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Abstract—Increasing quantities of renewable energy genera-
tion has yielded a need for greater energy storage capacity in
power systems. Thermal storage in variable air volume (VAV)
heating, ventilation, and air conditioning (HVAC) in commercial
buildings has been identified as a possibly inexpensive source
of grid storage, but the true costs are not known. Recent
literature explores the inefficiency associated with providing grid
services from these HVAC-based demand response resources by
employing a battery analogy to calculate round-trip efficiency
(RTE). Results vary significantly across studies, and in some
cases reported efficiencies are strikingly low. This paper has three
objectives to address these prior results. First, we synthesize and
expand on insights in existing literature through systematically
exploring the potential causes for the discrepancies in results.
We reinforce previous work indicating baseline modeling may
drive differences across studies, and deduce that control accuracy
plays a role in the major differences between experiments and
simulation. Second, we discuss why the RTE metric is problematic
for demand response applications, discuss another proposed
metric, additional energy consumption (AEC), and propose an
extension, which we call uninstructed energy consumption (UEC),
to evaluate demand response performance. Finally, we explore the
merits of different metrics using experimental data and highlight
UEC’s reduced sensitivity to the characteristics of the demand
response signal than previously proposed metrics.

Index Terms—Demand Response, Battery Analogy, Round-trip
Efficiency, Energy Cost

I. INTRODUCTION

The increased deployment of variable, supply-limited re-
newable generation resources into the power grid has high-
lighted a need for energy storage and demand side resources
to support balancing operations in power systems [1]. Energy
storage – including batteries and pumped hydropower – is
capable of absorbing renewable generation intermittency, im-
proving power quality, supporting competitive markets through
price arbitrage, and generally providing highly flexible capac-
ity to manage a myriad of system needs [2], [3]. However, the
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high capital cost and siting restrictions for most energy storage
technologies has had regulators, industry, and the research
community looking for alternative resources to manage the
challenges of the future generating resource mix.

Demand response (DR) is one such alternative storage
resource of interest. DR has a history as emergency capacity
and as spinning reserve in many balancing areas in the US [4],
[5]. In wholesale and retail electricity markets, DR participa-
tion is growing [6]. State [7] and federal [8] regulators seek
opportunities to open markets to DR and adopt rules to support
the removal of participation barriers. While a considerable
body of work exists discussing DR control techniques to
provide grid services [9]–[13], identification of the costs of
participation for controllable load in DR programs has been
a challenge, with the vast majority of the work focused on
evaluating response to time-of-use pricing [14].

Recent work has focused on incremental energy costs in
buildings providing DR, with a focus on heating, ventilation
and air conditioning (HVAC) systems in commercial buildings.
Some papers have identified the additional energy consump-
tion caused by a system diverging from an energy optimal
demand schedule to hold reserve capacity [15]–[17], while
others focus on the additional energy consumption caused by
responding to grid control signals [15], [16], [18]–[23]. This
latter group of work employs an analogy between thermal
storage in HVAC systems and chemical storage in batteries to
evaluate round-trip efficiency (RTE), or the ratio of discharging
to charging energy. In [18] an illustrative square wave DR
event was used to calculate the round trip efficiency, and
versions of this service were reproduced in a number of follow-
on studies. These studies – which include both experiments
and simulations – report widely varying results, from below
50% RTE [18], [20] to results near 100% or better [16], [19],
[21]. The apparent lack of agreement between these works
on the efficiency of demand response makes interpretation
difficult.

This paper explores the methodological similarities and
differences across these conflicting works to support a con-
vergence of understanding. We build upon their insights and



interpret results in the context of building physics to find
important trends that explain their variability. We argue that
control accuracy and baseline error drive inefficiency, and
state-dependent dynamics create sensitivity to the DR event
shape. We discuss the efficiency metrics used in the literature,
the limitations of their application, and suggest an augmenta-
tion of an existing metric, which we call uninstructed energy
consumption (UEC) to support evaluation of a wider, more re-
alistic range of grid services. Finally, we explore these metrics
with experimental data from Lawrence Berkeley Laboratory’s
FLEXLAB. FLEXLAB is a unique facility with pairs of iden-
tical buildings that can be used for experimental applications,
where each of the pair can serve as either a test or “control”
building. Performing a new analysis on the FLEXLAB data
from the frequency regulation experiments reported in [16], we
show that the characteristics of the demand response trajectory
have strong impact on the variability of efficiency metrics. We
find that RTE can take on values comparable to the lowest
reported in the literature if the trajectory is “asymmetric”,
meaning that power requests on one side of the baseline exceed
those on the other side of the baseline. We also illustrate
that the UEC is much less sensitive to the characteristics
of the demand response signal, providing more information
about the building response’s inefficiency and inaccuracy by
removing the energy content of the requested demand response
service. We conclude that engaging buildings in demand
response services need not result in large additional energy
demands – as the RTE metric might suggest – but that control
accuracy and the characteristics of the demand response signal
are nonetheless important factors for a building operator to
consider when evaluating the economics of providing demand
response.

The remainder of the paper will be organized as follows:
Section II describes the physical systems and mechanisms that
we use to understand the behavior seen across the studies.
Section III discusses each of the efficiency studies in detail
and applies the physical mechanisms previously discussed to
identify which may drive their results. Section IV discusses
the use of the metrics of efficiency and proposes an additional
metric, uninstructed energy consumption, to extend evaluation
to asymmetrical DR services. Section V applies the metrics
to data from previous experiments before final thoughts are
presented in Concluding Remarks.

