
UC Riverside
UC Riverside Previously Published Works

Title
IDAPro for IoT Malware analysis?

Permalink
https://escholarship.org/uc/item/4rp172kk

Author
Faloutsos, Michalis

Publication Date
2019-04-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rp172kk
https://escholarship.org
http://www.cdlib.org/

IDAPro for IoT Malware analysis?

Sri Shaila G, Ahmad Darki, Michalis Faloutsos, Nael Abu-Ghazaleh and Manu Sridharan
Computer Science and Engineering Dept.

University of California, Riverside
{sg001@,adark001@,michalis@cs.,nael@cs.,manu@cs.}ucr.edu

Abstract
Defending against the threat of IoT malware will require new
techniques and tools. An important security capability, that
precedes a number of security analyses, is the ability to re-
verse engineer IoT malware binaries effectively. A key ques-
tion is whether PC-oriented disassemblers can be effective
on IoT malware, given the difference in the malware pro-
grams and the processors that support them. In this paper, we
develop a systematic approach and a tool for evaluating the
effectiveness of disassemblers on IoT malware binaries. The
key components of the approach are: (a) we find the source
code for 20 real-world malware programs, (b) we compile
them to form a test set of 240 binaries using various com-
piler optimization options, device architectures, and consid-
ering both stripped and unstripped versions of the binaries,
and (c) we establish the ground-truth for all these binaries for
six disassembly accuracy metrics, such as the percentage of
correctly disassembled instructions, and the accuracy of the
control flow graph. Overall, we find that IDA Pro performs
well for unstripped binaries with a precision and recall ac-
curacy of over 85% for all the metrics. However, IDA Pro’s
performance deteriorates significantly with stripped binaries,
mainly because the recall accuracy of identifying the start of
functions drops to around 60% for both platforms. The re-
sults for the stripped ARM and MIPS binaries are similar to
stripped x86 binaries in [2]. Interestingly, we find that most
compiler optimization options, except the -O3 option for the
MIPS architecture, do not cause any noticeable effect in the
accuracy. We view our approach as an important capability
for assessing and improving reverse engineering tools focus-
ing on IoT malware.

1 Introduction
IoT malware is emerging as the new battleground of cyber-
security. Leaders in the technology industry like Ericsson
forecast that there will be around 18 billion devices related
to the Internet of Things (IoT) [11]. The expansion of the
scope of IoT devices has redefined communication and in-
formation transfer between users and smart devices. While

User Interface

Malware Source
Code Collection

Compilation

Disassembler

Ground-truth
Generator

Report
Generator

Choice of
Disassambler

Compilation
Options

Figure 1: The visual overview of our approach for evaluating the
effectiveness of a disassembler on IoT malware.

this trend continues to offer a new level of connectivity and
convenience, it also poses a serious threat to the security and
the privacy of users and the stored data in the devices. Recent
attacks on IoT devices such as Mirai [5] and Moose [6] high-
light the need to defend these devices. On the other hand, IoT
malware developers release the source code to the public as
it has been the case for Mirai [4], and Lightaidra [3]. Black
hat hackers make use of such source code to create malware
that targets IoT devices to engage in malicious activities [19].
Further, the software eco-system for IoT devices is quite het-
erogeneous and not as mature with respect to security [10].

In this work, we address the question of the effectiveness
of binary disassemblers for analyzing IoT malware. These
tools are critical first steps in reverse engineering malware
binaries, which is necessary to enable a number of analy-
ses of their security. Thus, answering this question will shed
light on the larger issue of the effectiveness of the existing
PC-focused defense mechanisms for IoT malware. We fo-
cus on IDA Pro [13], which is a state of the art disassembler
for binary analysis [2]. To elaborate, we seek to assess the
reverse engineering capabilities of IDA Pro by using six pop-
ularly used disassembly accuracy metrics, for a set of ARM
or MIPS IoT malware binaries. These metrics assess differ-
ent aspects of the accuracy of IDA Pro and are important for
the correct structure of the disassembled code, as well as the
construction of its control flow graph. The metrics include
the percentage of correctly disassembled and identified in-
structions, function starts, function parameter counts, basic

blocks, control flow graph (CFG), and call graph accuracy.
We also seek to investigate the effect that various compila-
tion options have on the disassembly performance.

Key challenge. Ideally, the disassembly accuracy or the
effectiveness of a dissasembler should be measured by es-
tablishing the structural and semantic similarity between the
source code and the assembly code of the binary. However,
the syntax differences between the two languages is a chal-
lenging task that requires extensive manual effort.

To the best of our knowledge, there has not been any pre-
vious studies of the performance of disassemblers on IoT
malware. The closest related work by Andriesse et al. [2]
evaluates the performance of 9 disassemblers for the x86

architecture (PC-based) on benign binaries. Other related
work can be grouped into the following categories: (a)
static analysis of malware [7, 14]; (b) disassemblers in mal-
ware analysis: using disassemblers in analyzing the malware
structure [15, 17]; (c) IoT binary analysis: analyzing code
similarities of IoT firmware to identify known vulnerabili-
ties [12, 21]; and (d) IoT malware analysis: analyzing the
behavior of IoT malware [5, 19, 10]. We discuss related work
further in Section 6.

