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ARTICLE OPEN

Structural covariance of the ventral visual stream predicts
posttraumatic intrusion and nightmare symptoms: a
multivariate data fusion analysis
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Visual components of trauma memories are often vividly re-experienced by survivors with deleterious consequences for normal
function. Neuroimaging research on trauma has primarily focused on threat-processing circuitry as core to trauma-related
dysfunction. Conversely, limited attention has been given to visual circuitry which may be particularly relevant to posttraumatic
stress disorder (PTSD). Prior work suggests that the ventral visual stream is directly related to the cognitive and affective
disturbances observed in PTSD and may be predictive of later symptom expression. The present study used multimodal magnetic
resonance imaging data (n= 278) collected two weeks after trauma exposure from the AURORA study, a longitudinal, multisite
investigation of adverse posttraumatic neuropsychiatric sequelae. Indices of gray and white matter were combined using data
fusion to identify a structural covariance network (SCN) of the ventral visual stream 2 weeks after trauma. Participant’s loadings on
the SCN were positively associated with both intrusion symptoms and intensity of nightmares. Further, SCN loadings moderated
connectivity between a previously observed amygdala-hippocampal functional covariance network and the inferior temporal gyrus.
Follow-up MRI data at 6 months showed an inverse relationship between SCN loadings and negative alterations in cognition in
mood. Further, individuals who showed decreased strength of the SCN between 2 weeks and 6 months had generally higher PTSD
symptom severity over time. The present findings highlight a role for structural integrity of the ventral visual stream in the
development of PTSD. The ventral visual stream may be particularly important for the consolidation or retrieval of trauma memories
and may contribute to efficient reactivation of visual components of the trauma memory, thereby exacerbating PTSD symptoms.
Potentially chronic engagement of the network may lead to reduced structural integrity which becomes a risk factor for lasting
PTSD symptoms.

Translational Psychiatry          (2022) 12:321 ; https://doi.org/10.1038/s41398-022-02085-8

INTRODUCTION
Traumatic memories in posttraumatic stress disorder (PTSD) can
spontaneously intrude into a victim’s thoughts, contributing to
re-experiencing of the event, or prompting hypervigilance to
potential cues that signal danger [1]. Though often assumed to
reflect alterations in core threat neurocircuitry, the process of
encoding, recalling, and directing attention to visual informa-
tion in PTSD may also rely on visual circuitry that has been
generally understudied [2]. Vividness of imagined scenes in
those with PTSD has long been known to be positively related
to frequency of posttraumatic flashbacks and nightmares,
underscoring the potential clinical relevance of visual

processing in the disorder [3]. Putatively aberrant neurobiology
of visuo-affective circuitry may thus help to clarify PTSD-related
behavioral changes such as threat vigilance, flashbacks, night-
mares, and intrusive thoughts [4–8].
The ventral visual stream may be particularly important for

PTSD given its role in object recognition and categorization, and
its interconnections with canonical threat-related regions such as
the amygdala for processing of threat-relevant stimuli [9–14]. Early
visual cortex regions (V1 and V2), the posterior/anterior inferior
temporal lobe, and superior temporal sulcus are thought to be
canonical regions of the ventral visual stream with known
projections to regions such as the amygdala, medial temporal
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lobe, and striatum [15]. Sensory information is thought to move
from primary visual cortices along the pathway towards more
anterior components wherein more complex and higher-order
features tend to be represented. The ventral visual stream has also
previously been proposed to be critical for the development of the
prefrontal cortex (PFC) and executive functions including attention
regulation [16]. Both animal model and human neuroimaging
research also demonstrate that stress exposure modulates activity
in neural regions of visual processing [17, 18]. Extant literature
therefore suggests visual circuitry may be involved in stress-
modulated threat responses, but limited work in PTSD has directly
investigated potential disorder-relevant circuitry variability.
Consideration of visual circuitry may further the development of

functional and structural magnetic resonance imaging (MRI)-based
neural signatures of PTSD susceptibility. Prior functional MRI (fMRI)
studies suggest amygdala reactivity to threat and connectivity to
the PFC either before or relatively early after trauma is associated
with greater risk to developing later PTSD symptoms [19–22].
However, ventral visual areas also show increased reactivity to
threat in chronic PTSD [23] and amygdala to visual cortex
connectivity is related to later PTSD symptoms above and beyond
current PTSD symptoms [22]. Moreover, structural MRI research
suggests hippocampal volume and uncinate fasciculus micro-
structure are predictive of PTSD, though these findings are mixed
[24–30]. Other white matter imaging research, however, has found
that microstructure of visual association tracts such as the inferior
fronto-occipital fasciculus and inferior longitudinal fasciculus in
the early aftermath of trauma is related to PTSD development [31].
Thus while neurobiology of threat circuitry is important, integra-
tion of functional and structural correlates of visual circuitry may
enhance our understanding of the neurobiology of PTSD
susceptibility.
Multimodal data fusion approaches to brain imaging data may

be better suited to uncovering affective visual neurocircuitry
relevant to PTSD than previously used unimodal approaches.
Multivariate analyses allow for simultaneous integration of
information across multiple imaging modalities to identify
associations with PTSD symptoms, thus increasing the overall
power of MRI data to identify PTSD-susceptible phenotypes. Prior
work observed multimodal patterns of fMRI and positron
emission tomography (PET) activation distributed across threat
neurocircuitry that also included thalamus, extrastriatal, and
primary visual cortex differentially associated with PTSD and
traumatic brain injury-related dysfunction [32]. Similarly, we have
previously observed an association between the strength of a
multimodal ventral visual stream structural covariance network
and early PTSD symptoms after trauma in a distinct, smaller
trauma cohort [33]. Together, the prior findings highlight the
increased power and utility of multimodal neuroimaging for
dissecting trauma-related disorder phenotypes and the potential
role of both threat and visual neurocircuitry. Whether changes in
structure of the ventral visual stream over time, or potential
relationships to brain function, are related to PTSD symptoms
remains unclear.
In the present study, we utilized data from the large,