II. PRELIMINARIES

A. Variable Air Volume HVAC Systems

In the studies we discuss in this paper, demand response
was provided by Variable Air Volume (VAV) HVAC systems
that were cooling commercial office spaces. While all VAV
HVAC systems designs are different, many share a common
general architecture [24]. Commercial VAV systems typically
have multiple zones controlled by independent thermostats
throughout a building, and a single central plant that conditions
and moves air. Figure 1 shows a diagram that depicts a
representative HVAC system for these types of buildings. In
these systems a chiller supplies chilled water to a cooling coil

that cools a mix of outside and return air from the conditioned
space. The cooled air mixture is then distributed to all of the
temperature controlled spaces via a variable speed fan. Since a
single fan typically supplies air to a large number of zones in a
building, each zone manages its own temperature by adjusting
the position of a damper in its VAV box to manage conditioned
air flow. Changes in zone-level damper position result in a
change in the volume of conditioned air delivered to the zone.
The central plant senses this increased demand and adjusts first
its fan speed, and subsequently the thermal plant (typically just
a chiller) output.

Fig. 1. General Variable Air Volume HVAC System Diagram.

The systems illustrated in Figure 1 typically have four feed-
back control loops operating in tandem in order to maintain
temperature in the spaces. The first feedback control loop
regulates the temperature of water exiting the chiller; higher
water temperatures entering the chiller will cause the chiller to
work harder to return the water temperature to the regulated
output temperature. The second feedback loop controls the
valve position that regulates chilled water flow into the cooling
coil in the air handling unit (AHU). This valve is adjusted in
order maintain a constant temperature of the mixed outdoor
and return air leaving the AHU. This flow control impacts
the previous chiller loop by raising the chilled water return
temperature, making the chiller work harder to cool it back to
its setpoint. The third feedback control loop manages the speed
of the air supply fan to maintain a constant duct pressure at the
fan’s outlet. This third feedback loop will respond to pressure
changes caused by changes in air flow through VAV boxes,
and in turn will cause a change in the heat transfer across
the cooling coil in the air handling unit, which will eventually
impact the chiller consumption. The fourth feedback loop is
governed by each zone thermostat; these regulate the damper
on the associated VAV box to change the volume of cool
air flow into the room to reach the desired local temperature
setpoint. In the rare event that the cool air flow can not be
reduced adequately to maintain the setpoint, a resistive reheat
coil inside the VAV box may warm the air so that the space is
not over-cooled. Of these control loops, the first and the third



loop directly impact electricity consumption (chiller power and
fan speed controls), and the other feedback loops have largely
an indirect effect.

B. Demand Response Applications

Demand response services that are centrally coordinated by
a electrical utility or system operator typically fall into three
categories. The first is demand curtailment during periods of
high wholesale prices or peak load. The quantity curtailed is
computed as the difference between an estimate of demand in
the absence of a demand response action (a “baseline”), and
measured power consumption. Building energy consumption
is typically greater than the baseline following the curtailment
event, but the total energy curtailed is often greater than the
post-curtailment “rebound.” [25]

The second type of demand response is similar to the
first, however the resource may be requested to increase
demand as well as decrease. This type of flexible DR is of
interest to areas with high renewable generation capacity that
may wish to ensure wholesale electricity prices are positive,
manage ramping conditions, minimize renewable generation
curtailment, or manage local power quality conditions in the
presence of high distributed generation. Grid services like
these can also be measured from a baseline, and perturbations
to the electricity consumer’s service, such as space heating,
can result in changes to baseline electricity consumption after
the DR performance period.

The last type of demand response services provide reserve-
based ancillary services, such as synchronous reserve or
frequency regulation. Frequency regulation, being the most
lucrative of the reserve services in many markets [5], has
received considerable attention from the demand response
research community. A resource providing frequency regu-
lation bids its capacity into a market and then follows an
automatic generation control signal from the grid operator that
is generally received every 4 seconds and includes a real power
setpoint that the resource must achieve. In many markets, this
is a symmetric service such that the reserve capacity is both
an offer to increase or decrease the power of the resource in
response to grid needs and is a roughly energy neutral signal.

C. Demand Response Impact on Energy Consumption

It is convenient for illustration to consider a DR signal that
is “symmetric” in the sense that the requested power devia-
tions above baseline are equal and opposite to the requested
deviations below baseline. While most traditional DR and grid
signals are asymmetric, this symmetric service ensures that the
electrical energy delivered to the resource while providing the
service is the same with an without the signal. In many cases,
DR requires additional energy consumption relative to baseline
in the period following this symmetric service provision to
restore space temperature to the nominal value (we refer to this
period as the “recovery” period). Citing the inefficiency of a
battery as motivation, researchers have framed this additional
building consumption as demand response inefficiency. To
measure this inefficiency, Beil, Hiskens, and Backhaus [18]

Fig. 2. An illustrative square wave demand response event. This image is
based on Figure 4 from [18].

proposed illustrative “square wave” demand response events
that mirror battery state of charge cycling. One of these events
is a request for an increase in electrical demand followed by
a symmetrical decrease in electrical demand, approximating
a one cycle charge-discharge event of a battery, as shown in
Fig. 2. Beil et al define any net increase or decrease in energy
consumption relative to a baseline, during both the demand
response and recovery periods, as the losses (or gains) to the
system due to the square wave control.

Extending the battery analogy to HVAC-based demand
response comes with an important caveat. In a battery, over a
broad range of state of charge (SOC), the rate of change of
SOC can be treated as independent of its current SOC state
and linearly related to the input power. For HVAC, the best
analogy for SOC is the temperature state of the conditioned
space [21]. However, for HVAC-based demand response, the
rate of change of temperature is strongly dependent on the
temperature state. For example, if a building with a stable
temperature in cooling mode undergoes a step increase in
electrical power to the fan, the rate of change of the the indoor
air temperature will have a sudden initial increase, but slowly
decline and eventually drop to zero as the space approaches a
new stable equilibrium temperature. If the step change is held
indefinitely, the temperature state will remain constant despite
the increased electrical power input. In the battery context,
electrical power input that has diminishing impacts on the state
of charge would indicate a reduction of efficiency.