As our key contribution, we develop a systematic and
comprehensive approach and the resultant tool for assessing
the effectiveness of disassemblers on IoT malware binaries.
The novelty of our work can be summarized as follows:

a. We evaluate the performance of disassemblers for
the ARM and MIPS architectures: We evaluate the perfor-
mance of disassemblers for the ARM and MIPS architectures
on malware programs. Each of these architectures have their
own instruction sets, hence new non-trivial tools are needed.
By contrast, previous work [2] focused on the x86 archi-
tecture (PC-based) on benign software, the SPEC CPU2006
benchmark, which consists of the standard libc binaries.

b. Our approach is fully automated: In contrast to pre-
vious effort [2], our approach obtains the ground-truth for
100% of the code bytes automatically, and thus, can be used
in large-scale studies.

The key components of our approach are outlined below:
Step 1: Source code and compilation. We collect source

code for 20 malware programs and compile it into 240 bina-
ries comprising of 200 unstripped and 40 stripped binaries
with different settings: (i) different compilation options, (ii)
two different CPU architectures, ARM and MIPS, and (iii)
both stripped and unstripped versions of the binaries. This
process is represented by the Malware Source Code Collec-
tion and the Compilation modules in Figure 1. None of the
malware programs are obfuscated.

Step 2: Establishing the ground-truth. We obtain the
ground-truth for the binaries for all the disassembly met-
rics, which is non-trivial despite having the source code. We
determine the ground-truth for a comprehensive set of met-
rics: Instructions, Basic Blocks, Function-Start Addresses,
Number of Non-Zero Function Parameters, Control Flow

Graph (CFG), and Call Graph, which we define later. This
process is represented by the Ground-Truth Generator mod-
ule in Figure 1.

Step 3: Applying the disassembler. We apply the un-
der investigation disassembler to the binaries and extract the
results for all the metrics. This step is represented by the
Disassembler module in Figure 1.

Step 4: Evaluation. We compare the results of the disas-
sembler with the ground-truth to generate the evaluation re-
port. This step is represented by the Report Generator mod-
ule in Figure 1.

Results. We demonstrate our technique by using it evalu-
ate the widely-used IDA Pro [13]. Our findings can be sum-
marized as follows:

a. IDA Pro performs well on unstripped binaries. We
find that IDA Pro does well across all metrics of interest
for both architectures, and all compilation options for un-
stripped binaries. The percentage accuracy for all metrics is
over 85%. Specifically, we find that ARM binaries seem to
lend themselves to more accurate reconstruction compared
to MIPS binaries, although the difference is relatively small.

b. Stripped binaries challenge the performance of IDA
Pro. We find that IDA Pro fails to correctly identify a sig-
nificant fraction of Function-Start Addresses for stripped bi-
naries for both architectures. Also, IDA Pro misses 37.7%
and 39.6% of the functions in stripped binaries for ARM and
MIPS respectively. We conjecture that in the absence of the
symbol table, the function recognition algorithm of IDA Pro
has a hard time determining the beginning and end of func-
tions.

c. Compilation options have limited effect. We studied
the effect of different compiler options on disassembler ef-
fectiveness for unstripped binaries. Interestingly, we found
that the compilation optimization options do not have any
noticeable effect on any of the six metrics for the unstripped
binaries for both architectures, and this is particularly true
for ARM. For MIPS, there are a few exceptions, where some
non-trivial change is observed. For example, the -O3 com-
piler option, and to a lesser extent -O2, cause a small drop in
the detection of Function-Start Addresses for the unstripped
MIPS binaries.

We argue that our work provides an important building
block for developing tools and methodologies for reverse en-
gineering malware. This work has led to the following tan-
gible outcomes: (a) a set of IoT malware source codes, (b)
ground truth, and (c) a usable platform that can help accel-
erate static analysis and disassemblers in the IoT malware
space.

2 Methodology

In this section, we present our approach for evaluating the ef-
fectiveness of binary disassemblers on IoT malware. Check-
ing the correctness of disassembled code requires a good un-
derstanding about all instructions in the architecture sets and

about how disassemblers work. The following sections will
discuss the disassembly metrics we have used for the evalua-
tion, and implementation details of the evaluation which in-
clude the workflow of our technique. Binary analysts under-
stand and analyze binaries by viewing the assembly level in-
structions, basic blocks, control flow graphs, and call graphs.
Each address in the code section usually contains one in-
struction. A basic block is comprised of a straight line code
sequence with no branches in except to the entry and no
branches out except at the exit. A CFG shows how the ba-
sic blocks are connected to each other. It is defined as a
graph showing all the possible paths that might be traversed
through a program during its execution. In our work, we
consider the intra-procedural CFG, which is a graph showing
how all the basic blocks within a function are connected to
each other to form all the possible paths. Call graphs repre-
sent the relationships between functions in a program. Each
node represents a function in the program and each edge rep-
resents a caller function that calls a callee function.

