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Pursuing human-relevant gut microbiota-immune interactions

Sean P. Spencer1,^, Gabriela K. Fragiadakis1,^,**, Justin L. Sonnenburg1,2,3,**

1Department of Microbiology and Immunology, Stanford University, Stanford, California, United 
States of America.
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Summary

The gut microbiota is a complex network of diverse organisms that exhibits plasticity and is 

capable of impacting host immunity. The malleability of the microbiota presents microbial 

alteration as an avenue for tuning the immune system to different set points, an approach that has 

the potential to enable a wide range of therapeutic applications, and ultimately enable disease 

prevention. Despite the tremendous potential in harnessing the microbiome-immune axis to benefit 

human health, key barriers must be addressed to hasten translation. Studies using mouse models 

have identified numerous specific interactions between the gut microbiota and both local and 

systemic immunity, in several cases using gnotobiotics and other highly controlled approaches to 

establish causal relationships. Recent advances in our ability to perform expansive profiling of 

both the microbiota and the immune system now enable exploring human-gut microbiota 

connections more thoroughly than ever before. An important next step in realizing the power of 

microbiome reprogramming is to elucidate a human-relevant “map” of microbial-immune wiring, 

while focusing on animal studies to probe the subset of interactions likely to be relevant to human 

biology. Such efforts have the potential for revealing new paradigms in immune function as it 

relates to the microbiome, and for harnessing this connection to improve human health. Here we 

provide an overview of this field’s current status and discuss two approaches for establishing 

priorities for detailed investigation: (i) longitudinal intervention studies in humans probing the 

dynamics of both the microbiota and the immune system, and (ii) the study of traditional 

populations to assess lost features of human microbial identity whose absence may be contributing 

to the rise of immunological disorders. These human centered approaches offer a judicious path 

forward to capitalize on the potent power of the microbiota as a driver in immune health.

Introduction

The gut microbiota is comprised of a diverse set of species with individual-specific makeup 

and metabolic output, and has emerged as a potent regulator of the host’s metabolism and 

**Corresponding authors: Justin L. Sonnenburg (jsonnenburg@stanford.edu) or Gabriela K. Fragiadakis (gabif@stanford.edu).
^Authors contributed equally

Declaration of Interests:
The authors declare no conflicts of interest

HHS Public Access
Author manuscript
Immunity. Author manuscript; available in PMC 2020 August 20.

Published in final edited form as:
Immunity. 2019 August 20; 51(2): 225–239. doi:10.1016/j.immuni.2019.08.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immune system(Kundu et al., 2017; Lynch and Pedersen, 2016). Our gut microbiota has 

cospeciated with us over millions of years, likely shaping our immune system and becoming 

intertwined with our physiology (Davenport et al., 2017; Falush et al., 2003; Ley et al., 

2008; Moeller et al., 2016; Moeller et al., 2014). This complex community both contributes 

and responds to conditions in the gut in settings of health and pathology; providing signals 

critical to intestinal and metabolic homeostasis(Rakoff-Nahoum et al., 2004; Schroeder and 

Bäckhed, 2016). These effects are not confined to local responses but rather are integrated 

with systemic immunity(Belkaid and Hand, 2014; Plunkett and Nagler, 2017; Trompette et 

al., 2014). Recent work demonstrated that microbiota composition was predictive of the 

efficacy of cancer immunotherapy(Helmink et al., 2019). These far-reaching impacts of the 

microbiota suggest that a focus on microbiota-immune interactions may provide insight into 

principals of immune system function while facilitating precision therapeutics for systemic 

disease.

The malleability of the gut microbiota presents an exciting opportunity for mechanistic 

exploration and therapeutic potential. Recent evidence, points to environmental factors as 

important determinants beyond host genetics in driving community composition(Carmody et 

al., 2015; David et al., 2014; Rothschild et al., 2018; Turnbaugh et al., 2009). Genetically 

similar populations have shown distinct microbiotas over a gradient of lifestyle differences 

such as farming practices and water sources(Fragiadakis et al., 2018; Gomez et al., 2016; Jha 

et al., 2018; Morton et al., 2015). Diet in particular has emerged as a key driver of 

microbiota composition and function(Zmora et al., 2019). Short-term changes in diet 

produce rapid changes in the microbiota, and long-term dietary patterns are associated with 

distinct microbial phenotypes(David et al., 2014; De Filippo et al., 2010; Smits et al., 2017; 

Wu et al., 2011). The dynamic nature of the microbiota also leaves it vulnerable to 

perturbing forces, such as antibiotics or industrialized diets, which result in persistent or 

compounding deterioration of the gut community over generations in mouse 

models(Dethlefsen and Relman, 2011; Korpela et al., 2016; Schulfer et al., 2018; 

Sonnenburg et al., 2016). Rapid gut microbiota change in humans occurs upon immigration 

to an industrialized setting, and the loss of functions and species becomes more severe over 

time and subsequent generations(Vangay et al., 2018). As a result of this, the microbiota that 

shaped our human genome over millennia, has been remodeled by forces of modernization. 

One hypothesis is that the “industrialized microbiota” is a major contributor to the rising 

rates of inflammatory bowel disease (IBD) and asthma as well as chronic inflammatory 

conditions such as diabetes, obesity, and cardiovascular disease (Bach, 2002; Blaser and 

Falkow, 2009; Sonnenburg and Sonnenburg, 2014). Therefore harnessing, and potentially 

repairing lost, but beneficial aspects of the microbiota will be a key path forward toward 

slowing trends in chronic disease.

Foundational work has been done in mouse models to elucidate interactions between the 

microbiota and the immune system. However, translating these findings to humans has been 

challenging; differences in gut-immune interaction between host species separated by 100 

million years of evolution is compounded by the expense and time required to test if 

candidate interactions are relevant to human health and pathology. A movement for 

“immunology taught by humans” advocates for reversing this approach of using animal 

models to reveal mechanism: start with immune monitoring in humans as a means for 
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establishing hypothesis informed by human-relevant aspects and variation of immune 

dynamics that can then be subjected to detailed investigation in mouse models (Davis and 

Brodin, 2018). This general approach to translational immunology can extend to reveal 

microbiota-immune interactions relevant to humans. The strength of a human-centric 

approach for microbiota profiling was shown in recent work using the microbiota to 

determine personalized glycemic responses to diet (Bashiardes et al., 2018; Zeevi et al., 

2015). New technologies both for profiling the immune system and the microbiota enable 

omics profiling of both systems from human samples to make this a feasible reality for 

studies moving forward.

