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Summary

� Future climate presents conflicting implications for forest biomass. We evaluate how plant

hydraulic traits, elevated CO2 levels, warming, and changes in precipitation affect forest pri-

mary productivity, evapotranspiration, and the risk of hydraulic failure.
� We used a dynamic vegetation model with plant hydrodynamics (FATES-HYDRO) to simu-

late the stand-level responses to future climate changes in a wet tropical forest in Barro Color-

ado Island, Panama. We calibrated the model by selecting plant trait assemblages that

performed well against observations. These assemblages were run with temperature and pre-

cipitation changes for two greenhouse gas emission scenarios (2086–2100: SSP2-45, SSP5-
85) and two CO2 levels (contemporary, anticipated).
� The risk of hydraulic failure is projected to increase from a contemporary rate of 5.7% to

10.1–11.3% under future climate scenarios, and, crucially, elevated CO2 provided only slight

amelioration. By contrast, elevated CO2 mitigated GPP reductions. We attribute a greater var-

iation in hydraulic failure risk to trait assemblages than to either CO2 or climate.
� Our results project forests with both faster growth (through productivity increases) and

higher mortality rates (through increasing rates of hydraulic failure) in the neo-tropics accom-

panied by certain trait plant assemblages becoming nonviable.

Introduction

Tropical forests have large impacts on global water and carbon
cycles. Of global terrestrial systems, they intercept c. 35% of
precipitation, contribute c. 70% of transpiration and 33%
of evapotranspiration, and account for 60% of photosynthesis
(Beer et al., 2010; Schlesinger & Jasechko, 2014). The trajec-
tories of these tropical water and carbon fluxes are uncertain
due to the potential impacts of global climate change
(Mitchard, 2018). A modern increase in the prevalence of
droughts (since 2000) has resulted in significant declines in the
Amazon and is attributed as causing a 50% decrease in nor-
malized difference in vegetation index, with significantly more
loss in drought-impacted forests (Xu et al., 2011; Hilker
et al., 2014). Further, a recent trend of increasing drought has
also been shown to reduce primary productivity in tropical for-
ests (Zhang et al., 2016). This is supported by recent site-level

studies which have shown that the carbon storage potential of
these forests has declined in recent years due to an increase in
mortality rates that may offset future gains in productivity
owing to warmer temperatures, CO2 fertilization, and refores-
tation (Brienen et al., 2015).

Projecting of future gross primary productivity and mortality is
complex, owing to the interdependent (and sometimes counteract-
ing) effects of rising CO2, vapor pressure deficit (VPD; Grossiord
et al., 2020), and changes to frequency and severity of drought
(Chiang et al., 2021). GPP is reduced by increasing atmospheric
aridity (VPD) through stomatal closure, which in turn reduces the
risk of hydraulic failure (or irreversible desiccation through loss of
hydraulic transport capacity; McDowell et al., 2022). However,
hydraulic failure is exacerbated when increased atmospheric
demand for water exceeds available water in the soil (Bartlett
et al., 2012; Meng et al., 2022). Increased CO2 concentration may
offset part of future drought stress by increasing water use efficiency
(WUE: the amount of water loss by transpiration per unit of car-
bon fixed by photosynthesis; Briggs & Shantz, 1913) thus increas-
ing GPP and reducing hydraulic failure risk (Eamus, 1991; Adams
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et al., 2017; Wu et al., 2020). During drought, however, base tran-
spiration rates are often low, which may limit or counteract any
benefit of these effects (Bartlett et al., 2012; Adams et al., 2017;
Matheny et al., 2017).

Due to broad variation in hydraulic trait assemblage (i.e. prop-
erties determining plant hydraulic conductivities and vulnerabil-
ity to water stress), the net impacts of rising VPD, drought, and
CO2 on GPP and risk of hydraulic failure is unknown (Choat
et al., 2018). Prior research has focused on lone traits under
increasing aridity; however, water transport (leaf and sapwood
area, conductivity rate), leaf behavior (hydraulic safety margin,
stomatal closure rate) and xylem safety (hydraulic conductivity,
xylem embolism resistance) are often controlled by trait assem-
blages and their interactions (Meinzer et al., 2005; Bartlett et al.,
2012; Choat et al., 2012; Li et al., 2015; Tavares et al., 2023).
Process-based plant hydrodynamics modeling allows investiga-
tion of how different plant traits will affect emerging plant beha-
viors under future climate condition.

In this study we investigated the impacts of future climate and
CO2 on GPP and mortality risk due to hydraulic failure in a wet
tropical forest on Barro Colorado Island (BCI), Panama (Sup-
porting Information Figs S1, S2; Table S1) using a state-of-the-
art model that represents plant demography and whole tree
hydrodynamics (FATES-HYDRO; Xu et al., 2023).We hypothe-
sized that future warming and precipitation change would lower
GPP (H1A); increase the risk of hydraulic failure (H1B); higher
CO2 levels would ameliorate GPP declines (H2A); and risk of
hydraulic failure (H2B); and plant traits would account for a
greater variance than CO2 and climate scenario in plant hydraulic
failure (H3A); GPP (H3B); and Evapotranspiration (ET; H3C).
We first calibrated FATES-HYDRO; by simulating various plant
trait assemblages (Table S2) and then filtering trait assemblages
against observed measurements (Table S3; Fig. S3) of soil water,
runoff, evapotranspiration, and gross primary productivity under

a contemporary (2003–2016) climate. We then tested these
hypotheses under climate projected by 16 Earth System Models
(ESMs) under Coupled Model Intercomparison Project Phase 6
(CMIP6) (Table 1) and two greenhouse gas emission scenarios
(Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5). These
models were run with static stand structure (i.e. the plant size and
composition are held constant) to understand the plant responses
to both contemporary and projected CO2 and future climate,
without confounding demographic or plant functional composi-
tion feedback.