2.1 Disassembly metrics
In our evaluation, we use 6 frequently used metrics which
provide a comprehensive view of the capability of the dis-
assembler. A malware analyst uses features whose accuracy
are measured by these metrics to describe the binary and to
reconstruct the malware behavior. The same metrics have
been used in prior reverse engineering studies [2].

We provide a description of the metrics below:

1. Correctly identified instructions (CI): the percentage
of correctly disassembled instructions. Disassembled
instructions at an address location in which the ground-
truth contains an instruction are considered as correctly
disassembled instructions.

2. Correctly identified function starts (CFS): the per-
centage of correctly identified function start addresses.
Function starts addresses which are matched with the
ground-truth are considered as correctly identified func-
tions starts. Otherwise they are considered as incorrect
function starts (IFS).

3. Correctly identified function parameters (CFP): the
percentage of functions with non-zero parameters for
which the number of function parameters was correctly
identified by the disassembler when compared to the
function parameter number supplied by DWARF.

4. Correctly identified Basic Blocks (CIBB): the per-
centage of basic blocks with the correct start and end
address containing all instructions within that address
ranges as shown by the ground-truth.

5. CFG Accuracy (CFGA): the percentage of basic
blocks found within a function that have the correct start
and end address with the correct number of successor

blocks that also have the correct start and end address as
shown in ground-truth. We only consider a basic block
as having the correct connections in the CFG if it satis-
fies all these conditions. Otherwise we mark that basic
block as having incorrect connections. Here, we are re-
ferring to inter procedural control flow graph.

6. Call Graph Accuracy (CGA): the percentage of cor-
rectly identified instructions that invoke another func-
tion which are found under the correct function as
shown in the ground-truth.

2.2 Overview of our Approach
Our approach consists of several steps, which we outlined in
the introduction. Here, we discuss each step in more detail.

Step 1: Source code and compilation. We were
able to collect the source code of 20 IoT malware pro-
grams,from two resources (14 from the first source and 6
from the second): a) live websites such as Github.com and
Pastebin.com where developers released the code for re-
search purposes,1 and b) source codes shared as archives of
files with instructions on Black hat hackers’ websites. These
source codes were randomly selected from the sites and all
source codes were written in the C language.

Having the source code, we compile them in different
ways to evaluate the disassembler. Specifically, we consider
the effects that different architectures and compiler optimiza-
tion options have on the accuracy of IDA Pro’s binary disas-
sembly as we explain below.

a. Compiler options. We study the effects of compiler
options like -O{0,1,2,3,s} where each optimize the bi-
nary differently: compilation time, execution time, or the
size of the binary. We also study the impact of stripped
binaries where any debugging information such as function
names is removed. We used the GCC v5.5.0 cross compiler
to generate 240 binaries from malware source codes.

Our technique can be applied to generate the ground-truth
to evaluate all possible compiler options. However, in view
of the page limit restrictions, we only present the results of
the evaluation of IDA Pro for selected compiler options.

b. Target architectures. We generate binaries for both
the ARM (Version 5, Little Endian) and MIPS (R3000, Little
Endian) architectures, which are the dominant architectures
used in embedded and IoT devices. In the following sec-
tions, we will refer to these architectures as ARM and MIPS
respectively. Note that both these architecture are popular
among IoT devices, and they differ in instruction sets from
PC-based (x86 & x86 64) architectures.

Step 2: Establishing the ground-truth. Here, we es-
tablish the ground-truth for all the binaries that we have
generated. In this work we use a combination of DWARF
v3 [8] and Capstone v3.0.4 [18] to create the ground-truth.

1https://github.com/ifding/iot-malware

DWARF is used to extract the debugging information for
each variable, type and procedure from the source code while
Capstone translates binary bytes into assembly instructions
for the respective architectures.

We use the -g3 compiler option in order to obtain the
DWARF debugging information. DWARF provides a map-
ping between source level code and the assembly instructions
in the binary. Stripped binaries do not contain this informa-
tion. The ground truth information of the corresponding un-
stripped binary is used to evaluate the stripped binaries.

We used Capstone to linearly disassemble instructions
starting from an initial set of known addresses provided by
the DWARF mapping. This set comprises of the entry point
and function start address.The linear disassembling contin-
ues from one instruction to the next in a linear ascending
order until the end of the function is reached.

This seemingly straight forward solution contains a chal-
lenge. Architectures like ARM contain inline data [16] that
needs to be identified and labelled as data in our ground-
truth.

We overcome this problem by studying how the inlined
data is used by assembly code. Inlined data is used by the as-
sembly code by using load operations which use pc-relative
addressing modes. Since the pc register always points to
the instruction address of the next instruction, we can calcu-
late the addresses that contain inlined data when these load
instructions are disassembled. This approach yields 100%
ground-truth for the code bytes in the test binaries making it
suitable for large scale fully automated analysis.

