
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

THE STABILIZATION, EXPLORATION, AND EXPRESSION OF
COMPUTER GAME HISTORY

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Eric Kaltman

September 2017

The Dissertation of Eric Kaltman
is approved:

Noah Wardrip-Fruin, Chair

Michael Mateas

Henry Lowood

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Eric Kaltman

2017

Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

Dedication xi

Acknowledgments xii

1 Introduction 1
1.1 On the history of technology . 4
1.2 On the history of software . 10
1.3 On the history of computer games in the history of software in the

history of technology . 12
1.4 On preservation . 13
1.5 On knowledge accumulation, exploration and expression in the his-

tory of technology . 15
1.6 On an intermediary perspective for the history of games as software 20
1.7 Stabilization . 25
1.8 Exploration . 27
1.9 Expression . 29

2 Appraisal 31
2.1 Compiling the Record . 31
2.2 Appraisal . 33

2.2.1 Related Work . 38
2.3 Prom Week . 41

2.3.1 Choice of Prom Week . 42
2.3.2 Process . 43
2.3.3 Context . 57
2.3.4 Documentary Enumeration 62

iii

2.4 Conclusion . 79

3 Description 82
3.1 Introduction . 82

3.1.1 A Brief on Controlled Vocabularies 84
3.1.2 A Course Through the Thicket 86

3.2 Controlled Vocabularies . 90
3.2.1 A Brief Record Example 92
3.2.2 Vocabulary and Ontology Best Practices 97
3.2.3 “Aboutness” of Platform 106
3.2.4 Levels of Abstraction . 110
3.2.5 Derivation of Terms . 114
3.2.6 Format, Conceptualization and Reasonable Compatibility . 117
3.2.7 Semantic Web Integration 122
3.2.8 Vocabularies in Institutional Practice 127

3.3 Future Work . 143
3.4 Conclusion . 146

4 Citation 149
4.1 The Pivot . 149
4.2 Citation . 152

4.2.1 Citation in Use . 153
4.2.2 Citation as Discourse . 155

4.3 Bibliography and Citation in Game Studies 161
4.3.1 Presupposition of DOOM! 165

4.4 Reduction and Intertextual Expression 171
4.5 Types and Examples of Reduction 175

4.5.1 Video . 176
4.5.2 Visualization . 177
4.5.3 Emulation . 180
4.5.4 Closing . 186

4.6 Back to Citation and Archives . 188
4.7 A Tool for Descriptive and Manifest Citation of Games 190

4.7.1 Game v Performance . 191
4.7.2 Citation Tool . 193
4.7.3 Command Line . 195
4.7.4 Web Application . 198
4.7.5 Future Work . 206

4.8 Evaluation . 207
4.8.1 Discussion . 208
4.8.2 Improvements and Future Work 211

4.9 Conclusion . 213

iv

5 Discovery 215
5.1 Intro . 215
5.2 Game Discovery . 217

5.2.1 Forms of Discovery and Their Limitations 219
5.3 A Goal for Discovery . 224
5.4 A Model for Discovery . 226

5.4.1 Related Work in NLP for Games 227
5.4.2 Latent Semantic Analysis 233

5.5 Tools for Discovery . 235
5.5.1 Related Discovery Work 235
5.5.2 GameNet . 237
5.5.3 GameSage . 238

5.6 Visualizations for Discovery . 239
5.6.1 GameGlobs . 240
5.6.2 Gamespace . 241
5.6.3 GameTree . 241

5.7 Evaluation . 245
5.7.1 Expert Evaluation . 246
5.7.2 Novice Game Designer Evaluation 249

5.8 Future Work . 253
5.9 Conclusion . 254

6 A Model of Doom 256
6.1 Introduction . 256
6.2 Fractal History . 260
6.3 A Model of Game Software Historical Study 265
6.4 Doom in Fractal Coherence . 275

6.4.1 Historiographable Target 278
6.4.2 Reified Object . 295
6.4.3 Technical Expression . 310
6.4.4 Enacted and Tacit Knowledge 318

6.5 Conclusion . 329

7 Conclusion 333
7.1 The Conditions of a History for Games and Software 335
7.2 The Network Contingency and its Implications on Practice 338

7.2.1 Problems of the Network Contingency 340

v

List of Figures

1.1 Intermediary Accumulation . 16
1.2 Intermediary Exploration and Expression 18
1.3 Full Historical Process . 19
1.4 Mapped Historical Process . 21

3.1 Platform Abstraction Diagram . 111
3.2 Basic Simple Knowledge Organization System (SKOS) Diagram . 124
3.3 SKOS Terminology Hierarchy . 125
3.4 Region and Version Compatibility 126
3.5 Information Sheet Example . 145

4.1 GISST components and pipeline. 194
4.2 Basic CLI Pipeline . 197
4.3 Data Flow to GISST Indexer . 198
4.4 Network Diagram for Loading a Game into the Indexer 201
4.5 Network Diagram for Loading a Save State into the Indexer . . . 202
4.6 Network Diagram for Saving a Save State. 202
4.7 Network Diagram for Video Recording 203
4.8 Indexer User Interface . 204

5.1 GameNet Search and Results for Wall Street Kid 237
5.2 GameSage Query for Non-Corpus Game 238
5.3 GameGlobs Showing 20 Clusters 242
5.4 GameSpace Intro Screen and Main Space 243

vi

5.5 GameSpace Game Selection with Wikipedia and Youtube 244
5.6 GameTree with Racing Game Branch Highlighted 245

6.1 Two Versions of Historical Analysis 265
6.2 Basic Software Historical Model in Four Layers 268
6.3 “T” of Omissions in Historical Model 273
6.4 Opening of Doom . 279
6.5 Opening of Hovertank 3D . 284
6.6 Opening of Catacomb 3D . 286
6.7 Opening of Wolfenstein 3D . 287
6.8 Version Tree of Doom . 302

7.1 Growth of Network Contingent Games 1950 to Now 343
7.2 Growth of Network Contingent Games Into Future 343
7.3 Network Distribution 1950 to Now 344
7.4 Network Distribution Now Into Future 345

vii

List of Tables

2.1 Prom Week File Formats and Dependent Programs 68

3.1 Star Raiders Entry from Cabrinety Collection Finding Aid 94
3.2 Aggregated Number of Potential Platforms and Formats Per Col-

lection . 116
3.3 Example Research Entry for a Platform (Before Disambiguation) 116

4.1 GISST Supported Resources . 198

6.1 Comparison of id Games’ File Structures 298
6.2 Comparison of Doom Image Contents 0.2 to 1.25 307
6.3 Comparison of Doom Image Contents 1.4 to The Ultimate Doom 308

viii

Abstract

The Stabilization, Exploration, and Expression of Computer Game History

by

Eric Kaltman

Computer games are now a significant cultural phenomenon, and a significant

artistic output of humanity. However, little effort and attention have been paid to

how the medium of games and interactive software developed, and even less to the

historical storage of software development documentation. This thesis borrows

methodologies and practices from computer science, the history of science and

technology, and information science, and brings them to bear on the historical

study of computer games. It posits that in order to understand and reconcile the

place and effects of cultural software in society, new means of stabilizing software

outputs, exploring their contents, and expressing their histories must be created.

The thesis’s contributions are tied to a model of scholarly process, in which

software practitioners — in this case specifically game developers — produce doc-

umentation that is then explored by historians and expressed — through scholarly

works — to other scholars and lay audiences. That is, the accumulation of his-

torical records about games and software needs to be filtered through stabilizing

processes before historians can make use of them. Furthermore, the subsequent

expression of those records needs to take their digital, computational, and tech-

nically engineered nature into account.

The first three chapters focus on the appraisal of game development docu-

mentation, the description of game records in institutional archives, and the ci-

tation and reference of game resources. “Appraisal” analyzes the records of the

game Prom Week and provides an appraisal and institutional ingestion its devel-

opment documentation. “Description” presents semantic controlled vocabularies

ix

and theoretical models for computer game platforms and media formats. “Cita-

tion” introduces the Game and Interactive Software Scholarship Toolkit (GISST),

a system for the citation of emulated computer games, their computational state,

and recordings of their game play. GISST allows for embedding emulated games

into online documents to aid in historical expression.

The two latter chapters focus on record expression. “Discovery” presents a

novel application of natural language processing to the visualization of computer

game history. The final chapter focuses on the history of the computer game

Doom and the need to devote more time to the organization and historicization

of its documentation.

x

To Agi for keeping me sane, and Elliott for keeping it soft.

xi

Acknowledgments

A lot of glorious people contributed to the success of this dissertation. Thanks

to Noah Wardrip-Fruin, Michael Mateas and Henry Lowood for advising on the

drafts and seemingly unending support for every question and issue — no matter

how small — I had along the way. This work would not have been possible

without the input of the Game Metadata and Citation Project team — Marcia

Barrett, Christy Caldwell, Greta deGroat, and Glynn Edwards. Further support

for GAMECIP efforts by Rachel Jaffe, Gloriana St. Clair, Simon Carless, Kari

Kraus, James Newman, Jin Ha Lee, David Gibson, and Mark Nelson.

A significant amount of collaborative effort went into the creation of vari-

ous contributions in this work. I’d like to thank Joe Osborn — for his work on

GISST, James Ryan — for his work on the NLP models and ideas underpinning

the visualizations, and Stacey Mason — for help in conceptualizing game citation

practices. Additionally, thanks to Mitch Mastroni for significant efforts on the

controlled vocabularies. Also my undergraduate researchers: Timothy Hong, Sal-

vador Flamenco, Joshua Navarro, Malcolm Riley, Michael Harrold, Joseph Sand-

meyer, Austin Yen, Sam Fields, Ryan Cori, Sergiy Ravnyago, Yasha Taylor, and

Neeraj Mallampet. And thanks to graduate researchers Molly Jostock, Vanessa

Nutter, and Nina Acosta. Input and feedback on this thesis was also solicited (and

gratitiously provided by) Chaim Gingold, Jacob Garbe, William Huber, Miguel

Sicart, Dylan Lederle-Ensign, Douglas Wilson, Nathan Altice, Katherine Isbister,

Fox Harrell, and Warren Sack.

Finally I’d like to thank my partner Agnieszka, for providing much needed

love, support and encouragement in getting this thing out the door; the soon-

to-arrive Algernon, for providing significant motivation without even knowing it;

and you, whoever you are, for choosing to spend a small part of your sacred and

xii

limited intellectual life with me and my ideas. Thank you all.

xiii

Chapter 1

Introduction

In Henry Lowood’s and Raiford Guins’s edited volume Debugging Game His-

tory, the pair lay out the current state of the history of computer games and

the needs for its continued development.1 They quote Jeffrey Yost — editor of

the IEEE Annals of the History of Computing — from his preface to a special

issue on games, “Little critical historical analysis has been written on computer

games to date. Much of the existing literature is blindly celebratory, or merely

descriptive rather than scholarly or analytical. Only a small number of scholars

have undertaken rigorous analysis of computer games.”2 Lowood and Guins re-

mark that “fives years later [in 2016], the situation remains the same,” and further

enlist Erkki Huhtamo who describes game historical study as stuck in “a mode

of writing history consumed with the ‘when’ and ‘what’ to the detriment of the

‘why’ and ‘how’.”3 Apparently, there is much work to be done to ground out the

history of games through the more rigorous practices of critical historical studies.

Lowood and Guins call for more work in a number of areas, but this thesis is
1[86] Guins, Raiford, and Henry Lowood, eds. Debugging Game History: A Critical Lexicon.

Game Histories. Cambridge, Massachusetts: The MIT Press, 2016.
2[86] pg.xiii
3[86] pg. xiii

1

primarily concerned with three:4

1. “Multidisciplinary methodological and theoretical approaches to the histor-

ical study of games.”

2. “Game preservation, exhibition, and documentation, including the place of

museums, libraries, and collectors in preparing game history.”

3. “Material histories of game artifacts and ephemera.”

In calling up these topics — each a staggering vessel that well exceeds the

volume of this humble thesis — we limit our scope directly to software-based

games. This focus gives us a methodological toehold in the history of software,

and allows us a more limited object of study. Therefore, each entry above is

slightly altered, replacing “games” generally with “game software” specifically.

While this may seem trivial, “games” and software that manifest “games” are

two very different things and ones that appear conflated in many texts in game

studies.5 But game software and its development deserve a deeper and more

critical look, one that falls in line with and augments the history of software in

general.

Above, two specific phrases passed without question. The first, in Jeffery

Yost’s, about the existing literature on games being “merely descriptive,” and the

second, in Huhtamo’s assertion that the “when” and “what” of games is detri-

mental to the “why” and “how”. Both statements implicitly assume that the
4[86] pg. xii
5Part of this linkage can be traced back to the birth of game studies as a field, which connected

the field’s criticality to early studies of physical games and play. Salen and Zimmerman’s Rules
of Play [205] and Game Design Reader [206], are an early example of the linkage between
earlier board games and play to the practices of computer and software based game play. This
lineage usually begins with the work of Johan Huizinga [93] and works through other play
theorists — like Roger Caillois [47] and Brian Sutton-Smith [201] — before arriving at computer
games. For a significant overview of play theorists and how that influences the playful design
of games, [79] Gingold, Chaim Ophir. “Play Design.” eScholarship, January 1, 2016. http:
//escholarship.org/uc/item/8qr533m2.

2

http://escholarship.org/uc/item/8qr533m2
http://escholarship.org/uc/item/8qr533m2

description of games, their “what”, are good and solved, and that consideration

of the “what” somehow limits history. This thesis stands as an argument that, for

game software at least, the “what” has not really been attended to, and that to

pass off work as “merely descriptive” is to gloss over fundamental material con-

cerns that influence and, in some cases, inhibit the study of game software. In

order to move forward with the history of games software, we need a more stable

base of “what” and “when” to articulate a “how” in search of a “why”.

This thesis is then a call for a deeper consideration of the stabilization of his-

torical material records of computer games, and the exploration and expression

of their histories. With stabilization, we address the organization and linking of

historical documentary accumulations that allow for coherent historical studies of

games. With exploration and expression, we create new historical models, tools

and visualizations that aim to reveal computer games — as constructed techni-

cal objects — in new ways. Stabilizing records — with the help of archival and

library science — and exploring them through computational mediatic interven-

tions then point toward new means of historical expression, which could advance

the fields of game studies and software studies, along with the more general his-

tory of software. Our focus on computer games also benefits from the significant

attention that they have received, both historically and intellectually as a class of

software. Computer games as an expressive medium have received the lion’s share

of scholarly attention afforded to software in general. However, this attention has

resulted in a partial erasure of the foundational, computational and technical na-

ture of computer games, as they are most usually discussed in abstraction, as a

medium, writ large, to be reckoned with or defined in totality. This work aims to

directly account for the material conditions of the history of game software, and

explores how to leverage computer games as objects of constructed technology in

3

future historical investigations.

The remainder of this introduction lays out a deeper elaboration of concepts

and substantial recommendations from the fields of the history of technology, the

history of software, and record preservation as they relate to a unified model for

the stabilization, exploration and expression of computer game history. We seek

to point out how the work of this thesis addresses foundational issues in the larger

fields of science and technology studies, and to show how our contributions light

up some methodological crevices not often addressed in historical work. This

introductory section concludes with a summary of the chapters of this thesis and

a brief description of each of their contributions and goals.

1.1 On the history of technology

In his 1996 presidential address to the Society of the History of Technology

(SHOT) Alex Roland reflected on the history of technology in light of the passing

of Mel Kranzberg, co-founder of the society.6 The address focused on the validity

of the field, and its relation to the perceived “black box of technology.”

Does the history of technology matter? If so, how? What is it that
we as a community do with the black box of technology? Do we
really unpack its contents? Can we claim to have produced any special
insight into the nature of black boxes, how they work, whence they
come, and how they interact with their environment?7

The “black box” here is the terminus of a long process of engineering and design

work that results in a technological object.8 This object is stable enough to be
6[178] Roland, Alex. “What Hath Kranzberg Wrought? Or, Does the History of Technology

Matter?” Technology and Culture 38, no. 3 (July 1997): 697. doi:10.2307/3106860.
7[178] pg. 701
8This reference to “black boxes” is focused on technical objects and what their inner workings

reveal about their place in society and culture in addition to revealing the practices of their
creators. Others use the metaphor of “black boxes” to deal with technocratic phenomenon at

4

doi:10.2307/3106860

used without knowledge or consideration of its inner workings. A common trope

(or concern) in the history of technology is to what degree the inner workings of

the object matter. “Do we really unpack its contents?” is it really worth the time

and effort to disassemble the black box? What do we gain when we do? Roland

hopes for some “special insight” into the nature of technology, some way to point

out how the inquiry revealed some new piece of the puzzle of reality.

His address grapples with the extent to which one should even bother with the

insides of technology, and splits historians of technology into two rough camps,

Some historians treat the black box as a machina ex deus. It appears
in history as a given. The important question for them is. . . what it
does, how it influences its environment. To look inside is to invite
confusion and distraction. . . But others, staring into the black box,
become transfixed and beguiled. No locknut is too mundane, no gear
too trivial. All are extracted from the box, and paraded in loving
detail before the reader, in the historian’s equivalent of an exploded
drawing. Failing to explain what it all means, these historians simply
explain how it all works. While the former type lacks trees, the latter
type lacks a forest. Neither is satisfactory.9

This tension is present in his work, he admits, and in the work of most histo-

rians of technology. On the one hand, technology functions in culture, interacting

with and influencing people. On the other, technology is the result of people’s

different levels of abstraction. See Bruno Latour and Steve Woolgar’s Laboratory Life, and
Latour’s Science in Action for discussions of “black boxes” of scientific belief and how they
function in networks of societal influences (this ties to the larger project of Actor-Network
Theory as developed by Callon, Latour, Law, Rip, and others). Nathan Rosenberg also uses
the metaphor of the “black boxes” of macroeconomic theory, and how belief in those models
structures economic reality. In all cases, the basic premise is the same, that closure over technical
models and beliefs serves to partially obscure the foundational assumptions supporting modern
society. See, [48] Callon, Michel, John Law, and Arie Rip. Mapping the Dynamics of Science
and Technology: Sociology of Science in the Real World. Basingstoke: Macmillan, 1986. [118]
Latour, Bruno. Science in Action: How to Follow Scientists and Engineers through Society.
Cambridge, Mass.: Harvard University Press, 1987. [119] Latour, Bruno, and Steve Woolgar.
Laboratory Life: The Construction of Scientific Facts. Princeton University Press, 2013. [182]
Rosenberg, Nathan. Exploring the Black Box: Technology, Economics, and History. Cambridge
[England]; New York: Cambridge University Press, 1994.

9[178] pg. 703-704

5

effort, and it is necessary to understand how those efforts lead to the object of

discussion. A history of a technology without some discussion of technology itself

would not present a coherent picture.10 Different histories of technology seemingly

require a modulation between the desire to fully explain how something worked

and the contexts within which it functioned.

This concern extends to the history of software technology as well. James

Tomayko, directly echoing Roland’s remarks above, highlights the different ap-

proaches he used in two complementary works on software engineering, Computers

in Space Flight: the NASA Experience and Computers Take Flight: A History of

NASA’s Pioneering Fly-by-Wire Project.11 Tomayko refers to two different “lev-

els of sharing”, which are roughly equivalent to Roland’s “tree” of technical detail

and “forest” of technical context. In the earlier work, Computers in Space Flight,

Tomayko went into more technical detail than his editors believed relevant or nec-

essary. They wanted a more institutional history and as a result, “relegated the

exposition of technical details of the engineering history to sidebars and appen-

dices.”12 In Computers Take Flight, Tomayko’s editor again asked for “judicious”

use of technical details, and in this case Tomayko agreed stating that, “under-

standing the technology led to (hopefully) a better story, but its development is

not the dominant part, even though it is the central reason for the project.”13

Tomayko maintains that the important consideration is not whether there is
10See the chapter “A Model of Doom” below for a discussion of historical narrative “coherence”

and where technological records fit within the structure of computer game software history.
11[208] Tomayko, J. E. Computers Take Flight: A History of NASAâĂŹs Pioneering Digital

Fly-by-Wire Project. NASA History Series 2000âĂŞ4224. Washington, D.C: National Aeronau-
tics and Space Administration, NASA Office of Policy and Plans, NASA History Office, 2000.
[209] Tomayko, J. E, United States, National Aeronautics and Space Administration, and Sci-
entific and Technical Information Division. Computers in Spaceflight: The NASA Experience.
Washington, D.C.: National Aeronautics and Space Administration, Scientific and Technical
Information Division, 1988.

12[210] Tomayko, James E. “Software as Engineering.” In History of Computing: Software
Issues, 65-76. Berlin; Heidelberg; New York: Springer-Verlag, 2002. pg. 75

13[210] pg. 75

6

too much or too little technical detail, but whether the history constructed around

those details is “interesting and useful to the practitioner and layman alike.” He

also notes that although, “practitioners have produced much of the history of

computing since they easily understand the technology and are motivated to set

down their own stories. They make prevalent the overly-technical history. What

is needed are more trained historians to enter this area of the history of technol-

ogy.”14 Tomayko highlights two major considerations for the history of software in

the history of technology. First, a purpose for these histories is to appeal to both

people inside their construction (practitioners) and those outside who experience

their effects (laymen). And second, that the construction of histories of soft-

ware needs dedicated consideration by historians, or more specifically, historical

methodologies and perspectives.

Briefly setting aside the first point of appeal to practitioners and laymen,

Albert Endres in his response to Tomayko’s call for more history notes, “most

private knowledge will eventually be documented not by the designers and devel-

opers themselves, but by people who are willing to study designs and compare

them.”15 Endres appears at odds with Tomayko’s statement about practitioners

as a source for the history of computing, but Endres’s point embeds a more sub-

tle distinction. Recall that Tomayko highlights practitioner’s desire “to set down

their own stories,” as a major motivation for self-documentation practice. As such,

documentary details do not focus on greater historical trends nor on comparative

structures, but a bit too tightly on the practitioners’ minutiae and areas of exper-

tise (which are most likely not historical disciplines). Endres is acknowledging that

practitioner directed history might not display “private knowledge” in ways intel-

ligible to future historians. Practitioners understand their practice intimately, but
14[210] pg. 76
15[71] Endres, Albert. “Commentary on James E. Tomayko.” In History of Computing:

Software Issues, 77-82. Berlin; Heidelberg; New York: Springer-Verlag, 2002. pg. 81

7

may not know how to distinguish which parts of that practice are approachable

for outsiders as opposed to ones steeped in complex networks of tacit knowledge.16

Therefore, work needs to be done to document software systems and their devel-

opment to allow for more comparison between engineering techniques and their

resultant software objects. And though practitioner self-documentation practice

is valuable,17 Endres is correct in that a majority of the documentary record will

be collected by those “willing to study designs and compare them.” Documentary

collection is implicit here since you obviously need records of a design to study

it. Documentation lends to comparison of forms and designs, which leads to a

particular mode of historical construction. Given that many practitioners are not

also practicing archivists or historians, documentation of software design practice

is rarely readily available or well-organized. A major point of the work below is

to fill some of the methodological lacunae in the documentary record of computer

game and software history.

Interestingly, Endres further notes that “there are not nearly enough researchers

doing this type of work [documentation and comparison] in the field of software

engineering,” and that “they will be welcomed by both practitioners and histo-

rians.”18 This implies an intermediary position between practice and history for

individuals interested in documentation and comparison. We believe that this

intermediary functionary need not be an individual (or even human), but that

consideration must be made for how the construction of the history of a tech-

nology is built on the collection, exploration and expression of its documentary
16For more on tacit knowledge and its influence on technological and scientific knowledge

sharing, see [54] Collins, Harry. Changing Order: Replication and Induction in Scientific Prac-
tice. Chicago: University Of Chicago Press, 1992. and [55] Collins, Harry. Tacit and Explicit
Knowledge. Chicago; London: University Of Chicago Press, 2012.

17See Chapter 2, “Appraisal,” below for in-depth discussion of development team’s self-
documentary material, and Chapter 6, “A Model of Doom,” for descriptions of game community
developers and their documentation practices.

18[71] pg. 81

8

record. Endres believes that more intermediary research is needed so that we “do

not lump all software together and treat it as a single phenomenon.”19 Consid-

eration of software objects needs to be more critical about the nature of their

technical ontology and construction. Otherwise you get “people who have written

one type of program [declaring] themselves experts on all types.”20 The history

of software must then admit to specializations based on the constitution and con-

struction of software objects. One way to bring those specializations to the fore is

through the intermediary work of documentation and comparison, which supplies

the “stuff” for later, more specific historical methodologies.

Tomayko’s call for more historians is then based on availability of Endres’s

intermediary class of documentarians. These intermediaries are most likely also

historians, but they have an awareness of the needs for a better documentary

record for the history of software. In order to make the history of software apparent

to a more diverse and larger audience, more accounting needs to be made of the

collection and dissemination of its material record. This notion of a thorough

accumulation of material history loops us back to Roland’s address on the purpose

of the history of technology more generally.

Roland began his inquiry into the worth of the history of technology with a

lamentation of the confusion inherent in its practice. Opening up black boxes

and tying their contents to larger revelations about the nature of technology is

difficult, in no small part because of the constant pressure to explain how a tech-

nology works instead of what it does for history. Roland admits that there is no

truly consistent methodology in the history of technology — a point that might

bother Tomayko and his call for more method in relation to software study — but

asserts that the strength of the discipline lies in its ability to challenge common
19[71] pg. 81
20[71] pg. 81

9

conceptions of the nature of technological change. This strength “was achieved by

building up a knowledge base about the history of technological change and shar-

ing that knowledge base with one another.”21 The accumulation and sharing of

knowledge inherent in the historical study of technology is then both its purpose

and legitimation. This point mirrors those made about the history of software by

Endres and Tomayko in calling for more historical resources and argumentation

about software systems.

Roland ends his address with an appeal for those present to work toward more

awareness and representation of the field. Again, reflecting Tomayko’s sentiments

towards software history, Roland rallies, “we must step back from our own shared

understanding that technology matters and produce scholarship to convince unbe-

lievers that technology matters.”22 There is then nothing wrong, inherently, with

the historical inquiry into technology and its functions, but there is much work to

be done expressing that history and its importance to others.

1.2 On the history of software

The work of software creation is still mostly invisible or unaccounted for in

many works in the history of games. When games are based on software and

development processes, those functions are generally swept under the rug. Some-

times because the scholar does not have the technical skills to recover the object’s

development record and in others because the game as a technical object is not

considered germane to its existence as a “game,” the subject of historical analysis.

Many times, however, it’s because no evidence of development, of the systems un-

derlying the game or of the existence of the software object remain. These issues
21[178] pg. 711
22[178] pg. 713

10

in game software studies are, in fact, inherited from the history of software.

Michael Mahoney, twenty years ago, in his presentation at the second History

of Programming Languages Conference, directly addressed the need for more ev-

idence of practice in the history of computing. A major problem with recovering

practice is that “it is a skill, a body of techniques, and the habits of thought

that go with them, that constitutes effective knowledge of a subject. Because all

practitioners of a subject share that skill, they do not talk about it.”23 Those

working with software, or working on games, develop a large, inter and intra-

personal corpus of implicit and tacit knowledge. They draw on it in application

to new problems and rarely write it down or critically reflect on it. Mahoney states

that as a result of this deficit of engineering knowledge, “historians are learning

to do what engineers often take for granted: to read the products of practice in

critical ways.” They must “learn to read the artifacts as critically as they do the

[written] records,” and by extension learn to explore those records in ways outside

the methods of traditional historiography. Mahoney continues the discussion by

looping in the need for access to the artifacts of computation. One needs to be

able to make the object available in order for others — or even themselves — to

study it. This is not a trivial consideration for historical software since “what

programs do and what the documentation says they do are not always the same

things.” Historians, in addition to inheriting the engineering knowledge needed to

comprehend software, must “inherit . . . the problems of software maintenance,”

as well. For “the farther the program lies from its creators, the more difficult it

is to discern in its architecture and the design decisions that inform it.”24

Therefore, in understanding the history of game software, we need to gain an

intimate understanding of its practice, recover the software artifacts that consti-
23[133] Mahoney, Michael S. “Issues in the History of Computing.” In History of Programming

languages-II, 772-781. ACM, 1996, pg. 774
24[133] pg. 775

11

tute it, maintain them in a way that they can inform future historical work, and

get out alive afterward. Mahoney illuminates these core issues in the history of

computing — though directed at the history of software — and then leaves them

lying there. He hopes, we guess, that others will pick them up and do the rigorous

work necessary to support the critical exercise of software history.

1.3 On the history of computer games in the his-

tory of software in the history of technology

This thesis is mainly directed toward mapping the larger issues in the history

of technology — documentary stabilization, expression and relevance — to the

history of computer games as software technology. The consideration of computer

games as a unique technical sub-discipline in the history of software is currently

in its infancy. This is partly due to the general issues of acceptance of computer

games as a legitimate form of cultural expression, but more significantly due to

the fact that computer games are software, and that software itself is significantly

under-researched. As discussed in the previous section, the ability to conduct

historical investigation of a set of technologies is intimately tied to one’s access

to the material traces of its development. This thesis is a step towards a larger

discussion of a methodology for the history of games as software, and how the

exploration and expression of that history is a unique specialization in the history

of software technology.

Locating the history of computer games in this way — as explicitly software-

based objects — is intentionally narrow. Much of the discussion of games as

phenomena includes detailed accounts of how rules systems express play, and how

that play links up to larger social processes and structures. Almost all of the

12

discussion of the technical history of computer game software is written by prac-

titioners reflecting on their practice. Thus we are in a similar position to that

of the history of software engineering discussed by Tomayko above. Practitioners

focus on the dissemination of their specific knowledge, and rarely pair their expo-

sition with comparative historical practice or methodology. In many cases, they

also ignore how their exposition could help the construction of a future history

of games. This is because much of what is written about technique and design

is directed at other practitioners and not larger historical themes, context, or lay

understanding and introduction.

There needs to be a greater accumulation of records of design and imple-

mentation, and a greater awareness of the potential of intermediary work in the

collection of documentation and comparative frameworks for games. To form a

history of computer games as software technology we need to take stock of what

is available for study, what should be available for study, and ways to expose that

material to historical analysis.

1.4 On preservation

One major implication of intermediary documentary research into game soft-

ware is the complementary considerations it creates for that research’s preserva-

tion. Absent from much of the discussion in the history of technology is the actual

process of maintaining and organizing the records of technological process — what

we have referred to as stabilization. Documentation of technical artifacts requires

explicit description of their ontological organization, and how their existence is

tied to the material evidence of their creation. Once description and positioning

are solved, then comes the desire to recall that evidence for historical study, to

locate it within the documentary accumulation and get it to speak for a historical

13

argument. These preservation processes are, in fact, common to most types of

historical records. Our work here is again a mapping of the issues of other fields

onto the history of computer game software. In the last case that field was the

history of technology, in this case archival preservation.

For the historical record of computer games to become a stable basis for the

history of computer games, certain preservation processes must be suitably re-

oriented. We will address these processes in roughly chronological order. When

collecting the records of game software and its development (this includes records

that constitute the object itself) appraisal and description come to the fore. Ap-

praisal is the process of deciding which records are relevant to future researchers,

and is the first screen through which documentation must pass on its way to

the historical record. Description is necessary to simply label the parts of each

record in a way that is acceptable to the field in question, and that comports with

standard understandings of the ontology of each object. Description is important

because it allows for the future location of records in an archive. Additionally,

it is hoped that the appraisal decisions are correct in anticipating future schol-

arship, and that the description conforms to an ontology stable enough as to be

understood in the future (see the Appraisal and Description chapters for further

discussion).

Following description is the act of storage that places the record in a stable

location for future reclamation. This storage involves a complimentary set of

descriptions (all descriptions mentioned are in effect metadata) that label a record

for inclusion into whatever repository schema is used by a particular institution.

After storage, comes access or the means provided to actually get the record back

out of the archive. Access involves both the location of relevant materials — the

process of “discovery” — and their linking to scholarly expressions — reference

14

and citation.

These processes: appraisal, description, storage, and access, are fundamental

to the preservation of any history, and are underdeveloped not only for computer

game software (this thesis being one of first examples of research in this area)

but also for records of the history of software and, surprisingly, even technology

in general. As will become apparent, issues relating to the history of computer

software as technological objects are in most cases directly derivative of — and

therefore can become a direct commentary on— issues in the history of technology.

Most of the preservation practice discussed in the initial sections of this work is

directly linked to practice involving all engineered technology, albeit with more

focus on issues of software preservation.

The processes of the material archive then invite both a discussion of the kind

of records needed for the construction of a technical game history, and of how

the ontology of those artifacts is germane to their storage and retrieval. They

also call for a consideration of what “access” means in relation to a software

record (especially the software object itself), and how technical considerations

of software as a unique phenomena shape capabilities and expectations of the

archive. Lastly, these processes also influence the history of games as software

because development and technical records are the basis for arguments about

games as technology.

1.5 On knowledge accumulation, exploration and

expression in the history of technology

From the above we have gathered that a purpose for the history of technology

is to negotiate the revelations of its inner workings (the amount of the box to

15

open) towards a better conception of technological change and how that change

has influenced people’s lives. The positive output of this research, as summarized

by Roland in his address to SHOT, is first, the accumulation of knowledge about

technology and the ability to share and build upon that knowledge with others

and, second, to express that knowledge in a way that changes the perceptions

of technology for both practitioners and lay people alike. After a further bit of

elaboration, we will tie both outputs — knowledge accumulation and sharing, and

historical exploration and expression — to the more limited domain of computer

games as software.

The basis of knowledge accumulation is not only the practitioners’ work in

creating a to-be-studied technology. It is also the result of the historian’s efforts

in reconciling the material traces of the technology into revelatory discourse, and

crucially, on the intermediary action of organizing, collecting, and maintaining

those traces. These knowledge entities: practitioners, intermediaries, and histori-

ans, may frequently overlap in function or subsume one another. As mentioned

above, a practitioner can engage in historical writing, or a historian can be the

source of intermediary collection and management. However, we break them apart

into three distinct entities in Figure 1.1 to elaborate on their relative positioning

in the creation of knowledge about technology.

Figure 1.1: Intermediary Accumulation

The basic network in Figure 1.1 draws out the notion, described above by

16

Endres, that consideration must be given to the actual recording and management

of technological production. Although some practitioners do take meticulous notes

and organize their own personal archives, there are often times little understanding

of how their production is tied to the creation of a historical discourse about

the technology to which they devote their time and energy. Conversely, in the

organization of technical historical discourse, much of the effort is dedicated to

the use of sources (either found by the historian, or traced from others) and not

on their organization, creation or navigation. That is, the methodology behind

their management and means for its exploration. Roland even admits that the

history of technology functions “not with any accepted methodology or focus.”

Part of our work is to highlight how the intermediary actions involved in the

creation of records of technology also force a discussion of methodologies for their

management and use. Perhaps some discussion of methodology could illuminate

ways to help direct intermediary knowledge accumulation towards places able to

support new types of historical inquiries?

Conveniently, one large component of “intermediary knowledge accumulation”

could refer to the organization of an archive. In that case, our discussions of

preservation methodologies provide an opening to begin mapping the space of

knowledge accumulation and to probe for potential holes and points of opportu-

nity. There is a difference, however, between historians’ and practitioners’ tacit

knowledge and its material traces. Our preservation discussions have to focus

on the materials, since, sadly, an actual archive can only store material records.

The intersection of previous archival practice with the constraints of software de-

velopment and software objects provides the basis for the first sections of this

thesis, Appraisal and Description. Appraisal of the types and kinds of traces im-

plicated in the history of software, and the ontological conditions and resulting

17

commitments of their descriptions.

Returning to Roland’s second point, regarding the expression of the history of

technology to others, we can construct a symmetric intermediary diagram (shown

in Figure 1.2). The expression hinges on the historian (or any entity concerned

with some analytical frame for the past), their ability to locate and explore records,

and their desire to present the history of a technology to an audience. Comple-

mentarily, after the historian encounters the accumulation, the act of exploring

it and expressing their results also becomes a significant function. We carefully

note that while expression is a general framing supplemented by an exploration

of accumulation, it is also an intermediary process sitting between the historian

and audience. Much like the intermediary work required collecting and interpret-

ing the material traces between practitioner and historian, the work of expressing

history to an audience is also an intermediary action involving the exploration of

material and its representation.

Figure 1.2: Intermediary Exploration and Expression

As with knowledge accumulation, intermediary exploration and expression are

not usually discussed in the final technical historical output. It is mostly as-

sumed that to communicate to an idea about the history of technology, one must

write down some assertions, perhaps include a diagram or two, and with them

construct a written discourse. This focus on the intermediary expression is not

simply historiographical. There is plenty of discussion in the field about the ways

to construct a historical discourse, and how those approaches are influenced by

18

the ideologies and subjective position of a particular historian.25 There are his-

toriographic points to be made, but intermediary exploration and expression are

a bit more fundamental and material. Perhaps discursive practice is not the only

way to communicate a historical argument. A consideration of new means of ex-

pression — and new ways to explore resources — might help with the appeal of

technical history to wider audience and help make the specific history of software

more approachable and comprehensible. We extend to the history of software

specifically because of its proximity to our ultimate conversation about computer

games. Additionally, we feel that consideration of the intermediary expression of

software systems in particular is valuable.

Figure 1.3: Full Historical Process

If we align both diagrams (Figure 1.3), we create a track for the creation

and expression of knowledge about the history of technology. Beginning with the

creative act of the practitioners, we proceed to the intermediary knowledge accu-

mulation used by a historian to provide expression to a particular audience. While

this track appears to be neat and tidy, it is also a bit of a lie. Rarely can one de-

lineate all the intermediary actions and entities involved in a historical expression

with such brutal clarity. Regardless, the basic arrangement is designed to point

out two locations ripe for investigation and experimentation. Both intermediary

nodes — knowledge accumulation, and exploration / expression — could benefit

from active consideration by practitioners and historians.
25See Chapter 6, “A Model of Doom,” for a deeper description of Hayden White and John

Law’s work in this vein. Furthermore, Lowood and Guins call for game historical work at the
beginning of this introduction is based, in part, on White’s historiographic analysis.

19

By looking more deeply into knowledge accumulation, we can identify the

ways that practitioners, historians, and the archive of technical knowledge could

be made to engage and interact in a more productive manner. Be it methodologies

imported from other disciplines (information and library science), tools created to

enable new forms of knowledge sharing and communication (computational media)

or simply the contribution of a perspective on history that includes consideration

of intermediary accumulation.

Complementarily, in examining the processes and objects of knowledge accu-

mulation, we can then question how the historian organizes and explores them in

the expression of historical argumentation. Our perspective therefore extends to

intermediary expression, and engages with similar questions regarding the use of

new disciplinary methods and computational tools. Hopefully, the result is a more

thorough consideration of the intermediaries’ effects on the history of technology

and how embracing those effects can lead to improved scholarship and improved

communication between practitioners, historians and audiences.

1.6 On an intermediary perspective for the his-

tory of games as software

Now that we have organized a basic perspective for the work of this thesis,

we proceed to “ground it out” in an application of that perspective to computer

games as software. The fundamental research contributions, to be elaborated

below, concern a detailed look at how the intermediary actions of knowledge ac-

cumulation and expression function for the current state of the technical history

of games, and what imported methodologies from preservation practice, and soft-

ware engineering (primarily analysis tools) can provide to reveal and augment

20

those actions to the benefit of the field. Below in Figure 1.4, we map the model

in Figure 1.3 of practitioners, historians, audience and intermediaries to the sub-

domain of computer games. We then outline the tri-part structure of this thesis,

of knowledge accumulation, expression and argument (not forgetting to illuminate

specific research contributions). Finally, we conclude with brief summaries of the

individual chapters and their goals.

Computer games as technical historical objects and their study, map directly

onto the basic model above.

Figure 1.4: Mapped Historical Process

Missing from our general presentation of the model are detailed descriptions

of the individuals, processes, or other expressive / knowledge entities implicated

at each node. The general “practitioner” in the history of technology maps here

to game designers and developers. Because we are focusing on computer games

as a technology, there will be a bias towards the technique of game technology

as opposed to the technique of game design. Game technology is the systems

created to the support a given game design. One is not clearly separated from the

other (especially in cases where the design and technology derive from a single

individual), but we will not concern ourselves with the creation of game rules,

or what is good or bad design, but only with how the material records of the

development of a game’s underlying technology effect that design. Much of this

has to do with our perspective; we are concerned with the confluence of historical

materials that lead to an expression of a historical argument. Those materials

are important to the construction of a game’s design, and the history of game

21

design will benefit from our analysis, but the structure of a game as a conceptual

object tied to games as an expressive art form is out of scope. How a game

expresses its design is based on its development history, but the analysis of a

closed game object within the field of game design is not a constitutive material

trace in the way that, say, a designer’s development journal might be. As such, our

designer / developer is an entity that produces material traces that can lead to an

understanding of a completed game object, and that contributes to the basis of the

intermediary knowledge accumulation about the processes of game development

and technology. For the purposes of this thesis, we will refer to the “practitioner”

as a “game developer” or “developer”. This is to align it more with the software

development aspect of games than the game design aspect. Game developer also

connects more easily to the broader category of “software developer,” since the

technology we are discussing is software based.

As mentioned in the general model, intermediary knowledge accumulation is

a set of practices that collect and organize the material traces of a technology. In

many cases, this results in a collection in an archive, or some institutionally-backed

repository of source material. In other cases, the records are diffuse throughout

a larger network, found in the journals and writings of practitioners, or in the

collections and commentaries of enthusiastic amateurs. The landscape of the doc-

umentation of computer game software is suitably vast and diverse, but it is also

almost exclusively not in institutional repositories or the object of any current

activity in the organization of archives. As will be elaborated through a case

study in Appraisal, the records of software development present new challenges

to knowledge accumulation about software as technology. Additionally, much of

the current accumulation of knowledge about the construction of computer game

software is based in practitioner-disseminated knowledge. There is very little in

22

the way of concerted, comparative studies of technological change in software in

general, let alone games software. As concerns games, the intermediary accumu-

lation is the current state of historical investigation. The history of games as

technology is then in the form of a proto-discipline, there is much raw material

and intermediary accumulation of resources, but not much effort dedicated to the

revelation of larger themes. In the domain of computer game software, especially,

there is little communication about the practice of locating and using records of

games or their development. It is our belief that a more granular discussion of

sources, the archive, and its relation to the construction of the history of com-

puter game technology will reveal common strategies and means to augment the

intermediary, and to better communication between game history and the archive.

Given that the history of computer games as technology is nascent, the inter-

mediary connections to our model’s “historian” might seem a bit premature. It

is hoped that in presenting the findings in this thesis we can begin to assemble a

discipline and define a basis for a history of technology of computer games. We

are not saying that no one is doing any history involved with computer games

as technical objects, but that there is not awareness of a standard of practice,

a set of goals, or a stable set of foundational inquiries that usually constitute

a discipline. There is not a Society for the History of Computer Game Tech-

nology (nor of Software Technology); there are only professional conferences and

outputs dedicated to active, contemporaneous practice and discussion. What is

needed is to account for the accumulation of the knowledge about the history of

computer game software in ways that address the challenges associated with its

investigation.

The historian in our model is also connected to the expression of technical

history as well. In fact, since the historian is the means of translation for the ac-

23

cumulation through exploration to expression, they are in a sense defined by and

constituted from both intermediary sets of resources and practices. A definition

of a history for — and a historian of — computer games as software will then

flow from the discussion of the means of intermediary accumulation and the con-

stitution of intermediary exploration and expression. By “constitution” we mean

the ways in which the evidence from intermediary accumulation can be expressed

uniquely and productively for computer software history. This again leads back

to potential tools, methods, or other technological interventions that help support

and reinforce each intermediary is a way that benefits scholarly practice.

The potential audience is the last piece of the model and the most speculative.

To whom is the historical expression directed and to what end? This was an issue

for the historians of technology above. They had a desire for a greater understand-

ing and appreciation for the history of technology, and they linked that desire to

an active attempt to widen the reach of the field. Explicit discussion of who the

audience was was not clarified beyond an appeal to both laymen and practitioners

alike. For the history of games, those practitioners would be the game developers,

and so that is part of the audience. The “lay” target for historical expression

is merely any destination to which the expression can contribute a better, more

nuanced understanding of the organization of game software systems, and help

to remove some of the confusion surrounding the “black box” of technology that

encapsulates game development practice.

The model we described in Figure 1.4 reflects the basic structure of this the-

sis, which is split into three sections, stabilization, exploration, and expression.

These align with the two points of intermediary intervention identified in the

model above. The first section, Stabilization, is a set of case studies in archival

practice for computer games that seek to organize the discussion of what is present

24

in the intermediary space, and what methods might be used to help make it more

accessible and interpretable to historians. Exploration, the second section deals

primarily with a detailed look at a new way to explore the history of computer

game software through explicit reference and sharing of computer games in ci-

tation, and further tools for exploration and discovery. It is less of an overview

than the first section, since it drills down into particular examples of historical

exploration, reference and information retrieval. The third section, Expression,

combines the insights from the first two sections and applies them to a theoretical

model of game historical study and its application to a case study of the material

traces of the computer game Doom. It is a look at the structure of the history of

Doom as a software object, made with an awareness of its accumulation, and the

potential for its exploration.

Both intermediary interventions also align with the archival processes out-

lined above, and each chapter, in addition to contributing to the stabilization and

exploration of the historical record, also contributes to fundamental knowledge

management practices in appraisal, description (with a nod toward storage), and

access — discovery and citation.

1.7 Stabilization

Our discussion of the accumulation and stabilization of computer games grounds

out into a set of preservation case studies into the appraisal and description of

the material traces of games. These case studies present a set of processes and

methodologies needed for the articulation of computer game software in archives,

and the ontological considerations that make them discoverable at a later point

in time. This section includes two chapters, Appraisal and Description, dealing

with issues in the intermediary accumulation of resources that form the basis of

25

the historical record of game software.

Appraisal presents a detailed account of the ingestion of the computer game

Prom Week and its development records into the University of California’s Merritt

digital repository. The appraisal strategy — the methodological process of diving

the valuable and historically salient items in a to-be archived collection — and

its procession are borrowed from similar studies aimed at preserving the records

of science and technology. We attempt to map out the full material accumula-

tion produced by Prom Week’s team over three years of development activity.

This chapter illustrates what the knowledge accumulation looks like for even a

modest game development effort. This includes discussion of how practitioners

manage and create documentation, challenges encountered in dealing with highly

varied documentary sites — like the “cloud”, web services, and development tools

— along with an oral history of the game’s production as illuminated by its ac-

cumulated records. The chapter concludes with a prototypical methodology for

the storage of game development records, and a call for more research into the

stabilization of the variegated outputs of software development.

Description focuses on efforts to standardize the cataloging and recording of

games in an institutional collection, and the challenges faced in attempting to

fit game software into records management systems designed for static, non-

executable printed media. We elaborate on the creation of a controlled vocab-

ulary for the categorization of game platforms and media formats. This schema

is intended to promote the recovery of records for practicing software histori-

ans through the concept of “reasonable compatibility” — that future researchers

will want to recover software records that accurately reflect the general class of

compatible hardware and software needed for a game to run. This invites a dis-

cussion of the material constraints of retrieving game objects, and an ontological

26

discussion of the meaning of “platform” and “media format” for future historical

researchers. The chapter concludes with a significant discussion of the contribu-

tion the vocabularies represent vis-a-vis their incorporation into both the Library

of Congress’s Source Code Listing, and the MARC21 data format for cataloging

records.

1.8 Exploration

In following with the general model describing the progression from documen-

tary creation through to historical audience, the next two chapters, Citation and

Discovery, contribute to the intermediary exploration and expression of computer

game history. The intent of these chapters is to pivot from a focus on the con-

stitution of the accumulation of records about computer games, to means for the

expression of those records. In both Citation and Discovery, we present new means

to explore the records of computer game history through their visualization, cita-

tion, and the creation of computational tools that leverage them. This ties to new

expressions in allowing for the presentation of new information in computer game

history, game studies, and software studies argumentation — as made possible by

the Citation chapter’s tools outlined below — and for new means for examining

and theorizing historical records.

Citation describes the motivations for and development of a system for the

management and creation of references to games, their performances, and their

run-time states. The system, the Game and Interactive Software Scholarship

Toolkit (GISST), began as a means to help with the standardization and organi-

zation of game citations. It evolved into a larger toolset that allows embedding

of computer game run-times into an active web browser, and therefore directly

into scholarly arguments about games. This chapter first addresses the value of

27

allowing for new types of discursive presentation in scholarly works by borrowing

concepts from discourse analysis and the history of science and technology. It then

proceeds to describe the GISST’s functionality, and how GISST’s existence points

toward a new class of software devoted to the automation and augmentation of

game historical, game studies, and software studies arguments. We also present

an expert evaluation of the tools as a means to validate it potential for enabling

new forms of expression for game historians and scholars, as well as providing

further impetus for the creation of executable software archives.

Discovery attempts a computational intervention into the information science

concept of “discovery” within institutional collections. In an inverse to the issues

of stabilization in the first two chapters, discovery is concerned with how the users

of archives locate relevant material inside of collections of accumulated records.

In this chapter we describe a suite of tools for the location of related games in

collections based on community descriptions. We organized a latent semantic

analysis (LSA) model of games as described on Wikipedia and GameFAQs, and

then expressed that model through a collection of information retrieval tools and

visualizations:

1. GameNet: A title based search engine that takes a specific game and com-

pares it to others in the model. This results in listing of the most and least

related games to the input.

2. GameSage: A free text search engine that takes an input description for a

hypothetical game, or a game that is not described, or simply where the

name cannot be remembered, and computes a new vector that it then com-

pares to known games in the search space.

3. GameSpace: A three-dimensional visualization that reduces the many di-

mensional vectors to three and plots them as stars in a galaxy of games.

28

4. GameGlobs: A two-dimensional visualization that uses k-means clustering

to organize games into a fixed number of groups.

5. GameTree: A two-dimeonsional radial visualization that uses hierarchical

agglomerative clusterings to create a full graphical “tree” of all the games

in the corpus.

The discovery tools and visualizations represent a new way for historians and

researchers to explore the historical record of computer games by leveraging am-

ateur, community sourced information. A scholar can take a game they are re-

searching and use its description as a prompt for an exploration of related titles.

In light of potential benefits for discovery, this chapter follows the presentation

of the model and its implementation with evaluations of its usage among game

scholars, student game developers, and general Internet users. The goal is to show

how the discovery tools open up new avenues of exploration for historical game

records, and how visualizations can be useful in expressing new considerations

about game history.

1.9 Expression

The final chapter of the thesis is a theoretical exploration of the ways that

the accumulation of knowledge about computer games can be expressed through

new types of historical studies. In focusing on a case study of the computer game

Doom, we present a model for computer game study based on the various layers of

documentary records that can accompany such an object. The model pulls from

the theories of Hayden White, in historiography and historical narrative, and John

Law, in the history of technology, to highlight four layers of inquiry available

for interrogation by game scholars and historians. Doom is analyzed through

29

four small studies into its historiography, compiled object, technical expressions

(source code and assets), and the enacted and tacit knowledge of its production.

This model is meant to help illustrate the various ways that the stabilization of

game development documentation and game objects can help in the revelation of

tacit knowledge and technical process highlighted earlier in this introduction in

regards to the “black boxes” of technology and calls for more technical studies in

the history of technology.

We conclude this thesis with a call for more consideration of the needs of

technical history, both in the stabilization of records from the variety of sources

described in the Appraisal and Doom chapters and through a call for more con-

sideration of the need for historical preservation of software to be embedded more

deeply in the practice of game and software studies.

30

Chapter 2

Appraisal

2.1 Compiling the Record

“Compiling the record” is drawn from Michael Mahoney’s introduction to the

second day of the second History of Programming Languages Conference. The

agenda called for a discussion of the primary material record of computing, of

archives, objects, and the stuff of history. “The record is not quite as complete

as it looks,” he maintained, with much of the information about the history of

computing, and specific in this case the history of software, “buried in corporate

records” and consisting of “needles in huge haystacks.”1 However, the compilation

of records was also a minor consideration next to the basic question of how to

use them to construct a history for software. “We have lots of answers but very

few questions, lots of stories but no history, lots of things to do but no sense of

how to do them or in what order,” Mahoney states before launching into potential

answers.2 Some of these answers form the basic impetus for this chapter, in which
1[133] Mahoney, Michael S. “Issues in the History of Computing.” In History of Programming

languages-II, 772-781. ACM, 1996. http://dl.acm.org.oca.ucsc.edu/citation.cfm?id=
1057839. pg. 772

2[133] pg. 772

31

http://dl.acm.org.oca.ucsc.edu/citation.cfm?id=1057839
http://dl.acm.org.oca.ucsc.edu/citation.cfm?id=1057839

we explore the material record of computer games in hopes of creating a basis for

their history.

Mahoney’s major concerns are for the maintenance and informed construction

of the software record. “We have to pick and choose what to keep in store and what

we set out,” in order to make collection and preservation “consciously selective.”

This conscious accumulation can then “anticipate the history [it is] supposed to

generate and, thus, create that history.”3 That the primary historical record

dictates the potential histories drawn from it is obvious, but Mahoney’s point

moves a step deeper into how that record speaks and how we need to listen. “In

deciding what to keep, it may help to understand that historians look at sources

not only for what is new and unusual but also for what is so common as to be taken

for granted . . . Because all practitioners of a subject share [similar skill], they do

not talk about it. They take it for granted.”4 The records of software development

and practice then unintentionally resist historical analysis because much of the

evidence for the “how” and “why” is hidden inside the implicit knowledge of

practitioners. To combat this resistance, we need not only to understand what

records we have available, but also the objects that they describe.

Mahoney illuminates two critical strategies for reclaiming software history.

First, historians must be able to adopt the mindset of engineers and become able

to “read the artifacts as critically as they do the records.”5 And second, more

emphasis must be placed on investigating and retrieving the context of software

artifacts creation. This context primarily includes the bases of knowledge and

training used at the time of development, as well as the environment in which

the objects and records were created. Mahoney’s recommendations to focus on

recovering artifacts, implicit processes and contexts align almost perfectly with
3[133] pg. 773
4[133] pg. 774
5[133] pg. 774

32

early concerns of science and technology archivists. Most specifically, archival

concerns over appraisal, the act of selecting and locating records. It is at this

alignment between the concerns of historians and archivists of technology that we

can introduce a further mapping to computer game records.

This chapter presents an in-depth analysis of the material traces of the game

development through a case study of the academically produced computer game

Prom Week. Below, we outline the basic archival procedure known as “appraisal”,

and argue that methodologies developed for the organization of documentary

records of science and technology can be equally suited to the concerns of the

history of computer game software. In addressing the stabilization of computer

game development records though our case study, we provide a methodological

roadmap for other such studies into other classes of game software and software

in general. Additionally, as the history of Prom Week is intimately tied to its

documentary outputs, we gain insights into its development history simply in the

description and discussion of its accumulated resources. This foreshadows fur-

ther work in this thesis on the link between the accumulation of knowledge about

the computer game Doom, and how its historical records inform on its possible

histories.6

2.2 Appraisal

Appraisal is the process of divining what parts of the archival — and therefore

permanent historical — record should be maintained for future historical study.
6A significant amount of the work in this chapter is based on “A Unified Approach to Pre-

serving Cultural Software Objects and Their Development Histories,” a guide to the appraisal of
computer game software produced for the National Endowment for the Humanities [102]. Most
of the methodological discussion of the case study of Prom Week is drawn from that document.
However, the treatment of Prom Week’s history in light of its documentation is new material
derived from unused analysis from the NEH Report.

33

An appraisal surveys the records of a particular collection of material, and —

based on assumptions about that materials future pertinence — decides what

stays and what goes. As such, appraisal is the “core of all archival endeavours” as

the starting point for the acquisition of records into a collection or archive, and as

a locus for methodologies and perspectives on what is important for humanity to

preserve.7 Appraisal defines the boundaries of the historical record, and the scope

of further archival theory about the place and position of archives in society.

Appraisal, also, as an act of selection and stabilization of historical records, has

a history fraught with challenges of privilege and absence. Privilege for the records

and voices of the powerful and popular in society, and absence for the records of

marginalized communities and obscure processes and effects.8 Selection of the

items in a historical record, echoing Mahoney, dictates the types of history avail-

able for study, and by extension the methods and expertise needed to recover and

narrativize it. This chapter’s approach to appraisal continues a dialogue, through
7[66] Duranti, Luciana. “The Concept of Appraisal and Archival Theory.” American Archivist

57, no. 2 (1994): 328-344.
8A clarification here. Much of the discussion of appraisal theory implicitly deals with the

dominant position of western, white culture in archives. That is, with implicit racism and
problems of the subjectivity of archivists. The criticism mounted against each successive phase
of appraisal theory mentioned in this section implicitly involved a concern for the records of
marginalized peoples. We interpret these phases for the records and history of science and
technology because they also happen to map to issues of digital technical documentation. How-
ever, we do not intend to equate people with documentation, nor to ignore the pressing needs
to adopt archival appraisal to serve the needs of the underrepresented, thus this note. For
more information on appraisal as it relates to records of minority experiences, see [38] Booms,
Hans. “Society and the Formation of a Documentary Heritage: Issues in the Appraisal of
Archival Sources.” Archivaria 24, no. 3 (1987): 69-107. [59] Cumming, Kate, and Anne Pi-
cot. “Reinventing Appraisal.” Archives and Manuscripts 42, no. 2 (May 4, 2014): 133-45.
doi:10.1080/01576895.2014.926824. [76] Flinn, Andrew. “Community Histories, Commu-
nity Archives: Some Opportunities and Challenges.” Journal of the Society of Archivists 28,
no. 2 (October 1, 2007): 151-76. doi:10.1080/00379810701611936. [100] Johnson, Elizabeth.
“Our Archives, Our Selves: Documentation Strategy and the Re-Appraisal of Professional Iden-
tity.” The American Archivist 71, no. 1 (2008): 190-202. Additionally, the game community
is just barely coming to terms with issues of subjective experience and inclusion. In that way,
game archiving is two steps behind, we don’t know what we have, and we can’t leverage that to
figure out what’s missing. Both case studies here are thus very much a partial (and privileged)
representation of the work of game developers and the conditions of their lives. More work is
certainly needed.

34

doi:10.1080/01576895.2014.926824
doi:10.1080/00379810701611936

games and software, about the abilities of institutions and archivists to both keep

up with the deluge of digital record creation and make sense of how it can be

useful for historical understanding. Terry Cook, in an article summarizing the

history of modern appraisal theory outlines three successive theoretical positions

for the archive:

first, the archivist as curator who did not do appraisal, but left that
to the creator; secondly, the archivist-historian indirectly appraising
based on values derived from trends in historiography; [and] thirdly,
the archivist directly appraising based on researching, analyzing, and
assessing societal functionality and all related citizen-state activities.9

The “first” archivist uncritically takes what they are given by a creator. This

gave way to a cession of archival responsibilities to the historians themselves. Their

considerations for what was important to maintain in light of historiographical

perspectives helped to provide a seemingly more solid methodological grounding

for selection criteria. The problem with that perspective was two-fold: first,

historians are only one potential use-case for archival records, so their specific

needs were not representative of the needs of other scholars and second, as revealed

spectacularly by Hayden White and others offering postmodern historiographic

critiques, the conduct of historical study is itself tied to the contemporary issues

and passions of its day.10 This is a weakness as any historiographic position cannot

cover the whole set of potential narratives, and risks explicitly excluding many

perspectives.
9[57] Cook, Terry. “‘We Are What We Keep; We Keep What We Are’: Archival Appraisal

Past, Present and Future.” Journal of the Society of Archivists 32, no. 2 (October 1, 2011):
173-89. doi:10.1080/00379816.2011.619688. pg. 182

10White’s work is already part of the impetus for the Debugging Game History volume [86]
mentioned in the introductory chapter. For more of his historiographic work, see [219] White,
Hayden V. Metahistory: The Historical Imagination in Nineteenth-Century Europe. Baltimore:
Johns Hopkins University Press, 1973. [220] White, Hayden V. Tropics of Discourse: Essays in
Cultural Criticism. Baltimore: Johns Hopkins University Press, 1978. Specifically chapters 1, 2
and 3. White’s critiques also form the basis for the Chapter 6, “A Model of Doom.”

35

doi:10.1080/00379816.2011.619688

A more recent approach is research-based appraisal of the processes and func-

tions that produce the documentary record.11 By looking into the creation and

use of records by the practitioner, creator, community or institution responsible

for them, an appraisal can try to account for what is most internally salient and

valuable to the archival record.

Another modern appraisal technique, “proactive” as opposed to “reactive” ap-

praisal is embedded in our research-based case study of Prom Week. In discussing

proactive appraisal, Nicole Convery refers to the theory of a “records continuum”

first proposed in the UK in the early 2000s.12 Traditionally, even when conducting

research appraisal, there was little theoretical interaction between records man-

agers and archivists. Records managers in institutions (or as individuals) did not

explicit organize their documentation with consideration for the needs of future

archival storage. The “continuum” removes this clean division between creation,

appraisal and archives. With the growth and complexity of digital documentation

management and web services, there is now a need to embed archival assumptions

into digital management schemes when they are created and conceived instead of

when they find their way to a collecting institution. Additionally, the process of

“finding their way to a collecting institution” is also changing in significant ways.

Digital storage is relatively cheap, and many online documents remain editable

and shareable long after they have fallen into disuse. With physical documenta-

tion, records needed to be purged to physically make room for more records, but
11Angelika Menne-Haritz ([151] Menne-Haritz, Angelika. “Appraisal or Documentation: Can

We Appraise Archives by Selecting Content?” The American Archivist 57, no. 3 (1994): 528-
542.) addresses the changing perspectives on archival appraisal, most directly in light of Hans
Booms ([38] Booms, Hans. “Society and the Formation of a Documentary Heritage: Issues in
the Appraisal of Archival Sources.” Archivaria 24, no. 3 (1987): 69-107.) call for historical
research and societal context in appraisal decisions. Previously, most appraisal conversations
only referred to the provenance — maintainance and recording of sources — for archival records
and not how the documentation being appraised might influence collection decisions.

12[56] Convery, Nicole. “From Reactive to Proactive Appraisal.” Archives and Manuscripts
42, no. 2 (May 4, 2014): 158-60. doi:10.1080/01576895.2014.911676.

36

doi:10.1080/01576895.2014.911676

digital documentation does not have similar constraints.

As a goal of this thesis is to make the history of software more open to inter-

pretation and more tangible, research-based proactive appraisal around software

technology provides a methodological entry point. We can link modern appraisal’s

interest in technology praxis with Michael Mahoney’s concern for revealing the

implicit, tacit knowledge within it. In this way — in treating games as software

technology — we can then disassemble game development documentation with

the tools of historians and archivists of technology.

Before proceeding with a discussion of appraisal sources, Cook deserves one

more note. The above quote traverses three stages of appraisal theory enroute

to a fourth focused on community engagement and outreach. “Perhaps we are

ready to share [the] appraisal function with citizens, broadly defined, where we

engage our expertise with theirs in a blend of coaching, mentoring, and partner-

ing.”13 This call for active participation with community, and a relinquishment

of the “appraisal function” is brought up as both a pragmatic and necessary next

step. Pragmatic because modern information technology produces much more

information than can possibly be stored, so perhaps appraisal perspectives within

a community could help stem the tide. And necessary for very much the same

reason, that there will be too much information for even a reasonably prepared

specialist to deal with, and that there are more communities and disciplines in

need of archival work than ever before.14

13[57] pg. 182
14For games specifically, we will return to community archives in Chapter 6 “A Model of

Doom” below, and it will be apparent that we may have more to learn from the community (as
regards the “appraisal function”) than they do from us.

37

2.2.1 Related Work

Our case study into Prom Week is prefaced on three research-based appraisals

into the records of the history of science and technology.

In the history of science and technology, efforts were made in the early 1980s

to remedy what was perceived as a lack of documentary records about the most

significant science and technology research of the 20th century. In 1983, the

Joint Committee on the Archives of Science and Technology (JCAST) published

a report, “Understanding Process as Progress: Documentation of the History of

Post-War Science and Technology the United States.”15 It provided a basis for the

appraisal of documentation resulting from scientific research process, and argues

— as we do for games — that preserving and understanding the documentation

about how a project was conducted is as historically important as the final results.

Game development, like contemporary scientific research, is an often-collaborative

process. It involves much exploratory and iterative work before one or more final

products are produced. The records resulting from its processes are also likely to

be unfamiliar to a non-specialist archivist. The JCAST report highlights three

major problems in dealing with historical scientific data and records.16 These

problems map, without much translation, to major issues in both computer soft-

ware record and development record appraisal:

1. The amount of unpublished documentation in game development is not ad-

dressed (or categorized by) current archival practice, and it cannot be esti-

mated based on experiences from other fields.

2. There is “an absence of professional consensus on guidelines for the appraisal

and description of archival records of science and technology.” This lack of
15[70] Elliott, Clark A. “Understanding Progress as Process: Documentation of the History of

Post-War Science and Technology in the United States.” Society of American Archivists, 1983.
16[70] pg. 6

38

consensus contributes to both ingest backlogs at repositories unversed in

the material and, in some cases, might lead to the needless destruction of

potentially valuable materials. Many institutions are unaware of what they

have, what can be done with it, who would want it and what it is worth.

3. Too little is known about the potential users of game documentation or

“about how adequately contemporary [archival] practices [meet] their needs.”

Essentially, game development is a unique technical phenomenon, over which

there is a lack of consensus about appraisal and description, and a lack of knowl-

edge about future historical value. The JCAST report elaborates on the need

to save scientists’ and technologists’ research journals, research data, and other

findings, in addition to pre-publication works and reports. It has little to say,

however, on the process for saving and recording software, development data, or

any other computational systems and artifacts that make up most of the record of

game development. Digital assets and systems are not well covered in the JCAST

report (most likely due to 1983 being still quite early in the digital era). As we

will see, they now make up a majority of the records in game development. Our

case study work is then a rearticulation of JCAST’s methodology for born-digital

development assets and software records.

The JCAST’s reports concern for process (and by extension the implicit craft

knowledge embedded in it) is emphatically based on the concerns of historians

of science and technology. The report is an attempted communication between

those producing historical documentation and the historical scholars interested in

its study. There is a consistent admission, throughout the document, of the need

to save these records to intervene in the loss of tacit knowledge about scientific

progress. The lack of attention paid to the technical and scientific objects of study

themselves — the experiments and their software and data — is also understand-

39

able. Although process is considered important, the idea that process can also be

recovered from, and embedded into, the actual objects of research is beyond the

scope and concern of the report. It would not be reasonable to attempt to save the

potentially monstrous and complex apparatus of scientific work (at least not in

documentary archives), and general understanding of the importance and future

potential of software data had not yet developed. That apparatus and software

are mentioned at all is kind of a testament to the forward thinking appraisal work

in the report, but it could not attempt to solve everything.

The second major influence on our initial case methodology is the Charles

Babbage Institute’s (CBI) 1989 report The High Technology Company.17 Explic-

itly focused on the development processes inside the Control Data Corporation,

the report outlines the production of the CDC 1604 computer. Using the 1604

and a collection of other company products, the report conducts a “documentary

probe” of their development processes. These specific internal processes, like re-

search and development, engineering, and public relations, are derived and then

analyzed in light of their specific documentary outputs. All documentation relat-

ing to each product was located and reviewed to gauge the extent and diversity

of the entire organization’s records through this analysis of constituent process.

This is a significant (and maybe the only) detailed research-appraisal conducted

for technology records in the wild. Our case study in Prom Week specifically,

owes a significant debt to this report, since it provided the basic notion of using

a specific research output as a way into its internal documentary processes.

Finally, Haas et al.’s Appraising the Records of Modern Science and Tech-

nology: A Guide provided insight into how to organize a research-appraisal of a
17[43] Bruemmer, Bruce, and Sheldon Hochheiser. “The High-Technology Company: A His-

torical Research and Archival Guide.” Charles Babbage Institute, Center for the History of
Information Processing, University of Minnesota, 1989.

40

working laboratory.18 The guide also provides the basic structural framing for our

case study of Prom Week, that of process, context, and document enumeration.

It also connects most emphatically to Mahoney’s basic delineation between the

processes of technological production and the contexts within which those pro-

cesses are performed. The guide spends a significant amount of time describing

the basic assumptions underpinning the conduct of natural science research at the

time, and highlights the relationships and power dynamics that come into play as

a result.

2.3 Prom Week

So what does a proactive research appraisal of computer game development

look like? And how does it relate to the interpretation of a game by historians of

technology? This case study into the game Prom Week seeks help answer these

questions, and to propose some new ones about the conduct of material histories

for software. We are heavily informed by the appraisal discussion and sources

above. This research appraisal is both a “documentary probe” in that we are

using a produced software “product” Prom Week as a target for a scrutiny of

the processes behind it, and an exploration of their resulting documentation and

context in line with the work of JCAST and Haas et al’s guide to appraising

science and technology records. This section begins with an explanation for the

choice of Prom Week, how it fits into the outlined appraisal methods, and a brief

description of our specific methodology. We then proceed to discuss the documen-

tary processes of Prom Week (the stages of the game’s development process), the

context of their creation in a research laboratory, and the extensive documentary
18[87] Haas, Joan K., Helen Willa Samuels, and Barbara Trippel Simmons. “Appraising the

Records of Modern Science and Technology: A Guide.” Massachusetts Institute of Technology
Cambridge, MA, 1985. http://www.getcited.org/pub/102582895.

41

http://www.getcited.org/pub/102582895

outputs those processes produced. We conclude with significant elaboration on

the difficulties and challenges of the research appraisal, and what implications

they have for future historical work with games and software.

Most of the documentary issues in this section relate to the born-digital pro-

duction and storage processes of modern game development. Therefore, there will

be less explicit focus on physical records. We realize that the amount of physical

records is almost certainly a function of the time-period in which development took

place, but that born-digital software development records are under-theorized and

share similar, digitally specific, constraints regardless of the time-period of their

development.

2.3.1 Choice of Prom Week

Our appraisal is based on the game Prom Week, developed by a team in the

Expressive Intelligence Studio (EIS) in the School of Engineering at the University

of California, Santa Cruz from 2010 through 2014. Prom Week is a social sim-

ulation of the relationships between a group of high school students in the week

before their senior prom. It is an academic research game that incorporates a new

artificial intelligence framework, Comme il Faut (CiF), allowing the students in

the game to remember past events and build unique and nuanced relationships.19

Prom Week was selected because it functioned as a bridge object between

the research appraisal strategies of the history of science and technology and

our target, the history of computer game software development. Prom Week, as
19For more information on Prom Week as a research contribution see [143] McCoy, Josh, Mike

Treanor, Ben Samuel, Aaron A. Reed, Michael Mateas, and Noah Wardrip-Fruin. “Prom Week:
Designing Past the Game/Story Dilemma.” Proceedings of the 8th International Conference on
Foundations of Digital Games, 2013. [144] McCoy, Joshua. “All the World’s a Stage: A Playable
Model of Social Interaction Inspired by Dramaturgical Analysis.” University of California, Santa
Cruz, 2012. and [211] Treanor, Mike. “Investigating Procedural Expression and Interpretation
in Videogames.” University of California, Santa Cruz, 2013.

42

academic research, lends itself to the processes outlined above for appraisal of

historical technology. It again, as a game, allows us to use the research appraisal

of technology as a starting point for the investigation of the appraisal of computer

software technology. Prom Week is also at the nexus of professional and academic

software. It produced numerous well regarded papers (as well as material for four

dissertations), and also received industry recognition for its accomplishments in

AI models of social interaction. This allowed us to infer that some of the method-

ologies we developed for Prom Week’s appraisal would map to other professional

software development activities by small studios.

This latter point, about industry recognition, and a further, about access,

round out our initial selection criteria. Since we were looking for a way to bring es-

tablished appraisal strategies to bear on software development, academic research

software fit the bill. It was scientific research with additional considerations for

software. Prom Week was selected because in addition to being successful re-

search, it was highly regarded, and we had direct access to it (being part of the

same laboratory). This access made it possible to fully exhaust the appraisal in

a way not possible for most commercial software. The aim was to find as many

forms of documentation as possible, and to explore as many of their concerns as

we could to display a better picture of the task of software history.

2.3.2 Process

The documentary processes of Prom Week are important because they give

us glimpse behind the enclosed outputs of scientific and software development.