prospective, longitudinal Advancing Understanding of RecOvery
afteR trauma (AURORA) study to investigate multimodal MRI
markers of PTSD. We first investigated if a previously observed
structural covariance network (SCN) of the ventral visual stream
(VVS) would be replicated in a separate, multisite, and demo-
graphically heterogenous dataset. We hypothesized that indivi-
dual variability in the strength of the SCN would be positively
related to acute PTSD symptoms. We also examined the relation-
ship between variability in the SCN loadings and post-trauma
nightmare symptoms as an index of vision-related posttraumatic
disturbance. In addition, we investigated if the VVS SCN would be
related to threat-related neural reactivity or connectivity patterns
previously shown to be related to PTSD susceptibility in

emergency department cohorts. Finally, we evaluated if changes
in SCN loadings were associated with changes in PTSD symptoms
over time. The present findings provide a robust characterization
of a multimodal structural covariance network of the ventral visual
stream in recent trauma victims and establishes a new framework
for potential affective-visual circuitry that may be critical to
understanding PTSD susceptibility.

METHODS
Data from the present analyses were obtained as part of the AURORA
Study, a multisite longitudinal study of adverse posttraumatic neuropsy-
chiatric sequelae. Details of the larger AURORA project are described in the
parent and recent reports [22, 34–36]. Briefly, trauma-exposed participants
were recruited from Emergency Departments (ED) from across the United
States. Trauma was defined as a medical accident requiring admission to
the ED, and participants who experienced events such as a motor vehicle
collision, high fall (>10 feet), physical assault, sexual assault, or mass
casualty incidents were automatically included in the study. Other trauma
exposures were also qualifying if: (a) the individual responded to a
screener question that they experienced the exposure as involving actual
or threatened serious injury, sexual violence, or death, either by direct
exposure, witnessing, or learning about the trauma and (b) the research
assistant agreed that the exposure was a plausible qualifying event.
Trauma was a necessary inclusion criterion for the present study, and no
participants without trauma were included. Frequency of the broad class of
trauma exposures endorsed by participants are included in Table S1. Data
were initially intended to be collected from 439 participants recruited
between 09/25/2017 and 07/31/2020. Of the recruited participants, no MRI
data were collected from 53 participants. Further, the present multimodal
data fusion analysis required participants to have completed both
anatomical T1-weighted and diffusion weighted imaging (DWI). Thus, we
excluded participants without either data type or whose data did not pass
quality control procedures (described below). In total, 278 participants
were included in the multimodal data fusion analyses. A subset of
individuals (n= 83) also had usable MRI data from a follow-up imaging
session 6 months after trauma exposure. All participants gave written
informed consent as approved by each study site’s Institutional
Review Board.

Demographic and psychometric data collection
Initial participant demographic and psychometric data were collected after
admission to the ED (Table 1). PTSD symptoms were assessed using the
PTSD Checklist for DSM-5 (PCL-5) [37], a 20-item self-report questionnaire
on symptom expression and severity. Participants’ PTSD symptoms were
assessed within the ED (i.e., past 30 days prior to trauma), 2 weeks,
8 weeks, 3 months, and 6 months after trauma exposure. For the present
analyses, we focused on prior (30 days prior to ED), 2-week and 6-month
PTSD symptoms post ED given our a priori interests and to limit the
number of potential comparisons. The 2-week assessment queried
participant symptoms in the past 14 days while the 6-month assessment
queried participant symptoms in the past 30 days. Participants’ depression
symptoms were also assessed using the Patient-Reported Outcomes
Measurement Information System (PROMIS) Depression instrument from
the PROMIS short form 8b [38]. T-scores were derived from total responses
to eight items scored on a Likert scale from 1 (never) to 5 (always).
Participants’ prior life trauma was assessed using the Life Events Checklist
version 5 (LEC-5) [39]. The checklist assessed prior exposure to traumatic
events such as natural disasters, accidents, assaults, etc. that (a) happened
directly to the participant, (b) were witnessed by the participant, (c) the
participant learned happened to someone close to them, or (d) the
participant was exposed to details of it due to their occupation. Responses
to all questions were summed to derive a prior trauma index and
participants who did not respond to all questions were coded as missing.
Participants’ symptoms of nightmares were assessed two weeks after
trauma using the Clinician Administered PTSD Scale IV [40, 41]. Specifically,
participants were asked, in the past two weeks, (1) how often they had
unpleasant dreams and (2) how much distress or discomfort did their
unpleasant dreams cause? Participants scored each question on a scale
from 0 to 4. Nightmare frequency was defined as participant responses to
question one. Nightmare intensity was defined as participant responses to
question two. Nightmare severity was defined as the sum of responses to
questions one and two.
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Magnetic resonance imaging
General procedures. MRI data were collected across five sites with
harmonized acquisition parameters (Table S2). In the present analyses,
we utilized participants’ T1-weighted, DWI, task-fMRI during a threat
reactivity task, and resting-state fMRI data. Results included in this
manuscript come from preprocessing performed using FMRIPREP version
stable 1.2.2, a Nipype-based tool [42, 43]. Details of the pipeline are
described in the supplemental material. Modality and feature-specific
processing are described below. A schematic of the overall processing and
analytic steps are provided in the supplement (Figure S1).