In this review, we start with a description of the landscape of the gut microbiota, presenting 

concepts from ecology that are used as an informative framework for its complex 

community dynamics. We next give an overview of some of the foundational principles of 

microbiota-immune interactions revealed through mouse models, including considerations 

for incorporating the microbiota as a parameter in studies of murine immunity. We then 

present two avenues for a human centered approach to microbiota-immune interaction, 

including longitudinal dietary intervention studies and the study of traditional verses 

industrialized populations, using ethical and culturally-sensitive human based studies as an 

important tool for understanding critical microbe-host interactions.

The Complexity of the Microbial Landscape

Significant effort in the field has focused on understanding the complexity of the gut 

microbiota—the types of organisms present, their localization, their genetics, their metabolic 

output, and the dynamics of this community in response to perturbation (Figure 1, Table 1)

(Dethlefsen and Relman, 2011; Gilbert et al., 2018). Parallels can be drawn to the study and 

framework for the immune system: a series of specialized, interacting cell types with distinct 

functionality, localization, and output, with coordinated reactions to various stimuli. A set of 

tools and technologies have emerged that can be used as complementary methods for 

understanding these various levels of complexity that will be discussed below(Debelius et 

al., 2016; Knight et al., 2018).

An important component of all microbiome studies is to first assess which organisms are 

present and define aspects of the community structure. Accordingly, the majority of studies 

profiling the gut microbiota to date have focused on “census-taking”: an identification of 

which organisms are present and at what abundance. Metrics derived from this often focus 

on composition at different taxonomic levels from phylum-level differences down to the 

genus and species levels, as well as some recent studies focusing on strain-level variation(De 

Filippis et al., 2019; Morowitz et al., 2011; Smillie et al., 2018; Yassour et al., 2018). The 

field has adapted concepts from ecology to describe and help understand microbial 

communities(Costello et al., 2012; Dethlefsen et al., 2007; Foster et al., 2017; Miller et al., 

2018; Relman, 2012; Sprockett et al., 2018). There has been a particular focus on diversity, 

including alpha diversity, the diversity within a community; beta diversity, the level of 

similarity between communities from different hosts; and gamma diversity, the collective 

diversity among a collection of hosts (Box 1: Terms)(Magurran, 1988; Reese and Dunn, 

2018; Whittaker et al., 2001). Different metrics of alpha diversity (hereafter, “diversity”) 
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integrates aspects of the community including bacterial presence-absence, abundance, and 

phylogenetic relatedness. A strong and common association between diversity of the 

intestinal microbiota and healthy states exist, while, conversely, industrialization and 

inflamed states often have decreased diversity(Sonnenburg and Sonnenburg, 2014). Diet is a 

well-established driver of microbiota composition and function, and specific diets appear to 

be related to maintaining microbiota diversity, particularly diets high in fiber(De Filippo et 

al., 2010; Sonnenburg et al., 2016). Immunologic mechanisms underlying diversity are 

emerging and host immunity is likely integral to maintaining a diverse microbiota(Campbell 

et al., 2018; Donaldson et al., 2018; Foster et al., 2017; Levy et al., 2017; Sonnenburg et al., 

2016). The contributions of microbiota diversity to host physiology are less clear, however, 

one possibility is that a diverse microbiota with expanded metabolic repertoire for complex 

diet-derived carbohydrate (i.e., dietary fiber, or microbiota accessible carbohydrates, 
MACs) degradation is a marker of a diet high in plant-based fiber, a nutrient severely 

deficient in the industrialized diet. This correlation may extend to causation, with evidence 

that microbial metabolite production (short-chain fatty acids or SCFAs and others) will 

reduce inappropriate inflammation and promote metabolic health.

While the majority of focus has been on bacteria within the gut microbiota, there is a 

growing interest in the eukaryotic (protozoa, parasitic and fungal) and viral components, 

though notably eukaryotes are largely diminished in samples from industrialized 

countries(Laforest-Lapointe and Arrieta, 2018; Nash et al., 2017). However, how the 

relationship between helminths, protozoa, and fungus with bacterial components modulate 

mucosal and systemic immunity deserves substantial investigation. Intestinal fungal 

microbiota composition is associated with the development of atopy and childhood 

asthma(Fujimura et al., 2016). Intestinal Candida albicans drives systemic Th17 responses 

and can influence inflammation and anti-fungal responses at distal sites(Bacher et al., 2019; 

Shao et al., 2019).

For organismal profiling, a common tool used for census taking is to analyze genes that code 

the ribosomal subunit sequences (16S rRNA for bacteria and 18S rRNA for eukaryotic), 

which due to the combination of hairpin and loop structural units, provide excellent sites 

from primer annealing and slowly evolving regions, respectively, enable identification of 

bacteria by PCR-enabled sequencing— generally providing phylogenetic resolution to the 

genus level(Fox et al., 1977; Hugenholtz and Pace, 1996; Woese, 1987). Thus, via PCR 

amplification and sequencing of the 16S or 18S rRNA gene alone, using conserved priming 

sites (i.e., “universal” primers), community structure can be determined. These 16S rRNA 

gene sequences can be grouped using a variety of computational methods, the most prevalent 

being assignment into bins of operational taxonomic units (OTUs) or preserving sequence 

information and using error-correction models to identify amplicon sequence variants 
(ASVs)(Callahan et al., 2017). Analogous experimental methods for profiling eukaryotes 

use other genes similarly, including the 18S rRNA gene for eukaryotes, or the internal 

transcribed spacer (ITS) gene for fungi(Laforest-Lapointe and Arrieta, 2018).

Shot-gun metagenomics is a method in which all DNA in a sample is extracted and 

sequenced, distinct from the region- and kingdom-specific targeted sequencing of 16S rRNA 

analysis. Metagenomic sequencing can be used to determine both the abundance of 
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microbial taxa, including viral and eukaryotic components, as well as functional capacity of 

a community, inferred by gene content(Sharpton, 2014). Metagenomic approaches are a 

more reliable method to discern strain-level differences, allowing for genetic content of 

specific bacteria to be collected and tracked over time(Smillie et al., 2018). As sequencing 

costs decline and technology continues to improve, metagenomic based methods to analyze 

microbiota will become more widely used. Meta-transciptomics, similar to metagenomics 

but with sequencing focused on the pool of microbial mRNA, will also be propelled by 

sequencing trends.