Materials and Methods

Study area

Barro Colorado Island (BCI), Panama, is a c. 1500 ha completely
forested island located at 9°10 0N and 79°51 0W (Fig. S1). BCI
has an annual mean temperature of 26.3°C and an annual mean
precipitation of 2656 mm (Paton, 2020). It commonly experi-
ences a spring dry season (c. 140 mm) from December to May
and a wet season from May to December (c. 2500 mm). The for-
est is classified as a moist tropical forest, and much of the island
remains in primary forest. Stand structure was initialized with
observed data from a 50-ha plot on site (Condit et al., 2017;
Fig. S2; Table S1). BCI is primary composed of moist lowland
tropical forest, which has been completely protected from human
disturbance in the last 70 yr (Condit et al., 1999). This area is
incredibly species diverse with 310 species regularly recorded in
census (Condit et al., 2019; https://datadryad.org/stash/dataset/
doi:10.15146/5xcp-0d46). In the 2010 census, of the 20 species
the most prevalent by basal area (m2 ha�1), comprise only 55.2%
of the total basal area (Table S1). Of all trees measured within
this plot 2.55% of all censused trees were > 2 cm diameter at
breast height (DBH) 2.35–3.15 and 0.5% of trees were > 5 cm

Table 1 Summary of the climate anomaly from each model used in this study under each emissions scenario.

Model

SSP-2 4.5 (mean annual anomaly) SSP-5 8.5 (mean annual anomaly)

Temperature (°C) Precip. (mm) Temperature (°C) Precip. (mm)

ACCESS-ESM1-5 8.31% �10.63% 15.58% �9.2%
CMCC-CM2-SR5 7.73% �4.7% 15.39% �14.85%
CMCC-ESM2 7.9% �7.01% 14.85% �8.29%
CNRM-CM6-1 10.08% �28.33% 20.03% �15.93%
CanESM5 9.96% �9.02% 21.46% �11.66%
EC-Earth3 7.7% �16.99% 13.14% 44.09%
EC-Earth3-Veg 7.33% �8.19% 12.72% 67.7%
IITM-ESM 5.41% �22.62% 10.14% �15.21%
INM-CM4-8 4.24% �2.5% 8.9% 52.8%
INM-CM5-0 3.55% �6.11% 8.03% 20.93%
IPSL-CM6A-LR 8.84% �15.96% 18.45% �22.73%
MIROC6 5.61% �7.36% 12.58% �6.4%
NESM3 6.82% �15.39% 14.53% �18.26%
NorESM2-LM 7.16% �25.44% 14.99% �25.44%
NorESM2-MM 7.83% �7.74% 16.2 �61.4
TaiESM1 11.67% �12.15% 19.55 �13.56

Each model contains two emissions scenarios or shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5). Percent anomalies for temperature
(temperature °C) and precipitation (Precip. in mm annually). Models were accessed from the CMIP6 portal (cmip6 – Home|ESGF-CoG).
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DBH (Fig. S2). Maximum height of the canopy averages 33 m
across subplots, with a density c. 400 trees ha�1, and 2.5–3
canopy layers (Bohlman & Pacala, 2012). Our observational esti-
mates of evapotranspiration and gross primary productivity come
from a flux tower within the watershed (Pau et al., 2018; Larsen
et al., 2021). The plot location simulated in this study ranges
from 120 to 160 m elevation. Throughout the watershed, gravi-
metric soil samples are collected, and runoff is calculated via a
weir from the Conrad catchment (Kupers et al., 2019).

Model description

The Functionally Assembled Terrestrial Ecosystem Simulator
(FATES; Fisher et al., 2015; Koven et al., 2020) is implemented
through a link to a host land surface model, either the Commu-
nity Land Model (CLM; Lawrence et al., 2019) or in the case of
our study the Energy Exascale Earth System (E3SM) land model
(ELM: Golaz et al., 2019). FATES is an ecosystem demography
model structured by plant size and succession stage (age since last
disturbance). For each age-since-last-disturbance ‘patch’, the
model tracks many ‘cohorts’ of plant consisting of populations of
plants of similar size and plant functional type. For each cohort,
the model provides numerical solutions to biophysical processes,
including photosynthesis, respiration, allocation of carbon, water
and nutrients, growth and competition, and the likelihood of
mortality based on carbon starvation, hydraulic failure, and base-
line background disturbances. FATES allocates carbon by photo-
synthesis to various vegetative pools (leaf, stem, seed, roots,
storage). The variation in plant traits which control these pro-
cesses allowing for varied plant carbon–water economic strategies.
Further, FATES scales leaf traits through the canopy, resulting in
more representative plant strategies and responses (Koven
et al., 2020). Our simulations were run in FATES static stand
mode, which does not allow for the growth of trees, dynamic
change in leaf area index, or mortality within the cohorts, in
order to understand the plant physiological response to future cli-
mate and CO2 scenarios. The full E3SM land model (FATES
and the plant hydrodynamic, HYDRO, submodule) system has a
parameter set that is prohibitively large for objective calibration.
To facilitate parameter fitting, we leverage results from
pre-existing studies that assessed model sensitivity to a wide range
of parameters (Table S2; Koven et al., 2020; Xu et al., 2023).