We use the details and the information obtained about each
instruction from Capstone to generate the ground-truth for all
the metrics.

Step 3: Applying the disassembler. We apply the dis-
assembler on all our binaries, and extract the values for each
metric in our evaluation. Here, we evaluate IDA Pro 6.8 [13],
as it is the most commonly used disassembler by security an-
alysts. We have used IDAPython API and created scripts for
each architecture to collect the information about all of the
metrics for each of the understudy malware binaries. The
IDAPython API contains functions that allows us to extract
all the functions found in the binary, the basic blocks found
in the functions,the instructions found in each basic block,
and the functions that are called from within each function.
We ran these scripts in IDA Pro’s default mode to extract the
values for each metric for our evaluation.

Step 4: Evaluation. The tables which summarizes the re-
sults of our findings are found in the next page. The tables
show the percentage accuracy for each of the six disassem-
bly metrics. We have computed the accuracy in terms of
precision and recall for most of the metrics. The precision
refers to the percentage of correctly identified metrics in-
stances among all the instances identified by IDA Pro while
the recall refers to the fraction of correctly identified met-
rics instances among all the metrics instances identified in

the ground-truth.

3 Our Study
In this section, we present the evaluation result for IDA Pro
6.8; our techniques can be used for evaluating other disas-
semblers in a similar fashion.

In this study we used 20 malware source codes to gen-
erate a total of 240 binaries for both MIPS and ARM CPU
architecture. Our evaluation process consists of two parts
that evaluate the effect of a) compiler options and b) stripped
binaries on IDA Pro disassembler tool.

1. The effect of compiler options. We assess the accu-
racy of IDA Pro for each of the disassembly metrics for the
five compilation options: -O0, -O1,-O2,-O3 and -Os. We
use 200 binaries which includes 100 binaries for MIPS and
the other 100 for ARM architecture.

2. The effect of binary stripping. This part evaluates the
accuracy of the disassembler tool in retrieving the disassem-
bly metrics for the stripped binaries. In this work we focus
on stripped binaries created using -O3 optimization option.
We chose this option because it is the most commonly used
option by malware authors in Makefiles. In this analysis we
generated 40 stripped binaries which consists of 20 binaries
for ARM and 20 for MIPS.

Since the precision for the CI and the CFP is 100% in all
the options, this information is omitted in the result tables.
IDA Pro incorrectly identifies functions in two ways. It may
“miss” a function start or it may identify “multiple” func-
tions within one function. The first case adversely affects
recall and the second case affects precision for the CFS ac-
curacy. Summing the precision and the “extra” percentages
and recall with “missing” will result in 100%. In short, the
percentages under the missing and the extra functions give
the percentages of functions whose actual start addresses are
missed and incorrectly added by IDA Pro.

3.1 The Effect of Compiler Options
Table 1 shows the effect of compilation optimization op-
tions on the accuracy of IDA Pro in disassembling ARM and
MIPS binaries. We highlight some of the results and explain
the observed discrepancies.

A. Performance of IDA Pro on ARM binaries. For the
ARM architecture, IDA Pro is able to find all the disassem-
bled instructions for all of the 5 different compiler optimiza-
tion options. IDA Pro shows near perfect recall for CFS for
all binaries. This shows that IDA Pro manages to identify
almost all the functions in the ground-truth (zeroes in the
“missing” row). On the other hand, the precision for all op-
tions falls slightly below perfect since in most cases, IDA Pro
also finds an extra function for it incorrectly splits a func-
tion, divsi3, an integer library routine from the standard
libc function, into two separate functions. This accounts for
the percentage values in the row titled “extra”, representing
the additional functions that were added incorrectly.

CI Correctly identified instructions CIBB Correctly identified Basic Blocks

CFS Correctly identified function starts CFGA Control Flow Graph Accuracy

IFS Incorrectly identified function starts CGA Call Graph Accuracy

CFP Correctly identified function parameters

ARM MIPS
-O0 -O1 -O2 -O3 -Os -O0 -O1 -O2 -O3 -Os

CI Recall 100 100 99.9 99.9 100 98.4 97.8 99.6 99.5 98.8

CFS Precision 99.7 99.6 99.2 99.6 99.4 100 100 98.5 94.5 100
Recall 100 100 100 100 99.9 99.9 100 100 100 99.9

IFS Missing 0 0 0 0 0.05 0.06 0 0 0 0.06
Extra 0.3 0.4 0.8 0.4 0.6 0 0 1.5 5.4 0

CFP Recall 92.5 97.2 97 96.1 97.4 0 0 0 0 0

CIBB Precision 99.8 100 99.9 99.9 99.9 85.3 89.0 98.9 98.5 90.6
Recall 99.9 100 99.9 99.9 99.9 87.3 89.0 98.8 98.5 90.6

CFGA Precision 99.6 99.7 99.6 99.7 99.6 99.9 99.9 98.8 94.7 99.9
Recall 99.7 99.7 99.6 99.8 99.6 99.3 99.9 98.8 94.7 99.2

CGA Precision 100 99.9 100 99.9 100 100 100 98.7 98.1 100
Recall 100 99.9 100 99.9 100 98.9 100 98.7 98.1 98.9

Table 1: ARM & MIPS architecture: The effects of compiler optimization options over our 20 malware source codes.