Culture-based methods for bacterial identification are becoming an increasingly important 

compliment to genetic based techniques(Bilen et al., 2018; Lagier et al., 2018; Lagier et al., 

2016). As techniques improve for culturing fastidious organisms, previously “unculturable” 

microbes are now being isolated in a high throughput manner, an endeavor known as 

“culturomics”(Lagier et al., 2016). Culturomic approaches to studying the microbiota enable 

discrimination between viable and dead organisms as well as the detection of low abundance 

organisms, which can be overlooked using sequencing-based approaches(Lagier et al., 

2018). Culture based approaches can be used to discriminate the true presence of viable 

organisms detected by sequencing-based approaches versus contamination, with the caveat 

that false-negatives can also result from organisms that are viable but difficult to isolate in 

culture(Bushman, 2019). Perhaps most important of all, culturomics leads to the creation of 

strain libraries of immense value for subsequent functional/mechanistic studies as well as 

potential therapeutic uses(Forster et al., 2019). With hundreds of newly identified species 

isolated from the human GI tract via recent culturomic efforts, a proportional scaling of 

investigation into the function of these microbes in needed.

In addition to defining which microbiota are present, there are diverse locations and niches 

within the GI tract to occupy and identifying microbiota location is integral to understand its 

physiology and impact on the host. Gut microbes are differentially distributed along the 

length of the gastrointestinal tract. While the majority of microbes reside in the colon, 

certain organisms preferentially colonize the small intestine and certain sections of the upper 

GI tract, different sections favoring organisms with particular metabolic constraints. In 

addition, microbes colonize at different points radially, and this localization appears to be 

non-random, with a strain’s location dictated by its functional attributes. Most microbial 

cells are present in the lumen, rich in diet-derived nutrients but not in host immune effectors. 

Some species are known to localize to the mucus layer, and others can be closely associated 

with host tissue, in intestinal crypts and transverse folds(Donaldson et al., 2016; Tropini et 

al., 2017). Crypt colonization have become an important area of focus as a microhabitat that 

could serve as a protective reservoir of bacterial cells to enable exclusion of competitors 

from the gut ecosystem and to enable recolonization after perturbations in the 

gut(Donaldson et al., 2018; Pédron et al., 2012; Shepherd et al., 2018). Notably, many 

studies profiling the microbiota use stool samples which, while providing a useful survey of 

the microbes present in the gut, obscures this spatial information and has been noted to have 

certain biases(Zmora et al., 2018). Imaging techniques have been most straightforward 

means for understanding the spatial distribution of microbes(Earle et al., 2015; Tropini et al., 

2017). Fluorescent In-Situ Hybridization (FISH) is a technique used to examine bacterial 
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location within tissue samples and serves a critical tool in evaluating bacterial 

localization(Dejea et al., 2018; Swidsinski et al., 2005; Wagner and Haider, 2012). Mucosal 

biopsies and washings can also provide important information regarding mucosal associate 

communities, and new approaches that couple omics technologies with co-localized 

elements in a microbiome provide a way to couple high-resolution functional analysis with 

spatial information(Sheth et al.; Zmora et al., 2018). Crypt resident and mucosal associated 

microbiota may, despite decreased representation in homogenized stool samples, have a 

disproportionate impact on the host; including spatial information into studies of intestinal 

microbiota can reveal important aspects of host-microbe interactions(Campbell et al., 2018; 

Dejea et al., 2018; Donaldson et al., 2018).

There is tremendous value in extending the profiling of gut microbiota beyond composition 

to an analysis of community functional capacity and metabolic output(Skelly et al., 2019; 

Vernocchi et al., 2016; Zierer et al., 2018). Shot-gun metagenomic sequencing provides 

information about the transcriptional and metabolic capacity of the microbiota. Analysis of 

encoded functional attributes, such as genes involved in carbohydrate metabolism (e.g., 

Carbohydrate-Active Enzymes (CAZymes)) or biosynthetic gene clusters, can provide 

insight into nutritional input and metabolic output of a complex microbial ecosystem(El 

Kaoutari et al., 2013). The detection of functional capacity to produce metabolites that have 

been shown to modulate immune function, such as the SCFAs, enables sequencing data of a 

microbiota to inform potential interactions with the host. Efforts are underway in 

metabolomics for improved high-throughput profiling and structural identification of 

microbial-derived metabolites using mass spectrometry(Dorrestein et al., 2014; Skelly et al., 

2019). These techniques will offer key functional insight, as these metabolites are a major 

avenue by which the microbiota communicates with the host immune system. Detailed study 

of single strains including molecular genetic approaches to assign gene-to-function 

relationships, and the use of gnotobiotic (Greek for “known life”, includes germ-free mice) 

animal models complement the application of diverse approaches to understand the 

functionality of intact communities(Dodd et al., 2017).

The Microbiota and the Immune System: Lessons from animal models of 

human disease

Animal models have served to demonstrate several foundational concepts about host-

microbe interactions in the intestine. Germ-free animals, devoid of known living organisms, 

and gnotobiotic animals, with defined colonization states, are critical tools for understanding 

host-microbe interactions that have been studied for over 80 years(Gordon and Pesti, 1971; 

Smith et al., 2007). These animal models have demonstrated that the gut microbiota 

influences a wide range of biological processes in the host including nutrient absorption and 

metabolism, and serves as a critical factor driving mucosal and systemic immune system 

development in mice(Cebra, 1999; Crabbé et al., 1968). Some disease processes critically 

require the microbiota as an environmental factor for disease initiation(Dianda et al., 1997; 

Taurog et al., 1994). For example, many rodent models of colitis including rats transgenic 

for the human HLA B27 allele and mice lacking TCRbeta develop intestinal inflammation 

that is dependent on the presence of intestinal microbiota(Dianda et al., 1997; Taurog et al., 
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1994). In some of these animal models, disease severity is determined by gut microbiota 

composition and this phenotype can be transferred to non-genetically modified mice via 

microbiota transplant(Elinav et al., 2011; Garrett et al., 2007).

Specific bacteria appear to have a disproportionate ability to influence host immunity, via 

their localization close to host tissue and/or production of metabolites influencing the 

immune system, as illustrated in gnotobiotic and conventional mouse models(Ahern et al., 

2014; Faith et al., 2014; Geva-Zatorsky et al., 2017). Segmented Filamentous Bacteria (SFB) 

are intimately host associated via attachments to intestinal epithelial cells in the ileum 

leading to a potent Th17 and IgA response that in turn, limits its expansion(Ivanov et al., 

2009; Klaasen et al., 1993; Lécuyer et al., 2014; Suzuki et al., 2004). SFB appear to exist in 

many mammalian species, and may colonize humans at low frequency, but their importance 

in contributing to human immune responses remains to be clarified(Chen et al., 2018; 

Ericsson et al., 2014; Yin et al., 2013). Clostridial species are able to promote mouse CD4+ 

Treg induction via high production of SCFAs(Arpaia et al., 2013; Atarashi et al., 2011; 

Furusawa et al., 2013). Recent research identified bacterial species that reside in the mouse 

colonic mucus able to promote CD8+ T cell responses that protect against infection and 

augment anti-tumor immunity(Tanoue et al., 2019). A growing repertoire of commensal 

specific T cell transgenics and MHC-peptide tetramer based technology now allow for 

mechanistic studies of the role of anti-commensal T cell responses in regulating aspects of 

host-microbe interactions(Chai et al., 2017; Cong et al., 2009; Xu et al., 2018; Yang et al., 

2014). Using these tools, it was found that the Bacteroides thetaiotaomicron (Bt) antigen 

driving T cell responses is regulated by dietary nutrients, highlighting the dynamic and 

interconnected nature of diet-host-microbe interactions(Wegorzewska et al., 2019).