D. Efficiency Measures

The general question we address in this paper is: How much
additional energy do buildings consume when they are used
for demand response? There are two perspectives one can
use to put this additional energy consumption into context.
A “building centric” perspective is to measure a building’s



total energy consumption over a demand response period,
including transient consumption after the requested service is
provided, and compare this directly to an estimate of what the
building would have consumed in the absence of the service
(i.e., a baseline). The difference, defined as Additional Energy
Consumption (AEC) in Keskar et al [20], will be positive
and large for inefficient building impact. The ratio of AEC to
baseline energy consumption provides a normalized efficiency
penalty of the DR service. It is possible to have negative
efficiency penalty, if the building consumes less energy during
DR than in the baseline estimate.

Alternatively, a “service centric” measure of DR efficiency,
originally proposed by Beil, Hiskens and Backhaus [18],
measures energy curtailed or consumed for the DR service
only. This involves partitioning building demand into periods
when power is below baseline and periods above baseline.
Invoking a battery analogy, we can regard the below-baseline
energy as battery discharging, or Eout, and above-baseline
energy as battery charging, or Ein. Continuing the battery
analogy, the round-trip efficiency of the DR event is then
simply the ratio of these, i.e. RTE = Eout/Ein.

E. Inefficiency Mechanisms

In the range of experiments we describe below, RTE is
frequently below 1.0, often significantly so. This corresponds
to large, positive AEC. What factors influence these differ-
ences in energy consumption? Here we consider a number of
mechanisms that could lead to measuring RTE not equal to
1.0. The first four of these mechanisms are related to building
physics and lead to real differences in energy consumption.
The last two mechanisms, related to measurement and control,
lead to differences in how we quantify efficiency.

State dependent losses. If the temperature of the building
during a DR event is further from ambient conditions than
during baseline, heat transfer will increase, and as a conse-
quence more energy will be required to condition the space.
Therefore if the building mass temperature is, on average,
farther from ambient conditions during the demand response
event than during a baseline, the building will consume more
energy over the event than it would have in baseline, and
the DR event will be perceived as inefficient. Note that the
reverse is true as well – if average temperature over the DR
event is closer to ambient, the DR service can be interpreted as
having RTE greater than 1.0. The magnitude of this effect will
be different for every building based on building construction
parameters, such as insulation and thermal mass. Furthermore
this mechanism does not derive from degraded conversion
efficiency of the building HVAC system, but rather from the
simple thermodynamic implications of operating the building
at different temperatures.

A consequence of the state dependence of heat transfer is the
bounded range for which the conditioned space’s temperature
can take. Raman and Barooah [21] show that there exists a
range that internal temperature may take that is bounded by
the ambient temperature and the HVAC supply air temperature
in most conditions. They use this fact to show that if the

square wave, or any symmetric DR signal, were repeated
indefinitely, the efficiency RTE converges to one. This concept
also has implications for the impacts of extending the duration
of the symmetric DR event. As the length of the DR event
increases, the closer the space gets to stable temperature states
in each half of the charge-discharge cycle. When this happens,
the VAV control response in the space during the recovery
period becomes dependent solely on the stable equilibrium
temperature in the second half of the DR event. The remainder
of the losses will be accounted in changes to chiller energy
consumption versus the baseline. Conversely, a very fast signal
would be expected to have small impacts on the temperature of
the space, and thus very little state dependent losses. Similar
effects of service duration on energy consumption were seen
in [23] in which faster services have little impact on energy
consumption while maintaining temperature, but as duration
increases so does energy consumption over baseline.

If state dependent losses dominate measured efficiency
trends, we should expect to observe several phenomena. First,
experiments and simulations with average temperatures closer
to ambient should be more efficient than those with larger tem-
perature differences. Second, holding all else equal, in cooling
conditions increasing average zone temperatures should reduce
energy consumption relative to the baseline, and vice versa. As
we will discuss below, two major experimental studies do not
meet these conditions, suggesting that state dependent losses
are not the dominant explanation for measured DR inefficiency
in those cases.

Nonlinear performance curves. The second factor that
causes DR energy consumption to differ from baseline con-
sumption is rooted in the relationship between HVAC equip-
ment energy conversion efficiency and system loading. Very
broadly speaking, HVAC chillers, pumps and fans are more
efficient at part load than at full load. As a result, the
relationship between system energy consumption and thermal
energy loading – sometimes called the “performance curve” –
is nonlinear. The characteristics of this efficiency-loading rela-
tionship mean that, holding all else equal, a system consumes
more electricity if its output is variable than if it is constant,
even if the net thermal transfer is the same in both cases.

If nonlinear performance curves drive measured DR ef-
ficiency trends, experiments with larger amplitude demand
response trajectories should exhibit lower efficiency. Fur-
thermore, experiments and simulations should always show
efficiencies below 1.0. As we will discuss below, there is
insufficient research to date that addresses the question of
amplitude. However there are a number of papers – both
experimental and simulation-based – that report efficiencies
in excess of 1.0, suggesting nonlinear system performance is
not the dominant factor.

Outside air mixing. VAV systems typically exhaust a
fraction of return air and replace it with outside air to reject
indoor air contaminants. The quantity of outside air introduced
into supply air has an impact on chiller energy consumption
as follows: if outside air temperature is greater than return
air temperature, increasing outside air volume will increase



cooling energy required to maintain a particular supply air
temperature. There are a number of ways to regulate outside
air intake. At one extreme, the outside air fraction remains
fixed across different supply air volumes, and at the other, the
outside air volume remains fixed across different supply air
volumes.