An optional configuration of FATES, FATES-HYDRO,
incorporates plant hydrodynamics to simulate soil to atmosphere
water flow for individual trees (Christoffersen et al., 2016; Xu
et al., 2023), which for the FATES vegetation demographic
model, are simulated as cohorts by size class. Explicitly simulating
water flow enables the direct representation of loss of hydraulic
conductivity based on tissue water content change, which allows
us to estimate the risk of hydraulic failure and resulting mortality
rates. The water flux is calculated based on water pressure gradi-
ents across different plant compartments (rhizosphere, absorbing
roots, transporting roots, stem, and leaf; Christoffersen et al.,
2016). The water potentials for specific tissues are calculated
from relative water content based on three stages of water tissue
drainage. Stage one represents the water drawn from capillary

reserves when the tissue is at or above full turgor. The second
stage represents the stage between full turgor and the turgor loss
point when the total water potential is a function of the solute
and pressure water potential (elastic cell drainage). The third
stage is after the turgor loss point but above the point of residual
water content, where the water potential is only a function of the
solute water potential.

The stomatal conductance (g s) is simulated through a modi-
fied Ball-Berry equation adjusted by a plant water stress factor
based on the resulting leaf water potential (Eqn 1; Xu
et al., 2023):

g s = g 0 þ g 1
An

C sPatm
�1 hs

� �
β Eqn 1

where g1 is the slope of stomatal conductance in response to
environmental conditions, g0 is the cuticular or minimum con-
ductance, Cs is CO2 partial pressure (Pa) of the leaf surface, Patm
is the atmospheric pressure, hs is the leaf surface humidity and An
is the net photosynthesis rate (μmol m�2 s�1). β is a plant water
stress factor calculated based on leaf water potential as follows
(Eqn 2):

β= 1� ψ leaf

Pg s,50

 !ag s
" #�1

Eqn 2

where ψ leaf is the leaf water potential (MPa); Pg s,50 is the leaf
water potential (MPa) at which 50% of conductance occurs and
ag s is the stomatal vulnerability parameter. Total plant hydraulic
conductance and water supply changes are calculated using the
water fluxes on the compartment, the leaf : shoot ratio of
the plant, its height, and its hydraulic structure. See Christoffer-
sen et al. (2016) and Xu et al. (2023) for more information on
the model structure and equations.

Model calibration

We tested and filtered a 1000-member parameter ensemble and
retained only those trait assemblages (54) for which the corre-
sponding model outputs were close to observational data for the
BCI site. Initial parameter testing ranges for plant physiological
traits were selected from the parameters defined in previous stu-
dies at BCI (Table S3; Fig. S3; Koven et al., 2020; Xu
et al., 2023). Parameters not included in calibration were set as
those determined as optimal (Koven et al., 2020). To select our
trait assemblages, we constrained the initial parameter space to
the observational values within their range of observational error.
To do this, we sampled our total parameter ensemble using a post
hoc Markov-chain Monte–Carlo (MCMC) approach (Table S3).
Specifically, outputs were compared against a multivariate
log-normal distribution from observed monthly ET, GPP, soil
water content (SWC), and runoff (including their error estima-
tions; Fig. S2). In this process, a parameter is selected, and its log
likelihood calculated; then, a second parameter set is generated
from the prior’s multivariate distribution (the initial distribution
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of each parameter). Using Mahalanobis distance (a multivariate
distance metric; Mahalanobis, 1936; De Maesschalck et al.,
2000) the model run with the lowest distance is selected, and its
log likelihood is calculated. This process is iterated in the
Markov-chain Monte–Carlo process style (drawing from the
prior distribution for potential moves and accepting or rejecting
them based on comparative log likelihood). The range of
accepted moves (i.e. the observations and their error estimations)
constrains the parameter space. Final parameter space is deter-
mined by calculating the 95% confidence interval, parameters
estimate, or 95% of selected models following a 10 000 step burn
in (Table S3; Fig. S3). Parameter sets that resulted in no-growth
(GPP< 200 g m�2 yr �1) or were below a precent loss of con-
ductivity equal to or > 80% (PLC80; assumed a conservative,
lethal threshold for hydraulic failure; Adams et al., 2017) under
historical climate were removed before the trait assemblage selec-
tion process. The 54 trait assemblages resulting from the calibra-
tion, were then used to simulate hydraulic failure risk and
indicators of plant water stress under future climate.

Model projection

We ran each selected trait set using a future climate projection to
simulate future productivity and the risk of hydraulic failure for
these tropical species. To generate continuous forcing data
for the future scenarios, we used CMIP6’s (O’Neill et al., 2016)
projected temperature, precipitation, and CO2 changes. We
downloaded model outputs on historical simulations (2000–
2014) and for each emissions scenario (SSP2-4.5 and SSP5-8.5;
2086–2100) for the pixel containing BCI (Table 1; Fig. S4). The
relative weekly change between the two time periods (hence
anomaly) in temperature and precipitation between the historical
simulations (2000–2014) and the end of the century projection
simulations (2086–2100) was calculated by week (Fig. S4). The
weekly anomaly was then applied to the contemporary climate
drivers for BCI used in initial model runs (2003–2016). Higher
CO2 levels were applied depending on the emissions scenario
(SSP2-4.5: 603 CO2 ppm, SSP5-8.5: 1059 CO2 ppm, corre-
sponding to year 2086 in each scenario). Additionally, to under-
stand the effects of CO2 on risk of hydraulic failure, we ran each
model with only the applied climate anomaly, and not higher
CO2 levels (367 CO2 ppm).