Microbial metabolites are a key means by which the gut microbiota communicates with the 

immune system both in the intestine and systemically(Cohen et al., 2017; Rooks and Garrett, 

2016). The host senses microbial metabolites via cell surface and intracellular receptors, 

such as the G protein coupled receptors (GPCR) and nuclear receptors (Figure 1). Through 

the processing of dietary fibers by bacteria, the short chain fatty acids (SCFA), acetate, 

propionate, and butyrate are potent and diverse mediators of diet-host-microbe 

interactions(Koh et al., 2016; Maslowski et al., 2009; Trompette et al., 2014). SCFAs can 

signal via the GPCR, GPR41 (FFAR3), GPR43 (FFAR2), and GPR109A expressed on a 

diversity of immune cells and on intestinal epithelial cells(McKenzie et al., 2017; Rooks and 

Garrett, 2016). As well, SCFA can inhibit histone deacetylases (HDACs) to mediate their 

effects through epigenetic modifications as well as integrating into host metabolic 

pathways(McKenzie et al., 2017; Rooks and Garrett, 2016). Mice deficient in GPR43 fail to 

resolve colitis and have more severe arthritis and asthma(Maslowski et al., 2009). SCFA’s 

can be found in biologically significant levels circulating in the blood and influence distal 

sites, regulating lung inflammation, autoimmunity and hematopoiesis(Mariño et al., 2017; 

Trompette et al., 2018; Trompette et al., 2014). The relevance of most of these findings to 

humans remains to be tested, but some promising data has begun to emerge: humans given 

oral butyrate had detectable anti-inflammatory signature in monocytes(Cleophas et al., 

2019).
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With these data in mind, several murine studies have supported the “Diet-microbiota 

hypothesis”: that industrialized diets are leading to increased inflammatory disorders via 

alterations in gut microbiota composition and metabolite production(Burkitt et al., 1972; 

Devereux, 2006; Maslowski and Mackay, 2011; Sonnenburg and Sonnenburg, 2014; 

Thorburn et al., 2014). The amount of fiber consumed in industrialized societies is ~16g/day, 

well below the recommended level of 25 to 38 g/day and increased fiber in the diet is 

associated with lower risk of death in human longitudinal studies(King et al., 2012; Park et 

al., 2011). Accordingly, a diet deficient in dietary fiber leads to more severe colitis and 

heightened pathogen susceptibility in mice, likely via both decreased SCFA production and 

mucus degradation by bacteria lacking a dietary source of complex carbohydrates(Desai et 

al., 2016; Earle et al., 2015; Hryckowian et al., 2018).

In addition to SCFAs, a growing number of microbial metabolites can influence the immune 

system directly, or indirectly via signaling in epithelial, stromal or adipose cells(Dodd et al., 

2017; Virtue et al., 2019). Tryptophan metabolites serve as ligands for host receptors 

including the aryl hydrocarbon receptor (AhR) that promotes IL-22 transcription and 

mediate mucosal barrier protection(Zelante et al., 2013). In settings of abundant tryptophan, 

Lactobacillus reuteri, generates the AhR ligand indole-3-aldehyde. Trypamine is another 

microbial derived tryptophan metabolite that is abundant in human stool and signals via the 

GPCR serotonin receptor-4 (5-HT4R) on colonic epithelial cells to promote colonic 

motility(Bhattarai et al., 2018).

A recent study utilized a library of 144 strains, generated from inflammatory bowel disease 

(IBD) patients to perform a high throughput screen of metabolite signaling via human G 

Protein Coupled Receptors (GPCRs)(Chen et al., 2019; Palm et al., 2014). A wide range of 

signaling potential from this diverse set of strains was observed, with metabolites likely 

activating >75 GPCRs. Specifically, Morganella morganii and Lactobacillus reuteri strains 

produce histamine and promote colonic motility, likely via the GPCR histamine receptors 

(H1–H4). Additionally, phenylalanine (Phe) produced by a Bacteroides thetaiotaomicron 
strain (C34) signaled via GPR56/AGRG1 and participated in a metabolic network with M. 
morganii to produce the neuroactive chemical phenethylamine. Throughout this study, strain 

level variation in metabolite production was observed, highlighting the importance of 

attaining strain level resolution in microbiota analysis when pursuing functional insights.

Bile acids synthesized and secreted into the intestine by the host (primary bile acids) and 

microbial metabolites of host derived bile acids (secondary bile acids) are emerging as 

important mediators of metabolic health and immune status(Fiorucci et al., 2018; Fiorucci 

and Distrutti, 2015; Ridlon et al., 2006). The majority of primary bile acids secreted into the 

small intestine are absorbed in the terminal ileum (~95%) with the remaining bile acids 

reaching the large intestine where they are processed by the microbiota into a wide array of 

metabolites that signal to host receptors, including the GPCR TGR5, the farnesoid X 

receptor (FXR), the liver X receptor (LXR), and the vitamin D receptor (VDR)(Fiorucci et 

al., 2018). Microbial produced secondary bile acids appear to be generally anti-

inflammatory, with TGR5/FXR signaling inhibiting NLRP3 activation, while promoting 

increased IL-10 production in macrophages and decreased TNF-α and IL-12 from dendritic 
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cells (recently reviewed(Fiorucci et al., 2018)). The role of secondary bile acid-signaling on 

host immunity will likely be a significant area of focus going forward.

One key in connecting a microbial metabolite to a host receptor or pathway is to combine 

molecular genetics of host and microbe in the context of gnotobiotic mouse models with 

highly defined colonization states. Indolepropionic acid (IPA) produced by Clostridium 
sporogenes from the substrate tryptophan signals via the pregnane X receptor (PXR) on 

epithelial cells to promote barrier function(Dodd et al., 2017; Venkatesh et al., 2014). 