The impact of outside air intake on measured DR efficiency
depends on how outside air fractions vary with total supply
air volume. If the outside air fraction remains fixed, outside
air would not cause the temperature of the air entering the
cooling coils to vary with supply air volumes. Thus outside air
mixing would have no impact on cooling energy required per
unit of air delivered to the space, and there would be no impact
on measured DR efficiency. If, on the other hand, outside
air volume remains fixed, the temperature of the air entering
the cooling coils would decrease with increasing supply air
volume because proportionally less outside air would mix with
the return air. In this case outside air mixing would tend to
reduce cooling energy required per unit of air volume delivered
as air volume increases. If none of the other mechanisms
discussed here affect measured DR efficiency, constant outside
air volumes would lead to a measured DR efficiency of greater
than 1.0.

VAV reheat. In most VAV systems, ventilation air is pro-
vided by delivering conditioned air (which contains a fraction
of outside air) to every zone. This leads to an undesirable
side-effect: zones with low cooling loads will still receive
cooled air in order to meet ventilation requirements, which
could in turn over-cool those zones. To avoid over-cooling,
VAV systems employ reheat, in which VAV boxes contain an
auxiliary heat source to increase local supply air temperatures.
Most reheat systems use hot water coils in the VAV box.1

Should a significant fraction of zones be operating in reheat,
the temperature response would derive from changes in hot
water delivery rather than electrical power. Therefore in reheat
conditions global temperature resets would result in smaller
changes in electrical power than when zones are not in reheat.
The resulting building performance is qualitatively the same as
having a nonlinear performance curve: the mapping between
electrical power and heat transfer is nonlinear, and more
electrical power is required at high heat transfer rates. This
effect should be more pronounced near minimum air flow at
very low cooling loads. Therefore the qualitative observations
we described above for nonlinear performance curves should
also emerge if VAV reheat is driving inefficiency, particularly
when building cooling loads are low.

Accuracy of control response. If a resource operates
with an inaccurate and asymmetric, or biased, response to a
symmetric signal, that bias will be recorded as inefficiency
in the RTE metric and impact the resulting AEC. This con-
trol inaccuracy could be caused by poorly tuned parameters,
excessive perturbations to the building, lack of feedback, or
inaccurate control models. In any of these cases, the cause of

1We will assume hot water is produced with a fuel other than electricity.
Note also that some engineers recommend using electric resistance coils for
reheat [26], but we will assume this is not the case in our analysis.

the poor efficiency metric is not an inefficient charge-discharge
of the building, but rather is an artifact of the way in which
efficiency is measured. For example, if the resource in Figure
2 were to only respond with half the power requested in
the discharge period, the asymmetric and inaccurate response
would halve the reported round trip efficiency despite the fact
that the reduction in discharge energy was due to poor control
and not due to conversion, thermal, or other energy losses.
If this mechanism is driving reported inefficiencies in the
literature, we would expect to see inaccurate and asymmetric
control responses in experimental results, and results with
greater observed inaccuracy and / or asymmetry would yield
lower efficiencies.

Baseline calculation. Even small baseline errors can have
an large impact on the measurement of RTE and AEC [19].
Baselines biased downward will increase measured energy
for charging and decrease measured energy for discharging,
which in turn would reduce the RTE. Similarly, upward-biased
baselines would increase the RTE. One potential source of
this bias is a difference between the shape of a building load
profile and its baseline. For example, constructing a baseline
by linearly interpolating between power measurements at the
start and end of a demand response event will result in a
baseline that is always less than a concave load profile, and
always greater than a convex load profile. Load profiles for
commercial buildings are generally concave down in shape
during occupied hours [27].

III. STUDIES ON DEMAND RESPONSE EFFICIENCY

As we indicated in the introduction, there is a broad range of
reported efficiency results for HVAC-based demand response.
Round-trip energy efficiency varies across studies from below
40% up to around 130%, depending on the conditions of the
test. In general, experimental results suggest much lower effi-
ciencies than simulation studies. In this section we will detail
the experiments and simulations presented in the literature
[16], [18]–[21], discuss similarities across them and suggest
the inefficiency mechanisms described in the previous section
that may be present. While establishing which mechanism is
dominant may not be feasible from the literature, we can rule
out those mechanisms that are not consistent with the dominant
patterns in their results.

A. Testing Conditions, Assumptions and Results

The present section describes critical features of the building
environments, modeling assumptions, grid services provided,
control methods, and metrics used in each study. It also relates
these to the results reported. These conditions help identify
potential causes for differing results among experiments and
simulations. Table I describes differences among the simu-
lations and experiments in the buildings and environments,
modeled components and dynamics, characterization of the
DR services provided, control approaches used, and even some
variation in metrics used for determining results.

In Table I, the conditions can be related to loss mechanisms
defined in Section II. The rows relating to building construc-



Beil, Hiskens, and
Backhaus [18]

Vrettos et al. [15],
[16]

Lin et al. [19] Raman and Barooah
[21], [22]

Keskar et al. [20]

Type Experiment Experiment Simulation Simulation Experiment
Building Size
[m2]

30,000 120 - - (3 Buildings) 9,100;
9,700; and 14,600

Building Loc. Los Alamos, NM Berkeley, CA - - Ann Arbor, MI
# of VAV set-
points

350 1 1 1 104, 193, and 109

DR Services Of-
fered

Sq. Wave Freq. Reg. Sq. Wave and Freq.
Reg.

Sq. Wave Sq. Wave

Period of Square
Wave [min]

30 - 30, 120 2-600 60

Relative Capacity
Offer

5-10% 0-50% 10%, 20%, 40%† 20%† NA‡

Fan Model Linear♦ Cubic Linear & Cubic Quadratic Linear?
Recovery Period
[min]

90 - < 300 Temp. Dependent 48,60

Baseline Method Linear Approx. Measured Control Simulated Simulated Linear Approx.
Control
Approach

Open-loop GTR MPC & PI on Fan PI on Fan Ideal Fixed GTR

† 20% of the baseline fan power, not the rated power of the installed fans.
‡ No target power service offer, solely symmetric temperature adjustments.
♦ Bounded, linear probabilistic relationship between VAV contribution to fan power and GTR, see [28].
? Implied linear relationship between temperature setpoint and power.