ARM MIPS
Unstripped Stripped Unstripped Stripped

CI Recall 99.9 99.9 99.5 99.5

CFS Precision 99.5 99.5 94.5 91.2
Recall 100 62.2 100 60.3

IFS Missing 0 37.7 0 39.6
Extra 0.4 0.5 5.5 8.8

CFP Params 96.1 0 0 0

CIBB Precisions 99.9 99.9 98.5 97.8
Recall 99.9 99.9 98.5 97.1

CFGA Precision 99.7 99.1 94.7 89.0
Recall 99.8 85.0 94.7 78.5

CGA Precision 99.9 99.4 98.1 92.0
Recall 99.9 88.2 98.1 89.5

Table 2: The effect of stripping: for both ARM and MIPS architectures and using optimization -O3

We observed an interesting phenomenon while investi-
gating the discrepancies of IDA Pro regarding CFP which
shows the percentage of correctly identified number of pa-
rameters from the functions with non-empty parameter. We
observe that IDA Pro, identifies 3 parameters for the main()
function. These parameters are reported as: int argc,
const char **argv, and const char ** envp. How-
ever, only the first 2 are found in the source code as well as
the ground-truth data. This is why we observe a not perfect
accuracy for the CFP for the -O1, -O2, -O3, and -Os options.
Specifically, IDA Pro did not find any parameters for some
functions with non-zero parameters for one of the binaries
with the -Os compilation option. This caused the parameter
accuracy for the -Os compilation to be worse than the other
compilation options.

The CFGA accuracy is over 99%. Upon investigation we

found that the incorrect splitting of functions, like the divi3
function mentioned above, accounts for the imperfect preci-
sion and recall. We also noticed that a few CIBB were be-
ing split into two. This further created isolated blocks in the
CFG. The precision and the recall for the CFGA is very close
to perfect across all the 5 compilation options.

B. Performance of IDA Pro on MIPS binaries. For the
MIPS architecture, we noticed a slight drop in the recall for
the CI primitive compared to the ARM binaries. Upon inves-
tigation, we attributed this to the fact that some instructions
were not correctly identified by IDA Pro. Further analysis
revealed that most of the missing instructions are “add” in-
structions.

The CFS metric shows perfect precision for -O0, -O1, and
-Os for the MIPS binaries and it has close to perfect recall
for all 5 compilation options. We see that 0.06% of the func-

tions in the ground-truth missed by IDA Pro for the -O0 and
-Os compiling options, while 1.5% and 5.4% of the func-
tions reported for -O2 and -O3 compiling options are addi-
tional functions that are incorrectly found by IDA Pro. Since
intra-procedural CFG accuracy is directly dependent on cor-
rect identification of function starts, CFG accuracy drops as
the CFS accuracy drops. IDA Pro generated the most num-
ber of additional functions for MIPS binaries compiled with
the -O3 compiler option. IDA Pro is not able to retrieve any
parameters for the MIPS architecture.

We consider a block as being matched, if the start address
and the end address and the number of instructions within the
block match a basic block in the ground-truth. Hence, in gen-
eral, the matched CIBB accuracy suffers as the percentage of
missed instructions increases. The number and the distri-
bution of the missed instructions also affect the percentage
of matched CIBB. If the missing instructions are spread out
across a larger number of CIBB, then the number of matched
CIBB will be reduced. This causes the variations in the ac-
curacy of matched CIBB across the compiler options for the
MIPS binaries. Precision and recall of matched CIBB is the
lowest, when the binary is compiled with -O0, and highest
for -O2 and -O3 option.

For CFG accuracy, we only take into account the start and
end address of each of the Basic Blocks and the start and
end addresses of the successive connected CIBB. Hence, the
presence of missing instructions does not affect the CFG ac-
curacy. Since CFG accuracy decreases as the number of in-
correctly identified additional functions increases, the CFG
accuracy of the binary with -O3 compilation is the lowest
with 94.7% precision and 94.7% recall. The CFG accuracy
for MIPS binaries compiled with the other options for both
the recall and precision is about 98.2% to 99.9%.

The precision and recall for fucntion start also affect the
CGA accuracy. MIPS binaries compiled with the -O1 option
have perfect precision and recall because all the functions
were identified correctly. The other binaries have less than
perfect accuracy, because some of the call instructions were
wrongly categorized as belonging to another function.

3.2 The Effect of Binary Stripping

We compare the results between stripped and unstripped bi-
naries in our study in Table 2. IDA Pro finds all the instruc-
tions for both the stripped and the unstripped binaries for the
ARM architecture. The number of missed instructions re-
mains about the same for the MIPS malware binaries.