Colonizing gnotobiotic mice in mono-association with a genetically modified strain of C. 
sporogenes unable to produce IPA results in increased gut permeability and systemic 

inflammation(Dodd et al., 2017). Germ-free mice have also been widely used as recipients 

of intact complex microbial communities from other mouse models or humans with a 

particular disease state (known as “humanization”). Transfer of a host phenotype or disease 

state by microbiota transplant serves to provide support of microbiota causation, and also the 

utility of mice as a pre-clinical experimental model(Faith et al., 2010; Turnbaugh et al., 

2009). Microbiota has been shown to transfer the disease states of obesity, malnutrition and 

colitis(Blanton et al., 2016b; Britton et al., 2019; Ridaura et al., 2013). As well gnotobiotic 

mice with humanized flora can be used to assess the role of dietary interventions(Faith et al., 

2011). These approaches have been particularly enlightening in demonstrating a causal role 

for the microbiota in perpetuating host malnutrition despite nutritional intervention and led 

to a successful therapeutic approach(Blanton et al., 2016a; Blanton et al., 2016b; Trehan et 

al., 2013). The use of mice colonized with human-derived strains and communities will be 

an important vehicle for testing whether candidate host-microbe pathways identified in 

human-based studies can be validated and investigated using an animal model.

With 100 million years of evolutionary distance between humans and mice, the rapid 

positive selection of many immune genes coupled with co-evolving microbiome—many of 

the specific host-microbe interactions in mice are likely different than humans(Nielsen et al., 

2005). With a bottleneck in translation of studies to humans, a means to prioritize pathways 

and findings relevant to human health is badly needed. A critical step to both interpret and 

inform studies in animal models will be investing in human-based studies and interventional 

trials.

Prioritization of microbiota-immune relationships: lessons to learn from 

human intervention studies (“Bedside to Bench”)

Studies in animal models discussed above have provided critical understanding and evidence 

for the microbiota’s causal role in immune health and pathology, environmental factors that 

influence the microbiota such as diet, and illustrate the specificity of interactions that occur 

between the microbiota and the immune system. However, as is the case in many fields, 

extending these principles to human health and disease has been a challenge, largely due to 

differences in biology that arise when moving from animal models to human(Nguyen et al., 

2015). Compounding typical challenges in this translational leap, is humans differing from 

one another in their genetics, and in the complexity, individuality, and dynamics of the their 

gut microbiota. In addition to the translational hurdle, these features can make the prospect 
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of human studies seem challenging, particularly when considering the response of each 

person’s microbiota to intervention is also individualized. We argue here that human-based 

studies are essential if we want to identify microbiota-immune wiring relevant for human 

health (Figure 2A, Top Panel).

To date, the majority of microbiome studies have been cross-sectional, sampling at a single 

timepoint, while longitudinal studies with a defined intervention have been limited. 

Significant efforts have been made to perform cross-sectional microbiota profiling on large 

cohorts of individuals including the Human Microbiome Project and the American Gut 

project(Lloyd-Price et al., 2017; McDonald et al., 2018). These projects have provided data 

and insight that serve as a tremendous resources for the microbiome community, for 

example revealing the level of variation and diversity found across individuals. Due to the 

large number of relevant factors to consider, many of which correlate, relating aspects of the 

microbiota to other host and environmental factors has been a challenge. With the ultimate 

goal of establishing causality, very large numbers of individuals with high quality metadata 

are required to disentangle factors that commonly co-vary for such observational studies. 

Longitudinal intervention studies offer several advantages including establishing causation 

and, because each individual can serve as their own control (i.e., baseline state), being able 

to drastically decrease the number of subjects required to elucidate relationships between the 

microbiota and host parameters. Thus, responses measured in subjects to an intervention 

over time can be matched to alterations of the microbiome or microbial metabolites to 

increase the likelihood of identifying mechanistic/causal interactions.

Several longitudinal dietary intervention studies point to the power of diet for altering the 

microbiota as well as host health(Cotillard et al., 2013; Lewis et al., 2017; Zeevi et al., 2015; 

Zhao et al., 2018). It is unclear what mixture of general, population-wide interventions and 

personalized approaches will be the path forward for successful diet-microbiota based 

interventions. The introduction of a high-fiber diet and prebiotic supplementation showed 

increases in short-chain fatty acid production by the microbiota and improvements in 

markers for type-2 diabetes across the cohort(Zhao et al., 2018). In contrast, personalized 

diets based on microbiota signatures were identified that improved post-prandial glycemic 

responses to a greater extent than the universal dietary recommendations(Zeevi et al., 2015). 

Sub-groups additionally have been identified based on gene-richness of the microbiota in 

obese individuals that reflected to the extent to which dietary intervention decreased 

inflammatory signatures(Cotillard et al., 2013; Le Chatelier et al., 2013). Likely a 

combination of population-wide and personalized interventions will be useful in leveraging 

microbiota and immune interactions for improved human health, whether preventative or 

therapeutic.

In order to identify microbiota and immune interactions in studies with limited starting 

constraints, high-dimensional measurements (a “multi-omic” approach) should be used to 

capture an in-depth profile of both the microbiota and the immune system(Schirmer et al., 

2016; Thomas et al., 2015). Several tools for high-dimensional profiling of the microbiota 

were discussed earlier in this review including sequencing and culture based methods as well 

as high-throughput metabolomics. Complementary tools are available for immune system 

profiling, including cytometry by time of flight (CyTOF), RNAseq, antibody repertoire 
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sequencing, and high-dimensional serum proteomics(Hasin et al., 2017; Landhuis, 2018; 

Olsen et al., 2019; Spitzer and Nolan, 2016). A significant challenge for the field is to create 

user-friendly intuitive approaches for integration and analysis of multi-omic data which is 

likely to drive the application and discoveries of the approach, analogous to the 

democratization of 16S rRNA amplicon sequencing analysis by QIIME(Caporaso et al., 

2010).

Other approaches to probe microbiota-host interactions include examining which 

components of the microbiota are coated with IgA (IgA-Seq), or to examine systemic 

antibody responses to commensal bacteria(Kau et al., 2015; Palm et al., 2014; Paun et al., 

2019; Planer et al., 2016). Both of these antibody-based approaches identify bacteria that 

have interacted closely with the host immune system, leading to an adaptive immune 

response. Although some component of IgA coating will be T cell independent, IgA-Seq 

based studies suggest the majority of bacterial coating identified is T cell dependent(Palm et 

al., 2014). Used in combination, these tools enable the generation of a large set of immune 

and microbiota features that can then be used as inputs for machine learning models to 

identify otherwise non-obvious patterns in the microbiota and the immune system in 

response to perturbation, such as co-varying elements or states predictive of specific 

outcomes(Zmora et al., 2018).