Prom Week, as released to the game-playing public and written up in scientific

publications, is an object distilled, in retrospect, from the processes that led to

its creation. Release or publication present a unified and reasoned account of the

43

messy world of mistakes, dead-ends, missed opportunities and failures inherent to

the creative process. Science and technology in the making is a journey outward

from initial hypothesis and prototypes to points unknown. It is usually possible

to figure out where you are, how you got there and where you have been only

after significant iterations, retrials and refinement of intermediary results. In this

section we focus on the processes behind the stabilization of Prom Week as a

playable, scientific object, as derived from an examination of its development’s

documentary outputs.

Our efforts began by contacting the developers and asking them to provide

whatever documentation was already at hand. This resulted in a few primary

repositories of development work. Namely, their shared folders on Google Drive

and Dropbox, links to the completed game as playable on Facebook and Kon-

gregate, the contents of the various project mailing lists, and source code access

through the team’s Subversion version control repository hosted at UCSC’s School

of Engineering. After a cursory review of the documentation (mainly to locate

relevant names of contributors) a series of interviews was organized.20 These pro-

vided context for the documentation available, allowed for questions about some

trickier items to be sorted out, and provided context for how the developers orga-

nized and enacted their development process. They also pointed to further items

missed or forgotten in the initial appraisal like personal webspaces and files stored
20Interviews were conducted over the course of three months (August 2013 - October 2013)

based on the availability of the researchers. In total 14 hours of interviews where conducted
with 7 principal members of the team: advisors Noah Wardrip-Fruin and Michael Mateas,
and graduate researchers Joshua McCoy, Michael Treanor, Benjamin Samuel, Aaron Reed, and
Brandon Tearse. Oral interview process was derived from the works of Willa K. Baum including:
[26] American Association for State and Local History, and Oral History Association. Oral
History: An Interdisciplinary Anthology. Edited by David King Dunaway and Willa K. Baum.
2nd ed. American Association for State and Local History Book Series. Walnut Creek: AltaMira
Press, 1996. [31] Baum, Willa K. Oral History for the Local Historical Society. Nashville, Tenn.:
American Association for State and Local History by special arrangement with the Conference
of California Historical Societies, 1987. [30] Baum, Willa K. Transcribing and Editing Oral
History. Nashville: American Association for State and Local History, 1977.

44

offline on personal hard drives and computers.

Eventually a set of six processes took shape:21

1. Idea Formation

2. Physical Prototyping

3. Digital Prototyping

4. Iterative Development

5. Release and Dissemination

6. Revision and Continued Development

We will briefly address each of these processes in turn with a specific focus on

how they manifested for Prom Week. This inevitably includes an example history

of Prom Week’s development through the lens of its documentation. Below is

an abbreviation of the appraisal results found in the NEH report mentioned in

the Case Studies section above. For more detail on the application of appraisal

to game development documentation, and more extensive lists of the types of

resources available please consult that document.22

Idea Formation

Most academic projects owe some debt to previously completed work. The

goals of researchers are based in their previous experiences and interests. As

a result, early project documentation is a collection of previous and potentially
21The first four processes roughly align, especially the prototyping steps, with game design

methods from the textbook [78] Fullerton, Tracy, Chris Swain, and Steven Hoffman. Game
Design Workshop: Designing, Prototyping, & Playtesting Games. CRC Press, 2004. There
are many game design methodology books, and we found that Fullerton et al.’s development
stages were well aligned with the processes identified through interviews with the Prom Week
development team and their documentation.

22More specifically, [102] Pg. 6-28.

45

quite disparate threads. In the case of Prom Week, its genesis sprung from the

foundational goals of the Expressive Intelligence Studio, a computer lab at the

University of California, Santa Cruz. The lab’s co-directors Michael Mateas and

Noah Wardrip-Fruin both had backgrounds in the design and analysis of artifi-

cial intelligence systems that generated interactive story and narrative structures.

Mateas is known for the creation of Façade, a computer game that had players me-

diating a marital dispute through the use of free-text input. In collaboration with

Andrew Stern, Mateas designed ABL (A Behavior Language) and an underlying

narrative management system to support the game.23 The lab’s other director,

Noah Wardrip-Fruin, specialized in the analysis of historical narrative systems to

reveal deeper understandings of how their technical design differed from people’s

perception of their outputs.24

The environment fostered by the specializations of the lab’s founders drew

graduate students interested in games, artificial intelligence and narrative sys-

tems. One such student, Joshua McCoy, began working with Michael Mateas

on artificial intelligence for the competitive online game StarCraft before settling

into an exploration of social systems.25 McCoy’s background in sociology, in ad-

dition to computer science, lead to experiments in computational modeling of

different sociological and dramatic frameworks. Some specific work, inspired by

Erving Goffman’s dramaturgical analysis, produced the conference paper “The

Computation of the Self in Everyday Life: A Dramaturgical Approach for So-

cially Competent Agents.” This publication is the initial seed (and first piece of
23[137] Mateas, Michael, and Andrew Stern. “A Behavior Language for Story-Based Believable

Agents.” Intelligent Systems, IEEE 17, no. 4 (2002): 39-47. and [138] —. “Façcade: An
Experiment in Building a Fully-Realized Interactive Drama.” In Game Developers Conference,
Game Design Track, 2:82, 2003.

24[216] Wardrip-Fruin, Noah. Expressive Processing. Cambridge (Mass.): MIT Press, 2009.
25McCoy first encountered Mateas’ work in a graduate student orientation course. Mateas

presented work on his ABL system for Façade and piqued McCoy’s interest, he started working
with Mateas soon after.

46

documentation) for the work that would result in Prom Week.26 After completing

work on a social modeling project in summer 2009, McCoy began work on the

Comme il Faut system that would form the technical basis for Prom Week. Based

on the potential for McCoy’s system (as perceived by the lab’s founders) and the

interests of other graduate students in the lab work began on a prototype, game-

based expression for it. In fall 2009, a small team assembled eager to find a way

to leverage McCoy’s work into a playable prototype.

The start of the project initiated numerous email lists for team communication

and planning, and are the first born-digital records produced by the project team

(after McCoy’s initial publications and experiment system development). All of

the initial email lists are prefaced with “alt-prom,” a result of an early brainstorm-

ing meeting in September 2009 that settled on a prom theme for the game. These

lists are the earliest, non-interview-based evidence of the project team’s work and

thought processes.

Physical Prototyping

Physical prototyping involves the construction of physical analogs for com-

ponents of a game play system and emphasizes design failure and testing. This

form of prototyping is not part of all development strategies, especially for soft-

ware without a graphical user interface. However, since most games and user

interfaces require visual feedback it is usually possible to prototype small parts

of a larger system. Physical prototypes are usually low quality, quickly designed

demonstrations of game play systems or visual design.
26Locating the beginning of a specific research trajectory is only possible after retrospective

analysis of the citations and references found in later work. For Prom Week we are fortunate in
that McCoy started on a new research direction after completing his Master’s degree, and that
it was a clear departure from previous work (competitive gameplay to social modeling). Many
times an appraisal will not find such a clear dividing line in the documentation, which is where
further contextual information and history can then help out.

47

Physical prototyping began roughly a month after the formation of Prom

Week’s development team. The goal was to find a suitable way to merge the

work McCoy had started on social modeling in the CiF framework with an enter-

taining playable expression that explored the system’s potential. As mentioned,

early brainstorming settled on a social simulation of a high school prom. McCoy

developed a prototype digital interface for his underlying social modeling system

âĂŤ basically just a collection of numerical input fields displayed in a web browser

âĂŤ that allowed for tweaking various system values. This was paired with a set of

paper playing cards and a game mat displaying a school prom. Two players, com-

peting as either the “goth” or “emo” contingent, played cards representing various

transformations in the mental state of the prom’s DJ, Milton. The goal of the

game was to cause Milton to play specific music based on his attitudes toward one

or the other group. Gameplay proceeded by playing cards, with McCoy manually

feeding their values into the web interface, and seeing how they affected Milton’s

mood. Initial prototype play tests occurred in late November and early December.

After multiple sessions it became apparent that players were not receiving enough

external feedback — not through the representation of Milton nor the values on

the web display — about how their cards influenced the social model. The focus

then shifted to finding a way to externalize the social model’s reactions through

gameplay.

The composite physical / digital prototype is still available for analysis. Adobe

Illustrator files featuring all the game cards and play board are stored in the

Merritt repository, along with the Adobe Flash SWF representing McCoy’s social

simulation interface. However, to play the game, one would still need McCoy to

explain and demonstrate the input of values and point out any potential system

bugs. Additionally, both types of Adobe files are highly dependent on the version

48

of the software that generated them. The output from this phase of the project is

a present but unplayable prototype, and continued discussion on the mailing lists.

Once the prototype feedback pushed for an externalized model represented by a

cast of characters, an art mailing list was started to coordinate communication

between undergraduates responsible for the digital prototype’s graphical needs.

McCoy also turned his initial digital prototype work into a publication for the

Digital Arts and Culture conference in December 2009.

Digital Prototyping

Digital prototypes are smaller, less fulfilled versions of some larger, more com-

plex technical goal, but they still often involve the need for organization of software

development tools and workflows. It is at this point, with Prom Week’s digital

prototype, that the inherent complexity of technical documentation comes to the

fore.27 In documenting Prom Week’s digital prototype, our appraisal intersects

with concepts like development environments, platform specific resources, third-

party software and libraries, and version control and development management

tools.

Prom Week’s initial digital prototype was developed between December of 2009

and March 2010. This interval is the period between initial physical prototype

feedback and a demo of the digital prototype at the Game Developer’s Conference

on March 9, 2010.28 The team setup up a variety of collaborative work spaces
27The digital prototypes for Prom Week can be alternately referred to as “The Prom” or “Pro-

macolypse.” “The Prom” is the name associated with the actual demo’s Adobe air application,
TheProm-GDCdemo-9March2010.air, and was referenced numerous times in oral interviews as
an early title for the game. “Promacolypse” is the name of the containing folder for the GDC
demo in the SVN repository, altprom/trunk/GDCDemo/Promacolypse. It is also the name given
to the game by the art team in their early notes on the shared Google Drive folder.

28Prom Week appeared in [136] Michael Mateas’ “AI and Interactive Storytelling: How We
Can Help Each Other” presentation at the GDC AI Summit http://www.gdcvault.com/play/
1012421/AI-and-Interactive-Storytelling-How.

49

http://www.gdcvault.com/play/1012421/AI-and-Interactive-Storytelling-How
http://www.gdcvault.com/play/1012421/AI-and-Interactive-Storytelling-How

online, beginning with a Subversion version control repository on the UCSC School

of Engineering’s internal network and shared online folders on the Dropbox and

Google Drive web services. They also recruited a team of undergraduate artists

and additional programmers to help create artwork and animation support tools

for the game.

The prototype was an Adobe Air application, written in the ActionScript

3.0 language and employing additional Adobe Flash created animation assets.29

It featured a cast of three characters working through a basic interaction with

underlying CiF system. One of the developers, Brandon Tearse, had been re-

implementing CiF in a Java-derived functional language called Scala. Initially, it

was thought using a more robust and flexible language would help speed up the

CiF architecture. However, Tearse’s work was abandoned when it became clear

that interfacing between a Scala backend and ActionScript 3.0 frontend was not

well supported by either language. Instead of writing bridging code in addition

to the prototype, the team decided to port Tearse’s Scala implementation to

ActionScript 3.0 to align with the rest of the front-end development.

The team had less than ten weeks to deliver an initial digital prototype that

integrated the CiF engine into a playable game. Most of the developers recounted a

significant crunch toward the end of the this period, with fixes and additions being

added until the day of the demonstration. The digital prototype initiated most

of the technical documentation storage infrastructure. For the remainder of the

project, all source code, art assets, and secondary support tools and frameworks we
29Adobe ActionScript 3.0 is a programming language based on the ECMAscript standard (as

such it is akin to JavaScript). ActionScript 3.0 is a generalization of ActionScript 2.0, a scripting
language designed for use in the Adobe Flash animation application. Adobe Flash is a graphical
user interface for creating timeline based animations that Adobe expanded into a full fledge
application development framework. Adobe Air is a supplementary software tool that allows
Adobe ActionScript 3.0 applications to be compiled for native execution on Microsoft Windows
and Apple Mac OS X systems.

50

added to the Subversion repository or online collaborative folders initially created

for the prototype. Therefore, basically all development documentation resided on

cloud services or shared development servers. Additional code was added to the

Subversion repository, with additional demo art assets and tools split between

that repo and the online shared folders.

Iterative Development

Primary development on Prom Week began with the Spring quarter in late

March 2010 and continued until the game’s official release on February 14th

(Valentine’s Day) 2012. The primary development team remained stable for the

length of the development, with some members dropping out for a quarter or two

to fulfill other graduate students obligations (like qualifying exams and particu-

larly difficult coursework). Development work ebbed and flowed to two different

cyclical structures. The first was a consistent schedule of conference and pub-

lic presentations of the game at various academic and game industry functions.

Prom Week or its CiF social engine appeared in some form at GDC, FDG, and

AIIDE in, respectively, March, June and October of 2010, 2011 and 2012.30 As

most presentations of the game or its underlying technology generally included

some technical demonstration the team would inevitably have to crunch to meet

each specific presentation deadline. As the game became more feature complete

and stable, the work required for each demo subsided mildly. Especially after the
30GDC is the aforementioned Game Developer’s Conference. FDG is the Foundations of Digi-

tal Games Conference (http://www.foundationsofdigitalgames.org), and AIIDE is the Ar-
tificial Intelligence and Interactive Digital Entertainment conference (http://www.aiide.org).
See [145] McCoy, Joshua, Mike Treanor, Ben Samuel, Brandon Robert Tearse, Michael Mateas,
and Noah Wardrip-Fruin. “The Prom: An Example of Socially-Oriented Gameplay.” In AIIDE,
2010. http://www.aaai.org/ocs/index.php/AIIDE/AIIDE10/paper/download/2141/2573.
[146] McCoy, Joshua, Mike Treanor, Ben Samuel, Noah Wardrip-Fruin, and Michael Mateas.
“Comme Il Faut: A System for Authoring Playable Social Models.” In AIIDE, 2011. http:
//www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/viewFile/4080/4429. and [136].

51

http://www.foundationsofdigitalgames.org
http://www.aiide.org
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE10/paper/download/2141/2573
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/viewFile/4080/4429
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/viewFile/4080/4429

release of the game.

The second cycle was that of SCRUM, an iterative development technique in

which each member of the development team decided on a short course of action

(traditionally a week or two), attempted to complete it, and then reported back

to the group for feedback and potential redirection. Goals were chosen from a

SCRUM board of post-it notes describing tasks in need of completion. The devel-

opment team did not follow this process religiously, but there was consistent effort

to maintain a loose and flexible shared network of development responsibilities.

Following the March 2010 GDC demo, the team decided to reframe Prom

Week as a series of interactive social puzzles. Each scenario provided a mix of

high school characters with pre-existing relationships that would be altered by

the player’s actions. The basic structure usually focused on a series of interac-

tions in the week before Prom, and each new scenario would reset the clock to

focus on a different character or social group. Goals including getting characters

to fall in love and go to prom, give bullies a comeuppance and create or destroy

friendships. In order to deal with the complexity of narrative interaction, signifi-

cant work was put into a developing a support tool to author character dialogue.

Additionally, three graduate student writers were brought on board in September

of 2010, with one, Aaron Reed, remaining for the duration of the project. As the

writing demands increased, the team recruited undergraduates to write additional

dialogue. Developer Ben Samuel managed this team from April to September of

2011.

As members joined and left development, each added additional documenta-

tion to the various shared resources. Many created folders for their specific work

or function, or forked and branched the source code repository to add new fea-

tures or try out some experimental design. The main development team, lead

52

by Josh McCoy, continually enhanced the game and its engine over the course of

development. Predicate logic and weighted relationship rules appeared during the

initial digital prototype, followed by micro-theories of interaction in summer of

2010. That fall the Social Facts Database (SFDB), the shared knowledge base for

the game’s characters, gained the ability to note the timing and order of various

in-game events. McCoy’s last major addition, in April of 2011, added modal logic

support to the predicates. Essentially instead of just noting that “X loved Y,” a

modal addendum would qualify the extremity of that statement — X could now

love Y a lot or a little.31

This phase of the project accounts for a majority of its documentation. More

people and time contributed to development in this period, so the record reflects

that effort. Most of the development documentation was stored in the shared

Dropbox folder and in the SVN repository. The Google Drive account only held 46

documents by its last recorded use on December 14th, 2013, whereas the Dropbox

and SVN each contained thousand of files.

Release and Dissemination

A computer game release represents the demarcation between the internal

development process and the external experience of the game by a more general

audience. Though no hard and fast rules apply, the release of a piece of closed-

source software is usually the only historical object generally available (and thus

considered by popular game histories). The objects of game history are released

games. Meaning that, without the access we were provided Prom Week’s historical

description and entry into history would start here.32

31This is obviously a gross simplification of the actual CiF modal predicate logic, but our
appraisal did not seek to comprehend the game’s technical systems, only to point to the docu-
mentation necessary for that comprehension.

32Prom Week is also the subject of numerous academic publications over this time period,
including a post-release publication in 2013 outlining the history of its various prototypes [143].

53

The team released Prom Week on February 14th, 2012 as a standalone Shock-

wave Flash file (.swf) uploaded to both Facebook and Kongregate.com.33 Al-

though the file was modified a few times in the next year (see below), this up-

loaded object is the primary result of the team’s two years of development effort.

It is also a culmination of Josh McCoy’s initial social modeling work in late 2008

and early 2009.34 The .swf is a compilation of ActionScript 3.0 source code (rela-

tionship rule set, social facts database) and the game’s creative assets (narrative

text, art and music). In this development environment, everything needed to run

the game is included in the executable file. This is actually a bit exceptional, and

reflects the specific nature of Adobe Flash’s platform at the time. Most Flash

applications were intended for web browser delivery, and thus did not have the

luxury of a local file system. Additionally, for security reasons, an application

loaded on an external portal, like Facebook or Kongregate, would not be allowed

to access resources elsewhere on the Internet.35 As such, the .swf format reflected

the needs of self-sufficient web disseminated interactive object.

Prom Week’s release also entailed a significant push by UCSC in general,

and the EIS lab in particular to publicize the release. This included entering

the game into various independent games competitions, courting online game

reviewers to take a look, releasing press releases, and publicly presenting the

game at academic and industry events. Both the Independent Games Festival

For most non-academic games, no such level of introspection or publication is usually conducted.
33As of this writing, the Facebook version is only playable by those with Facebook login

credentials. The Kongregate version is still playable here (http://www.kongregate.com/games/
promweekplaya/prom-week) (Accessed 8/31/2016), however certain game features, like full-
screen viewing, are now behind a Kongregate login (which coincidentally can also be a Facebook
login).

34The other, presumably, being his dissertation based on this work [144] and its resulting
doctorate.

35This type of vulnerability is known as a cross-site scripting (XSS) attack. If not prevented,
a SWF downloaded from one location could potentially load malicious code and resources from
another without the knowledge of the player.

54

http://www.kongregate.com/games/promweekplaya/prom-week
http://www.kongregate.com/games/promweekplaya/prom-week

(IGF) and IndieCade Festival nominated Prom Week for its technical design and

narrative components respectively. Since these festivals represent the major venues

for independent game design work, additional development work was conducted to

help improve nomination chances. A special IGF submission build was developed

alongside the release candidate in September and October of 2011. The IndieCade

nomination in June of 2012 (well after the February general release) prompted a

full redesign of the game’s user interface. There had been numerous usability

and visual improvements that the team had wanted to make. The IndieCade

nomination allowed for more resources to be diverted to address them and for a

UI consultant to be hired to help spruce things up. The version of Prom Week

now available on Kongregate is the result of the IndieCade redesign. Prom Week’s

originally released version of February 2012 is only possibly recoverable through

previous revisions in the SVN repository.

Revision and Continued Development

The last phase of the Prom Week’s development is its slow imbrication into

the future work of the EIS lab. After release, work continued on the game (as

mentioned above) but it also formed the basis for new research directions and

publications. Josh McCoy mined Prom Week’s online play traces (the game re-

ported user statistics back to a development server) to analyze if the game’s CiF

engine really did provide players with unique and challenging narrative experi-

ences.36 The research data streamed from the live Prom Week application is one

of the major data sources not collected for our appraisal. This is due to a lack

of infrastructure and resources to set up a continual backup of the streamed data

(which is still being collected) past the end of our research appraisal work.
36[143] McCoy, Josh, Mike Treanor, Ben Samuel, Aaron A. Reed, Michael Mateas, and Noah

Wardrip-Fruin. “Prom Week: Designing Past the Game/Story Dilemma.” Proceedings of the
8th International Conference on Foundations of Digital Games, 2013.

55

In an inversion to idea formation, Prom Week is now an inspiration for other

projects in the lab. Team members worked on ways to improve narrative author-

ing for CiF after it was found to be a major development time sink. They also

ported CiF from ActionScript 3.0 to JavaScript for use in web-games and applica-

tions. Members of the EIS lab in general also took aspects of Prom Week in new

directions. James Ryan, a natural language processing researcher, worked with

undergraduates to annotate the play traces recorded from the live game. They

used those annotations to develop a second narrative system that could gener-

ate new dialogue exchanges without the need of a human author. That work

then inspired development of other narrative-focused research games, including

Bad News, which won a CHI student game design award in May 2016 and an

IndieCade Audience Choice award in October 2016.

It is at the end of a project, when its outputs fertilize the ground of new

research, that documentation again confronts boundary and retention issues. The

boundary is in deciding where the documentation for Prom Week ends. As a

research object and a code base, modifications and advancements continue to this

day (late 2016). Our appraisal’s documentation and time-bounds are necessarily

a bit arbitrary. We grabbed snapshots of the code base at the end of our primary

research in August 2014 (even though some now abandoned work on an Apple iOS

version of Prom Week was in process). If new documentation was being created,

but we did not already have access to the sites of its generation, then those sites

were now outside of our appraisal.

Retention, the process of establishing a means and method for the contin-

ual storage of documentation, immediately becomes an issue once a project is

complete. Prom Week’s researchers moved onto future research work (or left the

university after completing their degrees) without any plan to save the documen-

56

tation of their work. The source code for the project, stored on the UCSC SVN

repository server, actually moved quite soon after the release of the IndieCade

version of the game. If Ben Samuel had not been actively working on the aborted

Apple iOS port at the time, we would have had to locate and reconnect the SVN

server ourselves. For other projects, without an active archival intervention in

progress, the code would simply have been lost. All of Prom Week’s cloud based

documentation is still available, though it has not been updated since late 2013.37

Its continued existence is based on the whims of the Google and Dropbox services

and their longevity. All physical products of the research, including the early

prototypes and some public relations material, were saved in the appraisal. All

PR material not explicitly collected is no longer locatable, having been cleaned

out of the lab at some point in the last three years.

This concludes our documentary timeline of Prom Week. The next two sec-

tions, Context and Enumeration, will elaborate more on the work constraints

faced by the team, their interactions with one another and the research hierarchy,

and the exact types of documentation produced inside the sites alluded to above.

2.3.3 Context

All software is created in a unique social and organizational context. As the

history of Prom Week’s process shows, the work of academic game development

does not occur in a vacuum. The norms of the computer science community,

the development team’s goals and personalities, and the realities of institutional

hierarchy and funding all contribute to constrain and influence research and de-

velopment. Knowing how research context relates to the development process
37Occasionally one of the developers goes back in and changes or alters some document.

Therefore the most recent activity is from 2015, but it does not appear to be directly related to
Prom Week’s research.

57

is important for understanding the contents of development records. For Prom

Week, much of the documentation and its production constraints are the direct

result of institutional processes and social dynamics. In this section we look at the

organizations involved in the creation of Prom Week, from the academic lab that

birthed it to the individual groups responsible for its design and development.38

The Expressive Intelligence Studio

The laboratory is a structure inside the modern research university devoted to

a specialized scientific or technical tradition. It does not have to focus exclusively

on one area of study and can be quite multidisciplinary, however the core values

and intellectual valences of its inquiries are always somehow related. Individual re-

search labs exist in a hierarchy and are affiliated above with academic departments

and schools and below with specific researchers and students. Administrative de-

cisions and the interests of lab members merge to dictate the course of research.

The lab may also be part of a larger, non-departmental organization of multiple

different departments and labs across a campus or multiple institutions.

The Expressive Intelligence Studio (EIS), the lab responsible for Prom Week’s

development, is a part of the Center for Games and Playable Media at UC Santa

Cruz. It is also affiliated with the Computational Media and Computer Science

Departments in the Jack Baskin School of Engineering, and the Digital Arts and

New Media Program (DANM).39 The lab’s initial focus was on expressive artifi-

cial intelligence systems and interactive narrative techniques for computer games.
38As noted in the Process section, the contextualization work below is essentially a Prom Week

focused summary of the NEH report’s generalization. Please consult [102] pg. 29-35 for more
detailed information.

39The EIS lab originally resided in the Computer Science Department, but its directors
founded a new Computational Media Department in 2015. The lab’s co-director Noah Wardrip-
Fruin is also a member of the Digital Arts and New Media faculty. The lab includes students
from all three programs as a result of grandfathering (in the case of Computer Science) and
drastic interdisciplinarity.

58

Over time it evolved to include digital humanities, general game studies and in-

terdisciplinary art practice.

Projects in the lab evolve from the research of the co-directors in conjunction

with the backgrounds and interests of their students. For Prom Week, as discussed

in the Idea Formation section, Josh McCoy’s interests in sociological analysis

merged with Michael Mateas’ expressive artificial intelligence system from Facade.

Prom Week is a bit unique in that it was pursued mostly as a side project. Usually,

lab research is a combination of motivation and funding. Research grants dictate

the scope and direction of study, and as a result must also comport with the

goals of larger funding agencies. Most of the graduate students on the Prom Week

project pursued it on the side. This means that they also had teaching duties,

other funded research work, and class schedules competing with the completion of

the game. The only explicit funding came from Michael Mateas’ NSF CAREER

and student Ben Samuel’s NSF GRFP grants. Both of these are provided for

general research interest and were not specifically awarded for Prom Week.40 In

fact, many on the team admitted that getting funding for Prom Week, an AI

social simulation game featuring high school politics, would have been a hard sell

to most science and engineering grant programs.41

Work on Prom Week was dependent on the availability and time of graduate

students and faculty already busy with other commitments. This is reflected in

the documentary production for the project, as members of the core development

drop out of the record for significant intervals based on the dominant whims of
40NSF CAREER grants are awarded to beginning faculty to help bolster their initial research

program and are not directed to any specific research (this allows for initial flexibility). NSF
Graduate Research Fellowship Program (GRFP) grants are awarded to promising new graduate
students for their general research.

41On a further ironic note, Tom Coburn (then a Republican senator from Oklahoma) included
Prom Week on his annual government waste list. The next application of Prom Week’s under-
lying CiF architecture was a DARPA-funded troop training program aimed at helping soldiers
integrate with and befriend local populations.

59

their degree program and funding schedules. For example, Josh McCoy left the

project for the Fall quarter of 2011 to advance to PhD candidacy. He passed

the project management mantle to Mike Treanor who had to finish steering the

project to an October 2011 IGF submission and a February 2012 launch. In the

positive direction, Michael Mateas’ CAREER grant allowed for the summer hire

of Mike Treanor in 2010 to help with some foundational programming. Likewise,

Ben Samuel’s GRFP allowed him to manage an undergraduate writing team in

mid-2011 that helped implement significant narrative content for the game.

Social Groups

A laboratory’s document production is embedded in the hierarchical relation-

ships of its members. In the EIS lab, two co-directors manage an ever-changing

cohort of around 20 graduate students. These students in turn may recruit un-

dergraduates to help with minor tasks associated with development and research.

In Prom Week’s development, the lab directors initiated the development process

by deciding to pursue a game based on Josh McCoy’s work in addressing an open

research question identified by work on Michael Mateas’ Facade system. The di-

rectors contributed to initial brainstorming sessions, commented on prototypes,

and helped with drafts of development resultant research articles. However, a

majority of the technical design, implementation and testing fell to the graduate

researchers âĂŤ they and the undergraduates produced all of the artwork and

code associated with the project. Grad researchers also managed all the sites of

documentary production. This includes all cloud storage, version control, and

mailing lists.

On Prom Week the undergraduate team contributed considerable amounts

of the content including art assets, sound design and written dialogue. In line

60

with the discussion above, the undergraduate researchers did not implement Prom

Week’s major research contributions. They did, however, design tools the develop-

ment team used to insert social scenario content and dialogue into the game. This

included the dialogue authoring Design Tool and the skeletal animation system

for the game’s characters (developed quite early for the original digital proto-

type). Undergraduate involvement was sporadic, with many moving onto other

engagements and graduating before the completion of the project.

External Influences

In many cases, the influence of outside forces is instrumental in directing lab

goals, policies and funding. As mentioned above, the outputs from Prom Week’s

development, in addition to those associated with its development as a game, were

attached to research schedules dictated by conference publications and presenta-

tions. Key presentations and demos indexed the activities of the research team,

and framed their communication with research and industry peers, the gaming

press, and the player community.

For academia, Prom Week needed to communicate and engage with trends

in artificial intelligence and game studies. For industry, it needed to present a

new approach to advanced artificial intelligence systems that could be clearly

leveraged into new game products. Members of both peer groups met with the

team and commented on its development. During the initial physical prototype, a

couple professional game designers and artificial intelligence academics played and

commented on the system.42 Symmetrically toward the completion of the project

another round of external play tests took place. The team held eight playtests

with game industry professionals and academics in the fall preceding release.43

42Henry Lowood, Curator of History of Science and Technology Collections, Stanford, and AI
programmer Richard Evans both looked at paper prototypes of the game.

43The playtesters were: Richard Lemarchand (Naughty Dog), Borut Pfeifer (Haunted Temple

61

They wanted to improve the IGF submission and final release builds of the game.

Prom Week’s press attention ramped up significantly after its nomination for

IGF and IndieCade awards. Officially released in February 2012, the industry

nominations came in January (IGF) and June of that year. Numerous gaming

sites covered and reviewed the game. The IndieCade nomination included a place

at that conference’s E3 expo both, leading to another round of game play reviews

by industry press. Press response to the game generally praised its AI and social

simulation features. Some critiques of the UI prompted development work over

that summer to improve the game’s showing at IndieCade in the fall.

Lastly, feedback from the player community, including commentary on Kon-

gregate, led to various tweaks and improvements. Most of those were related to

stability issues encountered by a small amount of the 65,000 or so people who

played the game after release. Player exploration also fed the backend data log-

ging used for further publication and research. Without a significant number of

players, continued Prom Week research outputs would not have materialized. In

this case, making a good game was also good research practice.

2.3.4 Documentary Enumeration

This section outlines the total extent of the documentary record for Prom

Week, and is to our knowledge the first full attempt at an enumeration of the

material records (digital and physical) for a software development project.44 The

Studios), Ozlem Kalini (Sony), Nic Duchenaut (PARC), Alex Neuse and Mike Roush (Gaijin
Games), Mirjam Eladhari (Gotland University), Clint Hocking (LucasArts) and Arash Kesh-
mirian and Serban Porumbescu (LIMBIC Software).

44However, work into the enumeration of game documentary outputs has been framed and
described before. [227] Winget, Megan A., and Caitlin Murray. “Collecting and Preserving
Videogames and Their Related Materials: A Review of Current Practice, Game-Related Archives
and Research Projects.” Proceedings of the American Society for Information Science and Tech-
nology 45, no. 1 (January 1, 2008): 1-9. doi:10.1002/meet.2008.1450450250. [228] Winget,
Megan A., and Wiliam Walker Sampson. “Game Development Documentation and Institutional
Collection Development Policy.” In Proceedings of the 11th Annual International ACM/IEEE

62

doi:10.1002/meet.2008.1450450250

larger report includes a significant overview of the material classes for the docu-

mentation, and is a bit too general for our discussion in this section.45 Instead, we

focus specifically on the documentation for Prom Week, where it was stored, and

what problems it revealed in the archival appraisal (and retention) of its game

development records.

Prom Week Organization

The finalized output of the Prom Week project exists on Facebook and Kongre-

gate.com. The complete project documentation, as a diffuse set of research and

development code, art, and public relations material, is housed in five primary

locations:

1. The University of California, Santa Cruz Subversion version control server

at: https://svn.soe.ucsc.edu/svn/altprom

2. Shared folders on the Google Drive and Dropbox cloud storage applications

3. Correspondence (email listserves)

4. Team members files on their personal computers or websites

5. External third party websites describing, reviewing or hosting the game

Prom Week’s version control repository holds the code and assets necessary

to compile the final release version of the game as well as most of its earlier ver-

sions and demos. Cloud storage hosted additional files related to research demos,

publications, and individual developer folders for most of the undergraduates and

Joint Conference on Digital Libraries, 29-38. JCDL ’11. New York, NY, USA: ACM, 2011.
doi:10.1145/1998076.1998083.

45See [102] Pg. 38-59 for a more general discussion.

63

https://svn.soe.ucsc.edu/svn/altprom
doi:10.1145/1998076.1998083

graduate students on the team. Both version control and cloud storage loca-

tions contain a lot of unused or preliminary documentation, including abandoned

features, versions of the game, and half completed supplementary tools. While

the version control repository has some basic organizational strategy — its folder

organization is roughly in line with ActionScript 3.0 and Flex 4.0 application de-

velopment — the cloud services offer no such guidance.46 Every team member

had access to cloud storage folders. There is no consistent scheme for directory

names, each usually just references a specific task, like a conference publication

(“AIIDE 2010”), or a specific contributor (“Ben’s Stuff”). Many of the files in

both locations are a mystery to members of the development team. Some were

created by people only temporarily assigned to the project, while others, due to

the length of development, were simply forgotten. In one particularly illuminating

example, a developer forgot the programming language they used to contribute

to the project.

The Prom Week team used Dropbox and Google Drive for cloud storage ser-

vices. The Dropbox folder contains a majority of the cloud-hosted documentation,

with around 2GB of data and over 4000 files. By contrast, the Google Drive only

holds 40 or so files and did not see as much use over the project’s development

interval.

Prom Week’s official correspondence occurred on 7 separate internal mailing

lists hosted on UCSC servers. Lists formed around specific team activities:

• Altprom-artgroup

– All work on in-game art, sound and other creative content

• Altprom-authors
46Adobe Flex is a UI framework for Adobe Flash applications. Flex project have a routinized

structure for the organization of their source code and binary compilation outputs.

64

– All authors writing Prom Week in-game conversation text

• Altprom-closers

– List devoted to a smaller group of developers focused on finishing the

project after undergraduates left the project

• Altprom-commits

– Emails sent by source control server describing recent code changes

• Altprom-general

– List for everyone involved in the project, provided general announce-

ments and information

• Altprom-group

– Probably a smaller sub group of core developers (development team

could not remember what this list was for)

• Altprom-tigers

– Initial Prom Week email list, consisted of core development team only

All email lists are prefaced with “altprom” as this was the original name for the

project based on early development meetings. The emails did account for everyone

involved in development, and even helped the core team members remember when

certain people joined and left the development team. Due to the length of the

project some of the reasons for starting separate email lists are forgotten. Smaller

ones were created for specific, short-term purposes and then changed focus or were

abandoned. The personal development files consisted of preliminary work done

by Josh McCoy on early CiF prototypes, the original digital component to the

65

physical prototype, and development blog posts made by Ben Samuel. External

web sources included game review websites, and the promotional documentation

for both the IndieCade and IGF submissions.

Documentation Problems

The work above outlines types of documentation, shows how they were orga-

nized, and provides historical context for their creation. This section deals with

the problems encountered in trying to figure all that out. Prom Week’s born-

digital documentation resisted appraisal (and archiving) in a couple key ways that

have implications for the historical study of game and general software. Broadly,

there are significant issues with access, identification, and migration of digital

files that will need more extensive methodology and consideration. These issues

are also an impetus for our proactive approach to appraisal, for only in trying

to sort out documentation before it comes to the archive can we anticipate and

prepare for the difficulties associated with it. None of the issues described in this

section are specific to Prom Week’s documentation, and will certainly manifest in

most other software development projects — probably with even more challenges

depending on the scale of the project.

Access Access to documentation is key to its eventual survival. While this may

seem an obvious point, what is not obvious is the new difficulties in securing

access to born-digital project documentation. Gaining access means acquiring

login credentials to each documentary source, and using software specific to each

for file viewing and retrieval. Prom Week’s main documentation was housed on a

university controlled version control server, and two cloud storage services, Google

Drive and Dropbox.

Both the version control server, Subversion, and Dropbox allow for easy down-

66

load to a local machine running either the “svn” command-line client or the Drop-

box desktop application. The “svn” tool for Subversion allowed for the check out

of the current source code revision or for a full dump of the entire project ver-

sion history. Dropbox’s application synced the cloud project folder to a local one,

copying over the entirety of the development documentation without much ef-

fort. For Google Drive, the situation was more difficult since there was no native

sync available during our project (it was added afterward). Additionally, Google

Drive’s native documents do not have a file type since they exist only exist as

logical organizations of data expressed through a web interface. We will return to

this point in Migration below.

Identification File identification and dependencies are a significant issue for

the retrieval and comprehension of historical data sources. In “Ensuring the

Longevity of Digital Information,” Jeff Rothenberg first addressed the mutability

and fragility of digital data by stating that “old bit streams never die — they

just become unreadable.”47 He recounted a hypothetical story of his to-be distant

ancestors happening upon their family heritage on a compact disc. Accompany-

ing it was a physical letter describing the encoding of the disc’s data, a necessary

physical support for its digital nature. If you have a collection of bits and no

context or specification for their internal organization, it is little better than hav-

ing a bunch of random ones. Even when you know what the data is and what

it’s supposed to articulate, retrieving that articulation can be difficult without

the initial software that created it. Prom Week’s files take on a significant range

of types, and implicate a constellation of other programs intimately tied to the

files’ expression and future historical comprehension. They also highlight issues of
47[185] Rothenberg, Jeff. “Ensuring the Longevity of Digital Information.” Int’l. J. Legal

Info. 26 (1998): 1. pg. 2

67

versioning and obscurity that result from the large, highly varied document types

that accompany software development work on game projects.

In Table 2.1 below we have organized all 60 file types found in Prom Week’s

documentation. We have included the 30 or so dependent programs one would

need to interpret them all.

Table 2.1: Prom Week File Formats and Dependent Programs

File Extension File Description Dependent Program Plain

Text?

.7z 7-Zip Archive 7-Zip N

.ai Adobe Illustrator project Adobe Illustrator N

.as ActionScript 3.0 source Any ActionScript compati-

ble integrated development

environment, any text edi-

tor

Y

.asproj Flash Develop ActionScript

3.0 project

Flash Develop Y

.au Audacity block Audacity audio software N

.aup Audacity project – N

.aup.bak Audacity project backup – N

.avi Audio Video Interleave Any video player or video

editing software

N

.bak General backup Dependent on backup type ?

.bat Microsoft Windows batch

process script

Microsoft Windows operat-

ing system

Y

.camproj Camtasia Studio project Camtasia Studio 7.0 Y

Continued on next page

68

Continued from previous page

File Extension File Description Dependent Program Plain

Text?

.camrec Camtasia Studio recording Camtasia Studio 7.0 N

.css Cascading style sheet Any web browser, text edi-

tor

Y

.csv Comma separated values Any spreadsheet, text edi-

tor

Y

.dll Microsoft Windows

Dynamic-link Library

Microsoft Windows Operat-

ing System

N

.doc Microsoft Word document Microsoft Word (pre 2007) Y

.docx Microsoft Word document,

object oriented XML

Microsoft Word (2007 or

later)

Y

.dropbox Dropbox configuration Dropbox Y

.fla Adobe Flash project Adobe Flash N

.fxp Adobe Flash Builder Flex

project file

Adobe Flash Builder Y

.gif Graphics Interchange For-

mat

Any image software N

.html Hypertext Markup Lan-

guage file (XHTHML,

HTML 4.01, 5.0

Any web browser, text edi-

tor

Y

.java Java source Any text editor Y

.jpeg Joint Expert Group image

file

Any image software N

Continued on next page

69

Continued from previous page

File Extension File Description Dependent Program Plain

Text?

.jpg Same as .jpeg – –

.js JavaScript source file Any web browser, text edi-

tor

Y

.lel Windows log in screen edi-

tor

Deviant Art community ap-

plication (no longer avail-

able)

N

.m4v Apple Video container Any video player N

.mov Quicktime Video Quicktime N

.mp3 MPEG-1 or MPEG-2 Audio

Layer III digital audio

Any music player N

.mp4 MPEG-4 Part 14 multime-

dia format

Any video player N

.mxml Adobe Flex meta XML Adobe Flash Builder, any

text editor

Y

.odt OpenDocument text OpenOffice Writer Y

.odp OpenDocument presenta-

tion

OpenOffice Impress N

.old Backup Dependent on backup type ?

.pages Apple Pages document Apple Pages Y

.pbm Portable bitmap Netpbm N

.pdf Portable Document Format Any PDF viewer N

.php PHP source Any text editor Y

Continued on next page

70

Continued from previous page

File Extension File Description Dependent Program Plain

Text?

.png Portable Network Graphics Any image software N

.potx Microsoft Powerpoint tem-

plate

Microsoft Powerpoint (2007

or later)

N

.ppt Microsoft Powerpoint pre-

sentation

Microsoft Powerpoint (pre-

2007)

N

.pptx Microsoft Powerpoint pre-

sentation, object oriented

XML

Microsoft Powerpoint (2007

or later)

N

.psd Adobe Photoshop project Adobe Photoshop N

.pyd Microsoft Windows Python

Dynamic-link library

Microsoft Windows operat-

ing system

N

.rtf Rich Text Format Any text editor Y

.sql Structure Query Language

source

Any text editor Y

.svg Scalable Vector Graphics Any image software Y

.swc Compiled Shockwave Flash

file

Adobe Flash / Flash

Builder

N

.swf Shockwave Flash file Adobe Flash / Flash web

browser plugin

N

.txt Standard ASCII text Any text editor Y

.vpk VUE package file Tufts Visual Understanding

Environment

N

Continued on next page

71

Continued from previous page

File Extension File Description Dependent Program Plain

Text?

.vue VUE concept map Tufts Visual Understanding

Environment

N

.wav Waveform audio file Any audio player N

.xcf GIMP project file GNU Image Manipulation

Program

N

.xlsx Microsoft Excel spread-

sheet, object oriented

XML

Microsoft Excel (2007 or

later)

Y

.xml eXtensible Markup Lan-

guage

Any text editor Y

.xmpses Adobe Premiere Elements

DVD Marker

Adobe Premiere N

.zip Zip file archive Any extraction program N

No extension File folder / directory Dependent on operating

system

?

In many cases, loading a file into a text or hex editor provided enough header

information to determine the file type.48 That is, if the file conformed to a particu-

lar standard and was not one specific to Prom Week’s development team. Luckily,

this did not turn out to be the case. Regardless of the correct identification of a

file it was sometimes difficult to determine which version of a program created it.
48A “hex-editor” is a simple program that presents the organization of a computer file as its

literal sequence of bytes. These programs allow for the analysis of signatures at the beginning
of files in which a specific sequence of byte values can act as an identifying preface for the file’s
type and contents.

72

The Adobe Creative Suite programs are now certainly out of date. This would

cause a more recent version of the software to convert the old format into a new

one (and thus risk the lost loss of specific file structure information that may no

longer be used). There are some archival software tools designed to deal with this

problem, but most of them are focused on the narrow confines of archival image

or static document collections. As such, they can tell you a lot about specific

types of PDFs or image formats, but not as much about production files like the

aforementioned Adobe Creative Suite items.49

Other files types were just obscure. Two examples in Table 2.1 are .vue and .lel

files. Without our research focus allowing time to do a thorough investigation it

would probably not be feasible to identify each file type. The .vue file is a Visual

Understanding Environment file for a Tufts University mind-mapping program,

however this was far from immediately apparent. All common information online

pointed to a .vue file being one full of 3D geometry, which made no sense in the

context of Prom Week, a 2D game. After examining the header of a .vpk file

(another mysterious entity) we determined that the .vpk was an archive file of

.vue files. The header also mentioned Tufts University. This lead to a search for

“Tufts” along with “.vue” and “.vpk” that resolved to the website of the originating

program.

The .lel file was so obscure that we only have a guess that it is associated

with a Windows 7 start up screen modification program. The online community

DeviantArt provides user created programs to modify operating system themes

and aesthetics. A program that modified Windows 7 log-in screens appears to

have accepted .lel files. This is not verifiable since the program has long since
49Identification programs include: DROID (http://digital-preservation.github.io/

droid/), JHOVE (http://jhove.sourceforge. net/) and JHOVE2 (https://bitbucket.
org/jhove2/main/wiki/Home). Bit Curator from University of Maryland might be more useful
but was released after our investigation concluded (http://www.bitcurator.net).

73

http://digital-preservation.github.io/droid/
http://digital-preservation.github.io/droid/
http://jhove.sourceforge
https://bitbucket.org/jhove2/main/wiki/Home
https://bitbucket.org/jhove2/main/wiki/Home
http://www.bitcurator.net

been removed from the site. Our information comes from a collection of links

posted to files that are no longer hosted.

Migration Migration of digital data from older to newer formats, and from

older storage to newer storage is the principle concern of digital preservation ef-

forts. Data is never fixed in a single location for very long. Eventually the media

on which it is stored will fail and the data carried on to a new, still temporary

location. Migration sometimes implies a change of form, a way to fit the old data

into a newer structure without totally destroying the data’s meaning and interop-

erability. Prom Week’s data sources — outlined in the Prom Week Organization

section above — presented two types of migration challenges. First is the need

to agnostically copy files from one location to another without disturbing them.

“Disturbing” in this sense would be to accidentally insert new files (usually in the

form of operating system indexing files) into old directories or to change the mod-

ification and creation date of the files. Second is how to extract data from services

and sites for which you cannot gain full file access. In light of these challenges,

we briefly address their relevance to each data source for Prom Week.

Dropbox Dropbox synchronizes its cloud-based files to a user’s local ma-

chine and then forwards all user changes back to the cloud. It then propagates

those changes to anyone else synced to those files and pushes the changes to their

local machines. Initially, Dropbox did not preserve file creation dates when copy-

ing cloud-files to a user’s local directory. When we gained access to Prom Week’s

Dropbox information, we initially thought we could directly copy our local Drop-

box files and thus easily migrate them off the service. However, since the times

and dates of creation and last modification were not correct, we had to resort to

Dropbox’s browser interface to retrieve the items. This was significantly slower

74

and a bit inconvenient.50 In looking into Dropbox migration, we also discovered

that Dropbox’s application programming interface (API) includes access to meta-

data and file description information (like the last known user to edit a file) that

were not present in the local copy on our machine. Collecting and organizing this

additional metadata was out of scope since we didn’t have resources to finish the

appraisal and develop scripts to scrape and link the file metadata. Also, if the

data was retrieved, there was solution for where to leave it and how to describe

it for the future.

Google Drive As mentioned, Google Drive’s documents, be they spread-

sheets or word processing files, do not exist apart from their representation through

their respective Google App. They have no fixed logical form. When downloading

a document from the service, the file represented in the web browser is converted

into a potential variety of formats based on a user’s request. Therefore, migra-

tion of the “original” file is not supported by the service because — technically

— there is no stable, bounded file available as there would be from a local file

system. Additionally, Google provides an API for accessing data on the service

and, like Dropbox, that API provides metadata that is not available anywhere

else.

As a quick example, most of the Prom Week documentation on Google Drive

consists of text-based planning documents. They can be downloaded in one of

six formats: Portable Document Format (.pdf), plain text (.txt), Rich Text For-

mat (.rtf), Microsoft Office (.docx), OpenOffice (.odt) or web page (zipped .html

archive). When exporting, all revision history and file modification information is

stripped since — from the perspective of the local file system — each downloaded
50Dropbox has since changed their service, so the file modification and creation information

is now accurate for locally stored files.

75

file has just been created.

Google Drive documents also record extensive revision histories. One can link

specific edits to specific users, and see how a document took shape over time. Al-

though revision histories are accessible and downloadable from the browser client,

recording all documentary revisions in a timely fashion would require interfacing

with Google’s API. Also, the revisioning system on Drive tracks more recent edits

with a finer granularity than older ones. This exponential decay is sensical, as

older edits are less likely to be frequently needed by users. It also reduces the

storage burden on Google servers, and since they are not in the archival or history

business they have no basic incentive to keep older information available.

Subversion The Subversion version control system is designed to manage

frequent updates to files by a collaborative team. Each change (or set of changes)

can be added as a discrete revision to the file system being tracked. A revision

addition is referred to as “checking in” a set of changes, which allows other users to

check it “out” before continuing any work that might overlap with the same files.

These systems are a vast improvement for productivity and team communication,

but they also create significant migration challenges. Since the current files in

a Subversion repository reflect the state of a specific, indexed revision (usually

the most current), all other revisions will not be copied along with the current

directory. In order to get all the revisions, one needs to use secondary tools, like

svnadmin, to dump an archive of all previous revisions, or use the main Subversion

command line tool svn to check out each revision of interest and manually copy

it.

Version control repositories are software programs that manage file revisions.

Since they are software each repository is only compatible with specific Subver-

sion software versions. This means that making use of the system’s dumps or

76

exploring a legacy repository also needs a system capable of reading it. The Sub-

version software itself is then an appraisal and archival target in addition to the

documentation it contains. This also means that migrating the full Subversion

repository requires a full copy of the repository as it exists on a host server and

not just downloaded to a user’s machine. Since we had full development access to

Prom Week’s server, we could just copy the root repository directly. This would

not be the case with most other projects stored on public Subversion services,

since they are only designed for read-only access and revision “check out.”

Email and Developer Files Email and personal developer files were largely

unproblematic compared to the services above. The email lists were exported by

the Prom Week developers into a collection of .mbox Mailbox email archives.

These are essentially plain-text, but required secondary software to interpret and

represent correctly. The personal files of developers were copied using flash drive

connected with their laptops. All online web content was archived into WARC

format by the Internet Archive’s Archive-It service.

Storage

UCSC (as well as the larger University of California library system) provide

digital repository storage services through the Merritt online digital repository.

Files stored for long-term preservation are indexed and searchable based on title-

level descriptors (like title and creator). Larger groups of files are compressed and

uploaded to the service where content listings of individual files are automatically

created. To upload Prom Week, its documentation was broken up into 24 zip

archives containing all digital documentation for the project and recordings of the

interviews conducted for the NEH report.

The storage process involved:

77

1. Organizing all documentation into coherent chunks for compression

Prom Week’s documentation was grouped (by the development team) accord-

ing to online services. That is, the original born-digital file organization consisted

of:

• Shared folders on Dropbox and Google Drive

• Email archives for development mailing lists

• Source code and finalized creative content in Subversion version control

Individual interviews with the development team were stored, with topical

indexes, in separate compressed archives. All data stored on online services was

left with its original file organization and hierarchy, even if that made organization

less clear.

1. Creating a file manifest for the compressed documentation

The manifest is a spreadsheet describing the title (general description), original

creation date and creator for each archive, in addition to a hashed checksum for

file verification. Descriptions are necessary for search and indexing in the digital

repository. Titles included an overview of the contents of each archive and (when

applicable) the version of the storage software used.

1. Uploading finalized compressed content to the repository

After validating the files according to the generated checksums, each file was

paired with its descriptive information and made available for download from the

repository.

Prom Week’s combined documentation thus included:

78

• Contents of the development team’s shared Dropbox folder

• Contents of the development team’s shared Google Drive folder in multiple

formats

• A combined archive of email archives in mbox format for all project mailing

lists

• 13 development team interviews

• An archive of the online demonstrations and publications (development blog)

of the Prom Week development team as collected by Archive-It.Org’s web

crawler

• The most current version of the source code and creative content stored in

version control

• A plain-text dump of the contents of the version control repository

• A copy of the entire version control repository, including all code and content

revisions

2.4 Conclusion

In our research-appraisal of Prom Week, we have touched on the history of

its development processes, the context of their creation and the documentation

that resulted from it. The point was to get a sense of the historical requirements

for historical software documentation, both in its preservation and study, and

to show the actual “haystack” of documentation alluded to by Mahoney at the

beginning of this chapter. Our proactive approach revealed the ways in which

digital documentation for software practice, which is now the dominant form of

79

documentary accumulation, resists historical investigation and reveals previously

unknown contours of practitioner’s practice.

Here, we tried to display the “what” of the documentary record, and how that

material could help substantiate a “how” and “why” for the production processes

of Prom Week. It also highlighted the difficulty in dealing with digital records,

and the importance of access to the development process as a paramount form of

access to the development object. Everything discussed above is not contained

inside the single executable .swf file distributed as the final, historical game ob-

ject. Hopefully, we have shown how that file contains multitudes, and how it

encapsulates and expresses the practices of Prom Week’s team. Imbricated as it

were, with layers of their social context and technical backgrounds.

Echoing the opening of the chapter, the process of appraisal, through selection

and retention, dictates the material record from which we can create historical nar-

ratives and to which we can target historical inquiries. Without the efforts of this

chapter, the only remaining remnants of Prom Week’s development process would

have been its final online release, and the publications describing some of its de-

velopment and system design.51 The stored records of Prom Week’s development

now include most of the team’s correspondence, its entire technical development,

and hours of interviews about its design process. This allows for a much richer

and multi-faceted look into its history, should a future scholar want to investigate

the academic development process in the early 2010s, artificial intelligence and in-

teractive narrative system design, or even the evolution and development of Prom

Week’s code. The appraisal work above not only reveals the commonly hidden

aspects of technical development, but also provides an organizational foothold for

future historians that wish to roll up their sleeves and dive in. At least they have
51Prom Week being a research project in many ways created outputs that would not normally

exist for other classes of games, in which cases only the final released game would remain.

80

something to dive into — and basic bearings to begin more specific investigations.

This chapter also serves as a preface to the coming elaboration on the devel-

opment records of Doom. In conducting a full research-appraisal of Prom Week’s

documentation, we can proceed — in the final chapter, “A Model of Doom” —

to an analysis of Doom’s with some of the foundational methodological concerns

taken care of. Migration will be difficult in some cases, identification and access

in others. The documentary record will reflect the processes and context of the

early-1990s instead of the early 2010s, but the “stuff” is still of software develop-

ment. There is still development practice, release and dissemination and most of

the other processes already described. Therefore, while this chapter laid out a bit

of the accumulation of Prom Week’s history, of how its documentation was pro-

duced (and supported its study), it did not have a competing historical narrative

or other documentary base to confront. With Doom, we do not have the luxury

of starting from scratch in defining the historical basis for a construction of its

narrative. This is good, in that there is an incredible amount of accumulation

already present in the game’s community. It is bad, however, in having to serve

as a corrective or potential diminishing of some claims made about the game, its

place in game history, and the practices of its development team.

A final goal motivating this chapter is to begin a conversation about the com-

plexity inherent in software design and documentation, and ways to reduce both

the technical and organization burden for historical scholarship.

81

Chapter 3

Description

3.1 Introduction

The construction of any historical scholarship is fundamentally based on the

availability of its sources. For the study of computer game software, this means

access to and description of game software in a way that allows it to be inter-

preted (or at the very least retrieved in some way) in the future. Modern cultural

memory institutions, like libraries and archives, are the sites responsible for the

maintenance of historical knowledge and artifacts. Therefore, they are also a nec-

essary component of any stable, future practice in the historical study of computer

games. This chapter, at its core, is about the description of computer games inside

institutional collections, how that descriptive practice can benefit from collabora-

tion with historically minded game scholars, and the process involved in couching

descriptive work in both institutional standards and solid methodology. Heartily

implicated in this endeavor is the vast and somewhat confusing network of stan-

dards, guidelines, and practices for collection cataloging and metadata. Marrying

these processes to more coherent, practical structures that can guide institutions

and scholars to some common understanding is a fraught undertaking. There is

82

a lot of conceptual grounding needed to communicate the constraints of collect-

ing institutions to scholars, and conversely, to explain the needs of scholarship to

institutions. A further problem is that the relative nascence of computer game

history means that the needs of the field are still in development. Historians in

the future might not have a coherent understanding of what information will be

useful, which complicates the discussion of their current needs. Throwing the

inherent and growing complexity of software objects — and their networks of de-

pendencies — into the morass only further clouds the waters. We end up needing

to adopt historically contingent inter- and intra-institutional collection processes

to cover the unknown future needs of scholars dealing with inherently unstable

technical objects.

While it may feel like — to ape a bit from Michael Mahoney in his “Histories

of Computing” — we are pacing before a dense jungle thicket, pensively holding

a machete and trying to find a way to hack on in, we can also look skyward and

use that same instrument to cut down some low hanging fruit.1 In the case of this

chapter, our thicket is the tangled web of the scholarly, collection institutional,

and ontological concerns of computer game software. Our low hanging fruit is a

description of the computational platforms and media formats that support the

expression and dissemination of software.

We use an elaboration of a controlled vocabulary for such platforms and for-

mats as something to chew on while considering the dense network before us. We

will briefly introduce the concept of a controlled vocabulary and then describe,
1“Finally, there is a small body of professionally historical work, dealing for the most part

with the origins of the computer, its invention and early development . . . It is meant as no
denigration of that work to note that it stops at the point where computing becomes a signif-
icant presence in science, technology, and society. There historians stand before the daunting
complexity of a subject that has grown exponentially in size and variety, looking not so much
like an uncharted ocean as like a trackless jungle. We pace on the edge, pondering where to
cut in.” [132] Mahoney, Michael S. “The History of Computing in the History of Technology.”
Annals of the History of Computing 10, no. 2 (1988): 113-125. pg. 115

83

in the remainder of this introduction, how it will help us make better sense of

the needs of software objects in historical collections. This includes how game

scholarship can lend a hand in better articulating its historical goals and needs,

and a more detailed description of the explicit steps necessary to construct the

vocabulary.

3.1.1 A Brief on Controlled Vocabularies

A controlled vocabulary, to use a definition from Arlene Taylor’s Organiza-

tion of Information, is “a list or database of subject terms in which all terms or

phrases representing a concept are brought together. Often one of the terms or

phrases is designated as the preferred term or authorized phrase to be used in

metadata records in a retrieval tool.”2 There is a bit to unpack in that definition,

coming as it does from an information science textbook, but the basic statement

is that a controlled vocabulary is a maintained, stabilized, and authoritative set

of descriptions for some specific field in a metadata schema. The mention of

“subject terms” is specific to the context of records in institutional collections,

in which explicit terminology for the “main idea” is required to conceptually link

topical areas. The most prevalent controlled subject vocabulary is the Library

of Congress Subject Headings (LCSH). Any record in a finding aid at a research

library will have a “subject” field populated with LCSH terms.3 The terms in any

vocabulary need to be substantiated and vetted, and be specific to the task at

hand. LCSH terms have actually come under significant scrutiny, as their use in

records sometimes says more about the categorical opinions of the cataloger than
2[204] Taylor, Arlene G. The Organization of Information. Westport, Conn.: Libraries Un-

limited, 2004. pg. 334
3For example, the entry for the Modern Library edition of “Moby Dick, or, The whale” in

the UCSC online finding aid lists six LCSH subjects: “Ahab, Captain (Fictitious character)
— Fiction”, “Whaling ships — Fiction”, “Ship captains — Fiction”, “Mentally ill — Fiction”,
“Whaling — Fiction”, and “Whales — Fiction”.

84

the object in question.4

Although some controlled vocabularies are strict lists of terms mapped to pre-

ferred broader terms, other types of structures are also commonly considered to

be controlled vocabularies. Taylor includes both thesauri (strict hierarchy) and

ontologies (flexible hierarchy) in her extended definition of vocabularies.5 Our

vocabularies, as elaborated in the “Vocabulary” section below, fall somewhere be-

tween a preferred term listing and an ontology. An ontology, in this categorization,

is simply the most potentially expressive form of a controlled vocabulary.6 On-

tologies “[bring] together all the variant ways of expressing a concept and [show]

the relationships of a concept to broader, narrower, and related concepts.” The

relationship between computer game platforms and media formats is an attempt

to reconcile both the preferred designations for each term, and how those terms

related to things like localization and hardware / software dependencies. Another

key aspect of ontologies is that they “aim to capture consensual knowledge in a

generic way” in a “model agreed upon by a community.” In our case, the con-

trolled vocabularies we will present are a combination of game community, game

academic, and library knowledge bases. And as we mentioned above, this type

of functional interaction between memory institutional and scholarly conceptions

is exactly the type of approach needed to deal with the dense network we find

ourselves outside, poking with an analytical machete.
4Library of Congress Subject Headings are particularly problematic for games, a topic we

will return to later in this chapter, and in discussion of game categorization in the Discovery
chapter. For more information on the problems with subjectivity and LCSH terms see, [106]
Knowlton, Steven A. “Three Decades since Prejudices and Antipathies: A Study of Changes
in the Library of Congress Subject Headings.” Cataloging & Classification Quarterly 40, no.
2 (2005): 123-145. and [199] Stone, Alva T. “The LCSH Century: A Brief History of the
Library of Congress Subject Headings, and Introduction to the Centennial Essays.” Cataloging
& Classification Quarterly 29, no. 1-2 (2000): 1-15.

5Taylor considers thesauri to be “strictly hierarchical” because all entries connect a single
term to its “narrower” synonyms.

6Footnote elaborating on ontologies in CS knowledge organization as a contrast to the more
limited role they take in library land.

85

3.1.2 A Course Through the Thicket

The controlled vocabularies organize communal knowledge about computer

game platforms and media formats into a structured ontology that is then mapped

to relevant positions in the world of library and archival cataloging. The approach

we are taking will fully describe the vocabulary, its construction and its intent,

and then show how it flows into the metadata and information retrieval structures

of collecting institutions.7 This way, we will only need to involve contextual

description of the facets of library and knowledge organization practices germane

to future game historical practice.8 The intent is to show game historians the

material and descriptive constraints imposed in the institutional formalization of

bibliographic records, and what those constraints mean (and how they should be

amended) for historical software objects.

In describing computer games through formalized vocabularies and records,

this chapter is a shift in focus from the material concerns of the last. Appraisal

dealt with the material constraints, description and storage of documentation

about the creation and formation of computer games as enclosed objects.9 It

peeled back the development curtain to reveal the mess and historical processes

of production. Here we are no longer concerned with evidence of a computer

game’s development, but with its existence as an object. Institutions and scholars
7This work resulted from a collaborative effort in game metadata and ontology, the Game

Metadata and Citation Project. As such, while much of the theorization and organization of
the ontologies is my own, it is based on a significant collaborative effort. Thus the “we” plural
is used, similarly to some of this chapter’s source text, which appeared in [104] Kaltman, Eric,
Noah Wardrip-Fruin, Mitch Mastroni, Henry Lowood, Greta de Groat, Glynn Edwards, Marcia
Barrett, and Christy Caldwell. “Implementing Controlled Vocabularies for Computer Game
Platforms and Media Formats in SKOS.” Journal of Library Metadata 16, no. 1 (January 2,
2016): 1-22. doi:10.1080/19386389.2016.1167494.

8Our approach also tries to avoid the deafening cacophony of acronyms unleashed in most
discussions of information management standards.

9“Enclosed” in the STS sense; having reached “closure” in social and technical discourse to
the point of being a “black box”. No longer subject to general introspection or change. See the
introductory chapter to this thesis, specifically footnote 8.

86

doi:10.1080/19386389.2016.1167494

must manage that existence so the object is still discoverable and accessible in

the future. This work is then a contribution to the shared knowledge of both

institutions interested in gaming collections and the scholars eager to work with

them.

For institutions, the description of an object in a collection invites a raft of dif-

ferent potential use cases and divergent assumptions about descriptive necessity.

As Jerome McDonough stated in the findings of the Preserving Virtual Worlds

(PVW) game preservation project, collections are curated — and archives are de-

scribed — for use by the “designated community” of an institution. In his case,

at the University of Illinois at Urbana-Champaign (UIUC), this designated com-

munity is “the faculty, staff, and students of UIUC, as well as . . . visitors to the

campus and members of the general public.” This presented a problem because

the archival standard he needed to use, the OAIS model for preserving digital

archival information, derived from the aerospace community and their relatively

homogeneous data use needs and consolidated knowledge bases. Adapting OAIS

for computer game software, in accordance with the potential use case of every-

one who could visit UIUC’s research library and archives, would not be straight-

forward. The contextual information attached to a game record is significantly

different in a case where a future scholar might want to actually run the software

as opposed to observe its packaging and read the manual. McDonough asserts

that the game community, and the community of game scholars should work to

provide input and a basic knowledge base that libraries and archives can use to

improve their records practices. A task we mildly take up with the vocabularies

in this chapter.

Another concern highlighted by McDonough, and echoed by other preserva-

tion minded scholars, is the need to clearly define the boundaries separating digital

87

games from one another.10 With different versions, platforms and formats abound-

ing over the past 40 years of game history, making sure to include the correct

information needed to interpret a game in the future is particularly daunting for

institutions. Couple this with the expectation that future software collections will

require emulation, and you present institutions with the additional responsibil-

ity of preserving software’s contextual documentation and dependencies. Clearly

there is a need to begin organizing descriptive practices for software versioning,

dependencies and derivatives, along with the (in information parlance) represen-

tation information required for reconstituting executable programs. Again, Mc-

Donough recommends splitting the work and allowing institutions to collaborate

on different standardizations for the description of the content in their collections

that might be useful to others. Our vocabularies fit into this recommendation, as

will be shown the dissemination work below.

The controlled vocabularies, therefore, begin to address a fundamental need

for game scholars to help in both the articulation of their practical needs for

games in collections, and in the contextualization and organization of knowledge

about them. For game scholars, the idea that games are a highly variegated

art form representing a host of different ontological distinctions and properties

is not new. There are many ontologies and formal characterization schemes for

games. What is new here, however, is focus on the material description of games

as historical objects in need of retrieval and representation in the future. Rarely

are the historical material dependencies and differences between computer games

brought to the fore in ontologies or classification schemes; concerned as they

are with games as systems of play and interaction, rather than as systems of
10See [161] Newman, James. “Ports and Patches: Digital Games as Unstable Objects.” Con-

vergence: The International Journal of Research into New Media Technologies 18, no. 2 (2012):
135-142. and [127] Lowood, Henry. “The Hard Work of Software History.” RBM: A Journal of
Rare Books, Manuscripts and Cultural Heritage 2, no. 2 (2001): 141-160.

88

technologies. This chapter should serve as a prompt for a closer look at the

mundane technical dependencies of games as software objects by scholars. The

controlled vocabularies are organized around assumptions about the descriptive

needs for future scholars.

On a higher level, this chapter is dealing with the organization and description

of knowledge about computer games and software, and attempting to ground that

knowledge in sound ontological theory. By “ontological theory” we mean to draw

on work in the “conceptualization” of objects — how they function as concepts

in organization schemes — and the practical recommendations of the library and

information science community regarding the labeling and hierarchical descrip-

tion of items in collections. There is a growing body of work in the description

of computer game and software records, 11 but many are only theoretical and

not effectively attempting to mediate the practice of game historical scholarship

into their descriptive frames or methodologies.12 The challenge is to find a way

to couch our descriptive methodology in approaches that speak to the future of

game studies, software studies, and game historical needs, and make sure they are

stabilized in ways commensurate with many potential future use cases.

The goal is to outline the controlled vocabulary work and position it such
11Espen Aarseth has maintained a steady publication stream of ontological discussions of

games, for examples see: [21] Aarseth, Espen, and Gordon Calleja. “The Word Game: The
Ontology of an Undefinable Object.” In The Philosophy of Computer Games Conference, 2009.
[23] Aarseth, Espen, Lev Manovich, Frans Mäyrä, Katie Salen, and Mark JP Wolf. “Define
Real, Moron!” Some Remarks on Game Ontologies. In Stephan GÃĳnzel, Michael Liebe &
Dieter Mersch (Eds.), DIGAREC Series 6 (2011): 50-69. [22] Aarseth, Espen, Solveig Marie
Smedstad, and Lise Sunnanå. “3. A MULTI-DIMENSIONAL TYPOLOGY OF GAMES,”
2003. Also, [234] Zagal, José P., Michael Mateas, Clara Fernández-Vara, Brian Hochhalter,
and Nolan Lichti. “2. Towards an Ontological Language for Game Analysis.” Worlds in Play:
International Perspectives on Digital Games Research 21 (2007): 21.

12One notable exception is Jin Ha Lee’s work in use-cases for games’ metadata, which provides
some basic archetypes for scholarly use. See [122] Lee, Jin Ha, Joseph T. Tennis, Rachel Ivy
Clarke, and Michael Carpenter. “Developing a Video Game Metadata Schema for the Seattle
Interactive Media Museum.” International Journal on Digital Libraries 13, no. 2 (March 1,
2013): 105-17. doi:10.1007/s00799-013-0103-x.

89

doi:10.1007/s00799-013-0103-x

that we clear a little space for thought about the future interface between game

scholarship and game stewardship. We begin the chapter with a description of the

purpose of the controlled vocabularies, and how they are designed to help with

the description and location of games in archival and library collections. After

that, we elaborate on the ontological structure of the vocabularies, and the issues

associated with delineating their individual terms. This makes use of a practice

of “ontological enactment”, whereby the description of objects in an ontology is

tied to their networks of use. Here we also confront problems with versioning,

internationalization, and peripheral dependencies. This leads to the conception of

a criterion of “reasonable compatibility” for the vocabulary terms aimed a ensuring

the future scholars can make “reasonable” guesses as to the platform requirements

for particular items. The chapter continues with a description of where the terms

fit into the library retrieval systems in use by collection institutions. This invites

a brief description of the historical treatment of games in the library retrieval

apparatus. It also provides a more detailed elaboration on the issues of community

use and object description mentioned above. The chapter closes with a description

of our efforts to disseminate information about the vocabularies to the library

community, and how the vocabularies themselves function in a future library

landscape of semantically linked data. A key concern throughout is the revelation

of the practical conditions of computer game software in memory institutions, and

how to make those conditions more open and comprehensible to game historical

scholarship.

3.2 Controlled Vocabularies

Creating vocabularies is a significant undertaking, mostly due to the sticky

nature of developing any formalized ontology. During the initial formalization, a

90

vocabulary is arranged based on the ontological commitments of an “aboutness

statement”; what are the terms in the vocabulary “about” and what function

are they intended to serve? As Arlene Taylor writes in her general principles for

controlled vocabularies, “in some cases, it may take staggering effort to remain

faithful to the aboutness of the resource, while following specific application rules

in addition to following general principles of applying controlled vocabulary.” The

terms in a vocabulary must be consistent in their relationships with one another,

and be readily applicable to their targeted descriptive domain. For computer

game platforms and media forms, their aboutness and application proved a bit

more problematic than we initially assumed. (In fact, we chose both because

we thought they would be more objectively salient than other, more subjectively

tangled descriptors like genres or subjects.) Therefore, the main goal of the vo-

cabulary work was (and is) to provide a stable and authoritative set of labels for

platforms and media formats for game records in retrieval systems. By promoting

a unified, coherent and consistent set of terms, the vocabularies are designed to

enable better description for future scholars.

This section outlines the controlled vocabularies’ development according to

the methods of the library science and knowledge representation communities. It

lays out the basic descriptive problems encountered while trying to stabilize the

concept of “computer game platform” within the historically disjunctive progress

of technological development. Implicit in any description of a platform is the

media formats that it accepts, since those formats are what is actually being

described and placed into collections.13 Delineating platforms then also involves

linking to its corresponding media formats. The vocabularies encode these links

into a linked data format known as the Simple Knowledge Organization System
13Some of the collections we mention below do contain platform hardware as well, but the

overwhelming majority of game records are records of game data stored in a media format.

91

(SKOS), a machine-interpretable ontological language designed for semantic web

applications. After addressing the aboutness criteria for the vocabularies, we

elaborate on the vocabularies’ encoding schema and conclude with the steps taken

to disseminate it to the greater library community.

3.2.1 A Brief Record Example

Before addressing the ontological issues with a definition of “platform,” a brief

example of the basic problems with game records is in order. As outlined in the

PVW final report, a major concern for any modern collection (archival or librar-

ial) of software objects is the ability to accurately represent them in the future.14

This implies the need to either keep working hardware (and dependent software)

available for patron use or migrate the software data from physical formats into

emulated environments supported by a digital repository. There is a general as-

sumption that physical data records and hardware will eventually degrade, leaving

migration and emulation as the ultimate source for future historical investigation.