Interpreting model outputs

Each trait assemblage was run under each climate scenario, and we
used these outputs to analyze the change in response to water
stress. We analyzed outputs as the mean across traits assemblages
for each climate model for 60% and 80% loss of hydraulic con-
ductivity (PLC60, PLC80), GPP, and ET. We separated out trait
assemblages that experienced a risk of hydraulic failure (percent of
day at PLC60> 0.0 across all simulations) and those that did not,
in order to compare crucial drought stress indicators (percent of
months where leaf water potential was below ψ50g s , minimum dry
season leaf water potential, and mean transpiration rate). Signifi-
cance in these tests was determined by a Mann–Whitney U test

with Bonferroni correction where appropriate. We additionally
analyzed the relative variance explained by emission scenarios, cli-
mate models, traits, for the outputs of GPP, ET, and PLC60.

Results

Climate

Climate conditions for future FATES-HYDRO simulations were
obtained from 16 CMIP6 climate models (Table 1) under SSP2-
4.5 and SSP5-8.5 scenarios for the years 2084–2100. Averaged
across the climate model ensemble, the mean annual temperature
under SSP2-4.5 was 28.0°C, a 2.0°C increase from the historical
CMIP6 simulations (Table 1; Fig. S4). The mean annual tem-
perature under SSP5-8.5 was 29.9°C, a 3.9°C increase from the
historical measurements. The average annual precipitation under
SSP2-4.5 was 1949 mm, a reduction of 455 mm from the histori-
cal CMIP6 simulations (Fig. S4). The annual precipitation under
SSP5-8.5 was 2039 mm, a reduction of 366 mm from the histori-
cal CMIP6 simulations. Reductions in precipitation primarily
occurred early and late in the year, representing the driest weeks
(1–15) and wettest weeks of the year (c. 40–50). Of note, the pat-
tern of change in precipitation across climate models for a given
emissions scenario is not uniform (Fig. S4; Table 1).

Ecosystem fluxes

To understand the impact of projected changes in climate on car-
bon and water fluxes, we analyzed the relative change in GPP and
ET as averages across all 54 selected plant trait assemblages within
a given climate model, for a given scenario. Using projected cli-
mate from the end of the century (2084–2100), SSP2-4.5 and
SSP5-8.5 scenarios with elevated CO2 levels (SSP2-4.5: 603 ppm
and SSP5-8.5: 1059 ppm) had a mean increase in GPP. SSP2-
4.5 increased by 26.7% ((�7.9%, 37.7%): representing the range
of climate model uncertainty) and SSP5-8.5 by 53.3% (29.7%,
68.9%) when compared to contemporary simulations (Fig. 1a).
When CO2 was held at contemporary levels (367 ppm), GPP
decreased by 8.6% on average (�19.3%, �0.5%) under SSP2-
4.5 and 21.0% (�40.3%, �7.4%) under SSP5-8.5 climates.
These results support our H1A hypothesis that GPP will be
reduced under warmer and drier future climate and support our
H2A hypothesis because GPP declines due to climate are more
than compensated by elevated CO2.

We also examined stand-level ET responses for their influence
on ecosystem drying. Our results highlight that climate will
increase the total water loss from the system, with relatively small
mitigation by rising CO2. The SSP2-4.5 and SSP5-8.5 scenarios
with elevated CO2 projected ET increases of 49.7% (44.0%,
55.4%) and 47.7% (40.7%, 54.7%), respectively (Fig. 1b). With
contemporary CO2, the SSP2-4.5 scenario had increases of
51.7% (44.3%, 57.1%) and SSP5-8.5 had increases of 57.4%
(24.8%, 65.3%). It should, however, be that our results assume
no change in LAI and a CO2-driven increase in LAI would be
expected to increase transpiration further, exacerbating ecosystem
drying.
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Hydraulic failure

We quantified the risk of hydraulic failure as the percentage of
days exceeding a percent loss of branch conductivity of 60%
(PLC60) and 80% (PLC80) thresholds for risk of mortality due to
hydraulic failure. We analyzed the percentage of days exceeding
PLC60 by averaging all selected plant trait assemblages within a
given climate model, for a given scenario. Under the contempor-
ary climate, 5.7% of all days were above PLC60 and zero days
were above PLC80 (Fig. 2a). Further, only two of the 54 trait
assemblages experienced days where that exceeded PLC60. With
elevated CO2, both SSP2-4.5 and SSP5-8.5 scenarios, our model
predicts that 11.6% (6.2%, 12.4%) and 10.1% (8.7, 11.6%) of
days would exceed PLC60 by the end of this century, equal to
105% and 78% increases relative to contemporary climate
(Fig. 2a). With contemporary CO2 levels the two scenarios
yielded slightly higher frequency of days exceeding PLC60;
12.1% (9.3%, 13.0%) under SSP2-4.5 averaging and 12.9%
(11.4%, 17.0%) under SSP5-8.5. Similar patterns were observed
when we used PLC80 as the cut-off threshold for hydraulic fail-
ure, with SSP2-4.5 and SSP5-8.5 having increases from zero days
in the contemporary climate to 3.7% (2.9%, 4.4%) and 3.1%
(1.6%, 3.9%) of days with elevate CO2, and 3.6% (1.0%, 4.5%)
and 3.8% (1.9%, 5.8%) of days without elevated CO2 (Fig. 2b).
Our results support H1B that future warming and precipitation
change will increase the future risk of hydraulic failure, but do
not support our H2B hypothesis that CO2 will offset this mortal-
ity risk. We additionally looked at within model correlations for
hydraulic failure. When averaging across trait assemblages, mini-
mum annual soil water content explained 31% of variance in pre-
dicted failure risk under all scenarios with elevated CO2, while
vapor pressure explained 19% of variance (Fig. S5).