Human-based studies help identify candidate interventions for improvement of microbiota 

and immune health, as well as a series of possible microbiota-immune interactions that 

occur in humans. However, the capacity for further testing and mechanistic insight is limited 

within the constraints of working with humans. Moving to animal and in vitro models as a 

second step, to test hypothesis informed by human data and perhaps incorporating human 

samples, offers a progression toward mechanism that is informed by human-relevant 

findings. This approach can include fecal microbiota transfer experiments (FMTs) from a 

human subject into gnotobiotic mice or colonization with a single microbe that was 

identified in a candidate interaction. In parallel with colonization, the diet provided to the 

mice, or other aspects of environmental conditions, can be tailored to test a given hypothesis 

or to replicate a prior human-based trial (i.e. high fat, low fiber, geographically-based)

(Blanton et al., 2016b; Sonnenburg et al., 2016). In addition, should certain microbial 

metabolites be identified as immune modulators, those can be introduced either genetically 

or as substrates delivered to the gut to assess the effect on the murine immune system, or 

applied directly as stimuli to human immune cells in vitro(Dodd et al., 2017; Levy et al., 

2015; Skelly et al., 2019). A limitation in this pipeline is that human specific microbiota-

immune interactions may not be recapitulated in mice due to biological differences between 

the host organisms. While failing to reverse translate from humans into a laboratory model 

hinders mechanistic study, this progression offers advantages over studies started in mice 

that fail to translate to humans, which often serve as dead-ends(Davis and Brodin, 2018). 

The proposed human to mouse pipeline will likely contribute to understanding mechanistic 

causation of the microbiota’s influence on immune parameters and can be used iteratively to 

better establish candidate microbiota-immune interactions, establishing the foundation for 

refined interventions and precision therapeutics.
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Prioritization of microbiota-immune relationships: lessons to learn from the 

ancestral microbiota

Elucidating important human microbiota-immune interactions is likely to be propelled by 

incorporating an evolutionary perspective. The majority of studies, including large 

government funded and international efforts like the Human Microbiome Project (HMP) and 

Metagenomes of the Human Intestinal Tract (MetaHIT), which collected 16S rRNA and/or 

metagenomic data for 300 and 124 individuals, respectively, have provided a detailed view 

of industrialized populations’ gut microbiota(Consortium, 2012; Qin et al., 2010). In 2010, a 

study of 14 children living in a rural agricultural region of Burkina Faso revealed a 

microbiota distinct in composition from Western microbiotas, providing a hint that mapping 

the human microbiota would require sampling diverse populations living diverse 

lifestyles(De Filippo et al., 2010). Ensuing studies of traditional populations around the 

world including Africa, South America, Papua New Guinea, Madagascar, and Asia have 

expanded our understanding of the variety of forms the human microbiome can take in 

healthy individuals(Ayeni et al., 2018; Clemente et al., 2015; Jha et al., 2018; Martínez et al., 

2015; Morton et al., 2015; Obregon-Tito et al., 2015; Schnorr et al., 2014; Smits et al., 2017; 

Sonnenburg and Sonnenburg, 2019; Suzuki and Worobey, 2014; Yatsunenko et al., 2012; 

Zhang et al., 2014). More importantly, many of these studies reveal common features that 

are specific to non-industrialized microbiomes(Sonnenburg and Sonnenburg, 2019). Notably, 

many of the same taxa, known as VANISH (Volatile and/or Associated Negatively with 
Industrialized Societies of Humans) taxa have been identified in other comparative studies 

revealing a global pattern of microbiota change that is dictated by urbanization(Smits et al., 

2017; Vangay et al., 2018). Similar analyses performed using metagenomic data focusing on 

functional attributes of the community reveal a similar pattern(Pasolli et al., 2019). One 

possibility is that shifts in lifestyle including diet, antibiotic use, and sanitation have altered 

the industrialized microbiota to a state that is distinct from what shaped our human 

genome(Blaser and Falkow, 2009; Sonnenburg and Sonnenburg, 2014).

Notably, the global burden of disease is, over time, shifting from infectious to non-

communicable chronic diseases (NCCD), many of which are rooted in immune 

dysregulation and chronic inflammation(Chan, 2017; Lozano et al., 2012). These conditions, 

including diabetes, obesity, cardiovascular disease, and cancer, disproportionately affect 

industrialized societies, though are becoming more prevalent in developing countries as 

well, likely due to rapid changes in diet, lifestyle, and infections(Chan, 2017). In non-

industrialized, hunter-gather, populations, the life expectancy once adulthood has been 

reached is ~72 and the burden of obesity and cardiovascular disease is estimated to be <5%

(Pontzer et al., 2018). Along with the stark contrast in rates of NCCD, differences in 

microbial diversity and specific changes in taxa presence/absence can be found between 

industrialized and non-industrialized societies(Fragiadakis et al., 2018; Jha et al., 2018).

While the features of industrialized society have provided many benefits, it leads to the 

possibility that one unforeseen cost may be the selection of an “industrialized” microbiota 

that is not well-suited to promote human health. We can look to populations with traditional 

lifestyles, such as hunter-gatherers and rural agrarians, as a window into the state of the 
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microbiome with fewer of the effects of industrialization(Fragiadakis et al., 2018; Gomez et 

al., 2016; Morton et al., 2015; Smits et al., 2017). Looking across a lifestyle gradient can 

highlight specific microbes and functionality that track with lifestyle. A study of Nepalese 

populations, some of which were hunter-gatherers, and others at various points of transition 

to subsistence farming, identified gradients of microbiota composition and identified specific 

taxa whose decrease in prevalence and relative abundance mirror lifestyle change(Jha et al., 

2018). A tantalizing hypothesis is that the loss of microbial taxa and associated functions 

integral to proper immune regulation results in a dysregulated immune system in 

industrialized populations and predisposition to inflammatory diseases. The VANISH taxa 

and under-represented functional elements serve as candidate drivers of immune health or 

dysregulation to be explored in mice, in vitro, and, ultimately, in humans (Figure 2A, 

Bottom panel).

Concluding remarks

Industrialization has led to a series of advancements in human health through sanitation, 

antibiotics, vaccination, food production, and medical technology. Accordingly, 

industrialization has resulted in a dramatic reduction in infectious diseases (diarrheal 

infectious agents, parasitic infections and other chronic infections), resulting in reduced 

infant mortality and prolonged lifespan that are of clear overall benefit. However, coincident 

with these improvements has been a dysregulation of the immune system of unclear 

etiology, that can be seen in the global rise of non-communicable chronic diseases (obesity, 

diabetes, heart disease etc). The source of immune dysregulation in industrialized societies 

remains unclear and alterations in the microbiota may be both a result of, as well as a 

contributor to immune dysregulation. However, as the microbiota is a malleable and potent 

contributor to immune status, it offers a path forward to recalibrate our immune set points to 

mitigate these conditions.