However, stripped binaries make the detection of CFS
much harder: the number of missed functions increases sig-
nificantly to 37.7% for stripped ARM binaries and to 39.6%
for stripped MIPS binaries. Upon investigation, we found
two reasons for these failures: (a) IDA Pro cannot associate
some instructions to any function, and usually displays the
instructions in red color as , and (b) parts of a function may
also be erroneously attributed to another function.

IDA Pro identifies a higher percentage of extra functions
erroneously in stripped MIPS binaries compared to stripped
ARM binaries. This causes the precision and the recall for
the CFGA metric for the MIPS stripped binary to be low-
ered to 85.0% and 78.5% respectively. Incorrect function
identification could be attributed to both: (a) failing to report
functions that exist in the ground-truth, and (b) reporting ex-
tra functions due to erraneous splitting of a function by IDA
Pro erroneously.

Interestingly, even though the errors due to function
misses is high, around 37.7% and 39.6% for the ARM and
MIPS stripped binaries, their adverse effect on the CFG ac-
curacy is relatively small. Upon investigation, we found
that IDA Pro tends to miss smaller functions with few basic
blocks. Precision and recall for this CFGA metric is notice-
ably higher for the ARM (vs. the MIPS) unstripped binaries
due to the much higher accuracy in function start identifica-
tion. The percentage of missed functions in unstripped bina-
ries for both platforms is 0%.

For unstripped binaries compiled with the -O3 option, the
percentage of extra functions incorrectly identified by IDA
Pro is higher for the MIPS binaries with 5.4%, compared to
the ARM binaries with only 0.4% additional functions. The
matched basic block percentage precision is over 99% for
the ARM binaries, while these percentages for the MIPS bi-
naries is slightly lower. We attribute this to the larger fraction
of missing instructions in the MIPS binaries compared to the
ARM binaries. -O0 misses the most number of instructions
while -O2 and -O3 miss the least.

We observe that the CGA precision for the unstripped
ARM binary is very close to 100%. The call graph preci-
sion and recall for the MIPS unstripped binary falls slightly
to 98.12%. We attribute the errors to the larger fraction of
the call instructions, which were categorized to belong to the
”extra” functions found by IDA Pro.

In stripped binaries, the CGA precision in ARM binaries
stands at 99.4% because the number of ”extra” functions
found by IDA Pro is much lesser for the ARM architecture
than compared to the MIPS architecture. The CGA precision
for the stripped MIPS binaries falls to 92.0% due the larger
fraction of call instructions that were categorised as being
part of the ”extra” functions. The recall for the CGA of both
the ARM and MIPS stripped binaries falls to to 88.2% and
89.5%, due to the increased percentage of missing functions.

Stripping has limited effect on the CGA precision for
ARM binaries because the percentage of incorrectly identi-
fied additional functions found is very low, around 0.5% for
both stripped and unstripped binaries. There is noticeable
fall in precision for CGA from 98.1% to 92.0% when MIPS
binaries are stripped. This is because stripping in MIPS bi-
naries leads to an increase in the percentage of incorrectly
identified additional functions from 5.5% to 8.8%. Strip-
ping leads a significant reduction in recall for CGA in both
architectures because it causes a significant increase in the

Func Start Matched BB CFG Accuracy Call Graph
0

20

40

60

80

100

120
P
e
rc

e
n
ta

g
e

99.5 99.9 99.1 99.3

62.2

99.9

85.0
88.2

ARM -O3 Stripped
Precision
Recall

(a) Precision and Recall for stripped ARM binaries

Func Start Matched BB CFG Accuracy Call Graph
0

20

40

60

80

100

120

P
e
rc

e
n
ta

g
e

91.1

97.8 99.5

92.0

60.3

97.0

78.5

89.5

MIPS -O3 Stripped
Precision
Recall

(b) Precision and Recall for stripped MIPS binaries

Figure 2: ARM & MIPS stripped binaries: Mean and variance for the metrics in our result.

percentage of missed functions, 37.7% for the ARM archi-
tecture and 39.6% for MIPS architecture when compared to
unstripped binaries. When call instructions are incorrectly
placed under the wrong functions, the precision and recall of
CGA will be adversely affected.

Figure 2 shows the mean and the variance in the precision
and recall for each of the metrics for each of the unstripped
binaries. It shows that Ida Pro works consistently well on all
the stripped binaries for both architectures for CIBB. We no-
ticed a high variation of about 10% for recall for CFS for
both architectures. The variation in recall for CFGA and
CGA for stripped MIPS binaries is 9% and 14% respectively.
In contrast, these values for stripped ARM binaries are 3.7%
and 5.3%. A possible reason for this observation could be
that functions with lesser number of blocks and direct calls
are consistently missed across all the stripped ARM binaries

The recall for the CFS is 62.2% and 60.3% and has a high
variance of 10.6% and 9.2% for ARM and MIPS respec-
tively.