Leaf responses to climate

Minimum annual leaf water potentials represent a measurement
of the maximum water stress a plant is under with more negative
potentials representing greater stress. Minimum annual leaf water
potential under contemporary simulations was �0.735MPa
(Fig. 3a); this decreased under both future scenarios with antici-
pated CO2 (SSP2-4.5: �1.129MPa; SSP5-8.5: �1.088MPa)
which was similar to contemporary CO2 scenarios (SSP2-4.5
contemporary CO2: �1.113MPa; SSP5-8.5 contemporary CO2:
�1.0816MPa; Fig. S6). Trait assemblage members that experi-
enced hydraulic failure had substantially more negative minimum
season leaf water potential (�1.376MPa) than those who did
not (�0.815MPa; Fig. 3a).

ψ50g s is the leaf water potential (a measure of water stress) at
which the plant reduces its stomatal conductance by 50%. In
contemporary simulations, only 1.7% of days across all trait
assemblages had leaf water potentials more negative than each
assemblage’s respective ψ50g s (Fig. 3b). Under the elevated CO2,
scenario SSP2-4.5, the percentage of days exceeding ψ50g s
increased to 16.3% (14.7%, 24.9%); under SSP5-8.5, it
increased to 14.7% (12.5%, 22.1%). The simulations with con-
temporary CO2 levels had leaf water potential exceed ψ50g s of all
days simulated at 14.6% (12.7%, 17.4%) under SSP2-4.5 and at
13.4% (0.9%, 15.9%) under SSP5-8.5 (Figs 3b, S7). Under all
scenarios, the trait assemblages that experienced hydraulic failure
(PLC60) spent significantly greater time with leaf water potential
exceeding ψ50g s than those that did not. Trait assemblages that
experienced hydraulic failure across all future scenarios had a
136% increase in the percentage of days exceeding the ψ50g s
threshold (i.e. 30.3% during 2084–2100 compared to 12.8%
during contemporary simulations).

Fig. 1 Stand-level changes in (a) gross primary
productivity (GPP); and (b) evapotranspiration
(ET) projected by the FATES-HYDROmodel at
Barro Colorado Island, Panama, under two
climate scenarios (blue: SSP2-4.5 and orange:
SSP5-8.5: 2086–2100) and two CO2 scenarios
(anticipated: SSP2-4.5 603 ppm and SSP5-8.5
1059 ppm, and contemporary: 367 CO2 ppm),
relative to contemporary climate (2003–2016)
simulations. Each point represents the mean
outcome across trait assemblages for a climate
model.
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Fig. 2 Percentage of days with (a) hydraulic
failure at > 60% loss of conductivity (PLC60) and
(b) hydraulic failure at > 80% loss of
conductivity (PLC80), projected by the vegetation
model, FATES-HYDRO, at Barro Colorado Island,
Panama, under contemporary climate conditions
(2003–2016), two future climate scenarios (blue:
SSP2-4.5 and orange: SSP5-8.5: 2086–2100)
and two corresponding CO2 levels (anticipated:
SSP2-4.5 603 ppm and SSP5-8.5 1059 ppm and
contemporary: 367 CO2 ppm). Each point
represents the mean outcome across trait
assemblages for a climate model, thus, for the
contemporary climate case, only one point
represents the model run under observed
conditions.

Fig. 3 Indicators of plant stress conditioned by
trait assemblage members that either
experienced days with PLC60 in any simulation
(hydraulic failure; purple) or did not (no hydraulic
failure; green) as projected by FATES-HYDRO
model at Barro Colorado Island, Panama, under
contemporary climate(2003–2016), the two
climate scenarios (SSP2-4.5 and SSP5-8.5: 2086–
2100) and two CO2 scenarios (anticipated: SSP2-
4.5 603 ppm and SSP5-8.5 1059 ppm, and
contemporary: 367 CO2 ppm). Plant stress
indicators presented include the (a) minimum leaf
water potential reached by a trait assemblage
across simulations, (b) percentage of days where
a trait assemblage’s leaf water potential is more
negative than the threshold at which stomatal
conductance reaches 50% (ψ50gs ), (c) mean
transpiration rate (mm yr�1). Each point
represents the mean outcome for a climate
model; thus, the contemporary climate
simulation only has one point representing the
model run under observed conditions (2003–
2016). Note in the case of contemporary
simulations, this represents species that would go
on to experience hydraulic failure (left, green) or
not (right, purple) under future, not
contemporary, simulation.
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Mean plant transpiration (Fig. 3c) under contemporary cli-
mate (47.1 mm yr�1) was higher than that in future scenarios.
This is likely because transpiration represents both the amount of
water lost to rising vapor pressure deficit, but also the amount
of time stomata remains open. Increasing days with leaf water
potentials above ψ50g s and the resulting stomatal closure reduce
the overall transpiration rate. Scenarios with higher CO2 levels
had lower transpiration rates (SSP2-4.5: 41.4 mm yr�1, SSP5-
8.5: 36.6 mm yr�1) than equivalent contemporary CO2 simula-
tions (SSP2-4.5 contemporary CO2: 42.7 mm yr�1; SSP5-8.5,
contemporary CO2: 42.8 mm yr�1). Trait assemblages that
experienced hydraulic failure had higher transpiration rates on
average (42.6 mm yr�1) than those that did not (39.2 mm yr�1),
though the difference was only significant under the SSP2-4.5
and SSP2-4.5 scenarios with contemporary CO2.