Regardless, if a scholar currently wants to investigate a software record in a library

catalog — either to find it physically and play it or to run its data through emula-

tion — the record itself should be well described. This means that the information

in the record should allow for a scholar to know if the resource has the specific

technical properties to be worth further investigation. Because most catalogers

and archives do not deal with software records, there is sometimes not enough

expertise available to describe a software resource in a consistent and coherent
14The use of “represent” here is derived from the language of the report and the general

guidelines of the library community. Representation of a piece of software means its use in the
future by a patron of the library. Later in this thesis, particularly in the Citation chapter, we
discuss what “representation” means in relation to the execution of software data (and how
that term might not quite fit the bill). Library and archive professionals are concerned with the
practical issues of “representation” of digital data, but not usually with the grander metaphysical
implications of such language.

92

fashion. This leaves more work for the scholar, who might retrieve the item and

find out it is incompatible with her needs.

The PVW report provides two examples of deficient description. The first is a

record of the game Doom in Stanford’s online finding aid. The record is detailed

but does not remark on the version of Doom, simply stating that it is “Doom.

Episode 1.” dated “November 1994.” This leaves one to assume (if one is a Doom

scholar) that the version in question is a physical shareware distribution of Doom

version 1.666.15 Additionally, the system requirements are directly copied from

the packaging as:

System requirements: 386 or better IBM compatible PC; 4MB
RAM; DOS; VGA; CD-ROM player

This description also leaves a significant amount of contextualization work to

the historian. “DOS” is probably a version of Microsoft’s “MS-DOS” and based

on the date most likely version 6.22. “VGA” is a reference to the specifications

of the video display (and capabilities of the graphics drivers) needed to run the

game. “386 or better IBM compatible PC” refers to the compatibility class of the

CPU. In this case a version of the x86 instruction set. And so on.

The second example in Table 3.1, from the Stephen Cabrinety Collection in

the History of Microcomputing at Stanford University, provides a record for the

game Star Raiders from that collection’s archival finding aid.

Even by the standards of the previous example, these records leave a bit to

be desired. However, they are representative of most archival records, where,

according to the report, “item-level description is minimal at best.”16 As with the
15The Preserving Virtual Worlds Final Report [149] actually notes that “by November 1994,

DOOM was already in version 1.7a; in fact versions 1.2 through 1.7a were all released during
the first eleven months of 1994”. In fact, version 1.7a is specific to Doom II releases.

16In fact, many archival collections are usually only described to the box-level, leaving the
exact contents a mystery until some researcher stumbles along and sorts it out.

93

Table 3.1: Star Raiders Entry from Cabrinety Collection Finding Aid

Box Company Title Year Physical Description
136 Atari, Inc. ST Star Raiders 1986 1 computer disk; 5 1/4 in. Atari
72 Atari, Inc. Star Raiders 1982 computer cartridge Atari
134 Atari, Inc. Star Raiders 1982 computer cartridge Atari
142 Atari, Inc. Star Raiders 1980 computer cartridge Atari
152 Atari, Inc. Star Raiders 1982 computer cartridge Atari

Doom example, historical assumptions take the place of information that could

just appear in the record. To quote from the PVW analysis:

Presumably we can depend on the fact that Box 136 contains the
version of Star Raiders for the Atari ST, but as for the rest, whether
the cartridge in Box 142 is intended for an Atari 2600 system or one
of the Atari 400/800 systems is unclear, and for the remaining three
boxes, the cartridges could be in theory be for the Atari 400/800,
2600 or 5200 systems. And only a scholar with knowledge of the exact
release dates for the various editions and platforms would be able to
deduce that information from this finding aid.17

Both examples serve to show the motivation for the creation of a controlled

vocabulary for platforms and media formats. The Doom record lacks specificity

for its basic system requirements because it copies a contemporaneous description

of its dependencies. At the time, “IBM PC compatible” and “DOS” may have

been good enough descriptions for someone purchasing it in a store or ordering it

from id Software. Today, however, more historical context needs to be embedded

in those records to prevent future contextual confusion. The platform vocabulary

provides an explicit, standardized reference instead of the highly fragile descrip-

tion on the resource. In our case, “DOS” becomes “Microsoft DOS Version 6.22”,

and that label is linked to further contextual description and even other versions

of the platform.18 We will address the use of “platform” as a proxy for “oper-
17[149] McDonough, Jerome P. Preserving Virtual Worlds: Final Report. Graduate School of

Library and Information Science, University of Illinois at Urbana-Champaign, 2010. pg. 35
18Many times box cover requirements only consist of these contextual, contemporaneous ref-

94

ating system” below. Because we are still only twenty or so years removed from

Doom, all the information in the record is still relatively interpretable. As time

progresses, however, more and more of the “obvious” historical context for Doom

— and other games and software — will require more specialization and research

to retrieve and interpret.19 By linking some of a game’s technical requirements to

a standardized and supported vocabulary, we stabilize its description for future

historical research.

The Star Raiders archival example also highlights the need for a better descrip-

tion of physical media formats. Most records of historical software are also records

derived from their material existence. The data for Star Raiders is conveyed to

its platform through the physical carrier of an Atari cartridge. As noted above,

the basic description in the Cabrinety record does not provide enough detail to

ascertain what version of the game is in each box. Therefore, any potential plat-

form and system requirements are also a mystery. With a controlled vocabulary

of media formats, the level of description is targeted to the specific platform of a

resource. In the above 1980 version of Star Raiders the ambiguity of “computer

cartridge Atari” would be replaced with “Atari 2600 cartridge”.

A more practical reality underlies the lack of specificity in both examples.

Working with cataloging standards and descriptions is onerous and difficult, es-

pecially if there are no explicit rules or standards tailored to the objects in the

collection under review. In the Doom example, a professional Stanford University

librarian created the record without much awareness of future scholars’ descriptive

erences. Part of the goal for the vocabulary work is to help non-specialist better describe
materials, in which case the “DOS” reference, but a date range might allow for a narrower ini-
tial description. More on this below in our discussion of the labeling hierarchy in our semantic
web constructs.

19Doom is still one of the most well-known games of all time, so while — in practical reality
— it might remain more accessible, other titles from the same period will most certainly not
receive the same treatment, and therefore greater occasion for loss.

95

needs. In the second archival example, finding anyone with descriptive expertise in

game archives is going to be a tall order, given that there are only a handful of ex-

perienced game archivists on the planet (including the one writing these words).

The lack of clarity in the Cabrinety Star Raiders record is therefore indicative

of common descriptive challenges for archival collections. Finding someone who

could correctly identify and describe an Atari 2600 cartridge, including where to

look for the relevant information, would already be difficult. Add in the knowledge

of how to — in a future conscious and consistent manner — map that informa-

tion to common archival metadata fields, and it begins to make sense that most

archives are happy to just have a note about the general contents of every box or

folder, let alone the items inside them.20 Time is also a significant consideration.

For example some boxes in the Cabrinety collection may contain 50-60 different

software titles, for a variety of platforms in a variety of formats. Simply attending

to all the item descriptions, even with specialist knowledge, is a daunting propo-

sition. Conducting it without leads to descriptive errors or a lack of coverage.

To address these practical concerns, the controlled vocabularies try to contextu-

alize all the information they provide, link that information to further relevant

resources, and in the case of media formats, include images and illustrations to

allow for visual comparison in identification.

To sum up, the controlled vocabularies formalize the information present in

game and software records to help with future contextualization and comprehen-
20In many cases, even having a trained expert in a field might not be enough to overcome the

incompatibility between a cataloging data format, the ontological condition of its object, and
the pedagogical needs of patrons. From [232] Yasser, Chuttur M. “An Analysis of Problems in
Metadata Records.” Journal of Library Metadata 11, no. 2 (April 2011): 51-62. doi:10.1080/
19386389.2011.570654, “it was found that trained librarians used many more elements than
could support the purposes of the project, but they could not capture contextual aspects of the
resources and neither resource authors nor trained librarians were able to handle pedagogical
aspects of the resources.” In other words, more training lead to ineffective (and over described)
records.

96

doi:10.1080/19386389.2011.570654
doi:10.1080/19386389.2011.570654

sion issues. Additionally, as most current physical formats will have their contents

migrated to digital collections; assuring that the initial record provides some in-

dication of the data’s format is imperative to providing for stable future access.

3.2.2 Vocabulary and Ontology Best Practices

Creating a vocabulary from scratch requires relying on the practical and cate-

gorical recommendations of the information science and knowledge representation

communities. This section briefly describes the best practices followed in the con-

struction of our platform and media format vocabularies, and outlines the guide-

lines we followed from both the information science and ontological engineering

communities.

Definition

Technically, the controlled vocabularies are semi-formal domain ontologies.

They are semi-formal because they are “expressed in an artificial and formally

defined language” but not to the extent of “formal semantics, theorems, and

proofs.”21 In this case, they are expressed in the Simple Knowledge Organiza-

tion System (SKOS) a subset of the Resource Description Framework (RDF).

RDF is a subset of the Web Ontology Language (OWL), a formal description

logic.22

21[80] Gómez-Pérez, Asunción, Mariano Fernández-López, and Oscar Corcho. Ontological
Engineering. Vol. 139. Springer Heidelberg, 2004, contains a significant literature review of
the classification and organization of ontologies. They define four classes of ontological rigor:
highly informal, semi-informal, semi-formal and rigorously formal. Most historic controlled
vocabularies would be highly informal or semi-informal (depending on their application) because
they are expressed in less constrained, natural languages instead of more formally defined ones.

22OWL actually has a variety of restricted implementations that allow for differing levels
of formal rigor. The OWL-DL is the most formal specification of the language, allowing for
completeness proofs and other formal verifications well exceeding the needs of our controlled
vocabulary.

97

Aside from formal classifications, another means of categorizing ontologies is

by the breadth of their subject matter. Top-level (or upper-level) ontologies like

Cyc or the IEEE’s Suggested Upper Merged Ontology (SUMO) provide for the

ontological organization of foundational reality. They include categorizations that

begin at general concepts like “Thing” (Cyc) or “Entity” (SUMO) and work down

from there.23 Top-level ontologies usually form the basis for a descending trail of

lower ontologies.24 Domain ontologies are positioned right below the top-level as

they are specific to a certain professional domain, but not designed for a specific

set of tasks or direct application in a specific knowledge management system.

The controlled vocabularies are domain ontologies. They define a limited set

of concepts and are application agnostic; being a set of unified terms not targeted

toward a specific knowledge organization system or application. The vocabularies

are also not currently linked to higher-level terms in any top-level ontology.25 They

do, however, represent a hierarchical knowledge set with a deeper tree than many

controlled vocabularies. This is partly a result of their encoding into SKOS, which

provides for and enforces conceptual hierarchies for use in the semantic web. Even

though controlled vocabularies are, in some cases, considered to be the simplest

form of ontology, the controlled vocabularies below, in their formalization through
23“Entity” entry in [13] SUMO (http://54.183.42.206:8080/sigma/Browse.jsp?kb=SUMO&

lang=EnglishLanguage&flang=SUO-KIF&term=Entity). “Thing” entry in [9] OpenCyc, http:
//sw.opencyc.org/concept/Mx4rvViA9JwpEbGdrcN5Y29ycA. “Thing” is not a root of the Cyc
ontology because the ontology has a formalized understanding that it is an ontology. That is,
“cyc vocabulary term” and the notion of the Cyc ontology as a collection of collections of terms
is embedded within Cyc itself.

24Again, [80] Ontological Engineering [80] describes six basic ontological levels: top-level,
domain, task, domain-task, method and application ontologies. The more specific the ontology,
the less reusable and shareable its content.

25Equivalence relationships might be possible but are outside the scope of the current work.
Both the aforementioned top-level ontologies Cyc and SUMO provide concepts for computer
hardware, software, etc. So the mapping should be pretty straightforward. However, based on
the practices of the information and library science communities (where no controlled vocabulary
we could find was tied to KR ontologies) these connections are still waiting to be made (and
constitute potential future work).

98

http://54.183.42.206:8080/sigma/Browse.jsp?kb=SUMO&lang=EnglishLanguage&flang=SUO-KIF&term=Entity
http://54.183.42.206:8080/sigma/Browse.jsp?kb=SUMO&lang=EnglishLanguage&flang=SUO-KIF&term=Entity
http://sw.opencyc.org/concept/Mx4rvViA9JwpEbGdrcN5Y29ycA
http://sw.opencyc.org/concept/Mx4rvViA9JwpEbGdrcN5Y29ycA

SKOS, expand the expressive power of the “controlled vocabulary” concept.26

Ontological Criteria

The process of organizing the conceptual basis for an ontology is known as

“conceptualization”, an “abstract, simplified view of the world that we wish to

represent for some purpose.”27 This is similar to the “aboutness” of controlled

vocabulary, and is used as a way to explicitly contain the scope and purpose

of an ontological set of relations. When developing any set of controlled terms

or concepts, we also inure ourselves to a set of specific ontological criteria and

qualifications.

Ontological criteria, drawing on design philosophy from Gruber, refer to a

set of implicit agreements between an ontological conceptualization and its use

in practice. Gruber outlines a number of foundational commitments, most of

which map to similar concerns in controlled vocabulary guidelines.28 They are:

clarity, coherence, extendibility, minimal encoding bias, and minimal ontological

commitment. Clarity and coherence are pretty much a given. If an ontology does

not clearly delineate terms and / or allows for unintended inferences based on
26[117] Lassila, Ora, and Deborah McGuinness. “The Role of Frame-Based Representation

on the Semantic Web.” Linköping Electronic Articles in Computer and Information Science
6, no. 5 (2001): 2001, organizes an ontological spectrum, with “catalog / IDs” falling at one
end, and “general logical constraints” at the other. “Catalog / IDs” are described as controlled
vocabularies in that they are “a finite list of terms”. The intent of our vocabularies actually falls
under their definition of a “thesauri [with] ‘narrower term’ relation”; that is, “a list of terms and
meanings . . . [with] some additional semantics.” The implementation of the vocabularies also
places them closer to the logical constraint end of the spectrum, since SKOS, by their definition,
is “frame-based.” This means that each vocabulary term is also a class of “Concept” with “slots”
(properties) and formal (is-a) hierarchical (narrower / broader than) relations.

27[84] Gruber, Thomas R. “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing?” International Journal of Human-Computer Studies 43, no. 5 (November 1, 1995):
907-28. doi:10.1006/ijhc.1995.1081. pg. 908

28See chapter 10 in [204] Taylor, Arlene G. The Organization of Information. Westport,
Conn.: Libraries Unlimited, 2004. and [16] “ANSI/NISO Z39.19-2005 (R2010) Guidelines for
the Construction, Format, and Management of Monolingual Controlled Vocabularies - National
Information Standards Organization.” National Information Standards Organization, 2005.

99

doi:10.1006/ijhc.1995.1081

relationship predicates it probably needs a bit of reworking.29 Extendibility refers

to an awareness of the domain of use and how it may change over time. This is

similar to the concept of maintenance in controlled vocabulary guidelines. You

want any knowledge organization to adapt to new requirements in the domain,

and to provide a convenient means for adding new concepts or altering some

hierarchical relationships. Since each term in the vocabularies is a SKOS Concept

node (with each leaf node representing a specific term entry), manipulating the

arrangement of terms is relatively easy.

Enforcing a minimal encoding bias means that your ontology “should be speci-

fied at the knowledge level without depending on a particular symbol-level encod-

ing.” This removes a potential bias that can develop if an ontology is constructed

with a particular encoding or data format in mind. The structural limitations of

that encoding or data format can constrain the expressive power of the ontology,

and tie it to a specific syntactical model that might not be as shareable with

other systems. Controlled vocabulary guidelines call for a greater “interoperabil-

ity” between vocabularies and different knowledge management systems. In many

areas of knowledge organization there is generally a proliferation of data formats,

encoding schemes and systems. Any contribution should attempt to be widely

applicable, especially if the knowledge is intended for a top-level or domain level

organization.

The controlled vocabularies we developed suffer a bit from the encoding biases

of the SKOS system. A detailed discussion is found in the SKOS section below.

Briefly, the Open Metadata Registry (OMR), a non-profit SKOS semantic web

server, hosts a practical implementation of SKOS that is available for institutional
29Gruber’s notion of clarity also comes with an assumption (with which we disagree) that an

ontology is an objective structure. One can try to form definitions without the influence of social
factors or the implicit constraints of a domain, but they will never be completely removed. See
next note for more.

100

use. They use a subset of SKOS, which prevented the use of some predicates.

Instead of modeling the vocabulary using the full set of SKOS predicates, we

intentionally limited the vocabularies’ expression to those that were available for

active use. We felt that getting the vocabulary embedded in systems in current

use by institutions, and including more terms instead of more specifics was the

better approach. Regardless, the point about encoding bias is valid, and should

mindfully considered by anyone looking into ontology or controlled vocabulary

construction.

The last ontological criterion is minimal ontological commitment. Basically, if

you are defining a domain of knowledge, make sure that you keep scope in check.

Each term should be specific to the limited intent of your domain, and not try

to encapsulate any more than is necessary. This criterion is tied to the notion of

“specific and co-extensive entry” in controlled vocabularies, where you want each

term to adequately cover the extent of the domain and also be in specific alignment

with the object that it represents. For example, if you are developing an ontology

of cats you need to decide if you are describing specific breeds, and if so, to what

granularity. If you encounter a mixed-breed do you now apply two different breeds

to a single cat, or create a new “co-extensive” entry to cover this particularly

contingent kitty? Also, is the particular breed specific enough for your use, or

would the same breed in different regions need to be considered? If so, you want

a more “specific” entry for that cat, “North American Tabby” over “Tabby”, and

“Tabby” over simply “cat”. Specificity and co-extensivity are significant concerns

in the controlled vocabularies since platforms, specifically, are a rather ill defined

domain (as shown below). The level of effective granularity (localization region,

television standard, etc.) paired with the ability for most computational devices

to function as game platforms actually makes the construction of the platform

101

vocabulary predominantly an exercise in specificity and co-extension.

Ontological Enactment

Any ontological conceptualization involves the definition of concepts, proper-

ties, and relationships that implicitly shape the expressive potential of an ontol-

ogy. This conceptualization is not neutral. The foundational act of categorization

brings with it the socio-cultural assumptions of the person making the categories

and also embeds the ontological norms of a particular domain.30 This section elab-

orates on recent works in science and technology studies that talk of an “ontologi-

cal turn” in which the organization and existential condition of objects is brought

to the fore. This connects to both our larger thesis objective of tying methods

from science and technology studies to issues of the stabilization of historical soft-

ware records, and more locally, provides some background on the approach we

took to the conceptualization of the terms in the controlled vocabularies.

Steve Woolgar and Javier Lezaun, in an introductory discussion of this turn

for a special issue of Social Studies of Science describes the contribution of this

ontological mindset:

The fundamental contribution to STS of the ontological turn is its
power to draw renewed critical attention to objects the might otherwise
appear “finished” or “ready-made,” to scrutinize those entities that a
conventional STS analysis would often consider “black-boxed” and no
longer controversial . . . Investigating the composition of ontological
realities would thus be a way of challenging any presumption of order
or completion in the world — especially those forms of order and
completion that have been dear to STS scholarship.31

30Cantwell-Smith, in On the Origin of Objects [194], refers to the foundational assumptions of
any ontological scheme as “a priori commitments.” This is an echo of Latour’s (and other ANT
practitioners) notion of an “irreduction criteria,” which basically means that any foundational
categorization of the world is inherently flawed due to the limiting effects of its a priori axioms.
Anyway you slice it, you’ve sliced it, so it (the slice) cannot actually represent the whole.

31[230] Woolgar, Steve, and Javier Lezaun. “The Wrong Bin Bag: A Turn to Ontology in
Science and Technology Studies?” Social Studies of Science 43, no. 3 (June 1, 2013): 321-40.
doi:10.1177/0306312713488820. pg. 323

102

doi:10.1177/0306312713488820

Woolgar and Lezaun further elaborate on the “forms of order and completion .

. . dear to STS scholarship,” stating that an ontological focus “short-circuits the

tendency to rephrase questions about the reality of multiple worlds as questions

about the multiple ways in which a singular world is represented.”32 Although

this requires a bit more unpacking, the basic target of this methodological shift is

the pluralistic underpinnings of the social construction of science and technology

(or anything, really).

The ’social construction’ in STS is based initially on Thomas Kuhn’s theories

of paradigms and incommensurable worldviews.33 He argued that the develop-

ment of new scientific knowledge is less a progression of ideas through proof and

agreement, than a competition between foundational epistemes. Different groups

function with different foundational definitions about the possibility and signifi-

cance of different structures. Kuhn essentially argued that scientific discourse, or

the agreed upon state of scientific, rational “reality,” lay in the assumptions about

that reality shared by a dominant group of practitioners. That reality shifted as

certain anomalies within the contemporary episteme built up to a point that new

perspectives were needed to address them. Generally, the younger members of the

community, less invested in the current state of a field, pushed on these anoma-

lies and created new and different perspectives. At a certain point, the general

agreement about reality shifted because a majority of practitioners now ascribed

to the new, modified world-view. That this view was a function of negotiation

and time — since young outlasted the old — meant that social organization and

community had a significant influence over rational discourse. It was an attack

on the “positivist” and “realist” schools of thought that presupposed a clean and

purely rationalist reality detached from human conception and perspectives. So-
32[230] pg. 322
33[112] Kuhn, Thomas S. The Structure of Scientific Revolutions. 3rd edition. Chicago, IL:

University of Chicago Press, 1996.

103

cial construction invited with it a “pluralistic” discourse, in which one needed

to situate themselves within an assumed community and epistemic context be-

fore continuing with investigation (or the inverse, in which one presupposes that

an investigation must lead to the explanation of a single perspective that sits in

relativistic relation to many others).34

Another facet of “social construction” implicit in Woolgar and Lezaun’s com-

ments is the social construction of technical objects. A great example of this is

found in Bjiker’s work on the history of the bicycle.35 Briefly, the current de-

sign of the bicycle, with two same-sized inflatable wheels, did not arise through

a long, logical process of refinement and retuning, but from a crush of different

constituencies’ views on what a bicycle should be and whom it should be for.

The fundamental conceit, however, is that after long periods of negotiation and

social fracas, certain forms of a technical object stabilize while other competing

ideas fall by the wayside. This “closure” of innovation over the technical object,

in this case the form of the bicycle with two inflatable wheels (as opposed to

the asymmetric and quicker design of the penny-farthing), effectively erases the

fraught historical period during which there was no unified, dominant form of

“bicycle”. The current bicycle, once stabilized, sheds the history of its formation,

and becomes a historical “black-box”, no longer the site of intense innovative so-

cial forces. The “black-boxes” mentioned by Woolgar and Lezaun are a whole

assortment of similarly constructed objects that are now used uncritically as the

basis for theorization. The move toward ontological concerns and again towards
34The notion of “social construction” arose gradually out of the work of Kuhn and many

others over the course of the 1960s, 1970s, and 1980s. This brief note is just pointing out that
Kuhn did not use the term — or even conceptualize his conclusions as supporting it — since he
preceded (and in some ways founded) considerations of “social construction”.

35See chapter 2 “King of the Road: The Social Construction of the Safety Bicycle,” in [34]
Bijker, Wiebe E. Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Sociotechnical Change.
Cambridge, Mass.: MIT Press, 1995.

104

these “black-boxes” is also one that does away with the concept of something that

is closed and foundational.

To ground this again in the bicycle example, the closure of its current form is,

by the ontological move, never actually complete; even if its form is stabilized, its

use and meaning to various discourses is still in flux. To get supremely local, a

mountain bike on the campus of UCSC — a significant destination for mountain

bikers — is either a source of enjoyment and adrenaline or an agent of destruction

for local mountain trails. In this way, analysis of the bicycle vis-a-vis concerned

locals and foreign thrill-seekers opens up the mountain bike to renewed ontological

scrutiny. In the social constructionist mode, both groups exist in different world-

views with perspectives on the correct use of the mountain bike. In the ontological

shift, the use of the mountain bike by a rider, and its interaction with the path,

create the occasion for both opposition viewpoints. That is, the organization of

reality here is created by the actions and interactions of the bike, people, and

path. Woolgar and Lezaun summarize,

Objects are brought into being, they are realized in the course of a
certain practical activity, and when that happens, they crystallize,
provisionally, a particular reality, they invoke the temporary action of a
set of circumstances. . . the new approach eschews the implication that
the world pre-exists representational practices and favors instead the
assumption that practices (which can no longer be considered merely
’representational’) perform the world. (Emphasis in original)36

This shift from social perspectives to ontological performance is neologized as

“ontological enactment”. The objects in an ontology are “enacted in practice”,

deriving meaning and worth from their interactions and movements. For our

purposes, we take the idea of enactment and use it to frame the discussion of

computational platforms. The vocabularies are intended for a specific use in the
36[230] pg. 323-324

105

clarification of records, but they are actually communicating a specific use by the

scholar or patron. By framing the platforms as engaged in a form of enactment, we

imagine them as defined by the choreography of their use.37 The scholar-player,

the data conveyance of the media format, and the “platform” apparatus all work

fulfill the play experience. The enactment of a platform, therefore, forms the basis

for its conceptualization in our controlled vocabulary.

3.2.3 “Aboutness” of Platform

A computer platform is a notably indistinct entity. Definitions from common

reference sources are contradictory and ontologically confusing. Wikipedia states

that a “computing platform” is, typically, “a hardware architecture, an operating

system (OS) and runtime libraries” used to run a piece of software.38 However,

they also list alternate types of platforms that contradict this definition and in

some cases each other. There is a constant conflation of “operating system”, “sys-

tem”, and “console” with “platform” throughout the entry; in many cases the

site uses the terms interchangeably. Merriam Webster also falls into an indis-

tinct ontology, designating “operating system” and “platform” to be synonymous

terms.39 Clearly the constitution of a computing platform is a combination of

different parts all enlisted and mobilized for the representation of software data.
37[230] Woolgar in summarizing Cussins, “Other STS accounts have made use of the idiom

‘choreography’ to describe the practical work of alignment that creates a commensurate world.”
pg. 325. Alignment is needed to coordinate and explain the ways in which a set of objective
interactions can handle or bear the weight of multiple agents. In Cussins’s specific example, he
recounts experiences with ethnographic research into infertility medicine, and how the patients
engaged with the infertility apparatus existed in many different, though coordinated, subject
positions based on their ontological positioning vis-a-vis doctors, other patients, and medical
instruments. The choreography of these various ontological items (here people are also items)
constitutes their meaning and agency in the world, and these ontological constellations must
align and overlap to support the relative positions of the doctors, patients and instruments.

38“Computing Platform,” Wikipedia. https://en.wikipedia.org/w/index.php?title=
Computing_platform&oldid=772442103 (Accessed 3 Apr 2017)

39While this may ring true in certain instances, they are hardly an equivalence class. As we
will see, sometimes an operating system is part of a platform instead of the definition for it.

106

https://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=772442103
https://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=772442103

This section argues for an “aboutness” of platforms that is useful for the purposes

of the controlled vocabulary. It looks at how platforms exist at multiple levels

of abstraction, and shows that those abstractions cause the ontological confusion

and diffusion seen in discussions about platform. Additionally, it proposes a soft

metric of “reasonable compatibility” as the framing conceptualization for the vo-

cabulary drawn from a consideration of the enactment of platforms in research

and community practice.

The above definitions of computational platform are drawn from common ref-

erence sources. Neither Wikipedia nor the dictionary are specifically concerned

with a definition of platform secure enough for a standardized list of terms. Even

in communities dedicated to the study of computer games and their history, the

concept of a “platform” is intentionally complicated and amorphous.

Probably the most well known critical consideration of game platforms is found

in the Platform Studies collection edited by Nick Montfort and Ian Bogost for MIT

Press. Books in the series show how the specific technical constraints of different

computer game platforms limit and focus the expressive potential of the computer

games developed for them. Notably, the definition of “platform” provided by the

editors is all encompassing, and does not try to nail down a fixed set of criteria

for what counts as a platform under review. From the introduction to the series

from Racing the Beam, the inaugural platform studies text,

A platform in its purest form is an abstraction, a particular standard
or specification before any particular implementation of it. To be used
by people and to take part in our culture directly, a platform must
take material form. . . This can be done by means of the chips, boards,
peripherals, controllers, and other components that make up the hard-
ware of a physical computer system. The platforms that are most
clearly encapsulated are those that are sold as a complete hardware
system in a packaged form, ready to accept media such as cartridges .
. . In other cases, a platform includes an operating system. It is often
useful to think of a programming language or environment on top of

107

an operating system as a platform, too. Whatever the programmer
takes for granted when developing, and whatever, from another side,
the user is required to have working in order to use particular soft-
ware, is the platform. In general, platforms are layered-from hardware
through operating system and into other software layers-and they re-
late to modular components, such as optional controllers and cards.40

A platform in this definition is not a particularly fixed entity. It can be a collec-

tion of physical hardware parts, “chips, boards, peripherals, controllers, and other

components”, or a “programming language or environment” or what is “taken for

granted” in development or what is “required” for use. It can be an organization

of physical or logical constructs (in the first two cases), or the potential of the

constructs as enacted by developers or players. A “platform” in some cases has

a material identity and a set of ontologically distinct parts, and in others is de-

fined through those parts and their enactment in practice. In the post-modern

veins of deconstruction and subjectivity, the lack of a center for a definition of

platform allows for a freedom of academic expression and inquiry. A platform can

be any collection of computational structures that constrain and evoke particular

expressions and that manifest communities of practice. This definition in its use

of “abstraction” and the even more ambiguous “whatever” allows each author to

argue for their particular “platform” as one stable enough for critical discussion.

This latitude for the conceptualization of a platform is found in other academic

work. Some argue for the meaning of platform to extend into the game’s inter-

nal systems — for example, Dylan Lederle-Ensign’s argument for the id Tech 3

engine as a platform — that pushes the definition into the technical expressive

apparatus itself.41 Others move in the opposite direction to more general (and
40[158] Montfort, Nick, and Ian Bogost. Racing the Beam the Atari Video Computer System.

Cambridge, Mass.: MIT Press, 2009. pg. 2-3
41[121] Lederle-Ensign, Dylan, and Noah Wardrip-Fruin. “What Is Strafe Jumping? idtech3

and the Game Engine as Software Platform.” Transactions of the Digital Games Research
Association 2, no. 2 (2016). http://todigra.org/index.php/todigra/article/view/35.

108

http://todigra.org/index.php/todigra/article/view/35

problematizing) positions, as in Laine Nooney’s argument for drafting utensils and

kitchen table as platform, or Caetlin Benson-Alcott’s conceit that maybe people

are platforms too.42

The ambiguity of “platform” as an abstract support for computational expres-

sion and as a physical construction for the real execution of data even bleeds into

definitional structures in the history of computer games. Debugging Game History,

a recent MIT Press publication aimed at sussing out the historical foundations for

game history, focuses each chapter on a specific foundational concept in the history

of games. Alongside entries on “Menu”, “Game Camera” and “Character”, there

are also separate entries for “Platform” and “Console”. One is Benson-Allott’s
42In [32] Benson-Allott, Caetlin. “40 Platform.” Debugging Game History: A Critical Lexicon,

2016, 343-49. Benson-Alcott discusses the multiple potential interpretation of “platform” as
interpreted by researchers in a variety of disciplines. She notes Laine Nooney’s discussion of
gender’s influence on “platform” and design:

As a wife and mother in central California in the late 1970s, Williams designed
her first game, /Mystery House/ (Online Systems, 1980), on the platforms she had
at hand — legal pads, unrolled wrapping paper, and the dining-room table . . .
Nooney argues that Williams’s gender had a material and thus a socially meaning-
ful impact on /Mystery House/. Some platform scholars might stop their investi-
gation at the Apple II, with an analysis of how the five-and-a-quarter-inch floppy
disc and Apple DOS influenced /Mystery/ /House/’s structure and its player’s
experience. Nooney challenges them to look deeper, to consider the platform un-
derneath the platform, the relations among gender, wrapping paper, tract houses,
and game maps that make this intra-action of hardware and software, this game
experience, possible.

While this note appears to conflate social-cultural contexts with the materiality of “platform”
as a useful concept for the ontological description of software objects, the point is still valid.
There is benefit in trying to fully ground out the material constraints of any design, even if
they ground out of the hardware and software stacks we’ve been discussing in this chapter.
Additionally, Nathan Altice, in [25] Altice, Nathan. I Am Error: The Nintendo Family Com-
puter/Entertainment System Platform. Platform Studies. Cambridge, Massachusetts: The MIT
Press, 2015, probes into not only the Nintendo Entertainment System’s constraints, but also
the affordances of the cartridge technology underlying the Nintendo Game Pak. He notes that
considering a platform as a fixed temporal structure, even on a technical level, is problematic
given the advances to game design and additional features embedded in Nintendo Game Paks
over the systems decade of dominance in the industry. See chapter 6 “Expansions” for more
information on this point.

109

aforementioned look into the fluidity of platform as an abstract concept, and the

other is a material history of consoles and systems by Raiford Guins.43 That both

exist within this volume, which itself is functioning to define the domain of game

history (and implicitly the valid modes of its study), shows that the ambiguous

duality of “platform” is baked into the foundational discourse of game historical

studies. There will probably not be any attempt to clear it up. While this is not

an issue for historiography, a field well acquainted with a critical focus on its own

epistemological and ontological assumptions, it is a problem if we want a legiti-

mate source for the construction of a basic ontology of platforms. We therefore

need to re-focus our conceptualization (in light of the above) to how the enact-

ment of platforms can function in the service of practical, material considerations

for game history. This requires that we describe, briefly, why platforms are diffi-

cult to differentiate (in some cases) and also how they are (and will be) used by

historians and the game’s community.

3.2.4 Levels of Abstraction

The order of this and the next section is a bit arbitrary. Here we lay out

some basic levels of abstraction and types that help explain the different sites

commonly labeled as “platforms”. In the next section we show how such labels

are “common”, and discuss our community-based methodology for coming up

with platform terms in the vocabulary. The abstraction discussion in this section,

and its organization of types of platforms is based on the reality of how platform

names are used “in-the-wild”. That is, our methodology produced a set of types

and categories that is useful in explaining its results. We therefore need to either

explain the methodology, defining terminology in an ad-hoc manner as we go, or
43[85] Guins, Raiford. “8 Console,” Debugging Game History: A Critical Lexicon, 2016, pg.

63-79

110

we can front-load that terminology to enable a discussion of why it is needed.

This section ordering is a choice of the latter.

So what is a platform for our purposes? And how can we use that definition

to explain the assortment of material objects and systems that fall within it? One

way, as we will see in the next section, is to draw a definition from the people

playing games on platforms and making games for them. Another way is to try and

coordinate all the various definitions into a structure that allows for the expression

of all the other forms. A platform, in our definition, is a layered and networked

structure, any slice or extension of which can be encapsulated under a unified

label that allows another person to come along and use it to execute particular

data. The definition of a platform intimately involves its media formats since the

platform functions as a specific construction that enacts the format’s data.44

Figure 3.1: Platform Abstraction Diagram

If a platform is a collection of layers, then what are they and how to do

they relate? Figure 3.1 presents the basic abstract strata that collapse in various

ways into platforms. The layers are a simplification of the common abstraction
44Our terminology here is a bit loose, since data structures, data, and executable programs

(games) are not cleanly synonymous terms or concepts. However, the basic notion that a
platform is organized for the enactment of an organization of data still stands.

111

layers in a computational system. Each layer maintains a specific set of interfaces

with those above and below. Their specific interactions, while important, are not

germane to their labeling as platforms.45 The important thing is that a platform

can exist as multiple combinations of these layers, and those different combinations

cause them to manifest at different levels in the hierarchy of our vocabulary terms.

The bottom layer, physical hardware, includes the physical components of a

computational system. In addition to a processor, memory, storage, and display

components, this layer also includes physical media interfaces devices and any pe-

ripherals required for user input (keyboard, mouse, game controller, etc.). Above

physical hardware is the hardware / software interface. This layer allows for com-

munication between executable program code and physical hardware. It can take

on a variety of forms, but in our definition represents the most basic interface a

programmer can use to interact with (and affect) a platform.46 The operating

system is essentially a software program that manages the hardware / software

interface for other software programs. Many of the basic tasks in programming
45The basic abstraction layers of computational systems are thoroughly (and probably better)

described in numerous foundational textbooks in computer science and software engineering. For
a much more detailed look, see [88] Hamacher, Carl, Zvonko Vranesic, Safwat Zaky, and Naraig
Manjikian. Computer Organization and Embedded Systems. New York, NY: McGraw-Hill,
2012. [91] Hennessy, John L., and David A. Patterson. Computer Architecture: A Quantitative
Approach. 4th Edition. San Francisco, CA: Morgan Kaufmann Publishers, 2007. [92] —.
Computer Organization and Design: The Hardware - Software Interface. 4th Edition. San
Francisco, CA: Morgan Kaufmann Publishers, 2009. We hope this caricature is not too abhorrent
or simplistic for our technically inclined readers.

46Any simplification of a complex system limits the comprehension of its constraints and po-
tentials, and mollifies or compresses the amount of knowledge needed to interpret it. In many,
many accounts we feel that there is never a significant enough nod to the full complexity of tech-
nical things and how that complexity always undermines any ontological scheme or conceptual
framing. For the hardware / software interface then, we admit that we are glossing over a lot of
potentially problematic terrain, not least of which that sometimes there is not clear distinction
between hardware and software, or that programming can occur completely without software
or, or, or, or, or. To gain a significant understanding of the nuances of hardware and software
interaction we recommend working through [162] Nisan, Noam, and Shimon Schocken, The El-
ements of Computing Systems: Building a Modern Computer from First Principles. Mit Press
Cambridge, MA, 2005, it will provide a significant, embodied understanding of computational
systems (and might even start you on a new career path!).

112

rely on highly repetitive and complex management of interfaces to hardware com-

ponents. An operating system abstracts away those processes and allows for the

creation of even more complex software.47 The general software layer sits atop the

operating system, and can either be game software, or provide extra software sup-

port for another layer of software. In actuality, the layers of software can extend

for many layers (theoretically infinite) above the operating system. However, for

the purpose of definitions, each software layer is object dependent and specific to

the particular game in question.48 We will therefore stop here.

A platform label encapsulates the specific combination of layers generally re-

quired to support a piece of game software. Our vocabulary is aimed at the

recoverable use of historical software in collections, and so the labeling is targeted

towards the acts of play and representation, instead of software development. We

delineate two types of platforms: hardware and software. Each type encapsulates

a different combination of the layers above. A hardware platform is either a com-

bination of physical hardware and a hardware / software interface (designated

as A in figure 1), or a combination of physical hardware, a hardware / software

interface, and an operating system (B in figure 1). The second designation may

be a little confusing since an operating system is software; however there are

many platforms that are almost always explicitly referred to and labeled relative

to their physical hardware and form factor without any mention of their oper-

ating systems. These platforms are generally dedicated specifically to gaming,
47We have engaged in a bit of ontological gymnastics here that warrant some clarification. An

operating system both manages and is constituted by the interfaces provided to the hardware
layer. Operating systems are actually quite layered themselves, with foundational BIOS (basic
input output systems) bootstrapping more complex interfaces that result in systems such as Mi-
crosoft Windows or Apple Mac OS. Operating systems are also manifest in a way that hardware
is not, since the operating can only exist after a collection of hardware interfaces are available
for management.

48“Object dependent” in that each game object has a specific set of dependent software layers
that support it, therefore enumerating all the possible combinations of software layers is not
possible here since it is highly contingent.

113

and usually accept a single media format. Both hardware A and B are treated

as a unified type, hardware platform, for the remainder of the chapter (unless

otherwise specified).

A software platform consists of either the operating system layer, or one or

more software layers. The synonymous relation between a software platform and

an operating system is based on the common requirements found on physical

packaging. In many cases the operating system is the major component necessary

to run a game because it is assumed that if the operating system is present it will

have access, through abstraction, to a correct set of hardware / software interfaces

and the physical hardware they support.49 A software layer “platform” is an

abstraction layer above the operating system that provides a holistic interface

capable of running a game. Web browsers, for example, could be considered

a software-platform for web-based games because the specific operating system

supporting the browser is irrelevant from the perspective of the game contained

within it.

A computer game platform is then any computational system capable of sup-

porting an instance of game software. Since most general computing devices (those

not dedicated specifically to games) also support game software, general systems

are included in the vocabulary terms.

3.2.5 Derivation of Terms

The vocabulary terms are derived from extensive research into community and

collection institution practices. There is no authoritative source for information on

the proper designations for platforms and media formats. Standard vocabulary
49One of the strengths of the much maligned Microsoft Windows operating systems is their

ability to manage (and function atop) a incredibly diverse set of physical hardware and hardware
/ software interfaces. This breadth of support is also a cause of some of the operating systems’
issues and reputation.

114

operating procedure states that new knowledge organizations should be based

on the community labels used by practitioners in a given domain. For games

this meant looking into a variety of online community sources and investigating

the current practices in library collections. This section briefly describes the

aggregation work that formed the base data set for the selection of vocabulary

terms.

To begin the investigation, we collated all references to platforms and media

formats we could find, both online and in the collections at Stanford University

Library and UCSC Library. Initially, based on the sheer number of available

references, we limited our scope to hardware platforms. We specifically focused

on dedicated gaming platforms that would most likely be found in library and

archival collections. The initial research pass aggregated information from online

finding aids and a collection of websites that we thought covered most of the

colloquial and technical names for platforms. The online sources were split into

three categories, Wikipedia, game community sites and commercial sites. Below

is a table of the number of individual platform references found both online and

in our local collections.50

The numbers in Table 3.2 represent the number of unique platform names after

disambiguation and cross-referencing for similar labels.53 For each aggregated
50The Wikipedia listing is definitely a significant under-estimate, but we only grabbed refer-

ences that were explicitly stated as being computer game platforms.
51Wikipedia’s number of platforms is specifically dedicated to computer game hardware en-

tries. Virtually every computing device ever made, which is many thousands, has an article, but
they are not counted here. Also, Wikipedia does record media formats, but there is no singular
listing of storage media available on the site.

52Due to an archival setup that does not distinguish between types of hardware, the platform
listing for the Cabrinety Collection is of the total number of hardware items in the collection.
Potential platforms will likely be much lower (around 200).

53The numbers here illustrate the breadth of platforms and their number. No two resources
used the same level of technical granularity; therefore, the operating system numbers likely in-
clude many minor versions that will eventually be removed. Also, many sites did not distinguish
between platforms and operating systems.

115

Table 3.2: Aggregated Number of Potential Platforms and Formats Per Collec-
tion

Source/Collection Platforms Operating
Systems
(if listed
separately)

Media
Formats
(if listed
separately)

Wikipedia51 182 Over 1,000 –
Amazon 44 – –
Ebay 43 – –
GameStop 29 – –
Giant Bomb 142 – –
MobyGames 168 – –
PlayAsia 46 – –
Universal Videogames List 179 – –
Video Game Console Library 110 – –
UCSC Library 27 13 –
Stanford’s Stephen Cabrinety Collection 44652 790 53
GAMECIP Aggregated Listing 410 – 150

platform name further research was conducted into its media format, peripherals,

alternate names and versions, and any other information that helped with better

description and identification. An example of this extended information is shown

in Table 3.3 the Atari Video Computer System, more commonly known as the

Atari 2600.

Table 3.3: Example Research Entry for a Platform (Before Disambiguation)

Platform Alternate Name Alternate Ver-
sion

Format Operating
System

Peripherals

Atari 2600 Atari Video
Computer Sys-
tem (VCS);
Sears Video
Arcade

Atari 2600
Jr.; Atari 2800
(Japan); Coleco
Gemini (clone)

ROM
cartridge;
Cassette
tape

None Joystick;
Paddle

The sheer number of potential platforms (and the extensive amount of infor-

mation online) caused us to limit the initial terms to those immediately applicable

to items within our local collections, or those that would be most likely available

116

in non-specialized game collections. Additionally, the decision to avoid software

platforms proved untenable. A significant amount of games in both local collec-

tions required some form of Microsoft Windows (and provided no other salient

platform information aside from that operating system on their packaging).

3.2.6 Format, Conceptualization and Reasonable Compat-

ibility

A computer game media format is any collection of game data encapsulated in

physical medium that requires a platform for presentation to and interpretation

by a human being. Media formats generally consist of some means for non-volatile

data storage, and physical interface to connect to a platform. For a quick example,

a floppy disk is a magnetic storage disc (non-volatile storage), enclosed in a square

protective sheath (physical interface) that is inserted into a floppy disk drive

(connection to platform) and interpreted.

The relationship between a media format and a platform is essential to the

delineation of platform terms in the vocabularies. A game resource in a given

collection consists of a media format storing the game’s data and complemen-

tary packaging that, hopefully, provides enough information to determine the

resource’s target platform. Because the structure of a game resource’s media for-

mat requires a specific supporting platform, that platform can therefore be defined

as a computational configuration that supports a class of media formats of which

the resource is a member. That is, the enactment of a media format with respect

to its platform is also a way to define a platform as a technical configuration that

provides support for a media format and its data.

When dealing with actual game resources in historical collections, being able

to determine their supporting platform — the one they are compatible with —

117

ends up as the paramount descriptive concern. In this way the correct assignment

of platform information to a media format (and the data contained within it)

is the crux of the whole vocabulary operation. The conceptualization we use in

delineating different platforms, or in considering their correct, canonical names,

is based on the assumed needs of the people who will make use of or describe a

game’s data in the future. We assume these needs are to get the game running

again, even in some limited capacity. Compatibility is then a key consideration

because anyone coming to a resource at a future point will need to know about

the basic requirements for its use. This use (or enacted) assumption means that

the differences between platforms manifest in their compatibility with different

classes of media formats (and by generalization, different data formats). Discrete

platform terms in the vocabularies occur when they provide for a different set of

compatibility classes for a resource. In this way, we link the conceptualization

of the terms in our vocabularies to a presumption about the terms’ future use

is helping to identify the correct platform for a resource. The conceptualization

for a platform term is then to provide a label for the configuration of abstraction

layers compatible with game data stored in a media format. And further, the

conceptualization is aligned with the enactment of a media format’s data as the

basis for a platform’s definition.

There are two types of incompatibility accounted for in the vocabularies: re-

gion and version. Region incompatibility is when a platform is modified into

mutually incompatible versions based on the geographic region of its commercial

release. This incompatibility is usually the result of business decisions to pre-

vent cross-market sales, or the result of conflicting technical standards for phys-

ical hardware components. Version incompatibility refers to situations where a

modification to a specific platform results in it being unable to support software

118

created before the modification. This is most present in the versioning of software

platforms, like operating systems, where the main version number stands as an in-

dicator of compatibility. The granularity of a versioning change can have a variety

of effects on its broader compatibility with games. Therefore, many incremental

versions (especially in operating systems) will require a new platform term.

Versioning and compatibility is a slippery ontological slope, considering that

although minor changes in operating systems, software libraries, and application

programming interfaces (APIs) are never supposed to break compatibility, in prac-

tice they do so frequently. This presents a problem for the platform vocabulary

since our conceptualization is tied to compatibility, and any conceptualization

should account for specific entry for each term. Recall that specific entry is the

need to only make a term as specific as a particular conceptualization requires.

In choosing compatibility as our metric, have we created a situation that will in-

variably lead to thousands of potential terms for each version of every software

platform? We certainly want the compatibility information to be as specific as

possible, but we also want the vocabulary to be approachable for non-specialist

cataloging. To deal with the potential proliferation of software platform terms, we

adopt a criterion of “reasonable compatibility” with respect to versioning. Rea-

sonable compatibility means labeling a particular media format with a platform

label to the extent that a future, historically aware and motivated patron, could

make a reasonable assumption about further platform details and needs. It also,

inversely, applies to the application of platform terms in records, where a cataloger

can make a reasonable assumption about the platform label based on information

from packaging or contextual documentation.

A good example of reasonable compatibility is the Doom cataloging example

from this chapter’s introduction. The current record simply says that Doom is for

119

DOS, and is probably a reflection of the information available on the packaging.

Without any further information, the term recommendation from our vocabulary

would be “Microsoft MS-DOS” or if the packaging declared further “Microsoft

MS-DOS 3.X” (if we used the actual minimum requirement for Doom). A re-

searcher wanting to use that resource today would at least know that the game

is for a version of MS-DOS, and luckily, the DOSBox emulator supports most

versions of that operating system. Therefore, a reasonable level of description for

this version of Doom does not need to get very specific before we have enough

information to recover it. Now, the assumption of reasonable compatibility does

not preclude the continual extension of the vocabulary into a giant list of sub-

versions, but it allows for less specialist investigation and knowledge in the use

of the vocabulary terms when a specific granularity is not present. Additionally,

as we will see in the cataloging discussion below, historical practice has required

the full description of system requirements as appears on packaging, and those

descriptions include versioning specifics in many cases. A purpose of the vocab-

ulary terms is to provide a mapping from the non-standard system requirements

for game software to standard platform labels. As a result, a search for a specific

platform term in a finding aid would return, within an assumption of reasonable

compatibility, a listing of game resources that will probably have further system

requirements germane to their specific compatibility constraints.54

After sorting through the conceptualization and describing the motivation and

methodology behind the vocabularies, we are ready to provide their template
54Reasonable compatibility also applies to media formats in a more limited capacity. As

Nathan Altice’s work in I am Error has shown [25], the specific versions and internal technical
configurations of Nintendo Entertainment System Game Pak’s lead to a variety of emulation
reproduction issues. While specific labeling of versions for media formats might be possible, it
does not fall under the reasonable compatibility criterion, especially in regard to non-specialist
catalogers who might not be aware of the nuances of format engineering nor able to divine the
version of a media format without a literal internal inspection.

120

naming conventions. For platform entries we use:

{Company / Corporation Name}

{Platform full commercial name}

{Region (if applicable)}

{Version (if applicable / reasonable)}

An entry for a platform, in this case Sony PlayStation 2 released in North

America would read:

Sony (Corporation) PlayStation 2 (Platform) NTSC-U/C (Region)

Media format entries have a similar organization:

{Company / Corporation Name}

{Format full commercial name}

{Region (if applicable)}

An entry for a media format, in this case a Nintendo Entertainment System

cartridge would read:

Nintendo Entertainment System Game Pak (Company / commercial name)

NTSC (Region) 55

The company or corporation responsible for its manufacture prefaces each

vocabulary item. Many packaging styles we examined feature truncated or alter-

nate names and in some cases the manufacturer is not explicitly mentioned. We

felt that future search needs of users would most definitely include the company

names associated with the platforms and wanted to make sure they appeared in

each record. The truncated or contemporary colloquial names available on pack-

aging were also sometimes not distinct, so we enforced use of the full commercial

name for a platform when possible.
55Nintendo generally precedes all of their proprietary format names with their company name.

In cases where the company name was embedded within an official commercial name the Com-
pany / Corporation Name field is ignored.

121

3.2.7 Semantic Web Integration

This section provides an overview of the controlled vocabularies’ integration

into the Semantic Web through linked data frameworks. It briefly describes the

motivations behind the Semantic Web and linked data, and then describes the

controlled vocabularies encoding in the Simple Knowledge Organization System

(SKOS). This is the final section outlining the development of the controlled

vocabularies, after which we proceed to cover their effective use in modern infor-

mation retrieval and knowledge representation systems.

Linked data, as outlined in the best practices in Bizer et al.’s Linked Data —

The Story So Far, “refers to data published on the Web in such a way that it is

machine-readable, its meaning is explicitly defined, it is linked to other external

data sets, and can in turn be linked to from external data sets.”56 Linked data

is contextual semantic information embedded in online data in such a way that

knowledge organization systems can use it to make inferences about that data

and its relationship to other heterogeneous sources. The motivation for the use

of linked data to describe and represent the vocabularies is driven by the current

(though still evolving) library and information science practices. Essentially, the

future of online catalogs and other knowledge organization systems for collection

institutions is going to be based on linked data. The prime mover in this area is

the Library of Congress and its proposed shift from the legacy MARC format (dis-

cussed below) to the new Bibliographic Framework (BIBFRAME).57 BIBFRAME

is a linked data format, in that its metadata fields are composed of the same linked

data URIs that constitute the Semantic Web. As such, many current controlled

vocabulary efforts are structured in linked data in anticipation of future integra-

tion into the Semantic Web. We cover the vocabularies’ use in cataloging and
56[36] pg. 2
57Bibframe reference

122

archival standards in the next section, since there is a bit of groundwork to cover

in explaining how they work. For the remainder of this section, we elaborate on

how the vocabulary is embedded into the SKOS linked data framework, including

the conceptualization of reasonable compatibility.

SKOS vocabularies are implemented by way of linked data triples; concept-

predicate-concept relations composed of universal resource identifiers (URIs). SKOS

is also specifically designed to encode controlled vocabularies and other thesauri-

like organizations of terms. Each platform and media format entry is a SKOS

“Concept,” meaning that the label for the “Nintendo Entertainment System (NTSC)”

is attached to a URI pointing to “Concept”’s definition. If we want to link the

“Nintendo Entertainment System (NTSC)” to its media format “Nintendo En-

tertainment System Game Pak (NTSC)” we used a SKOS “related” property,

meaning that the platform “Concept” is linked to the media format “Concept”

by way of a “related” property.58 Figure 3.2 below illustrates this basic triple,

consisting of two Concepts, two string properties, and a relationship property.

As shown in Figure 3.2, each entity is linked to a URI that provides a stable,

definitive reference to its meaning. URIs link both the platform and media format

Concepts to their vocabulary definitions. Those definitions are linked, again via

URI, to the definition of a SKOS Concept. The related property is also linked via

URI to its definition in the SKOS namespace (as shown in Figure 3.2).

SKOS provides a number of descriptive and relational properties that are useful

for controlled vocabularies. The platform and media format vocabularies make use

of: narrower and broader relations to organize the specificity of terms; preferred
58A SKOS property is synonymous with a logical predicate. A predicate is a simply a logical

statement reflecting a binary (true/false) relationship between two things. In this case the SKOS
“related” property means that the platform Concept has a related media format Concept. The
property is technically a predicate with the label “has related”, meaning that is it “true” that
the platform has a related media format.

123

Figure 3.2: Basic Simple Knowledge Organization System (SKOS) Diagram

124

and alternative labels to position colloquial names underneath our canonical ones;

notes to provide additional description and context; and inter-vocabulary related

relations that map media formats to compatible platforms. Figure 3.3 presents

the basic hierarchy of terms. All SKOS vocabularies are organized as tree struc-

tures, with a unifying top-level concept that is linked to more specific (narrower)

concepts below. Each concept node provides a higher-level parent concept (and

definition) for the concepts in its respective sub-tree. In the platform hierarchy,

higher-level concepts include (in order of descending levels) “computer game plat-

form,” “hardware platform,” “software platform,” “general hardware platform,”

“dedicated hardware platform” and “operating system”. The media format hi-

erarchy is less complex, only differentiating between “general” and “dedicated”

formats. This is mainly used to signify that the “general” formats will probably

work with a larger variety of platforms.59

Figure 3.3: SKOS Terminology Hierarchy

Figure 3.4 shows version and region compatibility as expressed in the SKOS hi-

erarchy. The hierarchies express the principle of reasonable compatibility through
59The media format vocabulary is also less specified since it was an off-shoot of the work

on platforms. “Future Work” below outlines some means of improvement in the classification
scheme.

125

Figure 3.4: Region and Version Compatibility. 1 and 2 signify potential previous
and future versions, whereas 3 allows for further specific versioning.

126

recommendations to use the term that most specifically aligns with the informa-

tion available on a resource. In some cases the specific media format or platform

might not be comparable with a term at a leaf node in the tree. The vocabulary

usage guidelines recommendation traversing up to the most identifiable parent

node. In some cases just knowing that a resource uses any version of Microsoft

Windows is an improvement to most cataloging and archival records.60

3.2.8 Vocabularies in Institutional Practice

This section outlines the controlled vocabularies’ use in institution knowledge

organization systems. The focus is primarily on library catalog finding aids, and

item-level description in archival records. Both use cases are drawn from actual,

practical work being done at both Stanford University Libraries and UCSC Li-

brary. The goal is twofold: to show how the vocabularies are a contribution to

current cataloging practices in both archives and libraries, and to serve as a mild

probe into the state of institutional knowledge management of software resources.

In line with the goals of this thesis, which is a look into the state of games as

objects of historical study, the actual practice of recording and managing the ob-

jects of game history is certainly a significant part. Rarely do historically minded

scholars collaborate directly with library and archival personnel to improve the

description and access to records. As game studies scholars, our work with these

professionals is so far the only collaboration that has had a direct influence on the

practical cataloging work of games or software. Future work discussion at the end

of this section will elaborate on the continued potential for further collaboration.
60The description of the SKOS hierarchy in this section as well as the above sections on

levels of abstraction and methodology are based on the aforementioned article, “Implementing
Controlled Vocabularies for Computer Game Platforms and Media Formats in SKOS”. We rec-
ommend looking to the publication for more information on the SKOS descriptive work and
the methodological issues that arose in trying to organize platform terminology based on online
resources.

127

Hopefully this work is just the beginning.

Institutional Context

Before describing where, exactly, the controlled vocabulary terms are posi-

tioned in cataloging and archival practices, a little housekeeping is in order.

This section outlines the basic differences between general collections and spe-

cial archival collections in regards to cataloging.

Cataloging practices vary greatly depending on the goals and infrastructural

constraints of a particular memory institution. For library general collections,

like university stacks or public library collections, most items are described in an

online catalog or finding aid. This item-level description, for software at least,

usually includes a title, publication information, and the relevant call number

(for physical items) or a link to the proper information in an online repository.61

Library staff curate collections based on the needs of the communities they serve.

This is a main distinction, since general collections support the circulation of

items, those items need to be managed and described as individuals.

For archives (or special collections), collections are not usually curated at the

item-level. Archives generally deal with collections of documentation organized

by outside parties, like corporations or individuals. These collections are acces-

sioned, and then maintained in manner that explicitly avoids tampering with their

natural organization. This preservation of the potential disorder of an archival

collection is known as the respect des fonds. That is, there is contextual value

inherent to the organization of documents, and any significant disruption of that

organization might negatively impact their historical study. This is tied to the
61Currently there are very few institutions that provide online access to software data. This

is another motivation behind the controlled vocabulary work; to make the designation and
standardization of platforms and formats a more ingrained and established process so that when
migration to digital repositories occurs in the future software data will not need re-description.

128

notion of provenance, in which every reasonable effort is made to maintain the

authoritative source and position of an archival item. When provenance is ignored

or fonds disrespected, there is potential for items to become lost or decontextual-

ized to the point of irrelevance. Therefore, in many instances archival collections

do not and cannot use the same systems as general catalogs, being as they are

more diverse, and dependent on more specialized knowledge.

Given that most research institutions have significant cataloging needs, and

that those needs are probably similar in respect to collection management, most

places ascribed to a common set of standards. In North America and Europe,

most institutional catalogs describe items according to the Resource Description

and Access (RDA) guidelines. These guidelines provide a set of core descriptive el-

ements that should exist in any cataloging record. Cataloging records themselves

are generally implemented in data formats designed for use with knowledge orga-

nization systems, like online catalogs. Although RDA does not require a specific

data format for record description, the largest unified catalog in the world, main-

tained by the Online Computer Library Center, implements all its records in the

MARC21 format. As such, a majority of the research institutions in the United

States and Europe now use the MARC standard in their collections. MARC

stands for “machine readable card,” an anachronistic acronym derived from its

initial implementation for punch cards in the late 1960s. MARC21 is simply the

current, internationally unified version of the MARC standard.

Data requirements for archival institutions vary greatly in comparison to gen-

eral collections. Because each archival collection is a unique, and each institution’s

archival specialty distinct, archival management standards are not universally im-

plemented. As a result, while standards do exist for archival collection descrip-

tion, their breadth of use cannot be assumed in the same way as the cataloging

129

standards. As such, most of the discussion of the vocabularies’ contribution to

archival records practices is based on the practical working conditions of Stan-

ford and UCSC — and therefore cannot be as comfortably extrapolated to other

institutional contexts.

The transition to digital object production over the last 40 years significantly

upended the standards and approaches of traditional catalogs and archival repos-

itories. The MARC format and RDA’s predecessor, the Anglo-American Cata-

loging Rules Version 2 or AACR2, arose out of a world dominated by print media

production. Both RDA and MARC carry with them a structural bias for print

media description. They have retroactively adapted to cover the needs of digital

object description, but the fit is awkward to say the least.62 Similarly, archival in-

stitutions are also dealing with the shift from physical to born-digital collections.

Luckily, there are quite a few emerging standards for object description in digital

archives can adequately handle software data.63

Controlled Vocabularies in Context

Any contribution to the practice of library and archival professionals has to

conform to their standards, and fit in with their practical constraints. This section

lays out three of the current possible use cases for the vocabularies based on

their status as Library of Congress term source codes and hosted semantic web
62The next section will cover this claim in a bit more depth.
63The Preservation Metadata: Implementation Strategies (PREMIS) Data Dictionary [12]

covers description of common transformations for archival data, including migration. It also
provides for somewhat extensive technical dependency descriptions, however software applica-
tions are primary included in PREMIS as a means for the representation of other data files.
This does not preclude them from being described in the standard, it just makes them slightly
tougher to fit in. McDonough et al. [149] conducted significant research on the Open Archival
Information System (OAIS) and its applicability to Don Wood’s and Will Crowther’s Adventure
text adventure game. They concluded that OAIS is not a perfect fit, but can be articulated
to cover software instances with certain caveats mostly related to the level of specification for
software dependencies.

130

vocabularies. The purpose is to illustrate how the vocabularies can potentially

affect and improve practice in each case area.

The three use cases for the vocabularies are:

1. As a recommended source for platform terms in RDA best practices for

computer games

2. As a recommended source for platform and format terms in GAMECIP

metadata mapping guidelines for computer games

3. As a potential source vocabulary for platform and format terms in archival

item-level descriptions

The use cases progress from the world of general collection cataloging (1) to

archival collections (3) by way of the mapping guidelines (2). Before diving into

the use cases, there are two phrases passed by in the preceding paragraph that

we need to grab hold of first and explain: “Library of Congress term source code”

and “hosted semantic web vocabulary.”

The Library of Congress maintains a significant collection of controlled vocab-

ularies that function as the canonical sources for specialized information in record

data formats. Having a “source code” in this sense is to have a label for the source

of the information found in a record. It is an official way to tie the value of a

certain metadata field to an authorized, canonical source for that value. In the

case of the controlled vocabularies, being a product of the Game Metadata and

Citation Project (GAMECIP), the official source codes for the vocabularies are

“gcipplatform” and “gcipmedia.” This means that when a term from either vocab-

ulary is used in an archival or cataloging record it can be linked back to an official

source in the Library of Congress that can provide more contextual explanation

of the term. A source code also allows gives the cataloger an assurance that the

131

term has been validated and approved for use by requisite experts. The first use

case will explain how this source code fits into current general cataloging practice.

The Library of Congress source code listing for both vocabularies is directly

linked to their entry point in the Semantic Web. As mentioned, the Open Meta-

data Registry hosts and maintains Semantic Web controlled vocabularies and

metadata schemes. The Semantic Web is essentially a giant semantic knowledge

graph shared by a growing number of sites online. The OMR provides for the host-

ing of SKOS vocabularies and links them to the larger semantic web graph through

a SPARQL endpoint. All this means is that when a request is made to search for

semantic web information, the OMR provides that search with its hosted vocabu-

laries. So, for instance, if another group started a computer hardware vocabulary

and linked to the platform vocabulary through a SKOS “related” property that

“related” connection could potentially return information from the platform vo-

cabulary when the hardware vocabulary is searched. The OMR also provides for

resolution of human-readable description for controlled vocabulary terms. Each

term in the platform vocabulary is a SKOS Concept node with a specific URI. That

URI, always prefaced with “http://gamemetadata.org/platform/{platform id}”

or “http://gamemetadata.org/media/{media id}”, is a link to a website de-

scribing a specific platform or media format term. In summary, the controlled

vocabularies being semantically hosted means they are accessible to higher-level

semantic web search structures, and that interested parties can always find out

the meaning of a vocabulary term in an online catalog or archival record if the

term is annotated with its official LC source code. The use of semantic controlled

vocabularies is a rather new practice, but falls in line with similar moves by other

institutions, most notably the RDA cataloging standard (which hosts its terms on

the OMR), and the controlled vocabularies for public broadcasting (PBCore).64

64Full, consistent standards for semantic web data, and linked data for institution records

132

The ability to find values in a record metadata field and link them back to contex-

tualizing information (as well as making their semantics machine-interpretable) is

one of the reasons why “linked data” is so named, and why it is exciting to the

world of knowledge organization.

With the explanation of the controlled vocabularies’ location as hosted seman-

tic web vocabularies with an associated LC source code, we can now proceed to

show what that means in practice.

RDA and Best Practices for Computer Games

As mentioned, Resource Description and Access (RDA) are a set of cataloging

rules that apply to most collections in North America and Europe. RDA is tech-

nically the third version of the Anglo-American Cataloging Rules (version 2, thus

AACR2, drafted in 1978). As an update to previous cataloging rules based on

print media, RDA inherited a bit of ambiguity in regards to computer games and

software records. Fortunately, as a result of collaboration with the GAMECIP

project, the Online Audiovisual Catalogers (OLAC) recently published a set of

best practices for computer games.65 Additionally, one project member, Greta de

Groat, also published a detailed history of cataloging rules for computer games.

Both documents allow for a significant improvement in the treatment of computer

are still in their infancy. For further, thoroughly worked examples, see [36] Bizer, Christian,
Tom Heath, and Tim Berners-Lee. “Linked Data-the Story so Far.” International Journal on
Semantic Web and Information Systems 5, no. 3 (2009): 1-22. [195] Southwick, Silvia B.
“A Guide for Transforming Digital Collections Metadata into Linked Data Using Open Source
Technologies.” Journal of Library Metadata 15, no. 1 (January 2, 2015): 1-35. doi:10.1080/
19386389.2015.1007009. PBCore [10] is the Public Broadcasting Core Metadata Elements and
Controlled Vocabularies.

65The Game Metadata and Citation Project (GAMECIP) [7] is a larger research project from
which both the best practices and the controlled vocabularies arose. It was fortunate that the
project tackled many issues in cataloging concurrently, so that each contribution could connect
up with and build on each other. In this section specifically de Groat’s History of Computer
Game cataloging was an earlier project output that then informed the approaches taken with
the implementation of controlled vocabularies that themselves found a way into best practices.

133

doi:10.1080/19386389.2015.1007009
doi:10.1080/19386389.2015.1007009

games in catalogs, and provide much needed context for historical records of com-

puter games. This section briefly describes the historical condition of computer

games in cataloging records as a way to illustrate the historical contingency of

different descriptive strategies for software in collections, and how fleeting and

brittle they can be. It then shows how the current best practices — with assis-

tance from the controlled vocabularies — help to strengthen new record creation,

adding more stability and providing a deeper methodology than has previous been

directed to software records in catalogs.

The history of game cataloging begins in 1978, with the inclusion of “machine-

readable data files” in chapter 9 the AACR2 cataloging rules.66 That chapter also

optionally provided for a general material designation (GMD). An additional label

for non-print materials appended after the title. For instance, Star Wars, for the

Atari 2600, might be given the title “Star Wars [machine-readable file],” if inserted

into a catalog in this period. The use of “machine readable file” and chapter 9 in

general mark the initial inclusion of any descriptive rules for computational data

in cataloging records.

Computer games, as an explicit category of computational media, first appear

five years later in Nancy Olsen’s 1983 A Manual of AACR2 Examples for Mi-

crocomputer Software and Video Games. They are described as “electronic toys

or games that are typically issued in cartridge carriers and are manipulated by

hand controls.” This equivalence between video games and electronic toys led to a

recommendation in Olsen’s document that games be considered for coverage un-

der AACR2 chapter 10 rules. de Groat notes that chapter 10 pertains to physical

realia. The updated AACR2 recommendations, therefore, placed computer games
66Most of the quotes in this discussion of the history of computer game cataloging are drawn

from Greta de Groat’s aforementioned article, [62] de Groat, Greta. “A History of Video Game
Cataloging in U.S. Libraries.” Cataloging & Classification Quarterly 53, no. 2 (February 17,
2015): 135-56. doi:10.1080/01639374.2014.954297.

134

doi:10.1080/01639374.2014.954297

in the same ontological basket as physical toys and games, and led to a general

designation of “[game]” instead of “[machine-readable file]” in cotemporaneous

records. Olsen’s manual reflects the guidelines put forth by a “computer software

in cataloging” task force report from around the same time. That task force rec-

ommended that the program statement — a description of the organization of the

computer file resource — include some mention of the physical media storing the

program. Previous program statements had included the number of individual

files, and in some cases the number of lines of source code, but had left out — or

had no vocabulary for — the physical form of the data’s carrier.

A year later, in 1984, the American Library Association (ALA) began recom-

mending the inclusion of a System Requirements note to consolidate “all technical

information, such as make and model of machine, memory, operating system, and

so on . . .” for a computational resource. There was no thought to standard-

ization of the system requirements information given the rapidly changing state

of the computer industry, and the lack of industry standards for requirement de-

scription. System requirements became a required field in the 1988 update to

the AACR2. This update also began the recommended practice of attempting to

retrieve title information from a game’s title screen (in line with principles from

film cataloging). If the cataloger could not play the game, physical packaging

would suffice.

Other significant additions in the 1988 AACR2 update were another change

in the general designation, this time from [machine-readable file] to [computer

file], and the inclusion of a small controlled vocabulary for physical data carriers

(media formats). The physical carrier types at that time: computer chip cartridge,

computer tape cartridge, computer tape reel, computer laser optical disk, and

computer laser optical card, are very general and apparently are not drawn from

135

anything other than the types encountered by catalogers at the time.67 The change

in designation from “machine” to “computer” is appropriate given that a computer

(as a sub-class of machine) probably appeared to be a rather anachronistic notion

by the late 1980s. It is important to understand the historical contingence of

these descriptions, however, in thinking about how our current terminology and

conceptions might become dated or confusing in the near future.68

de Groat mentions that an additional historical anomaly, the early 1990s dis-

cussions of “interactive multimedia,” produced a complementary (and sometimes

highly contradictory) set of recommendations. These recommendations grappled

with how to describe computer-based resources “residing in one or more physical

carriers . . . or on a computer network” that consisted of “(1) user-controlled

non-linear navigation using computer technology and (2) the combination of two

or more media (audio, text, graphics, images, animation, and video)”. de Groat

comments (and we agree with post-convergence hindsight in 2017), “these seem

like relatively ordinary characteristics for computer resources.” As a result the

general designation of [interactive multimedia] is still available and sometimes

applied to game resources.

The last major change in AACR2 rules came in 2001, with another shift in

general designation, from [computer file] to [electronic resource], and a recommen-

dation to describe the physical carrier in “conventional terminology” of the time.

Both changes appear to be a retreat from clarity. The shift from “computer”

to “electronic” permeated all descriptions. “Computer data” became “electronic

data” and “computer program” became “electronic program.” The [electronic re-
67In discussion with de Groat she mentioned that she could find no evidence of the reasons

for these five specific carrier types or their level of granularity.
68It is this author’s opinion that most computation qualifiers currently in use, like “digital”,

“computational”, and “data”, will decline rather precipitously over the next generation. Digital
humanities → humanities, computational media → media, and data science → science. That
things are “computational” will be long taken for granted.

136

source] designation appears to have been implemented in response to print-based

resources making the jump to digital representations. Computer programs ap-

parently received secondary consideration after “electronic books” and “electronic

journals.” The use of “conventional terminology” — and a lack of controlled vocab-

ulary — led to a “wide diversity of physical description formulations for computer

games,” specifically in the description of optical disc formats (like those targeted

for specific game platforms, Sony PlayStation or Microsoft Xbox, or different

rewriteable formats, CD-R, DVD-R, DVD-RW, etc.)