Voxel-based morphometry and surface-based morphology
T1-weighted MRI data were visually inspected and assessed using MRIQC
[44]. We excluded participants based on coefficient of joint variation (CJV),
a measure of motion and voxel non-uniformity, by a value of >2 SD
(n= 23). Voxel-based morphometry (VBM) and cortical surface features
were generated as in our prior reports [28, 33]. VBM was completed using
standard FSL routines (i.e., FSLVBM) of the participants’ anatomical scan
[45–47]. Normalized and modulated gray matter volume (GMV) maps were
smoothed using a 4mm full-width at half-maximum (FWHM) Gaussian
Kernel and re-masked by a participant-derived gray matter mask. The VBM

results were visually inspected and participants with poor segmentation
were omitted (n= 24) from the multimodal analysis. Cortical surface maps
were reconstructed through FreeSurfer within the FMRIPREP framework
[42, 43]. Individual participant maps of cortical thickness (CT) and pial
surface area (PSA) were resampled into the fsaverage space and smoothed
at a range of 10mm FWHM.

Diffusion tensor imaging (DTI)
DTI of the white matter skeleton was completed to derive metrics of white
matter microstructure as described in our prior reports [28, 33]. Briefly, the
processing pipeline was developed according to the recommendations of the
ENIGMA consortium (http://enigma.ini.usc.edu/protocols/dti-protocols/). To
ensure quality data, we calculated metrics of temporal signal-to-noise ratio
and outlier maximum voxel intensity as in a prior report [47]. Participants who
demonstrated both (a) TSNR values lower than 4.88 and (b) maximum voxel
intensities >5000 were removed from analyses to retain the maximum
number of participants while removing low-quality data. Motion and eddy
current effects in diffusion data were reduced using the ‘eddy’ subroutine in
the FMRIB Software Library (FSL) [47–49] and susceptibility effects were
corrected using nonlinear warping of the diffusion data to the participant’s
anatomical data [50]. Diffusion data were fit with a tensor model and Tract-
Based Spatial Statistics (TBSS) processing was implemented following the
ENIGMA-DTI working group processing standards to generate fractional
anisotropy (FA), mean diffusivity (MD), and mode of the diffusion tensor (MO)
skeletal maps [51, 52].

Task-fMRI
To index neural reactivity to threat, participants completed an emotional
reactivity task designed to probe reactivity to social threat cues via passive
viewing of fearful and neutral facial expressions. The task is described in
prior work [19, 23, 36]. Faces from the Ekman faces library were presented
in a block design with 8 different faces of the same emotion (fear vs.
neutral) within an 8 s block. Individual faces were presented for 500ms
each with a 500ms interstimulus interval. Participants were given three
10 s rest periods evenly distributed throughout the task. The 5min task
included 15 fear blocks and 15 neutral blocks presented in a pseudoran-
dom order. The order was counterbalanced across participants. The 1st-
level models of these data were completed in SPM12 after denoising with
ICA-AROMA as part of the FMRIPREP pipeline, which has been shown to
handle motion artifacts in a robust, data-driven fashion that performs
equal to and in some cases better than standard scrubbing or censoring
procedures at the individual participant level [53–55]. Task blocks were
modeled with separate boxcar functions representing the onset and
8000ms duration of each block, convolved with a canonical hemodynamic
response function. Separate regressors for white matter, cerebrospinal
fluid, and global signal were included to account for any remaining
motion/physiological noise following ICA. Group-level statistical modeling
was completed in AFNI on the 1st level contrasts of fearful > neutral face
contrast.

Resting-state fMRI
Resting state fMRI data were further processed within the Analysis for
Functional NeuroImages (AFNI) program 3dTproject following denoising
with ICA-AROMA to perform linear detrending, censoring of non-steady
state volumes identified by FMRIPREP, bandpass filtering (0.01–0.1 Hz), and
regression of white matter, corticospinal fluid, and global signal to account
for potential physiological noise. Group ICA via MELODIC was completed as
described in our prior report [22]. Automatic dimensionality reduction
selected 77 independent components. We focused the initial analyses on
two RSNs based on our a priori hypotheses and findings from an earlier
report: the default mode network and an amygdala-hippocampal
functional covariance network [22]. Spatial maps of selected RSNs for
analysis are depicted in the supplement (Figure S2). Exploratory analyses of
additional spatial maps that covered visual and “arousal” regions seen in
our prior work were also completed (n= 6) [33]. Dual regression was
performed to derive individual participant spatial maps for each
component as described previously [22, 56, 57].

Linked independent component analysis
Linked independent component analysis (LICA) was completed using FSL
and MATLAB to perform multimodal data fusion [58, 59]. LICA leverages
joint information reflected in the MR modalities to identify correlated
patterns of structural and diffusion spatial variation that are linked

Table 1. Participant demographics.