4 Discussion
Our findings show that IDA Pro does well for unstripped
ARM and MIPS binaries for the various compiler options
with greater than 90% and 85% accuracy across all metrics.
We ignore CFP in MIPS binaries because IDA Pro is unable
to retrieve parameters for this architecture.

Our results for the ARM and MIPS stripped binaries are
similar to the results from [2] for stripped x86 binaries for
the CI and CIBB. These metrics have precision and recall of
more than 97%.

IDA Pro misses 37.7% and 39.6% of the CFS in the ARM
and MIPS stripped binaries respectively. These percentages
are slightly higher that the percentages shown in the previous
work [2] for the stripped x86 binaries which stands around
35%. Our recall for the CGA metric is 88.2% and 89.5%
for the stripped ARM and MIPS binaries respectively. In
contrast, [2] reports perfect recall for stripped x86 binaries.
We could not compare our results for the CFGA, because

the previous work has considered inter-procedural CFG. We
have considered intra-proecedural CFG, since that is the de-
fault output from IDA Pro. IDA Pro could not retrieve the
parameters for unstripped ARM and MIPS binaries.

Disassemblers usually identify function starts and ends by
scanning the binary for known series of instructions that usu-
ally form the start and end of functions [1]. The large por-
tion of function start misses by IDA Pro for both the ARM
and MIPS binaries suggest that the function prologue and
epilogue signature databases are missing a some commonly
found function prologues and epilogues.

The decision to use IDA Pro for stripped binaries depends
on the metrics and the accuracy required by the analyst for
their work. If we desire a recall exceeding 85%, then we
cannot rely on the CFS and CFGA generated by IDA Pro.
Hence, tools that rely on these metrics will suffer from lim-
ited accuracy as well.
5 Limitations and Future Work

In this work, we have used the source code of 20 IoT mal-
ware programs, which we compiled using various compiler
options. We have focused on malware for this project be-
cause many recent research efforts [12, 21, 5, 19, 10] use
binary disassemblers like IDA Pro to analyze IoT malware.
We believe that our work will give malware researchers a
better idea about the level of accuracy that they can expect
from IDA Pro. In this work, we evaluate IDA Pro 6.8 be-
cause this was the version that we had experience with and
was available to us. Here, we discuss the limitations of our
work and future improvements.

Benign Binaries. We did not assess the performance of
IDA Pro on benign binaries. It would be interesting to see
if the performance of IDA Pro varies between benign and
malicious software.

Other Compilers. We have used the GCC v5.5.0 com-
piler to compile the malware source codes for the experi-
ments. We have used this GCC version because its the most
widely used and commonly supported GCC version by many

tools [20]. It would be interesting to assess the effect of dif-
ferent compilers on the performance of IDA Pro.

Other Platforms. We have compiled our malware source
codes into ARM (Version 5, Little Endian) and MIPS
(R3000, Little Endian) binaries and used these binaries in
our test suite. Other commonly used architectures for IoT
malware include x86-64, PowerPC and Motorola 68000 [9],
and we plan to evaluate these platforms in the future.

Evasion. Malware authors employ evasive techniques like
obfuscation to hinder analysts from reading and understand-
ing their code. Obfuscated code and packing techniques are
also applied to confuse disassemblers. The malware pro-
grams that we have used are unobfuscated.

6 Related Work
To the best of our knowledge, no previous studies have
been done on the performance of disassemblers on IoT mal-
ware. A recent and extensive study [2] assess the effective-
ness of disassemblers on PC-based architecture and with be-
nign software in contrast to the IoT architecture and mal-
ware source code that we use here. Specifically, the study
evaluates the performance of 9 commonly used disassem-
blers for x86 architecture and using software from the SPEC
CPU2006 benchmark. Overall, they found IDAPro to be the
best disassembler. They found that IDAPro does well for cor-
rectly identifying Instructions, Basic Blocks and Call Graph.
However, it does poorly in identifying Function-Start Ad-
dresses and Number of Non-Zero Function Parameters.

We highlight some of the related work based on the fol-
lowing categories.

Static analysis of malware. These works statically ana-
lyze malware binaries to extract features from CFGA and fre-
quently found code bytes to detect malware binaries [7, 14].

Disassemblers in malware analysis. Several efforts use
disassemblers in analyzing the malware structure like call
graphs [15]. These studies use disassemblers for malware
classification. However, and they do not evaluate the perfor-
mance of the disassemblers that they have used in their work.
These works serve as motivation for our work which is to un-
derstand the effectiveness of disassemblers which are crucial
tools in malware detection and classification techniques.

IoT firmware analysis: detecting vulnerability. These
efforts analyze the binary code of IoT firmware to identify
known bugs and vulnerabilities by extracting features from
CFG so that they can be fixed in a timely manner [12, 21].

IoT malware analysis. There have been several studies
analyzing the behavior of IoT malware [5, 19, 17, 10]. The
studies focus mostly on the behavior, and the spread patterns
of IoT malware and using static and dynamic analysis.