One final shift occurred with the new RDA rules in 2010. This is the cur-

rent standard cataloging rule set, and in updating from AACR2 RDA adapted

a more deconstructed notion of content. RDA did away with general material

designations, instead presenting a set of content, media and physical carrier types

to be used in item descriptions. Available content types are now only “computer

program” or “computer dataset,” and more problematically, computer games are

specifically listed as “two-dimensional moving images” or “three-dimensional mov-

ing images” with no explicit requirement to label them as computational. Fur-

thermore, there is now no distinction between a CD-ROM containing static video

data and one containing computer game program data. That is, no explicit way

to differentiate interactive versus static content directly in resource descriptions.69

As a quick recap, the general designation for computer game changed from

[machine-readable file] to [game] to [computer file] to, potentially, [interactive

multimedia] to [electronic program] to “two-” or “three-dimensional moving im-

age” over the last 40 years. Notes on the physical carrier type for a resource now

rely on a handful of generic terms for computational media and a recommenda-

tion on historically contingent “conventional” terminology. Additionally, system
69This is a hypothetical situation based on the reading of the actual requirements. In practice

other aspects of the record will probably make it rather clear whether the item is a video dataset
or a computer game program.

137

requirements, first recommended in 1985 and required in 1988 are now no longer

required “beyond what is normal and obvious for the type of carrier or type of file.”

Uses of “normal,” “obvious,” and “conventional” are problematic since they rely

on the implicit, unexamined assumptions of the individual doing the cataloging

at a specific time.

The controlled vocabularies now enter the picture as a way to (pun intended)

set the records straight. The aforementioned best practices for computer games

focus on the application of the RDA rules to computer game resources described

in the MARC data format. Recall that the MARC format is the US and European

standard catalog record format. It is essentially a set of coded three digit fields

whose contents are recommended by RDA guidelines.70 Each field allows for

further sub-field qualifiers, “$” symbols followed by alphanumeric characters. For

instance, the “title” of a resource is placed in field 245 following a “$a” sub-field

qualifier:

245 00 $a Need for speed: undercover71

The MARC format is designed to ease the sharing and organization of bibli-

ographic records, especially records that describe the same item located in two

different institutional collections. Common practice among catalogers is to first

check with WorldCat, the OCLC international database of MARC records, to see
70This is a gross simplification but serves our comprehension purposes. A better description is

provided by de Groat, “The MARC bibliographic formats have different fields and byte sequences
that are conditional on a byte in the Leader. Leader/06 determines the format of the record,
and determines the workform that a cataloger will see in OCLC or other cataloging system
when they input a record. Leader/06 ‘m’ is the value for ‘computer file,’ which controls the
fields defined for the MRDF format.” MRDF stands for “machine readable data file” and is a
computer interpretable encoding of the MARC standard.

71The “$a” qualifier stands for “title proper”, as in “this is the proper title of the resource”.
Due to issues derived from book series titles, franchise names are usually separated from sub
titles in conventional records. This creates a problem with search, since most games in franchises
would be difficult to locate based solely on the franchise title (there would be a lot of “Need for
Speed”s). The $a designates that the colon(:), which would usually demarcate a sub-title (and
thus be placed after a $b subtitle qualifier) is (in fact!) part of the full title of the resource. The
lowercase title is a standard for catalog descriptions.

138

if the item they need to describe already has a full record. If so, that record

is adapted to the local collection’s context, leaving most of the information un-

changed. This practice is known as “copy-cataloging” and while it is convenient

for some materials, it is particularly problematic for computer games and other

software. As we saw in the brief outline of cataloging history, the designation and

description of computer software records changed frequently and significant over a

relatively short period. This means that any item entering a collection now could

have (depending on its age) a rather arbitrary set of descriptions for its content,

system requirements, physical carrier and general designation. The best practices

are an attempt to prevent some of this mess going forward. The vocabularies,

in conjunction with the best practices, are an effective first step towards more

historically stable records.

Finally, the controlled vocabularies find a place in this morass of cataloging

history and minutiae. The best practices recommend the use of the platform vo-

cabulary in both the system requirements and platform designation fields of the

MARC format. The system requirements field 538, is that catchall description

field for any requirements found on packaging (or online in the case of born-digital

games). However, since the descriptions are not standardized, the recommenda-

tions call for the explicit use of a vocabulary term when discernable. Additionally,

they recommend that the same term be placed in the platform designation field

753. The 753 field, as a result of GAMECIP’s efforts, now supports a linked-

data compatible sub-field qualifier for LC source codes. This allows for the use

of an explicit URI, or the LC source code shorthand to be included in all future

computer game records. For example:

538 __ $a System requirements: Sony PlayStation 4.

753 __ $a Sony PlayStation 4 $2 gcipplatform

139

or:

753 __ $a Sony PlayStation 4 $2 http://gamemetadata.org/uri/platform

The ability to use a controlled term for platform designation is a significant

contribution to the practical cataloging of computer game software; one that is

already beginning to see use at both Stanford and UCSC Libraries.

Sadly, the guidelines for physical carrier description are still stuck with the

current batch of seven controlled terms.72 The ones most applicable to games are

“computer disc,” “computer chip cartridge,” and “online resource.” Future work

mentions steps that could be taken to embed the controlled format vocabularies

into RDA and MARC in a similar fashion to the platform vocabularies.

That even the platform vocabularies now have an official place in the most

widely used cataloging guidelines and data format in the United States and Eu-

rope is a significant improvement over previous historical efforts. As described

throughout this section, the historical description of computer game and software

records ached for a more considered approach steeped in practice and in interface

with practicing scholars. Now there is a toe-hold in the larger descriptive cata-

loging apparatus for the coherent and consistent description of game platforms

(and through the best practices recommendations, an optional consideration for

media formats). Any further extensions to the vocabularies therefore no longer

need to navigate the systems and standards of institutional catalogs, but are sim-

ply able to add more terms and more granular descriptions whenever new items

appear and there are resources to catalog them.
72Unlike the 753 field, which is a designated for make and model of machine, there is no com-

paratively applicable field for media formats. Certain fields exist for physical carrier description,
but all require the use of an official RDA carrier type. Thus the seven options.

140

GAMECIP Metadata Guidelines

The vocabularies second use is their application in the GAMECIP Metadata

recommendations for computer games. These recommendations are a set of 20

metadata elements for game resources. An element is an abstract recommenda-

tion for describing some part of a resource. For example, the RDA rules above

consist of a set of core elements that are a required presence in resource records.

The RDA guidelines assign the core element title to field 245 of MARC. The ele-

ment is a requirement for description of a specific type that is then placed into an

explicit metadata data format field. The best practices document discussed above

is essentially a description of which RDA elements are relevant to games, and how

those elements should be described in MARC fields. It is a two-step process, with

the information to be described separated from its implementation in a specific

data format. The GAMECIP Metadata recommendations are a set of elements

designed to fully describe a game resource. These elements are then mapped to

analogous elements in different metadata schema. The process of mapping el-

ements (and indirectly field implementations) of different metadata schemes is

generally known as a “crosswalk.” A crosswalk allows descriptions designed in one

domain to be implemented in others. Some of the crosswalks connect metadata

schemes with different levels of granularity, so they are rarely completely equiv-

alent. It is also common for many elements from one scheme to map to a single

element in another, or conversely, for a single element in one to map to many in

another.

The recommendations map GAMECIP elements to complementary ones in

Dublin Core, MODS, Schema.org, and RDA. Each metadata scheme contains a

different set of elements based on the domain they intend to describe. All of those

mapped to by the recommendations are general metadata schemes, meaning they

141

are intended to cover a wide variety of domains with limited specialist depth. This

is an intentional move by the recommendations to show how game description

could be improved in current, actively used formats. One simply describes a

resource according to the GAMECIP elements, and then follows the crosswalk

to the actual scheme used by their institutional knowledge management system.

RDA, as a set of guidelines, has already been extensively covered and applies

mostly to general collection catalogs. The other schemes, schema.org, MODS,

and Dublin Core, find use in a variety of settings including online repositories and

archival collections. Stanford University uses MODS for most of their archival

record description needs (a point that will return in the next section on archival

records).

The recommendations use the controlled vocabularies for three distinct GAME-

CIP elements: Platform, Media Format, and Extent. The first two elements,

Platform and Media Format, are explicit containers for the vocabulary terms, and

function as a means of recommended usage for the vocabularies in other metadata

schemes. The last element, Extent, is short for “physical extent” and is a descrip-

tion of a “game distribution media.” This element is similar to Media Format,

but is a more general physical description. A game may have a Media Format of

“5 1/4 in. floppy disk” but a Physical Extent of “4 5 1/4 in floppy disks.”

Archival Records

The last use case for the vocabularies is in the metadata schemes mapped out

in the GAMECIP recommendations. This is the most speculative territory, since

we can only rely on local examples due to the locality specific nature of archival

practices. Specifically, the mapping of platform and format terms through the

GAMECIP Platform and Metadata elements, allows for their use in the Metadata

142

Object Description Schema (MODS). Stanford University Libraries use MODS for

the description of items in archival collections. The GAMECIP mapping connects

Media Format and Extent to MODS’s “physical extent” field, and Platform to a

standardized use in a MODS “note” field. The latter case is less than ideal but

illustrates how more general schemes commonly lack the explicit technical and

contextual information relevant to computer game software records.

The primary collection of computer game software at Stanford is the Stephen

M. Cabrinety Collection in the History of Microcomputing Collection. Containing

over 10,000+ pieces of game software, the collection is easily one of the largest in

the world. Work is currently under way to migrate all of the data off of Cabrinety’s

physical media and position it in Stanford’s Digital Repository. This task, a col-

laboration with the National Institute for Standards and Technologies’s (NIST)

National Software Reference Library (NSRL), also calls for the accurate descrip-

tion of the data imaged from collection items. The vocabularies for media formats

and platforms are therefore helpful in attaching a canonical platform and format

reference, through the GAMECIP MODS mapping, to each imaged Cabrinety

item. While not a perfect solution, this is the first step towards more clarity in

game records that have historical had none.

3.3 Future Work

Work is currently underway to organize support for the controlled vocabularies

in three ways:

1. The organization of a consortium for the maintenance and growth of the

vocabulary

2. The creation of instructional information sheets to allow non-specialized

143

library staff to better identify historical formats and platforms

3. The creation of online, human-readable descriptions of vocabulary terms

While the first point on consortium is well outside the scope of this work, we

will briefly describe the current efforts in information sheets and online resources.

The informational sheets are a proposed set of printable PDFs documents

that describe each leaf vocabulary term. As illustrated in Figure 3.5, the sheets

are divided into sections that align with their SKOS properties. For the media

format sheets, a collection of to-scale SVG images has been created to allow for

comparison when identifying media formats. The impetus for the sheets is both

their capability for physical comparison in identification, and to allow them to be

stored in Stanford University’s digital repository. The repository storage allows

for the creation of a permanent URL for each document, and takes advantage of

already existing library infrastructure. This is important because creating new,

technological solutions for library management of linked data structures requires

significant institutional investment.

As mentioned above, the Open Metadata Registry provides for basic function-

ality for semantic SKOS vocabularies. Sadly, this does not include any provision

for extensive description of each term, or usage rules and guidelines for a vocab-

ulary. Most prevalent vocabularies on OMR use it for RDF generation and as a

SPARQL end-point but provide additional, external guides to vocabulary terms.

For linked data, attaching human-readable descriptions to what are essentially

arbitrary URIs is a necessary part of the architecture. As such, making semantic

links interpretable by people usually requires creating web pages devoted to term

description or allowing browsers to resolve URI links directly to HTML. Semantic

web specifications provide for different levels of semantic data clarity, and while

they are not well-defined, general consensus is that web informational pages are a

144

Figure 3.5: Information Sheet Example

145

basic necessity.73 The gamemetadata.org domain is currently being organized as

the official source for information about controlled terms. Each page is devoted

to a SKOS concept, and provides links to any node connected to it. The site also

provides a description of use, and a basic alphabetical controlled vocabulary list-

ing. The listing is automatically formatted based on the alternative title SKOS

property. This means that alternative names for platforms and formats note a

redirection to the preferred term, which is useful in the case of items that only

bear alternative labeling. The figure below shows a basic platform and media

format entries. In the case of media formats, all the images and SVG tracings

created for the information sheets are also shown, and links to the information

sheets permanent URLs are also provided.

3.4 Conclusion

Now that we have journeyed through the thicket, carving one narrow path

among many with our investigation into platforms and media formats, we’ll take

a moment here to recount the journey and its contribution to the goals described

at the outset. Recall that before starting, we noted that the ability to describe

objects in ways that might resonate through the future is a fraught exercise.

Times change, and with them the stability of basic knowledge categorizations and

fundamental metaphysical conceptions of reality.74 As the work above illustrates,
73Tim Berners-Lee — one of linked data’s biggest proponents — ascribes “star” ratings to

linked data implementations. See [195] for how this relates to human-readable information
pages, and look at PBCore [10] for a live example.

74For more information on categorization as a socially constrained act see [40] Bowker, Geof-
frey, and Susan Leigh Star. Sorting Things Out: Classification and Its Consequences. Cambridge
(Mass.): Massachusetts Institute of Technology, 1999. [67] Durkheim, Émile, Marcel Mauss, and
Rodney Needham. Primitive Classification. Routledge Paperbacks. London: Cohen & West,
1970. [114] Lakoff, George. Women, Fire, and Dangerous Things: What Categories Reveal
about the Mind. Chicago: University of Chicago Press, 1987. [115] Lakoff, George, and Mark
Johnson. Metaphors We Live by. Chicago: University of Chicago Press, 1980.

146

even for the seemingly unproblematic categorization of the physical and technical

dependencies for computer games much work needs to be done in simply defining

the purpose and purchase of those terms within the frame of game historical study,

and in finding ways to stabilize those terms in ways amenable to future work. That

is to say, you need a reason for why the terms you are using as described in the

way that they are, ways to preserve the intentions of those descriptions going

forward, and a strategy for their scholarly use, maintenance and upkeep. You

need to plan a path, construct it, and then make sure others can use it and keep

it well-trodden.

The work of this chapter needed to first ascertain why a controlled list of plat-

form and media format terms would be useful, and whom it would be useful for.

It then needed to back those terms up with a conceptualization of how they might

be used in the future. Here we chose the concept of ontological enactment as a

means to probe the “meaning” of computing platforms and formats, and ground

them out into concise terminology. In thinking through that enactment, we hit

upon a criterion of “reasonable compatibility” as an intermediary space between

technical descriptions too intense for common practice, but not too subtle as to

lead researchers astray. Again, we wanted the path to each described object to

be reasonably well defined and free of weeds or false routes. Furthermore, the

stabilization of the terms into an encoded, machine-networked and interpretable

format automatically connected them to existent knowledge organization systems,

and made them semantically interoperable and locatable. The SKOS encoding

also allows for further extension and elaboration without our direct input or con-

trol, which means that if conceptualizations or use-cases change in the future our

work can be mapped onto newer structures just as we mapped ours onto older

ones.75

75This mapping occurred in multiple ways: the terms are connected to MARC21’s 753 field,

147

Finally, in embedding our vocabularies into existing descriptive structures, we

illuminated some of the past issues with software record description and actively

contributed to changing them in practice instead of just theoretically. That the

terms are now recommended for use — and being used — in contemporary game

catalogs is a testament to all our preparatory work in basic research, ontological

conceptualization, and descriptive structures. This chapter then also functions

as methodological guide for further future imbrication of newer records of game

software and technology into legacy organizational systems.

they are linked semantically to RDA physical carrier terms and through the GAMECIP metadata
elements, also tied to related fields in the MODS, Schema.org, Dublin Core, and RDA element
sets.

148

Chapter 4

Citation

4.1 The Pivot

This chapter marks the transition from knowledge stabilization to knowledge

exploration. The previous chapters dealt with the enumeration and description of

both game development work and the games that resulted from it. Here we spec-

ulate on the potential for computer games stored in stable collections to provide a

basis for new kinds of game and software historical scholarship. As many institu-

tions contemplate migrating their software collections to digital repositories and

expanding their born-digital holdings, it behooves us to find new opportunities

and use-cases that leverage these records born-digital nature. For history, these

new collections of software provide for a deeper examination of their reference

and retrieval as historical objects. This examination also requires the staking out

of new territory in the requirements and potential for software archives. As re-

cent surveys of the digital humanist landscape make abundantly clear, the future

of historical scholarship will be tied to reconciling older, print-based, qualitative

149

practices with newer, networked and quantitative ones.1 The meaning of the his-

torical archive is changing, and the ways to enable and maximize its exploration

must also adapt. Below we focus on the particular case of game historical scholar-

ship, and the use of historical citation, reference and source retrieval in providing

new means of discussion about games.

Below we outline the current practice and requirements of citation in game

historical study, and then supplement that practice through the description of

a tool for the reference and resurrection of game software data. This resurrec-

tion is used as a shorthand for the re-execution of legacy software data inside

a new computational context.2 Our tool also aligns with digital humanist argu-

ments, most prominently those of Stephen Ramsay, who calls for the acceptance

of computational tools as arguments for and about new humanistic expression.

This sentiment is echoed in Burdick et al.’s recent polemic on the state of digi-

tal humanities, Digital_Humanities.3 They assert that, “the next generation of

digital experimenters could contribute to humanities theory by forging tools that

quite literally embody humanities-centered views regarding the world.”4 In this

sense, the tool presented below is the embodiment of a potential future for game

historical practice.

Burdick and fellows also call out the coming dissolution of humanistic and
1[39] Borgman, Christine L. Scholarship in the Digital Age: Information, Infrastructure,

and the Internet. Cambridge, Mass: MIT Press, 2007. [193] Siemens, Raymond George, and
David Moorman, eds. Mind Technologies: Humanities Computing and the Canadian Academic
Community. Calgary: University of Calgary Press, 2006. [202] Svensson, Patrik, and David
Theo Goldberg, eds. Between Humanities and the Digital. Cambridge, Massachusetts: The
MIT Press, 2015. [217] Warwick, Claire, Melissa M. Terras, and Julianne Nyhan, eds. Digital
Humanities in Practice. London: Facet Publishing in association with UCL Centre for Digital
Humanities, 2012.

2Resurrection could also apply to the physical reconstruction (or acquisition) of legacy hard-
ware. However, this chapter is only able to comment on the data resurrection through emulation
— for reasons that will become clear below.

3[45] Burdick, Anne, ed. Digital_Humanities. Cambridge, MA: MIT Press, 2012.
4[45] pg. 104

150

preservationist foundations.

As concepts of authorship, document, argument, provenance, and ref-
erence become increasingly unstable, concepts that are fluid, iterative,
and distributive, but less “authoritative,” are taking their place.5

While the previous work in this thesis might serve as a push toward the capacity

and need for “authoritative” records and concepts, game citation directly confronts

— and calls for answers to — many of the issues outlined in the above quote.6 We

will attempt to draw attention to problems of “authorship, document, argument,

provenance, and reference” in this and the following chapters.7

The work in this chapter foregrounds the issues of reference as regards the

notoriously unstable nature of computer games and software.8 These objects, in

their requirements for future retrieval and use in historical arguments call for the

ideation of what Bethany Nowviskie refers to as a “speculative collections”.9 These

collections are those that do not yet exist, but will be required for future digi-

tal scholarship. The requirements of both game citation and the tool illustrated

below invite the creation of a speculative future collection for managed and re-

trievable historical software data. Speculative collections call for the telegraphing

of future scholarly use, and the creation of criteria for the descriptive, curative,

and managerial requirements that would likely result.
5[45] pg. 109
6That “less authoritative records are taking their place” is actually more a symptom of not

creating systems and “authoritative” sources that can better deal with new types of records, as
we attempt to show both through the citation system below, and in the previous chapters on
the appraisal of new forms of game development documentation and new descriptive apparatus
for game software objects.

7Hopefully we have already scratched some of these itches in the preceding work.
8See [149] McDonough, Jerome P. “Preserving Virtual Worlds: Final Report,” Graduate

School of Library and Information Science, University of Illinois at Urbana-Champaign, 2010.
[161] Newman, James. “Ports and Patches: Digital Games as Unstable Objects.” Convergence:
The International Journal of Research into New Media Technologies 18, no. 2 (2012): 135-142.

9[163] “Speculative Collections.” Bethany Nowviskie, October 27, 2016. http://nowviskie.
org/2016/speculative-collections/. (Accessed 5 Apr 2017).

151

http://nowviskie.org/2016/speculative-collections/
http://nowviskie.org/2016/speculative-collections/

The future of game historical scholarship is then not only based on the sta-

bilization of records for future retrieval, but also in the ways that that retrieval

is enacted in practice, and available for further exploration and exploitation by

critical computational methods and tools.

4.2 Citation

Citation is a foundational act in modern scholarship. Regardless of the disci-

pline, any scholarly argument is based on or a reaction to previous work. Differ-

ent fields use citation practice in different ways, but the major functions remain

consistent.10 Citation operates on two fundamental levels. Within a text, it legit-

imates the knowledge claims made by an author, and provides support for their

arguments and findings. It also, through the connections a citation makes to re-

lated works, ties an author to the social organization of the discipline(s) to which

they are contributing. In fact, any discipline is essentially constituted by these

networks of citations, the collections of links that form being dense enough to

support further claims and disclaimers, rebuttals and denials. Studies of citation

occupy the thoughts of numerous fields, from the quantitative analysis of biblio-

metrics, with its h-indexes and impact factors, to the applied socio-linguistic study

of discourse analysis. The dual roles of citation practice, both in the form and

content of knowledge links, and as the base for social practices within disciplines,

are certainly ripe enough for a pluck into the basket of game historical studies.

Before diving into the morass of game citation, and even more specifically, game

data citation, the rest of this section will set up some background definitions and

support structures from citation-adjacent fields. These will then be leveraged into
10[200] Sula, C. A., and M. Miller. “Citations, Contexts, and Humanistic Discourse: To-

ward Automatic Extraction and Classification.” Literary and Linguistic Computing 29, no. 3
(September 1, 2014): 452-64. doi:10.1093/llc/fqu019. pg. 454-455

152

doi:10.1093/llc/fqu019

a fuller discussion of game citation and the citation tool as a speculation and

intervention into future practice.

4.2.1 Citation in Use

As discussed, citation functions both within a text as a marker to other sources,

and without as a tie between an author and a discipline. The citations found

inside texts follow the prescriptions of the common practices within a field of

study. Common guides for the humanities include the Modern Language Associa-

tion (MLA), American Library Association (ALA), and the University of Chicago

Manual of Style. Most engineering disciplines, including Computer Science, fol-

low similarly organized research guides. In CS’s case, a majority of the works are

organized around the major conference guidelines provided by the Association for

Computing Machinery (ACM) or the Institute of Electrical and Electronics En-

gineers (IEEE). These guides are the products of the study of bibliography, with

its most prominent scholarly effect being the enumerative bibliographies — the

“Works Cited” lists — found after the conclusions of monographs or conference

publications. The constitution of bibliography entries is the result of practices in

descriptive bibliography, a subset of analytical bibliography.

While bibliographic practice in the age of the Internet is in some corners

lamented as both a lost art and potentially unnecessary,11 we believe that coherent,

consistent and standardized bibliographic description is still essential. Addition-

ally, the practices of analytical bibliography, probably most impressively displayed

in Frank Manchel’s magnum opus, Film Study: An Analytical Bibliography can

help to reconcile the production and history of academic disciplines.12 Manchel’s
11[167] Parks, Tim. “References, Please.” The New York Review of Books. http://www.

nybooks.com/daily/2014/09/13/references-please/. (Accessed Apr 5 2017.)
12[134] Manchel, Frank. Film Study: An Analytical Bibliography. Rutherford: London: Fair-

leigh Dickinson University PressâĂŕ; Associated University Presses, 1990.

153

http://www.nybooks.com/daily/2014/09/13/references-please/
http://www.nybooks.com/daily/2014/09/13/references-please/

4-volume, 2500 page work enumerates and describes the entire breadth of English

language film and film studies produced between 1965 and 1990. Interesting, in

line with the current project of scholarly support through tools, Manchel’s work

is emphatically indebted to SCRIPT/VS word processing system and the IBM

6670 Laser Printer for help in maintaining and organizing the necessary subject

and author indexes required for his work.13 The practice of organized analysis of

the works in a field can help to reveal new research directions and provide a solid

base for future claims. Game historical work needs more time and effort devoted

to these foundational, field-constitutive activities.

Returning to in-text bibliographic citation practices, we find that an explicit

function of citation is the legitimation of claims. In the most recent MLA Hand-

book, the editors write that citation practice involves, “demonstrating the thor-

oughness of the writer’s research, giving credit to the original sources, and en-

suring that readers can find the [sources] . . . to draw their own conclusions

about the writer’s argument.”14 Additionally, authors must provide a “compre-

hensible, verifiable means of referring to one another’s work . . . to give credit to

the precursors whose ideas they borrow, build on or contradict and allow future

researchers interested in the history of the conversation to trace it back to the

beginning.”15 Authors need to legitimate their claims, both by crediting original

sources and supporting dialogue with other scholars with whom they may agree

or disagree. Citation also works as a means to pay an intellectual debt, as any ad-

dition to knowledge, being based on previous efforts, should acknowledge others’

contributions.16

13[134] pg. 28
14[153] Modern Language Association of America, ed. MLA Handbook. Eighth edition. New

York: The Modern Language Association of America, 2016. pg. 4
15[153] pg. 5
16[69] Eco, Umberto. How to Write a Thesis. Cambridge, MA; London: MIT Press, 2015.

154

In history specifically, the formation of modern historical discourse is prefaced

on the “scientific” practice of accurate historical sourcing. Commonly attributed

to Leopold Von Ranke and his continental predecessors, the development of foot-

note and endnote showed that the author had “done an acceptable amount of

work, enough to lie within the tolerances of the field.”17 Citation persuades others

to pay attention to a scholar’s work and thoughts. It cannot “explain the precise

course” taken by a historian, but can “give the reader . . . enough hints to make

it possible to work this out — in part. No other apparatus can give more informa-

tion — or more assurance — than this.”18 Anthony Grafton, in further discussion

of the preceding quotes, notes that the function of footnotes — the historian’s

preferred mode of citation — is to give legitimacy to a claim and promote the

authority of the claimant. Footnotes also provide means for enforcing the social

space of historians through the inclusion or exclusion of particular works. In many

cases, a notable omission provides for a deeper criticism than an antithetical ref-

erence because at least the latter claim is being recognized and confronted instead

of ignored.

4.2.2 Citation as Discourse

Given that this chapter is devoted to the use and abuse of citation practices

in game historical texts, we need to develop a suitable framing and terminology

to discuss it. As alluded to by the discussion above, the act of citation involves

the coherent and consistent description of a source within a text. This is usually

in the form of a bibliographic footnote or endnote, or list of entries (enumeration)

at the back of a text. Bibliography dictates that there is sufficient description
17[83] Grafton, Anthony. The Footnote: A Curious History. Revised edition. Cambridge,

Mass: Harvard University Press, 1997. pg. 22
18[83] pg. 23

155

to allow a future researcher to recover the described source. This creation of

a knowledge link to another’s work, in light of bibliographic practice, is then a

matter of practicality. One needs adequate description for future retrieval. What

bibliographic notions do not cover is the use of a citation, a knowledge linkage,

within the text itself. The correct form of a description for a source is not the

same as how an author activates that source inside their text as a functional

part of their argument. We then have to split the act of citation in two. The

first part is ’simply’ the description and positioning of a citation inside a text,

and the other is an analysis of how that citation is used as a way to further the

objectives of an author, and by extension that author’s discipline. Luckily, a

lengthy discussion of citation’s effect on both textual composition and the social

formation of disciplines is already quite progressed in the fields of bibliometrics

and discourse studies. Building on all their hard work, we will swoop in and

grab hold of a few key concepts, dangling them around a bit to knock off some

unnecessary implications before dropping them into the nest of game practices.

The intersection of one text within another is an instance of intertextuality.

Although intertextuality is used in a number of fields, our definition of it here

is drawn from discourse studies, a sub-field of applied linguistics. One of the

founders of the field, Norman Fairclough, describes intertextuality as “the prop-

erty of texts have of being full of snatches of other texts, which may be explicitly

demarcated or merged in, and which may assimilate, contradict, ironically echo,

and so forth.”19 Intertextuality, in Fairclough’s consideration, implicitly calls to

account the production, distribution, and consumption of texts. For production,

the key consideration is on the “historicity” of texts, how they add to previous

knowledge and expand a specific discursive chain of thought.20 Distribution re-
19[72] pg. 84
20“Discursive chain of thought” is basically the organization of the knowledge in a specific

156

flects on the network of texts and how they transform and flow into different

types and fields.21 Fairclough uses the example of political speeches transformed

into news reports. With consumption, “the intertextual perspective is helpful in

stressing that it is not just ‘the text,’ not indeed just the texts that intertextually

constitute it, that shape interpretation, but also those other texts which inter-

preters variably bring to the interpretation process.”22 All three implications of

Fairclough’s “intertextual perspective” have a significant bearing on the interpre-

tation of citation and reference in academic works. That texts are engaged with

a disciplinary train of thought, flow and re-form based on context, and intimately

involve presuppositions about the other texts they do (and could) use, are all

points of reflection for both the citation practice of games, and the implications

for a better use of the tool proposed below; it being a means of a new type of

intertextual link for game history.

Fairclough’s intertextuality is drawn from a more elaborate framework based

in French discourse analysis that traces all the way back to Michel Foucault’s

Archaeology of Knowledge. Again, conveniently, Fairclough spares us a significant

jaunt into continental linguistic theory by clearly delineating two notions of inter-

textuality, manifest and constitutive, that are both relevant to the discussion of

citation. Manifest intertextuality is “where specific other texts are overtly drawn

upon within a text,” forming a “heterogeneous constitution of texts.” To clear

that up a bit, the quote ending the previous sentence is an example of mani-

festation, as is “Fairclough’s intertextuality” at the beginning of the paragraph.

Both are specific, overt calls out to other texts, with the direct quote being a

discipline. All practitioners are contributing to the historical accumulation that furthers the
course of their discipline and the history of its claims.

21There are parallels here with Latour and the translation of concepts in networks, as well as
the use of inscription in the creation of research works. We will bring in some of the history of
science and technology perspective on text formation, with its focus on practice, briefly below.

22[72] pg. 85

157

more emphatic kind of manifestation. Constitutive intertextuality (for Fairclough

“interdiscursivity”) is effectively the means of intertextuality for a specific text.

How the configuration of its references, allusions, and implications for other texts,

both explicitly mentioned and implicitly demanded, align to form a specific type

of discourse for a specific audience.23 Bibliographic actions, like enumerative bib-

liography, footnotes, and in-line citations are then all types of manifestation while

the act of citation itself, as a social and knowledge linking activity, is a constitutive

act.

Before extending the application of constitutive and manifest intertextuality

to game historical discourse, two more key insights from Fairclough are useful.

The first is the idea of a “presupposition” of a text. Sometimes presuppositions

are just “propositions that are given for, and taken for granted by, text producers.”

When engaged in the act of writing and assembling an argument, authors bring

into their writing numerous pointers to other works — through manifestation —

or ideas from other works that are assumed to be part of the general knowledge

of an assumed reader. Or, crucially, part of the knowledge that one is assumed to

take from an “other text” that is insinuated in the current one. “In many cases

of presupposition the ‘other text’ is not an individual specified or identifiable

other text, but a more nebulous ‘text’ corresponding to general opinion (what

people tend to say, accumulated textual experience).”24 A presupposition, through

manifest citation, of a particular “other” author or “other” work, brings with it

a host of assumptions based on an assumed experience on the part of the reader.

This gap between presuppositions, as intended by an author and interpreted by a
23We are careful to note that the assumption of an audience here is not only referring to the

actions taken by an author, with an audience in mind, to clarify and align their text with others’
expectations, but also to the implicit knowledge that a potential reader will bring to a text given
that it is in a specific discursive form. Fairclough goes into more depth on discursive types in
his Discourse and Social Change [72], specifically in chapters 2 and 3.

24[72] pg. 121

158

reader, leads us to a second point about ambiguity and the constitutive “surface”

of a text.

In drawing together the heterogeneous network of texts that constitute a new

one, there are times when certain parts may not fit as well as others.

Texts vary a great deal in their degrees of heterogeneity . . . [they]
also differ in the extent to which their heterogeneous elements are in-
tegrated, and so in the extent to which their heterogeneity is evident
on the surface of the text . . . Again, texts may or may not be
“reaccentuated”; they may or may not be drawn into the prevailing
key or tone (e.g. ironic or sentimental) of the surrounding text. Or
again, the texts of others may or may not be merged into unattributed
background assumptions of the text being presupposed. So a hetero-
geneous text may have an uneven and “bumpy” textual surface, or a
relatively smooth one.25

That we should pay attention to qualities of a textual surface — and the

ways in which its imbricated texts do and do not comport with each other —

motivates our framing for the discussion of the citation work below. If we are

combining references in text to games, and other systems based on non-discursive

experiences, their constitutive intertextuality needs to be examined, along with

its effects on the resulting historical discourse.26 We may want the alignment

to have a specific texture, but we also need to be aware that that texture, that

surface, is something deserving of reflective consideration and thought. How do

the citation of games, and the juxtaposition of program and text affect the reader’s

experience and comprehension of the argument? What does this do to the issues of

presupposition and scholarly assumption? Below we discuss the current practice

of game citation in light of both manifest intertextuality and presupposition.
25[72] pg. 104
26The organization of citations in a text and, in our case, the organization of text and running

executable programs does also call out to various traditions relating to visual design and the
juxtaposition of text and image, specifically in art criticism see [33] Berger, John, Sven Blomberg,
Chris Fox, Michael Dibb, and Richard Hollis. Ways of Seeing, 1973.

159

One last implication of the heterogeneous constitution of texts is that it re-

sults in what Fairclough refers to as an “ambivalence” of argumentative meaning.

“If the surface of a text may be multiply determined by the various other texts

which go into its composition, then elements of that textual surface may not be

clearly placed in relation to the text’s intertextual network, and their meaning

may be ambivalent; different meanings may coexist, and it may not be possible

to determine ‘the’ meaning.” The ambiguity inherent to any textual argument

results from the fact that I — as the author — am removing other texts from

their original context and constituting them into my own. As such, the onus is

on me, the researcher, to both explain and refine the “other” texts in a way that

supports my argument and that is interpretable to the reader. However, whenever

I pull in other’s sources, especially in the case of a manifest quotation or below as

a manifest executable, there is a resulting set of risks to my argument.

1. Disjunction — The referenced text or object could afford an interpretation

that is different from the one I intended

2. Manipulation — I could be intentionally obscuring the reference or manip-

ulating it to argue against itself, or to support a claim it does not make

3. Presupposition — The presupposition I am making in using the reference

does not align with the actual experience of the reader nor, potentially, with

my own previous experience because I am misremembering

All of these implications are ever present, but the third, presupposition, is the

most relevant to game citation. “Presuppositions are effective ways to manipulate

people, because they are often difficult to challenge . . . Manipulative presupposi-

tions also postulate interpreting subjects with particular prior textual experiences

and assumptions, and in so doing they contribute to the ideological constitution

160

of subjects.”27 As a clarification, the use of “manipulative presupposition” is dif-

ferent from (2) intentional manipulation above. We are distilling the notion of

the difficulty in confronting — or identifying — the built in assumptions made

by authors and readers. We also extend the “textual experience” to “played ex-

perience” in the case of game studies, because, as the discussion below shows, the

problem of presupposition does make claims in games “difficult to challenge” and

also leads to the “ideological constitution of subjects” in regards to game genre,

classification, and historical positioning and importance. Presuppositions are dif-

ficult to correct if they go awry because both the reader and the author are under

a similar delusion about the content and shape of a reference. Poking below the

surface of the text and retrieving the shared context for a presupposition requires

significant effort, and in the case of games, might not currently be possible due to

a lack of access (as highlighted in the previous two chapters).

4.3 Bibliography and Citation in Game Studies

In the previous section we outlined the function of citation as an act of both de-

scriptive bibliography and as an intertextual mechanism in the creation of textual

discourse. This section brings both of those concepts to bear on the current prac-

tices of game citation in game studies and game historical texts. While both fields

are large, with a significant amount of publication activity, we will see that the

extent of game citation is currently rather limited. Additionally, in game studies

works there is a good deal of presupposition about the accumulated played expe-

riences of both the reader and author. These assumptions are a major reason for

the current lack of specific bibliographic guidelines. As Nathan Altice writes, in

one of the only other analyzes of game citation practice,
27[72] pg. 121

161

Our familiarity with and access to videogames is taken for granted,
since many of us are old enough to recall first-hand experience with
the entire history of videogames — a claim that cannot be made by
scholars of other media. There is an implicit assumption that we all
know what a Super Mario Bros. cartridge looks like, so why bother
with thorough descriptions?28

This “implicit assumption” of Super Mario Bros. is the result of the presupposition

at work in game studies texts. It is not uncommon for game references to be

scant or potentially non-existent. This is a problem because the assumption of

contemporary, tacit experience with historical games cannot hold up past the

current generation of scholars. Game citation practices, like those of appraisal and

description in previous chapters, need to be addressed with a mind toward future

historical scholarship and needs. The rest of this section will describe how citation

functions in game studies works, and briefly point to further recommendations for

their improvement. All of this is a set up to the introduction of the citation tool

in the next section as a tool-assisted intervention into both the issues of citation

standardization and presupposition of game play experiences.

As already noted, computer game bibliography and citation practice is wont

for a set of consistent and thorough standards. Again, from Altice,

To claim that videogame bibliography demands a closer allegiance to
the practices [of enumerative, and analytical bibliography] assumes
that a unified practice called “videogame bibliography” even exists.
At their best, videogame citations adhere to the barest enumerative
models. Even in those texts that most seriously grapple with electronic
artifacts as objects that exhibit physical properties worthy of descrip-
tion, such as Kirschenbaum’s Mechanisms or Montfort and Bogost’s
Racing the Beam, videogames are still afforded scant bibliographic in-
formation.29

28[25] Altice, Nathan. I Am Error: The Nintendo Family Computer Entertainment System
Platform. Platform Studies. Cambridge, Massachusetts: The MIT Press, 2015. pg. 334

29[25] pg. 333-334

162

Altice’s claim of the lack of a “videogame bibliography” practice is not dif-

ficult to substantiate. As he states, many works that are intimately tied to the

exploration of the material constraints and expressive as technical artifacts do

not share consistent bibliographic practices. Both works mentioned above, Matt

Kirschenbaum’s Mechanisms — a treatise on the oft-overlooked ambiguities in

the expression of digital data — and Ian Bogost and Nick Montfort’s Racing the

Beam — a platform study into the inner workings of the Atari 2600 — come from

the same publisher, are intimately involved with the technical distinctions of com-

puter software, and do not share a consistent practice in their bibliographies.30

Racing the Beam is a part of a larger series (as mentioned in the Description chap-

ter) of works on specific platforms. Each book investigates the constraints that

a particular platform imposes on the expressive potential of its software. Each

book also takes a different position on the placement, organization and depth of

its enumerative bibliography of games. Some volumes, like Jimmy Maher’s on

the Commodore Amiga, eschew any explicit listing of the games referenced in the

text.31 Contrarily, works like Altice’s own I AM ERROR on the Nintendo Enter-

tainment System, adopt meticulous, platform and media format specific reference

schemes.

Now, given that there is a not a standard set of bibliographic and citation

practices for software, and that most major scholarly organizations — like MLA,

University of Chicago, and surprisingly even the ACM — lack any guidelines

for software bibliography, it is not surprising that academic book publishers and

authors do not maintain consistent practices. The work of the Game Metadata
30[105] Kirschenbaum, Matthew G. Mechanisms: New Media and the Forensic Imagination.

Cambridge, Mass.; London: The MIT Press, 2012. and [158] Montfort, Nick, and Ian Bogost.
Racing the Beam the Atari Video Computer System. Cambridge, Mass.: MIT Press, 2009.

31[131] Maher, Jimmy. The Future Was Here: The Commodore Amiga. Platform Studies.
Cambridge, Mass: MIT Press, 2012.

163

and Citation Project (GAMECIP), which looked at hundreds of game studies

citations across a variety of online and print sources, also validates Altice’s (and

our) assumption about the lack of consistent practice. In fact, even within the

same journal, Game Studies, which does have an explicit bibliographic policy,

there was still lax enforcement of descriptive citation practice.

Altice’s concerns also link bibliography and citation to the descriptive concerns

of the previous chapter. He notes,

As a Famicom scholar, I may possess the terminology to describe that
platform’s media but meanwhile lack the platform-specific knowledge
to properly cite a PlayStation 2 game . . . Granting each [reference]
its due description poses a sizable research challenge. One solution is
to build up a body of platform-specific descriptions that others may
use as a model . . . but such shared knowledge will take time and
work.32

Computer game bibliography is distinct from other media forms mainly in the

complex of technical requirements needed to retrieve the object. Our platform and

format vocabularies, outlined in Description chapter, speak to Altice’s call in a

limited way by attempting to codify and standardize some basic descriptive infor-

mation for computer games. The larger issue, however, is that “rich bibliographic

records require a baseline technical understanding of the objects they describe.”33

For game scholars concerned with the technical underpinnings and object mate-

riality of software, each new platform, format, and data configuration incurs a

significant descriptive cost. For items in Altice’s enumerative bibliography, each

specific game is listed according, in part, to the configuration of components inside

a Nintendo Entertainment System Game Pak, and in the case of emulated sources,

the header information of a particular game data file. Clearly, for his arguments

to validate, this level of depth is necessary, and it would benefit future scholarship
32[25] pg. 337
33[25] pg. 336

164

if others could take advantage of his classification schemes or even extend them

into their own specific sub-domain of software.

Altice and others in the platform studies purview are more concerned with the

material and technical conditions of games than other historical scholars. What

works for platform studies might be overkill for other subdisciplines. However, at

the very least, the technical information provided in a bibliography should be cor-

rect, and involve a level of detail specific enough to allow an unacquainted reader

a fair chance to recover the source.34 The lack of consistency in the description of

computer game sources can damage the legitimacy of game historical arguments.

As mentioned in the last section, one key way that a citation can fail is through

a mistaken presupposition about the source it is referencing. This misalignment

between the author’s expectation — or recollection — of a game play experience

and that of a future reader’s is only exacerbated by incomplete and inconsistent

citation practice. We now take up discussion of a particularly salient example of

presuppositions in game historical work.

4.3.1 Presupposition of DOOM!

One significant difficulty in game citation is that games are not as recoverable

as other media forms. Many institutions do not have software collections, and

those that do struggle against the technical and material constraints of hardware

maintenance and access. When these limited access scenarios collide with a lack

of rigor in citation practice, the result is that many outputs of game scholarship

rely on only the barest descriptions for games. They are used more as pointers to

the concept of a particular game, as presupposition, than to an emphatic, playable
34This is in line with the recommendation for “reasonable compatibility” in the Description

chapter. If you’ll recall, it stated that a game resource in a collection catalog should provide
granular enough information to give a researcher a reasonable guess at the technical apparatus
required for the resource’s recovery.

165

instance of one.

To take a particularly salient example, Dan Pinchbeck’s book DOOM: SCARY-

DARKFAST relies, almost exclusively, on presupposition of game citations. The

work contains manifest citations, mostly through in-line references, to 130 other

computer games. Most are used in passing to articulate how a particular struc-

tural, thematic, or kinesthetic element from each game relates to those of Doom.

The in-line references are of the form (Title, Year), leaving the reader to fill in

the blanks based on their assumed knowledge of each title. Furthermore, given

the breadth of games mentioned, it is likely that Pinchbeck has not played, or

at least recently played, many of them. The references hang on a presupposi-

tion of his past experiences with the titles, and hopefully they still resonate in

ways commensurate with his arguments. The references are, as we mentioned

above, presupposed shorthand for the shared played experience of both author

and reader.

To illustrate how this form of manifest, presupposed citation functions, take

this set of paragraphs describing the progress of the first-person perspective from

Pinchbeck’s book:

We need to consider the context into which DOOM arrived. The
very first FPS game was Maze War, created by Steve Colley, Howard
Palmer, and Greg Thompson (and other contributors) at the NASA
Ames Research Center. Colley estimates that the first version was
built during 1973, as an extension of the earlier game Maze, which of-
fered a first-person exploration of a basic wireframe environment. At
some point during ’73 or ’74, networked capability was added, enabling
multiplayer FPS play. The genre was born out of networked death-
matching. After Thompson moved to MIT, he continued to develop
Maze War, adding a server offering personalized games, increasing the
number of players to eight, and adding simple bots to the mix. Twenty
years before DOOM, all of the prototypical features of the FPS were in
place: a 3D real-time environment, simple ludic activity (look, move,
shoot, take damage), and a basic set of goals and win/lose conditions
— all this and multiplayer networked combat.

166

Around the same time, Jim Bowery developed Spasim (1974), which
he has claimed to be the very first 3D networked multiplayer game.
Spasim pitted up to thirty-two players (eight players in four planetary
systems) against one another over a network, with each taking control
of a space ship, viewed to other players as a wireframe. A second
version expanded the gameplay from simple combat to include resource
management and more strategic elements. Whether or not Bowery’s
argument that Spasim precurses Maze War and represents the first
FPS holds water, its importance as a game is undiminished — even if
for no other reason than because Spasim is a clear spiritual ancestor
of Elite (Braben and Bell 1984) and its many derivatives. It perhaps
even prototypes a game concept that would later spin out into combat-
oriented real-time strategy (RTS) or even massively multiplayer online
(MMO) gaming.
What certainly differentiates Spasim from Maze War is the perspec-
tive. Like other early first-person games, such as BattleZone (Atari
1980) and id’s Hovertank 3D (1991), the game is essentially vehicular,
with no representation of the avatar onscreen other than a crosshair.
It is interesting that, aside from occasional titles such as Descent (Par-
allax 1995) and Forsaken (Probe Entertainment 1998), the genre very
swiftly settled down into the avatar-based perspective, abandoning
vehicular combat more or less completely. It’s also interesting that
contemporary shooters often opt for a shift to third-person when in-
cluding vehicles, such as with Halo: Combat Evolved (Bungie 2002)
or Rage (id Software 2011). Half-Life 2’s (Valve Software 2004) first-
person car sequences are actually quite unusual.35

These three paragraphs make reference to twelve games spanning a period from

1974 to 2011. Doom does not receive a full in-line citation since it is the topic of

the book, and is addressed with in-line references in a previous section. Ignoring

the general argument and focusing only on the citations and their relationship to

the assertions being made on their behalf, we already encounter some significant

issues.

Firstly, the citations are not particularly specific. Descent, for example, was

released in six different versions for three different platforms in three different
35[168] Pinchbeck, Daniel. Doom: Scarydarkfast. Landmark Video Games. Ann Arbor:

University of Michigan Press, 2013. pg. 6-7

167

localities in 1995 alone.36 The description “(Descent, 1995)” then does not pro-

vide enough information for a reasonable assumption about the particular version

Pinchbeck played (or presupposed). Second, the citations presuppose a signifi-

cant amount of knowledge on the part of the reader. When Pinchbeck remarks,

“Spasim is a clear spiritual ancestor of Elite . . . and its many derivatives,”

we (the reader) are required to understand — through presupposition — that

Spasim, a first-person, cockpit oriented space exploration game is echoed in Elite,

a similarly-perspectived first-person space simulation game. Clearly, that asser-

tion incurs a familiarity with both games, and by extension knowledge of Elite’s

derivatives. Finally, even though a game might be recoverable through the sparse

citation provided, much of the discussion is still presupposed on the memory of

played experiences of both Pinchbeck and his readers. In referencing the vehicular

segment of Half-Life 2, Pinchbeck is theoretically requiring a future researcher,

should they want to experience that sequence, to spend many hours of game time

reaching and evaluating it. There is nothing inherently wrong with this, but we

must highlight the extent of the assumptions being made of the reader. Either you

already have contemporary experience of Half-Life 2, and incidentally remember

this game play sequence, or you are relying on Pinchbeck’s memory of his con-

temporary play. Both positions presuppose a temporally situated accumulation

of played experiences that aligns with the year of this work’s publication. Future

researchers, at a remove from a contemporary, played understanding of the game,

must assume that Pinchbeck is not committing any of the intertextual no-nos —

like misinterpretation or incorrect presupposition — listed in the previous section.

Otherwise, they will need to recover Half-Life 2 for themselves, and assume that

their version contains the vehicular sequence in question and that it is reachable
36According to MobyGames, https://web.archive.org/web/20160421081803/http://

www.mobygames.com/game/descent/release-info , Descent has 15 different releases, 6 of
which occurred in 1995 in the United States, Japan and Germany for DOS, Mac and PC-98.

168

https://web.archive.org/web/20160421081803/http://www.mobygames.com/game/descent/release-info
https://web.archive.org/web/20160421081803/http://www.mobygames.com/game/descent/release-info

through play.

While it may seem that we are being a bit drastic in this example, we cannot

take for granted that our own presuppositions about Half-Life 2 or any other

game discussed in the quote above (or, for that matter, in this text) will align

with the presuppositions of future scholars.

Pinchbeck’s references are intended to evoke a general idea of a specific ti-

tle, relying primarily on the presupposition of reader knowledge. The referenced

games in these cases stand in metonym for their specific constitutive function in

the text. Halo, Rage, and Half-Life 2 for their comparative vehicular segments;

Spasim, Elite, Descent, and Forsaken for their 360-degree cockpit viewpoint; and

HoverTank 3D, BattleZone, Maze and Maze War for their advances to first person

representation. Concrete, retrievable instances of these games are secondary to

the structural or thematic conceptualizations of them as presupposed into Pinch-

beck’s argument.

In contrast, recalling Altice’s more extensive, object-based citations, we see

that many of his claims are rooted in the minutiae of a single platform and its

technical constraints. For Altice, his argument is dependent on the specifics, on

the material differences between games rather than the higher level concepts they

can evoke. He commonly uses emulated versions of games to illustrate points

about Nintendo Entertainment System rendering techniques. Because rendering

functions differ between the many versions of, say, Super Mario Bros., Altice’s

citation of a specific version of the game’s data is important, his analysis would

not be possible — or legitimate — without it.

The lesson is not that anything Pinchbeck is saying is particularly incorrect,

but that the onus for clarification is heavily weighted toward the reader, and in

particular, a presupposition about the reader’s accumulated knowledge of games.

169

Pinchbeck’s work is intended for a game savvy audience, and is certainly not at-

tempting to be a rigorous, formal history of Doom. But the type of underspecified,

game-as-shorthand reference structure is endemic to a significant swath of game

studies. It will also make these types of work less relevant the farther they are

displaced from the contemporary titles to which they refer. Again, in clarification

with Altice, “Most contemporary game scholars are old enough to remember most

of the entire historical arc of computer games, so further clarification for them,

and audiences like them are not currently required.” Those in the future, unversed

in the early history of computer games, will need to do a significant amount of

work to recover all of the implicit game history embedded within Pinchbeck’s

references.

Another note is that Pinchbeck’s citations are more the norm in current game

citation practice. The GAMECIP study of citation practice analyzed citations in

over 300 publications relating to computer games. Of those, 102 different styles

of citation were found, and of those only 31 included any information about game

platform. A majority simply focused on title, developer and year of publica-

tion. The main problem with this lax citation practice is that without at least a

foundational set of descriptive elements tied to some expression of technical con-

straints and requirements, locating and replaying games referenced in scholarly

works might be very difficult in the far future37. Altice’s end of the spectrum,

with its acknowledgement of computer game materiality grounding out into the

literal byte order of a file header, is more historically secure in theory but re-

quires a level of technical understanding that might turn off scholars with less

techno-materialist concerns.

In the end, a probable solution is to provide a minimally viable set of descrip-
37For more information on recommendations for citation guidelines as a result of the GAME-

CIP work, please refer to our unpublished citation recommendations.

170

tive bibliographic fields based, again, on assumptions of reasonable compatibility

and retrieval. These minimum specifications and recommendations for citation

practice can be found in forthcoming (as yet unpublished) work from the GAME-

CIP project. The main thrust, however, is that for the legitimation of any argu-

ment made about or through a game, there is a requisite depth of citation that

aligns with the claim. From the above, the depth of Pinchbeck’s arguments dealt

with apparent surface characteristics of games. Characteristics that would hope-

fully be apparent to anyone playing one of the games cited. In the case of platform

studies arguments, the claims are more chthonic and dependent on citation at a

different depth, one close to the actual material existence of the program.

Hopefully, this section illuminated some of the problems with current manifest

intertextuality in games, most specifically that due to the current limitations of

textual description, the field of game studies is dependent on a presupposition of

played knowledge that is not tied to any specific material instances of games. The

next section looks at this problem from the perspective of constitutive intertextual

relations and provides a basis for our partial solution in the form of the citation

tool for executable reference. This constitutive work is the result of confronting

the current limitations of citations as they have been described so far. Primarily,

when even the citation of specific, material data is not enough or of a kind with

the expression of new historical claims.

4.4 Reduction and Intertextual Expression

Intertextuality is a fickle phenomenon. As noted by Fairclough above, when

making one text manifest within another, work needs to be done to mold the “other

text” in a form commensurate with the discourse surrounding it. Otherwise the

textual surface is disturbed, and the flow of thought for the reader becomes more

171

difficult to reconcile and interpret. (Of course in some instances, this might be

desired as a way to remark on the disjunction between different textual forms and

different ways of reading.) Fairclough looks at newspapers, medical interviews,

and other forms of discourse dissimilar from the academic text within which he

is operating. He focuses on the ways in which each discourse’s intertextuality

contributes to its existence as a distinct genre, a distinct type of expression. This

notion of constitutive intertextuality, the ways in which different discourses make

use of and interact with other texts, is a fundamental aspect of discourse analysis.

The constitutive act of bringing together “other” texts through manifest actions

like citation, as noted by Ken Hyland in his study of academic citation practice,

links text users to a network of prior texts depending on their group
membership, and provides a system of coding options for making
meanings. Because they help to instantiate or construe the mean-
ing potential of a disciplinary culture, the conventions developed in
this way foreclose certain options and make some predictions about
meanings possible.38

The organization of disciplines and regions of thought and inquiry, both in the

humanities and the sciences, are then dictated through the intertextual relations

of publications. These publications organize into networks that then enforce and

negotiate the boundaries of disciplines, and the specific intertextual discourse

required for group allegiance. Additionally, it stands to argue — as we will for the

rest of this section — that the intertextual surfaces of these genres of discipline

make use of certain conventions that can preclude certain types of meaning and

the expression of certain types of thoughts.

By relying on standard conventions of manifest intertextuality, and therefore

prescribing limitations on the expression of academic claims, we are preventing

certain discussions from taking place. In the interest of this thesis, we are most
38[96] Hyland, Ken. Disciplinary Discourses: Social Interactions in Academic Writing. Ap-

plied Linguistics and Language Study. Harlow; New York: Longman, 2000. pg. 156-157

172

concerned with the explanation and historical positions of computer games as sys-

tems and technical objects. We remarked in the last section on the presupposition

at work in discussions of game history. How references stand in metonym for more

complex thematic components and system interactions. In a sense, the discussion

was really about the limitations of current textual discourse about games that

relies on the narrativization of game play or the accumulated knowledge of the

reader as player. That game academics use text as the major form of expression

is understandable. Michael Lynch, when discussing scientists use of text over

visuals, notes:

The fact that writing is the dominant medium of academic discourse
is not incidental; while pictorial subject matter is alien to written
discourse, and requires a reduction to make it amenable to analysis,
written subject matter can be iterated without any “gap” with the
textual surface that analyzes it.39

Games are even more removed from the textual surface than the visualizations

Lynch is investigating and their insertion into textual discourse filters through

many different levels of “reduction”. Lynch’s work focuses on the reduction of

the worked scientific reality of the life sciences to the written page. “Scientific

research teams are described as agencies of mediation between an uncertain and

chaotic research domain and the schematic and simplified products of research

that appear in publications.” Researchers select and distill the appropriate data

and reduce it to visualizations and textual description to align with the constraints

of printed publications. This reduction of the chaos of a research project to the

streamlined and validated prose of research publications is of a kind with the

work of some game historical scholars in their attempts to better mind the “gap”
39[129] Lynch, Michael. “The Externalized Retina: Selection and Mathematization in the

Visual Documentation of Objects in the Life Sciences.” Human Studies 11, no. 2 (1988): 201-
234. pg. 201

173

between the played expression of games and their appearance and function in text-

based academic arguments. Most of the time, game studies uses presupposition

as a form of reduction, a way to fit the complex system interactions inherent to

the experience of game play into readable discourse. This approach, however,

largely limits the field of game discussion to their existence as “objects played by

a researcher in the past”, preempting other means of using games in argument.

The notion of reduction is important to the overall discussion of intertextual

surfaces and their effects on comprehension and expression. Reduction functions

on a spectrum aligning with the goals of a particular discourse. The reduction

from computer game to in-line textual citation is the most extreme form. Many

others make use of, in progression: still images, sequences (or juxtaposition) of

images, video, interactive visualization, and in limited cases, emulation. In mono-

graphs, and examples like Pinchbeck and Altice above, only still and sequenced

images are available. Pinchbeck narrates key areas of Doom with comparative jux-

tapositions of different game versions, and single images of key aesthetic and level

design features. Altice makes extensive use of emulator tools for the visual display

of internal memory states, or again, like Pinchbeck comparative juxtapositions of

key sequences or different passes of a rendering function. Outlining the full extent

of image usage in game studies monographs is well outside our scope, but the

important consideration is the jump in textual mediation that occurs in the tran-

sition from collections of images to video, interactive visualization or emulation.

The textual surface described for the majority of this chapter is one of physical

print and the constraints of its intertextuality. The newer forms of reduction are

not mentioned by Lynch because they still remain unleveraged in the sciences —

there are very few online publications in any field that leverage digital documents

new textuality. Digital humanists cry out for more active, digital intertextual

174

presentation (citations here), but their codified expression is only standardized

in a handful of online publications.40 Linking back, the expression of academic

discussions of games is then dependent on the forms of manifest intertextuality

that are available and commensurate with the dominant constitutive discourses

that currently exist. When people want to engage with games in ways that are

not commensurate with textual description they make use of less encumbering re-

ductions. In our case, when trying to either explain embodied system interactions

or complex dynamic processes, it is helpful to have more than textual discourse

as the only tool in the tool chest.

4.5 Types and Examples of Reduction

To clarify a bit, there are two key considerations at work in our discussion.

The first is the intertextual surface of discourse and how it makes use of manifest

actions, like citation, quotation, and images, in the constitution of a text. The flow

of an argument is aided by the integration of “other” texts such that the discursive

flow is smooth.41 Whenever one is reading through a discussion and needs to refer

to a figure, table, or other interstitial manifestation, there is then, borrowing

from Lynch, a “gap” in the textual flow and thus in the discursive progression.

An aim for any apparatus that allows for new types of manifestation must also

consider how that manifestation affects the constitution of a text, and the ways

that manifestations can augment or potentially further distort a discursive surface.

This surface is also, with advances in on-line technology and distribution methods,

not only just a physical sheet of flattened, dead wood, but the transmediatic —
40Prominent examples are Kairos, Scalar, and Vectors. http://kairos.technorhetoric.

net/, http://scalar.usc.edu, and http://vectors.usc.edu respectively.
41Unless, as indicated above, the interruption of the flow serves a discursive function. The

disjunction of meanings being relevant to some point or elaboration. Sometimes contrasts in
discursive presentation inform on limitations of either one.

175

http://kairos.technorhetoric.net/
http://kairos.technorhetoric.net/
http://scalar.usc.edu
http://vectors.usc.edu

interactive — surface of the computer screen and networked document. The

medium of expression, in the case of computer games and systems, is now of

the same stuff of the medium being described and discussed. There is potential

for a better and more forceful alignment of textual surface with digital system

expression.

The second key consideration is how reductions assist intertextual integration

to enable new forms of argument. We are not the first to venture down this

intermedial path, and by illuminating some further examples we can highlight

the new types of expression that we hope to enable with the to-be-described

tool. This section is mainly devoted to an elaboration of the second point about

methods of reduction in light of the first’s concern for intertextual alignment and

comprehension. The section is a collection of related and motivating work.

4.5.1 Video

Recall that the methods of reduction not discussed by Lynch are embedded

video, interactive visualization and emulation. “Embedded” is key since this al-

lows us to present them as manifest intertextual objects (and later use some of

the discourse analytical apparatus to discuss their effects). Reduction is a reduc-

tion of the embodied act of play to a form amenable with the constraints of the

particular intertextual surface being created. Video reduction is fast becoming

one of the major means for the dissemination of knowledge about how games are

played, and the surface characteristics of their presentation to the player. As a

phenomenon, this is beneficial to the progress of game historical study since at

the very least there will likely be some video remnants of game play available to

future preservation efforts.42 The availability of video has also prompted some aca-
42[160] Newman, James. Best before: Videogames, Supersession and Obsolescence. Rout-

ledge, 2012, actually calls for game preservation policies to prioritize videos of gameplay on the

176

demics to begin experimenting with embeddable video as a means for discussion.

For example, Doug Wilson, in a extended discussion of the game Spelunky for the

Polygon website, makes extensive use of embedded YouTube videos to support a

discussion and walkthrough of one of the game’s most difficult achievements, a

no-death solo eggplant run43. By interweaving textual description with multiple

embedded videos keyed to specifically salient moments, Wilson telegraphs a new

type of intertextual surface where narrativized gameplay description is aligned

with video supports. The technical mastery at work is made more apparent and

visceral through the accompanying videos.

4.5.2 Visualization

Interactive visualizations as embedded arguments, the next step up the reduc-

tion ladder, are not a significant practice in academia. Certainly, visualizations —

in the form of static images embedded in text — are very common in physical and

social sciences, and in humanistic analysis of textual corpora. Woolgar and Lynch

preside over two volumes dedicated to representation in scientific practice that are

mostly focused on the constitutive power of manifest visualizations in scientific

texts. The fact that the volumes are separated by 30 years belies the continuing

influence of visualization on scientific work. Analysis of the effect of visualiza-

tions on humanistic practice is probably most expressed in the recent attention

to algorithmic criticism in the works of Stephen Ramsay — for corpora analysis

assumption that executable access is a less likely future scenario.
43As described in [226] Wilson, Douglas. “A Breakdown of 2013’s Most Fascinating

Video Game Moment.” Polygon, December 23, 2013. http://www.polygon.com/2013/12/
23/5227726/anatomy-of-a-spelunky-miracle-or-how-the-internet-finally-beat. (Ac-
cessed 5 Apr 2017). The “solo eggplant run” is a secret completion achievement for the computer
game Spelunky; a rogue-like dungeon exploration game modeled on Indiana Jones and “explore
the tomb” type motifs. The eggplant run involves carrying a useless item from the beginning of
the game through completion with losing it or losing one’s life. It was so difficult that it took
years before its first completion by Bananasauras Rex in 2013.

177

http://www.polygon.com/2013/12/23/5227726/anatomy-of-a-spelunky-miracle-or-how-the-internet-finally-beat
http://www.polygon.com/2013/12/23/5227726/anatomy-of-a-spelunky-miracle-or-how-the-internet-finally-beat

— and David Staley — in historical visualization — among others.44 However,

the use of non-static, interactive visualization of dynamic systems is absent from

the intertextual presentation of findings in most scholar fields. The groundwork

is actually being laid more by those interested in the pedagogical application of

visualizations.

Bret Victor and his collaborators are at the forefront of so-called “explorable

explanations”, juxtapositions of online text and embedded interactive visualiza-

tions designed to reveal the functionality of systems.45 Some examples include a

long explanation of the basic dynamics of simple animated pathing, and Vi Hart

and Nicky Case’s interactive model of Thomas Schelling’s group segregation theo-

ries.46 Each example works to mollify the “gap” between the textual presentation

inherent to the browser window and the machinations - and interactive features -

of the supporting visualizations. Victor’s work espouses a pedagogical philosophy

of system comprehension through manipulation and tacit experience. Readers are

invited to read the expository prose, and then play with the interactive models

of the phenonema on the page. The hope is that through tacit manipulation and

play a deeper understanding of the underlying system will develop.

Victor refers to his online visualizations as “reactive documents” that allow
44[172] Ramsay, Stephen. Reading Machines: Toward an Algorithmic Criticism. Topics in the

Digital Humanities. Urbana: University of Illinois Press, 2011. [196] Staley, David J. Computers,
Visualization, and History: How New Technology Will Transform Our Understanding of the
Past. Second Edition. History, the Humanities, and the New Technology. Abingdon: Routledge,
2015.

45However, being at the forefront of something is not the same as “inventing” it. And Victor’s
work is heavily inspired by Alan Kay’s in “active essays” and Ted Nelson’s educational musings in
“No More Teacher’s Dirty Looks” from [159]. For more information on the genealogy of the term
see [231] Yamamiya, Takashi, Alessandro Warth, and Ted Kaehler. “Active Essays on the Web.”
In Creating, Connecting and Collaborating through Computing, 2009. C5âĂŹ09. Seventh
International Conference on, 3-10. IEEE, 2009. http://ieeexplore.ieee.org/abstract/
document/5350160/. .

46[90] Hart, Vi, and Nicky Case. “Parable of the Polygons.” http://ncase.me/polygons,
(Accessed Apr 5 2017). and [212] Victor, Bret. “The Ladder of Abstraction.” http:
//worrydream.com/#!2/LadderOfAbstraction, (Accessed Apr 5 2017).

178

http://ieeexplore.ieee.org/abstract/document/5350160/
http://ieeexplore.ieee.org/abstract/document/5350160/
http://ncase.me/polygons
http://worrydream.com/#!2/LadderOfAbstraction
http://worrydream.com/#!2/LadderOfAbstraction

the reader to test out the various models presented and gain insight through those

interactions. The goal is to develop an “active reader”, someone who uses “the au-

thor’s argument as a springboard for critical thought and deep understanding.”47

Active reading owes much to the foundational pedagogical insights of Seymour

Papert. Papert devoted his career to the development of computational tools

to aid in programming and algorithmic thinking.48 He also believed that tacit

experience with reactive systems would support better modeling capabilities in

confronting new problems and challenges. He traced this potential to a youthful

fascination with gears that implicitly enforced a tacit understanding of complex

differential systems. His gears functioned as a model that enabled a better un-

derstanding of math “than anything I was taught in elementary school”.49 The

ability to present information in different and interactive ways led to a new model

for the exploration of further knowledge. Papert linked this notion with the ed-

ucational theories of Jean Piaget that espoused the “assimilation” of concepts

into a learner’s world view. Papert’s gears functioned as an “affective model,” a

mapping (assimilation) between their relational dynamics and other mathematical

concepts. Victor’s work is then an attempt to embed these “affective models” as

interactive visualizations into online documents.

The design and application of affective models that encourage comprehension

of technical concepts is important for our larger argument about the potential

for new forms of intertextuality to support new argumentation. Victor presents

a prototypical means of doing more with online texts, and trying to engage the

reader with the systemic processes under discussion. Victor’s reactive documents
47[214] Victor, Bret. “Explorable Explanations,” 2011. http://worrydream.com/#!

/ExplorableExplanations. (Accessed Apr 5, 2017.)
48A note here that Papert later career focus on computational tools is best described in [165]

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc.,
1980.

49[165] pg. vi

179

http://worrydream.com/#!/ExplorableExplanations
http://worrydream.com/#!/ExplorableExplanations

are a new discursive surface. One populated with interactive features aimed at

creating a new type of active reader. They are also the result of a reduction

from larger, complex system dynamics to concentrated, pedagogical visualizations

designed to support textual arguments. The reduction, however, is much richer

than an image or video, since it can support the creation of a tacit, embodied

argument. Instead of referencing an image or video of a system processes, a

smaller part of the system can be introduced into the discourse describing it. Or

better yet, use the interactive surface as an argument in of itself for a particular

point of view or affective process.

4.5.3 Emulation

Before discussing emulation as a form of reduction — in line with the progres-

sion outlined above — we need to clarify some basic technical distinctions and

provide some related examples. This is necessary because the use of emulated

systems as a form of argumentation about software history — or really any topic

for that matter — has not before, to our knowledge, been explored or theorized.

Emulation, as a computational process, is the use of one system in reproducing

the functionality and output of another.50 Emulators, the programs responsible for

emulation, are used in many corners of the software industry to allow for testing of

applications on a variety of devices. For instance, most mobile phone applications

are not developed on mobile phones. They are programmed in emulation on

laptops and desktops more conducive to long bout of typing and heartache. As
50More technically, it is “a technique for implementing a virtual machine on a host computer

whose instruction set is different from the host computer’s.” [183] Rosenthal, David SH. “Em-
ulation & Virtualization as Preservation Strategies,” 2015, pg. 2. Although the line between
virtualization and emulation does get a bit murky by this definition — the computer I’m typ-
ing this on, a MacBook Pro running Apple Mac OS X 10.11 shares the same basic instruction
set with a Sony PlayStation 4 — the encapsulation of one system within another is the basic
function of emulation.

180

noted by Nathan Altice, emulation has a long history tracing back to the historical

origins of software development. In the 1960s IBM developed the first sets of

commercial emulators to allow software written for one mainframe model to be

compatible with another.

More recently, in the 1990s, enthusiast game communities began to create

emulators of popular game systems, like the Nintendo Entertainment System.

Targeting then-current operating systems like Windows 95, these emulators al-

lowed for the replay of older titles that might no longer be available for purchase,

were released in foreign territories or might otherwise be difficult to acquire. The

“games” in this usage were data dumps extracted from the physical cartridges,

and other forms of magnetic and optical media. For cartridge systems, these files

are known as “ROM”s since they are copies of a cartridge’s read only memory.

A more general term for data extract from a media format is a “data image,”

more commonly shortened to “image”.51 Emulators operate on data formatted

for a specific system, and over the last 20 years, emulation development and the

extraction of legacy data from physical formats has flourished. Emulators now

exist for thousands of different computational platforms, and are a ripe source for

the exploration of software history. That is, assuming one ignores some significant

legal issues.52

51The use of “image” in referring to an extracted data set is drawn from operations in math-
ematics. When you use a function to operate on a set of numbers, you are mapping the input
values with potential outputs. In the case of y = x + 1, y is a function of x (f(x)) with x standing
for a range of input values, and y for the output values of the function. The input values in this
case “map” through the function to a specific set of output values. This resultant map, which
is just the set of inputs each incremented by 1, is an “image” of those inputs in a new domain.
Similarly, the data extracted from a physical medium is not the same data (nothing changes
from the physical medium’s point of view) but a mapping of the data stored on that medium to
an equivalent set of data now migrated from the media to another machine. Thus, “imaging” is
very directly the process of mapping the data stored on a specific physical media to an identical
configuration on a separate machine with its own storage. This distinction between types of
data, and the means by which they are migrated, mapped and translated between machines will
become relevant below for issues of reduction.

52Emulation, specific in its copying and use of potentially copyrighted data, is in murky legal

181

Important for our discussion of manifest intertextual presentation are recent

developments in web browser technology (and speed improvements in general)

that now make it feasible to run emulators inside online documents. The poten-

tial for embedded emulation has not yet been exploited or thoroughly explored.

However, because most web browser now run highly optimized JavaScript compil-

ers, in-browser emulation is a growing phenomenon. The most prominent example

is the JavaScript Multiple Arcade Machine Emulator (MAME) project. MAME

began as a system for emulating arcade machines. Complementarily, the Multiple

Emulation Super System, using a fork of MAME’s code base, provided support

for most personal computers. MAME recently went open source and MAME and

MESS are now merged. The combined infrastructure supports thousands of dif-

ferent arcade machines and personal computers released over the last 40 years53.

Initially a large C++ project, the Internet Archive, along with a collection of

motivated developers, ported key components of MESS — before its integration

with MAME — to JavaScript to create the Internet Arcade, a playable archive of

the Internet Archive’s imaged software collection. After the open-source combi-

nation, JavaScript became one of a number of compilation targets for the entire

MAME-MESS code base.

Similarly, many other emulators began organizing compilation to JavaScript.

This included the emulators DOSBox, for legacy x86 MS-DOS machines; FCEUX,

for the Nintendo Entertainment System; and Snes9x, for the Super Nintendo

Entertainment System54. A technology known as Emscripten, initially developed

territory. We will not significantly address the issues here, since they are out of scope with the
discussion, and also out of spirit with the desire to reclaim and explore the history of games.
For more extensive legal information on this topic, check out the aforementioned [183] and [149]
.

53The MAME project is infamous for its attention to detail and support for esoteric systems.
One recent addition included a Sonic the Hedgehog popcorn vending machine with embedded
display that was marketed only in 1993 in certain Japanese cities.

54Many other emulators now have JavaScript versions, the three listed above are the three

182

by the Mozilla Foundation, hastened the emulation porting process by providing

a means to compile emulators written in the C programming language directly

to JavaScript. We will discuss Emscripten more technically in the citation tool

description section below.