TABLE I
TEST CONDITIONS FOR DR EFFICIENCY EVALUATIONS IN LITERATURE

tion and environment, as well as those describing the service
being presented, all play a role in the state-dependent losses
and effects. The rows defining the capacity offered, the type
of service offered and the fan model employed can impact
the degree to which non-linearity may effect system losses.
Both the method for developing a baseline coupled with the
recovery period used play a role in the error in measurement
and RTE recorded that baselines can create. Finally, the control
approach coupled with the number of setpoints the system
controls plays a large role in the accuracy of response that
may adversely impact the RTE results.

1) Experiment: Beil, Hiskens and Backhaus: Beil, Hiskens,
and Backhaus ran experiments on a large commercial office
building in New Mexico with hundreds of VAV boxes [18].
They use a square wave demand response profile to evaluate
RTE. The square wave event was composed of an event period
of 30 minutes, an amplitude of either 15 or 30 kW, and a
recovery period of 90 minutes. The baseline is determined
by linear interpolation between the measured fan power for a
short duration immediately before a given DR event and the
fan power immediately before the next DR event, at the end
of the recovery period.

The authors employed an open-loop control approach that
made global adjustments to all thermostat setpoints in the
building together, called a global thermostat reset, to achieve
model-based targeted power levels. This control approach was
developed and used for this particular building in previous
work to provide fast demand response services [28]. The
authors use a system identification approach to approximate
a bounded distribution of VAV contributions to fan electricity
demand with a linear response to temperature setpoint changes.
The open loop control approach was relatively inaccurate on
the test building, with the response ranging from 70% to

120% of the commanded change in power for the best 60%
of commands. It is possible that aggregate accuracy could
improve if the control approach is deployed across a fleet of
buildings [28].

Beil et al report an average round-trip energy efficiency of
46% on a total of 78 experiments. They ran 37 experiments
in which the square wave performed a charging action then a
discharging action, similar to the example in Figure 2. Though
the paper does not report indoor air temperatures, we expect
that these charge-discharge sequences would cause the average
difference between indoor and outdoor air temperatures to
grow over the duration of the experiment, relative to an uncon-
trolled baseline. These charge-discharge experiments resulted
in average efficiencies of 61%. The paper also reports 41
discharge-charge experiments. In this case we expect the DR
action to reduce the indoor-outdoor air temperature difference.
These discharge-charge experiments resulted in an RTE of
0.34%.

Based on these results, we can reject the hypothesis that
any one building physics effect is dominating Beil et al’s
observed trends in measured DR efficiency. Specifically, as
we explained in the prior section, if state dependent losses
dominate results then an event beginning with a discharge will
often result in efficiency greater than 1.0, events beginning
with charging should have efficiencies less than 1.0 and less
than discharge-first events. This qualitative behavior is not
observed in Beil et al. Neither nonlinear performance curves
nor VAV reheat are likely dominating the results, because no
differences in RTE are reported between experiments with
different amplitudes. Beil et al’s results also do not support
a hypothesis that outside air mixing dominates the observed
trends, since measured efficiencies far below 1.0 are observed
in measured fan power alone and are not significantly changed



when the chiller consumption is included.
Beil et al’s reported DR efficiency trends are, on the other

hand, consistent with the possibility that measurement and
control issues drive DR efficiency trends. Specifically, the
results are consistent with the effects we would observe for a
downward bias in the linear baseline due to the visible concave
shape of the building load. However, it is not expected that
this effect would play a significant role in wide differences in
charge/discharge vs discharge/charge cycles. Beil et al’s results
are also consistent with the effects of inaccurate control. Figure
3, a reproduction of Figure 4 from [28] shows the model used
for open loop control and the control error for a 2 °F GTR.
One can see a bias in the error – specifically, control response
is on average higher than the model used for control – as well
as larger error distributions for negative setpoint changes. The
bias would tend to generate over response in charging energy
and under response in discharging and thus lower reported
RTE overall. The larger control error for positive changes
in power (negative temperature setpoint changes) could also
have bearing on the result that discharge-charge efficiencies
are lower.

The proposition that control accuracy plays a large role in
the unexpected efficiency outcomes is supported by a line in
the caption for Figure 5 of Beil et al. In it they describe
conditions of asymmetry in response arising from an initial
request to discharge that does not occur if the initial request
was to charge. If the system under performs during discharge,
but charges at the full power request, this asymmetry results
will read as an inefficiency when calculating RTE, though this
may be mitigated to some degree by a change in response
during the recovery period. This inaccurate control response
applying most commonly to the discharge-charge cycle is
consistent with the surprising difference in the reduced RTE
of these types of events relative to those seen in other studies.

2) Experiment: Vrettos et al.: In our previous work, Vrettos
et al. [15], [16], we demonstrated a hierarchical control
approach for providing frequency regulation with commercial
building HVAC, including evaluating the efficiency impacts
of the control. The demonstration was performed at Lawrence
Berkeley National Laboratory’s Facility for Low Energy Ex-
periments (FLEXLab) [29] in a pair of identical 60 m2 test
cells. Each cell is thermally isolated from its twin, has a
dedicated air handling unit with its own variable speed fan,
and manual dampers on the VAV Boxes. The thermal isolation
and identical layout and construction of each pair enabled one
cell to be treated as a measured baseline while the other cell
performed the demand response service.