7 Conclusion
We develop a comprehensive and systematic method and
the resultant tool for evaluating the effectiveness of disas-
semblers on IoT malware binaries. We apply our tool on

IDAPro [13], a widely-used disassembler in the binary anal-
ysis research. We assess the performance of the tool on six
disassembly metrics, which capture how well we can recover
instructions, basic blocks, and the control flow graph. We
also explore a wide range of compilation options and con-
sider two target architectures, ARM and MIPS.

Overall, we find that IDAPro works quite well for un-
stripped binaries across all primitives of interest (e.g. ≥
85% recovery accuracy) and for both architectures. How-
ever, stripped binaries seem to present significant challenges:
IDA Pro does not perform as well with stripped binaries (e.g.
function-start identification drops to 60% for both architec-
tures. Interestingly, we find that the compilation options (-
Ox) have limited effect on the accuracy of IDA Pro.

We view our approach as an important capability for as-
sessing and improving reverse engineering tools focusing on
malware. In addition, the malware source code repository,
the ground-truth and our software tools and extensions can
hopefully accelerate the research in this space.

8 Acknowledgements
This work was supported by UC Lab Fees grant LFR-18-
548554. All opinions and statements reported here represent
those of the authors.

References

[1] D. Andriesse, A. Slowinska, and H. Bos. Compiler-
agnostic function detection in binaries. In 2017 IEEE
European Symposium on Security and Privacy (EuroS
P), pages 177–189, April 2017.

[2] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 583–600, Austin, TX, 2016. USENIX Associa-
tion.

[3] Kishore Angrishi. Turning internet of things (iot) into
internet of vulnerabilities (iov): Iot botnets. arXiv
preprint arXiv:1702.03681, 2017.

[4] Anna-senpai. [free] worlds largest net:mirai bot-
net, client, echo loader, cnc source code release.
https://hackforums.net/showthread.php?tid=5420472.,
2016.

[5] Manos Antonakakis et al. Understanding the mirai bot-
net. In 26th USENIX Security Symposium (USENIX
Security 17), 2017.

[6] Olivier Bilodeau and Thomas Dupuy. Dissecting
Linux/Moose The Analysis of a Linux Router-based
Worm Hungry for Social Networks. (May), 2015.

[7] Mihai Christodorescu and Somesh Jha. Static analy-
sis of executables to detect malicious patterns. Techni-
cal report, Wisconsin Univ-Madison Dept of Computer
Sciences, 2006.

[8] DWARF Standards Committees. The dwarf debugging
standard, 2017.

[9] E. Cozzi, M. Graziano, Y. Fratantonio, and
D. Balzarotti. Understanding linux malware. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 161–175, May 2018.

[10] Ahmad Darki, Chun-Yu Chuang, Michalis Faloutsos,
Zhiyun Qian, and Heng Yin. Rare: A systematic aug-
mented router emulation for malware analysis. In In-
ternational Conference on Passive and Active Network
Measurement, pages 60–72. Springer, 2018.

[11] Ericsson. November 2018, the connected future - inter-
net of things forecast, May 23 2018.

[12] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao
Cheng, Brian Testa, and Heng Yin. Scalable graph-
based bug search for firmware images. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, pages
480–491, New York, NY, USA, 2016. ACM.

[13] SA Hex-Rays. Ida pro disassembler, 2008.

[14] Hyang-Ah Kim and Brad Karp. Autograph: Toward
automated, distributed worm signature detection. In
USENIX security symposium, volume 286. San Diego,
CA, 2004.

[15] Joris Kinable and Orestis Kostakis. Malware classifi-
cation based on call graph clustering. Journal in com-
puter virology, 2011.

[16] Kenneth Miller, Yonghwi Kwon, Zhuo Zhang Yi Sun,
Xiangyu Zhang, and Zhiqiang Lin. Probabilistic disas-
sembly. In ICSE Technical Track, Montreal, Canada,
2019. ICSE Association.

[17] Younghee Park, Douglas Reeves, Vikram Mulukutla,
and Balaji Sundaravel. Fast malware classification by
automated behavioral graph matching. In Proceed-
ings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research, page 45. ACM,
2010.

[18] Nguyen Anh Quynh. Capstone: Next-gen disassembly
framework. Black Hat USA, 2014.

[19] Pierre-Antoine Vervier and Yun Shen. Before toasters
rise up: A view into the emerging iot threat landscape.
In International Symposium on Research in Attacks,

Intrusions, and Defenses, pages 556–576. Springer,
2018.

[20] Tony Theodore Martin Gerhardy Tiancheng ”Timothy”
Gu Boris Nagae Volker Diels-Grabsch, Mark Brand.
Mxe (m cross environment). https://mxe.cc/., 2007-
2019.

[21] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin,
Le Song, and Dawn Song. Neural network-based graph
embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 363–376. ACM, 2017.