Now that emulation is available in browser, it is possible to place both a

running program, and the text describing or commenting on it, onto the same

intertextual surface. In the progression of reductions from images to interactive

visualization, there was always a clear notion of how each step still represents a

deficient copy of some object or system outside the text. For images and video,

as mentioned by Lynch above, researchers put in a significant amount of effort

to both make their samples more photogenic and thus more interpretable when

presented on a textual surface. In dynamic visualizations, there is an implicit

understanding that we are being presented with part of a system that has been

distilled for comprehension and reader engagement. The very act of visualization is

to provide a specific perspective (of many) on the data or system under discussion.

With emulation, there does not appear to be a similar process at work. While

the emulation is a program designed to conform to the constraints of a digital

document, it is not a distillation of a system but a full version of the system

itself. This challenges the basic premise of intertextuality presented above, that

the texts made manifest in and reduced to a specific discursive surface are under

the basic control of the author. While some manipulation or presupposition —

in cases where the author is misremembering or functioning with a divergent

set of assumptions in regards to the reader — is always a potential issue, that

the manifest references might have a mind or operation of their own was never

we use in the citation tool and so are explicitly mentioned. For a full listing of emula-
tors (including JavaScript) check https://en.wikipedia.org/w/index.php?title=List_of_
video_game_emulators&oldid=784194013 (Accessed June 8 2017) which keeps a running list
of projects and compatibility.

183

https://en.wikipedia.org/w/index.php?title=List_of_video_game_emulators&oldid=784194013
https://en.wikipedia.org/w/index.php?title=List_of_video_game_emulators&oldid=784194013

imagined. In bringing emulation into the text, we therefore encounter a new type

of intertextual interaction, and with it a different model of reduction. One that

requires significantly more effort in the legitimation of claims and the interpretive

exercise. Presupposition of played experience is no longer possible because the

system — the same system — is available to both author and reader.

The imbrication of emulation into argumentative texts has only been lightly

attempted in the past. Nick Montfort wrote an article for the Electronic Litera-

ture Review that embedded a Java plugin-based emulation of the Infocom game

Deadline.55 However, his argument does not particularly integrate the emulation

so much as position it in the article to simply show such a move is possible. Oth-

ers have used online emulation for deeper systemic analysis. One notable example

is Ben Fry’s early online visualization of the internal memory state of the Nin-

tendo Entertainment System. The “deconstructulator” is a Java-based in browser

emulator based on a modified version of the NESCafe emulator56. The visual-

ization presents three different windows, a rendering of the full sprite memory of

Super Mario Bros., a playable emulation of that game, and the active memory

contents of the NES’s PPU (Picture Processing Unit), a component that manages

sprite rendering on positioning on screen. As the player plays Super Mario Bros.

the contents of the sprite map highlight the currently active sprites in use, and

the PPU map show the current state of each 8x8 tile in the PPU. By moving

Mario around, the player can see how the different animations and changes to the
55[156] Montfort, Nick. “Cybertext Killed the Hypertext Star | Electronic Book Review,”

December 30, 2000. http://www.electronicbookreview.com/thread/electropoetics/
cyberdebates. (Accessed 5 Apr 2017). The Java-based plugins are now flagged as security
threats, and even forcing the browser to ignore those warnings did not result in the emulations
executing correctly.

56On a preservationist note, while the “deconstructulator” is still available online, it requires
a Java-plugin to function. Due to security concerns over the last decade, Java support has been
dropped or disabled in many browsers. There is no longer any mention of the NESCafe emulator
on its creator’s website, and its most recent update (July 22, 2008 according to [8]) is over 8
years old as of this writing in 2017.

184

http://www.electronicbookreview.com/thread/electropoetics/cyberdebates
http://www.electronicbookreview.com/thread/electropoetics/cyberdebates

game’s background, enemies and platforms modify the NES’s system memory. Fry

designed the piece for his “Visually Deconstructing Code” series, a set of small

projects aimed at unearthing some of the hidden processes at work in NES ROM

code.

Other examples of emulation as a revelatory mechanism exist within the com-

munities devoted to forms of what James Newman refers to as “superplay”. Activ-

ities like speed-running, both human and tool-assisted, glitch-hunting, sequence-

breaking, and other forms of “performative mastery” of games benefit from re-

search conducted with emulation. Many community emulators support tools for

memory analysis and even scripting languages for the live manipulation of a run-

ning game. This allows player-performers interested in, for example, shaving that

last second off of a run or getting past a boss without attacking, to dig beneath the

representational surface of the game and mine its system for potential solutions.

Some online streamers, like Clyde Mandelin, write custom emulator modifications

that allow for live streaming of both their gameplay and aggregated statistics or

interactive visualizations of the underlying system.57 As we will discuss below,

it is becoming clear that a community of practice is developing around the ex-

pressive potential of emulators. It’s also a sign that the products of community

historical efforts are becoming more aligned with digital humanist insights about

technical collaboration between academia and amateurs.58

In placing a running program into an online text, its reduction to that surface

implicates a raft of potentially disingenuous assertions about the historical play

experience. As outlined extensively in the work of preservation minded historical
57https://www.youtube.com/user/ClydeMandelin
58See chapter 10 “Unreliable Archivists” in [177] Rinehart, Richard, and Jon Ippolito, eds.

Re-Collection: Art, New Media, and Social Memory. Leonardo. Cambridge, Massachusetts:
The MIT Press, 2014. for a more detailed discussion of the benefits and perils of incidental
community archival practices.

185

https://www.youtube.com/user/ClydeMandelin

researchers, emulation, in its erasure of the original executable context, denies the

experience of the original hardware.59 The modern web browser, as a displayed

surface, is very different from an Atari-era CRT, and most modern machines do

not have way to interface with original peripherals. Additionally, many emulators

try to make the played experience smoother by modifying speed for the sake of

accuracy.60 They also remove old constraints on the swapping of disks to load

parts of the program in piecemeal and internal memory limitations. However, not

all aspects of emulation are a historical loss, since the position of the emulation as

running inside a host process allows for the introspection and revelation mentioned

in the above examples. The ability that many emulators provide to save and load

memory states is also, as we will see, a boon to players and researchers hoping to

encounter difficult, confusing or novel locations inside games.

4.5.4 Closing

A key note about the reductions above is their ability to bring something

from “out there in the world” into the text. Usually those studying academic

discourse, or the social construction of academic arguments, focus on how that

external evidence is transformed into a manifest object in the text. For scien-

tific work, we have mentioned both discourse analysis and science and technology

studies as fields that theorize on the reduction and distortion of tacit laboratory

knowledge into written discourse.61 In the humanities, citation and reduction are

less epistemologically fraught, since the aim of humanistic discourse is not gener-
59[103, 158, 160, 128, 74]
60Some emulators running in constrained environments, like JavaScript emulators in web

browsers, need to cut corner to get processing up an acceptable speed. Other emulators running
in native execution contexts, like Microsoft Windows applications, sometimes intentionally slow
down processing in order to match the timings of older machines.

61See [229] Woolgar, Steve. “On the Alleged Distinction between Discourse and Praxis.” Social
Studies of Science, 1986, 309-317. for a discussion of the different philosophical roots behind
discourse analysis (Continental philosophy) and STS (Anglo-American Analytic philosophy).

186

ally to re-organize some empirical object or finding into a textual form suitable

for publication.

Within history, the use of manifest intertextuality is critically important to

the sustenance of the field, but the act of manifestation does not usually imply

a reduction of a finding “out there”; the “out there” of historical sources being

mainly other texts. Rarely is the historical object, if there is one, reduced to

a form commensurate with the textual surface. In fact, much historical work

into objects specifically addresses this issue, a good example being John Law’s

work in aircraft design that explicitly constructs different historical strands of

documentation to reveal the fractal nature of the object in question. In his case,

he looks at the construction of the British TSR2 strike and reconnaissance aircraft,

and how it exists as an object of engineering, marketing, and an embodiment of the

projection of hegemonic force. The aircraft is viewed along different evidentiary

axes to support a conclusion about how objects exist in myriad ways depending

on how they are documented and narrativized.62 This again ties back to ideas

from discourse analysis, mainly in how the constitutive intertextuality at work in

the history of science and technology defines the objects of analysis; a summary

from Steve Woolgar:

Surely, it is often said, it is absurd to say that we cannot distinguish
between a thing and what is said about that thing. But the consti-
tutive view does not prohibit such distinctions. It offers us a way of
seeing these distinctions as actively created achievements rather than
as pre-given features of our world. In particular, the distinction be-
tween talk and objects-of-talk is seen from the constitutive perspective
as the upshot, rather than the condition, of discursive work.63

The fundamental take away is that previously, describing any technical system

as a historical object necessitated various forms of reduction and other intertextual
62We will be discussing John Law’s effect on our own historical modeling in Chapter 6, “A

Model of Doom”.
63[229] pg. 314

187

strategies to remediate and insert it into a text. With embedded emulation, and

to a lesser extent dynamic visualization, embedding the system itself must now be

reconciled. When John Law describes his aircraft, he could not bring the aircraft

into the text and let the reader hop into the cockpit, and with computational

systems increasingly the site of construction and reception for scholarly work,

but with technical historical objects that are also computational systems, we can

literally transcribe them into discourse and invite the reader to take the flight

stick.

4.6 Back to Citation and Archives

In bringing a non-text-based object into textual discourse, like the reductions

of image, video, visualization and emulation above, there is a key link to archives

and citation that has not been made explicit. In the case of online documents that

incorporate various reductions, those texts are not singular objects but networked

organizations contingent on access to the various sources of reduction. If one prints

an image alongside text, the image is now part of the textual form, and is, from

an archival standpoint, part of the same object. With online work, every page of

information is an aggregated object. The basic markup for the page comes from

one source, the styling of that page from another, and all the various images and

other embedded entities from still others within that same domain or from some

other (hopefully trusted) source. When something is embedded, as the images,

videos, visualizations, and emulations are, they necessitate and depend on the

existence and maintenance of stable links to recover their data.

The maintenance of these links is a significant issue for the stability of knowl-

edge online. Whenever a link leaves its local namespace (assuming that internal

network links are maintained, which is not always a given) it relies on the ex-

188

istence, capabilities and restrictions of a remote hosting repository. For videos,

most content links resolve thanks to the embedded link architectures of mass scale

video sites like YouTube or Vimeo. This allows the embedder to not have to main-

tain their own video server nor provide the bandwidth necessary for playback. It

also removes responsibility for intellectual property management and ties access to

embedded content to the whims of the content provider. In the Spelunky example

above, Wilson toyed with the constraints of YouTube’s embedded video player to

reveal specific salient content inside the game. That action only made possible

by the affordances of YouTube, the repository hosting the content. In the case

of historically stable online academic discourse, it should be apparent that any

new ability to share or link to digital data incurs a commensurate necessity for

a functional and stable repository. The current solutions for video leave a lot to

be desired given that they are bound to the corporate imperatives of actors not

emphatically concerned with preservation or link stability.

The tool below is an attempt to organize a prototypical archive for embedded

emulated content, and to try and reconcile some of the manifest intertextuality

present in game historical work to a more stable set of practices regarding citation

and linking. In the case of embedded emulation, the data has similar issues

to that of video. Namely, that the IP rights for the distribution of streaming

copyrighted gameplay data need to be correctly managed, and that the embedded

content be presented in such a way to make it useful for inclusion into texts. The

consideration for future scholarly use of emulated content is a way to dictate what

a speculative collection of such works would look like at a larger, institutional scale.

Additionally, the consistent citation of this content, as an initial condition of the

system’s functionality, should be a concern for any future work in the creation of

links to new forms of digital expression and reduction.

189

4.7 A Tool for Descriptive and Manifest Cita-

tion of Games

This section outlines the design and functionality of the citation system in the

Game and Interactive Software Scholarship Toolkit (GISST). GISST is a suite of

tools aimed at helping with common game studies and game historical tasks, and

includes a system for the management of manifest citation of both game emula-

tion and game bibliographic references.64 The citation component of GISST —

described below as the “citation tool” — is designed to partially address numerous

issues presented above:

1. The need for a more consistent bibliographic citation information for com-

puter games

2. An example use case for the placement and manipulation of various reduc-

tions of computer games into online text. In this case, images, videos and

live emulation.

3. The need for a managed archive of the reductions used in (2)

The citation tool functions on three classes of objects, games, performances,

and game system states and applies points 1-3 to each. Game objects are col-

lections of data about a game. This includes both basic descriptive metadata,

required for correct bibliographic entries, and links to executable data needed to

run the game in browser emulation. Performance objects are records of games as

played or viewed by a player or group. These records are also split in a way simi-

lar to game objects with viewable performance data being paired with descriptive
64GISST as a full system has yet to be realized, and the citation functionality described below

led to a potential for a larger future toolset.

190

metadata. By “viewable performance data” we mean either a collection of frames

— gifs or video — representing some situated act of play, or replay data — input

stream recordings for emulators or replay files for a specific game engine. Game

system states are snapshots of a game’s run time memory, either saved by the em-

ulator as a separate file or extracted directly from a system’s memory. The tool

manages game, performance, and game state records in a server side database,

and allows for the embedding of any (assuming executable or viewable perfor-

mance data is available). The rest of this section briefly accounts for the inclusion

of performance in our citation apparatus and then lays out the functionality and

potential future work for the tool.

4.7.1 Game v Performance

The discussion above mostly dealt with the citation of game objects as a

means of presupposing their content and the contours of their gameplay. However,

game performances as events are also commonly referenced in scholarly works.

Performances result from two activities, games-as-performance, in the case of

games tied to explicit geo-temporal contexts — ARGs, installations, etc. — or

gameplay performance. Gameplay performance is the play of a game that is not

explicitly tied to a geo-temporal context, but that gains relevance from being

situated in one. An example is a particular match at a fighting game tournament,

where the event itself circumscribes gameplay performance. The game is this case

is not the operative site of performative relevance, its game play at the tournament

is. If the same match occurred in practice in a dorm room, no one would care.

Game performances as significant historical sources are well discussed in the

literature. Clara Fernandez-Vara, in her Introduction to Game Analysis notes

that, “we may want to analyze a game that is an event, a be-there-or-be-square

191

type of thing, a performance.”65 She describes the need for secondary sources

— “paratexts” like video or firsthand description — in helping to reconstruct

and corroborate information about a performance. This sentiment is echoed in

Henry Lowood’s work on the reconstruction of events that take place in massively

multiplayer online games (MMOGs).66 In this case, the study of virtual world

game play is more akin to anthropological work. The game itself, while it could

be recovered and run through emulation in the future, is devoid of the community

that created meaning through the performative space and affordances the world

provided. Lowood remarks on the fallacy of an ideal “perfect capture” of every

event and input supplied to the virtual world.

Even if we save every bit of a virtual world, its software and the data
associated with it and stored on its servers, along with a replay of
every moment as seen by players, it may still be the case that we have
completely lost its history. The essential problem with this approach
is that it leaves out the identification and preservation of historical
documentation, and these sources are rarely to be found in the data
inside game and virtual worlds or on the servers that support them.67

Even with access to game replay files, or reproductions through emulation, evi-

dence of a game performance must also be paired with secondary information to

substantiate and analyze it. Our inclusion of performance citations in the tool

is to enable a link between the game object’s data and description, and further

contextualizing performances. Additionally, the ability to embed emulation in

line with historical performance video and description, adds further potential for

somatic contextualization of game play. By bringing the emulated system to the

reader, they can gain a sense of what Steve Swink refers to as “game feel”, an
65[74] Fernández-Vara, Clara. Introduction to Game Analysis. New York: Routledge, 2014.

pg. 44
66[128] Lowood, Henry. “Perfect Capture: Three Takes on Replay, Machinima and the History

of Virtual Worlds.” Journal of Visual Culture 10, no. 1 (April 1, 2011): 113-24. doi:10.1177/
1470412910391578.

67[128] pg. 118

192

doi:10.1177/1470412910391578
doi:10.1177/1470412910391578

embodied understanding of the game system as felt through the act of play.68

Pairing this embodied understanding of a game play system with performances

adds another level of intuitive understanding to historical game play acts.

4.7.2 Citation Tool

The citation tool has two primary components:

1. A command line interface (CLI) responsible for the ingestion of game and

performance data, the generation of citations, and the management of the

citation database

2. A web application (the “app”) that enables the live emulation of ingested

game data, the live recording of game play performances, and the live record-

ing of computational game states

For the rest of this section we will use CLI to refer to the first component,

and “app” to refer to the second. Their functionality is significantly inter-related,

for example the CLI command “serve” launches the app, and the app’s backend

server calls the CLI for certain processing tasks. We will attempt to the best of

our ability to be clear about the particular component under discussion. The next

two sections provide a brief technical overview of both components. Additionally,

the image below illustrates the relationships between the various components and

we will refer to various features by number throughout this section.
68Swink’s “game feel” is focused exclusively on continuous input games, like platformers or

action titles. Doug Wilson has argued that “game feel” should extend to other types of in-
teractions with computational feedback systems, from menu systems to mouse interaction in
strategy games. We take the latter, more liberal view of game feel in the context of providing
an emulated system in argument for the significance of a performative act or as a means of
elaborating on a deeper understanding of embodied play experiences. See [203] Swink, Steve.
Game Feel: A Game Designer’s Guide to Virtual Sensation. Burlington, MA: Morgan Kauf-
mann, 2009. and Wilson’s talk, A Tale of Two Jousts: Multimedia, Game Feel, and Imagina-
tion. https://www.youtube.com/watch?v=JkbCNMAS0qI&feature=youtu.be, (Accessed Apr 5
2017).

193

https://www.youtube.com/watch?v=JkbCNMAS0qI&feature=youtu.be

Figure 4.1: GISST components and pipeline.

194

Input resources (1) are fed to the CLI (2) that extracts their information (3)

into an extraction table — for URLs — or the citation database — for performance

and game data. The Web Application reads from the citation database (4) and the

Indexer uses CiteState.js to create further citable resources (5). CiteState.js

can then use those resources’ permanent URLs (6) and its cite function (7) to

embed an executable program into a target HTML tag (8).

4.7.3 Command Line

The CLI is a collection Python command line scripts that manage the extrac-

tion and citation of game and game performance data — 1-3 in Figure 4.1.

Usage: gisst [OPTIONS] COMMAND [ARGS]...

Options:

--verbose To everything that’s going on.

--no_prompts Turn off all user prompts (use with care).

--version Show the version and exit.

--help Show this message and exit.

Commands:

cite_game Create a game citation.

cite_performance Create a performance citation.

clear Clear local data

delete Delete a citation by uuid

extract_file Extract metadata from a compatible file.

extract_uri Extract metadata from a compatible url.

gif_performance Create a gif from a performance citation.

195

search Search for citations with a game partial.

serve Run local access server for citations.

The CLI’s help command outputs the above list of commands and options. Of in-

terest to the current chapter are the citation commands, cite_game and cite_performance,

and the extraction commands, extract_file and extract_uri. The CLI man-

ages a simple database of information about games and performances. “Games”

are simply a collection of descriptive metadata elements populating a table in the

database, with the potential for associated game data. Similarly, “performances”

are any play recording associated with a particular game reference. The perfor-

mance metadata is stored in the same database as the game references. Each

performance can be linked with viewable performance data, usually either a video

recording or a tabulated input format for one of the tool’s supported emulators.

The CLI provides for two basic actions, extraction and citation. Extraction

commands accept either local filenames or Universal Resource Identifiers (URIs).

For games, the extraction files are either game data files, or directories containing

game data. Providing a URI to the game extraction command assumes that the

link provided hosts information about a particular game. Currently, extraction

supports game reference URIs for either MobyGames or Wikipedia. Performance

extraction only accepts URIs from YouTube.

Extraction performs a first, unedited pass on the data provided by a specific

source. If a file source is not recognized, it will be stored as a generic object in

the database. Unrecognized URIs result in errors. Extraction is needed to con-

struct a stable citation because the information provided by a potential resource

may exceed the constraints of the descriptive metadata scheme or require further

disambiguation. As an example, the Wikipedia page for Super Mario Bros., orig-

inally released for the Nintendo Entertainment System, combines all information

196

about the title, in all of its different versions and releases, onto a single page. The

extractor presents all of this information to the user, and allows them to choose

the particular version of Super Mario Bros. they wish to later cite.

Citation enables the creation of a fresh game or performance record. If source

information is provided and is specific enough to ascertain a unique game or

performance, then the system will automatically create a citation and check for

duplication. Any citable game or performance data is then available for closer

inspection in the app. The basic extraction and citation pipeline is illustrated in

Figure 4.2 below.

Figure 4.2: Basic CLI Pipeline

The CLI currently allows for the extraction of a variety of sources and file

types, as shown in Table 4.1 below:69

Any source data that is extracted, currently game files and videos, is linked

to a dependent citation entry. This allows for the recovery of source data in the

web application interface through either emulation or video playback.
69The table does not include game states because the CLI does not ingest arbitrary state

data. This is mainly due to the fact that emulated state data is specific to both a game and
the emulator supporting it and effectively useless without those dependencies. Additionally, in
the case of some of GISST’s supported emulators, like DOSBox, there are no independent save
state formats, just data derived from the live emulation during run-time.

197

Table 4.1: GISST Supported Resources

Citation Type Supported File Types Support URI Source
Game .NES ROM Format MobyGames

.SMC ROM Format Wikipedia
Any directory containing a
DOS compiled executable
.z64 ROM Format (partial)

Performance FM2 replay format YouTube
Generic Video Files

4.7.4 Web Application

The app is standard browser-based web application, with a JavaScript/HTML/CSS

front-end designed for use with the Chrome web-browser, and a backend interface

that is linked to the same database and ingestion commands as the CLI. This is

marked as steps 4 and 5 in Figure 4.1 above. The app allows for the play, record-

ing and citation of game states through the use of JavaScript based emulators.

The basic architecture is outlined in Figure 4.3 below.

Figure 4.3: Data Flow to GISST Indexer

The major components of the app front-end are a collection of JavaScript

modules that support emulation and video recording of games in browser. The

underlying technology supporting these modules is known as Emscripten. As

mentioned above, Emscripten is a C-to-JavaScript cross-compiler that enables

programs written in C to be executed as independent JavaScript modules in-

198

browser. The supported emulators are modified ports of C programs, with an

additional interface layer that allows for citation and recording by the web appli-

cation. Each emulator supports a basic set of API calls to load and save game

state, control input and audio source, and restart if necessary. The wrapped em-

ulators are stored as a set of compiled JavaScript files, that along with a wrapper

class, CiteState, allows for the loading of a set of game files and a save state into

a targeted HTML5 tag.

The app’s interface supports four basic views of citation data:

1. A basic listing page for the game and performance citations in the database

2. A full text search page that includes all citation records and game save state

descriptions

3. A citation listing page that provides active links to previous save states

and, for performances, the ability to create quick gifs animations based on

a performance video

4. An indexer page that allows for examination of an emulated game, and the

creation of game save states and video recordings

Entries 1-3 are common boilerplate tables of information and do not warrant

further discussion (with the exception of the “active links” in item 3). The indexer,

however, is the generative heart of the endeavor and we will briefly describe its

basic functionality and architecture.

As mentioned above, CiteState.js is a small JavaScript module that manages

the emulation interface as well as video and audio recording of the target HTML

canvas in which the emulation runs. CiteState.js can theoretically manage an

unlimited number of emulations per page, but there is a hard limit of 6 concurrent

199

emulations due to the constraints of current web browsers70. If a seventh emulation

is added to a page, the oldest (first loaded) one will be automatically deactivated.

The CiteState object manages only the interface and data flow into and out of

the emulation. All major data transfer functions, save and load state, screen

capture, and recording provide JavaScript callback functions that are triggered

on the completion of each process. At that point, the data management is handed

over to the indexer code that manages communication and transfer of state and

recording data to the backend Python server. The next four figures describe the

communication processes for the interaction between the Indexer, its CiteState

instance, and the storage server.

Of note in the above diagrams is the concurrent management of save (Figure

4.6), load (Figure 4.4 and 4.5) and video recording (Figure 4.7) functions. In

the case of save and load state, for the DOSBox emulator specifically, each save

state also included the full file structure of the system at the time of the save. As

a result of the architecture of Emscripten, which relies on a fixed, pre-allocated

block of memory for each running application, uncompressed states from DOSBox

are around 100MB. This well exceeds the bandwidth capabilities of common web

usage. As a result, each file and state is compressed before transfer to the server.

The concurrent operation of each major function also allows for video recording

and state save and load to occur simultaneously or for multiple emulator instances
70The specific issue is that each emulation runs as a separate application within the web page.

Emscripten is designed to generally run a single application per page. As such, it provides no
support for management of multiple applications, and in some cases this assumption of singular
page execution bumps up against browser limitations. In our case, each new emulation creates
its own AudioContext to produce sound through the browser. An AudioContext is a JavaScript
object responsible for audio playback and routing. Currently, Google’s Chrome browser (the
most advanced in this specific regard) only supports 6 concurrent AudioContexts per page.
This makes sense given that most web pages will only need one source of audio. In our case,
it would be possible to circumvent this limitation by writing an AudioContext manager. The
main impediment is that each Emscripten-based emulator conversion is unique and thus we
would need to rewrite significant portions of each emulator’s audio management code to allow
for an alignment to a global AudioContext.

200

Figure 4.4: Network Diagram for Loading a Game into the Indexer. Note the
optional save state or save data load if provided to in the URL.

201

Figure 4.5: Network Diagram for Loading a Save State. Decompression is
required if the save data is not an emulator produced save file. See next figure for
more. All compression functions run in a separate worker process to avoid locking
the browser during play.

Figure 4.6: Network Diagram for Saving a Save State.

202

Figure 4.7: Network Diagram for Video Recording. The recording process runs
on a separate worker process in the diagram. Video compression is also handled
in a separate process.

203

on a single page. The video recording process is actually also an Emscripten-based

cross-compilation of “libav” a simple C library designed for video recording. This

means that when loaded in the indexer each emulation is supported by multiple

concurrent Emscripten-based C applications. We believe that the potential for

the operation of multiple, cross-communicating applications inside the browser

will provide for a significant advance in the capabilities of client-side JavaScript

applications.

Figure 4.8: Indexer User Interface. The emulation window is on the left, with
a recording of that window displayed on the right.

Proceeding to the app’s user interface, as displayed in Figure 4.8, we will briefly

describe each button and component. The buttons under the main emulation

window provide for most of the data recording features. The user can load the

emulation, save a state, load the most recently saved state, control video recording,

and mute audio. When a state is saved, it is logged in the “Available States” tab

along with a screen shot and generated descriptive information. By clicking on

any available state, the emulator will immediately load that state into the main

204

window. After a state is selected, the “State” tab in the left side bar lets the

user change its descriptive metadata. All changes logged in the side bar are

propagated to the server and will show up in search queries. Video recording

functions in a similar way. Any time a start-stop sequence is completed, the

beginning and ending state of the emulation will be saved along with the video.

Each recorded performance appears in the “Available Performances” tab. Clicking

on a performance updates the sidebar’s “Performance” tab, allowing for the review

of a recorded video and editing of its generated metadata.

Any performance or state saved in the analysis tool will appear in the main

citation listing page, and on individual pages for each respective game and perfor-

mance. The state links on each individual page as “active links” in that they will

load up the indexer page with the correct state preloaded into the emulator. This

makes each active link a link into a running emulation as a specific point. We

take up the pedagogical and analytical implications of this in our expert evaluation

review in the next major section of this chapter.

The indexer, in creating and storing the saved states and performance record-

ings, provides the source material for future links created by the CiteState.js

module. The CiteState.js interface allows for a simple description of a target

page element and an id from the citation database. CiteState.js then automat-

ically handles the loading of a game, performance or state, and places them into

an HTML element that can be aligned by the user through CSS styling or other

means of element positioning (this is steps 6-8 in Figure 4.1 above). This com-

pletes the chain from source ingestion through shared linking of game emulation

in browser.

205

4.7.5 Future Work

The citation tool opens up numerous opportunities for the dissemination and

standardization of game historical sources. For bibliographic record purposes, all

the information in a specific citation store could be exported into forms compati-

ble with common citation database formats, like BibTeX, or linked with citation

systems, like Zotero.71 These citations could also automatically include informa-

tion about a compatible emulator and the specific file specific data required by

more technical scholars, like the platform and software studies folks mentioned

above.

In the realm of reductions, since the emulation is a full computing system

running in a web page, its memory and operations are totally available to in-

trospection via other concurrent JavaScript processes. We are already working

on including memory manipulation functionality in the CiteState.js interface,

which would provide dynamic visualization of a complete program to occur co-

incidentally in the browser surface.

Lastly, since each of the citation types, games, performances, and game states,

also require a linkage between the citation and some form of born-digital data, new

forms of storage and retrieval will be necessary. There is some work on storing

and loading emulated systems or sharing the results of emulation produced on

cloud-based servers, but still no general solutions for the storage and retrieval of

executable software, nor support for citation as envisaged in the functionality of

the tool above.

The next section, an expert evaluation of GISST’s citation component by

practicing game studies scholars and library professionals, also presents some sig-

nificant ideas for future work.
71[14] http://www.zotero.org

206

http://www.zotero.org

4.8 Evaluation

As described, the citation component of GISST is an argument for more rig-

orous citation of computer games, and for the augmentation of their expression in

game studies discourse. We believe the tool can ease the citation burden for game

scholars and allow them to create new types of arguments and expressions about

games. To corroborate this belief we conducted a speculative expert evaluation of

the tool, inviting comment from a group of professionals engaged with game study

and preservation. The goal of the study was to ascertain if the intentions of the

tool were clear, if our thoughts above aligned with those of practicing scholars,

and to invite constructive commentary. This section outlines the evaluation and

its responses, and how those responses aligned with our goals and ignited ideas

for future work and collaboration.

We sent the evaluation to select group of practitioners consisting of game de-

signers, game studies scholars, and librarians. These groups align with those we

hope will benefit most from the citation tool and, in general, the work of this

thesis. The evaluation consisted of a set of 11 questions to be answered based

on a 5-minute introduction to the CLI and web app components of the tool. All

those chosen were already aware of GISST, and the video served as a reminder

of functionality that had at some point been demonstrated to them in person.

Responses were collected from seven people through an online form. Respondents

included: Henry Lowood, curator the History of Science and Technology and Film

and Media Collections at Stanford University; Chaim Gingold, a game designer

and historical researcher; Nathan Altice, a professor and game historian at the

University of California, Santa Cruz; James Newman, a professor and game his-

torian at the University of BathSpa; Glynn Edwards, head of technical services in

Special Collections Stanford; Shane Denson, an professor of Art History at Stan-

207

ford; Douglas Wilson, a game designer and professor at RMIT University; and a

professor who wished to remain anonymous. The remainder of this section will

describe the responses to the tool, followed by recommended improvements.

4.8.1 Discussion

Overall, the responses were overwhelming positive, with one game studies

scholar stating that the availability of the tools “could be huge” for the field.

The respondents hailed from an overlapping set of backgrounds, but the responses

aligned along two basic paths. The first was how the tool could affect game stud-

ies and game historical practices in citation, and what the tool could contribute,

through state citation and retrieval, to students and game studies scholars. The

second turned toward more of the potential for preservation that the tool presents

in its management of game citation and game states.

The potential influences noted for game studies practice included (1) the for-

malization of game citation practices, (2) the removal of obstacles to game access,

(3) the automation of game history tasks currently taken on in an ad-hoc manner,

and (4) the presentation of deeper, and more comprehensive historical analysis.

Multiple respondents noted the tools implicit call for a more “formal and robust”

citation practice for games, with Henry Lowood stating that the tool provided a

first take on a “citation framework where there was none.” The tool functioned as

a way to call attention to the potential of better citation practices. James New-

man explained, “a contribution of the tool will surely be to heighten discussion of

citation and [its] limits and variations in current practices.” This therefore aligns

with our arguments for more consistent citation practice in the games studies

section above.

Altice, Newman and Shane Denson highlighted the tools’ ability to provide an

208

easier route to specific game locations and gameplay sequences. Altice and Denson

specifically work on comparative analysis of game versions and emulators, so the

potential for the tool to make parts of games more reachable was appreciated.72

This concern for access to game history also extended to the other scholars, who all

remarked on the ability of the tool to make classroom lectures more engaging, and

according to Altice provide for “in-class play that isn’t contingent upon equipment

or playing skill.” He felt this allowed for a “wider breadth of examples” since

lengthy equipment set up or hours spent trying to get to a particular spot in a

game could be removed from the equation. Altice also felt that this approach

could make exploring games like “flipping to a relevant page in a book, which

could make citation more prolific and illustrative.” He also believed that playing

a games citation would have a more powerful rhetorical effect than other forms

of reduction, nicely pairing with our claims about rhetoric and game feel above.

Chaim Gingold also felt that the tools provided a significant new way to share

content with students. He imagined providing state citations to students in the

future as one might today assign videos on YouTube or Twitch.

The tools as an automated solution for citation also struck a chord with the

researchers who already use an assortment of ad-hoc solutions for emulation, and

gameplay recordings and analysis. James Newman already organizes a rather

complex chain of tools for gameplay capture and analysis, and the tools provided

a way to alleviate some of the burden in getting multiple programs and systems to

work together. Gingold also noted that the tools could allow students to engage

in the types of historical analysis that are only available to interdisciplinary schol-

ars with programming and humanities backgrounds. Students could incorporate

“their interaction into their scholarship (like us!),” and provide them a starting
72For Altice, see [25], for Denson’s work, see [65] Denson, Shane. “Digital Seriality.” Ac-

cessed March 5, 2017. http://shanedenson.com/stuff/visualizing_digital_seriality/
digital-seriality.html. (Accessed 5 Apr 2017.)

209

http://shanedenson.com/stuff/visualizing_digital_seriality/digital-seriality.html
http://shanedenson.com/stuff/visualizing_digital_seriality/digital-seriality.html

point for more detailed analysis of design and game play interactions.

The last major response was of the ability for the tools to provide a new level

of analysis for game studies and game history. Newman noted that having access

to a GISST-like system would remove the need to engage in extended descriptions

of game play or game scenes. If a citation is also a playable instance, he could

rely on the reader to pay what he was talking about, and then focus his time on

deeper analysis instead of front loading arduous amounts of descriptive text to set

up his points.
In principle, being able to refer to a persistent recording or savestate
would give me increased confidence in writing more detailed analyses
of sequences of gameplay and would, hopefully, alleviate some of the
need for description in favour of close commentary and annotation.

Denson concurred, stating that “arguments can [now] be illustrated directly (through

video, for example) and even mounted through hands-on engagement (gameplay)

rather than merely discursive description.”

The second major thread in the responses highlighted the tools’ implicit effects

on game preservation and the organization of game history. Some viewed the tools

as an argument for more robust digital repositories able to handle and retrieve

executable content. One noted that the tools displayed the power of centraliz-

ing documentation about games and how the coordination of tools could foster

new expressions through the linkages of different technologies. In this case, the

concordance of emulation, documented citation, and gameplay videos invited a

discussion of the need for coherent underlying infrastructure to support preserva-

tion of those outputs. Lowood agreed, saying that the tools put “issues around

documentation, archiving and gameplay preservation front and center.” Glynn

Edwards also focused on the needs to create consistent metadata schemes for the

emulated save states and companion documentation. There was a general agree-

ment among the preservation professionals that the tools’ existence, in and of

210

themselves, functioned as an argument for better preservation practice, and they

were excited to begin working towards solutions.

Another small preservation note that aligns with some coming discussion in

the next chapter, was that of the tools’ ability to allow for quick validation of

game files, and game data integrity. By ingesting an executable into the system,

one can easily check if it is compatible with a specific emulator, and if it is actually

the file it claims to be. Lowood also noted that the tool could push repositories

to negotiate better IP rights access to executable software, or, at the very least,

further reveal the need for that work to be figured out.

4.8.2 Improvements and Future Work

Given the overwhelmingly positive response to the work, most of the critical

discussion of the tools pointed solely to means of immediate improvement and new

features. In the main, many respondents wanted the tools to continue development

of better UI and user accessibility features. Right now, most of the ingestion

apparatus occurs on the command line, and Altice correctly felt that “freeing the

tool from dependence on the CLI” would be necessary since “this would be a non-

starter for many (most?) scholars without a technical background.” Many also

pointed out that while the technology had obvious potential, as noted in the last

section, it ached for a set of coherent examples and illustrative case studies. The

tools represented more of a “starting point” for new discussions in game studies

and game preservation but were not really yet a solution (though with work they

could be). This appears to show that the tools are a ripe ground for future

work, as just making them more accessible and easier to use excited many of the

respondents. One even requested a basic tutorial for the current alpha prototypes

since they felt they required hands-on access to fully appreciate the prototypes

211

potential use cases.

Another general request was for the inclusion of more emulators than the four

currently available to allow for both comparison of the emulators themselves, and

to help with further preservation questions in the description of the configured

environments needed to support game data. Many noted that the tools, in both

their analytic and preservation potential, pointed to uses outside of games, and

would be a boon for software studies and general software preservation. This was

edifying, since another thread of our overall thesis is that most advances for game

software history are also significantly applicable to broader classes of software.

Future work dovetailed with the requests for more system support and usabil-

ity. Many wanted to see what a larger, shared repository of game state citation

could afford, either in a classroom setting or for executable collections in libraries

and archives. There was also a call for more explanation of the citation description

formats, and perhaps even integration with current scholarly citation toolsets like

Zotero. Multiple respondents also mentioned the potential for annotation tools

to add voiceovers to videos, and record and remark on game play input traces.

Gingold specifically was excited about the ability to introspect on the running

emulations, and visualize their system dynamics and memory states, similar to

our own thoughts on future work above.

In closing, the responses to the tool essentially agree with the arguments pre-

sented in the preceding chapter. Respondents believed that embedded emulations

represent a new form of expression for game history, and that tools themselves

function as an argument for further work on technical system visualization, doc-

umentation management, game citation, and preservation. We believe that this

suitably validates the tools, the methodologies they support, and theories behind

them in ways that not only legitimate them as contributions to numerous fields,

212

but as a starting point for more significant future work, and perhaps even future

disciplines.

4.9 Conclusion

At the beginning this chapter we set out to address citation practices as a

significant lacunae in scholarly practices around games. This proceeded through

a more in-depth discussion of the purpose and functionality of citation in both

scholarly discourses in general, and towards the ways in which games are a new

and special case. As a result, the system we described to manage and create

playable manifest citations required not just novel engineering effort but a consid-

eration of the types of objects within and around games that could be leveraged

in arguments. The efforts in creating the citation components of the Game and

Interactive Software Scholarship Toolkit (GISST) actually preceded GISST’s con-

ceptualization.73 In attempting to find ways to cite games, we incidentally had to

create the technical means for those citations, and figure out how those citations

could be made available and useful for argumentation. This then contributed new

means of historical expression, in that we realized that the results of the citation

system creation represented a new general class of activity in the design of systems

to support game scholarship. This is why the citation system is now a component

of GISST, because we believe that the citation work is only a preface to a whole

range of possible tools for game history, game studies, and software studies works.

The citation work elaborated on a means for the manifest citation of new

objects into scholarly discourse, but it also supported those objects creation and

storage. As a result, this opened up those objects (performance videos, executable
73Note that this is conceptualization of GISST as a system and not “conceptualization” in the

ontological sense as discussed in Chapter 3, “Description.”

213

game play, and indexed game states) to further analysis. In addition to functioning

as a form of reduction in supporting textual discourse, the objects are also now

organized and manipulable by any potential future extensions of GISST’s toolset.

As mentioned in Future Work above, this could mean input analysis and replay

of game play — a means to further look at instances of “superplay” like speed

running or glitch-hunting — and introspection on the game’s system state and

run-time memory. In tracking the needs for a citable base of games, performance,

and states, we have opened up a whole new set of resources for exploration and

expression through scholarship. Yet another example of how the stabilization of

historical resources can lend itself to new uses and articulations.

214

Chapter 5

Discovery

5.1 Intro

The previous chapters remarked on some of the key phases of historical knowl-

edge management: appraisal, description, and retrieval through citation. They

outlined how new methodologies and tools informed by game studies scholarship

and computer science can help improve game and software history. This chapter

argues that in addition to the stable description and retrieval of games for histor-

ical examination, we also need to think about the ways that scholars find games

to write about, analyze, and discuss. In the realm of library science, the issue

of locating items in collections is known as “discovery”. The growing problem

with discovery is that the proliferation of things that can be discovered makes it

more difficult to locate works that are potentially relevant to a scholar’s research.

Additionally, for areas that have historically been under researched and therefore

inadequately described, like games, the discovery problem is compounded1. Not

only are there many new games being created with each passing moment, but
1Please refer to the previous three chapters for evidence of the contemporary lack of descrip-

tion and classification methodologies for games history.

215

also historical games that never received attention in the first place are increasing

lost in the deluge. In addition, the structures that have historically organized

games, mostly commercially ordained game genres, are themselves fraught with

inconsistencies and threaten to retroactively re-organize the history of games by

privileging certain types of classification over others. Below, we outline game

discovery and its issues in more detail, and then present a solution for computer

games in the form of tools and visualizations that leverage machine learning nat-

ural language processing (NLP) models to display and search corpuses describing

historical games. The tools, GameNet and GameSage aim to operationalize the

related characteristics of games to allow for new forms of discovery aimed at game

designers and game historians. The visualizations, GameGlobs, GameSpace, and

GameTree, in addition to being helpful for discovery also contribute to our larger

argument for the application of computer science methods to the revelation of

software history. The chapter concludes with evaluative validation of the tools

potential by both game studies scholars and game design students and then looks

to applications that further support game historical scholarship.

Some of the work in this section is based on a series of six publications, and we

will direct the reader to them for further clarification of topics not directly related

to game discovery. Another note, in many cases we found ourselves writing “tools

and visualizations” when making points about this chapter’s technical contribu-

tions. We shorten this to “tools” only, and will only refer to the visualizations

if there is a topic for which they are particularly apt, or that does not include

GameNet or GameSage.

216

5.2 Game Discovery

The problem of game discovery is two-fold: (1) there are too many new games

being created to have a reasonable chance of keeping up with, let alone finding,

titles that might be research relevant; and (2) that most historical titles are under

researched and under described, and therefore hidden from historical inquiries.

The first problem is substantiated almost commonsensically by the massive

production of games over the last decade. Since its launch in 2009, the iOS

app store has accumulated over 769,706 games, which is 25% of all available

applications.2 To put that in perspective, there are more games currently available

on iOS than have been created for all other non-mobile platforms for the entire

history of game production.3 Furthermore, even within the realm of non-mobile

games, the proliferation of tools for game production, easier means of digital

distribution, and the rise of games as a socio-cultural force have brought about a

computational mediatic renaissance over the last decade. Services like Steam boast

more games for the current version of Microsoft Windows than games created

for all other Windows versions for the last 25 years. Wherever you look, the

contemporary levels of creative production dwarf previous, non-networked epochs

of human production.4 This makes current game discovery a significant challenge,

and as Simon Carless notes this “excessive” choice and availability of games risks

marginalizing potentially significant works that cannot mount the marketing or

outreach needed to compete in online marketplaces.5 The extensive amount of new
2Based on April 2017 stats from http://www.pocketgamer.biz/metrics/app-store/ (Ac-

cessed 5 Apr 2017.)
3For more on this issue see: [101] Kaltman, Eric. “Current Game Preservation in

Not Enough.” How They Got Game, June 2016. http://web.stanford.edu/group/htgg/
cgi-bin/drupal/. (Accessed 5 April 2017.)

4[218] Weinberger, David. Too Big to Know: Rethinking Knowledge Now That the Facts
Aren’t the Facts, Experts Are Everywhere, and the Smartest Person in the Room Is the Room.
New York: Basic Books, 2011.

5[49] Carless, Simon. “Why Game Discovery Is Vital - Introducing Games We Care

217

http://www.pocketgamer.biz/metrics/app-store/
http://web.stanford.edu/group/htgg/cgi-bin/drupal/
http://web.stanford.edu/group/htgg/cgi-bin/drupal/

titles poses a problem for the future history of the medium. With so many titles

available, and with so little attention being paid to their coherent and consistent

description (most commercial distributors are not particularly concerned with

future-proof metadata), we need to find new ways to locate and reveal games.

Ones that do not wholly depend on dedicated, consistent description efforts. The

sheer scale of production will always incur a significant lag in cultural institutions

efforts to keep up. Our model and tools below work to address this issue by

leveraging crowd-sourced content for discovery tasks.

The previous work of this dissertation backs up the second problem of discov-

ering historical games. Since work on game preservation at academic institutions

only began in earnest within the last decade, enthusiast communites have histor-

ically picked up most of the slack. While the work of these communities is ad-

mirable and essential, they do not follow standards that are particularly consistent

with each other, or with the practices of the library and academic communities.

As shown in the description chapter, there is a significant bureaucratic burden

imposed in attempting to change and progress national and international library

standards. As a result, while our work in this thesis and on similar classification

and metadata projects is helping to reorient the ship, the potential for discovery of

games in historical collections is still far from any kind of parity with other media

forms. Also, due to the lack of significant games collections, and in the case of

physical collections, their highly varied form, even browsing games history is a

difficult task. As we will take up in the next section, the serendipity of discovery

is a significant part of the historical scholarly experience both in archives and in

the wandering of the library stacks. With the advances in computer mediated

— and therefore highly regimented and logical structured — knowledge retrieval,

About.,” June 6, 2014. http://www.gamasutra.com/blogs/SimonCarless/20140606/218988/
Why_game_discovery_is_vital__introducing_Games_We_Care_About.php. (Accessed 5 Apr
2017.)

218

http://www.gamasutra.com/blogs/SimonCarless/20140606/218988/Why_game_discovery_is_vital__introducing_Games_We_Care_About.php
http://www.gamasutra.com/blogs/SimonCarless/20140606/218988/Why_game_discovery_is_vital__introducing_Games_We_Care_About.php

online tools and finding aids are not organized for the discovery of new informa-

tion through serendipity.6 Since we aim to support game historical study, it is

of importance that our tools for helping with discovery do not further exacerbate

the issues inherent to other systems.

Of course, other media also have discoverability problems, but in games the

problem is compounded by the high dimensionality of their ontologies as media

artifacts. This is a reason that discovery systems organized around other forms,

and described with metadata specific to those form’s ontologies, present significant

challenges for games. Computer games incorporate text, sound, moving images,

and non-trivial interactive feedback, each of which may function as a viable search

path for one type of discovery system and a potential obstruction for another. The

only way to alleviate this discoverability problem is to develop dedicated tools for

game discovery that index along a composition of all of these dimensions. This

allows historical research to operate over them and increases the potential for

locating relevant research items along with serendipitous discovery.

5.2.1 Forms of Discovery and Their Limitations

Typically, the means of discovery in collections boils down to two modes, di-

rect and indirect access (cite). Direct access refers to when a researcher knows

the exact topic or item they are looking for and simply consults a direct method

of retrieval. This could be naming an explicit property of an object, like its

title, or through reference to an alphabetic listing of subjects 7. Indirect ac-

cess is when discovery is based on the syndetic connection between one subject
6[170] Race, Tammera M., M. P. Popp, and D. Dallis. “Resource Discovery Tools: Supporting

Serendipity.” Planning and Implementing Resource Discovery Tools in Academic Libraries, 2012,
139-152.

7Direct subject lists need not be alphabetically organized, but must refer explicitly to the
subject at hand without an indirect, syndetic (linked) connection to another topic.

219

and another, as in classed hierarchies like Library of Congress Subject Headings

(LCSH). By classed, we mean just a specific collection of subjects that share a

similar, top-level class, like “Transportation—Railroads” and “Transportation—

Auto Mobiles”. This method of discovery is indirect because one must look to

top level categories and then work down the tree to specific sub-classes that con-

tain items of interest. Indirect methods became necessary, historically, because

the rapid development of new subjects and domains of knowledge — and their

dependent publications — quickly out paced the ability to simply locate a specific

topic on a list. Since each item named might have multiple potential names or

possibilities for description, indirect methods allow for the linkage between topics

that manifest either through the creation of relations and equivalences (like “see

also” connections) or the aforementioned hierarchical grouping of concepts.

A significant problem with the creation of subject listings is the potential to

embed both (1) societal and personal bias and (2) problematic epistemology into

any categorization scheme (cite, cite). In the case of the LCSH, the development of

subject listings for its first 70 years or so emphatically assumed a white, wealthy,

hetero, male researcher and organized headings accordingly.8 For some topics

this was not particularly problematic, but for those attached to racist, genderist

and sexist biases indicative of their relative cultural moment. A particularly

salient example being a “see also” connection between homosexuality and mental

disorders.9

The epistemological issue, most directly confronted by Eleanor Rosch through

prototype theory, and George Lakoff’s complementary categorization work, is that

knowledge organization in the Western world was based, until the latter half of the
8[106] Knowlton, Steven A. “Three Decades since Prejudices and Antipathies: A Study of

Changes in the Library of Congress Subject Headings.” Cataloging & Classification Quarterly
40, no. 2 (2005): 123-145.

9[106] pg. 133

220

20th century, on antiquated, non-empirical, and abstract philosophies ascribed to

tradition as opposed to lived reality10.

Rosch’s prototype theory essentially argues that any categorization scheme is

a reflection of an idealistic, biased “prototype” that is not the result of external

reality but the experience and society of the person constructing it. A common

example is to have someone think of the “best” example of a bird. Most people

will think of a robin or pigeon (or more flowery, feathery forms like eagles) but

not a penguin or turkey. The prototypical bird is effectively arbitrary within the

class of birds, and that class of birds is a further construct of the contemporary

zoology and biology, and not a natural or emergent class that exists apart from

humanity’s conception of it. Rosch’s two main moves are then, as summarized in

Lakoff:
First, if categories are defined only by properties that all members
share, then no members should be better examples of the category
than any other members.
Second, if categories are defined only by properties inherent in the
members, then categories should be independent of the peculiarities
of any beings doing the categorizing; that is, they should not involve
such matters as human neurophysiology, human body movement, and
specific human capacities to perceive, to form mental images, to learn
and remember, to organize the things learned, and to communicate
efficiently.11

So the categorization scheme used is mainly the result of the experiential and

socially inherited conditions of the categorizer and not a result of a “natural”
10We use “reality” here lightly, and not in a realist philosophy sense since that is the exact

epistemology that Rosch, Lakoff, and others (Feyerabend, Kuhn, etc.) were reacting against.
This more to contrast a traditional view of what is “real” with more rigorously investigated
knowledge and language claims. For more see, [75] Feyerabend, Paul, and Ian Hacking. Against
Method. Fourth Edition edition. LondonâĂŕ; New York: Verso, 2010. [112] Kuhn, Thomas S.
The Structure of Scientific Revolutions. 3rd edition. Chicago, IL: University of Chicago Press,
1996. [114] Lakoff, George. Women, Fire, and Dangerous Things: What Categories Reveal
about the Mind. Chicago: University of Chicago Press, 1987. [181] Rosch, Eleanor, Carolyn B
Mervis, Wayne D Gray, David M Johnson, and Penny Boyes-Braem. “Basic Objects in Natural
Categories.” Cognitive Psychology 8, no. 3 (July 1976): 382-439.

11[114] pg. 7

221

reality. Lakoff extends this idea to cover all of our conceptions in his analysis of

metaphor, and connects nicely back to our concern for game discovery in the pre-

ceding section. Namely, that “our concepts of objects, like our concepts of events

and activities, are characterizable as multidimensional gestalts whose dimensions

emerge naturally from our experience in the world.”12 Note that “emerge natu-

rally” is tied to embodied, situated, and social constructed conceptions and not

external categorizations detached from human consciousness. For games in par-

ticular, their multimedial mode of expression is perhaps best captured in a more

holistic and embodied way, and not through the rough genre forms that currently

dominate most non-critical ontological discussion13. The essential take away is

that there are no actual objective descriptions for concepts and phenomena, but a

socially contingent and embodied subjectivity that is adhered to at various levels

of social organization.

In library science, and specifically in the area of subject analysis devoted to

the classification of subject headings and controlled vocabularies, these concerns

have also arisen in line with their acceptance by cognitive science. In guides to

subject analysis, a distinction is drawn between the older cognitive rationalist

model of description, based on philosophies of logic that assume the existence of

external and eternal axiomatic truths, and a social constructionist model based

on the influence of the different “discourses” that shape an individual’s interaction

with society.14 The terminology here is getting a bit confused, however, since the

cognitive model described in subject analysis is not the cognitive science model
12[115] Lakoff, George, and Mark Johnson. Metaphors We Live by. Chicago: University of

Chicago Press, 1980. pg. 121-122.
13Here we are referring to the basic game genres, first person shooter, real-time strategy, and

the like, which are combinations of marketing terms, and multiple confused ontological levels
(granularities).

14[164] Olson, Hope A., John J. Boll, and Rao Aluri. Subject Analysis in Online Catalogs.
2nd ed. Englewood, Colo: Libraries Unlimited, 2001. pg. 265-269

222

discussed by Rosch and Lakoff. Regardless, the basic notion that positioning and

locating items via subject headings or other classification schemes invites bias is

essentially the same. Libraries are well on board the post-structuralist boat.

Another brief note is that subject analysis extends this division between a

rationalist organization of knowledge, and a cognitive, experientialist one to the

interpretation of potential users of a system. That is, as far as discovery of

materials go, most systems were — and by means of institutional inertia still

are — oriented toward a specific societal discourses (biases). This limits the

potential for discovery systems because they effectively hamstring users into asking

(through system input) and answering (through returned information structured

in that discourse) only the most conventional questions. These “conventions” are

enforced by the discourses that constructed them, and in many cases cannot be

easily altered to return knowledge in a different discursive form or from a different

knowledge paradigm. Our tool work is very aware of this issue, as will be addressed

in the discussion of the Wikipedia and GameFAQs corpuses below, as well as in

the definition of game “relatedness” derived from our NLP model.

Returning to the organization of information about computer games, it is not

hard to see that certain genres, discourses, and other means of enforcing specific,

socially constructed models of games might limit the access to their history, or in

many ways contort that history to fit the expectations and nostalgic recollections

of dominant gaming social groups.

Games and other forms of expressive entertainment are dependent on market

forces for their creation and sustenance. In this case, marketing certain classes

of games that are familiar to specific audiences that have historically purchased

them ends up reinforcing a bandwagon effect.15 The best-marketed — and most
15[24] Adler, Moshe. “Stardom and Talent.” The American Economic Review 75, no. 1 (1985):

208-212.

223

identifiably genred — titles reach the largest audiences, which in turn persuade

the industry that only similar titles can have similar effects, and the ouroboros of

13 Call of Duty titles in 13 years begins feeding.16 The tools for discovery must

work against these conventions if the history of games is to be recoverable and

discoverable.

5.3 A Goal for Discovery

While all computer game stakeholders are susceptible to the discoverability

problems outlined above, both in the difficulty of their recovery of games, and

their embedded biases, we are most concerned with how the discoverability af-

fects scholars of game history and the designers that operate on that history to

produce new works. For game historians, access to past games is imperative to

the progress of the field. Discovering titles that fell through the cracks, that might

have inspired a more prevalent design pattern, or that progeniated some genre,

allows us to organize alternative and deeper histories of the field, and improve

on the contemporary, journalistic state of game history. For designers, improved

discovery allows them to seek out prior work that could inform their process, or in-

cur the development of new designs. Lacking tools that meet this need, especially

those that could facilitate the discovery of novel or notable titles, many designers

function without access to, and thus without a rich awareness of, the medium in

which they operate. This is arguably one aspect in which computer games show

their immaturity relative to more established media.17 In this chapter, we limit
16https://en.wikipedia.org/w/index.php?title=Call_of_Duty&oldid=772473470 Lists

13 games in the “main” Call of Duty franchise, and 12 others in ancillary roles.
17This blindness — through lack of awareness driven by a lack of tools and paradigms adapted

to historical investigation — is also a significant problem for the history of software in general,
and most of the discussion of this section could be ascribed to other classes of software, or
computational art forms.

224

https://en.wikipedia.org/w/index.php?title=Call_of_Duty&oldid=772473470

the scope of our discussion about the tools to the scholarly and design-centric use

cases. The remainder of this section will clarify our goals for the discovery tools,

in light of some of the current literature on general discovery systems.

First, game discovery is not game recommendation.18 Recommender systems

(sometimes just called recommenders) are often part of larger commercial ap-

plications such as online retailers,19 and a prototypical task of these systems is

product recommendation.20 In contrast, discovery tools (also called exploratory

search systems)21 promote user learning above user purchasing. While in the rec-

ommendation task there is often an explicit notion of the correctness or accuracy of

a recommendation,22 the parallel concern in discovery is the usefulness of an item.

(Of course, this distinction has made evaluating discovery tools a much trickier is-

sue.)23 Finally, while recommenders are susceptible to a popularity bias by which

a small proportion of the item space is recommended exponentially more often24

— a phenomenon that may actually aggravate the bandwagon effect we described

in the last section — discovery tools, as mentioned above, also aim to provide
18The underlying model for our discovery tools has also been evaluated as a potential recom-

mender system, see [187] Ryan, James Owen, Eric Kaltman, Timothy Hong, Michael Mateas,
and Noah Wardrip-Fruin. “People Tend to Like Related Games.” Proceedings of the 10th Inter-
national Conference on the Foundations of Digital Games, 2015. We leave out this discussion
because we are mainly focused on the operationalization and benefit of discovery for scholars
and practitioners and not player / consumers.

19[116] Lam, Shyong K., and John Riedl. “Shilling Recommender Systems for Fun and Profit.”
In Proceedings of the 13th International Conference on World Wide Web, 393-402. ACM, 2004.

20[166] Park, Deuk Hee, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim. “A Lit-
erature Review and Classification of Recommender Systems Research.” Expert Systems with
Applications 39, no. 11 (2012): 10059-10072.

21[135] Marchionini, Gary. “Exploratory Search: From Finding to Understanding.” Commu-
nications of the ACM 49, no. 4 (2006): 41-46.

22[176] Ricci, Francesco, Lior Rokach, and Bracha Shapira. Introduction to Recommender
Systems Handbook. Springer, 2011.

23[223] White, Ryen W., Gary Marchionini, and Gheorghe Muresan. Evaluating Exploratory
Search Systems: Introduction to Special Topic Issue of Information Processing and Management.
Pergamon, 2008.

24[98] Jannach, Dietmar, Lukas Lerche, Fatih Gedikli, and Geoffray Bonnin. “What Rec-
ommenders Recommend-an Analysis of Accuracy, Popularity, and Sales Diversity Effects.” In
International Conference on User Modeling, Adaptation, and Personalization, 25-37. Springer,
2013.

225

diverse, serendipitous offerings. Neither should game discovery be considered as

merely game information retrieval, primarily for the reason that a game-discovery

tool will index games, not information about them. Moreover, in game discovery,

getting back results is not a resolution — the offerings provided by a discovery

tool are meant to be analyzed and explored.25 Game discovery should always be

user-centric, while in information retrieval ancillary concerns (namely algorithmic

nuances) tend to take center stage, a truth that bears out in the offline, batch-style

evaluation methods that have prevailed in the field for decades.26

So, let us distill what distinguishes discovery tools from related applications

into a succinct specification for what good game-discovery tools should do: it

should index games along all dimensions of their high-dimensional ontologies,

afford queries that may operate over the same dimensions, and present diverse,

serendipitous, explorable offerings.

5.4 A Model for Discovery

The latent semantic analysis model explained in this section sufficiently ad-

dresses the above conditions for a successful discovery system foundation. It also

contributes to both the newly emerging fields of game discovery and the applica-

tion of natural language processing to game studies. Our model is actually a set

of NLP methods applied to various corpuses of descriptive text about computer

games. All of our discovery outputs described in the next section are based on

the models described in this one. Below we discuss some related work in the ap-

plication of NLP to the study of games and their histories, and then proceed to a
25[222] White, RyenW., and Resa A. Roth. “Exploratory Search: Beyond the Query-Response

Paradigm.” Synthesis Lectures on Information Concepts, Retrieval, and Services 1, no. 1 (2009):
1-98.

26[223]

226

detailed discussion of the methods and outputs of our model. This section is in-

tended to highlight the discovery work’s contribution to NLP for game studies, the

next sections outlining the tools and visualizations, will account for contributions

to game discovery.

5.4.1 Related Work in NLP for Games

There is a growing body of work in which NLP techniques are employed in

game-studies research, centered in large part around the efforts of José Zagal,

Noriko Tomuro, and their (former) colleagues at DePaul University. More pre-

cisely, this work is characterized by its application of techniques from statistical

natural language processing, a subfield of NLP in which bottom-up statistical

methods are applied to large collections of natural-language text. In this section,

we provide a review of this literature, before explaining latent semantic analysis,

the statistical NLP technique powering the models. Throughout, we attempt to

explain these concepts in such a way that readers who are not NLP practitioners

may understand them27.

In the first project to use statistical NLP for game studies, Zagal and Tomuro

studied the specific language used to evaluate games across a collection of nearly

400,000 game reviews submitted by users to the website GameSpot.28 First, they

gathered 723 unique adjectives that modify the word “gameplay” in some re-

view, and then, treating these adjectives as the core vocabulary with which game

appraisal is expressed, proceed to examine them more deeply according to the
27A more complete literature review can be found in the paper on which this section is based:

[189] Ryan, James Owen, Eric Kaltman, Michael Mateas, and Noah Wardrip-Fruin. “What We
Talk About When We Talk About Games: Bottom-Up Game Studies Using Natural Language
Processing.” Proceedings of the 10th International Conference on the Foundations of Digital
Games, 2015.

28[233] Zagal, José P., and Noriko Tomuro. “The Aesthetics of Gameplay: A Lexical Ap-
proach.” In Proceedings of the 14th International Academic MindTrek Conference: Envisioning
Future Media Environments, 9-16. ACM, 2010.

227

contexts they occur in.29 Specifically, they compiled the 5000 words that most

frequently appear either directly before or directly after the adjectives. From here,

they represented each adjective by its distribution with respect to these various

contexts — in machine learning parlance, this is called feature representation —

and proceeded to cluster the adjectives. Clustering is a procedure whereby objects

are grouped together such that ones in the same cluster are more similar to one

another (with regard to their feature representations) than to objects in other

clusters. For this task, the authors used k-means, one of the standard clustering

algorithms.30 Here, k is a hyperparameter — a parameter whose value is set by

the user prior to runtime (as opposed to a parameter whose value is “learned” by

the algorithm itself during runtime) — that specifies how many clusters the algo-

rithm will partition the input set of objects into. After some initial exploration,

the authors set k to 30, and then used a subset of these 30 adjective clusters to

propose a typology of what they call “primary elements of gameplay aesthetics.”31

With this typology, they attest to the existence of a rich language for apprais-

ing aesthetic aspects of gameplay, but note that the specific vocabulary used by

players appears to be different from that employed by scholars and designers.

In a further journal article, Zagal, Tomuro, and Shepisten argued for the use

of NLP in game-studies research through three example studies.32 Here, we only

outline the first. In this brief study, the authors applied readability metrics to

1500 professionally written game reviews extracted from GameSpot. A readability

metric is a formula used to determine, ostensibly, the level of education needed to
29Note that the use of the term “appraisal” in the descriptions below refers to the assessment

of games and not archival “appraisal” of game documentation or objects.
30[130] MacQueen, James, and others. “Some Methods for Classification and Analysis of

Multivariate Observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1:281-297. Oakland, CA, USA., 1967.

31[233] pg. 12
32[235] Zagal, José P., Noriko Tomuro, and Andriy Shepitsen. “Natural Language Processing

in Game Studies Research: An Overview.” Simulation & Gaming 43, no. 3 (2012): 356-373.

228

understand a text. Typically, these formulae operate on the number and length

of the syllables, words, and sentences of a text. Using three common metrics —

SMOG,33 the Coleman-Liau index,34 and the Gunning fog index35 — the authors

find that the reviews are written at a secondary-education reading level. From

these results, they argued against criticism that game reviews are written poorly

and for a young demographic.

In another article, Raison and others extracted fine-grained player appraisals

of games (found in amateur reviews) and used these to cluster the games them-

selves.36 These fine-grained appraisals are in the form of co-clusters derived from

Zagal et al.’s listing of 723 adjectives (that modified “gameplay” in a review) and

the contexts they occurred in, which we described above. Whereas in standard

clustering one set of objects (all of the same type) is partitioned into clusters of

similar objects, in co-clustering two sets (having different types of objects) are

simultaneously partitioned such that the elements of a cluster in the first set are

bonded by being similarly associated with the elements of a particular cluster in

the other set. This produces a set of co-clusters, rather than a set of regular

clusters. In the study, each of the authors’ 3000 derived co-clusters comprises a

cluster of adjectives and a cluster of contexts such that those particular adjec-

tives all tend to occur in those particular contexts and, likewise, those contexts

all tend to feature those adjectives. As an example, one of the co-clusters they

list has {“great,” “amazing,” “excellent,” . . . } as its adjectival cluster and
33Simple Measure of Gobbledygook (SMOG) rating. See [141] Mc Laughlin, G. Harry. “SMOG

Grading — a New Readability Formula.” Journal of Reading 12, no. 8 (1969): 639-646.
34[53] Coleman, Meri, and Ta Lin Liau. “A Computer Readability Formula Designed for

Machine Scoring.” Journal of Applied Psychology 60, no. 2 (1975): 283.
35[28] Armstrong, J. Scott. “Unintelligible Management Research and Academic Prestige.”

Interfaces 10, no. 2 (1980): 80-86.
36[171] Raison, Kevin, Noriko Tomuro, Steve Lytinen, and Jose P. Zagal. “Extraction of User

Opinions by Adjective-Context Co-Clustering for Game Review Texts.” In Advances in Natural
Language Processing, 289-299. Springer, 2012.

229

{“graphics,” “look,” “sound,” . . . } for its contextual cluster. Extrapolating

from these co-clusters, as well as statistical associations between clusters of the

same type, the authors argue about player perceptions of games more generally.

For instance, they suggest that games that are perceived as being addictive, fun,

or exciting are also perceived as being unique, deep, and innovative. Finally, the

authors used their co-clusters as a feature representation with which to represent

games themselves, which they then cluster using k-means. That is, they represent

a game by a feature vector that specifies how many times particular adjectives

were used to evaluate particular gameplay aspects in reviews for that game. From

their clustering analysis, they observed (among other things) that clusters could

not always be understood at the level of gameplay — for example, they cite a

cluster of games that came from different gameplay genres but that were each

based on animated television series.

As before, we find that the very nature of these results is rooted in the authors’

bottom-up method of inquiry. The fact that some of their clusters included games

from multiple conventional genres highlights a key argument for this approach —

when games are clustered according to how people actually talk about them,

the resulting bottom-up typology contradicts the dominant top-down one. It

intrinsically embeds the cognitive model, or dominant discourse, of those writing

the texts into the results, and therefore reifies, to borrow from Lakoff, the writers’

specific multidimensional gestalt for each game.

As part of a larger exploration of cultural differences in game appraisal, Zagal

and Tomuro studied lexical differences between Western and Japanese game re-

views.37 Specifically, for 221 games released in both the US and Japan, they com-

pared the nouns most frequently occurring in user reviews submitted to GameSpot
37[236] Zagal, José Pablo, and Noriko Tomuro. “Cultural Differences in Game Appreciation:

A Study of Player Game Reviews.” In FDG, 86-93, 2013.

230

to those submitted to GameWorld, a Japanese website. Among other differences,

they observed that Japanese reviews are more critical of technical issues, while

replayability appears to be more central to Western concerns.

In “A Linguistic Analysis of Mobile Games: Verbs and Nouns for Content Es-

timation,” Lindsay Grace conducted two lexical analyses of developer descriptions

of mobile games.38 After compiling and analyzing the 38 distinct verbs used in

developer descriptions of 70 best-selling games across the five most popular genres

in Apple’s App Store, he offered three higher-level game-verb categories: verbs of

elimination (“shoot”, “kill”, “destroy”, . . .), categorization (“match”, “separate”,

“choose”, . . .), and transformation (“move”, “jump”, “rotate”, . . .). In the sec-

ond study, Grace compared the language used in Amazon descriptions of the 20

best-selling adult-fiction books of 2011 and 2012 to Apple App Store descriptions

for that platform’s 20 best-selling games for those years. From these admittedly

small samples, his findings suggest that books may include more violent, morbid

content than games do.

Finally, in a series of recent papers published in the human-computer interac-

tion (HCI) community, Zhu and Fang (and others) processed game reviews using

a lexical approach similar to that of Zagal’s (though they appear unaware of this

earlier work).39 These authors conceive of their method as a refinement of ear-
38[82] Grace, Lindsay D. “A Linguistic Analysis of Mobile Games: Verbs and Nouns for

Content Estimation.” Proc. FDG, 2014.
39[237] Zhu, Miaoqi, and Xiaowen Fang. “Developing Playability Heuristics for Computer

Games from Online Reviews.” In International Conference of Design, User Experience, and
Usability, 496-505. Springer, 2014. [238] —. “Introducing a Revised Lexical Approach to
Study User Experience in Game Play by Analyzing Online Reviews.” In Proceedings of the
2014 Conference on Interactive Entertainment, 1-8. ACM, 2014. [239] —. “What Nouns and
Adjectives in Online Game Reviews Can Tell Us about Player Experience?” In Proceedings of
the Extended Abstracts of the 32nd Annual ACM Conference on Human Factors in Computing
Systems, 1471-1476. ACM, 2014. [241] Zhu, Miaoqi, Xiaowen Fang, Susy S. Chan, and Jacek
Brzezinski. “Building a Dictionary of Game-Descriptive Words to Study Playability.” In CHI’13
Extended Abstracts on Human Factors in Computing Systems, 1077-1082. ACM, 2013. [240]
Zhu, Miaoqi, and Xiaowen Feng. “Using Lexicons Obtained from Online Reviews to Classify
Computer Games,” 2013.

231

lier lexical approaches that in psychology led to the formulation of the famous

five-factor model of personality.40 From a collection of 696,801 game reviews sub-

mitted by users to GameSpot, IGN,41 and GameStop.com,42 they compiled the

4,843 most frequently occurring adjectives. Using the popular lexical database

WordNet,43 they merged together all synonymous adjectives to yield 788 adjec-

tive groups. Next, they proceeded to represent each adjective group by a feature

vector specifying which documents adjectives from that group occurred in. From

here, they submitted these adjective-group vectors to a statistical technique called

factor analysis.44 In factor analysis, statistical patterns among a set of observed

variables (in this case, the adjectives) are exploited to construct a much smaller

set of unobserved variables — called factors — that can still explain the full data

set quite well. The idea is that the factors will represent core, higher-level con-

cepts that underpin the data domain; as such, some form of factor analysis is often

used in exploratory research that works bottom-up from a large amount of data.

Like these projects, the model underpinning ours could only be built using

NLP and machine-learning techniques — it would not be feasible to hand-code

(using a top-down approach) representations for several thousand games. That

being said, we present a novel innovation of the methodology represented by the

above projects. While the majority of research has processed game reviews —

a text domain that is inherently evaluative in its tone and purpose — we use

encyclopedic text and game walkthroughs, which are more objectively descriptive

in tone and more ontological in purpose. As a major advantage of the particular
40[147] McCrae, Robert R., and Paul T. Costa. “Validation of the Five-Factor Model of

Personality across Instruments and Observers.” Journal of Personality and Social Psychology
52, no. 1 (1987): 81.

41http://www.ign.com (Accessed 5 Apr 2017.)
42http://www.gamestop.com (Accessed 5 Apr 2017.)
43[152] Miller, George A. “WordNet: A Lexical Database for English.” Communications of

the ACM 38, no. 11 (1995): 39-41.
44[89] Harman, Harry H. “Modern Factor Analysis.,” 1960.

232

http://www.ign.com
http://www.gamestop.com

text sources we use, our model includes several thousand more games spanning a

larger historical period. Furthermore, our use of latent semantic analysis (LSA),

as mentioned above, is novel, and its first application to the realm of digital games.

Lastly, we avoid a fundamental shortcoming of the work that has been done

in this area in the development of the tools and visualizations that sit atop our

model. None of the previous models can be engaged beyond the publications

describing them, which is troublesome given the complexity of machine learning

models and the resulting difficulty of adequately describing them. We hope that

future research in this area will follow our example of building and releasing tools

by which machine learning models can be explored. This helps to enable better

critique of the model’s implicit assumptions, and reveals the potential for historical

analysis of them.

5.4.2 Latent Semantic Analysis

The tools are supported by a latent semantic analysis (LSA) model trained on

Wikipedia articles describing videogames, and GameFAQs game walkthroughs.