Importance of drivers for variance in hydraulic failure risk,
GPP, and ET rates

We examined to which degree modified traits in plant trait
assemblages could explain risk of hydraulic failure. All significant
traits (P< 0.05) had low explanatory value (R2 ≤ 0.07). The

most explanatory trait was stem saturated water content
(R2= 0.07), followed by root vulnerability shape, xylem taper,
and specific root length (Fig. 4a). No single trait dominantly
explains the hydraulic vulnerability. Low explanation of variance
(R2≤ 0.1) and inclusion of trait assemblages with no hydraulic
failure (Fig. 4a) across the individual trait spaces highlight that it
is various trait combinations, particularly those that contribute to
differences in minimum annual leaf water potential or days below
ψ50g s , rather than individual traits that result in projected days
exceeding PLC60 (Figs S7, S8; Table S4). We additionally tested
the property of hydraulic safety margin (the difference between
the minimum xylem water potential and the P50stem) which can
be calculated from FATES-HYDRO but is not a parameter, this
additionally explained very little variance (Fig. 4b). We further
decomposed the variance across all simulations to understand the
relative contribution of emissions scenarios (SSP2-4.5 and SSP5-
8.5), CO2, climate model variance, and plant trait assembles
regarding hydraulic failure, GPP, and ET (Table 2; H3A, H3B,
and H3C). Across all simulations, traits overwhelmingly
accounted for the greatest proportion of variation in hydraulic
failure outcomes, with climate scenarios, climate model and CO2

playing a marginal role (Table 2). GPP was also primarily

Fig. 4 Plant trait contributions to hydraulic failure in FATES-HYDRO simulations for Barro Colorado Island, Panama: (a) Percentage of days with > 60%
loss of conductivity (PLC60) as a function of the six primary traits responsible for hydraulic failure in our simulations: stem saturated water content
(cm3 cm�3), xylem taper exponent for sapwood (unitless), stem residual water fraction (unitless), root vulnerability shape parameter (unitless), specific root
length (m g�1), specific leaf area (m2 g�1) and (b) the contribution of hydraulic safety margin (not a parameter but an emergent property). Only traits with
significant regressor terms (P< 0.05) and R2> 0.01 are included. Each point represents a trait assemblage, gray points experienced no hydraulic failure,
colored points experienced at least 1 d across all simulations with mean PLC greater than PLC60. Colors for trait assemblages are consistent across panels.
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explained by traits, but both emissions scenario and CO2 played
a significant role in determining GPP, while climate model var-
iance played a minor role. For ET, traits played a primary role
with climate, emissions scenario and CO2 playing minor roles.

Discussion

Using a mechanist hydrodynamic vegetation model of the tropi-
cal forests of Barro Colorado Island, we examined the impact of
climate scenarios, plant hydrodynamic traits, and increased CO2

levels on plant hydraulic stress, risk of hydraulic failure, and
photosynthetic productivity. Driven by climate data from 16
CMIP6 climate models, FATES-HYDRO projects that these tro-
pical plants will increasingly experience mortality risk due to
hydraulic failure under future climates. Our results suggest a dou-
bling of hydraulic failure under SSP2-4.5 and a near doubling
under SSP5-8.5 with a relatively small but significant variance
when accounting for increasing CO2 levels. Like previous work,
we see that no one plant trait completely determines the risk of
hydraulic failure in FATES-HYDRO; instead, it is the combina-
tion of traits that determines the risk of hydraulic failure under
future climate change (Fig. 4; Xu et al., 2023).

Our research shows the likelihood of hydraulic failure under
future climate hinges on understanding the interaction of plant
trait assemblages. In comparing the relative contributions of cli-
mate models and greenhouse gas emission scenarios, CO2, and
plant hydraulic traits to the likelihood of hydraulic failure, plant
hydraulic traits are the most critical predictor of future risk of
hydraulic failure. We additionally find contemporary trait assem-
blages which operate at similar rates of transpiration, minimum
leaf water potential, and not at risk of hydraulic failure become
unviable under warmer temperatures of the future (Fig. 3). This
supports the theory that trait assemblages are operating at the
edge of their hydraulic thresholds for mortality (Peters
et al., 2021). However, our work suggests that plant traits may
account for a far greater variance that emissions scenario in the
rates of growth and mortality, ultimately introducing a high
degree of uncertainty in the carbon budget due to the nonlinear

response of certain forests to increased CO2 and changing cli-
mate. While we find traits more significant in determining the
risk of hydraulic failure rates, we do see the expected relationship
between decreasing soil moisture, increasing vapor pressure defi-
cit and rising hydraulic failure (Fig. S5). As seen in other tropical
forests, soil water moisture may be the dominant factor in deter-
mining changes in plant sapflow (Meng et al., 2022). We see that
the future emissions scenarios had a negligible effect on the likeli-
hood of hydraulic failure in the aggregate (Table S2). The change
in underlying mortality resulting from increased risks of hydrau-
lic failure can profoundly affect carbon storage and forest demo-
graphics. Large changes in aboveground biomass have been
reported in areas where soil water storage is likely lower (Hasper
et al., 2017; Tavares et al., 2023). If realized, a doubling of the
mortality rate will reduce carbon storage by half over 50 yr in
the absence of other changes in ecosystem productivity (Swann,
2018).