The hierarchical control used in [16] includes a day-ahead
regulation capacity optimization, model predictive controller
(MPC) to manage temperature via air flow, and a PI con-
troller that tracks the regulation target in the fan’s electricity
consumption. This control replaced the traditional fan and
VAV box control loops, but left the chiller and AHU control
unchanged to manage supply air temperature.

The day-ahead optimization and MPC employ both a two-
state resistive-capacitive (RC) model of the space and a cubic

Fig. 3. Experimental data and model for control approach used in [18], taken
from Figure 4 of [28].

model of fan electricity consumption to manage the trade-
off between the building’s physical effects caused by state-
dependent loss and non-linear performance and the economic
value of offering the frequency regulation service. As the
frequency of oscillations between charging and discharging
is high when following the regulation service signal, the
real-time tracking control would be expected to have very
small impacts on the temperature state of the space and
thus very little additional state-dependent losses. However,
this highly variable signal could have an impact on non-
linear performance losses due to the cubic fan response. The
energy efficiency penalty from providing continuous service,
calculated through both the energy delivered by the chiller to
the spaces and the energy consumed by the fans, was reported
as negligible, between 1-2% from the baseline cell, despite
the variable signal. The low impact of inefficiency found for
providing frequency regulation here is consistent with more
recent experiments on heat pumps and rooftop units in highly
controlled environments [30].

The other inefficiency mechanisms outlined above were
not present: There was no VAV reheat, nor was outside air
mixed into the supply air. Control accuracy was very high.
Because of the test-control configuration, measurement error
in baseline energy consumption was assumed to be low, and no
linearization bias is introduced. This assumption of negligible
baseline error was determined to be false during the analysis
for this work and will be discussed in greater detail in Section
V.

Insight into state dependent losses are possible due to the hi-
erarchical control approach. The day ahead optimization gave
the controller the ability to trade-off costs of state-dependent



losses and revenue from service provision. When comparing
the system providing frequency reserves to a baseline in which
energy minimization is the optimization objective, there was
considerable additional energy consumption recorded: 68%
more fan electricity and 11% more energy into the AHU.
This is because the system must create headroom to provide
symmetric frequency reserves in either direction, and so the
system cannot operate at its temperature that minimizes state-
dependent losses within a comfortable temperature range. This
efficiency penalty has been discussed in other literature as an
opportunity cost of providing reserves [17], but is not present
in any of the other studies and so is not discussed as an
inefficiency mechanism above.

3) Simulation: Lin et al.: Lin et al. [19] performed a
simulation-based analysis of DR from VAV HVAC to improve
the understanding of the drivers of inefficiency. They use a
similar two-state RC model as [15] for the thermal dynamics
of a space with a single aggregate building temperature zone.
They ignore humidity and treat outdoor air temperature and
internal heat gains as constant, resulting in a constant HVAC
power demand when the system is at equilibrium. They
assume a linear relationship between air flow and fan power
for most scenarios tested on the grounds that VAV systems
maintain constant pressure drop across a range of fan speeds.
They do, however, run a scenario that includes a cubic fan
model to evaluate its impacts. They also ignore reheat and
outside air mixing. Their model uses PI control on the fan to
manage room temperature setpoints in normal operation, and
to manage fan electricity consumption during a DR event. Lin
et al perform a scenario-based simulation to evaluate impacts
of adjusting multiple test conditions, including the magnitude
of the DR signal, the duration of the DR event, reducing the
controller gains, the capacitance of the space, and the ratio
of outdoor air. The focus of their experiments are on the
illustrative square wave DR service, but typically with a longer
two hour event period and they record the system’s post-event
behavior until it returns to equilibrium.

Considering Lin et al’s simulation setup, the only factors
that could introduce measured inefficiency are control inaccu-
racy, state dependent losses, and baseline error. The results of
their square wave experiments were highly consistent with a
dominant mechanism of state-dependent losses. They reported
RTE ranging from 0.81 to 0.94 for events that began with a
charging event, and 1.05 to 1.19 for events that began with
discharging. They also found that there were large impacts
on RTE when changing event duration and by changing
the building parameters to reduce available thermal storage.
They also showed the impacts of control accuracy in tests in
which the controller was tuned to be less aggressive, reducing
overshoot and damped oscillation in the recovery period. The
authors ran a test following a frequency regulation signal from
PJM to compare to results found in [16], finding very little
efficiency impact of providing the service which is consistent
with the interpretation that state-based losses require enough
event duration to see significant state change. Lastly, the
authors explore the importance of baseline error, showing that

even a conservative error of 1% of the baseline load [31] can
create an 8-10% change in RTE results.

4) Simulation: Raman and Barooah: In the studies by
Raman and Barooah [21], [22], the authors propose formal
definitions of a complete charge-discharge cycle, RTE, and
the state of charge of an HVAC-based Virtual Energy Storage
resource and explore RTE through theory and simulation. They
define a complete charge-discharge cycle as one in which the
state of charge at the end of the cycle is equivalent to its initial
value, and that RTE is the ratio of the integral of Power out of
the battery when discharging over power in during charging
across the complete charge-discharge cycle. They also propose
that state of charge for HVAC in buildings, given allowable
temperature range, [TL, TH ] is the ratio of the difference
between indoor temperature and the highest allowable indoor
temperature, TH−Tr, and the difference between the extremes
of the allowable temperature range, TH − TL.

The authors go on to simulate square wave experiments
using these definitions for RTE. The simulations use a single
state RC thermal model, collapsing the room and the thermal
mass into a single state. The model parameters were chosen to
represent a large auditorium on University of Florida’s campus.
They use a quadratic model relating fan power and mass flow
of the air for ease of analysis. Like [19], they assume constant
outdoor air temperature and ignore humidity. The dynamic
model is based on perturbing a system at equilibrium and
allowing it to return. Control is idealized such that the square
wave is perfectly tracked during the square wave DR event. To
return the system to equilibrium control input is determined
based on dynamic algebraic equations that relate the power
and temperature dynamics to the equilibrium state before the
DR event. The amplitude of the square wave is set to 20% of
the equilibrium HVAC demand and the period of the wave is
the parameter that is varied for analysis, between 2 minutes
all the way up to 600 minutes.