LSA is a natural language processing (NLP) technique by which words are at-

tributed vectorial semantic representations according to their contextual distribu-

tions across a large collection of text.45 From a corpus of text, a co-occurrence

matrix of its words and documents is built; this matrix specifies which words

occurred in which documents (and thereby which documents words occurred in).

The columns and rows in this matrix can be thought of as vectors that represent

the meanings, in an approximate sense, of the words and documents that they

correspond to — this is called a vector space model of semantics. LSA is an exam-

ple of such a model, but its hallmark is that it reduces the dimensionality of these
45http://www.gamespot.com (Accessed 5 Apr 2017.)

233

http://www.gamespot.com

vectors by a matrix factorization algorithm. Remarkably, doing this allows the

model to infer semantic associations that are not encoded in the full co-occurrence

matrix. This ability to learn global associations from local co-occurrences is the

achievement of LSA and what led to it becoming one of the major NLP tech-

niques of the last twenty years. Having an LSA model, one can easily calculate

how semantically related any of its documents are by taking the cosine between

their LSA vectors. In corpora in which each document pertains to a specific indi-

vidual concept, these relatedness scores can reasonably be utilized as a measure

of the relatedness of the concepts themselves. Relying on this notion, we trained

an LSA model on a corpus comprising Wikipedia articles for 11,829 videogames,

and on GameFAQs walkthroughs for 5,739 games.46 With these models, we can

quantify how related any two of these games are by taking the cosine between

their LSA vectors. Semantic relatedness between documents is typically calcu-

lated by taking the cosine between the documents’ k-dimensional LSA vectors. If

this is not intuitive, try conceiving of an LSA model as a k-dimensional space in

which each document is placed at its k-dimensional coordinates. In this space,

the semantic relatedness of two documents is reified as the distance between the

documents’ positions in the space — this distance is what the cosine represents.

In corpora in which each document pertains to a specific individual concept, such

as a corpus comprising encyclopedia entries, these relatedness scores can reason-

ably be utilized as a measure of the relatedness of the concepts themselves. As we

explain below, this is how the tools, GameNet and GameSage, reason about game

relatedness, and are part of how the visualizations, GameGlobs, GameSpace, and
46Note that I am still working with James Ryan on updating the models and visualizations, so

there will be a note on that work in here somewhere in the future. We are currently at around
16,000 games, but I left these numbers in for now since I don’t have the final tally for the new
set yet.

234

GameTree, represent them.47

5.5 Tools for Discovery

Below we describe the two search tools based on our LSA model, and briefly

recount the only other known work in game discovery systems.

5.5.1 Related Discovery Work

Videogame discovery is an emerging application area for which very little work

has yet been done. In what would appear to be the first published effort in this

domain, Lee et al. (2015) present Vizmo, a discovery tool that indexes games by

visual style and mood. Influenced by earlier work in constructing browsers for

other media, the tool was built using a faceted-metadata approach. Specifically,

Vizmo is underpinned by a database of games that have been manually annotated

for their visual style and mood using a subset of a larger videogame metadata

schema that was created by the same group.48 Users can browse the games in this

database by setting filters for different combinations of visual style and mood,

and the results are displayed in a chronologically oriented chart. From an expert

evaluation conducted with nineteen game professionals, Lee et al. found Vizmo

to be an aesthetically pleasing tool with potential use for game discovery along

aesthetic or historical concerns. Though promising, Vizmo is an early prototype

that currently houses only 604 titles, many of which are platform variants of the
47For more detailed information on the derivation process for the model, please see Section

3.2 “Model Derivation” in [189] Ryan, James Owen, Eric Kaltman, Michael Mateas, and Noah
Wardrip-Fruin. “What We Talk About When We Talk About Games: Bottom-Up Game Studies
Using Natural Language Processing.” Proceedings of the 10th International Conference on the
Foundations of Digital Games, 2015.

48[123] Lee, Jin Ha, Sungsoo Ray Hong, Hyerim Cho, and Yea-Seul Kim. “Vizmo Game
Browser: Accessing Video Games by Visual Style and Mood.” In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, 149-152. ACM, 2015.

235

same game. That so few games are yet included is not surprising given that

each must be manually annotated in order to be indexable by the tool. Until

more games are added, it appears that Vizmo will not offer extensive practical

use for game discovery (a point we return to later in discussing the results of our

experiment).

If Vizmo may be thought of as taking a traditional top-down, metadata driven

approach to game discovery, one in which humans handcraft indexable representa-

tions of games (which a discovery tool may then operate over). Our model above

takes a decidedly bottom-up approach. There are numerous trade-offs between

these two approaches. Employing a semiautomated method, we could quickly

build full-fledged discovery tools comprising several thousand games. But relying

on a statistical procedure to derive indexable game representations, we were left

with tools that operate over rather opaque notions of what games are made of —

as discussed above, our tools reason about games in terms of arcane statistical

features of their textual descriptions. Vizmo, on the other hand, reasons over

games purely in terms of human-crafted specifications. As such, it will always be

clear how Vizmo indexes games, because its indexable representations are sim-

ply human annotations. (One advantage of unsupervised reasoning already noted

is the ability to reveal systemic bias in description, or to draw connections that

could not be reasonably conceived by a human indexer.) But while Vizmo’s game

indexing is perhaps more reliable and certainly more transparent, GameNet offers

reliable-enough indexing for ten to twenty times as many games depending on the

model selected. See the evaluation section below for a substantiation of this point.

236

5.5.2 GameNet

GameNet is a tool for game discovery in the form of a network in which related

games are linked. The tool is a front-end for our two different LSA models. “On-

tology” is the model derived from Wikipedia articles, and is labeled as ontological

due to the highly varied and unstructured nature of its game descriptions. “Game-

play” is derived from GameFAQs walkthroughs that almost exclusively describe

game play structure and actions. Each game’s entry includes links to GameNet

entries for other games that are related to that game, as well as to gameplay

videos and other informative sources found elsewhere on the web. [@fig:gamenet-

wall-street] below shows excerpts from the GameNet homepage and its entry for

the Nintendo Entertainment System game Wall Street Kid (1990).

Figure 5.1: GameNet Search and Results for Wall Street Kid

At the GameNet home page, the user first indicates which model to use, and

the inputs the title of the game she wishes to find. An autocomplete handles

correction of typos on the input, and then loads up the game GameNet entry. In

the page header, the game’s title and year of release are prominent, as well as links

to the game’s Wikipedia article and Google Images and YouTube search results

found using autogenerated queries; included as well is a summary of the game

that was extracted from Wikipedia. Below these elements is the core of the entry,

which is a colorcoded listing of the fifty most related games to the game at hand.

GameNet judges how related any two games are by taking the cosine between

their documents’ LSA vectors. To promote exploration, the related games are

237

stylized as hyperlinks to their own GameNet entries. Finally, below the listing

of related games is a listing of the most unrelated games to the game at hand.

These links can potentially serve as portals to corners of the medium that were

previously unknown to the user.

5.5.3 GameSage

GameSage is a tool that takes free-text input describing an idea for a videogame

and lists existing games that are most related to that idea. This tool utilizes the

notion in LSA of folding in, whereby a new document that was not used during

model training is fitted with a representation in the semantic space derived by

the chosen model. By treating the user’s input text (which specifies her game

idea) as a corpus document (on par with the Wikipedia or GameFAQs texts we

used to train our LSA models) and folding it in, we are able to derive an LSA

vector for the idea. From here, we determine which existing games — from among

GameNet’s ontological or gameplay models — are most related to the game idea

by using cosine similarity, just as we did in constructing GameNet.

Figure 5.2: GameSage Query for Non-Corpus Game

Figure 5.2 shows excerpts from a session with the tool in which a user describes

the in-development indie game IceBound and gets back a list of related games

(including other indie games, story-focused games, and games used in narrative-

technology research). At the GameSage home page, the system is personified as

238

an animated sage character who proceeds to ask the user seven questions about

her game idea, each pertaining to a particular facet of the (prospective) game.

After the final question is answered, the system concatenates the responses and

preprocesses this text using the same procedure we enacted to preprocess the

selected corpus. From here, the preprocessed text is attributed an LSA vector by

folding it into the user’s chosen model and the model’s games are then ranked

according to how related they are to the user’s idea. Finally, GameSage makes a

request to GameNet to generate an entry for the game idea, which is then prsented

to the user.

There is obvious discovery potential in finding games that are related to an

idea for a game, which could prove helpful as a way of gathering insight during

the early stages of game development. It also functions as a way for historians

to locate games related to ones they cannot find in the model, but might be

significantly related in some way. The evaluation section below provides two

different studies that evaluated both game designers and game studies researcher

for both prospective use cases.

5.6 Visualizations for Discovery

In this section we describe three visualizations created as expressions of our

LSA model. These visualizations are intended to supply other potential vectors

for game discovery, and to illuminate the current historical space of games as re-

counted by the discourses present on Wikipedia. Each visualization makes use of

common visualization techniques that have not previous been applied to games

history. Approaching visualization algorithms as more than just a pretty picture,

we view them as a new means for argumentation through computational tech-

niques. That algorithms can function as humanistic arguments, or significantly

239

support them is not a new idea (Ramsay, Staley), but there is still not much

significant work in the area due to the need to combine a humanistic question

with a visualized answer. In the case of the visualizations below, we feel they can

form the basis for argumentation about the state of discourse and the typologi-

cal reality of games at both particular moments in time, and based on particular

sets of texts (discourse). The visualizations only make use of the games from the

Wikipedia corpus, and we discuss the GameFAQs corpus work more directly in

the Future Work section.

5.6.1 GameGlobs

GameGlobs is a two-dimensional visualization of various clusterings of the

games in our LSA model. A user selects how many clusters (groups of related

games) she would like to see the 11,829 games of the Wikipedia model partitioned

into and is presented with such a clustering, as shown in Figure 1. Each cluster

is drawn as a circle that can be clicked to display the games it contains, which

are stylized as hyperlinks to their entries in GameNet. The clusterings them-

selves were derived by applying the classic k-means algorithm to the games’ LSA

vectors.49 GameGlobs includes clusterings using several values for k (number of

clusters) spanning between 2 and 2500 and utilizes two key visual cues: clusters

with more games appear larger, and clusters are positioned semantically, such that

clusters whose games are more similar are nearer one another. To achieve the lat-

ter effect, we used a technique called multidimensional scaling (MDS), which is a

way of building low-dimensional visualizations of high-dimensional data.50 This

technique is represented by a suite of algorithms; we submitted the LSA vectors of

our cluster centroids to a variant called locally linear embedding (LLE) to derive
49See note 29.
50[58] Cox, Trevor F., and Michael AA Cox. Multidimensional Scaling. CRC press, 2000.

240

their 2D coordinates.

5.6.2 Gamespace

GameSpace is an explorable three-dimensional ontological space in which each

game in the model is represented as a data-rich star whose positioning is seman-

tically meaningful. Specifically, games are placed in the space such that their

most related games are nearby.51 Three-dimensional coordinates for the games

were derived by submitting their LSA vectors to multi-dimensional scaling, as in

GameGlobs, however the specific algorithm is not LLE but TSNE.52 The user

can fly freely through the space using conventional 3D game controls, and upon

encountering a game can click on it for more information, including: its title and

year of release; an embedded YouTube player with a Let’s Play video preloaded;

an embedded pane displaying its Wikipedia page; and link to share the game and

its position on Twitter.

5.6.3 GameTree

GameTree, shown in Figure 5.6 is a massive two-dimensional visualization of a

hierarchical taxonomy of the games in our model. The underlying representation

is a tree that was built bottom-up by submitting the games’ LSA vectors to an

algorithm called hierarchical agglomerative clustering,53 which works as follows:

each of a set of objects is initialized to be its own cluster; on each iteration, the two

clusters whose centroids are most similar are merged into a higher- level cluster,

whose centroid gets set as the mean of those two centroids; this repeats iteratively
51Try GameSpace out at: http://gamespace.io
52This is due to the visualized space being more human interpretable in three dimensions with

t-Distributed Stochastic Neighbor Embedding (t-SNE).
53For more information on the visualizations see, [186].

241

http://gamespace.io

Figure 5.3: GameGlobs Showing 20 Clusters

242

Figure 5.4: GameSpace Intro Screen and Main Space

243

Figure 5.5: GameSpace Game Selection with Wikipedia and Youtube

244

until a root node is formed by merging the last two remaining clusters. Figure 5.6

shows the visualization, which is a radial tree.

Figure 5.6: GameTree with Racing Game Branch Highlighted

5.7 Evaluation

Both use cases for the tools, as (a) a means for designers to locate historical

titles related to their design ideas, and (b) for practicing game scholars to find titles

related to their research interests, have been subject to published evaluations. For

game studies researchers, we conducted an expert evaluation similar to that carried

out for the CiteTool in the previous chapter. For game designers, we evaluated

the tools utility in an introductory game design course where students needed

to locate examples similar to their recent designs. Both evaluations were on the

whole, very successful and validated the effectiveness and promise of both game

discovery and computational front-ends to NLP models. One note is that both

studies were conducted before the addition of the GameFAQs model, therefore

245

while there is future potential for comparative study that was not of concern at

the time.

5.7.1 Expert Evaluation

We asked six published game scholars (who had recently conducted studies for

which our tool could have conceivably proved helpful) to use GameNet for fifteen

minutes and answer a series of questions about the experience. As a preliminary

question, we asked the individuals what scholarly approaches they had employed

in their recent projects to research games related to the specific titles or topics

they were writing about. Interestingly, though not surprisingly, the scholars listed

several methods in total. These included, in no particular order, using Google

Scholar and other sources to find related scholarly work; searching Wikipedia for

articles describing individual games; playing games using both native hardware

and emulation; reading game criticism found online, as well as newspaper arti-

cles, magazine reviews, game guides, and game tips that were written at the time

of the game’s publication (for older games, these included scans and transcrip-

tions and were found across various web sources); watching Let’s Play videos and

other YouTube footage demonstrating speed runs, glitches, walkthroughs, and

general gameplay; and, finally, referencing other resources produced by fans, such

as walkthroughs and FAQs, as well as a domain-specific informational database

(IFDB, the Interactive Fiction Database). We note that the wide variety of ap-

proaches these six scholars employed highlights the absence of any single tool for

game-studies research that incorporates all the various types of media that they

utilized. Interestingly, though, GameNet does include pointers to both Wikipedia

articles and Let’s Play videos, which were each among the enlisted approaches.

Upon answering this initial question, we instructed each of the scholars to start

246

at the GameNet entry for a specific game that was related to his or her recent

project. Unfortunately, three of the scholars had hoped to start at games that

do not have Wikipedia articles, and which are thus are not included in GameNet

(each instead settled on another recent game of study). Our six scholars and

the games they started from were as follows: D. Fox Harrell, Ultima IV: Quest

of the Avatar ; Katherine Isbister, The Sims; Dylan Lederle-Ensign, Quake III

Arena; Soraya Murray, Assassin’s Creed III: Liberation; James Newman, Super

Mario Bros.; and Aaron A. Reed, Thomas M. Disch’s Amnesia. (For Harrell and

Lederle-Ensign’s projects see note; the rest are currently in submission or still

in progress.)54 Upon reaching the entry for their respective games of interest,

the scholars each used the tool for at least fifteen minutes before completing our

questionnaire.

We asked whether GameNet would have provided a faster way to locate games

related to their recent topics of study, relative to the scholarly approaches they had

previously employed. Here, the responses broadly indicated that, as domain ex-

perts for their respective topics, they had used the scholarly approaches mentioned

above to probe more deeply into specific titles, rather than to seek out additional

games related to the topic. Generally, the scholars indicated that, while this would

not have helped in their particular recent projects, the tool could prove especially

useful as a first method for exploring an area of games that is unfamiliar to the

user. “It felt as if it would be more useful to get broad connections in a space I

wasn’t as familiar in,” Reed explained. Isbister, however, appreciated GameNet

affirming more tenuous connections between games that she already had in mind.
54[124] Lim, Chong-U., and D. Fox Harrell. “Revealing Social Identity Phenomena in

Videogames with Archetypal Analysis.” In Proceedings of the 6th International AISB Sym-
posium on AI and Games, 2015. and [121] Lederle-Ensign, Dylan, and Noah Wardrip-Fruin.
“What Is Strafe Jumping? idtech3 and the Game Engine as Software Platform.” Transactions
of the Digital Games Research Association 2, no. 2 (2016).

247

This feeling of being in agreement with the tool on games she already knew led

her to be more interested in the games it listed that she did not know about.

When asked whether their fifteen minutes on GameNet led to the discovery of

a game that was previously unknown to them or that they had not realized was

relevant to their topic, the scholars answered in the affirmative. Lederle-Ensign

found multiple titles he had not considered discussing in his study, while Harrell

had this to say: “[I came upon] one game I had not thought about much since

childhood and seeing it described now made me realize that it had some interesting

features relevant to my research.” Similarly, Isbister remarked, “I definitely found

games that looked promising that I did not know about.” Reed, an expert on

interactive fiction [44], was surprised to discover an Infocom title he had not

known existed. Starting from Super Mario Bros., Newman found three obscure

games in Famicom exclusive Armadillo, Commodore 64 fan sequel Mario Bros.

II, and Wisdom Tree’s Bible Adventures. “[These] weren’t titles I would have got

to so quickly, if at all,” he remarked. Additionally, Newman was intrigued to find

that these games seemed to not be directly related to Super Mario Bros., but more

precisely seemed two degrees removed from it by way of Nintendo Game & Watch

title Mario Bros, Super Mario Bros. 2 [U.S. version], and Super Mario Bros. 3,

respectively. He added, “Getting to games that were similar to ones similar to my

original search was quicker with this tool.”

As domain experts in the particular areas they explored, Harrell, Isbister,

Lederle-Ensign, and Newman all endorsed the connections between games that

GameNet listed. Murray and Reed, however, explained that the connections they

saw were rather broad relative to their more specific research angles. Interested in

finding other titles that took up Amnesia’s simulationist approach to interactive

fiction — or that, like that title, were authored by a famous fiction writer (in

248

Amnesia’s case, this is science fiction writer Thomas M. Disch) — he instead

found GameNet’s connections to be at the level of genre grouping. That is, the

related games he found were merely other examples of text adventures, rather

than titles that shared the particular gameplay and production attributes he was

interested in. Similarly, Murray was seeking out other games that, like Assassin’s

Creed III: Liberation, have strong female protagonists, but instead found all the

other titles from that series (which all have male protagonists) and other games

that she felt were related according to broader notions of genre.

Lastly, we requested any additional feedback that the scholars felt like giving.

Lederle-Ensign and Reed took this opportunity to praise the interface, and several

expressed that GameNet is simply fun to use. “Using it free-associatively (rather

than staying based around one core game) is a lot of fun,” commented Reed,

adding that it is “interesting to see the connection trails it finds.” In a similar vein,

Newman noted, “there’s pleasure in figuring out the connections, particularly as

you get further from the original selection.” Both, however, wished that GameNet

would specifically characterize the nature of the connections it lists, a notion that

was central to Murray’s feedback as well.

5.7.2 Novice Game Designer Evaluation

Influenced by the notion of task-based evaluation of exploratory search sys-

tems,55 in which a system is evaluated for its adequacy in the natural context of its

user task, we conducted a user experiment in which game-design students sought

out games related to their own using GameNet and GameSage and also a baseline

method in which they were permitted to use any resources available online. We
55[111] Kraaij, Wessel, and Wilfried Post. “Task Based Evaluation of Exploratory Search

Systems.” In Proc. of SIGIR 2006 Workshop, Evaluation Exploratory Search Systems, Seattle,
USA, 24-27, 2006.

249

chose this baseline method because we believe it represents the (lack of a) state of

the art in game discovery today. The primary variables of interest to our analysis

are the number of games discovered using both methods, the diversity of games

discovered (i.e., percentage that were unique), and the proportion of discovered

games that were unfamiliar to users prior to the experiment. We will briefly de-

scribe the procedure and results of the evaluation, but refer the interested reader

to our full published account, which goes into significantly more detail on the full

experimental procedure and its caveats.56

Participants

182 participants (20% women) took part in the experiment, with ages ranging

between 18 and 27 (M = 19.45). The participants were all undergraduate students

enrolled in an introductory game-design course. This course fulfills a general-

education requirement and has no prerequisites; as such, the students hailed from

diverse academic backgrounds encompassing 42 different degree programs. In a

preliminary questionnaire, we asked the participants about their level of game-

development expertise: 34% reported no game-development experience prior to

enrolling in the class, 57% claimed novice-level expertise, and the remaining 9%

called themselves experienced.

Experimental Task

Prior to us conducting the experiment, each of the students had completed

an assignment in which he or she created a game emphasizing exploration in an

unusual or metaphorical space. For both experimental conditions, the task was
56[188] Ryan, James Owen, Eric Kaltman, Michael Mateas, and Noah Wardrip-Fruin. “Tools

for Videogame Discovery Built Using Latent Semantic Analysis.” Proceedings of the 10th Inter-
national Conference on the Foundations of Digital Games, 2015.

250

the same: participants were provided with an online form and asked to spend fif-

teen minutes finding games related to their respective games, entering their titles

into the online form as they did. On this form, the participant was asked to place

related games, as they discovered them, into one of two categoriesâĂŤfamiliar

games, games they were already familiar with prior to the experiment, and un-

familiar games, games they were not familiar with prior. We let the participants

operationalize their own criteria for familiarity, but we provided a specific notion

of relatedness: students had an upcoming extra credit assignment in which they

would be tasked with writing about games related to their own games that were

not discussed in lecture, so we suggested that they deem a prospective game to

be related if they would consider discussing it in this assignment.

Results and Discussion

The evaluation of the tool was based on three initial hypotheses about their

effectiveness towards game discovery tasks. Each one is premised on an assump-

tion that the models presented through GameNet and GameSage would allow for

a greater exposure to the breadth of historical games, and function as a means

for game designers to get quicker exposure to titles closely related to their own

designs.

• Hypothesis 1: Participants will discover more related games using our tools

Our results strongly support this hypothesis. Indeed, participants discov-

ered more than twice as many related games using the tools (nearly one

per minute) than they did using assorted web resources. This difference is

especially remarkable when considering that none of the games participants

discovered in the baseline condition could be counted toward their discov-

eries in the tools condition. For our baseline condition, we chose to allow

251

participants to use any available web resources because we believe this best

represents the (lack of a) state of the art in game discovery.

• Hypothesis 2: Participants will discover a greater diversity of games using

our tools The results did not support this hypothesis, as the difference in

condition proportions was not statistically significant. While we had antic-

ipated that the proportion of unique titles would be significantly higher in

the tools condition, the fact that it even approximates that of the baseline

condition is still remarkable. Because the effective search space yielded by

all resources on the web is orders of magnitude greater than that represented

by the 12,000 games in GameNet, one might expect that, all other things

being equal, a much larger proportion of games discovered in the baseline

condition would be unique. This was indeed not the case, however, and

in fact 47% of the unique titles discovered during the baseline condition

were games that are included in GameNet. This suggests that, had the

tools condition been ordered first in our study design, participants might

have discovered more games with the tools, as well as a greater diversity

of games (since games included in GameNet that were already discovered

by a participant in the baseline condition could not be discovered by that

participant in the tools condition).

• Hypothesis 3: Participants will discover a greater proportion of unfamiliar

games using our tools Our results strongly support this hypothesis. We made

this prediction from the intuition that, in lieu of a dedicated tool for game

discovery, participants would tend to seek out (as a sort of scaffolding) games

they could already name as related to their own. Indeed, roughly half of

the games discovered by participants in the baseline condition were already

known to them. We believe that the demonstrated facility of GameNet

252

and GameSage to provide users with extensive listings of games that were

previously unfamiliar to them is perhaps the system’s greatest strength.

5.8 Future Work

The tools and visualizations described above provide significant opportunities

for discovery in archival and library collections, and therefore for the reclamation

of computer game history. Each provides a new way of seeing a collection, and

encourages a form of directed serendipity by allowing for the indirect alignment

of titles by relatedness. Additionally, since the models are representations of

specific discourses about games and their history, they reveal lacunae in those

records. Further work on the tools is focused on leveraging these properties of our

discovery techniques and applying them to actual physical and digital collections.

We have mapped the models to titles available in the Stephen Cabrinety Col-

lection at Stanford University (Edwards et al.). This affords two immediate oppo-

sitional uses for the tools: (1) the serendipitous discovery of historically obscure

titles, and (2) pointers to omissions in the specific discursive model. The first use

benefits from the descriptive text that the community has organized for games.

Many titles in the Cabrinety Collection are relevant to game history but are not

apparent in that history due to their unavailability. By linking those titles to

online descriptions, the work of one intrepid Wikipedia or GameFAQs user can

save titles from historical obscurity and bring them into alignment and parity with

other more famous ones. Contrarily, titles that could not map to the model are

implicitly underdescribed in a particular discourse. This means that they cannot

be linked to the other historical items, and may suffer more in the future as com-

munity knowledge of them fades. In these cases, the mapping can point that out

and ask others to step in and provide descriptive text.

253

The visualizations are especially useful as a means of filling out a discovery

listing. In exploring each representation, researchers may realize a particularly

significant omission, and can attempt to remedy it by providing text that could

then be used for future visualization. Our future work on GameSpace is oriented

around this premise, and we are developing means to automatically update the

model on a fixed cycle, or use the folding-in technique from GameSage to populate

the three-dimensional GameSpace space with new titles as they are released. Any

update methodology for the underlying models also inherently benefits all of the

tools, since they are all similarly derived.

Another vector for future work is further validation of the tools. We are

currently in the process of analyzing data from an evaluation study conducted

with students studying computer game history. The experiment was an attempt

to determine how well the tools covered particular historical spaces. Students

were asked to use GameNet and GameSage to try and predict the games that

would be discussed at certain future points in the class. The aim was to see if our

discovery tools could be useful indicators of the historical salience of a particular

title, and to find out if certain historical or topical areas were obviously missing

from the underlying model. We foresee future similar evaluations for GameSpace

once we update our model with games released in the last two years.

5.9 Conclusion

This chapter set out to introduce a new application of computational modeling

to issues in the exploration and expression of computer game history. In using

LSA as a base for the organization of the collected social knowledge of games

— and as a reification of a solution to issues of game discovery — we provided

a new window into games history, and leveraged it in the creation of new tools

254

for visualization and retrieval. That the model was so fruitful — GameNet and

GameSpace in particular have been used by thousands of people — shows the

power of computational methods to contribute to digital humanist inquiries and

supplement older systems of record organization and representation.

255

Chapter 6

A Model of Doom

6.1 Introduction

In this chapter we present a case study of the computer game Doom that

leverages the insights of the previous chapters. We have now dealt with issues of

the appraisal and organization of development documentation, the sticky issues

of game objective description, means for the retrieval and citation of games and

their play, and simply finding relevant, related historical examples for comparative

work. All of these actions are tied to two primary motivations. The first is to find

ways to leverage (and make visible) the heterogeneous accumulation of documen-

tation that surrounds software objects. This includes how those accumulations

dictate or enact specific histories and limit the presentation of others. The second

motivation is to point out that the different types of histories that result from

different historic sources require different considerations for historical expression.

As mentioned in the previous two chapters, which explored embedded emulation

and machine learning in the exploration of computer game history, certain classes

of documentation — in this case executable objects, and large corpora of descrip-

tive text — demand certain types of analysis to support new historical expressions

256

and make them comprehensible to a reader. Our previous investigations offered

a glimpse of the immensity of the work required to categorize and stabilize the

basic records of computer games. This chapter takes a look at the accumulation

of resources available to software historians, and argues that greater consideration

needs to be paid to not only the surface outputs of software developments, the

commercial game packaged for consumption, but also the histories of all the inter-

mediate stages of development, both in the design and construction of software,

and even the multiple layers of abstraction built into the object itself.

Recounting the history of any object, any “thing”, be it a person, concept,

piece of software, or social movement, is dependent on the documentation avail-

able about its existence. Any history of it is contingent on the way that a historian

takes that documentation and pushes it through their own ideologies, theories, and

presuppositions about the world. In this way, all histories are incomplete, contin-

gent, and limited because it is not feasible to reveal (or really comprehend) the

totality of any thing in the world, only various aspects of it.1 As mentioned below,

these ideas of incommensurate historic viewpoints, and the inherent biases of any

historiographical position, are not new. The field has arguably been dealing with

them since the birth of the historical profession.2 Our innovation is to acknowl-

edge the crush of potential readings of Doom, and then remind everyone of how

each of those views, each of those angles is dependent on the resources, method-

ologies, and tools available to the historian. We take each reading as an example

of a methodological intervention into a particular aspect of Doom’s material his-

tory. Too often historians pay little attention to how their sources are maintained
1[221] White, Hayden V. The Practical Past. FlashPoints. Evanston, Illinois: Northwestern

University Press, 2014. pg. 11
2Hayden White, in Metahistory [219], begins with the influence of Hegel’s theorizations of a

enacting “spirit” for human history and progress. White’s later works [221] eventually land in
a post-modern admission of the impossibility of historical “objectivity”.

257

and preserved, and how those who are subject to their histories — here gamers

and software developers — produce and preserve their own resources. For game

history, this may seem like an exaggeration, but our work in this thesis presents

the first attempt at informed descriptions of computer games for libraries, the sec-

ond appraisal of game development work, and the first example of software-based

citation of games. Clearly there is still an incredible amount of work to be done.

The remainder of this chapter is split into two major sections. We first lay

out a new scheme for the interpretation of computer game history based on ideas

from John Law, in the history of science, and Hayden White, in historiography.

They provide nice, concise legitimations for interpreting history through the use

of multiple angles of inquiry and leveraging new types of historical expression.

We also highlight and make use of previous schemas for game software historical

analysis to help with the divination of new angles from which to view Doom.3 The

model of history presented in the first section is designed to tease out the lacunae

in the software documentary record. As will become apparent, most works of

game history focus on chronicles of events applied to historical presuppositions

about games instead of literal game objects. Recall from the Citation chapter

that a “presupposition” of a game is an author’s (or player’s) recollection of that

title divorced from any concrete instance of a game object. Because most histories

of games only refer to these top-level signifiers — for instance, the game Doom

actually exists in many versions with many different game play experiences and

configurations — there are areas of the history of game software that do not receive

attention either historically or methodologically. This initial model and section
3Discussion focus primarily on [74] Fernández-Vara, Clara. Introduction to Game Analysis.

1st edition. New York: Routledge, 2014, [110] Konzack, Lars. “Computer Game Criticism:
A Method for Computer Game Analysis.” In CGDC Conf., 2002. http://www.academia.
edu/download/31458323/konzack-tampere2002.pdf. [157] Montfort, Nick. “Combat in Con-
text.” Game Studies 6, no. 1 (December 2006). http://gamestudies.org/0601/articles/
montfort.

258

http://www.academia.edu/download/31458323/konzack-tampere2002.pdf
http://www.academia.edu/download/31458323/konzack-tampere2002.pdf
http://gamestudies.org/0601/articles/montfort
http://gamestudies.org/0601/articles/montfort

are then arguments for filling in these holes in the history of computer games and

further, the history of software.

The second part of this chapter focuses on the layers of the historical model

described in the first. Each layer is not actually constitutive, in that the model

does not argue that each layer supports another, but rather that there are different

potential targets for historical investigation occurring at different documentary

vectors for a piece of software. It is not that layers do not interact, but that the

model does not make direct claims that each layer is required or necessary for all

historical arguments, but that each might have specific evidentiary details that

could affect general technical historical claims. Basically, one needs to be aware

of how each layer might affect arguments, and potentially look into these areas

as a part of their broader historical methodology. This section then applies this

layered consideration to specific sets of documentation about the computer game

Doom. Specifically, there is focus on how Doom exists as a presupposed historical

object, how Doom versions contribute to an understanding of its development,

what Doom’s source code reveals — and fails to reveal — about its design history,

and finally, how looking into the professional knowledge of Doom’s creators —

their tacit knowledge of game design — and how they acquired it points to a more

nuanced appraisal of Doom’s technical contributions to game software. These

smaller pieces function to bulwark our larger, thesis-level assertion about the

need to reveal software history through a focus the material conditions of its

documentary accumulation (stabilization), and on better ways to illustrate that

accumulation to readers (exploration and expression).

259

6.2 Fractal History

Pulling back significantly, we first address the basis for a layered or multi-

vectored approach to historical study. As noted by historian Hayden White in

his many discussions of the challenges inherent to historical narrative,4 the post-

modern quagmire caused by revealing “realistic”, “scientific” or “true-to-life” his-

tories to be, at best, partial myths betrayed by both the limits of a specific era’s

discourse and the implicit ideological biases of the historian, are well rehearsed.

White points out that since the end of the nineteenth century, the delimitation

between science and art left history in a bit of a bind.5 Being neither formalized

enough for the sciences, and too limited, rote, and constricted to be an art.

In sum, when historians claim that history is a combination of science
and art, they generally mean that it is a combination of late-nineteenth
century social science and mid-nineteenth century art. That is to say,
they seem to be aspiring to little more than a synthesis of modes of
analysis and expression that have their antiquity alone to commend
them. If this is the case, then artists and scientists alike are justified
in criticizing historians, not because they study the past, but because
they are studying it with bad science and bad art. The “badness” of
these hoary conceptions of science and art is contained above all in
the outmoded conceptions of objectivity which characterize them.“6

The problem of historical study is then one of affecting an objective, totalizing

take on a subject or situation. Complementary with this “outmoded conception”

of the nature of reality, is a similarly outmoded means of expression. As White

notes,
4[219] White, Hayden V. Metahistory: The Historical Imagination in Nineteenth-Century

Europe. Baltimore: Johns Hopkins University Press, 1973. White, Hayden V. The Practical
Past. FlashPoints. Evanston, Illinois: Northwestern University Press, 2014. [220] —. Tropics
of Discourse: Essays in Cultural Criticism. Baltimore: Johns Hopkins University Press, 1978.

5Peter Burke, in Social History of Knowledge Part II [46], concurs, pointing to the “crisis
of sciences” around that time resulting from the new philosophical positions of phenomenology
(Husserl [94]) and others. The positivist world view buckled under new, relativistic insights
from many different disciplines.

6[220] pg. 43

260

“there have been no significant attempts at surrealistic, expressionis-
tic, or existentialist historiography in this [the 20th] century. . . It is
almost as if historians believed that the sole possible form of historical
narration was that used in the English novel as it developed in the late
nineteenth century.”7

The resolution proposed by White is to make any history not a totalizing narrative

of a specific event or object, but an admittedly partial, and therefore incidentally

biased, argument based on a particular reading and interpretation of historical

sources. He draws this out by referring to the efforts of philosophers of science

in “working toward a better understanding of the similarities between scientific

statements on the one hand and artistic statements on the other.”8 That is, in

examining the underlying philosophy and practice of science, these scholars “have

modulated the harsh distinctions originally drawn by positivists between scientific

and metaphysical statements” and have significantly legitimized the latter. By

weakening positivist beliefs about the objective nature of reality, and singular,

“correct” ways of viewing it, the philosophy of science has paved the way for a

new consideration of history. One that no longer should, or actually can, display

an objective account of its subjects.

Thus envisaged, the governing metaphor of an historical account could
be treated as a heuristic rule which self-consciously eliminates certain
kinds of data from consideration as evidence. The historian operating
under such a conception could thus be viewed as one who, like the
modern artist and scientist, seeks to exploit a certain perspective on
the world that does not pretend to exhaust description or analysis of all
of the data in the entire phenomenal field but rather offers itself as one
way among many of disclosing certain aspects of the field. (Emphasis
in original, conveniently.)9

White’s point is that historical study had limited itself through an attachment to

modes of expression that were no longer commensurate with modern philosophy,
7[220] pg. 43
8[220] pg. 46
9[220] pg. 46

261

or even the basic experiences of people operating in modern society. Furthermore,

that history should be seen as a more interpretive — and emphatically biased —

art also called for its modes of expression to change in line with modern artistic

sensibilities. Perhaps certain histories can only be expressed through particular

artistic constellations or a particular style of representation. “To recognize that

there is no such thing as a single correct view of any object under study but that

there are many correct views,” that are each dependent on particulars types and

classes of sources, and can only be coherently represented through varying artistic

and discursive strategies.10

In returning to the production of this thesis, most specifically the previous

chapter on citation and discursive presentation, the ability to conduct a history of

games and software is dependent on the types of data collected and available for

their study. It is also dependent on the modes of expression that try to capture

software’s phenomenal and aesthetic experience. And here we are not only talking

about the player experience, but also that of game designers and the tacit practice

and technical implementations they undertake. Since White’s work functions in a

meta-historical frame that attempts to call out the various narrative and literary

tropes of historical presentation (he is a literary critic after all), we take White’s

legitimation of multiple expressions of and views on history and combine it with

the terminology of John Law, a historian of technology.

The “fractal” of this section’s “fractal history” is borrowed from John Law’s

work Aircraft Stories, which presents a set of interweaving perspectives on the

British TSR2 strike and reconnaissance warplane and its representation and in-

terpretation through various evidential vectors. Each avenue of inquiry added

more to an alignment of multiple views that resulted in a “fractal coherence” of

the object as situated in history and through its various documentary sources.
10[220] pg. 47

262

This metaphor of fractal coherence is therefore a potential solution to the multi-

plicity of histories noted by White. In moving to juxtapose multiple accounts, Law

is overcoming some of the deficiencies of singularized ones in hopes that they will

“cohere” into a greater truth.11 He is also analyzing a technical and engineered ob-

ject in his work, which is closer, ontologically, to our target of game software. Law

intentionally frames his contribution as an extension from the post-structuralist

claims on historical narrative put forward by White, to the history of objects.

Knowing subjects . . . are not coherent wholes. Instead they are
multiple, assemblages. This has been said about subjects of action,
of emotion, and of desire in many ways, and is often, to be sure, a
post-structuralist claim. But I argue in this book that the same holds
true for objects too. But it also reveals multiplicity — for instance
in wing shape, speed, military roles, and political attributes. I am
saying, then, that an object such as an aircraft — an “individual”
and “specific” aircraft — comes in different versions. It has no single
center. It is multiple. And yet these various versions also interfere
with one another and shuffle themselves together to make a singular
aircraft. They make what I call singularities, or singular objects out
of their multiplicity. In short, they make objects that cohere.12

The hope is that in presenting multiple views, multiple types of history about a

subject (object) that we end up “drawing things together without centering them,”

that we get a glimpse of their totality through the fragments of our analysis and

its presentation.13 This “totality” however, is explicitly non-prescriptive, in that it

still rests on whatever collection of histories we choose, and is never an attempt at

a full or complete presentation of historical “truth.” A way to visualize this notion
11The juxtaposition also helps alleviate some of the strain imposed by post-modern critiques

of historical inquiry. Namely, that it becomes more difficult to make any emphatic statements
about history when having to consider the various subjectivities at work in both the historian’s
prose and their sources of argumentation. By placing multiple framings along side one another,
we can begin to make out a new historical form that coalesces in the gaps between and betwixt
accounts. More on this below.

12[120] Law, John. Aircraft Stories: Decentering the Object in Technoscience. Duke University
Press, 2002. pg. 2

13[120] pg. 2

263

of coherence is shown in 6.1 below. The left side of the figure presents a false,

positivistly derived notion of fractal coherence that we explicitly wish to avoid,

while the right falls in line with the spirit of Law’s (and many other philosophers of

science’s) claims about the problems of an “objective” reality.14 In the “incorrect”

coherence portrait, we see an object sliced in various ways that align with specific

historical presentations. This is a false view because it pre-supposes an already

existential object about which we are doing the slicing. In the post-structuralist

view, and emphatically in Law’s quote above, there is no center, no external

“objective” thing about which we are constructing a history. Instead, as shown

on the right, our layers of investigating build to reveal the contours of something

greater, but that remains permanently out of reach. Adding further perspectives

only provides deeper contours, exposing them fractally since each new cut only

extends and complicates the picture while also adding to it. We are not attempting

to fill in all the slices, as the “false” coherence on the left assumes, but filling it

out for further inquiry. Its shape changing, expanding and contorting to fit with

each new view or analysis.

We see shades of an argument toward fractal coherence taking form at earlier

points in this thesis. Both the discussions of ontological enactment — the recon-

ciliation of the different configurative constellations that support any ontological

subject — and constitutive intertextuality — the combinatorial fabric of expres-

sive forms that loom new discursive surfaces — function as ways to provide new

views on software objects, and means for the representation of new histories. Any

new piece of documentary evidence or additional vector for exploration provided

by new tools or discursive forms supports a further (fractal) addition — not divi-
14Recall the discussion of computer game platform in Description about the nature of a

platform’s ontological position, and how it shifts based on who is using it and to what end.
Others in the history of science to confront this post-structuralist arrangement include, [60],
[154], [155], and [230].

264

Figure 6.1: Two versions of analysis. “Incorrect” slicing of pre-defined object
on the left, topographical, additive contours on the right.

sion — to the object question. The task before us is how to approach the multiple

possible histories of computer game software, and the different views one can take

on a software object.

6.3 A Model of Game Software Historical Study

Our model arose from experiences with the historical documentation avail-

able about game history, and as a reaction to various schemes proposed by game

scholars and computer scientists attempting to analyze the meaning and effects

of games and other software. This section will describe the model and its impli-

cations in light of the above notion of fractal coherence for a historical object.

When convenient, it will also contrast the historical goals of the model with the

analysis provided by other layered models used in game studies. These “other”

models, as we will see, are distinctly ahistorical, derived as they are from liter-

ary criticism and other disciplines concerned with textual meaning making and

hermeneutics — as opposed to the diachronic emplotment of historical narrative.

265

The model’s intended effect is to bring attention to ways we could be presenting

or approaching the history of software that are currently ignored, or unavailable

due to a lack of historical foresight by practitioners and therefore, lack of access

for scholars. Finally, the model below, in pulling from our notion of a fractal

organization of historical viewpoints, is not intended to be THE model of game

historical investigation but one of many. It intends to open up a conversation

about the historical discussions (in our case mostly technical ones) that we are

not having about games because of a lack of resources and scholarly focus.

Since the birth of game studies, there has been a distinct fascination with

the ways that games express meaning. This is usually confronted through a con-

sideration of the how the underlying technical constraints of a system limit the

aesthetic and game play possibilities of a finished game object. In 2002, Lars

Konzack published an article outlining seven potential layers of game analysis.15

While the organization of these layers and their basic ontology are a bit confused,

they do begin the construction of a view of games as the result of different layers

of abstraction building up from a base “platform” and arriving, at the top, as a

“socio-cultural” context. Although the relationship between the layers, or why

they are distinct or necessary, is left out of the discussion, their basic organization

positions the technical infrastructure below the generation of “meaning” which

arises at a higher point in the stack. This vertical take on the analysis of com-
15[110] Konzack, Lars. “Computer Game Criticism: A Method for Computer Game Analysis.”

In CGDC Conf., 2002. Konzack presents a seven layer schema: “hardware,” “program code,”
“functionality,” “gameplay,” “meaning,” “referentiality,” and “socio-culture.” This organization
is ontologically muddle, and presumes that the meaning of a game exists at a specific strata
of analysis, one that is also tied to the material foundation of the apparatus, its code, and its
socio-cultural context. Jamming all of this into a hierarchical model is very limiting because it
appears to argue that the meaning of a game exists below its socio-cultural context, and also
masks the contributions of lower levels, like platform and code, to higher level structures. Each
level is imbricated with socio-cultural context and each has specfic contributions that contribute
to referential structures, functionality, and gameplay. This hierarchy, as a layered structure,
does not hold together, but as shown, loops back on and into itself.

266

puter games, as a holistic consideration of “all” the intermediate layers between

platform and culture is not particularly convincing, but did begin the ball rolling

towards similar layerings with the same goal. A goal that, if we consider the above

discussion of post-structuralist description, is not actually reachable.

Nick Montfort, in an early work of what would become the platform stud-

ies field, takes Konzack’s framework and cleans it up.16 He removes numerous

intermediate layers describing the meaning generation of games (“functionality,”

“game play,” “meaning,” and “referentiality”) and collapses them into a “game

form.”17 The “interface” and “reception and operation” layers sit atop it. Criti-

cally, he retains Konzack’s base layers of “platform” and “game code”, with the

latter collapsing both the “code” and “program” into a single unit. This is imme-

diately problematic, because a program is not its code, and from the perspective

of our coming historical investigations, code and program have ontologically dis-

tinct documentation and evidence. Regardless, the other, perhaps more important

move in both of these frameworks (and one we will be avoiding) is the shift from

the underlying technical layers, through a “meaning” or “game form” that is then

the game “concept” through which a player interfaces or receives it, and through

which socio-cultural considerations come into play.18 To be fair, Montfort’s hier-

archy is couched in a desire to look into the context of each layer, and to point out

that “certain levels that critics have neglected or glossed over can be important

to understanding games, and [those] levels can be usefully explored by scholars.”

These hierarchical views of game analysis cash out into the “platform studies”
16[157] Montfort, Nick. “Combat in Context.” Game Studies 6, no. 1 (December 2006).

http://gamestudies.org/0601/articles/montfort.
17We do not go into detail about Konzack’s layers for reasons that will be made apparent

below. Additionally, the organization of layers in Konzack’s work appears to be rather arbitrary
and is not worth further scrutiny beyond their initial presentation of the vertical abstraction of
game meaning and analysis.

18This top layer is potentially commensurate with our notion of the pre-supposed concept of
a game highlighted in the Citation chapter.

267

http://gamestudies.org/0601/articles/montfort

series, which are framed as historical works, but rarely engage in diachronic discus-

sion of how the specific platforms — the base layer from which all meaning arises

per Montfort’s model — developed. Nathan Altice’s work is a notable exception

here, as it mildly attempts to relate the development of the NES’s hardware to

historic developments like the company ethos of Nintendo, and the economics of

contemporary hardware markets. However, in general, because platform studies,

and even software studies in general, are derived from literary criticism, narratol-

ogy, and fields focused on divining and explaining “meaning” without recourse to

historical narratives, most “historical” discussions of games end up focusing on

vertical, synchronic analysis instead of on diachronic change or documentation.

Figure 6.2: Basic model with four layers: historiographable target, reified ob-
ject, technical expression, and enacted knowledge

Our model acknowledges this vertical, synchronic approach toward game anal-

ysis, but embeds it in historical processes of diachronic change and documentary

accumulation. We also avoid the sticky notion of “meaning” or “form” arising at

268

any particular layer, because from the perspective of our model, all of that stuff

begins (and derives from) the surface atop a game’s technical infrastructure.19

Someone needs to be able to play a game for it to have intentional meaning. The

top level of our model is the “historiographable target” that is most analysis of

games. This is the presupposed concept of the game when mentioned in passing,

or functioning at a point in a particular chronology of game history. It is what you

might imagine when asked to think about playing the game Pac-Man. You are

probably not thinking about Pac-Man on a particular type of arcade machine or

home console, but of a general form of Pac-Man abstracted out from a particular,

historical context of play. However, even if you are thinking about playing the

game on your mobile phone; another “you” might be imagining Pac-Man beam-

ing from a television foregrounded by an Atari VCS in your living room in 1982.

Both instances are Pac-Man, and many discussions of game design, game play,

and intentional meaning might function exactly the same when applied to either

of them, but they are definitely different historical objects. The historiographable

layer of our model simply points out this general lack of acknowledgment of the

difference between a game as a concept that functions in history, and the game

as a particular instance encountered by the historical researcher.20

Below the historiographable layer is the reified object. Again, this layer is de-

rived from a class of documentation consisting of game programs and the collection

of files and assets that compromise their “closed” and distributed states. Here we

encounter the different versions of particular games before they are subsumed into
19This is not saying that lowers levels of technical apparatus, like code and platform do

not contribute to meaning or should not be studied, but that assigning this meaning is only
something one can do retroactively after documentation of the game, or experience with the
game itself becomes possible.

20Cf. [125] Link, David. Archaeology of Algorithmic Artefacts. First edition. Minneapolis:
Univocal Publishing, 2016, for David Link’s discussion of the encounter between technical repro-
ductions of cryptographic ciphers versus their narrativization from documentary sources that
have not been re-enacted.

269

the general objects of the historiographable layer. The objects are “reified” in that

they are the result of processes at lower levels. This is an acknowledgement of the

transition that occurs between the apparatus and outputs of development activity,

and compiled (and playable) game objects. When dealing with, as we have in pre-

vious chapters, the complex nature of identifying and tracking different versions

of games, this layer actually becomes the primary one from an archivist’s point

of view. The reified objects are the things that actually sit in waiting for histo-

rians in the future, and that are the target for various reproduction schemes like

emulation or expression in original physical hardware.21 Importantly, this layer

also focuses on the explicit configuration of these different objects. That is, their

file organization and structure, and how they express their differences in execu-

tion, both of which are paramount to archival and stabilization concerns. That

prominent historical research related to versioning differences arises from archival

research projects is then understandable. The most notable example is probably

the Preserving Virtual Worlds project, which explored the version histories and

multiple manifestations of numerous games, including a particularly deep look at

the genesis of one of the earliest text adventures, Adventure.22

21One potential question for this model is where to place the typical, experiential differences
of games as manifest in their embodied play. That is, where are platforms, peripherals, and the
like? Well, when discussing a particular reified version of a game, those things are implicit to
it. The reified work is both a collection of data marked as a playable, distributed experience,
and the apparatus required to play them. Also, given our fractally additive view of things, we
cannot argue against including more granular distinctions between versions and their expressive
apparatus as they would just be one more angle of inquiry.

22The PVW team worked with Dennis Jerz to uncover significant new intermediary ver-
sions of Adventure, created by Don Woods and Will Crowther in the mid-to-late 1970s. For
more on this work see [99] Jerz, Dennis G. “Somewhere Nearby Is Colossal Cave: Examin-
ing Will Crowther’s Original ‘Adventure’ in Code and in Kentucky” 1, no. 2 (2007). http:
//www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html and [148] McDonough,
Jerome, Matthew Kirschenbaum, Doug Reside, Neil Fraistat, and Dennis Jerz. âĂĲTwisty Lit-
tle Passages Almost All Alike: Applying the FRBR Model to a Classic Computer GameâĂİ
4, no. 2 (2010). http://www.digitalhumanities.org/dhq/vol/4/2/000089/000089.html.
Another example of an explicit focus on diachronic version change is found in Altice’s I AM
ERROR [25], in the discussion of the improvements and upgrades to NES cartridges capabilities
and its evolution as a platform over time. His analysis on this note in a platform studies work

270

http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html
http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html
http://www.digitalhumanities.org/dhq/vol/4/2/000089/000089.html

As “reified” objects exist on their own strata, the things they are reified from

must sit somewhere below. We refer to these things as “technical expressions”.

This layer is the place for all of the productive outputs of a group or individuals

engaged in the construction of software before it coalesces into a reified object.

The outputs are the evidence and products of development, like source code,

development tools, and development documentation. Basically, anything that

one would find in the appraisal of a development studio’s digital and physical

records.23 Technical expressions are the evidence of process, and the first site

where the experience and actions of a developer manifest what will become a

game.

The base layer of the model is “enacted and tacit knowledge”. This is the

set of a priori experiences and personal knowledge that people bring to the craft

of software creation. Before interacting with or developing on a platform, before

writing any code, and before ideation of new objects begins, we simply have the

accumulated experiences and knowledge of the people who will take action. It is

also the place where ideas about computation and game design first arise. For

example, if one wants to program a binary search of game entities, or organize

a collision detection routine, they must draw on previous knowledge that those

algorithms and approaches exist. Or conversely, if they invent or re-invent some

approach, that invention is still the product of their accumulated knowledge on the

subject. At this level we can also analyze the implementation of these ideas and

how they end up as tangible technical expressions. By “tangible” we mean things

that can be cataloged and recorded as historical evidence and then retrieved or

reproduced in the future. Evidence at this layer can also be recorded, but it will be

of a more general sort. Instead of the technical expressions that lead to a software

is actually unique, since the other volumes are less concerned with diachronic process.
23See the Appraisal chapter for a recounting of these effects, along with its complementary

report, [102] A Unified Approach to Cultural Software Objects and Their Development Histories.

271

object, the evidence would be the other sources of inspiration and learning that

contributed to a game’s ideation.

Tacit knowledge is a significant topic in the history of science and technology,

and discussed in the introduction to this thesis as it relates to technological “black

boxes,” the set of objects or basic scientific and technical assumptions that pass

without question into a technical discourse. In the model, these black boxes are

both the “reified objects” that use compilation to hide the technical expressions

used in their creation, and also the tacit knowledge — the unacknowledged as-

sumptions of practice — incumbent to game development and creation that are

often left out of discussion.24

Pulling an example from the Doom discussion below, we can take the develop-

ment of Doom’s spatial rendering algorithm, which relied on a technique known

as binary space partitioning (BSP). The inner workings of the algorithm with

respect to Doom will be addressed below. Here, the only thing to know is that it

was an approach to real-time graphics implemented by John Carmack, the Doom

engine’s developer. Carmack drew upon knowledge from the graphics community

of the day and found a way to implement BSP tree-based rendering by combining

those approaches with his own thorough knowledge of MS-DOS based machines’

memory architecture. When Carmack programmed his BSP renderer and its at-

tendant BSP compiler in C, he then manifested his previous knowledge into a

technical expression of it that functioned in service of his particular needs for
24Work on the revelation of the tacit and implicit assumptions of technological and scientific

practitioners is of extreme importance when trying to figure out the “why” and “how” of a field’s
development and change. See [54] Collins, Harry. Changing Order: Replication and Induction
in Scientific Practice. Reprint edition. Chicago: University Of Chicago Press, 1992. [55] —.
Tacit and Explicit Knowledge. Reprint edition. Chicago; London: University Of Chicago Press,
2012. for more discussion of the role of tacit knowledge in the efforts of science and technology.
Another good discussion can be found in [169] Polanyi, Michael. The Tacit Dimension. Terry
Lectures 1962. Garden City, N.Y: Anchor Books, 1967, who describes tacit knowledge as what
“we know but cannot tell.”

272

Doom. This BSP approach was then compiled into the Doom executable — as

a reified object — and distributed to the world — as a historiographable target.

The accumulations at each layer would then be: for enacted knowledge, records of

contemporary publications in BSPs and DOS memory architecture; for technical

expression, the source code of the game implementing BSPs; for the reified object,

the Doom executable making use of BSP; and for the historiographable target,

records of that reified object as interpreted and experienced by players.

Figure 6.3: “T” in model, most practice is in blue top layer, with synchronic
investigations in pink. The white space is still waiting to be filled in more thor-
oughly.

The model also aims to point out the gaps in the record and study of games.

Each layer can be thought of as a diachronic progression from left to right. For

273

the topmost layer, this is representative of most game historical discussions that

focus on games as conceptual historical entities. The horizontal box in the image

below highlights this region of current game historical investigation. Likewise,

deeper, synchronic, vertical studies of games that attempt to derive and explain

meaning from base principles through critical reception appear as vertical boxes

in the model. The striated spaces outside of the “T” formed by both common

types of analysis are the spaces we want to point out and populate. This is

the diachronic history of each lower layer, like (1) the progression of versions

and file structural changes of reified software objects; (2) the changes incurred

in the source code and tools used over the course of development; and (3) the

history of algorithms, architectures, platforms, and knowledge propagation in the

development community. Also significant is that these layers are not enforced

with regards to the exact types of documentation, but with their function toward

the object or conception of an object in question. For example, we could shift the

discussion from Doom, to the idBSP program— Doom’s BSP compiler. In making

this shift, idBSP becomes the object of study instead of historical evidence of

Doom’s technical expression. Consequently, the Doom program is now positioned

as an a priori form of enacted knowledge functioning on the creation of idBSP.

The history of Doom then becomes important to the process of idBSP’s creation

instead of the other way around. We could then use Doom’s slow speed before

version 0.5 as the impetus of idBSP’s ideation and development, as opposed to

positioning idBSP as a critical development in the history of Doom’s technical

expressions and reified objective versions.

Finally, and complementarily, historical revelations in the lower layers cannot

be adequately explored without new organizational and analytical approaches,

and cannot be stabilized without the hard, meticulous work of description and

274

cataloging. Luckily, for many popular games, like Doom, the community has

taken up these organizational tasks, and worked to maintain the evidence of its

various layers. This is a major reason that Doom was chosen for analysis in the

next section. Community-collected evidence about Doom’s creation, development

and evolution makes it possible to have a discussion about the progression of

Doom’s history at each layer, and to support arguments about them.

Regarding the exploration of the documentation at each layer, we are still

in the early stages of robust approaches to the analysis of software executable,

source code, and other evidentiary tracks that contribute to a historical coherence

of software. Some of the previous work in this dissertation is a step in that

direction, but much more work needs to be done. In framing software history

through the above model, we hope it can be a guide to different sites of intervention

for computational tools, or more considered methodologies for the evidence of

software history.

6.4 Doom in Fractal Coherence

This section presents a small collection of different historical arguments about

Doom motivated by the layers — and lacunae — highlighted in the model above.

Each argument articulates the practices and material-methodological considera-

tions of its respective fractal layer, and serves as an example of the larger class

of historical perspectives that can fill out the spaces outside of the “T” of current

software histories. Recall that in describing the model we noted that most histor-

ical study of game software is preoccupied with a “T” shaped area of historical

concerns. The horizontal top of the “T” being general histories of games uncon-

cerned with treating them as anything other than “closed” conceptual objects

and the vertical body of the “T” occupied with synchronic studies of the layers

275

of system abstraction. The intention, in these rather busy sections, is to portray

a smaller example of a fractal perspective on Doom, and to embed our practical

methodological findings right in line with the historical investigation undertaken.

Therefore, each discussion is as much a historical argument about Doom as it is

an argument about uncovering and recovering Doom’s history. This secondary

focus on “uncovering and recovering” aligns with the model’s express focus on

the accumulated — and often invisible — conditions of each layer; for one cannot

describe, reference or retrieve a history if it’s not there in the first place.

The model lays out four different layers for material argumentation and in-

vestigation: enacted and tacit knowledge, technical expression, reified object, and

historiographable target. Clothing these layers in the vestments of Doom’s par-

ticular accumulations, we end up with the following alignments:

1. Enacted and tacit knowledge → Previous knowledge of game design and

development including, critically, the a priori knowledge of algorithms and

platforms in enough detail to create new, previously unseen game forms

2. Technical expression→ The material supports for Doom’s creation and pro-

liferation over the last three decades, the journey of its assets and source

code

3. Reified object→ The game object itself, the executable organization of data

that players interact with, and how that object functioned and morphed over

time

4. Historiographable target → The game Doom as referenced in histories or

most recollections. This is the only layer to have already been exposed to

historical scrutiny

276

As a single chapter is not nearly enough space to cover all of these topics

in complete detail, we will only address a brief cross section of the history and

evidence at each layer. We then reduce each one to more specific contributions:

1. Enacted and tacit knowledge→ Doom’s effect on and positioning in discus-

sions of game programming during and after release

2. Technical expression → The procession of Doom’s source code as a means

for defining the contextual needs for source documentation

3. Reified object → A tour of Doom versions and modifications in MS-DOS

that points toward more careful considerations of what file contents and

structure can reveal about development history

4. Historiographable target→ Doom’s current historiography, its main sources,

limitations, and accumulations

For those unfamiliar with Doom, it was a computer game first released in

version 0.99 on December 10th, 1993 by id Software, a small company working, at

the time, out of a Mesquite, Texas office suite with 8 employees (John Carmack,

John Romero, Shawn Green, Kevin Cloud, Adrian Carmack, Jay Wilbur, Dave

Taylor, and Sandy Petersen). The game is considered a progenitor of the first

person shooter genre.25 It also had a significant amount of features that are

now commonly associated with that genre and games as a whole. These included

local area network (LAN) multiplayer, downloadable content, company sanctioned

user modifications (commonly referred to as “mods”), and wide spread Internet

distribution. Doom is a played from the first-person perspective of a space marine
25[207] Therrien, Carl. “Inspecting Video Game Historiography Through Critical Lens: Et-

ymology of the First-Person Shooter Genre.” Game Studies 15, no. 2 (December 2015).
http://gamestudies.org/1502/articles/therrien.

277

http://gamestudies.org/1502/articles/therrien

fighting demonic entities first on a space station, and then in a version of hell. The

game was initially released as an Internet-distribution “episode” of nine levels.

Two continuing episodes, also of nine levels, could be ordered directly from id

Software.26

The remaining sections below point toward new approaches and arguments

that can develop by looking into the material conditions of each layer of the

fractal model presented above.

6.4.1 Historiographable Target

In order to show how our model extends the historical space of Doom, we first

need to recount the work that has been done, and how it fits in and fills out the

model. In the case of Doom monographs, only three books spend a significant

amount of time with the game. Of those, two — King and Borland’s Dungeons

and Dreamers and David Kushner’s Masters of Doom — are journalistic accounts

of the game’s development that predominantly focus on the character (and “car-

icatures”) of its lead developers. The other, Dan Pinchbeck’s DOOM: SCARY-

DARKFAST, is a more vertical study of Doom’s gameplay and level design. In

all cases, these works rely, primarily, on either an analysis of Doom itself — with

only Pinchbeck’s work mentioning the particularities of Doom’s versions — or on

interviews with the game’s developers at id Software. They are not particularly

deep histories. The journalistic accounts eschew interpretive analysis for more

sensationalist claims about the game’s impact and importance, and Pinchbeck’s

work straddling the line between academic treatise and fan appreciation.

Now, in fairness, none of these texts claim to be rigorous historical works, but

in the larger community they are interpreted as such. A look at the Wikipedia
26The “nine” levels include each episode’s secret bonus levels: E1M9: Military Base, E2M9:

Fortress of Mystery, and E3M9: Warrens.

278

Figure 6.4: Opening of Doom

279

page devoted to Doom’s development history 27 is almost entirely sourced from

Kushner’s Masters of Doom, which is problematic because many of his claims

about the game’s popularity, reception, and effects on larger game culture are

presented without much in the way of sourcing, and in some cases apparently

willful inaccuracies.28 Dungeons and Dreamers is primarily focused on game de-

veloper Richard Garriott and his Ultima series of games, but does feature two

intermezzo chapters devoted to id Software.29 Pinchbeck’s work is a bit more

puzzling, given that its central thesis — essentially that Doom is “awesome” and

groundbreaking — is under cut by a final chapter that in trying to position Doom

as a significant prototype for the first person shooter ends up convincing itself
27[19] “Development of Doom.” Wikipedia, June 6, 2017. https://en.wikipedia.org/w/

index.php?title=Development_of_Doom&oldid=784107014.
28In one particularly egregious example, Kushner seems to misquote a magazine article to sup-

port his assertion that the gaming press immediately identified Doom as a significant historical
development, which as we will briefly discuss below, was not the case. Quoting Kushner, “Early
reviews echoed the gamersâĂŹ glee. PC Week called Doom a ‘3-D tour de force.’ Compute said
it signaled a new era in computer gaming: ‘The once-dull PC now bursts with power. . . For the
first time, arcade games are hot on the PC. . . the floodgates are now open.”’ [113] pg.161 The
quote in COMPUTE! is an introduction for a section about action games on the PC and not
directly about Doom or its specific influence. Doom is mentioned in passing after a description
of Wolfenstein 3D as “a game that features more involved play mechanics and dazzling special
effects.” [140] However, there is no further mention of Doom aside from that sentence, and
nothing noting it being more significant than any other game listed.

29While there is a mild relationship between the two endeavors, with Doom’s texture mapping
work reputedly motivated by Ultima Underworld, a game technically more “advanced” than
Doom but released before it. The inclusion of these two chapters is a bit puzzling, and apparently
unexpected since they are not mentioned as sources for Doom’s development history on the
DoomWiki, which is otherwise impressively comprehensive.

280

https://en.wikipedia.org/w/index.php?title=Development_of_Doom&oldid=784107014
https://en.wikipedia.org/w/index.php?title=Development_of_Doom&oldid=784107014

otherwise.30

The more important point to make about Doom’s historiography is not that

efforts to date have a litany of shortcomings, but that extensive material exists to

build a much more nuanced and detailed history. Regardless of the level of rigor,

the three monographs mentioned do contain a majority of the first-hand informa-

tion available about Doom’s development.31 All three relied, in part, on extensive

interviews with the development team, with Pinchbeck’s explicitly including and

highlighting the contributions of id developers besides the two more famous Johns.

What is not significantly included in any of the works is the material outlined in

the brief layered case studies below, nor any real analysis divining the reasons

behind Doom’s longevity as both a game and a community building object.32

The rest of this section will lay out a brief history of the history of Doom, and

speculate on the reasons behind its notoriety and continuing significance. Histor-

ical material about the game is primarily available online, and split into different

sources based on the state of information technology available to the community

at various points in time. That is, the growth of historical information about

Doom also follows the growth of the Internet as both an archive and mediator of
30Quote from Doom:Scarydarkfast[168] pg. 155-156:

Interestingly, in DOOM, we see the core affordances laid down for the genre (or
reaffirmed really, as the template was essentially there from Maze War), but in
terms of the experience of gameplay, all of these small incremental nods to strategy
and planning mean that the vast majority of contemporary FPS games deviate
from DOOM’s flavor in subtle but significant ways. Despite DOOM’s position
as the mother lode of first-person shooters, when we consider the impact of these
additional affordances as having the effect of making play slower and more complex,
the spirit of Ultima Underworld: The Stygian Abyss rears its head once more.

31Except for id Software’s own Book of Id, released as a companion volume to 1996’s id
Anthology PC collection release [15].

32Pinchbeck does talk at length about Doom’s level design and gameplay innovations, includ-
ing how Doom influenced a raft of successor first person shooters, but he’s does not mention
much in the way of historical methodology or touch on much of the information elaborated on
below.

281

historical information. In Doom’s case, the major sources for its history are linked

to specific epochs of online information dissemination, namely: Usenet and BBS

systems, web “portals” and fan sites, and most recently, unified, user editable

wikis.

Doom’s Release and Newsgroups

Even before Doom’s release in late 1993, excitement about the game had been

growing since its announcement in a press release on November 5th 1992.33 Tom

Hall, one of id’s game designers, had written the text of the press release in a

design document known as the “Doom Bible”. Though most of the information

presented in the Doom Bible did not make it into the final game, it is apparent

that the ambition at work inside id was impressive. Hall noted that they expected

Doom to be “the number one cause of lost productivity in the world” when the

game was released, and routinely referred to Doom as, “heralding another tech-

nical revolution in PC programming.” The press release is interesting in that it

announced a significant number of features and goals for the game that, by that

point, had not remotely been implemented. Hall notes that the game’s texture

mapping, “a technique that allows the program to place fully-drawn art on the

walls of a 3-D maze”, would greatly surpass that of Wolfenstein 3D, a previous id

game. Hall, it seems, did not anticipate the coming complexity of Doom’s level

design, or rather, its attempts to “break out” of Wolfenstein 3D’s design as later

noted by John Romero. Although Doom would have a maze-like feel, the vari-
33Confusingly, this announcement is noted in multiple places as occurring on January 1st,

1993. Checking out the various PC game USENET groups at the time, we can easily locate the
announcement from November 5th, 1992 by id’s Jay Wilbur on comp.sys.ibm.pc.games [224].
The earliest mention of Doom actually predates that announcement by a month and a half when
Jay Wilbur commented on Doom’s apparent multiplayer functionality [225]. Based on various
other postings around the time [1], Doom appeared as a scheduled release from Apogee Software
before its official announcement, leading to speculation, and presumably some responses from
Wilbur to quell inaccurate rumors.

282

ety of its environments, including what may be the first outdoor arena-like 3D

level, show that the maze metaphor would give way sometime between the game’s

announcement and release.34

The game’s community existed primarily based on good will from previous id

releases. Starting with Commander Keen in 1989, id had consistently delivered

some of the fastest gaming experiences available on DOS-based computers.35 At

the time, Keen’s tile-mapped side scrolling engine provided for gameplay more

akin to contemporary console and arcade titles.36 id produced seven Keen games

before branching out into 3D. John Carmack, the driving force behind id’s game

engine technology, sought to bring arcade-like speed and viscerality to a platform

mostly used for contemplative, turn-based role playing games. After id’s founding

in February of 1991, the team continued making games on contract for their former

employer SoftDisk. While the majority of the team worked on sequels to older

titles, or new games built on the Keen and other legacy codebases, Carmack spent

February and March of that year building id’s first 3D engine.

The resulting game, HoverTank 3D (Figure 6.5) employed a basic ray-casting

technique to render three-dimensional walls from an underlying two-dimensional

grid. Carmack significantly improved on his engine’s rendering technology in

id’s further three-dimensional efforts Catacomb 3D and Wolfenstein 3D. Another

company, Raven Software, also contracted John Carmack to help with an improved
34Episode 3 Mission 6 E3M6 “Mt. Erebus” is noted by Pinchbeck [168] as possibly the first

outdoor arena-like level in shooter.
35DOS is the Microsoft Disk Operating System (MS-DOS). While the developers and players

at the time referred to Doom as a “DOS”, an “IBM PC” or simply a “PC” game, we need to
be a bit more careful. Any reference to PC or DOS in this section is then explicitly referring to
versions of MS-DOS available on compatible x86 architecture available between 1992 and 1994.

36The first use of the Keen sidescrolling technique was in Super Mario Bros. 3 knock off called
“Dangerous Dave in Copyright Infringement”, made to impress John Romero at SoftDisk before
id’s founding. “Dangerous Dave” was a game character John had created as a teenager, and the
character had featured in numerous early collaborations between Hall, Carmack, Romero, and
(Adrian) Carmack.

283

Figure 6.5: Opening of Hovertank 3D

284

Wolfenstein engine for their game Shadowcaster. That game featured fully texture

mapped floors and ceilings (something Catacomb 3D and Wolfenstein 3D lacked),

as well as sloped terrain (which did not even make it into Doom’s engine). All

this is to say, that by the time of Doom’s announcement, many were familiar with

id’s 3D development chops, and excited for their next game.

After Doom’s initial announcement, information trickled out from id and the

press slowly over the next year. The first alpha of the game was ready sometime

before February 4th, 1993. Other early versions circulated amongst id’s friends

and acquaintances followed by a release of Doom’s version 0.4 to various press

in April 1993.37 A further press release beta circulated in October and was sub-

sequently leaked onto the Internet. Immediately, various community members

began reverse engineering its files, including the WAD file format that stored and

indexed most of the game’s level data.

The alt.games.doom newsgroups appeared in early January of 1994 — fol-

lowing Doom’s early December 1993 release — as a means of consolidating the

significant amount of Doom posts filling up others, like comp.sys.ibm.pc.games

and bit.listserv.games-l.38 Topics included issues installing the game, finding all

of its secret areas, recordings of gameplay (through .lmp files) and picking apart

Doom’s engine and data structures. Additionally, the team at id Software consis-

tently updated Doom over the course of 1994. The newsgroups functioned as a

clearinghouse for info on the latest versions of the game, and on the progress of

community modding tools.

Alongside the newsgroups, a proliferation of Doom and id focused File-Transfer
37While not explicitly stated as version 0.4, a preview of the game in the July 1993 issue of

Computer Gaming World [126] features screenshots of the game that only appear in the 0.4
alpha.

38comp.sys.ibm.pc.games also had a sub-group devoted to “action” games, which is apparently
what most people classified Doom as at the time.

285

Figure 6.6: Opening of Catacomb 3D

286

Figure 6.7: Opening of Wolfenstein 3D

287

Protocol (FTP) sites came online. The initial release of Doom significantly taxed

the University of Wisconsin-Parkside’s server, and numerous mirrors appeared

with hours of Doom’s release to help alleviate the congestion caused by thousands

of people trying to download Doom’s initial shareware version. In April 1994, after

the first raft of Doom design tools arrived — and with them a flood of new Doom

levels — Barry Bloom posted to alt.games.doom that he was starting a unified ftp

server for all community outputs.39 In short order, this initial ftp server evolved

into the idgames archive, a community driven and maintained archival collection of

all id Software-related materials floating around the Internet. Although the level

of technical ingenuity and commitment that followed the release of Doom might

appear odd, one needs to remember that at the time, the primary group with

access to early Internet connections were students and professionals at universi-

ties. Most of the messages on Doom’s forums and the ftp servers hosting Doom’s

content were in the .edu namespace.40 These were computer scientists, electrical

engineers, and programmers who appreciated the technical feat of Doom, and who

also possessed a deep connection to the networked environment that spawned it.