Both the intestinal microbiota and host immune system are complex. In this review, we 

discuss the various levels of complexities and considerations of the microbiota including 

spatial organization, taxonomic diversity, functional capacity, and metabolic output. These 

levels of complexity also offer a variety of access points to target the microbiota for 

improvement of host immunity.

There are key questions and challenges for understanding and capitalizing on microbiome-

immune interactions. An important challenge lies in distilling the guiding principles for 

host-microbe dialogue. To effectively parse through the most important of a seemingly 

infinite list of interactions requires a prioritization method to identify those that are relevant 

for understanding the nature of these relationships and are also relevant for human health. 

We presented two strategies in pursuit of this challenge that are both human-based “bedside-

to-bench” approaches, i.e., that start with observations in human to be followed up with 

mouse and in vitro models. Both lifestyle intervention studies and analyses that compare 

human populations with diverse lifestyles can provide candidate interactions that are relevant 

to human health, and can be explored mechanistically as avenues for therapeutics.
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The degree to which we can stably manipulate the microbiota in humans and through what 

means remains an open question. Promising data in mice and some human studies suggest 

diet and other lifestyle interventions can be important modulators of the microbiota, but 

further work must be done to establish our degree of control over therapeutic interventions 

as well as the extent to which an established adult microbiota is resilient to change. There 

may be additional requirements for introducing change into the microbiota, including 

adjunct targeting the host immune environment. Other tools such as engineered microbes or 

delivery of microbially-derived metabolites may also be viable approaches (Figure 2B).

Finally, further work must be done to identify which disease processes will be amenable to 

microbiota-targeted therapeutic intervention. While links have been established to a large 

number of conditions, it is unclear which will be the most fruitful for treatment benefit. 

Recent progress in understanding how the microbiota influence cancer therapy, or alter the 

severity of autoimmune diseases suggest hopeful avenues. The microbiota at sites outside of 

the gut, including the skin, lung and vagina offer additional points of interaction between 

resident microbes and human immunity. There is great potential for leveraging the 

microbiome as a tool in recalibrating immune system health. We envision a future in which 

we create an arsenal of microbial, diet-based, microbiota- and diet-derived tools for 

elucidating specific immune responses, trajectories, and alterations in immune set point. 

This likely will include monitoring of microbiome colonization and immune status during 

critical periods of development in infancy and early childhood with precision approaches 

used to guide therapy. The microbiome can become a powerful tool in precision health 

efforts, tailoring therapies to individualized microbiomes and circumstances. These 

approaches should be considered in conjunction with immune modulation and therapeutics, 

as may soon become the case in checkpoint-inhibitor based cancer therapy (Gong et al., 

2019). Monitoring of both the microbiota and the immune system, possibly at-home or in 

real-time, will be a key step to propel precision and personalized interventions. Ultimately, 

as we begin to appreciate the vast complicated network of immune-microbiota interaction, it 

is important to think carefully about how we can most efficiently mobilize resources and 

time to improve understanding of these complex systems towards realizing the tremendous 

potential of harnessing these interactions to improve human health.
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Box 1:

Terms

A listing of important terms in gut microbiome research with definitions

Term: Definition

Alpha diversity: The diversity within a community

Beta diversity: The level of similarity between communities from different hosts

Gamma diversity: The collective diversity among a collection of hosts

Operational Taxonomic Unit (OTU): Groups to which sequencing reads (i.e., 16S rRNA) are assigned based 
on their similarity; A representative unit of microbial sequence variation

Amplicon Sequence Variant (ASV): Inferred exact sequence (i.e., 16S rRNA) that can be used to classify 
members when assessing a community. A newer method that preserves sequence information and can offer 
higher resolution as well as consistency across studies

Carbohydrate-Active Enzyme (CAZyme): Enzymes and proteins involved in recognition, metabolism, and 
synthesis of complex carbohydrates (http://www.cazy.org/)

Short Chain Fatty Acid (SCFA): Volatile fatty acids with less than six carbon atoms that are the result of 
microbial fermentation of complex carbohydrates (i.e. formate, acetate, propionate, butyrate)

Microbial-Accessible Carbohydrate (MAC): A carbohydrate, often structurally complex, unable to be 
degraded/absorbed during typical mammalian digestion, can be degraded by intestinal bacteria as an energy 
source with resultant SCFA production (i.e., inulin)

Host-Accessible Carbohydrate (HAC) : A structurally simple carbohydrate degraded by mammalian enzymes 
and absorbed in the small intestine (i.e., glucose, sucrose)

Fluorescent In-Situ Hybridization (FISH): An imaging based technique using molecular probes, that can be 
bacteria-specific, to examine bacterial localization in a given tissue

Germ-free/Gnotobiotic: An animal devoid of known microbes (germ-free) and with a known/defined 
community (gnotobiotic), most commonly mice, that serve as critical tools to elucidate mechanisms of host-
microbe interactions

Volatile and/or Associated Negatively with Industrialized Societies of Humans (VANISH) taxa: Taxa of 
bacteria that are found in non-industrialized settings, but lost or reduced in abundance in industrialized humans
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Figure 1: The complexity of the microbial landscape
An array of bacterial taxa (different colors represent different species) colonize the length of 

the gastrointestinal tract, the majority of which reside in the large intestine. Bacteria also 

may preferentially colonize the intestinal lumen, the mucus, or intestinal crypts in the 

epithelium. Bacteria of the same species may contain different genetic components as well 

as differential expression of genes (zoomed in box) allowing it to differentially process 

substrates and produce distinct metabolites, denoted by X and Y below box. Bacteria 

produce a variety of metabolites (pink hexagons) that modulate other bacteria as well as 

traffic across the intestinal barrier to influence the host. These diverse metabolites, including 

short-chain fatty acids (SCFA), indolepropionic acid (IPA)(Dodd et al., 2017) 

tryptamine(Bhattarai et al., 2018) and secondary bile acids (example chemical structures 

shown) modulate host cells both locally and systemically to influence host physiology as 

well as immune activation. Host receptors for sensing metabolites are broadly expressed: 

SCFA (formate, acetate, propionate, butyrate) via GPCR41, GPR43 and GPR109A, IPA via 

pregnane X receptor (PXR)(Venkatesh et al., 2014), tryptamine via GPCR serotonin 

receptor-4 (5-HT4R)(Bhattarai et al., 2018), secondary bile acids via the GPCR TGR5, the 
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farnesoid X receptor (FXR), the liver X receptor (LXR), and the vitamin D receptor (VDR)

(Fiorucci and Distrutti, 2015; Ridlon et al., 2006), microbial derived histamine via the 

GPCR histamine receptors (H1–H4)(Palm et al., 2014), commendamide via 

GPCR132(Cohen et al., 2015), tryptophan metabolites via aryl hydrocarbon receptor (AhR)