Our results further demonstrate the role of increased CO2 in
maintaining productivity under increased temperature and water
stress (Fig. 1). Our simulations show greater increases in GPP
under scenarios where CO2 enrichment is included, suggesting
less water limitation in these scenarios, leading to greater overall
productivity. Further, while traits still played the dominant role
in determining the variance in productivity (GPP), CO2 and cli-
mate scenarios accounted for a substantial portion as well. Free
air carbon enrichment experiments in temperate forests show an
increase in water use efficiency, though not a significant decrease
in transpiration, instead resulting in increased productivity, simi-
lar to our results (Norby et al., 2010; Zaehle et al., 2014). Short
term increases in CO2 have been shown to reduce stomatal con-
ductance, thus increasing the water use efficiency (Cai et al.,
2021). Distributed observations of tropical forest demographics
in Amazonia and Africa have estimated an increase in the total
amount of biomass (c. 30%) in recent decades (Swann, 2018).
Within the context of FATES-HYDRO, stomatal closure and
transpiration is calculated by a Ball-Berry stomatal conductance
scheme, which governs the exchange of CO2 necessary to main-
tain photosynthesis (Xu et al., 2023). Overall, from our results,
the projected increases in atmospheric water demand are pro-
jected to overwhelm the buffering effects of CO2 in terms of
hydraulic failure, likely leading to faster growth, faster mortality
in tropical forest, with unclear net effects on carbon storage. It is
additionally unclear how nutrient limitations will impact plant
carbon budgets in a CO2 rich future (Norby et al., 2010; Zaehle
et al., 2014). Plants may expend greater resources on nutrient
acquisition, thereby offsetting increases in GPP. Future experi-
ments with FATES-HYDRO will seek to evaluate hydraulic and
nutrient limitations simultaneously in efforts to incorporate
nutrient acquisition costs into constraining plant traits.

Reduction in viable trait assemblages under future climate and
CO2 may serve as a functional trait filter (through increased mor-
tality), reorienting the trait composition toward assemblages able
to take advantage of higher productivity while maintaining
hydraulic safety margins and lower leaf water potentials (Galla-
gher et al., 2013; Powell et al., 2018; Tavares et al., 2023). Addi-
tionally higher tree mortality rates may increase gaps in the

Table 2 The relative contributions of climate models, trait ensembles,
climate scenarios, and CO2 concentration to variance in hydrologic failure
(60% percent loss of conductivity: PLC60), gross primary productivity, and
evapotranspiration in FATES-HYDRO simulations of Barro Colorado Island
under two or shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5)
and two CO2 scenarios (anticipated: SSP2-4.5 603 ppm and SSP5-8.5
1059 ppm, and contemporary: 367 CO2 ppm).

Variable
Hydraulic
failure (PLC60)

Gross primary
productivity Evapotranspiration

Climate model < 0.1% 2.2% 1.7%
Trait ensemble 98.2% 64.4% 97.1%
Emissions scenario < 0.1% 20.1% 0.5%
CO2 level < 0.1% 27.2% < 0.1%

Simulations were run for each trait assemblage under each climate model,
and output was decomposed to calculate the percentage of variance
explained.
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canopy, favoring short-lived pioneer species establishment
(Kumagai & Porporato, 2012) and possibly compounding mor-
tality in the long-term (Swann, 2018). High risk of hydraulic fail-
ure was, in part, associated with trait assemblages with lower
hydraulic safety margins (Fig. 4b). Plant hydraulic safety margins
are considered narrow regardless of the biome, and our results
support that assertation that plants operate within a range near
their hydraulic failure (Choat et al., 2012). Under contemporary
climate, trait assemblages that would experience hydraulic fail-
ure under future climate scenarios showed low variations in
minimum leaf water potential and months exceeding ψ50g s .
Our simulations indicate that, even under warmer or drier sce-
narios, certain species can modulate their hydraulic dynamics
(by, for example closing their stomata can maintain less nega-
tive stem water potentials) and avoid hydraulic failure (Fig. 4).
As shown in other studies of the tropics, species at BCI that
cannot modulate their leaf water potentials will be more vul-
nerable to hydraulic failure (Aguirre-Gutiérrez et al., 2020).
Similarly, observations and modeling have shown a shift in the
last three decades toward more xeric species across the tropics
in conditions where water is limited (Yang et al., 2015;
Sakschewski et al., 2016).

The role of increased water uses efficiency (via CO2 enrich-
ment), increasing evaporative demand (via rising temperature)
and change in the transpiration rate of plants (via multiple fac-
tors) can all combine to affect future soil water moisture and
water residence time (Zhang et al., 2016). We see here even as
transpiration rate remains constant, rising evaporative rate can
increase total evapotranspiration considerably. Under all scenar-
ios we see a considerable increase in the evapotranspiration
(c. 20–40%) of these tropical forests (Fig. 1b). This increase in
water removed from the forests, coupled with decreasing precipi-
tation rates in future climate scenarios results in less water avail-
able for plant maintenance and is likely a partially a driver of
increased risk of hydraulic failure. In our simulations transpira-
tion rates were reduced or stable due to more negative leaf water
potentials and thus increased duration of stomatal closure
(Fig. 4). Bonal et al. (2016) assessed the contribution of plant
transpiration and evaporation to total evapotranspiration and saw
rising ET levels, however, this was primarily attributed to
increased transpiration in plants in the Americas. It should be
noted that they predict a net decrease in ET due to decreasing soil
evaporation and rise in gross transpiration both associated with
increased LAI coverage, which was not simulated in our static
stand mode simulations. Our results also contrast with similar
reanalysis studies of the Eurasian continent suggesting that
increases in evapotranspiration due to recent increases in tem-
perature and leaf area may be offset by increased water use effi-
ciency (Zhang et al., 2021).