Bear in mind that Doom never had an official, commercially boxed release, but

was distributed as a shareware demo. id gave other companies explicit permission

to package and resell their shareware release at a profit because it drove players

toward ordering the rest of the game’s levels directly from id.

The idgames archive slowly expanded over the next two years, with an an-

nouncement in mid 1996 by one of its archivists, Frans de Vries, that it had col-

lected over one gigabyte of id related materials.41 The archive originally consisted
39FTP consolidation is discussed in this thread from April of 1994 https://groups.google.

com/forum/#!msg/alt.games.doom/Wjp0gf-zBf8/YIYsTQyD9F4J
40David Datta posted a list of all Doom mirrors shortly after the games release. [61] Datta,

David. âĂĲDoom Upload Site List (Final Version) - Google Groups.âĂİ Accessed June
10, 2017. https://groups.google.com/forum/#!search/david$20datta$20doom%7Csort:
relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/nkrU0islGjEJ.

41Frans de Vries outlined the history of the archive in an announcement posting to the

288

https://groups.google.com/forum/#!msg/alt.games.doom/Wjp0gf-zBf8/YIYsTQyD9F4J
https://groups.google.com/forum/#!msg/alt.games.doom/Wjp0gf-zBf8/YIYsTQyD9F4J
https://groups.google.com/forum/#!search/david$20datta$20doom%7Csort:relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/nkrU0islGjEJ
https://groups.google.com/forum/#!search/david$20datta$20doom%7Csort:relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/nkrU0islGjEJ

mostly of modified Doom WAD files and demo replay LMP files, but expanded

to accept content from all Doom engine games in February 1995 after the release

of the John Romero produced, Raven Software developed game Heretic. The

/idgames root folder name derives from this expansion. The archive also fea-

tures historical versions of Doom and related games in the “historic” folder of the

archive. Here community members have collected numerous, previously private

alphas of Doom, along with historically significant tools and documentation from

Doom’s release. The archive is maintained through a collection of mirrors, and

still sees community activity. Members even managed to locate a “lost” Doom

alpha, version 0.3, in August of 2015.42

Along with the collection of ftp servers that would become the idgames archive,

a community of fan web sites began appearing in mid-1994. The largest at the

time was Piotr Kapiszewski’s DoomGate web portal. It hosted links to other

sites in the DoomWeb circle and provided downloads for popular Doom mods.

DoomGate (now hosted at www.gamers.org) was also the web outlet for the Doom

Help service, a community collection of FAQs and resources originally linked to

the alt.games.doom.newplayers newsgroup.43 The alt.games.doom newsgroups

then re-consolidated, moving to rec.computer.games.doom in late 1994 and taking

over the newsgroup end of the service. DoomGate is also the oldest remaining

mirror of the idgames archive, having taken it over in 2001 after Walnut Creek

CDROM (an earlier shareware and ftp distribution company) decided to stop

hosting community archives on their servers.44

The early activity of the Doom community, specifically in regards to its focus

rec.computer.games.doom lists [64].
42[5] “DOOM Alpha v0.3 (aka ‘DOOM Pre-Alpha’) - Doomworld /Idgames Database Fron-

tend.” Accessed June 10, 2017. https://www.doomworld.com/idgames/historic/doom0_3.
43As noted, the DoomGate (www.gamers.org) website is still online, though it has been su-

perseded by other community sites, mostly DoomWorld, which we will note in the next section.
44[63]

289

https://www.doomworld.com/idgames/historic/doom0_3

on historical documentation, is a boon to historical researchers. Whereas most

other games from the period exist solely as executable files with some additional

physical documentation, the evidence from the Doom community’s effort makes

the below source code and game version reconstructions not only possible, but

potentially playable.

Source Code and DoomWorld

The next phase of Doom’s historical accumulation begins with the release of

Doom’s source code by id Software on December 23rd, 1997. Researcher Bernd

Kreimeier, having provided one of the first academic analyses of Doom’s engine ar-

chitecture decided to begin research on a full length monograph.45 He approached

id asking for a public release of the code to complement his book. id allowed him

access and he worked to tidy up the code for release. This was not an insignificant

effort as Doom’s original source tree contained numerous versions of files over a

mess of folders, including some copyrighted sound driver code that had to be re-

placed entirely.46 While in the midst of the clean up his publisher cancelled the

project, citing Doom’s age — an eternal three years old at the time — in doubt’s

that there would still be profitable interest. Regardless, Bernd decided to finish

the code clean up with John Carmack’s help and released it.

The source code’s availability triggered a flurry of programming activity, as

players worked to port the game’s code to a large number of platforms. Since the

game’s source was released for the Linux operating system, it required that the

player programmers change the code to make it “port”able and allow for execu-

tion on different system. The first port back to Doom’s original DOS platform,
45[77] Forsman, Robert and Bernd Kreimeier, “A Brief Summary of DOOM-style Rendering.”

1996.
46At the time id did not use a version control system for their files, preferring to just make

new copies or overwrite older work. (Correspondence from John Romero.)

290

DOSDoom 0.1 by Chi Hoang, appeared within 24 hours. This formed the base

for an extensive number of DOS ports, some of which slowly migrated to multi-

platform Microsoft Windows, Linux, and Apple Mac OS ports. The source code’s

expansion will be described in more detail below.

Shortly after the source release, in March 1998, the DoomWorld site and fo-

rums came online, and became the dominant location for Doom community news.

DoomWorld also hosted a significant collection of Doom source ports and de-

sign tools for a variety of architectures. Shortly after launch the site ran a 5th

anniversary Doom retrospective. The celebration saw the online publication of

Tom Hall’s original Doom Bible (re-written in HTML), and a host of interviews

including some of Doom’s developers, the manager of the idgames archive, and

prominent modders and players. DoomWorld also served as a unified portal for

member sites devoted to different platform versions of Doom, as well as a hosting

location for in-process source port projects. The site, in celebration of Doom’s

10th anniversary in 2004, began the annual Cacoawards — named after Doom’s

Cacodemon monster — that highlighted significant mods, demos, and community

service contributions.47 DoomWorld’s forums absorbed most of the traffic from

the older Usenet newsgroups, and became the predominant meeting place for fans

of the game as well as contributors to the modding and porting communities.

DoomWorld’s denizens have launched multiple collaborative probes searching for

parts of Doom history that are known to be missing. Various earlier source ports

like DOSDoom 0.2, the progenitor for most DOS source ports, were lost, and trig-

gered a search for other significant versions of source ports and sites that might

be in trouble.

The other major entrant into Doom historical recording in this period was
47[6] âĂĲDoomworld – The 11th Annual Cacowards.âĂİ Accessed August 24, 2016. http:

//www.doomworld.com/11years/.

291

http://www.doomworld.com/11years/
http://www.doomworld.com/11years/

Doom’s developer John Romero. Responsible for Doom’s level design and de-

velopment tool programming, John started an online presence in late 1999 at

www.planetromero.com. At the time he was running an internal team at Ion

Storm working on the first-person shooter Daikatana. He had left id Software af-

ter the completion of Quake in March 1996, and again partnered with Tom Hall.

Hall had left id following the completion of Doom, and developed Rise of the Triad

for Apogee. The game was originally intended to be Wolfenstein 3D 2 and was

based on a heavily modified version its predecessor’s engine.48 Romero’s early site

recounted his work at Ion Storm, and organized his personal game development

history. This included synopses of every game he had made since childhood, along

with collections of photos recounting those games and most of his professional ca-

reer.49 The site was migrated to rome.ro in the late 2000s, and then retooled

as a personal blog, with www.romero.com now hosting his consulting business.

Romero lent significant support to the growing Doom community, frequently pop-

ping in on the DoomWorld forums to offer commentary. His photo galleries on his

main sites, and complementary collections on smugmug.com — a photo sharing

site — and Facebook helped round out id’s development history.50 They provide

a brief glimpse into the development world of id, and early 1990s software de-

velopment in general. More recently, Romero donated most of his development

records, including his original Apple II computer, to the Strong Museum of Play.51

48Originally a collaboration with id Software, Wolfenstein 3D 2 was renamed Rise of the
Triad and stripped of potentially infringing content after id revoked Apogee’s license to the
Wolfenstein property.

49https://web.archive.org/web/20040103083931/http://planetromero.com:80/
50Romero’s collections on SmugMug (romero.smugmug.com) and Facebook (https://www.

facebook.com/theromero), while extensive, are also a prime example of an unstabilized re-
source. Both collections are dependent on for profit corporations without a significant archival
focus. The Facebook collections are particularly frustrating, since they are view limited to
non-Facebook users.

51[68] Dyson, Jon-Paul C. “CHEGheads BlogâĂŕÂż Preserving John Romero’s First
Computer at ICHEG | International Center for the History of Electronic Games.”
Accessed June 10, 2017. http://www.museumofplay.org/blog/chegheads/2014/08/

292

https://web.archive.org/web/20040103083931/http://planetromero.com:80/
https://www.facebook.com/theromero
https://www.facebook.com/theromero
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/

Ironically, he has recently posted about trying to recover his own web pages from

planetromero.com from the Internet Archive’s Wayback Machine, which happened

to index the site many times before he took it offline in mid-2015.52

DoomWiki

The last major addition to Doom’s historical sourcing, DoomWiki, was founded

in 2005 by Fredrik Johansson. Housing over 4500 individual pages, the DoomWiki

provides information on the original game, all of its sequels and most games based

on extensions of Doom’s various engines.53 Since the wiki is a community main-

tained resource, much of its information can be treated as primary source material.

Source port creators frequently contribute to articles describing their own efforts,

which then indirectly provide authoritative dates through page revision histories

for any post-2005 community events.

Originally hosted as a part of the for-profit — but free to create — Wikia

wiki network, DoomWiki’s maintainer’s became dissatisfied with the service as

“an increasing focus on advertising and social networking made the site difficult

to use as a knowledge source.”54 Two prominent community members, James

Haley (Quasar) and Mike Lightner (Manc), agreed to help migrate the site to a

new domain. DoomWiki’s data was migrated from Wikia’s proprietary system

to MediaWiki, the open source wiki software that powers Wikipedia. The full

migration took a year, from October 2010 to September 2011, and the community

then abandoned the old Wikia site. Although it has not been updated since 2011,

preserving-john-romeros-first-computer-at-icheg/.
52Romero spent the end of 2016 tracking down and recovering content from his development

blog. He now provides a searchable index of his posts dating to 2002 at http://rome.ro.
53The original Doom engine is retroactively known as id Tech 1 after the id Tech 5 engine

release revealed an internal versioning that was then applied to previous engines.
54[3] DoomWiki, “Doom_Wiki: Departure from Wikia,” https://doomwiki.org/wiki/

Doom_Wiki:Departure_from_Wikia (accessed 26 Mar. 2017)

293

http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://rome.ro
https://doomwiki.org/wiki/Doom_Wiki:Departure_from_Wikia
https://doomwiki.org/wiki/Doom_Wiki:Departure_from_Wikia

the DoomWiki on Wikia still benefits from Wikia’s search engine optimization

measures and thus appears before the current DoomWiki in most Google searches.

This is an issue as the most prominent historical information about Doom online

is also deprecated and potentially outdated.55

Conclusions

The history of Doom, its development and community, is still ripe for a signif-

icant, considered and critical history. The remaining three sections will partially

analyze some of the sources described above. The existence of these historical

sources is testament to Doom’s developers approach to documentation and com-

munity engagement. John Carmack and John Romero’s support of community

modding, source code dissemination, and development interviews — in many cases

against the wishes of id’s business development team — enabled the community

archives and activities we make use of below. Romero, especially within the last

five years, has devoted significant effort to promoting Doom’s history, appear-

ing at multiple anniversary events, hosting a Doom historical postmortem with

Tom Hall at the 2011 Game Developer’s Conference, and appearing in numerous

YouTube playthroughs of the game. Regardless, while Doom’s historical sources

are still available, they might not remain so forever. Much more work is needed

to develop more advanced strategies for stabilizing the heterogeneous collections

of documentation outlined above.
55Dan Pinchbeck’s DOOM:SCARYDARKFAST [168], published in 2012, makes repeated ref-

erences to the DoomWiki on Wikia, meaning that he was unwittingly relying on potentially
outdated information. However, given the age of the original Doom, its unlikely that any signif-
icant information he cited was incorrect.

294

6.4.2 Reified Object

This section provides a brief object study of Doom’s executable, the relation-

ship of that executable to other files included with the game, and the changes

to that organization over Doom’s development history. Rarely are the versions

of a game made apparent in historical discussions about it. Even rarer still is

discussion of the underlying organization of the files in those versions. By tracing

the addition of component files to the various versions of Doom, we also learn a

bit about the history of its community and development. Furthermore, as the

Doom executable is actually an abstracted game engine that processes separate

game data provided through WAD files, we further problematize the discretion of

versioning as a means for game identification.

Scope and “Object”

Before diving into our brief tour of the Doom object’s history, we need clarify

our scope and focus. When we mention the “Doom object” we are referring

to a particular constellation of files that were compiled and released with the

intention of being played by others. During development — as we saw briefly in

the Appraisal chapter with Prom Week — things change quickly and break often.

Many subtle changes will occur in code and assets that spend even a day with

an active development team. Those pieces will coalesce into working builds —

each technically a distinct version — that form a train from one released version

to the next. We focus on these releases for practical reasons — primarily since

intermediary development builds are not recorded and discretized — and because

we want to analyze changes significant enough to warrant a version label from the

developers. If something was not different enough to be noted by its creators, it

is probably not different enough to affect diachronic analysis.

295

The “Doom object” is then a self-contained release of the game, either to

testers or the public; one that the developers intended to share, and, in turn, to

receive feedback on. That so many releases of Doom are recoverable is a testament

to the community efforts outlined in the previous section. The idgames archive

and a network of fan sites provide preserved and downloadable copies of most

Doom versions. Their efforts made the comparative discussion below possible.

The “Doom object” can generally be split into four distinct categories of files: (1)

the Doom executable program — usually DOOM.EXE — responsible for running

Doom’s engine code and displaying the game’s visuals; (2) Doom WAD56 files that

function as a database for creative assets (level data, sound files and bitmapped

art); (3) supporting tools and programs, usually networking programs, meant to

augment the game play experience; and (4) game use documentation, like manuals,

patch notes, and FAQs. Each Doom object is then a particular collection of files

stabilized by a distinct version number and the file hashes associated with it.57

One final note on scope is that all discussion below is directed toward versions

of Doom distributed online. Doom’s online releases are all shareware versions

of the game. While it may sound as though these versions are deprecated or

deficient in some way, they simply lack some of the complete game’s level data and

art assets. The WAD file associated with the commercial shareware distributions,

DOOM.WAD, only contains one episode with nine individual levels. The full game

WAD— inconveniently also DOOM.WAD— includes the shareware episode along

with two more, making the full experience three episodes and twenty seven levels.

Including Doom’s various physical media distributions to analyze their contents
56Retroactively referred to as “Where’s all the data?” files. id originally considered them a

“wad” of data.
57Doom, as a primarily online distributed work, also has validated hashes for the compressed

archives (.zip files) enclosing its different versions. For example, one of the first distributions of
Doom, DOOM10S.ZIP (Doom Version 1.0 Shareware), is regarded as a unique file in community
hash indexes, along with its contained .EXE and .WAD files.

296

and production timeline would be a natural extension of this research.58

Why Analyze Contents and Structure?

The internal structural changes to the files that compose a piece of software

receive scant analytical attention. So, why is this information historically impor-

tant and what can it tell us about a program and its development? For one, the

secondary contents included with the executable proper contribute to our under-

standing of the whole by providing context for how to interact with the software,

and noting potential, critical changes from previous versions. Another reason is

that the organization of files themselves may reveal insights into the functions of

the program and the labors of the development team.

In regards to Doom specifically, the presence of two separate game files, one

for the engine and one for the game data, represents the terminus of a game asset

consolidation process. id’s earlier titles up through Hovertank 3D broke out level

data into individual files, and included separate sound and art assets as well.

In Table 6.1 below we see the directory listings of Rescue Rover, Hovertank 3D,

Catacomb 3D, Wolfenstein 3D, and Doom. The files progress towards more data

consolidation and lower numbers. Rescue Rover and Hovertank 3D each contain

explicit files for every individual level, while Catacomb 3D and Wolfenstein 3D

consolidate the map data into single collections. Previous id efforts, including

most of their games for SoftDisk and the Commander Keen series, also broke out

individual level and asset files. Doom’s consolidation represents a distinct change

in game data packaging. Having a single file makes the interaction between the

engine executable and game data less confusing from a management point of view.
58Various physical copies of Doom are more difficult to acquire, and would probably require

a separate, dedicated research effort to track down. Luckily, we assume, the Doom engine and
WAD information on those disks is identical to the known versions of the game (the exact
filenames and document structure may differ however).

297

Every piece of pertinent game data could be fed to a WAD builder program —

wadlink.exe — that then created a single archive, which was easier to distribute

and validate. While compressing the files into a zip archive is also possible —

id used this scheme for later Quake distributions — the singular file format also

provided a nice template for further modifications and easier versioning.59

Table 6.1: Comparison of id Games’ File Structures

Rescue Rover HoverTank 3D Catacomb 3D Wolfenstein 3D Doom

CTLPANEL.ROV DOCSHELL.EXE AUDIO.C3D AUDIOHED.WL6 DOOM.EXE

DOCSHELL.EXE DSOUND.HOV CAT3D.EXE AUDIOT.WL6 DOOM1.WAD

EGABTILE.ROV EGAGRAPH.HOV CONFIG.C3D CONFIG.WL6 LICENSE.DOC

EGAFONT0.ROV EGAHEAD.HOV DOCSHELL.EXE GAMEMAPS.WL6 ORDER.FRM

EGAHEAD.ROV HOVER.EXE EGAGRAPH.C3D MAPHEAD.WL6 README.EXE

EGAPLANE.ROV INSTRUCT.TXT GAMEMAPS.C3D VGADICT.WL6 SETUP.EXE

EGATILES.ROV LEVEL01.HOV INSTRUCT.TXT VGAGRAPH.WL6 VENDOR.DOC

ENDPIC.ROV LEVEL02.HOV MENU.SHL VGAHEAD.WL6

HINTS.TXT LEVEL03.HOV QUICK.TXT VSWAP.WL6

INSTRUCT.TXT LEVEL04.HOV README.BAT WOLF3D.EXE

LEVEL01.ROV LEVEL05.HOV README1.TXT

LEVEL02.ROV LEVEL06.HOV README2.TXT

LEVEL03.ROV LEVEL07.HOV README3.TXT

LEVEL04.ROV LEVEL08.HOV START.BAT

LEVEL05.ROV LEVEL08.HOV

LEVEL06.ROV LEVEL08.HOV

LEVEL07.ROV LEVEL09.HOV

LEVEL08.ROV LEVEL10.HOV

LEVEL09.ROV LEVEL11.HOV

LEVEL10.ROV LEVEL12.HOV

Continued on next page
59John Romero recently revealed the purpose of wadlink.exe, and showed how its use on a

collection of files in id’s development folder constructed the Ultimate Doom version of the game.
[179] John Romero, “Happy 23rd Birthday, DOOM!,” Rome.ro http://rome.ro/news/2016/
12/10/happy-23rd-birthday-doom (accessed 26 Mar. 2017)

298

http://rome.ro/news/2016/12/10/happy-23rd-birthday-doom
http://rome.ro/news/2016/12/10/happy-23rd-birthday-doom

Continued from previous page

Rescue Rover HoverTank 3D Catacomb 3D Wolfenstein 3D Doom

LEVEL11.ROV LEVEL13.HOV

LEVEL12.ROV LEVEL14.HOV

LEVEL13.ROV LEVEL15.HOV

LEVEL14.ROV LEVEL16.HOV

LEVEL15.ROV LEVEL17.HOV

LEVEL16.ROV LEVEL18.HOV

LEVEL17.ROV LEVEL19.HOV

LEVEL18.ROV LEVEL20.HOV

LEVEL19.ROV MENU.SHL

LEVEL21.ROV QUICK.TXT

LEVEL22.ROV README.BAT

LEVEL23.ROV README1.TXT

LEVEL24.ROV README2.TXT

LEVEL25.ROV README3.TXT

LEVEL26.ROV SOUNDS.HOV

LEVEL27.ROV START.BAT

LEVEL28.ROV

LEVEL29.ROV

LEVEL30.ROV

MENU.SHL

MENUPIC.ROV

QUICK.TXT

README.BAT

README1.TXT

README2.TXT

README3.TXT

ROOMPIC.ROV

ROVER.EXE

S_DEMO.ROV

Continued on next page

299

Continued from previous page

Rescue Rover HoverTank 3D Catacomb 3D Wolfenstein 3D Doom

S_PLAY.ROV

SAVEGAME.ROV

SOFTPIC.ROV

SOUNDS.ROV

START.BAT

TILEINFO.ROV

TITLEPIC.ROV

WAD files are a general archive file format. Each WAD is simply a structured

collection of data “lumps” packaged according to a specific indexing scheme.60 In

the case of a Doom WAD, the WAD file’s dictionary — the indexing table that

describes the data it holds — need only contain a certain types of data that corre-

sponds to Doom’s map, asset, and sound formats. Doom’s executable is therefore

a WAD processing engine, since the executable would have nothing to render

without WADed data. This already problematizes the official versioning scheme

presented in the next section, since each version of Doom’s engine expects different

internal features of complementary WAD files. Two separate version trees result

from decoupling Doom’s engine and data, one for the Doom executable and the

other for the progression of WADs internal contents. As we will see below, this

manifests in the subtle distinction between Doom and Doom II, both of which are

based on the same engine but played with different WADs.61 Interestingly, this
60The term “lump” is the technical name for the data entries in a WAD file. The file’s index

points to specifically named “lumps” of data, like TEXTURES, LINEDEFS, and NODES, which
the engine then uses to construct and render a level. Any other arbitrary data can also be put
into a WAD with differently named lumps. This allowed enhanced versions of the engine, either
for commercial pursuits — Heretic and Hexen — or user modifications to easily include and
parse additional data for new features.

61This also leads to slightly confusing naming conventions for WADs, since the original
DOOM.WAD is now retroactively named and distributed as DOOM1.WAD in some cases, de-
spite being identical to the original release IWADs.

300

separation also allowed a for common WAD format for all versions of Doom on

all platforms. For instance, the DOOM.WAD file found in the Sony PlayStation

release can be interpreted by the same WAD analysis tools as the version for Mi-

crosoft MS-DOS or the Microsoft Xbox 360. id, internally, conceived of the Doom

engine as more of a software platform for WAD files than as a game executable.

This is evident in the first release of the game, which actually referred to itself as

the “Doom Operating System Version 0.99” upon start up.62

The Version Tree of Doom

Figure 6.8 represents a complete tree of the known versions of Doom across

all platforms. Only versions of Doom are listed, with the exception of pointers to

important derivations and Doom’s sequel, Doom II. We include Doom II because

its engine, beginning with version 1.8, is the same one that powered Doom. Doom

II is really any version of the Doom engine greater that 1.666, since those versions

of the engine support the additional features included in Doom II WAD files.

Therefore any version of the Doom II engine, released with Doom II in its physical

packaging, is compatible with Doom’s earlier WADs.

The progression of Doom versions operates in two distinct phases demarcated

by the source code release in late 1997. Up until that point, all versions of Doom

were explicitly licensed to third-party developers for other platform. After the

source became available, many fan driven source ports arose — and will be covered

in the next section.

The version progression begins with the five recovered alphas of Doom released

to id’s testers, friends and various press outlets over the course of 1993. The press

release beta is a time locked demo distributed in October of 1993, and the first
62This was changed to simply “Doom Version X.X” in subsequent releases, perhaps due to

players’ confusion about the difference between an operating system and a game. For us, how-
ever, it is a delightful reminder of the fluidity of the classification of different types of software.

301

Figure 6.8: Versions of Doom. (1) MS-DOS memory extension incorporated
into Version 1.1; (2) Version 1.3 is actually a combination of different releases,
there was no “official” Version 1.3; (3) Version 1.6 is a hacked leak; (4) the Super
Nintendo Version is not based on Doom engine code; (5) Doom 64 is not based
on Doom WADs, but was a totally new game.

302

version of the game leaked online.63 Members of the community scouring this

version encountered the WAD file for the first time, and proceeded to tear it

apart. The timing of the leak allowed an extra month of lead time in developing

modification tools, which became available in early January 1994 with the release

of the Doom Editing Utilities (DEU) package.

Between December 10, 1993 and late 1996, 20 versions of Doom are available

and recoverable for MS-DOS alone. All engine changes and software fixes along

the way are therefore analyzable. At various points, a version of the game would

be licensed with a third-party developer, with those efforts taking on a life of

their own in the case of the port for the Atari Jaguar. That version provided

the base for the GameBoy Advance, 3DO, Sega 32X and Playstation ports. The

Atari Jaguar and Sega 32X ports are very similar, as John Carmack ported them

both simultaneously in mid-to-late 1994. The release of the Atari Jaguar version’s

source code in April 2003 verified this similarity. Compiler preprocessor flags in

the code pointed to both Atari Jaguar and Sega 32X release targets. All of the

console ports of Doom suffered from some form of degradation as a result of the

specific limitations of their architecture. Designed initially for the particular mem-

ory constraints of MS-DOS architecture, other versions had to make significant

concessions in the amount of levels, speed of play and viewable area to make game

play possible. The least successful is probably the 3DO version, which was ported

in six weeks to an alpha level of quality before being released for the holidays in

1996.64

63This notion of time locked execution, a form of temporal digital rights management, is
important to consider in archival contexts. The demo checks the current system time. If it is
not sometime in October 1993 the game will refuse to load. Lee Killough, a prominent Doom
source port figure, released a hack to specifically disable this DRM, called “fakedate”. For our
purposes, we would need to modify the emulator’s system time to play the game, something
that it currently does not support.

64The development process of the 3DO port is actually highly entertaining, and recounted
by its developer Rebecca Heineman on her YouTube channel and in various interviews.

303

John Carmack, owing to a hacker mentality and a distinct lack of concern for

common business ethics, sent source code to interested developers willing to put

time into a port. This led to partially completed ports for the BeOS operating sys-

tem, and further work on a proper NeXTStep port that had since been abandoned

by the id team. Michael Abrash — a well-known graphics programmer working

with Carmack on Quake’s engine — once asked Carmack if, after completing a

successful project, he ever doubted he’d be able to do it again. Carmack was

apparently puzzled by the question, since failing to top himself had not occurred

to him.65 It is likely then, that Carmack probably lost interest in Doom’s engine

and code as the challenge of Quake loomed ahead, which partially explains the

laxity regarding Doom’s source dissemination.

Returning to an earlier point, the presence of Doom II on this tree is due

to it being merely an extension to Doom’s engine instead of a completely new

one. id had begun working on Doom II shortly after Doom’s release. Some of

the intermediate beta versions listed between 1.2 and 1.666 actually support some

features of Doom II ’s WAD file, with version 1.666 being the version of the engine

that shipped in Doom II ’s physical packaging. The beta versions feature explicit

documentation in their README files of the advances made to the engine along

with requests to not disseminate them publicly. The latter directive was certainly

ignored, given that a version 1.6 of Doom that was compatible with the registered

WAD file included hacked credits making fun of John Romero. The split from

version 1.666 to 1.7a|b was a series of patches to the commercial release of Doom

II that did not affect Doom’s original engine functionality. After version 1.8, both

[173] Rebecca Heineman, “Burgertime 7/12/2015: DOOM 3DO,” https://www.youtube.
com/watch?v=rBbIil2HPSU (accessed 26 Mar. 2017). [17] Don’t Die, “Rebecca Heineman,”
http://www.nodontdie.com/rebecca-heineman/ (accessed 26 Mar. 2017)) This version was
so rushed that upon completion of the game, players are presented with a black screen with
congratulatory text and then punted to an unusable command prompt.

65[113] pg. 190

304

https://www.youtube.com/watch?v=rBbIil2HPSU
https://www.youtube.com/watch?v=rBbIil2HPSU
http://www.nodontdie.com/rebecca-heineman/

Doom and Doom II unified in supporting the WAD files for each game.

The Linux 1.10 release and Doom Classic are both virtual releases, since they

were not directly attached to a specific version of the game but are derived from or

the basis of other versions. The cleaned up Linux source code supported two Xbox

Live Arcade releases, followed by John Carmack’s efforts to get Doom running on

the newly released iPhone in 2007. Fittingly, the Doom Classic port to iOS is writ-

ten in Objective-C, which was first developed for the NeXTStep operating system

on which Carmack and the team first programmed Doom. Essentially, Doom was

originally written in Objective-C frameworks that allowed for cross-compilation to

DOS, and all of Doom’s development tools were Objective-C applications written

by either Romero or Carmack.

Finally, the Super Nintendo (SNES) version of Doom is represented as a satel-

lite node because its engine was not written by id. Programmer Randy Linden

wrote his own Rage / Reality engine to process DOOM.WAD’s data and render

it on the SNES.66 Apparently, Linden, then at the company Sculpted Software,

programmed SNES Doom in secret and presented it, in a completed state, to id

Software.67 Doom 64 is also included on this list mainly due to its dependence

on the Sony PlayStation port. The game features a significant modified engine,

and does not share any levels in common with any other version of Doom. It is

therefore Doom-like but not technically a version of the original game.
66As discovered by the community (and easily verified with a hex editor) the SNES Doom

ROM file actually contains the name of the custom Doom engine at location 10F. It reads,
“Rage / Reality Engine written by Randy Linden. Special thanks to my loving wife, Jodi
Harvey.”

67John Romero revealed this secret production in a blog post. [180] John Romero, “Doom His-
tory 1994,” www.planetromero.com, https://web.archive.org/web/20150108101506/http:
//planetromero.com/2009/01/doom-history-1994 (accessed 26 Mar. 2017)

305

https://web.archive.org/web/20150108101506/http://planetromero.com/2009/01/doom-history-1994
https://web.archive.org/web/20150108101506/http://planetromero.com/2009/01/doom-history-1994

Doom’s Objectivity

Simply referring to “Doom” as a unified signifier is a fraught archival and

historiological proposal. No only are there many versions of Doom across varied

execution contexts, but even the internal structure of those versions have spe-

cific sub-dependencies. The separation between Doom’s engine executable and

its game data necessitates a level of description below versioning, one more like a

descriptive constellation of the various files that make up any presupposed Doom

version.68 Treating Doom as a unit supposes that one has fulfilled all of its de-

pendencies and that those dependencies will manage to accompany it forward in

time. In the below table outlaying the file contents of each version of Doom’s

shareware, we see complementary programs, like DOS4GW.EXE — a program

enabling easier DOS memory management — or DEICE.EXE — a decompression

program used to allow Doom’s data to shrink in accommodation to early 1990s

bandwidth limitations — that are instrumental in retrieving and running a version

of the game. Furthermore, this ontological quagmire is not directly addressed in

most software studies works, or even explicit platform studies, which are pervaded

by the assumption that having a version of a piece of software is the ultimate his-

torical unit of analysis. More work is needed to codify the distinction between

a software object, its versions and how its file contents and dependencies reflect

upon and constrain those higher structures.

68Recall in the Appraisal chapter, our discussion of the need for connecting a file’s creation
to the specific dependent programs that created it. This sub-versioning is another example of
that issue.

306

Table 6.2: Comparison of Doom Image Contents 0.2 to 1.25
0.2 0.3 0.4 0.5 Press 1.0 1.1 1.2 1.25
doom.exe DOOM.EXE DOOM.EXE CONGIF.LMP DEICE.EXE DOOM.EXE DOOM.EXE DEFAULT.CFG DEICE.EXE
doom.wad DOOM.WAD ALPHREAD.ME DOOM.EXE DEMO.1 DOOM1.WAD DOOM1.WAD DOOM.EXE DOOM1_25.1

README.TXT CONFIG.LMP DOOM.WAD DEMO.2 LICENSE.DOC LICENSE.DOC DOOM1.WAD DOOM1_25.2
DOOM.WAD DOS4GW.EXE DEMO.DAT ORDER.FRM ORDER.FRM IPXSETUP.EXE DOOM1_25.DAT
DOS4GW.EXE INSTALL.BAT README.EXE README.EXE LICENSE.DOC INSTALL.TXT

README.TXT SETUP.EXE SETUP.EXE MODEM.CFG
SCNSHOTS.ZIP VENDOR.DOC VENDOR.DOC ORDER.FRM

README.EXE
SERSETUP.EXE
SETUP.EXE

307

Table 6.3: Comparison of Doom Image Contents 1.4 to The Ultimate Doom

1.4 1.5 1.6 1.666 1.8 1.9 TUD
DMFAQ57.TXT — — DEFAULT.CFG DEICE.EXE DEICE.EXE DM.DOC
DOOM.EXE — — DOOM.EXE DOOM18S.1 DOOMS_19.1 DM.EXE
DOOM1.WAD — — DOOM1.WAD DOOM18S.2 DOOMS_19.2 DMFAQ66A.TXT
FILE_ID.DIZ — — IPXSETUP.EXE DOOM18S.DAT DOOMS_19.DAT DMFAQ66B.TXT
IPXSETUP.EXE — — LICENSE.DOC INSTALL.BAT INSTALL.BAT DMFAQ66C.TXT
LICENSE.DOC — — MODEM.CFG DMFAQ66D.TXT
MODEM.CFG — — MODEM.NUM DOOM.EXE
MODEM.NUM — — MODEM.STR DOOM.WAD
MODEM.STR — — ORDER.FRM DWANGO.DOC
ORDER.FRM — — README.EXE DWANGO.EXE
README.EXE — — RUNME.BAT DWANGO.SRV
SERSETUP.EXE — — SERSETUP.EXE DWANGO.STR
SETUP.EXE — — SETUP.EXE HELPME.TXT
SYSOP.DOC — — SYSOP.DOC IPXSETUP.EXE
VENDOR.DOC — — VENDOR.DOC MODEM.CFG

DOOM16BT.TXT MODEM.NUM
MODEM.STR
ORDER.FRM
README.TXT
SERSETUP.EXE
SETUP.EXE

308

Additionally, there is a history inside these computational objects, since they

are a reflection of their creators’ constitutive processes and actions. Taking tables

6.2 and 6.3 as an example, we find a diversity of file organization schemes linked

to methods of distribution and the influence of the community. The unofficial

Doom FAQ, a monstrous document organized by Hans Leukert from 1994-1996

became official in the version 1.4 beta release of Doom, superseding id’s own doc-

umentation (which was itself locked inside “README.EXE”, a separate DOS

program written by John Romero). The files DOOM1_A.ZIP, DOOM1_B.ZIP, and

DOOM1_C.ZIP, reflect the storage and bandwidth limitations of the day. Each

compressed ZIP file being around 700k, which was small enough to fit on 720kb

disks for local distribution or take-home copies.69 Since many users could not con-

nect to various FTP servers for long enough to download the full DOOM1_0.ZIP

release, they acquired chunks at a time based on the limitations of their service

providers. This also reveals a potential hidden economic externality that aided

Doom. Since many initial downloads were to Internet connected users at univer-

sities and tech corporations, those larger structures effectively subsidized Doom’s

dissemination to its audience at a time when online distribution was still relatively

expensive.

Benefits of Object-Level Analysis

Doom as a reified software object exists in a multitude of forms across a range

of platforms. It is also part of a lineage of previous constellations of files and

reifed objects produced by id Software between its founding in 1991 and Doom’s

release in 1993. Recalling the earlier historical model, it should be apparent

that there is much inside the object that can still support, enlighten and modify
69Kirk Membry, “doom1_a.zip ?,” comp.sys.ibm.pc.games.action, https://groups.

google.com/forum/#!search/doom1_a/comp.sys.ibm.pc.games.action/K6Prcp7QR0M/
WBvLukT2i9wJ (accessed 26 Mar. 2017)

309

https://groups.google.com/forum/#!search/doom1_a/comp.sys.ibm.pc.games.action/K6Prcp7QR0M/WBvLukT2i9wJ
https://groups.google.com/forum/#!search/doom1_a/comp.sys.ibm.pc.games.action/K6Prcp7QR0M/WBvLukT2i9wJ
https://groups.google.com/forum/#!search/doom1_a/comp.sys.ibm.pc.games.action/K6Prcp7QR0M/WBvLukT2i9wJ

understandings of the game’s development history. Already, from the brief look

in this section, a more complicate image of Doom’s existance has emerged. id’s

efforts at file consolidation and its effect on re-organizing their level structures

toward the creation of a new, easily disseminated and encoded WAD file become

apparent simply from the comparative availability of previous works. Doom’s

separation of game engine and game data, allowed for easier development of new

versions of the game, since they were basically intepreters for a common WAD

format. As Lowood notes, id pioneered the notion of a “game engine” — most

likely even coining the term “engine” based on John Carmack’s side interest in

car maintenance. The benefits of that approach shine through in the progress of

Doom’s modding community, and the format’s adoption by other companies, like

Raven Software’s Heretic and Hexen, and Bungie’s Marathon series.70

The availability of Doom’s various objective works also, again, points to the

benefits that community engagement and archiving can reap for the history of

computer games. Without the meticulous early archiving efforts of the Doom

community — as noted in the historiography section above — none of assertions

of this section would be possible.

6.4.3 Technical Expression

In discussing the history of Doom’s source code, and its travels from id Software

out the community in the late 1990s, we again encountered issues of boundaries

and historical discretation. Much like the items described in the last section,

each instance of Doom’s source code is a complex collection of files, tools, and

other technical assets that coalesce into a “singular” playable object that can be
70Since Marathon’s object is also available, a look at its file structure revealed a similar

WAD structure. This again shows how a simple consideration of file contents can reveal latent
chronologies upon which to build more informed histories of games.

310

referred to as a computer game. Source code analysis presents significant problems

for the historical researcher. Old code is by definition outdated, so tropes and

contemporaneous strategies for program creation need to be recovered to make

any sense of it. Additionally, production source code is rarely neat and orderly.

As mentioned in the Appraisal chapter, the outputs of production processes, the

technical expressions that eventually make up a finished object, are varied, diverse

and usually haphazardly distributed. This means that in the analysis of source

code, we also confront the limitations of that study, and how the contextual

information surrounding the code might be as — or perhaps more — important

than the code itself for specific historical questions.

In Doom’s case, the “official” source code released to the community is not

actually a true example of production code. Cleaned up and extracted from

the mess of id’s internal servers, it represents a more idealized version of the code

compiled into earlier Doom versions. This means that a certain part of id’s internal

processes — like their management and development strategies — are not actually

found in the official source code, only the shadow of their programming ingenuity

and problem solving skills remain intact. This leads to two conclusions about

the historical usefulness of source materials that are at odds with some prevailing

views. First, the assumption that obtaining source code is a “holy grail” for the

comprehension and reproduction of a system’s history is misguided. Source is an

important part of the equation, but it is a highly contingent resource — dependent

on the remaining collective knowledge about its context and use — that does not

reveal itself easily. Doom is lucky, in that most of the systems used to develop

it are still historically available. Furthermore, it was written in dialects of the

languages “C” and “Objective-C” that are still in widespread use and were already

standardized at the time of its creation. So source code’s historical usefulness is

311

very dependent on the context of its creation and resources available to decode

it. Second, the idea that one can simply “read” a program and understand what

it is doing, how it will act in run-time, and divine the primacy of its creation

is false. We feel that the literary minded “reading” source code71 is actually of

limited value without positioning it within a more “naturalist” and exploratory

paradigm of scholarly investigation.72 This again cuts against arguments for the

value of source code as a primary resource.

Now, this is not to say that source code should not be considered an incredi-

bly valuable piece of the game historical and preservationist puzzle. Without it,

certain practical reconstructive efforts would not be possible, and system analysis

might not be able to proceed at all. In this section’s examination of Doom, we will

see how the sustained efforts of community developers and interested researchers

have preserved and organized the history of Doom’s source code. This will illu-

minate the requirements that need to be in place for a robust history of Doom’s

technical expressions.

Doom’s Source History

The history of Doom’s source code is demarcated by its public release in De-

cember of 1997. Before that, all source access to Doom was given out piecemeal

based on licensing agreements with id, and as mentioned above, in certain in-

stances where John Carmack was feeling particularly charitable.73 Unique to
71[37] Black, Maurice. “The Art of Code.” Dissertation, University of Pennsylvania, 2002.
72[192] Seibel, Peter. “Code Is Not Literature,” 2014. http://www.gigamonkeys.com/

code-reading/. presents the “naturalist” metaphor. [216] Wardrip-Fruin, Noah. Expressive
Processing. Cambridge (Mass.): MIT Press, 2009. also decribes the pitfalls of applying certain
forms of close-reading to code that was not constructed as literature in the first place.

73In addition to the source code shared for the BeOS port mentioned in “Reified Object,”
Carmack also gave the code to the OMNI group for free in order to pursue a completed port
for NeXTStep. It is likely that there are other instances of pseudo commercial sharing of
this kind, but these are the only two verified ones. http://blog.wilshipley.com/2013/12/
my-doom-20th-anniversary-stories.html

312

http://www.gigamonkeys.com/code-reading/
http://www.gigamonkeys.com/code-reading/
http://blog.wilshipley.com/2013/12/my-doom-20th-anniversary-stories.html
http://blog.wilshipley.com/2013/12/my-doom-20th-anniversary-stories.html

Doom, and really to the id in general, is that most of id’s source code from the

company’s founding in 1991 through 2008 has been open sourced.74 The Com-

mander Keen series, HoverTank 3D, Catacomb 3D, and Wolfenstein 3D all have

available source, which allows for a diachronic analysis of id’s programming devel-

opment that is probably unrivaled for early game companies. Complementarily,

after Doom’s source code release, and especially after its re-licensing in GPL in

October of 1999, most of its continued community development source is also

available.75 This enables a look at not only id’s programming progression, but

also that of larger enthusiast community in taking id’s ball and running with it

to new technical heights.

Doom’s technical achievements, mainly the speed and fluidity of its three-

dimensional, first person viewpoint, created a bit of a stir in the technical game

community after its release. However, the game visual fidelity was not that revela-

tory in comparison with other contemporary games. Ultima Underworld featured

fully texture-mapped surfaces, and 360-degrees of camera movement. Raven’s

Shadowcaster, using John Carmack’s intermediary engine between Wolfenstein

and Doom, supported sloped surfaces. And much of the attention at the time

was devoted to the approaching importance of the CD-ROM format in allow-

ing for games with full motion video. Early reviews of Doom in the game and

computing press did not usually mention it as a graphical powerhouse, and its

coverage was overshadowed by other releases, including, ironically, Shadowcaster.

What Doom did have, to those who understood the inherent technical complex-

ities of VGA rendering on 386 and 486 IBM PC compatibles running MS-DOS,
74After the release of Rage in 2008, Bethesda Softworks purchased id Software, and eventually

stopped releasing id’s engine source code.
75The original source release had a restrictive commercial license attached. The Gnu General

Public License (GPL) is an open free-software license that makes community code easier to share
and reuse.

313

was amazing speed. Every other game mentioned in this paragraph might have

had more advanced features on paper, but none of them were particularly fast. Ul-

tima Underworld required button clicks to move forward and change view points.

CD-ROM games presented stunning but rather static visuals that required signif-

icant loading times to get into memory. Doom somehow managed to bring what

appeared to be three-dimensional geometry, complex lighting effects, and superior

sound design to a table set for slower, more contemplative tastes. Its technical

virtuosity was not lost on game developers or graphics researchers however, and

it was one of these researchers that partially encouraged Doom’s source release.

In the section on Doom’s historical accumulation, we outlined the basic history

of Doom’s source release. Bernd Kreimeier, a software engineer and author, ap-

proached id about writing a technical overview of Doom’s algorithms in 1996. By

1997, the book deal had fallen through — considered as too dated by the publisher

— but Kremeier had already been working with id to clean up the code. That

code became the base for a large number of “source ports” — modifications of the

source code to allow for compilation on other systems. The term “source port”

itself is attributed to the first port of Doom’s source code back to MS-DOS —

entitled “DOSDoom” — by Chi Hoang at the University of Calgary.76 In order to

get DOSDoom running, Hoang notes that he had to incorporate files from Wolfen-

stein 3D (for ASCII text conversion tables) and Quake (for CWSDPMI.EXE, an

interface for DOS protected mode), and thus also substantiates the value of hav-

ing access to a company’s other technical efforts (as they are most likely related

to one another).77

76This is a “fact” of the community, as Hoang’s documentation just refers to his work as
a “port” of the “unix” source code and not a “source port”. It is possible that the now lost
DOSDoom Version 0.2 might have referred to itself as a “source port” in its similarly lost
documentation.

77CWSDPMI.EXE stands for Charles W. Sandmann’s DOS Protected Mode Interface, and
was not a file unique to Quake or id software (though the version included with Quake was

314

The release of the Doom source code was not id’s first code release. Although

we mentioned that Hovertank 3D, Catacomb 3D, and Wolfenstein 3D also have

available source code, only Wolfenstein 3D’s was released before Doom’s (on July

21, 1995). A significant note on the conceptual framing of source code releases is

found in John Carmack’s RELEASE.TXT file, where he states that,

We are releasing this code for the entertainment of the user community.
We don’t guarentee (sic) that anything even builds in here. Projects
just seem to rot when you leave them alone for long periods of time.
This is all the source we have relating to the original PC wolfenstein
(sic) 3D project. We haven’t looked at this stuff in years, and I would
probably be horribly embarassed (sic) to dig through my old code, so
please don’t ask any questions about it. The original project was built
in borland c++ 3.0. I think some minor changes were required for
later versions.78

The complexity of treating source code as a stable historical object is en-

capsulated in this brief note. First, “this is all the source we have relating to”

Wolfenstein 3D highlights that the game’s code needed to be recovered internally

and did not exist as a discrete set of technical expressions ready for dissemina-

tion. The source is “related” to the technical efforts of id during the Wolfenstein

“project” and not tied to the notion of a specific version of the game. The source

is then more amorphous than its release would assume, and encounters some of

the similar issues we have stressed earlier in this thesis of the problems with di-

vining the boundaries between technical works. This disambiguation of code is

even more apparent with Doom. Based on our access to a snapshot of Doom’s

original “unreleased” code, it is difficult to locate the ultimate collection of source

specifically modified for it). The Wolfenstein 3D addition is a collection of DOS keyboard scan
code values taken from the ID_IN.H header file forWolfenstein 3D’s input manager. id’s engines
do share significant similarities in structure, so it is not particularly surprising that files and
constant definitions used for one of their DOS games would also show up in another.

78RELEASE.TXT as found on https://github.com/id-Software/wolf3d. Although the
GitHub repository is from 2012, the actual source code release from 1995 appears to be identical.

315

https://github.com/id-Software/wolf3d

files “related” to its release at that time.79 The issue, technically, is that source

code is not a static, unchanging set of documentation while it is under develop-

ment. Therefore, its internal structure, how files link to each other, and even

what the code does when executed are highly contingent and idiosyncratic to the

state of development at any given moment. Teams create new files, decide not

to use them, move things around, and delete them in a steady churn of activity.

Approaching this mess from the outside means that one needs to reconstruct the

context of these activities in order to figure out which files are useful, and part of

the actual source documentation for the given version of the software at the time

one is looking.

Second, Carmack remarks that they do not know if the code still compiles,

and simply recommends the original compiler used for the project “Borland C++

3.0”. At this point in 1995, that compiler was already four years old, and as

Carmack notes “rot” has already set in. This addresses one of the major points

of this layer of the model, in that the availability and presence of source code is

not a guarantee for recovery of the original program. Luckily, again due to the

popularity of C/C++ and the DOS platform, copies of Borland C++ 3.0 are not

difficult to acquire. With the aid of DOSBox it is currently possible to compile

the original Wolfenstein 3D source (albeit with a bit of tinkering).80

Lastly, the source for Wolfenstein 3D and Doom both contain only files rele-

vant to the compilation of a binary executable. They do not feature any of the

copyrighted art content for the game, nor any of the numerous tools and systems

developed by id to manage map creation and editing, preprocessing of level ge-
79The impression of the id source directories, graciously provided by John Romero — but

also illegal to distribute — reflect the state of Doom’s development around the release of the id
Anthology Series version of Final Doom. This is not immediately apparent given the inherent
mess of the directories and files in the directories.

80The full compilation instructions are available at: http://fabiensanglard.net/Compile_
Like_Its_1992/index.php.

316

http://fabiensanglard.net/Compile_Like_Its_1992/index.php
http://fabiensanglard.net/Compile_Like_Its_1992/index.php

ometry or creation of archived game data files like WADs. They contain only

source that is “instrumental” to a specific compilation target, one that still man-

ages to hide the greater messiness of its original creation. This makes sense in

light of Carmack’s goals for the release, programmers would not appreciate hav-

ing to wade through a collection of source documents to find the pieces needed

for modding and future development. However, for historians of technology and

software engineering, that mess is important to the understanding of historical

development practice.

Understanding the technical expressions that coalesce into a piece of software,

and comprehending how those expressions affect the final expression of the soft-

ware object is a highly contingent process. As we have seen, the source code

from Doom is only comprehensible due to a collection of specific, and fortunate

historical conditions. But even then, making sense of all its technical expressions

is still a daunting task. Doom had the benefit of being written in a standard-

ized, and still popular language; the support of an active development community

obsessed with explaining and modifying its inner workings, and probably most im-

portantly, developers willing to share their code with that community. As noted

by John Carmack, the maintenance of knowledge about Wolfenstein 3D’s compi-

lation evaporated when he moved onto the next project, and it was probably a

similar situation with Doom. Relying on source code alone then does not provide,

in many cases, adequate context for a program’s recovery, even, after a time, for

the developer of that program! Further work into tying the technical expressions

that constitute game software to the organization, actions, and processes of their

developers is then imperative for future comprehension of past works. Trying to

read programs as literature implies that they were written as literature, which

excluding some well intentioned projects by famous computer scientists, is gener-

317

ally not the case.81 Additionally, as we saw in the preceding chapter on Citation,

many kinds of system interactions and run-time behaviors benefit from explicitly

non-literate presentations like system visualization images or dynamic and exe-

cutable content. Source is an important piece of the software historical puzzle,

but it is still only a piece. Again, without the initial model pointing toward the

analytical potential of technical expressions, as analyzed over time and enacted on

by historical processes, none of these practical considerations about source code

become visible. Clearly, a focus on the method of historical investigation can also

help to reveal new areas of study.

6.4.4 Enacted and Tacit Knowledge

As mentioned above, the floor for historical analysis of software — when ap-

proached by software and platform studies — tends to stop at formation and

analysis of technical expressions. In this section the focus goes a bit further into

the psychic and somatic territory of the tacit and enacted knowledge that makes

technical expressions — and therefore code, assets and what have you — possible

in the first place. This type of knowledge is probably the most difficult to nail

down and describe most specifically because it arises out of the creative process

and the accretion of failures and successes built up over periods of time. The best

that can be done is to try and find the sources of technical inspiration for game

software, and link those sources to the creative outputs of the programmers and
81See [108] Knuth, Don, and Doug McIlroy. “A Literate Program.” Communications of the

ACM 29, no. 6 (1986) for an example of “literate programming” in the creation of a “hash-trie” to
form a concordance for arbitrary textual inputs. McIllroy notes, in his criticism, that sometimes
an image could do more than a literary exposition, which cuts to the heart of our discussion
of the over reliance on source code itself for comprehending a program’s meaning. Knuth’s
work is the extreme form of programming as a literary construct, and while it is impressive
and useful, its immediate flaws also show the limits of the paradigm. For an even more fun
“literate programming” example, see [107] Knuth, Don. “Adventure,” 1998. http://www.
literateprogramming.com/adventure.pdf. in which he rewrites the source code for Adventure
in a literate fashion.

318

http://www.literateprogramming.com/adventure.pdf
http://www.literateprogramming.com/adventure.pdf

designers that relied on that information.

As Michael Polanyi notes, tacit knowledge is “a knowledge that we cannot

tell”, and therefore that which can only be partially revealed through the replay-

ing of the processes, either the re-enactment of knowledge through new tools of

expression, or literal mimetic reproduction of an activity.82 Polanyi’s main thrust

is that the revelation of process must start with an awareness of its indistinct and

non-historicizable nature. There is no material “evidence” of someone’s technical

skill separate from the products of that effort. Furthermore, a practitioner might

not be able to explain how they engage with an activity on an explicit, intellec-

tually parsable level. In these cases, the recover of process, and the recovery of

evidence of those processes functions as a deficient but informative proxy. Work

by Henry Collins, most notably Changing Order, finds the historian working with

his research subjects in the construction of their technical apparatus in an attempt

to tease out the practitioners’ implicit assumptions — along with their sources.83

The main note is that production knowledge comes from somewhere before being

internalized and deployed through constitutive acts — like software production

and game development. The remainder of this section applies this perspective to

the knowledge sharing about graphical techniques at work in game development

around and within Doom.

In Fabien Sanglard’s analysis of the game engine for Trespasser — a first-

person shooter situated in the Jurassic Park universe — he quotes one of that

game’s developers, Seamus Blackley, describing the process of constructing the

game’s physics engine in the mid-1990s.

In the 90s, it was tough. The real issue, honestly, was that it was too
much for me to do physics and also be in charge, and I never figured

82[169] pg. 5
83Latour and other ethnographers of technology take this embedded approach to knowledge

comprehension and relay.

319

out how to fix that. Back then, there were no books or libraries on
game physics, it was all research, and it was really, really hard.84

Blackley had to re-invent certain routines and approaches, in this case copying ren-

dering algorithms straight from textbooks and hand-rolling a rigid body physics

engine, because that information was not otherwise available. Game Developer

Magazine would have been about three years old, GDC five,85 and the available

publications on game programming typically focused on introductory develop-

ment (and therefore algorithms and approaches well out of the date). Blackley

would have liked access to information on modern physics programming research,

but the now common networks trafficking in research PDFs did not exist.86 The

progress that was made in this era relied more on happenstance and continuous

re-invention than on a foundational basis of knowledge labeled “3D game engine

programming”. No general tools existed for most games’ constructions. Com-

panies could license some pre-existing engines, id Software’s own DOOM and

Wolfenstein 3D engines spawned numerous titles, as did Ken Silverman’s Duke

Nukem 3D engine (BUILD), but the dissemination of knowledge about program-

ming techniques fundamentally relied on game developers’ previous experiences,

haphazard exposure to others’ code, and community networks spread across early

publications and Internet resources. That is, most of the ability to create games

did not rely on codified, explicit knowledge of game programming or game soft-

ware design, but on piecemeal collections of methods and techniques compiled

from a variety of sources. John Carmack noted the lack of available advanced

programming knowledge, similar to Blackley’s above, in an interview with Dan

Pinchbeck,
84[191] Sanglard, Fabien. “Jurassic Park: Trespasser CG Source Code Review.” Accessed

June 10, 2017. http://fabiensanglard.net/trespasser/.
85The Game Developer’s Conference
86It should be noted that Blackley did have a physics degree and experience with graduate

physics research, so he was not completely in the dark.

320

http://fabiensanglard.net/trespasser/

It’s interesting to talk to people about the old days. Of course, you’ve
got the Internet now. You can find anything nowadays. But back then,
it was really something to get reprints of old academic papers. There
were some clearinghouses I used to use: you’d pay twenty-five dollars
or whatever, and they’d mail you xeroxes of old research papers. It was
just a very, very different world. I learned most of my programming
when I had a grand total of like three reference books. . . So I’d be all
proud of myself for having figured something out, and then I’d find it
was just classic method and they did it better than I did.87

The lack of resources for development information, and the absence of any uni-

fied programs for the “field” of game development, meant that new innovations

and techniques appeared through the games themselves. New releases heralded

improvements in graphics and experiences that showed what was possible and

commercially viable. The progression of the technical state of the art became

effectively a form of show and tell. For id Software, this progression came to de-

fine the company. Commander Keen showed the viability of smooth, console-like

sidescrolling on the PC; Wolfenstein 3D the capacity for smooth 3D-like graphics

and texture mapped mazes. And Doom foreshadowed the possibility for the fluid

3D networked gameplay delivered by Quake. Because of id’s games popularity —

and their perceived technical achievements — it is possible to construct a historical

sketch of both the sources of their technical knowledge, and how that knowledge

percolated through to the larger field of game development. We look at the mate-

rial available for a consideration of the enacted knowledge embedded in id’s work,

and show how that work connected to knowledge dissemination structures in the

game development community of the time. This study primarily focuses on Doom,

and the basis for its rendering on the MS-DOS machines it targeted in 1993.88

87[168] pg.43
88More specifically, it targeted MS-DOS 6.22 running on 386 architectures. This is an impor-

tant point as 386 machines did not support floating point arithmetic, which made 3D graphical
applications difficult to implement.

321

Foundational Knowledge

In an email to Stanford’s Game Business list, a young developer remarking

on the current (2016) state of virtual reality research flippantly commented that

the last time VR had the spotlight, “computers could support Doom . . . and

that was about it.” This comment referred to the primitive nature of 3D graphics

available to the average user in the early 1990s, and alluded that that limitation

was a primary reason for the failure of the early VR industry.89 In response to this

comment, Bryan Salt, a developer active during the first VR boom took umbrage

with the younger’s empathic (and apparently obvious) statement about Doom’s

support.

Computers didn’t support Doom, some very creative people worked
past the limitations of the time. . . when we saw Wolfenstein we were
not too phased, but when Doom came out we did a collective look
around the room as if to say “shit, why did we even bother”. . . It’s
easy to look back and think, well that was an obvious way of doing
things, that Doom etc. was inevitable, but it needed a radical shift in
perspective (no pun intended).90

So what was this shift in perspective, and how were did id envision and pull

it off? First and foremost, the basic technical strength of the team was steeped

in significant achievements dating back to early childhood. Both Doom’s engine

programmer, John Carmack, and development tools programmer, John Romero,

had histories of programming achievement dating back to early childhood. Romero

kept fastidious records of his early games, and his development notebooks are

riddled with juvenile drawings and scribbling surrounding Apple II 6502 assembly

code. Many of Romero’s games featured on the cover of Uptime, a hobbyist

programming magazine, while he was a teenager. He even published a book on
89For a fantastic overview of the hype and hyperbolic prognostications of the early 1990s VR

boom, see [175] Rheingold, Howard. Virtual Reality. New York, N.Y.: Simon & Schuster, 1992.
90Salt, Bryan. “John Carmack says VR devs are ‘coasting on novelty”’, sent to gsb-

videogames@lists.stanford.edu on October 10, 2016.

322

Apple II arcade game programming while still in high school.91 By the time of

id’s official formation, Romero had already programmed, designed, or produced

multiple games a year for nearly a decade.

In a similar vein, Carmack’s childhood programming efforts found him reverse

engineering Richard Garriott’s Ultima code and immersing himself in advanced

graphics programming.92 Both Johns’ expertise in programming resulted from

significant auto-didactic efforts, and those experiences set the foundation for their

eventual pioneering work on Wolfenstein 3D and Doom. Pioneering in this in-

stance is not in the development of wholly unknown algorithms, but in the combi-

nation and application of expertise in multiple areas that allowed for the creation

of both games. The progression toward id’s 3D games can be seen in the team’s

preceding work for Apogee software and Softdisk. As noted in the object and

technical expressions sections above, file organization strategies — like separate

level and engine data — and algorithms — like zone memory management and

raycast rendering — are apparent in id’s earlier 3D works, and even some of their

grid-based 2D games.

A Shift in Perspective

The advancements ofWolfenstein 3D and the Doom are built on the confluence

of two major undercurrents in id’s development work. The team’s earlier successes

with Commander Keen provided financial support for both a new round of top-

of-the-line equipment — NeXTStep workstations — allowing for the development

of a robust development pipeline and, probably more importantly, the time to
91Uptime covers, and article on game programming are available on Romero’s SmugMug

account https://romero.smugmug.com/.
92Carmack recently remarked that he spent a lot of time trying to recreate the three-

dimensional rendering on the cover of James Foley’s and Andres Van Dam’s Fundamentals
of Interactive Computer Graphics, probably the primary source for college and professional level
graphics algorithms and approaches in the 1980s.

323

https://romero.smugmug.com/

work through the technical advances needed for Carmack’s 3D engine designs.

Up until Wolfenstein 3D, most of id’s games, through their contracts with Apogee

and Softdisk, were designed and engineered inside a month or two. id’s deal

with Softdisk at the time explicitly hinged on the monthly publication schedule

for the Gamer’s Edge. When more development time began to be necessary for

id’s 3D games, the team either secretly offloaded the work to Apogee, or relied

on previous game engines that did not need further technical modifications. This

freed up Carmack’s time for research. During Hovertank 3D’s development, engine

work took nearly six weeks, leading Apogee to develop Scuba Steve for Softdisk

as a way to take some pressure off of id.93

According to Masters of Doom’s narrative, Carmack looked around for 3D

approaches at the beginning of Hovertank 3D’s development, and finding nothing

suitable, rolled his own approach. Given that we know that Carmack had exposure

to graphics programming books and even research papers before this period, and

that Hovertank 3D’s engine is based on raycasting (a diminutive form of ray trac-

ing), this narrative is probably a simplification. Foley et al’s Computer Graphics:

Principles and Practices from 1990 devotes some coverage to ray-casting as a form

of visible surface rendering, and Carmack is noted in Pinchbeck’s work as having

used that book’s notes on binary space partitioning in the construction of later

Wolfenstein 3D ports and as the basis for Doom’s rendering engine. Regardless,

returning to the dual contributions fostered at id that lead to the advancements

of Doom, we have Carmack’s dedicated engine development time — 6 weeks for

Hovertank 3D, 6 months for Wolfenstein 3D and nearly a year for Doom — and

Romero’s contributions to development tools and workflow as the key ingredients

for Doom’s shift in perspective for the game development community.
93id’s Commander Keen series was lucrative enough that Scott Adams at Apogee figured

whatever the next thing coming out of id was, it was worth supporting.

324

The team’s NeXTStep development process included a full suite of tools for

level creation (DoomEd(itor)), sprite illustration (Fuzzy Pumper Palette Studio),

and cross-compilation to DOS execution. NeXTStep’s windowed interface man-

agement allowed the game’s designers, Romero, Hall, and Peterson, to effectively

live edit changes in the Doom level editor and then quickly load them up and

play through them in a separate window on the same machine.94 This process

allowed for quick iteration on level designs for Doom, which differed significantly

from Wolfenstein 3D’s efforts due to flexibility provided by variable heights for

platforms and adjacent sectors of the game map. Doom’s designers had to break

from the conceptual space of 2D mazes that had characterized their earlier efforts

and articulate a new design language for the levels featuring arbitrary angles for

walls and elevation.

id’s games rested on the backbone of Carmack’s engines, and the advance-

ments of Wolfenstein 3D and Doom built on his familiarity with modern graphics

techniques, and ways of getting them running on home computers. The movement

to Wolfenstein 3D from its predecessors mainly relied on its ability to improve the

speed of the game through low-level memory operations. As alluded to in Bryan

Salt’s quote above, Wolfenstein 3D’s raycasting engine appeared similar to other

contemporaneous advances at the time. DoomWiki describes Wolfenstein 3D’s

engine as a “fairly textbook ray casting engine”, and the game’s visuals did not

move too far afield from other titles using similar techniques. Carmack most likely

relied on his years of experience with optimizing assembly graphics code, and men-

tions works in that vein, like Michael Abrash’s Zen of Assembly Language, and
94It is unclear whether this level editing framework was in place for Wolfenstein 3D, given that

the game’s levels were comparatively much simpler (grid-based), and did not include differing el-
evations or the potentially complex line of sight issues that windows and the like afforded Doom’s
levels. Doom’s editing interface is described in the first issue of Game Developer Magazine [27]
in January 1994.

325

Power Graphics Programming, as being influential to his understanding of such

optimizations. A focus on speed drove the efforts of Wolfenstein 3D and then

Doom, and it is that speed that surprised other developers at the time of Doom’s

release.

The main advancement for Doom’s engine, though according to Carmack also

a bit overblown,95 was its use of binary space partitioning (BSP) coupled with the

memory management advances leveraged from Wolfenstein 3D. A major challenge

in any 3D engine is to ensure that the computer only spends time and uses mem-

ory for exactly what is has to show at that current moment. As Michael Abrash

remarked at the time, ’programming is a process of caching’, in that most effort

to get things running was in finding ways to reduce the amount of work done by

the machine. In many cases this meant finding ways to avoid repeating work and

storing the results of complex computations before making use of them at run-

time. Wolfenstein 3D’s engine, for example, relied on projecting rays from the

player position at a fixed number of angles and then computing their intersection

with walls drawn on the 2D grid representing each level. To cut down on compu-

tation time, many of these angular calculations were pre-computed and stored in

a look up table, which provided a cheaper computational means of resolving the

intersection equations. Similarly, though more complexly, Doom’s BSP approach

provided a way to quickly look up the ordering of walls displayed in front of the

player, and to remove anything not viewable.96

Doom’s BSP algorithm pre-organized all the walls in map into a binary tree

by choosing a starting wall, and then recursive adding other walls as nodes that

were either in front of or behind a given root node. By locating the player at a
95[168] pg. 43
96This process is known as frustum culling and Doom’s BSP trees, due to the way they

partitioned each level’s spaces, could also identify and drop whole sets of walls that would not
appear in the player’s view.

326

specific coordinate in the map, the engine could quickly ascertain which walls were

behind the player and immediately ignore their rendering. Additionally, for those

areas appearing in front of the player, the engine could then find the closest wall

and traverse the BSP tree to render everything behind it, all without doing any

significant ordering calculations. The trade off in processing occurred because the

map data could be pre-computed and embedded with the BSP sectors and their

relative positioning. Lee Killough, a prominent Doom modder in the late 1990s,

spent a significant amount of time further improving id’s own BSP compilation

engine since it formed the most severe development bottleneck wherever BSP

nodes needed to be recalculated.

Carmack most likely borrowed this approach by combining work done by Bruce

Naylor — the inventor of BSP trees — and research into applications of BSP

trees in front-to-back rendering schemes. Killough, who also maintained a Doom

historical website in the late 1990s, believed that Carmack’s implementation most

resembled work published by Dan Gordon and Chen Shuhong in the September

1991 issue of IEEE Computer Graphics.97 The “shift” in Doom was then not a

significant advance in the state of the art in graphics algorithms, but in the ability

to get those optimizations to run on a 386 machine without proper floating point

support. Additionally, the use of BSP in 3D real-time game engines was also new,

and led to a rash of research after Doom’s release into “Doom Style Rendering”

and the use of BSPs for world generation.

Another cautionary note about the need for further research into the underly-

ing algorithms and approaches of game development is the still common miscon-

ception that Doom made use of a raycasting engine. In order to optimize texture

drawing, Doom still rendered its walls using columns of pixels that allowed for
97Carmack had apparently been searching for ways to get Wolfenstein 3D running at an

acceptable speed on the Super Nintendo Entertainment System, and began experimenting with
BSPs at that point.

327

memory accesses to texture files to be loaded in order from memory, each column

being rotated 90 degrees to align with left-to-right orientation of memory access.

This caused many to assume that Doom used column-based raycasting because

the walls appeared similar to those in Wolfenstein 3D, and upon Doom’s release

the initial discussion on programming listservs focused on how it was possible to

get a raycaster (like Doom “obviously was”) to draw with the speed and com-

plexity shown in play.98 This form of confusion, termed the “Talespin Effect”

by Noah Wardrip-Fruin, also mucks up certain theories of technological progress

narratives.99 One example for Doom is Dominic Arsenault et al.’s discussion of

technical innovation, that incorrectly lumped Wolfenstein 3D and Doom together

technologically, whereas in actuality Doom was a significant breakthrough in Car-

mack’s implementation of 3D engines.100

Resources

The basic assertion of this section, that Doom’s shift of perspective was based

on previous expertise and a connection between difficult to access academic knowl-

edge and a forward thinking notion to implement it on common consumer hard-

ware, deserves significantly more historical attention. Doom’s graphical engine in-

fluenced the development of further 3D works, with the BUILD engine borrowing

Doom’s notion of sector-based level structure (as opposed to grids), and numerous

game programming sites devoting significant time to BSP rendering techniques in

the mid-1990s. The PC Game Programmers Encyclopedia, a collection of 3D
98[4] “DOOM 3D Engine Analysis - Google Groups.” Accessed December 27, 2016. https:

//groups.google.com/forum/#!topic/rec.games.programmer/eOnlumKPuUA.
99[216] Wardrip-Fruin, Noah. Expressive Processing. Cambridge (Mass.): MIT Press, 2009.

pg. 115
100[29] Arsenault, Dominic, Pierre-Marc Coté, Audrey Larochelle, and Sacha Lebel. “Graphical

Technologies, Innovation and Aesthetics in the Video Game Industry: A Case Study of the Shift
from 2D to 3D Graphics in the 1990s.” G|A|M|E Games as Art, Media, Entertainment 1, no. 2
(2013).

328

https://groups.google.com/forum/#!topic/rec.games.programmer/eOnlumKPuUA
https://groups.google.com/forum/#!topic/rec.games.programmer/eOnlumKPuUA

engine programming techniques compiled online in 1994, featured contributions

by many community members who had helped to reverse engineer Doom’s en-

gine structures.101 The flows of information from these efforts and around the

development communities of the time, as encapsulated in forums, online guides,

and other released games, could provide a rich base for investigating knowledge

transfer in the early 3D engine community. After the release of Wolfenstein 3D,

and certainly after Doom, the basic thought that engines like these were possible

at arcade speeds led to increased academic interest in BSP rendering, and even

convinced IBM to develop WebView3D, a BSP-based Doom engine clone as an

internal research project.102 Surely, Doom is important, but it might be more

useful as a means to pry open the networks of expertise and communication that

existed at the time, and that form the base for most modern 3D engines and game

worlds.

6.5 Conclusion

The model of Doom presented and analyzed above would not be possible with-

out the insights and practical experience gained through the earlier work in this

thesis. By taking a deep look through the documentation of Prom Week in Ap-

praisal, it became apparent that significant segments of documentation about

games and their development was being overlooked and under-collected. Divining

out the various, fractal documentary vectors of Doom’s software development only

occurred after working through, with practical methodologies, the constraints of

Prom Week’s accumulation. Above, we aligned the model’s layers: historiography,
101[11] “PC-GPE on the Web.” PC-GPE on the Web. Accessed December 27, 2016. http:

//bespin.org/~qz/pc-gpe/.
102[197] Stephens, Philip J. “Writing a Fast 3D Graphics Engine,” September 8, 1995. http:

//www.gamers.org/dEngine/doom/papers/webview.ps.gz.

329

http://bespin.org/~qz/pc-gpe/
http://bespin.org/~qz/pc-gpe/
http://www.gamers.org/dEngine/doom/papers/webview.ps.gz
http://www.gamers.org/dEngine/doom/papers/webview.ps.gz

reified object, technical expression, and enacted and tacit knowledge, with histor-

ical and methodological arguments aimed at revealing more potential histories for

Doom.

1. Historiography laid out the terrain of Doom source documentation, and re-

vealed the lengths that Doom’s community has gone to to preserve its his-

tory. These investigations also reveal the depth of documentation available

and waiting for exploration by historians, along with the limitations of cur-

rent narratives.

2. Reified Object argued that historical analysis of the form and content of ex-

ecutable objects can reveal new insights and pose new questions about the

development and organization of software programs and the people behind

them. In highlighting the version progression of Doom’s executable data,

and noting the evolution of file organization in id Software’s early releases,

we showed that the game was not a static, singularly historicizable object,

but a multiplicity of continuing relationships between the object, practi-

tioner and player. Further, the implicit use of the GISST toolset in helping

with comparative analysis made this work easier, and time-permitting, fu-

ture work on this layer will make extensive use of it.

3. Technical Expression presented the history of Doom’s source code, and its

release to the wider community. It also showed that the conditions of Doom’s

source code and its contextual documentation are what made it possible to

maintain an active 25-year long development community. The conditions

of source code are contingent on other historical and social factors. In iso-

lation, program code may not be a readable or recoverable object without

complementary knowledge of its creation (and potential standardization ef-

forts).