Characteristic Mean (SD) or n (%)

Age 33.99 (12.83)

Sex assigned at birth, male/female 102 (36.69%)/176
(63.31%)

Race/ethnicity

Hispanic 45 (16.19%)

White 98 (35.25%)

Black 122 (43.89%)

Other 11 (3.96%)

Missing 2 (0.72%)

Highest grade level

12th grade or less (No diploma) 12 (4.32%)

High school graduate or GED 77 (27.70%)

Some college (No degree) 90 (32.37%)

Associates degree (Occupational/
Vocational or Academic program)

31 (11.15%)

Bachelor's degree 50 (17.99%)

Graduate degree (Master's, Professional,
or Doctoral)

18 (6.48%)

Income level

<$19,000 64 (23.02%)

$19,001–$35,000 86 (30.94%)

$35,001–$50,000 37 (12.31%)

$50,001–$75,000 27 (9.71%)

$75,001–$100,000 15 (5.40%)

>$100,000 21 (7.55%)

Missing 28 (10%)

Clinical characteristics

PCL-5 scores

(30 days pre-ED) (n= 201) 30.76 (15.88)

2-week (n= 244) 30.50 (17.14)

6-month (n= 199) 22.17 (17.49)

PROMIS depression

Prior (30 days pre-ED) (n= 277) 49.87 (10.71)

2-week (n= 255) 55.63 (9.83)

6-month (n= 197) 52.49 (10.47)

LEC-5 scores (n= 220) 10.49 (10.13)
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together through a subjects loading matrix reflecting the strength of the
component pattern for each participant. Each identified component is thus
composed of two parts: (1) a spatial map, for each modality, that describes
regional variability that is related to variability to all other modalities and
(2) participant loadings that describe an individual participant’s relative
strength of the component relative to all other participants. The FA, MD,
MO, GMV, CT, and PSA maps from the 2-week MRI scan were used as
spatial features. LICA was completed at a high dimensionality (L= 119, the
maximum estimated within LICA) to better separate signal and noise (i.e.,
participant-dominated and motion) components [33, 59–61]. We specifi-
cally focused on identifying a component reflecting the ventral visual
stream and thus only selected a single component for analyses to limit
multiple comparisons. A subset (n= 83) of participants had usable,
longitudinal multimodal MRI data from an identical imaging session
completed 6 months after trauma exposure. Components from the LICA
performed with 2-week MRI data were projected to the 6-month data via
multivariate spatial regression similar to the first stage of dual regression,
for each modality separately [61] to derive a set of subject loadings for
each modality. The loadings were then averaged together to generate an
estimated 6-month component loading.

Statistical analyses
Statistical analyses were completed using IBM SPSS version 24, the JASP
Statistical Package (https://jasp-stats.org/), and the Analysis of Functional
NeuroImages (AFNI) software package [62]. We completed multiple linear
regressions to evaluate if SCN loadings were associated with acute (i.e., 2-
week) PTSD symptoms. Regressions included dummy-coded scanner and
sex assigned at birth covariates as well as continuous covariates for age at
enrollment, pre-trauma PTSD symptoms reported in the ED, and total score
on the LEC-5. Linear and quadratic predictors of 2-week PTSD from the
PCL-5 were included. The model was chosen to harmonize with our
previously reported approach [33]. Inclusion of the prior PTSD symptoms
and LEC-5 scores reduced the sample size for analyses and thus we also
completed the regressions removing these covariates. In the prior report,
we observed a positive relationship between VVS SCN loadings and PTSD
symptoms, with some specificity for re-experiencing symptoms and thus
we anticipated a similar effect in the present analyses. Given our a priori
hypothesis on the association between 2-week SCN loadings and PCL-5
scores, we set a nominal p-value of 0.05 with one-tailed testing for the
model with a Bonferroni–Holm correction to account for the multiple
comparisons (models with and without covariates). Similar models were
completed for estimated 6-month SCN loadings, however, the quadratic
term was removed given findings from the previous models (described in
the “Results”). Given the lack of a directional hypothesis for these sets of
tests, we set a nominal p-value 0.05 with two-tailed testing for the models
and a Bonferroni–Holm correction was applied for each set (i.e., with and
without covariates) of models. Significant associations with total PTSD
symptom severity in the above models were followed-up with identical
models substituting PTSD subscale scores to understand the domains
driving the effect. For models with a significant subscale association with
SCN loadings, we compared standardized regression coefficients between
the significant model and all other models using a Z-test [63]. We further
completed repeated-measures analysis of covariance (RM-ANCOVA) to
assess the effect of changes in component loadings on PCL-5 scores
(dependent variable) with a within-subject’s factor for time (2 weeks and
6 months), a continuous measure of change in VVS SCN loadings (6-month
minus 2-week), and covariates for age, sex assigned at birth, and scanner
site. We also completed multiple regressions to assess the relationship
between 2-week component loadings and Clinician Administered PTSD
Scale for DSM-IV (CAPS-IV) nightmare frequency, intensity, and severity
(3 separate models) while covarying for scanner site, age, and sex assigned
at birth. A Bonferroni–Holm correction was applied to the models of
nightmare symptoms to account for multiple comparisons. We present
only a priori outcomes of interest from regression models in the results,
but full outputs are available in the supplement. Voxelwise group-level
models of the resting state fMRI data were completed using 3dttest++ in
AFNI for the default mode and amygdala-hippocampal functional
covariance networks (two separate models). Models included a continuous
regressor of loadings from the ventral visual stream SCN as well as
covariates for scanner, age, and sex assigned at birth. A gray matter mask
that included subcortical areas and the cerebellum was applied to the
data. Permutation-based cluster correction (i.e., the -clustsim option in
3dttest++) was used to determine the corresponding voxel extent k
needed at a cluster forming threshold of p= 0.005 to maintain α= 0.05

(10,000 iterations). Cluster-corrected results were considered significant at
a corrected p < 0.025 to account for the two networks assessed. A separate
voxelwise comparison was completed for the threat reactivity task. Given
that the present study used pooled, multisite data, we completed
supplementary assessments of data quality between each site and these
analyses are documented in the supplementary material (Figure S2).