(Zelante et al., 2013). Additional metabolites likely activate a large and diverse number of 

other GPCRs in interactions that remain to be identified(Chen et al., 2019).
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Figure 2: Human-based approaches for studying microbiota-immune interactions
2A, Top panel: Longitudinal intervention studies in humans. A suggested model for 

microbiota-immune studies: starting with a cohort of participants that undergo a lifestyle 

intervention that perturbs the microbiota (diet, weight loss, antibiotic use, etc.). Participants 

are monitored over time, donating samples for both microbiota and immune system 

profiling. Candidate interactions between microbiota and immune features are identified 

using machine learning or other means. These interactions can then be studied in a mouse 

model and in vitro to elucidate their mechanistic underpinnings.
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2A, Bottom panel: Traditional v. industrialized population studies. A suggested model for 

identifying microbes/microbial functionality relevant to lifestyle-related immune disorders: 

comparing the microbiome of individuals along a gradient of industrialized lifestyles. Focus 

should be placed on microbial elements that are shared across geographically distinct 

populations of similar lifestyles, but vary along a gradient of industrialization rather than 

geography. Once identified, those microbes along with their microbial genetic elements 

(Yellow markers in figure) or metabolites can be studied mechanistically in murine and in 

vitro models for their role in immune health or dysregulation.

2B: Ecological concepts applied to microbiota states(Costello et al., 2012). A suggested 

model for understanding microbial communities: Ancestral microbiomes represent stable 

communities different from those found in industrialized settings, with changes seen in 

overall diversity and in carbohydrate utilization capacity. Proposed drivers for this change 

over time are: dietary changes, more widespread use of antibiotics, increased sanitation 

contribute to microbiome configuration seen in industrialized settings. To restore beneficial 

aspects of our microbiota absent in western guts, we propose dietary changes, strain re-

introduction, or possibly even Fecal Microbiota Transplant (FMT).
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Table 1:
Key studies providing insight into human gut microbiota stability, malleability, and 
composition using high-throughput sequencing.

An abbreviated listing of impactful studies regarding intestinal microbiome composition in various settings 

and disease states, its stability over time in the absence of intervention, and its response to various 

interventions (antibiotics, weight loss, FMT etc.)

Study Findings Cohort size (*longitudinal 
aspect to study) Related Studies

(Eckburg et al., 
2005)

Stool microbiota composition is individualized and shares 
similarity with mucosal microbiota; mucosal microbiota shows 
regional variation; 16S rRNA sequencing

3 (Hold et al., 
2002)

(Ley et al., 2006) Gut microbiota is different between lean and obese individuals; 
obese microbiota normalizes with weight loss; 16S rRNA 
sequencing

12* (4 samplings over 12 
months)

(Turnbaugh et 
al., 2009)

(Palmer et al., 2007) Gut microbiota development is dynamic and individual during the 
first year of life; 16S rRNA microarrays

14

(Frank et al., 2007) IBD associated mucosal microbiota is distinct from healthy 
controls and is depleted in commensal anaerobes while enriched in 
facultative anaerobes (Proteobacteria); 16S rRNA sequencing

129 IBD and 61 controls (Halfvarson et 
al., 2017; 

Schirmer et al., 
2018)

(Dethlefsen et al., 
2008)

Longitudinal dynamics of gut microbiota depletion and recovery 
during and antibiotic treatment; 16S rRNA sequencing

3* (5 samples over 8 
months)

(Dethlefsen and 
Relman, 2011)

(De Filippo et al., 
2010)

Gut microbiota from children in non-industrialized setting is 
distinct from industrialized children (more diverse, increased 
SCFA production); 16S rRNA sequencing and mass spectrometry

30 (15 Burkina Faso, 15 
Italy)

(Qin et al., 2010) MetaHIT (Metagenomics of the Human Intestinal Tract) project 
established a gene catalogue of >3 million genes present in the 
human intestinal microbiota; 16S rRNA sequencing and 
metagenomics

124 (European; lean, 
overweight, Obese, IBD)

(Yatsunenko et al., 
2012)

Traditional populations are distinct from industrialized, while 
similar across wide geographic differences (Africa vs South 
America); infant microbiomes are less complex and diversify with 
age in all populations; 16S rRNA sequencing and metagenomics

326 (148 traditional, 
Malawian or Amerindian 

and 178 USA)

(H.M.P. Consortium, 
2012)

Gut microbiota of healthy subjects from USA. 242 of 300 from 
HMP cohort; 16S rRNA sequencing as well as metagenomics

242 (131* at additional 
timepoint)

(Faith et al., 2013) Adult gut microbiota stable over time; strain tracking via culture 
and sequencing suggest individuals harbor same species over 
decades. Weight loss perturbs microbiome to greater degree than 
variation over time; 16S rRNA sequencing and bacterial culture

37* (Up to 5 year sampling 
length), 4* (sampled over 34 

week weight loss 
intervention)

(Caporaso et al., 
2011)

(Clemente et al., 
2015)

Gut microbiota of uncontacted Amerindians has unprecedented 
high diversity; despite no exposure to synthetic antibiotics, 
antibiotic resistance genes present; metagenomics reveal high 
functional diversity as well; 16S rRNA sequencing and 
metagenomics

34

(Staley et al., 2016) Gut microbiota analysis of patients after FMT for C diff infection, 
demonstrate chimeric microbiota enriched for secondary bile acid 
metabolism; 16S rRNA sequencing

24* (pre-FMT, 2 and 8 
weeks after FMT)

(Buffie et al., 
2015; Smillie et 
al., 2018)

Moeller et al., 2016) Strains within the human gut microbiota have been associated 
with humans for at least 15 million years; DNA gyrase subunit B 
(gyrB) gene sequencing

16 humans, 47 chimpanzees, 
24 bonobos, 24 gorillas

(Smits et al., 2017) An analysis of aggregated data demonstrating difference between 
industrialized and non-industrialized samples across all studies; 
Hadza hunter-gatherers exhibit seasonal cycling in gut 
microbiome; 16S rRNA sequencing and metagenomics

2064, 19–54* samples at 4 
timepoints over 24 months

(Pasolli et al., 
2019)

(Jha et al., 2018) A lifestyle gradient corresponds to degree of microbiota shift from 
traditional to industrialized; 16S rRNA sequencing

54
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Study Findings Cohort size (*longitudinal 
aspect to study) Related Studies

(Vangay et al., 2018) Gut microbiota diversity in non-industrialized humans is lost upon 
migration to industrialized setting; 16S rRNA sequencing and 
metagenomics

550, 19* samples prior to 
and over 9 months after 

immigration to USA
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