Numerical results of the scenario-driven simulation for
square waves that begin with charging show RTE ranging
from approximate 93% for a very fast event down to roughly
72% for the longest period waves. In square wave simulations
that begin with discharging, the opposite trend was observed:
the very short event periods yielded the same roughly 93%
efficiency but as the event periods increased the so did
efficiency, up to around 128%.

The only modeled mechanisms that generate round-trip inef-
ficiency are nonlinear performance curves and state dependent
losses. The results indicate that the duration of the square wave
dictates which of these loss mechanisms will dominate. For
shorter event periods, non-linear losses in the fan dominate the
RTE results, but as the event gets longer, the state-dependent
losses become dominant as the average change in temperature
in the space increases with the increasing duration. They show
the existence of a critical duration in which the RTE of a
discharge-charge DR event changes from being less than 1
to greater than one, and expresses it analytically based on
parameters of the building thermal and fan model, the baseline
operation conditions, and the amplitude of the square wave.



The authors also provide a mathematical proof that if the
square wave is repeated n times, in the limit where n −→∞ RT
efficiency becomes one, which parallels the continuous service
provided when offering frequency regulation from demand
response. This result applies to any unconstrained repeating
DR signal.

In [22], the authors extend their work looking at the continu-
ous service provision case that results in 100% efficiency. They
place a constraint on the temperature of the space such that the
temperature over the course of the continually repeating DR
event must be zero-mean. With this constraint, they show that
there is a non-zero offset that must be applied to the square
wave that results in an efficiency between 85% and 100%.
The range of this result is driven by changing the building
conditions and the duration of an event period. They conclude
that non-linearity in both power and temperature dynamics
drive the inefficiency under this temperature constraint.

5) Experiment: Keskar et al.: Keskar et al [20] ran more
than 100 square wave DR tests across three buildings at
the University of Michigan, Ann Arbor during the Summer
months. These buildings ranged in size from approximately
9,100 to 14,600 m2, with HVAC in each building controlling
between 104 and 193 temperature setpoints. As with Beil
et al, GTR was used, however in contrast to Beil et al
there was no identification of a control law between a global
temperature setpoint change and HVAC demand. Instead the
control strategy implemented fixed, symmetrical temperature
changes of either 2°F or 4°F . The paper assumed that a square
wave temperature profile would result in a relatively square
power profile. Each square wave experiment had a period of
approximately one hour. The recovery period recorded for
each experiment was either 48 minutes, due to a peculiarity
of a single building’s operation schedule, or 1 hour. Linear
baselines were calculated by performing a least squares fit to
the 5-minute period immediately before the event and the 5-
minute period following the end of the recovery period.

The results for these experiments have a strong dependency
on the size of the temperature setpoint change. The 4°F
GTR experiments were consistent with Beil et al, with the
charging-first experiments posting about 80% RTE and the
discharging-first experiments around 48%. However, in the
2°F GTR experiments, the patterns were more consistent
with Lin et al’s simulation results as 2 of the 3 buildings
displayed significant increases in the RTE when the square
wave was changed from charging first to discharging. These
smaller GTR commands display behavior that is consistent
with dominant state-based losses, whereas the larger GTR
commands results are inconsistent with state dependent losses.
The results due show sensitivity to amplitude, suggesting that
non-linearity of performance and VAV reheat may play some
role, but the drastic changes in the discharge-charge events
between 2°F and 4°F suggest these are not the dominant
mechanism. Control accuracy, on the other hand, cannot be
ruled out as the dominant mechanism, especially for the large
temperature setpoint changes. The study reports results for a
total of 47 experiments, out of a total of 102 experiments

performed. The 55 “outliers” were filtered out due to poor
control response (asymmetry in response exceeding 80% or no
appreciable power response to control inputs), implying that
the control approach used lacked accuracy and consistency.
This inaccurate control coupled with results that are incon-
sistent with physics-based mechanisms of inefficiency suggest
that inaccurate control may be the cause.

The AEC metric reported provides additional support for
inaccurate control driving inefficiency. The experiment reports
the AEC separately during the square wave event period and
during recovery. If the GTR control was accurately providing
a square wave response in power, the expectation would
be that the AEC during the event period should be near
zero. However the results indicate that roughly half of the
overall AEC for each experiment was experienced during
the event period, suggesting that the control response was
highly asymmetric and inaccurate. This is corroborated in
the graphical representations of events reported in the paper.
Between the differences in the pattern of response to 4°F
versus 2°F experiments, and the large amount of AEC present
during the square wave event period, it is likely that the control
inaccuracy is the dominant mechanism for the low RTE results
for discharge-charge events.

B. Cross-study Comparison

The studies evaluating the efficiency of providing grid
services with VAV-based HVAC Demand response provide a
wide range of results. RTE as low as 34% and as high as 130%
make overall evaluation of the efficiency of demand response
challenging. However, the results presented also represents a
large number of changing conditions, parameters and tests.

Table II presents the results from comparable conditions
across the studies performing square wave experiments to
examine the similarities and differences. The table shows the
RTE results reported in each experiment for square wave with
30 minute event periods, the exception being Keskar et al. [20]
which performed experiments for 60 minute event periods.