RESULTS
Participant demographics
Participant demographics are presented in Table 1. Correlations
between the psychometric instruments are presented in Table 2.
Indices of PTSD and depression were correlated at each timepoint,
and these were in turn related to CAPS-IV nightmare frequency,
intensity, and severity. Independent samples t-tests did not reveal
a significant difference in PCL-5 scores between participants who
did or did not provide 6-month MRI data either at 2 weeks
[t(242)= 1.27, p= 0.207] or 6 months [t(197)=−0.21, p= 0.831].
Thus the present data come from a largely female, racially/
ethnically diverse sample with varying degrees of posttraumatic
dysfunction.

Structural covariance of the ventral visual stream is associated
with acute posttraumatic dysfunction
LICA revealed a structural covariance network (SCN) of the ventral
visual stream (VVS) associated with acute PTSD severity (PCL-
5 scores) (Fig. 1; Table S3). The SCN primarily reflected fractional
anisotropy (FA; 20%), gray matter volume (GMV; 23%), and pial
surface area (PSA; 20%) of the inferior fronto-occipital fasciculus,
visual cortex, and anterior temporal pole (i.e., bilateral medial
aspects of the ventral visual stream; VVS). In line with our a priori
hypothesis, loadings on the SCN were significantly linearly
associated with PTSD symptoms at 2 weeks, with [t(133)= 1.98,
β= 0.22, 95% CI= [0.02, 0.42], pcorrected= 0.05, one-tailed] and
without [t(235)= 1.77, β= 0.13, 95% CI= [−0.01, 0.27], pcorrected=
0.04, one-tailed] the inclusion of covariates for prior trauma
history (LEC-5 total score) and pre-trauma PTSD symptoms. Given
the prior findings, we assessed if the associations were specific to
individual PTSD symptom dimensions (indexed by PCL-5 subscale
scores). Loadings on the SCN were significantly linearly associated
with intrusion symptoms (e.g., flashbacks, re-experiencing, etc.)
[t(133)= 2.16, β= 0.23, 95% CI= [0.01, 0.45], p= 0.033], but not
avoidance, negative cognition/mood, or arousal symptoms (all
p > 0.05). Comparison of β-values revealed the association
between the SCN loadings and intrusion symptoms was
significantly different compared to the association with avoidance
(Z-value= 2.30, p= 0.022), negative alterations in cognition and
mood (Z-value= 2.62, 0.009), and arousal (Z-value= 2.54,
p= 0.011) subscales. We further completed supplementary
analyses to determine if similar associations were observed
between VVS SCN loadings and depression symptoms (using the
PROMIS). We did not observe any linear or curvilinear associations
between VVS SCN loadings and depressive symptoms with or
without accounting for prior trauma or pre-trauma PTSD
symptoms (Table S4). These data replicate prior observations of
a positive association between VVS SCN loadings and re-
experiencing symptoms in a smaller sample [33] and suggest
structural covariance of the VVS is positively related to intrusive
memories in the aftermath of traumatic stress.
Given the potential visual representation of traumatic memories

experienced in nightmares for individuals with PTSD [64], we
completed additional analyses to directly assess if the SCN was
related to nightmare experiences in the early aftermath of trauma
(Fig. 2; Table S5). SCN loadings were linearly associated with
2-week nightmare severity [t(245)= 2.41, β= 0.15, 95% CI= [0.02,
0.28], pcorrected= 0.034] and intensity [t(245)= 2.64, β= 0.17, 95%
CI= [0.04, 0.30], pcorrected= 0.027], but not frequency
[t(245)= 1.81, β= 0.12, 95% CI= [− 0.01, 0.25], pcorrected= 0.071].
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In line with the prior analyses, these data suggest that structural
covariance of the VVS may be particularly related to traumatic
visual memory encoding, retrieval, and expression.

Structural covariance of the ventral visual stream moderates
amygdala-hippocampal to inferior temporal gyrus
connectivity
Greater loadings of the VVS SCN were negatively related to
resting-state functional connectivity between an amygdala-
hippocampal RSN and the inferior temporal gyrus, a component
of the VVS [ZPeak=−3.87, pcorrected < 0.02, k= 61 (488 mm3),
(XYZ= 52,−65,−7)] (Fig. 3). No other significant associations
between VVS SCN loadings and resting-state connectivity were
observed, even for RSNs that overlapped the VVS. No significant
effects of VVS SCN loadings on amygdala reactivity to threat
(fearful – neutral) were observed. These findings suggest structural
covariance of the VVS impacts connectivity between the arousal
network and components of the VVS.

Future ventral visual stream structural covariance and
posttraumatic stress symptoms
Prior to analysis of the 6-month imaging data, we assessed if the
VVS SCN loadings at 2 weeks were related to participants’ 6-month
PTSD symptoms. The regression models included linear and
quadratic terms for 6-month PTSD symptoms, and covariates for
scanner, age, and participant sex assigned at birth. A separate
model also included additional covariates for prior trauma history
and PTSD symptoms (i.e., prior to admission to the ED). No
significant associations between the 2-week VVS SCN loadings and
6-month PTSD symptoms were observed (all p > 0.05).
The SCN for the VVS was then projected onto participants’

6-month MRI data to assess relationship between VVS SCN
loadings and PTSD symptoms over time (Fig. 4; Table S6). In
contrast to the positive association identified with 2-week
loadings, VVS SCN loadings at 6 months were negatively
associated with PTSD symptoms at 2 weeks [t(68)=−2.45,

