
<td>4</td>
<td>24</td>
<td>24</td>
<td>7</td>
<td>(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Private transfer wealth</td>
<td>(2)</td>
<td>(4)</td>
<td>(4)</td>
<td>2</td>
<td>(0)</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Total transfer wealth (F+G)</td>
<td>(3)</td>
<td>(3)</td>
<td>(5)</td>
<td>(7)</td>
<td>(31)</td>
<td>(6)</td>
<td>8</td>
<td>33</td>
<td>26</td>
<td>8</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Private generational account (E-H)</td>
<td>13</td>
<td>25</td>
<td>46</td>
<td>47</td>
<td>16</td>
<td>(22)</td>
<td>(41)</td>
<td>(60)</td>
<td>(47)</td>
<td>(29)</td>
<td>(22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Non-housing wealth*</td>
<td>30</td>
<td>43</td>
<td>53</td>
<td>96</td>
<td>38</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Housing wealth*</td>
<td>47</td>
<td>40</td>
<td>13</td>
<td>34</td>
<td>6</td>
<td>(6)</td>
<td>(17)</td>
<td>(13)</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Public generational account (equals public transfer wealth above)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M. PV (Public consumption)</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>(3)</td>
<td>(9)</td>
<td>(11)</td>
<td>(17)</td>
<td>(17)</td>
</tr>
<tr>
<td>N. PV (Public cash transfers received)</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>12</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>O. PV (Taxes paid)</td>
<td>8</td>
<td>15</td>
<td>28</td>
<td>29</td>
<td>35</td>
<td>12</td>
<td>0</td>
<td>(29)</td>
<td>(27)</td>
<td>(17)</td>
<td>(0)</td>
</tr>
<tr>
<td>P. Public generational account (K+L-M=E)</td>
<td>(1)</td>
<td>1</td>
<td>(1)</td>
<td>(10)</td>
<td>(31)</td>
<td>(7)</td>
<td>4</td>
<td>24</td>
<td>24</td>
<td>7</td>
<td>(6)</td>
</tr>
</tbody>
</table>
TABLE D.2: Changes in productivity- and price-adjusted public and private generational accounts for the UK, 2005-2015, smoothed profiles projected forward at rate g

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rates</th>
<th>Savings Gap (SG)</th>
<th>Fiscal Gap (FG)</th>
<th>Consumption Gap (CG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal (£bn)</td>
<td>Proportion of PV of total consumption</td>
<td>Nominal (£bn)</td>
</tr>
<tr>
<td>Panel A – Base Case and Sensitivity to Projection methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Projection</td>
<td>$r=5%$, $g=1.5%$</td>
<td>(192) 0.4%</td>
<td>3,918 -8.5%</td>
<td>3,726 -8.1%</td>
</tr>
<tr>
<td>Principal Projections; no increase in SPA</td>
<td>$r=5%$, $g=1.5%$</td>
<td>316 -0.7%</td>
<td>4,408 -9.5%</td>
<td>4,724 -10.2%</td>
</tr>
<tr>
<td>Smoothed profiles</td>
<td>$r=5%$, $g=1.5%$</td>
<td>963 -2.0%</td>
<td>4,354 -9.1%</td>
<td>5,317 -11.1%</td>
</tr>
<tr>
<td>Smoothed profiles; no increase in SPA</td>
<td>$r=5%$, $g=1.5%$</td>
<td>1,918 -4.0%</td>
<td>5,337 -11.0%</td>
<td>7,255 -15.0%</td>
</tr>
<tr>
<td>Panel B – Sensitivity to financial assumptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Projection</td>
<td>$r=6%$, $g=2.5%$</td>
<td>(69) 0.7%</td>
<td>3,897 -8.5%</td>
<td>3,583 -7.8%</td>
</tr>
<tr>
<td>Principal Projection</td>
<td>$r=4%$, $g=0.5%$</td>
<td>(315) 8.1%</td>
<td>3,458 -9.7%</td>
<td>549 -1.5%</td>
</tr>
<tr>
<td>Principal Projection</td>
<td>$r=6%$, $g=1.5%$</td>
<td>(2,910) 8.1%</td>
<td>4,767 -7.3%</td>
<td>9,719 -14.8%</td>
</tr>
<tr>
<td>Principal Projection</td>
<td>$r=4%$, $g=1.5%$</td>
<td>4,952 -7.6%</td>
<td>4,280 -7.9%</td>
<td>6,268 -11.5%</td>
</tr>
<tr>
<td>Principal Projection</td>
<td>$r=5%$, $g=2%$</td>
<td>1,988 -3.7%</td>
<td>3,650 -9.1%</td>
<td>1,863 -4.6%</td>
</tr>
<tr>
<td>Panel C – Sensitivity to demographic assumptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Life Expectancy Variant(a)</td>
<td>$r=5%$, $g=1.5%$</td>
<td>(1,787) 4.5%</td>
<td>4,166 -8.9%</td>
<td>4,257 -9.1%</td>
</tr>
<tr>
<td>Low Life Expectancy Variant</td>
<td>$r=5%$, $g=1.5%$</td>
<td>(913) 3.6%</td>
<td>3,395 -7.6%</td>
<td>2,482 -5.5%</td>
</tr>
<tr>
<td>High Fertility Variant</td>
<td>$r=5%$, $g=1.5%$</td>
<td>(16) 0.0%</td>
<td>3,918 -8.4%</td>
<td>3,902 -6.3%</td>
</tr>
<tr>
<td>Low Fertility Variant</td>
<td>$r=5%$, $g=1.5%$</td>
<td>(730) 1.6%</td>
<td>3,767 -8.4%</td>
<td>3,037 -6.8%</td>
</tr>
<tr>
<td>High Population Variant(b)</td>
<td>$r=5%$, $g=1.5%$</td>
<td>824 -1.7%</td>
<td>4,255 -8.6%</td>
<td>5,079 -10.2%</td>
</tr>
<tr>
<td>Low Population Variant</td>
<td>$r=5%$, $g=1.5%$</td>
<td>(1,495) 3.6%</td>
<td>3,449 -8.2%</td>
<td>1,954 -4.7%</td>
</tr>
</tbody>
</table>

NOTE: Table reports the Savings, Fiscal and Consumption Gaps and Corrections Indicators. The first row of the first panel is our base case, where profiles are projected using the APC model described in the text and the SPA increase is modelled. ‘Smoothed profiles’ reflects our second projection approach, where per capita profiles are grown in line with productivity. The others rows in the first panel are variants; the second panel reports variants of the discount and productivity growth rate assumptions, and the third panel reports results using other ONS population projection variants.

(a) These population variants are the ONS 2016-based national population projections, available at URL: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections/datasets/z2zippedpopulationprojectionsdatafiles
gandwales
(b) The High (Low) Population variant is the combination of the three High (Low) Life Expectancy, Fertility and Immigration variants.

(c) This scenario assumes the length of the working life grows in line with legislated increases in the UK State Pension Age (SPA). Thus, in 2019 when the UK SPA increases from 65 to 66, we use adjusted profiles t_k^* for each item where $t_k^* = t_k^* + 1$ for all ages greater than 45, $t_k^* - 45$. Similarly the profiles are shifted further by a year in 2027 and 2045.