330

4. Enacted and Tacit Knowledge brought together some theories about knowl-

edge production as it relates to narratives of progress and individual histor-

ical contributions. In the main, the section showed that Doom’s graphical

achievements telegraphed a shift in the application of more advanced graph-

ical techniques toward home computers. It also pointed out that most of

the work on Doom had precedents, in that other contemporaneous titles

also made use of similar techniques. Understanding the lineage and influ-

ence of technical knowledge, and its diffusion is important to understanding

the modern world. As noted by Michael Mahoney, the “operational mod-

els” embedded into software systems come from somewhere, and need to be

nailed down, and dissected to trace their influences.103

The purpose of this chapter essentially boils down to locating some holes, and

trying to shove some initial pebbles and debris into them. In looking at the histor-

ical model, the point is to realize that many areas of software history are still not

being explored and that they lack the documentary support for fully realized anal-

ysis. The earlier chapters on methodology help in this regard. Appraisal formed

the seed for the Doom investigations, while Description provided a rational for the

enactment of different executable objects and the needs for there disambiguation.

Citation introduced a means for the use of more active and engaging references

to software objects, and a system, GISST, that directly addressed issues in the

“object” layer of the model. The Discovery chapter’s connection is more tenuous,

but the with sheer amount of development information available — Prom Week

development had about 17,000 — the use of machine learning techniques for the

exploration and organization of historical content is an obvious new direction.
103Another notion related to this is “operational logics” proposed by Wardrip-Fruin and Mateas

[139], which are is some sense how an “operational model” is enacted in software and how those
enactments function as a fulcrum for computational meaning-making.

331

Doom’s documentation also represents a new formation, in that its progression

mirrors that of the growing dissemination network of the early Internet. Most

technical objects nowadays will have similar documentary profiles to Doom —

albeit with shorter chronologies. Leveraging and managing these various resources

will continue to occupy a significant amount of an historian’s time and efforts. The

approach to and model of Doom above is therefore easily transferrable to similarly

organized and networked objects.

In closing, and continuing with remarks on the “network” of Doom’s docu-

mentation, there are significant areas of Doom’s historical production that did

not make it into this analysis. Namely, Doom’s development as an e-sport and

the online culture dedicated to its competitive play is a significant historical con-

dition deserving of more scrutiny. Luckily, the same apparatus we used to look

into Doom’s more singular existence and material can easier expand to this com-

petative arena. The sources of documentation are virtually the same, save the

gameplay recordings of Doom, the LMP files that replay its engine inputs. Ben-

eficially, the model and tools we’ve developed in this thesis are flexible enough

to accommodate. GISST can learn a new import format and run Doom versions

with demo playback, and the changes to Doom’s object become even more ap-

parent when considering the modifications necessary to improve and maintain its

multiplayer apparatus. There is definitely still more work to do, and more holes

to fill.

332

Chapter 7

Conclusion

This conclusion has two express goals. The first is to reiterate and tie together

the work presented in the thesis at large, and the second is to extend the themes

of this work into the future. Attending to the former requires a basic summation

of the work of each chapter (and is accomplished in the next section). The latter,

as an extension of this thesis’ focus on the material and methodological concerns

of software historical study, is a bit more fraught. While the work presented

above attempted to provide a basis for intervention into — and improvement of

— various aspects of software scholarship, those very interventions are tied to our

current historical moment, one that is rapidly shifting and evolving as regards the

place and process of future historical studies.

Following the summation of completed work, the next section will describe how

all of the efforts in this thesis are attached to important historical contingencies.

Contingencies that need to be further described and considered if historical study

is going to progress at all. These contingencies all involve the ever going shift from

a pre-networked to a post-networked culture that happens to align quite well with

the rise of computer games and software. In one sense, this contingency is obvious,

given that that very software is responsible for the creation of networked culture.

333

However, it is also apparent that current cultural and historical structures are still

not comprehending or adequately preparing for the effects of the networked world

on most forms of records, not only software ones. The “network” contingency

operates on all the points of intervention highlighted in the introduction to this

thesis, affecting the accumulation of historical records, how they can be explored,

and what it is possible to express about them. This contingency also functions on

software and games as well, since they are becoming more and more of the network

with each passing year. In this sense, all the above work in this thesis is playing

catch up to an older paradigm of historical methodologies and studies, and there

probably will not be time to solve all the problems presented by non-networked

software before needing to address the coming networked deluge.

Obviously, since this is the conclusion to a work, there is not space to solve

— or really even fully address — the coming contingencies so much as to gesture

at their implications in light of the research presented above. The concluding

section of this chapter, and this thesis in general, presents a brief description of

the current “standard” model of historical software, its documentation, and the

management of its objects. Following that, is a discussion of how the imposition

of networked technologies onto this model has significance methodological and

material consequences for future scholarship. Both the meta-methodological and

meta-documentary concerns that arise from networks are then folded back onto

the work of this thesis to locate potential seeds that can use its methods as a

fertile basin for the sprouts of new, network contingent approaches.

334

7.1 The Conditions of a History for Games and

Software

The purpose of the first four chapters in the Appraisal, Description, Cita-

tion, and Discovery of computer game software and its records was to start to

piece together a broad set of applied methods to various intervening points in a

model of scholarly process. Recall, in the introduction to this thesis, the simple

model of scholarly process consisting of three nodes: practitioner, scholar, and

audience, and two edges: historical accumulation, and exploration / expression.

Each chapter intended to show how steps could be made into the improvement of

each edge to the benefit of software history. The first two chapters, Appraisal and

Description, sought to stabilize the accumulated records of software through the

adaptation of structures and systems from library and information science. Ci-

tation and Discovery, complementarily, attempted to stage similar interventions

into the exploration of stabilized records, and their use in historical expressions —

or argumentations. The fifth chapter, with its focus on Doom aimed to combine

some of the insights of the previous chapters to show how new things could be

said about the game that would not have been possible without those chapters in-

sights. This led to the formation of a new historical model for the investigation of

computer game software, based in part on the requirements made manifest in the

Appraisal chapter, described in Description, and enacted through Citation. The

needs of divining and locating the historically salient records of Doom (appraisal)

led to a theorization of those records descriptions and historical conditions as

stored material (description), and the need to find ways to leverage and retrieve

those records for later discussion (citation).

The model of intervention, and the model of historical software study from A

335

Model of Doom, both point toward the holes in the current historical practices

around software. As interventions, much more work needs to be done in stabiliz-

ing and accessing historical game records, and as material resources, much more

effort is required to acquire and retain records of game objects, their technical

expressions — source code and the like — and the tacit knowledge required for

their creation. The work above took some basic steps along both of these paths:

1. Appraisal adapted methodologies from historians and librarians of science

and applied them to the development documentation of the computer game

Prom Week. This prefaced the model of historical software (in A Model of

Doom) by pointing out the types and kinds of records that, hitherto, have

not received much scrutiny from archives and collections.

2. Description presented a theory of the contextual definitions that are re-

quired for the accurate descripion of computer game platform and media

format records. It also pointed out the need for better descriptive prac-

tice and showed how those practices can benefit from an understanding of

complementary structures in library and information science works.

3. Citation introduced the Game and Software Scholarship Toolkit (GISST) as

a way to operationalize (in scholarly argumentation) the records of software

objects and their data that may someday be stored, en masse, in institutional

repositories.1 It also worked to show how new forms of records about games,

and even the games themselves might be leveraged to fill in the holes in

the software historical model, and enable new forms of intervention into

historical expression.
1As noted in the Appraisal chapter, the treatment and storage of Prom Week’s born-digital

records is very uncommon. Additionally, while some forward thinking institutions are begin-
ning to store and describe historical software data for academic use, the practice is not very
widespread and does not currently have any standardized and adopted solutions.

336

4. Discovery applied statistical natural language processing techniques to the

location and comparison of historical game records. The approach showed

that new methods from computer science, in textual analysis and infor-

mation retrieval, could be applied to and benefit the historical study of

computer games and software. An intention of the discovery work was to

literally visualize the missing areas in the history of games, and point toward

new potential spaces of study.

In A Model of Doom, these threads coalesced into a fractal, multi-vectored

investigation into different aspects of Doom’s history. Starting with Doom histo-

riography, and the sources available to construct histories of the game, the model

argues for a deeper look into the material conditions of software history and the

benefit of looking past more superficial and chronicle-like historical discussions

of the game. The model places these historiographic assumptions at the top of

a layered model of software history, where other perspectives exist, deserving of

further scrutiny. Below the historical object, there are its various versions, the lit-

eral executable objects of discussion. And below those, the technical expressions

that compile into playable games. Deeper still is the bedrock of tacit knowledge

shared among Doom’s development team, and based on their previous experience

and the technical information available to them, that provided the means for the

creation of Doom’s systems and initial conceptualization.

In order to leverage all the layers of this model, the progress started in the ear-

lier methodological chapters must be expanded. GISST’s existence helps with the

organization of the Doom’s objects and the appraisal strategies point toward areas

of development and documentation to look for while also showing new locations

specific to Doom’s long history. The next section on the influence of networks on

the historical study of software is already present in the analysis of Doom. As

337

an early, network-disseminated piece of software, Doom’s documentation contains

within it the genesis of both networked game objects, and the networked sources of

information that slowly accreted into the online communities of the 21st century.

7.2 The Network Contingency and its Implica-

tions on Practice

In Vernor Vinge’s novel A Deepness in The Sky humanity’s interstellar exis-

tence eclipses a vast swath of the galaxy.2 An enormous trade empire, the Qeng

Ho, operates over this territory as a capitalist, networked collective of mercantile

families all united by a common set of practices, and a common base of advanced

technologies and software. The Qeng Ho’s technological stack is a complex, and

confusingly intricate, accretion of centuries of software upgrades and modifica-

tions. In fact, most of their programming efforts — aimed at keeping expansive

network of spaceships adrift — involve a good deal of archaeology. The needs

of any specific voyage cannot be known in advance. They assume that as the

programmatic requirements change upon encountering new phenomena that suit-

able solutions can be imported from previous efforts. As a result, the Qeng Ho

stack is a library of programs stretching all the way back to the Unix operating

system, a complete accumulation of all previous software. When a need for new

programs arise a class of archaeologist-programmers dive into the networked past

of all previous Qeng Ho outputs to piece together new solutions from older parts.

The success of their civilization then depends on their capabilities for networked

information retrieval and re-appropriation. They need to find, and understand

older software quickly in order to stay ahead of the trials of space travel. For
2[215]

338

them, information and computer science methods enable their entire civilization.

Now while this dependence on, and deep acknowledgement of, knowledge man-

agement issues is professionally edifying it is also unsurprising given Vinge’s back-

ground — he was a practicing computer scientist after all. However, his perspec-

tive on the future’s dependence on software maintenance is not far off the mark.

The problems of the future are the same as the problems of understanding that fu-

ture’s history. Namely, how to find and make use of things born of, and enmeshed

in, the network long after their introduction to it. To bring this discussion back

down to the historical scope of this thesis, the rest of this section will elaborate

on the implications of the network contingency on the work conducted above, and

on the future of the historical study of software.

In enlisting methods from information and computer science, we also enlist

certain assumptions about the objects those methods seek to evaluate. For in-

stance, in the Appraisal chapter, we took guidance from older reports by histori-

ans of technology seeking to better describe what at the time were the completely

new paradigms of digital information and long-term research data storage. The

preservation of software is an afterthought in most of those accounts, and all the

documentary guidance is mainly directed towards physical records. The notion of

a network of data, or any kind of computational network structure at all is not

present. As such, in the appraisal of Prom Week and the translations it neces-

sitated for applying those older paradigms to newer born-digital documentation,

some structures had no significant analog. Prom Week’s team made extensive use

of cloud storage, and networked version control management systems. This cre-

ated numerous issues for the accessibility and reconstruction of the game’s devel-

opment documentation. Furthermore, Prom Week itself is a network-disseminated

executable, designed to be embedded with the frameworks of other websites well

339

outside of the appraisal’s scope.

Prom Week, through its executable, also straddles the divide between singular

game play experiences and networked play architectures. It mostly belongs to

what will be termed the standard model of game historical study. This standard

applies to executable software that does not rely or required a network connection

for replay or re-experience. It is not network contingent, in that future preserva-

tion and historical efforts will not need to take the network into account. The

lack of network dependence is implicit to the methods of this thesis, and needs

to be acknowledge as a significant next step for future work. The vocabularies

in the Description chapter, and the records they attend to, all assume a singu-

lar, fixed object instead of a constellated one. Similarly, the objects referenced

in Citation, specifically the games under management by GISST, are all singular

experiences that can be expressed through isolated, non-networked emulations.

While accounting for networked state and other more complex data management

schemes is possible, there are other significant difficulties that arise from network

contingent artifacts. Difficulties that must be addressed in further network con-

tingent extensions of research into standard practices that constitute the majority

of this thesis.

7.2.1 Problems of the Network Contingency

Computer games are getting more technologically complex. Major game de-

velopment studios are much larger than they used to be, and teams for so-called

AAA titles are incredibly large. Over 1000 people made Grand Theft Auto V, in

comparison to the 10 or so that worked on Doom. Modern development records

are then dependent on toolsets and technologies that are significantly more com-

plex and sprawling then those of even a decade ago. And, as shown above, even

340

a small development effort results is a mess of shared documentation and support

programs also enmeshed in network practices and contingencies.3

Most modern games are also distributed over a network, do not have physical

dissemination of any kind, and require some form of network connection for play or

patch updates. When a system is dependent on multiple parts that are asymmet-

rically disseminated, reconstructing the object and its played experience become

much more difficult. “Asymmetrical dissemination” means that the player of a

game does not actually have all the data needed to run it without some form of

network transaction; there is an asymmetry of access. In the past, all distribution

was symmetric by necessity. Without a networked data source, all the required

resources to run a game needed to be include with the distributed media format

or the game would not function. Historical methodologies must account for this

asymmetry going forward. If the foreign server turns off at some point, that part

of the game system is most likely irrecoverable. If that server is gone, the game

client will no longer function. Its history is in jeopardy.

A potential route out of this problem is to emulate the entire network respon-

sible for the game. Get all the server and client software functioning through

emulation and then hopefully recover the gameplay. On a technical level, while

this might be feasible, you have the issue that any significantly networked game

or activity probably also had a contemporaneous community associated with it

— recall the elaborate Doom community described above — and a social space

with the game that cannot be recovered. This phenomenon is most striking in

massively multiplayer online games, where the game is essentially an operational-

ization of a social world. If you recover the whole system, you really do not get

back much of the experience. This lack of recovery is a reason for the inclusion
3This section is based on text from the blog post Kaltman, Eric. “Current Game Preservation

in Not Enough.” How They Got Game, June 2016. https://web.stanford.edu/group/htgg/
cgi-bin/drupal/?q=node/1211. [101].

341

https://web.stanford.edu/group/htgg/cgi-bin/drupal/?q=node/1211
https://web.stanford.edu/group/htgg/cgi-bin/drupal/?q=node/1211

of “performances” in GISST. If a game disappears, at least a video recording is

better than nothing. James Newman, in Best Before, argues that in many cases

game play recording is superior in practical archival methodological terms, since

the network contingencies do not affect static video and its preservation charac-

teristics are well understood.

The major problem with full network emulation is access to the information

necessary to recreate a system or network of systems. Most game servers are pro-

prietary, considered corporate secrets, and will never be disseminated in a manner

that allows for their emulation. That is not to say that with significant reverse

engineering effort you cannot create something that imitates a proprietary service

or server, but that the effort required is incommensurate with any reasonable al-

location of institutional resources. To save a network contingent game is to save

its whole network.

Another pressing issue is the coming scale of the issue. In the far future,

looking back at the past like those Qeng Ho archaeo-programmers, what will it

look like? Based on the current progress of networked culture, a majority of all

software and games will be in the network-contingent category. (In fact, as the

statistics below will show, a case can be made that this is already the case.) In

the figure below, the problematic trend of network contingent game production

becomes apparent.

Backing this claim up with some (albeit slightly problematic) data is not dif-

ficult. MobyGames, a website that tries to account for all historical game titles,

lists around 55,000 in their database. Of those titles, around 20,000 are for some

version of Microsoft Windows. Steam, a popular computer game distribution

service has a total of 8,900 games available for play on the current version of Win-

dows.4 Therefore, roughly half of all the game created for Windows platforms,
4This is a bit more complex, since Microsoft Windows 10 is compatible with many earlier ver-

342

Figure 7.1: Growth of Network Contingent Games 1950 to Now

Figure 7.2: Growth of Network Contingent Games Into Future

343

since the platforms inception in 1985, are currently available for Windows 10,

network-contingent, and network distributed through a single service.

The situation gets more drastic when considering mobile game titles. Games

are the largest segment of applications available through Apple’s App Store for

iOS are games. According to recent numbers from Pocket Gamer, an app tracking

and analytics web site, there are currently 776,661 active games available for

download. Therefore, based on MobyGames’s numbers, there are currently an

order of magnitude more games on iOS then have been created for the entire

history of computer games. The scale of production is immense, and none of

those games fit directly into the methodologies proposed above for more standard

game objects. Now, most of these games are probably not historically significant,

but as noted in the Appraisal chapter, that is not an easy or simple prescription

to make.

The next two figures highlight another important implication of the network,

which is that most future games will be disseminated without a physical form.

Figure 7.3: Network Distribution 1950 to Now

sions. Therefore, these 8,900 are not exclusively for a specific version of the Microsoft Windows
platform.

344

Figure 7.4: Network Distribution Now Into Future

The incredible production rates of current games, and the inability to currently

preserve them all will lead to a situation where predominantly single player, stan-

dard games will be overrepresented in the “playable” record. If developers and

designers disseminate more information about their development practices, or

take on a standardized framework for the dissemination of legacy source code and

development documentation, then those breadcrumbs could help prevent a signif-

icant loss of more network contingent objects. One cannot reconstruct an entire

loaf from the crumbs, but you can gain a sense of its texture, ingredients, and

baking process. And some sustenance for a hungry historical scholar.

345

Bibliography

[1] Apogee - What’s Wrong With Them?!?!?! - Google Groups,
. URL https://groups.google.com/forum/#!searchin/comp.
sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:
date/comp.sys.ibm.pc.games/pyKjy2UjBHU/w_brunBkYoUJ.

[2] BIBFRAME - Bibliographic Framework Initiative (Library of Congress), .
URL https://www.loc.gov/bibframe/.

[3] Departure from Wikia, . URL https://doomwiki.org/wiki/Doom_Wiki:
Departure_from_Wikia.

[4] DOOM 3d engine analysis - Google Groups, . URL https://groups.
google.com/forum/#!topic/rec.games.programmer/eOnlumKPuUA.

[5] DOOM Alpha v0.3 (aka "DOOM Pre-Alpha") - Doomworld /idgames
database frontend, . URL https://www.doomworld.com/idgames/
historic/doom0_3.

[6] Doomworld – The 11th Annual Cacowards, . URL http://www.doomworld.
com/11years/.

[7] GAMECIP - Game Metadata and Citation Project, . URL https://
gamecip.soe.ucsc.edu/.

[8] NESCafe - Nintendo - NES Emulators - Zophar’s Domain, . URL https:
//www.zophar.net/java/nes/nescafe.html.

[9] OpenCyc, . URL http://www.opencyc.org/.

[10] PBCore - Public Broadcasting Metadata Dictionary Project, . URL http:
//pbcore.org/.

[11] PC-GPE on the Web, . URL http://bespin.org/~qz/pc-gpe/.

[12] PREMIS: Preservation Metadata Maintenance Activity (Library of
Congress), . URL https://www.loc.gov/standards/premis/.

346

https://groups.google.com/forum/#!searchin/comp.sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:date/comp.sys.ibm.pc.games/pyKjy2UjBHU/w_brunBkYoUJ
https://groups.google.com/forum/#!searchin/comp.sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:date/comp.sys.ibm.pc.games/pyKjy2UjBHU/w_brunBkYoUJ
https://groups.google.com/forum/#!searchin/comp.sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:date/comp.sys.ibm.pc.games/pyKjy2UjBHU/w_brunBkYoUJ
https://www.loc.gov/bibframe/
https://doomwiki.org/wiki/Doom_Wiki:Departure_from_Wikia
https://doomwiki.org/wiki/Doom_Wiki:Departure_from_Wikia
https://groups.google.com/forum/#!topic/rec.games.programmer/eOnlumKPuUA
https://groups.google.com/forum/#!topic/rec.games.programmer/eOnlumKPuUA
https://www.doomworld.com/idgames/historic/doom0_3
https://www.doomworld.com/idgames/historic/doom0_3
http://www.doomworld.com/11years/
http://www.doomworld.com/11years/
https://gamecip.soe.ucsc.edu/
https://gamecip.soe.ucsc.edu/
https://www.zophar.net/java/nes/nescafe.html
https://www.zophar.net/java/nes/nescafe.html
http://www.opencyc.org/
http://pbcore.org/
http://pbcore.org/
http://bespin.org/~qz/pc-gpe/
https://www.loc.gov/standards/premis/

[13] The Suggested Upper Merged Ontology (SUMO) - Ontology Portal, . URL
http://www.adampease.org/OP/.

[14] Zotero | Home, . URL https://www.zotero.org/.

[15] Book of Id. 1996.

[16] ANSI/NISO Z39.19-2005 (R2010) Guidelines for the Construction, Format,
and Management of Monolingual Controlled Vocabularies - National In-
formation Standards Organization. Technical report, National Information
Standards Organization, 2005.

[17] rebecca heineman, March 2016. URL http://www.nodontdie.com/
rebecca-heineman/.

[18] Computing platform, March 2017. URL https://en.wikipedia.org/w/
index.php?title=Computing_platform&oldid=772442103. Page Version
ID: 772442103.

[19] Development of Doom, June 2017. URL https://en.wikipedia.org/
w/index.php?title=Development_of_Doom&oldid=784107014. Page Ver-
sion ID: 784107014.

[20] List of video games considered the best, June 2017. URL
https://en.wikipedia.org/w/index.php?title=List_of_video_
games_considered_the_best&oldid=783239311. Page Version ID:
783239311.

[21] Espen Aarseth and Gordon Calleja. The Word Game: The Ontology of an
Undefinable Object. In The Philosophy of Computer Games Conference,
2009.

[22] Espen Aarseth, Solveig Marie Smedstad, and Lise Sunnan\aa. 3. A Multi-
Dimensional Typology of Games. 2003.

[23] Espen Aarseth, Lev Manovich, Frans Mäyrä, Katie Salen, and Mark JP
Wolf. Define real, moron! Some remarks on game ontologies. In Stephan
Günzel, Michael Liebe & Dieter Mersch (Eds.), DIGAREC Series, 6:50–69,
2011.

[24] Moshe Adler. Stardom and talent. The American economic review, 75(1):
208–212, 1985.

[25] Nathan Altice. I am error: the Nintendo family computer/entertainment
system platform. Platform studies. The MIT Press, Cambridge, Mas-
sachusetts, 2015. ISBN 978-0-262-02877-6.

347

http://www.adampease.org/OP/
https://www.zotero.org/
http://www.nodontdie.com/rebecca-heineman/
http://www.nodontdie.com/rebecca-heineman/
https://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=772442103
https://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=772442103
https://en.wikipedia.org/w/index.php?title=Development_of_Doom&oldid=784107014
https://en.wikipedia.org/w/index.php?title=Development_of_Doom&oldid=784107014
https://en.wikipedia.org/w/index.php?title=List_of_video_games_considered_the_best&oldid=783239311
https://en.wikipedia.org/w/index.php?title=List_of_video_games_considered_the_best&oldid=783239311

[26] American Association for State and Local History and Oral History Asso-
ciation. Oral history: an interdisciplinary anthology. American Association
for State and Local History book series. AltaMira Press, Walnut Creek, 2nd
ed edition, 1996. ISBN 0-7619-9189-1.

[27] Alexander Antoniades. The Game Developer Archives: ’Monsters From
the Id: The Making of Doom ’. URL http://www.gamasutra.com/view/
news/112355/The_Game_Developer_Archives_Monsters_From_the_Id_
The_Making_of_Doom.php.

[28] J. Scott Armstrong. Unintelligible management research and academic pres-
tige. Interfaces, 10(2):80–86, 1980.

[29] Dominic Arsenault, Pierre-Marc Coté, Audrey Larochelle, and Sacha Lebel.
Graphical technologies, innovation and aesthetics in the video game indus-
try: a case study of the shift from 2d to 3d graphics in the 1990s. G|A|M|E
Games as Art, Media, Entertainment, 1(2), 2013. ISSN 2280-7705.

[30] Willa K. Baum. Transcribing and editing oral history. American Association
for State and Local History, Nashville, 1977. ISBN 0-910050-26-0.

[31] Willa K Baum. Oral history for the local historical society. American
Association for State and Local History by special arrangement with the
Conference of California Historical Societies, Nashville, Tenn., 1987. ISBN
0-910050-87-2 978-0-910050-87-6.

[32] Caetlin Benson-Allott. 40 Platform. In Debugging Game History: A Critical
Lexicon, pages 343–349. 2016.

[33] John Berger, Sven Blomberg, Chris Fox, Michael Dibb, and Richard Hollis.
Ways of seeing. 1973. ISBN 978-0-14-021631-8 978-0-14-013515-2 978-0-
563-12244-9. OCLC: 632700.

[34] Wiebe E Bijker. Of bicycles, bakelites, and bulbs: toward a theory of so-
ciotechnical change. MIT Press, Cambridge, Mass., 1995. ISBN 978-0-262-
02376-4. OCLC: 31659485.

[35] Steven Bird. NLTK: the natural language toolkit. In Proceedings of the
COLING/ACL on Interactive presentation sessions, pages 69–72. Associa-
tion for Computational Linguistics, 2006.

[36] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story
so far. International journal on semantic web and information systems, 5
(3):1–22, 2009.

348

http://www.gamasutra.com/view/news/112355/The_Game_Developer_Archives_Monsters_From_the_Id_The_Making_of_Doom.php
http://www.gamasutra.com/view/news/112355/The_Game_Developer_Archives_Monsters_From_the_Id_The_Making_of_Doom.php
http://www.gamasutra.com/view/news/112355/The_Game_Developer_Archives_Monsters_From_the_Id_The_Making_of_Doom.php

[37] Maurice Black. The Art of Code. Dissertation, University of Pennsylvania,
2002.

[38] Hans Booms. Society and the formation of a documentary heritage: issues
in the appraisal of archival sources. Archivaria, 24(3):69–107, 1987.

[39] Christine L. Borgman. Scholarship in the digital age: information, infras-
tructure, and the Internet. MIT Press, Cambridge, Mass, 2007. ISBN 978-
0-262-02619-2.

[40] Geoffrey Bowker and Susan Leigh Star. Sorting Things Out: Classification
and its Consequences. Massachusetts Institute of Technology, Cambridge
(Mass.), 1999. ISBN 0-262-02461-6.

[41] Roger B. Bradford. An empirical study of required dimensionality for large-
scale latent semantic indexing applications. In Proceedings of the 17th
ACM conference on Information and knowledge management, pages 153–
162. ACM, 2008.

[42] Julian Brooke and Matthew Hurst. Patterns in the stream: Exploring the
interaction of polarity, topic, and discourse in a large opinion corpus. In
Proceedings of the 1st international CIKM workshop on Topic-sentiment
analysis for mass opinion, pages 1–8. ACM, 2009.

[43] Bruce Bruemmer and Sheldon Hochheiser. The high-technology company:
a historical research and archival guide. Charles Babbage Institute, Center
for the History of Information Processing, University of Minnesota, 1989.

[44] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based mea-
sures of lexical semantic relatedness. Computational Linguistics, 32(1):13–
47, 2006.

[45] Anne Burdick, editor. Digital humanities. MIT Press, Cambridge, MA,
2012. ISBN 978-0-262-01847-0. OCLC: 793581385.

[46] Peter Burke. A social history of knowledge II: from the encyclopaedia to
Wikipedia. Polity, Cambridge, 2011. ISBN 978-0-7456-5042-5 978-0-7456-
5043-2.

[47] Roger Caillois. Man, play, and games. Free Press of Glencoe, New York,
1961.

[48] Michel Callon, John Law, and Arie Rip. Mapping the dynamics of science
and technology: sociology of science in the real world. Macmillan, Bas-
ingstoke, 1986. ISBN 978-0-333-37223-4. OCLC: 13159883.

349

[49] Simon Carless. Why game discovery is vital - introducing Games We
Care About., June 2014. URL http://www.gamasutra.com/blogs/
SimonCarless/20140606/218988/Why_game_discovery_is_vital_
_introducing_Games_We_Care_About.php.

[50] Laura Catalá, Vicente Julián, and José-Antonio Gil-Gómez. A cbr-based
game recommender for rehabilitation videogames in social networks. In
International Conference on Intelligent Data Engineering and Automated
Learning, pages 370–377. Springer, 2014.

[51] Chaomei Chen and Les Carr. Trailblazing the literature of hypertext: au-
thor co-citation analysis (1989âĂŞ1998). In Proceedings of the tenth ACM
Conference on Hypertext and hypermedia: returning to our diverse roots:
returning to our diverse roots, pages 51–60. ACM, 1999.

[52] Chaochang Chiu, Re-Jiau Sung, Yu-Ren Chen, and Chih-Hao Hsiao. App
Review Analytics of Free Games Listed on Google Play.

[53] Meri Coleman and Ta Lin Liau. A computer readability formula designed
for machine scoring. Journal of Applied Psychology, 60(2):283, 1975.

[54] Harry Collins. Changing Order: Replication and Induction in Scientific
Practice. University Of Chicago Press, Chicago, reprint edition edition,
June 1992. ISBN 978-0-226-11376-0.

[55] Harry Collins. Tacit and Explicit Knowledge. University Of Chicago Press,
Chicago; London, reprint edition edition, December 2012. ISBN 978-0-226-
00421-1.

[56] Nicole Convery. From reactive to proactive appraisal. Archives and
Manuscripts, 42(2):158–160, May 2014. ISSN 0157-6895. doi: 10.1080/
01576895.2014.911676.

[57] Terry Cook. ’We Are What We Keep; We Keep What We Are’: Archival
Appraisal Past, Present and Future. Journal of the Society of Archivists, 32
(2):173–189, October 2011. ISSN 0037-9816. doi: 10.1080/00379816.2011.
619688.

[58] Trevor F. Cox and Michael AA Cox. Multidimensional scaling. CRC press,
2000.

[59] Kate Cumming and Anne Picot. Reinventing appraisal. Archives and
Manuscripts, 42(2):133–145, May 2014. ISSN 0157-6895. doi: 10.1080/
01576895.2014.926824.

350

http://www.gamasutra.com/blogs/SimonCarless/20140606/218988/Why_game_discovery_is_vital__introducing_Games_We_Care_About.php
http://www.gamasutra.com/blogs/SimonCarless/20140606/218988/Why_game_discovery_is_vital__introducing_Games_We_Care_About.php
http://www.gamasutra.com/blogs/SimonCarless/20140606/218988/Why_game_discovery_is_vital__introducing_Games_We_Care_About.php

[60] Charis Cussins. Ontological choreography: Agency through objectification
in infertility clinics. Social studies of science, 26(3):575–610, 1996.

[61] David Datta. Doom upload site list (final version) - Google Groups. URL
https://groups.google.com/forum/#!search/david$20datta$20doom%
7Csort:relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/
nkrU0islGjEJ.

[62] Greta De groat. A History of Video Game Cataloging in U.S. Libraries.
Cataloging & Classification Quarterly, 53(2):135–156, February 2015. ISSN
0163-9374. doi: 10.1080/01639374.2014.954297.

[63] Frans de Vries. Gamers.Org - Frans P. de Vries, . URL http://www.gamers.
org/~fpv/.

[64] Frans P. de Vries. The idgames Archive hits 1 Gigabyte, . URL http:
//www.gamers.org/pub/idgames/docs/misc/milestone.txt.

[65] Shane Denson. Digital Seriality. URL http://shanedenson.com/stuff/
visualizing_digital_seriality/digital-seriality.html.

[66] Luciana Duranti. The concept of appraisal and archival theory. American
Archivist, 57(2):328–344, 1994.

[67] Émile Durkheim, Marcel Mauss, and Rodney Needham. Primitive classifi-
cation. Routledge paperbacks. Cohen & West, London, reprinted and first
published as a routledge paperback edition, 1970. ISBN 978-0-7100-3362-8
978-0-7100-6891-0. OCLC: 248017790.

[68] Jon-Paul C. Dyson. CHEGheads Blog » Preserving John Romero’s First
Computer at ICHEG | International Center for the History of Electronic
Games. URL http://www.museumofplay.org/blog/chegheads/2014/08/
preserving-john-romeros-first-computer-at-icheg/.

[69] Umberto Eco. How to Write a Thesis. MIT Press, Cambridge, MA; London,
2015.

[70] Clark A. Elliott. Understanding progress as process: documentation of the
history of post-war science and technology in the United States. Society of
Amer Archivists, 1983.

[71] Albert Endres. Commentary on James E. Tomayko. In History of Comput-
ing: Software Issues, pages 77–82. Springer-Verlag, Berlin; Heidelberg; New
York, 2002.

[72] Norman Fairclough. Discourse and social change. Polity Press, Cambridge,
Mass, 1992. ISBN 978-0-7456-0674-3.

351

https://groups.google.com/forum/#!search/david$20datta$20doom%7Csort:relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/nkrU0islGjEJ
https://groups.google.com/forum/#!search/david$20datta$20doom%7Csort:relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/nkrU0islGjEJ
https://groups.google.com/forum/#!search/david$20datta$20doom%7Csort:relevance/comp.sys.ibm.pc.games.action/tT3ptNF4qN8/nkrU0islGjEJ
http://www.gamers.org/~fpv/
http://www.gamers.org/~fpv/
http://www.gamers.org/pub/idgames/docs/misc/milestone.txt
http://www.gamers.org/pub/idgames/docs/misc/milestone.txt
http://shanedenson.com/stuff/visualizing_digital_seriality/digital-seriality.html
http://shanedenson.com/stuff/visualizing_digital_seriality/digital-seriality.html
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/
http://www.museumofplay.org/blog/chegheads/2014/08/preserving-john-romeros-first-computer-at-icheg/

[73] Norman Fairclough. Critical discourse analysis: the critical study of lan-
guage. Language in social life series. Longman, London ; New York, 1995.
ISBN 978-0-582-21980-9 978-0-582-21984-7.

[74] Clara Fernández-Vara. Introduction to Game Analysis. Routledge, New
York, 1 edition edition, July 2014. ISBN 978-0-415-70327-7.

[75] Paul Feyerabend and Ian Hacking. Against Method. Verso, London ; New
York, fourth edition edition edition, May 2010. ISBN 978-1-84467-442-8.

[76] Dr Andrew Flinn. Community Histories, Community Archives: Some Op-
portunities and Challenges. Journal of the Society of Archivists, 28(2):151–
176, October 2007. ISSN 0037-9816. doi: 10.1080/00379810701611936.

[77] Robert Forsman and Bernd Kreimeier. A Brief Summary of DOOM-Style
Rendering. July 1996.

[78] Tracy Fullerton, Chris Swain, and Steven Hoffman. Game design workshop:
Designing, prototyping, & playtesting games. CRC Press, 2004.

[79] Chaim Ophir Gingold. Play Design. eScholarship, January 2016. URL
http://escholarship.org/uc/item/8qr533m2.

[80] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. On-
tological engineering, volume 139. Springer Heidelberg, 2004.

[81] Dan Gordon and Shuhong Chen. Front-to-back display of BSP trees. IEEE
computer Graphics and Applications, 11(5):79–85, 1991.

[82] Lindsay D. Grace. A linguistic analysis of mobile games: Verbs and nouns
for content estimation. Proc. FDG, 2014.

[83] Anthony Grafton. The footnote: a curious history. Harvard University
Press, Cambridge, Mass, revised edition edition, 1997. ISBN 978-0-674-
90215-2.

[84] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing? International Journal of Human-Computer Studies, 43
(5):907–928, November 1995. ISSN 1071-5819. doi: 10.1006/ijhc.1995.1081.

[85] Raiford Guins. 8 Console. In Debugging Game History: A Critical Lexicon,
pages 63–79. 2016.

[86] Raiford Guins and Henry Lowood, editors. Debugging game history: a crit-
ical lexicon. Game histories. The MIT Press, Cambridge, Massachusetts,
2016. ISBN 978-0-262-03419-7.

352

http://escholarship.org/uc/item/8qr533m2

[87] Joan K. Haas, Helen Willa Samuels, and Barbara Trippel Simmons. Apprais-
ing the records of modern science and technology: a guide. Massachusetts
Institute of Technology Cambridge, MA, 1985.

[88] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, and Naraig Manjikian. Com-
puter Organization and Embedded Systems. McGraw-Hill, New York, NY,
2012.

[89] Harry H. Harman. Modern factor analysis. 1960.

[90] Vi Hart and Nicky Case. Parable of the Polygons. URL http://ncase.me/
polygons.

[91] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers, San Francisco, CA, 4th
edition edition, 2007.

[92] John L. Hennessy and David A. Patterson. Computer Organization and
Design: The Hardware / Software Interface. Morgan Kaufmann Publishers,
San Francisco, CA, 4th edition edition, 2009.

[93] Johan Huizinga. Homo ludens ; a study of the play-element in culture. Num-
ber 15 in Beacon paperbacks. Beacon Press, Boston, first beacon paperback
edition edition, 1955. ISBN 978-0-8070-4681-4.

[94] Edmund Husserl. The crisis of European sciences and transcendental phe-
nomenology ; an introduction to phenomenological philosophy. Northwestern
University studies in phenomenology & existential philosophy. Northwestern
University Press, Evanston, 1970. ISBN 978-0-8101-0255-2.

[95] Ken Hyland. Academic attribution: Citation and the construction of disci-
plinary knowledge. Applied linguistics, 20(3):341–367, 1999.

[96] Ken Hyland. Disciplinary discourses: social interactions in academic writ-
ing. Applied linguistics and language study. Longman, Harlow ; New York,
2000. ISBN 978-0-582-41904-9.

[97] International Conference on the History of Computing, Ulf Hashagen, Rein-
hard Keil-Slawik, Arthur L Norberg, and Heinz Nixdorf MuseumsForum,
editors. History of computing: software issues : International Conference
on the History of Computing, ICHC 2000, April 5-7, 2000, Heinz Nixdorf
MuseumsForum, Paderborn, Germany. Springer, Berlin; New York, 2002.
ISBN 978-3-540-42664-6. OCLC: 49649935.

353

http://ncase.me/polygons
http://ncase.me/polygons

[98] Dietmar Jannach, Lukas Lerche, Fatih Gedikli, and Geoffray Bonnin. What
recommenders recommend - an analysis of accuracy, popularity, and sales
diversity effects. In International Conference on User Modeling, Adaptation,
and Personalization, pages 25–37. Springer, 2013.

[99] Dennis G. Jerz. Somewhere Nearby is Colossal Cave: Examining
Will Crowther’s Original "Adventure" in Code and in Kentucky. 1
(2), 2007. URL http://www.digitalhumanities.org/dhq/vol/001/2/
000009/000009.html.

[100] Elizabeth Johnson. Our archives, our selves: documentation strategy and
the re-appraisal of professional identity. The American Archivist, 71(1):
190–202, 2008.

[101] Eric Kaltman. Current Game Preservation in Not Enough, June
2016. URL https://web.stanford.edu/group/htgg/cgi-bin/drupal/
?q=node/1211.

[102] Eric Kaltman, Noah Wardrip-Fruin, Henry Lowood, and Christy Caldwell.
A Unified Approach to Preserving Cultural Software Objects and their De-
velopment Histories. 2014. URL http://escholarship.org/uc/item/
0wg4w6b9.pdf.

[103] Eric Kaltman, Noah WardripâĂŞFruin, Henry Lowood, and Christy Cald-
well. Methods and Recommendations for Archival Records of Game Devel-
opment: The Case of Academic Games. Proceedings of the 10th International
Conference on the Foundations of Digital Games, 2015.

[104] Eric Kaltman, Noah Wardrip-fruin, Mitch Mastroni, Henry Lowood, Greta
De groat, Glynn Edwards, Marcia Barrett, and Christy Caldwell. Imple-
menting Controlled Vocabularies for Computer Game Platforms and Media
Formats in SKOS. Journal of Library Metadata, 16(1):1–22, January 2016.
ISSN 1938-6389, 1937-5034. doi: 10.1080/19386389.2016.1167494.

[105] Matthew G. Kirschenbaum. Mechanisms: New Media and the Forensic
Imagination. The MIT Press, Cambridge, Mass.; London, January 2012.
ISBN 978-0-262-51740-9.

[106] Steven A. Knowlton. Three decades since prejudices and antipathies: a
study of changes in the library of congress subject headings. Cataloging &
Classification Quarterly, 40(2):123–145, 2005.

[107] Don Knuth. Adventure, 1998. URL http://www.literateprogramming.
com/adventure.pdf.

354

http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html
http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html
https://web.stanford.edu/group/htgg/cgi-bin/drupal/?q=node/1211
https://web.stanford.edu/group/htgg/cgi-bin/drupal/?q=node/1211
http://escholarship.org/uc/item/0wg4w6b9.pdf
http://escholarship.org/uc/item/0wg4w6b9.pdf
http://www.literateprogramming.com/adventure.pdf
http://www.literateprogramming.com/adventure.pdf

[108] Don Knuth and Doug McIlroy. A Literate Program. Communications of
the ACM, 29(6), 1986.

[109] Donald Ervin Knuth. Literate programming. The Computer Journal, 27(2):
97–111, 1984.

[110] Lars Konzack. Computer Game Criticism: A Method for Computer Game
Analysis. In CGDC Conf., 2002.

[111] Wessel Kraaij andWilfried Post. Task based evaluation of exploratory search
systems. In Proc. of SIGIR 2006 Workshop, Evaluation Exploratory Search
Systems, Seattle, USA, pages 24–27, 2006.

[112] Thomas S. Kuhn. The Structure of Scientific Revolutions. University of
Chicago Press, Chicago, IL, 3rd edition edition, December 1996. ISBN 978-
0-226-45808-3.

[113] David Kushner. Masters of doom: how two guys created an empire and
transformed pop culture. Random House, New York, 1st ed edition, 2003.
ISBN 0-375-50524-5.

[114] George Lakoff. Women, fire, and dangerous things: what categories reveal
about the mind. University of Chicago Press, Chicago, 1987. ISBN 0-226-
46803-8.

[115] George Lakoff and Mark Johnson. Metaphors we live by. University of
Chicago Press, Chicago, 1980. ISBN 978-0-226-46801-3 978-0-226-46800-6.
OCLC: 6042798.

[116] Shyong K. Lam and John Riedl. Shilling recommender systems for fun and
profit. In Proceedings of the 13th international conference on World Wide
Web, pages 393–402. ACM, 2004.

[117] Ora Lassila and Deborah McGuinness. The role of frame-based representa-
tion on the semantic web. Linköping Electronic Articles in Computer and
Information Science, 6(5):2001, 2001.

[118] Bruno Latour. Science in action: how to follow scientists and engineers
through society. Harvard University Press, Cambridge, Mass., 1987. ISBN
0-674-79290-4 978-0-674-79290-6 0-674-79291-2 978-0-674-79291-3.

[119] Bruno Latour and Steve Woolgar. Laboratory Life: The Construction of
Scientific Facts. Princeton University Press, April 2013. ISBN 1-4008-2041-
3.

[120] John Law. Aircraft stories: Decentering the object in technoscience. Duke
University Press, 2002.

355

[121] Dylan Lederle-Ensign and Noah Wardrip-Fruin. What is strafe jumping?
idtech3 and the game engine as software platform. Transactions of the
Digital Games Research Association, 2(2), 2016. URL http://todigra.
org/index.php/todigra/article/view/35.

[122] Jin Ha Lee, Joseph T. Tennis, Rachel Ivy Clarke, and Michael Carpenter.
Developing a video game metadata schema for the Seattle Interactive Media
Museum. International Journal on Digital Libraries, 13(2):105–117, March
2013. ISSN 1432-5012, 1432-1300. doi: 10.1007/s00799-013-0103-x.

[123] Jin Ha Lee, Sungsoo Ray Hong, Hyerim Cho, and Yea-Seul Kim. Vizmo
game browser: Accessing video games by visual style and mood. In Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pages 149–152. ACM, 2015.

[124] Chong-U. Lim and D. Fox Harrell. Revealing social identity phenomena in
videogames with archetypal analysis. In Proceedings of the 6th International
AISB Symposium on AI and Games, 2015.

[125] David Link. Archaeology of Algorithmic Artefacts. Univocal Publishing,
Minneapolis, first edition edition, 2016. ISBN 978-1-937561-04-8.

[126] Chris Lombardi. They’re Going to Hell for This One! Computer Gaming
World, (108):104–105, July 1993. ISSN 0744-6667.

[127] Henry Lowood. The Hard Work of Software History. RBM: A Journal of
Rare Books, Manuscripts and Cultural Heritage, 2(2):141–160, 2001.

[128] Henry Lowood. Perfect Capture: Three Takes on Replay, Machinima and
the History of Virtual Worlds. Journal of Visual Culture, 10(1):113–124,
April 2011. ISSN 1470-4129, 1741-2994. doi: 10.1177/1470412910391578.

[129] Michael Lynch. The externalized retina: Selection and mathematization in
the visual documentation of objects in the life sciences. Human studies, 11
(2):201–234, 1988.

[130] James MacQueen and others. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA., 1967.

[131] Jimmy Maher. The future was here: the Commodore Amiga. Platform
studies. MIT Press, Cambridge, Mass, 2012. ISBN 978-0-262-01720-6.

[132] Michael S. Mahoney. The history of computing in the history of technology.
Annals of the History of Computing, 10(2):113–125, 1988.

356

http://todigra.org/index.php/todigra/article/view/35
http://todigra.org/index.php/todigra/article/view/35

[133] Michael S. Mahoney. Issues in the History of Computing. In History of
programming languages-II, pages 772–781. ACM, 1996.

[134] Frank Manchel. Film study: an analytical bibliography. Fairleigh Dickinson
University Press ; Associated University Presses, Rutherford : London, 1990.
ISBN 978-0-8386-3186-7.

[135] Gary Marchionini. Exploratory search: from finding to understanding. Com-
munications of the ACM, 49(4):41–46, 2006.

[136] Michael Mateas. AI and Interactive Storytelling: How We Can Help Each
Other, March 2010.

[137] Michael Mateas and Andrew Stern. A behavior language for story-based
believable agents. Intelligent Systems, IEEE, 17(4):39–47, 2002.

[138] Michael Mateas and Andrew Stern. Façade: An experiment in building
a fully-realized interactive drama. In Game Developers Conference, Game
Design track, volume 2, page 82, 2003.

[139] Michael Mateas and Noah Wardrip-Fruin. Defining operational logics. Dig-
ital Games Research Association (DiGRA), 2009.

[140] Scott A. May. The Best in Arcade Game Software. COMPUTE! Magazine,
16(160):S–1, January 1994. ISSN 0194-357X.

[141] G. Harry Mc Laughlin. SMOG grading-a new readability formula. Journal
of reading, 12(8):639–646, 1969.

[142] Josh McCoy, Mike Treanor, Ben Samuel, Michael Mateas, and Noah
Wardrip-Fruin. Prom Week: social physics as gameplay. In Proceedings of
the 6th International Conference on Foundations of Digital Games, pages
319–321, 2011.

[143] Josh McCoy, Mike Treanor, Ben Samuel, Aaron A. Reed, Michael Mateas,
and Noah Wardrip-Fruin. Prom Week: Designing past the game/story
dilemma. Proceedings of the 8th International Conference on Foundations
of Digital Games, 2013.

[144] Joshua McCoy. All the World’s a Stage: A Playable Model of Social In-
teraction Inspired by Dramaturgical Analysis. PhD thesis, University of
California, Santa Cruz, June 2012.

[145] Joshua McCoy, Mike Treanor, Ben Samuel, Brandon Robert Tearse, Michael
Mateas, and Noah Wardrip-Fruin. The Prom: An Example of Socially-
Oriented Gameplay. In AIIDE, 2010.

357

[146] Joshua McCoy, Mike Treanor, Ben Samuel, Noah Wardrip-Fruin, and
Michael Mateas. Comme il Faut: A System for Authoring Playable Social
Models. In AIIDE, 2011.

[147] Robert R. McCrae and Paul T. Costa. Validation of the five-factor model
of personality across instruments and observers. Journal of personality and
social psychology, 52(1):81, 1987.

[148] Jerome McDonough, Matthew Kirschenbaum, Doug Reside, Neil Fraistat,
and Dennis Jerz. Twisty Little Passages Almost All Alike: Applying the
FRBR Model to a Classic Computer Game. 4(2), 2010. URL http://www.
digitalhumanities.org/dhq/vol/4/2/000089/000089.html.

[149] Jerome P. McDonough. Preserving virtual worlds: Final Report. Graduate
School of Library and Information Science, University of Illinois at Urbana-
Champaign, 2010.

[150] mediaXstanford. A Tale of Two Jousts: Multimedia, Game Feel, and
Imagination. URL https://www.youtube.com/watch?v=JkbCNMAS0qI&
feature=youtu.be.

[151] Angelika Menne-Haritz. Appraisal or documentation: can we appraise
archives by selecting content? The American Archivist, 57(3):528–542, 1994.

[152] George A. Miller. WordNet: a lexical database for English. Communications
of the ACM, 38(11):39–41, 1995.

[153] Modern Language Association of America, editor. MLA handbook. The
Modern Language Association of America, New York, eighth edition edition,
2016. ISBN 978-1-60329-262-7.

[154] Annemarie Mol. Ontological politics. A word and some questions. The
Sociological Review, 46(S):74–89, 1998.

[155] Annemarie Mol. The body multiple: Ontology in medical practice. Duke
University Press, 2002.

[156] Nick Montfort. Cybertext Killed the Hypertext Star | Electronic Book
Review, December 2000. URL http://www.electronicbookreview.com/
thread/electropoetics/cyberdebates.

[157] Nick Montfort. Combat in Context. Game Studies, 6(1), December
2006. ISSN 1604-7982. URL http://gamestudies.org/0601/articles/
montfort.

358

http://www.digitalhumanities.org/dhq/vol/4/2/000089/000089.html
http://www.digitalhumanities.org/dhq/vol/4/2/000089/000089.html
https://www.youtube.com/watch?v=JkbCNMAS0qI&feature=youtu.be
https://www.youtube.com/watch?v=JkbCNMAS0qI&feature=youtu.be
http://www.electronicbookreview.com/thread/electropoetics/cyberdebates
http://www.electronicbookreview.com/thread/electropoetics/cyberdebates
http://gamestudies.org/0601/articles/montfort
http://gamestudies.org/0601/articles/montfort

[158] Nick Montfort and Ian Bogost. Racing the beam the Atari video computer
system. MIT Press, Cambridge, Mass., 2009. ISBN 978-0-262-25493-9 0-
262-25493-X.

[159] Theodor H. Nelson. Computer lib: Dream machines. Tempus Books of
Microsoft Press Redmond, 1987.

[160] James Newman. Best before: Videogames, supersession and obsolescence.
Routledge, 2012.

[161] James Newman. Ports and patches: Digital games as unstable objects.
Convergence: The International Journal of Research into New Media Tech-
nologies, 18(2):135–142, 2012.

[162] Noam Nisan and Shimon Schocken. The Elements of Computing Systems:
Building a Modern Computer from First Principles. Mit Press Cambridge,
MA, 2005.

[163] Bethany Paige Nowviskie. speculative collections, October 2016. URL http:
//nowviskie.org/2016/speculative-collections/.

[164] Hope A. Olson, John J. Boll, and Rao Aluri. Subject analysis in online
catalogs. Libraries Unlimited, Englewood, Colo, 2nd ed edition, 2001. ISBN
978-1-56308-800-1.

[165] Seymour Papert. Mindstorms: Children, computers, and powerful ideas.
Basic Books, Inc., 1980.

[166] Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim. A
literature review and classification of recommender systems research. Expert
Systems with Applications, 39(11):10059–10072, 2012.

[167] Tim Parks. References, Please. URL http://www.nybooks.com/daily/
2014/09/13/references-please/.

[168] Daniel Pinchbeck. Doom: scarydarkfast. Landmark video games. University
of Michigan Press, Ann Arbor, 2013. ISBN 978-0-472-07191-3.

[169] Michael Polanyi. The tacit dimension. Number 1962 in Terry lectures.
Anchor Books, Garden City, N.Y, 1967.

[170] Tammera M. Race, M. P. Popp, and D. Dallis. Resource discovery tools:
Supporting serendipity. Planning and implementing resource discovery tools
in academic libraries, pages 139–152, 2012.

359

http://nowviskie.org/2016/speculative-collections/
http://nowviskie.org/2016/speculative-collections/
http://www.nybooks.com/daily/2014/09/13/references-please/
http://www.nybooks.com/daily/2014/09/13/references-please/

[171] Kevin Raison, Noriko Tomuro, Steve Lytinen, and Jose P. Zagal. Extraction
of user opinions by adjective-context co-clustering for game review texts. In
Advances in Natural Language Processing, pages 289–299. Springer, 2012.

[172] Stephen Ramsay. Reading machines: toward an algorithmic criticism. Top-
ics in the digital humanities. University of Illinois Press, Urbana, 2011. ISBN
978-0-252-03641-5.

[173] Rebecca Heineman. Burgertime 7/12/2015: DOOM 3do. URL https:
//www.youtube.com/watch?v=rBbIil2HPSU.

[174] Mitch Resnick and Brian Silverman. Active Essays. URL http://www.
rupert.id.au/microworlds/circles/active-essay.html.

[175] Howard Rheingold. Virtual reality. Simon & Schuster, New York, N.Y., 1992.
ISBN 0-671-69363-8 978-0-671-69363-3 0-671-77897-8 978-0-671-77897-2.

[176] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recom-
mender systems handbook. Springer, 2011.

[177] Richard Rinehart and Jon Ippolito, editors. Re-collection: art, new media,
and social memory. Leonardo. The MIT Press, Cambridge, Massachusetts,
2014. ISBN 978-0-262-02700-7. OCLC: 858975361.

[178] Alex Roland. What Hath Kranzberg Wrought? Or, Does the History of
Technology Matter? Technology and Culture, 38(3):697, July 1997. ISSN
0040165X. doi: 10.2307/3106860.

[179] John Romero. Happy 23rd Birthday, DOOM! URL http://rome.ro/news/
2016/12/10/happy-23rd-birthday-doom.

[180] John Romero. Doom History 1994Âă|Âăplanet romero, January
2015. URL https://web.archive.org/web/20150108101506/http://
planetromero.com/2009/01/doom-history-1994.

[181] Eleanor Rosch, Carolyn B Mervis, Wayne D Gray, David M Johnson, and
Penny Boyes-Braem. Basic objects in natural categories. Cognitive Psychol-
ogy, 8(3):382–439, July 1976. ISSN 0010-0285. doi: 10.1016/0010-0285(76)
90013-X.

[182] Nathan Rosenberg. Exploring the black box: technology, economics, and
history. Cambridge University Press, Cambridge [England] ; New York,
1994. ISBN 978-0-521-45270-0 978-0-521-45955-6.

[183] David SH Rosenthal. Emulation & Virtualization as Preservation Strategies.
2015.

360

https://www.youtube.com/watch?v=rBbIil2HPSU
https://www.youtube.com/watch?v=rBbIil2HPSU
http://www.rupert.id.au/microworlds/circles/active-essay.html
http://www.rupert.id.au/microworlds/circles/active-essay.html
http://rome.ro/news/2016/12/10/happy-23rd-birthday-doom
http://rome.ro/news/2016/12/10/happy-23rd-birthday-doom
https://web.archive.org/web/20150108101506/http://planetromero.com/2009/01/doom-history-1994
https://web.archive.org/web/20150108101506/http://planetromero.com/2009/01/doom-history-1994

[184] Jeff Rothenberg. Ensuring the longevity of digital documents. Scientific
American, 272(1):42–47, 1995.

[185] Jeff Rothenberg. Ensuring the longevity of digital information. Int’l. J.
Legal Info., 26:1, 1998.

[186] James Owen Ryan, Eric Kaltman, Andrew Max Fisher, Timothy Hong,
Taylor Owen-Milner, Michael Mateas, and Noah Wardrip-Fruin. Large-Scale
Interactive Visualizations of Nearly 12,000 Digital Games. Proceedings of the
10th International Conference on the Foundations of Digital Games, 2015.

[187] James Owen Ryan, Eric Kaltman, Timothy Hong, Michael Mateas, and
Noah Wardrip-Fruin. People Tend to Like Related Games. Proceedings
of the 10th International Conference on the Foundations of Digital Games,
2015.

[188] James Owen Ryan, Eric Kaltman, Michael Mateas, and Noah Wardrip-
Fruin. Tools for Videogame Discovery Built Using Latent Semantic Analy-
sis. Proceedings of the 10th International Conference on the Foundations of
Digital Games, 2015.

[189] James Owen Ryan, Eric Kaltman, Michael Mateas, and Noah Wardrip-
Fruin. What We Talk About When We Talk About Games: Bottom-Up
Game Studies Using Natural Language Processing. Proceedings of the 10th
International Conference on the Foundations of Digital Games, 2015.

[190] James Owen Ryan, Eric Kaltman, Timothy Hong, Katherine Isbister,
Michael Mateas, and Noah Wardrip-Fruin. GameNet and GameSage:
Videogame Discovery as Design Insight. San Jose, CA, May 2016.

[191] Fabien Sanglard. Jurassic Park: Trespasser CG Source Code Review. URL
http://fabiensanglard.net/trespasser/.

[192] Peter Seibel. Code is not literature, 2014. URL http://www.gigamonkeys.
com/code-reading/.

[193] Raymond George Siemens and David Moorman, editors. Mind technologies:
humanities computing and the Canadianacademic community. University of
Calgary Press, Calgary, 2006. ISBN 1-55238-172-2.

[194] Brian Cantwell Smith. On the origin of objects. MIT Press, Cambridge,
Mass, 1996. ISBN 0-262-19363-9.

[195] Silvia B. Southwick. A Guide for Transforming Digital Collections Meta-
data into Linked Data Using Open Source Technologies. Journal of Li-
brary Metadata, 15(1):1–35, January 2015. ISSN 1938-6389, 1937-5034. doi:
10.1080/19386389.2015.1007009.

361

http://fabiensanglard.net/trespasser/
http://www.gigamonkeys.com/code-reading/
http://www.gigamonkeys.com/code-reading/

[196] David J. Staley. Computers, visualization, and history: how new technol-
ogy will transform our understanding of the past. History, the humanities,
and the new technology. Routledge, Abingdon, second edition edition, 2015.
ISBN 978-1-317-50740-6.

[197] Philip J. Stephens. Writing a fast 3d graphics engine. September 1995. URL
http://www.gamers.org/dEngine/doom/papers/webview.ps.gz.

[198] Mary Stevens, Andrew Flinn, and Elizabeth Shepherd. New frameworks for
community engagement in the archive sector: from handing over to handing
on. International Journal of Heritage Studies, 16(1-2):59–76, January 2010.
ISSN 1352-7258. doi: 10.1080/13527250903441770.

[199] Alva T. Stone. The LCSH century: a brief history of the Library of Congress
subject headings, and introduction to the centennial essays. Cataloging &
Classification Quarterly, 29(1-2):1–15, 2000.

[200] C. A. Sula and M. Miller. Citations, contexts, and humanistic discourse:
Toward automatic extraction and classification. Literary and Linguistic
Computing, 29(3):452–464, September 2014. ISSN 0268-1145, 1477-4615.
doi: 10.1093/llc/fqu019.

[201] Brian Sutton-Smith. The ambiguity of play. Harvard University Press,
Cambridge, Mass, 1997. ISBN 978-0-674-01733-7.

[202] Patrik Svensson and David Theo Goldberg, editors. Between humanities
and the digital. The MIT Press, Cambridge, Massachusetts, 2015. ISBN
978-0-262-02868-4.

[203] Steve Swink. Game Feel: A Game Designer’s Guide to Virtual Sensation.
Morgan Kaufmann, Burlington, MA, 2009.

[204] Arlene G Taylor. The organization of information. Libraries Unlimited,
Westport, Conn., 2004. ISBN 1-56308-976-9 978-1-56308-976-3 1-56308-
969-6 978-1-56308-969-5.

[205] Katie Salen Tekinbaş and Eric Zimmerman. Rules of play: game design
fundamentals. MIT Press, Cambridge, Mass, 2004. ISBN 978-0-262-24045-
1.

[206] Katie Salen Tekinbaş and Eric Zimmerman, editors. The Game design
reader: a rules of play anthology. MIT Press, Cambridge, Mass, 2005. ISBN
978-0-262-19536-2.

362

http://www.gamers.org/dEngine/doom/papers/webview.ps.gz

[207] Carl Therrien. Inspecting Video Game Historiography Through Critical
Lens: Etymology of the First-Person Shooter Genre. Game Studies, 15(2),
December 2015. ISSN 1604-7982. URL http://gamestudies.org/1502/
articles/therrien.

[208] J. E. Tomayko. Computers take flight: a history of NASA’s pioneering dig-
ital fly-by-wire project. Number 2000-4224 in NASA history series. National
Aeronautics and Space Administration, NASA Office of Policy and Plans,
NASA History Office, Washington, D.C, 2000. ISBN 978-0-16-059053-5.

[209] J. E Tomayko, United States, National Aeronautics and Space Adminis-
tration, and Scientific and Technical Information Division. Computers in
spaceflight: the NASA experience. National Aeronautics and Space Admin-
istration, Scientific and Technical Information Division, Washington, D.C.,
1988. OCLC: 68711652.

[210] James E. Tomayko. Software as Engineering. In History of Computing: Soft-
ware Issues, pages 65–76. Springer-Verlag, Berlin; Heidelberg; New York,
2002.

[211] Mike Treanor. Investigating Procedural Expression and Interpretation in
Videogames. PhD thesis, University of California, Santa Cruz, June 2013.

[212] Bret Victor. The Ladder of Abstraction. URL http://worrydream.com/
#!2/LadderOfAbstraction.

[213] Bret Victor. Ten Brighter Ideas? An Explorable Explanation, 2010. URL
http://worrydream.com/TenBrighterIdeas/.

[214] Bret Victor. Explorable Explanations, 2011. URL http://worrydream.
com/#!/ExplorableExplanations.

[215] Vernor Vinge. A Deepness in the Sky. Tor Books, New York, reprint edition
edition, January 2000. ISBN 978-0-8125-3635-5.

[216] Noah Wardrip-Fruin. Expressive processing. MIT Press, Cambridge (Mass.),
2009. ISBN 978-0-262-01343-7 0-262-01343-6.

[217] Claire Warwick, Melissa M. Terras, and Julianne Nyhan, editors. Digital
humanities in practice. Facet Publishing in association with UCL Centre
for Digital Humanities, London, 2012. ISBN 978-1-85604-766-1.

[218] David Weinberger. Too big to know: rethinking knowledge now that the
factsaren’t the facts, experts are everywhere, and the smartestperson in the
room is the room. Basic Books, New York, 2011. ISBN 978-0-465-02142-0
978-0-465-02813-9. OCLC: 701015486.

363

http://gamestudies.org/1502/articles/therrien
http://gamestudies.org/1502/articles/therrien
http://worrydream.com/#!2/LadderOfAbstraction
http://worrydream.com/#!2/LadderOfAbstraction
http://worrydream.com/TenBrighterIdeas/
http://worrydream.com/#!/ExplorableExplanations
http://worrydream.com/#!/ExplorableExplanations

[219] Hayden V White. Metahistory: the historical imagination in nineteenth-
century Europe. Johns Hopkins University Press, Baltimore, 1973. ISBN
0-8018-1469-3 978-0-8018-1469-3 0-8018-1761-7 978-0-8018-1761-8.

[220] Hayden V. White. Tropics of discourse: essays in cultural criticism. Johns
Hopkins University Press, Baltimore, 1978. ISBN 978-0-8018-2127-1.

[221] Hayden V. White. The practical past. FlashPoints. Northwestern University
Press, Evanston, Illinois, 2014. ISBN 978-0-8101-3006-7. OCLC: 879583905.

[222] Ryen W. White and Resa A. Roth. Exploratory search: Beyond the query-
response paradigm. Synthesis Lectures on Information Concepts, Retrieval,
and Services, 1(1):1–98, 2009.

[223] Ryen W. White, Gary Marchionini, and Gheorghe Muresan. Evaluating
exploratory search systems: Introduction to special topic issue of information
processing and management. Pergamon, 2008.

[224] Jay Wilbur. Official DOOM information - Google Groups, . URL
https://groups.google.com/forum/#!topicsearchin/comp.sys.
ibm.pc.games/doom$20AND$20authorname$3A%22Jay$20Wilbur%
22$20AND$20before$3A1992$2F12$2F01/comp.sys.ibm.pc.games/
aKeDgimg-IA.

[225] Jay Wilbur. Wolf3d and a Serial Link.... - Google Groups,
. URL https://groups.google.com/forum/#!searchin/comp.
sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:
date/comp.sys.ibm.pc.games/f9SqYzObxtU/ID_wR38QbKAJ.

[226] Douglas Wilson. A breakdown of 2013’s most
fascinating video game moment, December 2013.
URL http://www.polygon.com/2013/12/23/5227726/
anatomy-of-a-spelunky-miracle-or-how-the-internet-finally-beat.

[227] Megan A. Winget and Caitlin Murray. Collecting and preserving videogames
and their related materials: A review of current practice, game-related
archives and research projects. Proceedings of the American Society for
Information Science and Technology, 45(1):1–9, January 2008. ISSN 1550-
8390. doi: 10.1002/meet.2008.1450450250.

[228] Megan A. Winget and Wiliam Walker Sampson. Game Development Docu-
mentation and Institutional Collection Development Policy. In Proceedings
of the 11th Annual International ACM/IEEE Joint Conference on Digital
Libraries, JCDL ’11, pages 29–38, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0744-4. doi: 10.1145/1998076.1998083.

364

https://groups.google.com/forum/#!topicsearchin/comp.sys.ibm.pc.games/doom$20AND$20authorname$3A%22Jay$20Wilbur%22$20AND$20before$3A1992$2F12$2F01/comp.sys.ibm.pc.games/aKeDgimg-IA
https://groups.google.com/forum/#!topicsearchin/comp.sys.ibm.pc.games/doom$20AND$20authorname$3A%22Jay$20Wilbur%22$20AND$20before$3A1992$2F12$2F01/comp.sys.ibm.pc.games/aKeDgimg-IA
https://groups.google.com/forum/#!topicsearchin/comp.sys.ibm.pc.games/doom$20AND$20authorname$3A%22Jay$20Wilbur%22$20AND$20before$3A1992$2F12$2F01/comp.sys.ibm.pc.games/aKeDgimg-IA
https://groups.google.com/forum/#!topicsearchin/comp.sys.ibm.pc.games/doom$20AND$20authorname$3A%22Jay$20Wilbur%22$20AND$20before$3A1992$2F12$2F01/comp.sys.ibm.pc.games/aKeDgimg-IA
https://groups.google.com/forum/#!searchin/comp.sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:date/comp.sys.ibm.pc.games/f9SqYzObxtU/ID_wR38QbKAJ
https://groups.google.com/forum/#!searchin/comp.sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:date/comp.sys.ibm.pc.games/f9SqYzObxtU/ID_wR38QbKAJ
https://groups.google.com/forum/#!searchin/comp.sys.ibm.pc.games/doom$20before$3A1992$2F12$2F01%7Csort:date/comp.sys.ibm.pc.games/f9SqYzObxtU/ID_wR38QbKAJ
http://www.polygon.com/2013/12/23/5227726/anatomy-of-a-spelunky-miracle-or-how-the-internet-finally-beat
http://www.polygon.com/2013/12/23/5227726/anatomy-of-a-spelunky-miracle-or-how-the-internet-finally-beat

[229] Steve Woolgar. On the alleged distinction between discourse and praxis.
Social Studies of Science, pages 309–317, 1986.

[230] Steve Woolgar and Javier Lezaun. The wrong bin bag: A turn to ontology
in science and technology studies? Social Studies of Science, 43(3):321–340,
June 2013. ISSN 0306-3127, 1460-3659. doi: 10.1177/0306312713488820.

[231] Takashi Yamamiya, Alessandro Warth, and Ted Kaehler. Active Essays on
the Web. In Creating, Connecting and Collaborating through Computing,
2009. C5’09. Seventh International Conference on, pages 3–10. IEEE, 2009.

[232] Chuttur M. Yasser. An Analysis of Problems in Metadata Records. Journal
of Library Metadata, 11(2):51–62, April 2011. ISSN 1938-6389, 1937-5034.
doi: 10.1080/19386389.2011.570654.

[233] José P. Zagal and Noriko Tomuro. The aesthetics of gameplay: a lexi-
cal approach. In Proceedings of the 14th International Academic MindTrek
Conference: Envisioning Future Media Environments, pages 9–16. ACM,
2010.

[234] José P. Zagal, Michael Mateas, Clara Fernández-Vara, Brian Hochhalter,
and Nolan Lichti. 2. Towards an Ontological Language for Game Analysis.
Worlds in Play: International Perspectives on Digital Games Research, 21:
21, 2007.

[235] José P. Zagal, Noriko Tomuro, and Andriy Shepitsen. Natural language
processing in game studies research: An overview. Simulation & Gaming,
43(3):356–373, 2012.

[236] José Pablo Zagal and Noriko Tomuro. Cultural differences in game appre-
ciation: A study of player game reviews. In FDG, pages 86–93, 2013.

[237] Miaoqi Zhu and Xiaowen Fang. Developing playability heuristics for com-
puter games from online reviews. In International Conference of Design,
User Experience, and Usability, pages 496–505. Springer, 2014.

[238] Miaoqi Zhu and Xiaowen Fang. Introducing a revised lexical approach to
study user experience in game play by analyzing online reviews. In Proceed-
ings of the 2014 Conference on Interactive Entertainment, pages 1–8. ACM,
2014.

[239] Miaoqi Zhu and Xiaowen Fang. What nouns and adjectives in online game
reviews can tell us about player experience? In Proceedings of the extended
abstracts of the 32nd annual ACM conference on Human factors in comput-
ing systems, pages 1471–1476. ACM, 2014.

365

[240] Miaoqi Zhu and Xiaowen Feng. Using lexicons obtained from online reviews
to classify computer games. 2013.

[241] Miaoqi Zhu, Xiaowen Fang, Susy S. Chan, and Jacek Brzezinski. Build-
ing a dictionary of game-descriptive words to study playability. In CHI’13
Extended Abstracts on Human Factors in Computing Systems, pages 1077–
1082. ACM, 2013.

366

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	On the history of technology
	On the history of software
	On the history of computer games in the history of software in the history of technology
	On preservation
	On knowledge accumulation, exploration and expression in the history of technology
	On an intermediary perspective for the history of games as software
	Stabilization
	Exploration
	Expression

	Appraisal
	Compiling the Record
	Appraisal
	Related Work

	Prom Week
	Choice of Prom Week
	Process
	Context
	Documentary Enumeration

	Conclusion

	Description
	Introduction
	A Brief on Controlled Vocabularies
	A Course Through the Thicket

	Controlled Vocabularies
	A Brief Record Example
	Vocabulary and Ontology Best Practices
	``Aboutness'' of Platform
	Levels of Abstraction
	Derivation of Terms
	Format, Conceptualization and Reasonable Compatibility
	Semantic Web Integration
	Vocabularies in Institutional Practice

	Future Work
	Conclusion

	Citation
	The Pivot
	Citation
	Citation in Use
	Citation as Discourse

	Bibliography and Citation in Game Studies
	Presupposition of DOOM!

	Reduction and Intertextual Expression
	Types and Examples of Reduction
	Video
	Visualization
	Emulation
	Closing

	Back to Citation and Archives
	A Tool for Descriptive and Manifest Citation of Games
	Game v Performance
	Citation Tool
	Command Line
	Web Application
	Future Work

	Evaluation
	Discussion
	Improvements and Future Work

	Conclusion

	Discovery
	Intro
	Game Discovery
	Forms of Discovery and Their Limitations

	A Goal for Discovery
	A Model for Discovery
	Related Work in NLP for Games
	Latent Semantic Analysis

	Tools for Discovery
	Related Discovery Work
	GameNet
	GameSage

	Visualizations for Discovery
	GameGlobs
	Gamespace
	GameTree

	Evaluation
	Expert Evaluation
	Novice Game Designer Evaluation

	Future Work
	Conclusion

	A Model of Doom
	Introduction
	Fractal History
	A Model of Game Software Historical Study
	Doom in Fractal Coherence
	Historiographable Target
	Reified Object
	Technical Expression
	Enacted and Tacit Knowledge

	Conclusion

	Conclusion
	The Conditions of a History for Games and Software
	The Network Contingency and its Implications on Practice
	Problems of the Network Contingency