β=−0.27, 95% CI= [− 0.45, −0.09], pcorrected= 0.034], however,
the association was not significant when covarying for prior
trauma history and pre-trauma PTSD symptoms [t(32)=−0.58,
β=−0.12, 95% CI= [−0.62, 0.38], pcorrected= 0.564]. Further, VVS
SCN loadings at 6 months were negatively associated with PTSD
symptoms at 6 months [t(72)=−2.53, β=−0.27, 95% CI=
[−0.45, −0.09], pcorrected= 0.026]. The effect was not significant
when covarying for prior trauma history and pre-trauma PTSD
symptoms [t(35)=−1.23, β=−0.26, 95% CI= [−0.73, 0.25],
pcorrected= 0.229]. We also completed analyses to assess if there
was a relationship between SCN loadings and individual PTSD
symptom dimensions (indexed by PCL-5 subscale scores). At
6 months, SCN loadings were negatively associated with 6-month
negative cognition and mood symptoms [t(72)=−2.40,
β=−0.26, 95% CI= [−0.48, −0.07], p= 0.019], but not intrusion,
avoidance, or arousal symptoms (all p > 0.05). Comparison of β-
values revealed the association between the SCN loadings and
negative alterations in cognition and mood symptoms was
significantly different compared to the association with intrusion
(Z-value= 2.36, p= 0.018), avoidance (Z-value= 2.23, 0.026), and
arousal (Z-value= 2.13, p= 0.034) subscales. These findings
suggest that, while greater structural covariance of the VVS
facilitates encoding of traumatic memories acutely after trauma,
decreased structural covariance over time contributes to negative
trauma-related thoughts and feelings.
Together, the prior findings suggested that individuals at risk for

greater PTSD symptoms showed relatively high structural integrity
within the VVS early posttrauma, but also showed lower VVS
integrity in the future. We completed a follow-up RM-ANCOVA to
directly investigate associations between change over time in the
VVS and PTSD symptoms. Although we did not observe a
significant time by change in VVS SCN loadings interaction on
PTSD symptoms [F(1,66)= 0.51, p= 0.480], the RM-ANCOVA
revealed a significant effect of change in VVS SCN loadings on
PTSD symptoms [F(1,66)= 8.82, p= 0.004]. Follow-up linear
regressions revealed that decreased loadings over time were

Fig. 1 Structural covariance network of the ventral visual stream and acute PTSD severity. Linked independent components analysis (LICA)
was completed on fractional anisotropy (FA), mean diffusivity (MD), mode of the diffusion tensor (MO), gray matter volume (GMV), cortical
thickness (CT), and pial surface area (PSA) spatial maps to derive multimodal components. We observed a component that reflected a
structural analog of the ventral visual stream derived from all participants (A). The component predominantly reflected FA, GMV, and PSA of
the visual cortex, anterior temporal lobe, and the inferior fronto-occipital fasciculus (left) and the distribution of loadings across participants
(right) (B). The component was related to total scores on the PTSD Checklist for DSM-5 (PCL-5) in both full (left) and parsimonious (right)
models described in the “Methods” section (C). Brain figures represent the ventral visual stream structural covariance network obtained from
LICA across all participants. Scatter plots are partial plots where dots represent the standardized residuals of individual participant loadings
and PCL-5 scores. Lines represent the linear line of best fit and the shaded bar represents the 95% confidence interval.
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associated with greater PTSD symptoms [t(66)=−2.97, β=−0.36,
95% CI= [− 0.60, −0.12], p= 0.004]. Of note, a follow-up paired-
samples t-test of 2-week versus 6-month VVS SCN loadings did not
reveal a significant difference [t(82)= 0.28, p= 0.781]. These data
indicate individuals with high structural integrity within the
ventral visual system in the early week post-trauma, and who
lose this integrity over time, are most at risk for persistent PTSD-
related dysfunction.

DISCUSSION
Multivariate MRI approaches hold promise for identifying neural
signatures of susceptibility to trauma and stress-related disorders.
However, limited work has investigated potential multivariate
neural signatures of visual circuitry structure in recently trauma-
tized individuals. In the current report, representing one of the
largest prospective and longitudinal neuroimaging studies of
trauma survivors, we identified a multimodal structural covariance
network (SCN) of the ventral visual stream that is spatially
consistent with our prior observations [33]. Loadings on the
ventral visual stream SCN, 2 weeks post trauma exposure, were
positively associated with 2-week PTSD symptoms. The SCN was
also associated with both 2-week intrusion and nightmare
symptoms. Further, loadings on the SCN varied with connectivity
between the amygdala/hippocampus and inferior temporal gyrus
which is part of the VVS. Interestingly, estimated loadings of the
ventral visual stream SCN at 6 months were negatively associated
with 6-month PTSD symptoms and individuals who showed
decreased strength of the VVS SCN over time generally had higher
PTSD symptoms. These findings provide multidimensional evi-
dence of a role for the structure of the ventral visual stream in
both the development and course of PTSD symptoms.
Multimodal data fusion via linked independent components

analysis revealed an SCN that reflected white matter microstruc-
ture and gray matter morphology of the visual cortex, inferior
fronto-occipital fasciculus, inferior temporal gyrus, and anterior
temporal lobe (i.e., the ventral visual stream). The ventral visual
stream is intimately involved in recognition of objects, their
properties, and their representative meanings [12, 13] and is
critical for processing of affective visual stimuli [9, 65, 66].
Importantly, the ventral visual stream may also be directly
involved in memory retrieval processes for high arousal,
threatening stimuli [67, 68]. In the present study, loadings on
the ventral visual stream SCN were positively associated with
acute (i.e., 2 weeks) PTSD symptoms. Given the positive loadings