The use of FATES-HYDRO to address the risk of hydraulic
failure represents a major breakthrough in modeling hydraulic
failure in tropical species. The Penman-Monteith-Leuning
(PML) model only uses the maximum stomatal conductance, the
photosynthetically active radiation, and the radiation and water
vapor deficit ratios when half of the maximum stomatal conduc-
tance is reduced. These models have shown evapotranspiration in

tropical regions to be highly transpiration-dependent due to
energy limitations in evaporative demand (Zhang et al., 2016).
However, these models assume a static relationship between the
stress on the plant (as enforced by water deficits) and do not
account for the way increasing CO2 and vapor pressure deficit
may provide nonlinear effects on transpiration. In simulations of
separate tropical forests (Powell et al., 2013), an ensemble of land
surface models (IBIS, JULES, SIB3, ED2, CLM 3.5) that use soil
matrix potential or soil water content as a regulator of carbon
assimilation and evapotranspiration showed a c. 50 to 100%
reduction in the gross primary productivity under simulations
with a 50% precipitation reduction (a far more significant reduc-
tion, than that projected in the climate projection). These models
capture empirical changes in the stomatal conductance rather
than the leaf water potentials and do not consider the multiple
methods of hydraulic maintenance. In the past decade, there has
been a proliferation of development of plant hydrodynamic mod-
els for Earth System Models to better capture plant response to
droughts. These models can be divided into PFT-dependent
big-leaf models (e.g. LPJ: Hickler et al., 2006; CLM5-PHS: Ken-
nedy et al., 2019; CABLE-Desica: De Kauwe et al., 2020; Noah-
MP-PHS: Li et al., 2021 and JULES-SOX: Eller et al., 2018),
and size and PFT-dependent ecosystem demography models (e.g.
ED2: Xu et al., 2016 and FATES-HYDRO: Xu et al., 2023).
While these models showed a better prediction of vegetation
response to droughts compared to the default nonhydrodynamic
versions, so far there are limited studies that assess the future cli-
mate impact on hydraulic failure. Our results compare with those
of Powell et al. (2018) who found that aboveground biomass
simulated for the BCI site remained similar in the future under
all except the driest of conditions, primarily due to an adjustment
in demography favoring more drought-resistant species and
increased regeneration in the immediate years following mortal-
ity. Powell et al. used ED2-Hydro, which simulates water stress
within plants using empirical relationships which account for
xylem stress and stomatal closure. While Powell et al. ran simula-
tions under heuristic drought scenarios, we simulated climate
from 16 CMIP6 climate models and multiple scenarios to cap-
ture the range of variation in future climate predictions. We addi-
tionally provided the model with enhanced levels of CO2 to
understand its effect. Our result of no substantial CO2 impacts
on lowering hydraulic failure risk is also different from Liu
et al. (2017), which showed that increasing atmospheric humidity
and CO2 concentration substantially alleviates the mortality risk
based on hydraulic failure. This is likely because Liu et al. con-
sider the mortality risk based on a combination of factors includ-
ing loss of conductance in the xylem and the days of stomata
closure (determined by stomatal conductance as a function of
CO2), while we only consider the risk based on a mechanistic loss
of conductance in xylem.

Our study should be considered within the context of the
experimental design. Changes in GPP and ET should be consid-
ered only a baseline of future stand dynamics owing to the lack of
adaptive cohort mortality in the simulations. While plants may
have a greater productive ability, this may be offset by mortality
(Li et al., 2015; Hasper et al., 2017; Tavares et al., 2023). To
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sample a wide range of future traits, our simulations are representa-
tions of an assemblage of mean trait value of a given forest trait
composition. This may exaggerate effects of certain plant beha-
viors. We additionally recognize our study may represent one
where overall projected change in VPD are small (as modeled by
CMIP6), our findings may not hold in tropical forests where VPD
changes are projected to be more extreme. We would additionally
highlight the uncertainty in future projections of precipitation pat-
terns, which can vary widely among CMIP models for the same
future emission scenario (Table 1). In this study, we considered a
wide range of tropical hydrological traits, ecologically filtered by
observational values and viability, to understand how future cli-
mate may affect growth and how hydraulic failure may affect tropi-
cal forests. Our simulations were run in a static mode, which may
limit their inference for long-term trends within the tropics, as
demographic processes will respond to increased mortality and
decreased water availability. Further, each result represents a homo-
genous trait set, and diverse traits may show greater resilience to
future climate. Future FATES-HYDRO studies will use competi-
tive plant functional type construction and demographics to study
hydraulic failure in various tropical locations. However, given the
diversity of many neotropical sites, it may always be necessary to
represent simplified functional types, which fall short of true
hydraulic trait diversity.

Similar to other studies, our results showed that climate model
variance can play a larger role in simulations than emissions sce-
nario in determining key factors in the global carbon balance
(Lovenduski & Bonan, 2017). Additionally, the long-term effect
of CO2 enrichment on plants of the tropics is still largely a matter
of debate, as most of the free air carbon enrichment and free air
temperature enrichment studies have been conducted in tempe-
rate and boreal forests. For example, acclimation of photosyn-
thetic rates to temperature, seems to vary widely by species and
location, possibly reducing gains in productivity (Pau et al.,
2018). Further, spatial heterogeneity (e.g. soils, slope, and drai-
nage) has been shown to play a large role in mortality patterns
during drought and must be considered within the context of
these findings and the effects of plant traits while our model
simulates and based on mean surface conditions (Li et al., 2015;
Hasper et al., 2017).

Our results highlight the need for greater study of trait assem-
blies in the context of climate CO2 on net ecosystem productivity.
Our results project forests with both faster growing (through pro-
ductivity increases) and higher mortality rates (through increasing
rates of hydraulic failure) in the neo-tropics accompanied by cer-
tain trait plant assemblages becoming nonviable. Nonviability of
existing trait assemblages will have impacts for biodiversity, as well
as biogeochemical cycling. Further, our results suggest a more
rapid hydrologic cycle in tropical forests, which, given the tropics’
importance, has significant implications for the global water
cycling. Nevertheless, understanding this large-scale feedback will
require intensive trait simulation at sites throughout the tropics to
understand variability in their response. Our future research will
incorporate nutrient competition and investigate how shifts in spe-
cies composition will affect the net carbon and water balance
across a greater number of tropical forests.
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