on the SCN reflected greater gray matter volume and pial surface
area of visual stream regions, and the resulting positive
association between SCN loadings and PTSD symptoms, it may
be that greater structural integrity of the ventral visual stream in
the early aftermath of trauma contributes to greater attention and
reactivity to potentially threat-related visual stimuli. In turn, the
network may facilitate encoding or consolidation of a threat-
relevant visual memory. Enhanced neural ability to form strong
visual memories may lead to stronger and more enduring trauma-
related memories that ultimately contribute to the enhanced PTSD
symptoms observed in the sample. Of note, our follow-up analyses
revealed 2-week associations with the ventral visual stream SCN
were more strongly related to intrusion symptoms consistent with
our prior findings [33]. Thus, as opposed to increased consolida-
tion, it may be that greater integrity of the network facilitates
enhanced retrieval of the trauma-related threat memory and
efficient reactivation of visual components of the trauma memory
thereby exacerbating PTSD symptoms. The present findings
cannot dissociate either the potential for enhanced consolidation
or enhanced retrieval, nor can they rule out that both processes
are acting in tandem in those with greater structural covariance of
the ventral visual stream. We note, though, a possibility that the
present results are unrelated to threat-processing and reflect a
more domain-general process such that greater covariance could
contribute to appetitive or highly salient memories regardless of
valence. Future work should thus investigate threat and non-
threat processing of the ventral visual stream in trauma-exposed
individuals to better understand how the function of this circuitry
is linked to PTSD.
Individual variability in the ventral visual stream SCN was

positively associated with nightmare intensity. Though often
overlooked, sleep disturbances are frequent and distressing
consequences for trauma victims [8, 69–71]. Nightmare experi-
ences are particularly damaging as they can contribute to
negative emotional states and maladaptive behaviors in trauma
victims [72–74]. It is possible, given the role of the ventral visual
stream in emotion and determining representational meaning,
that the observed association may be related to consolidation of
trauma-related memories that may occur during sleep in line with
our hypothesis above [75]. Individuals susceptible to posttrau-
matic nightmares may also be susceptible to more enduring but
generalizable visual trauma memories which are in turn facilitated
by the greater structural integrity of the ventral visual stream.
However, it is not necessarily the case that the nightmares
experienced by participants here are directly related to their

Fig. 2 Ventral visual stream structural covariance strength is related to nightmare symptoms. Individual participant loadings on the VVS
SCN identified through linked independent components analysis (LICA) varied positively with participants’ nightmare frequency (A), intensity
(B), and severity (C) scores at 2 weeks post trauma. Scatter plots are partial plots where dots represent the standardized residuals of individual
participant loadings and nightmare index scores. Lines represent the linear line of best fit and the shaded bar represents the 95% confidence
interval.
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traumatic event. Future work is needed to fully understand the
relationship between posttraumatic nightmares and visual proces-
sing circuitry.
Loading strength of the ventral visual stream SCN was

associated with amygdala-hippocampal connectivity to the
inferior temporal gyrus (ITG). We recently demonstrated that
“arousal network” to dorsolateral PFC as well as default mode to
ITG connectivity was related to 3-month PTSD symptoms within
the AURORA study [22]. The ITG cluster we observed in the
present report showed high spatial overlap to that in the previous
report with a similar central locus of the effect. The ITG is part of
the anterior ventral visual stream and may support both high-level
visual modeling and threat-specific processing as part of the
ventral visual stream [76, 77]. In the present sample, greater
structural covariance was associated with negative connectivity
between the arousal network and ITG. The findings suggest that,
in individuals with higher structural covariance of the ventral
visual stream, arousing or salient contexts of stimuli are not
properly integrated during encoding or retrieval of representative
visual information regarding trauma cues. The suggested dysfunc-
tional affective-visual encoding process may, in turn, be related to
generalization of threat memories that characterize PTSD. This
speculative process fits with the additional finding that greater
loadings on the ventral visual stream SCN were associated with
greater expression of acute PTSD symptoms. It may thus be
somewhat surprising, given this interpretation, that no association
was observed between SCN loadings and neural reactivity to
threat indexed via a fearful face viewing task. The threat reactivity
task has been used in several studies and shows pronounced
activation of the amygdala and visual cortex, and it is associated
with both acute and chronic posttraumatic dysfunction
[20, 23, 36]. However, it is important to note that the present
task involved passive viewing of stimuli without a requirement for
participants to encode stimulus information such as valence.
Given the previously described associations with intrusion
symptoms, it may be that tasks that more explicitly involve
emotional memory processes (e.g., Pavlovian threat conditioning)
may show more robust associations with the ventral visual stream
SCN. Together, these data suggest that amygdala-hippocampal
connectivity with the posterior ventral visual stream may facilitate
encoding of threat-relevant visual cues that ultimately contributes
to PTSD susceptibility.
Of note, associations between ventral visual stream SCN

loadings and PTSD symptoms were not stable between the
2-week and 6-month assessment timepoints. Thus, it may be that
trauma-exposed participants’ ventral visual stream covariance

represents a brain state that is unique in the immediate aftermath
of, but changes over the 6 months following, trauma. Although
2-week ventral visual stream SCN loadings were positively
associated with 2-week PTSD symptoms, we found ventral visual
stream SCN loadings at 6 months were negatively associated with
6-month PTSD symptoms. Relatedly, individuals who showed
decreases in SCN loadings over time also showed greater average
PTSD symptoms at 6 months. The association between SCN
loadings and acute posttraumatic symptoms was also strength-
ened when accounting for prior trauma and PTSD symptoms
indicating a potential specificity of ventral visual stream integrity
to stress reactivity in the early aftermath of trauma. These findings
suggest that PTSD symptoms are associated with initially high, but
then weakened, structural integrity of the ventral visual stream.
One way to conceptualize the present data is within a

framework of delayed excitatory neurotoxicity effects of trau-
matic stress on brain structure. Acute stressors lead to selective
neurogenesis and synaptic strengthening of circuits critical for
formation of threat-relevant memories in animal models
[78–80]. In humans, acute stress facilitates threat learning but
contributes to overgeneralization which is further observed after
trauma and in those with PTSD [81–83]. Threat-memory
formation is highly glutamate-dependent, particularly within
prefrontal-hippocampal circuitry, and dysregulated glutamater-
gic activity can lead to neural cell death and diminished gray
matter volume [79, 84–86]. Thus, although acute stress can
facilitate threat learning, supported by greater integrity of
associated neural circuitry, chronic stress may lead to degenera-
tion of the circuitry and contribute to delayed threat processing
dysfunction. It may be that the chronic stress and potentially
chronic activity of the ventral visual stream some individuals
may experience following acute trauma have a deleterious
effect on structural integrity of the visual pathway contributing
to the differential associations. An interesting hypothesis for
future testing relates to whether this apparent decreased visual
stream structural integrity may contribute to generalization of
visual threat cues seen in chronic PTSD. This framework may also
help to explain dissociative findings in samples of recent trauma
victims that show greater prefrontal glutamate/glutamine
concentrations and null/mixed associations between brain
volume and PTSD [30, 87, 88] compared to chronic PTSD
samples [89–91].
Several limitations should be considered when interpreting the

present findings. The present approach required participants to
have complete MRI data across a number of features which
reduced our sample size. It is important to note that participants

Fig. 3 Ventral visual stream structural covariance strength is associated with arousal network connectivity to inferior temporal gyrus.We
observed that strength of a structural covariance network of the ventral visual stream modulated connectivity between an amygdala-
hippocampal functional covariance network and inferior temporal gyrus (A) such that greater structural covariance network loadings were
associated with negative connectivity (B). Scatter plots are full plots where dots represent individual participant linked independent
components analysis component loadings and parameter estimates of amygdala/hippocampal to inferior temporal gyrus connectivity. Lines
represent the linear line of best fit and the shaded bar represents the 95% confidence interval.
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who completed all MRI scans and had higher quality data may be
phenotypically different from those who did not and these factors
may be relevant for PTSD symptomatology. Thus, it is unclear if
these data are generalizable to participants who drop out of
research studies—who may in fact be most at risk for developing
PTSD after trauma. It is also worth noting that, although we
observed unique associations between VVS SCN loadings and
specific PTSD symptom dimensions at 2 weeks and 6 months,
such symptom dimensions are highly correlated with one another.
Although we completed additional analyses with nightmare
symptoms, additional data that assess psychological processes
related to specific PTSD symptom dimensions (e.g., sensory
sensitivity, memory consolidation strength, physiological reactiv-
ity) collected concurrently with MRI data may provide further
support for the present findings. Another limitation is the lack of a
non-trauma-exposed sample. Inclusion of a non-trauma sample is
difficult given the preponderance of trauma in the U.S. (thereby
questioning the ecological validity of the term “non-trauma”) and
such a sample was excluded from AURORA due to feasibility
constraints. Regardless, it remains unclear if trauma exposure itself
may modulate the VVS SCN or if these would be observed in a
non-trauma sample. Future work should investigate the occur-
rence and stability of a ventral visual stream SCN in non-trauma-
exposed groups.

Our findings emphasize the often-overlooked role of sensory
and particularly visual cortices in PTSD susceptibility after trauma.
Further, the present data highlight potentially important relation-
ship between the neural substrates of visual information proces-
sing and core threat neurocircuitry (e.g., amygdala/hippocampus)
for understanding the development of PTSD. The current results
also replicate prior findings in the largest-of-its-kind multisite,
multimodal imaging study of recent trauma. Thus, modulation of
visual neural circuitry after trauma opens new avenues for future
research and potential neuromodulation techniques to reduce
PTSD symptoms and nightmares in the aftermath of trauma
[92–94]. Uncovering the nature of interactions between canonical
threat and visual processing circuitry may provide the most
effective avenue for the identification of robust and generalizable
neural signatures of trauma and stress-related disorders.

DATA AVAILABILITY
Data and/or research tools used in the preparation of this manuscript were obtained
from the National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a
collaborative informatics system created by the National Institutes of Health to
provide a national resource to support and accelerate research in mental health.
Dataset identifier(s): NIMH Data Archive Digital Object Identifier 10.15154/1526071.
This manuscript reflects the views of the authors and may not reflect the opinions or
views of the NIH or of the Submitters submitting original data to NDA.

Fig. 4 Stability of ventral visual stream structural covariance network over time. Similar to structural covariance network (SCN) loadings at
2 weeks, the 6-month loadings on component 21 were largely normally distributed (A). Individuals showed variability in component loadings
between timepoint 1 (i.e., 2 weeks) and timepoint 2 (i.e., 6 months) post-trauma (B). The component loadings at 6 months were related to total
scores on the PTSD Checklist for DSM-5 (PCL-5) at 6 months in models described in the “Methods” section (C). Participants who showed an
overall decrease in SCN loadings over time showed greater PTSD symptom severity over time than those with increased SCN loadings (D).
Scatter plots are partial plots where dots represent the standardized residuals of individual participant loadings and PCL-5 scores. Lines
represent the linear line of best fit and the shaded bar represents the 95% confidence interval.
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Code for the present study was obtained as part of publicly available distributions of
FMRIPREP (described in “Methods” and supplement), FSL, and AFNI. Commercial
software was used in statistical analysis. Detailed code is available upon request.
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