Table II shows considerable agreement across the square
wave results that begin with charging. As all buildings and
conditions for each experiment and simulation differ in con-
struction and ambient conditions, we do not expect the results
to be identical but that they are near one another. While both
of the two simulation studies show losses driven by state-
dependence with large differences caused by the order of the
square wave and discharge-charge events with RTE greater
than 1, comparing the two we see an expected reduction
in efficiency in [21] as they modeled non-linearity in fan
response. Both experimental studies record lower efficiencies
than the simulations, which is likely due to significant bias
due to linear baseline estimation of their concave down load
profiles and possibly mediocre control performance during the
event period.

There is a much larger disparity in results when evaluat-
ing the square wave experiments that begin with discharg-
ing. While simulation results are dominated by the state-
dependence of thermal service delivery, resulting in RTE



Round-trip Efficiency
Study Charge-Discharge Discharge-Charge

η n η n

Beil, Hiskens, and Backhaus [18] 0.61 37 0.34 46
Lin et al. [19] 0.94 - 1.06 -
Raman and Barooah [21] 0.88† - 1.01† -
Keskar et al. [20] 0.82 ‡ 24 0.76 ‡ 23
Keskar et al. [20] - 2°F Only 0.87 ‡ 11 1.08 ‡ 11
Keskar et al. [20] - 4°F Only 0.80 ‡ 13 0.48 ‡ 12
† Estimated from Fig. 3 in [21] with 30 minute square wave event period.
‡ Average of results across all buildings from [20].

TABLE II
RTE RESULTS FOR SQUARE WAVE DR TESTS

greater than 100%, the experimental studies report results with
considerably lower RTE than even the reversed square wave.
The evidence strongly suggests that this disparity between
simulation and experiment is driven by control inaccuracies
that result in a lack of symmetry in the GTR control response.
Evaluating the impact of control in Keskar et al. between the
less aggressive 2 °F setpoint GTR and the 4 °F GTR, we see
a marked difference. The 2 °F experiments result in average
efficiencies close to the simulation results, however the 4 °F
results mirror those in Beil, Hiskens, and Backhaus, in which
discharge-first efficiencies are very low and less than charge-
first. One mechanism that could lead to this effect might be
running into minimum ventilation constraints. At equilibrium
prior to the DR event, many of the VAV’s in the system
are too close to their minimum air flow position, and are
unable to respond to the more aggressive temperature setpoint
increase. However, in the second half of the experiment, there
is ample capacity to respond to the increase. This would
create an asymmetry in control response and a large bias
towards inefficiency during the event period, well before the
recovery period begins, which could explain these results. We
expect that this or similar effects impacting control response
explain the large difference in results between simulation and
experiments, although a more detailed look into the responses
and internal states of the building is necessary to confirm this
hypothesis.

IV. EFFICIENCY METRICS AND APPLICATION TO DEMAND
RESPONSE

The broad range of efficiency results could at least in
part derive from RTE being an insufficient metric to capture
the phenomena of interest. The present section discusses the
battery analogy and state of charge in the context of efficiency.
It goes on to discuss RTE and the metrics reliance on the
symmetric square wave test. Finally, we discuss how AEC
might be used to create other metrics that may have more
meaningful and actionable information and apply to a larger
variety of DR events.

A. The Battery Analogy, State of Charge, and Efficiency

As we discussed in Section II, the dynamics by which a
battery changes its state of charge with an electrical power
input are very different from that of an HVAC system. A

battery is generally approximated to have a linear dependence
between its state of charge and power input. In the battery
analogy, temperature is used as a proxy for the state of charge
for thermal energy storage in an HVAC system. However,
HVAC-based demand response has a strongly state-dependent
relationship between the rate of change in temperature in the
space and the heat removed from the space via cooling. In this
section, we explore this dependency to highlight limitations of
the battery analogy, namely that the SOC dynamics of HVAC
are not proportional to power input like a battery and show
that state dependence can cause the SOC to undergo greater
change than a full cycle during a square wave event, which is
recorded as a form of loss.

To clarify this state dependency, consider the simplified
HVAC system represented by a single-state RC model used
in Raman and Barooah [21]. For simplicity’s sake, we will
ignore internal heat gains so that the temperature dynamics
described in [21] become:

CṪr =
1

R
(Toa − Tr) + ṁaCp,a ∗ (Ts − Tr)

Where Tr is the room temperature. Toa and Ts are the temper-
atures of the outside air, and the supply air, respectively. R and
C are the resistance and capacitance parameters representing
the buildings’ insulation and thermal mass. Cp,a is the specific
heat capacity of air, and finally the ṁa is the mass flow of
supply air. Qualitatively, the equation is a power balance that
says the change in energy storage is equal to the the sum of the
state dependent losses to the outside air and the heat removed
from the space. The solution to the differential equation is:

Tr =
aToa + ṁabTs
a+ ṁab

+K0e
−(a+ṁab)t

where K0 is a constant determined by the initial temperature
condition, a = 1

RC , b =
Cp,a

C , and we have assumed ṁa is
independent of time.

Exploring the ODE and its solution gives three critical
pieces of insight: First, the equilibrium temperature as t −→∞
is a weighted average of the ambient outdoor air temperature
and the supply temperature. Second, the exponential decay of
temperature is dependent on the air mass flow rate. Third,
temperature state dependence exists for both the losses to
ambient and the thermal energy delivery from the HVAC, and
their influence on the temperature profile is intertwined.



To further put this in perspective, consider an arbitrary
square wave power command applied to both a battery and
an HVAC unit. For a battery with a linear efficiency penalty
placed on both charging and discharging, The symmetric
square wave will result in a state of charge reduction pro-
portional to the efficiency penalties and the magnitude of the
square wave. The state of charge of an inefficient battery will
always be less than its original state given a square wave input,
regardless of charge/discharge order. Further, if charging is
extended indefinitely, the battery must eventually reach 100%
SOC and will stop charging.

As indicated by the solution to the ODE, HVAC temperature
dynamics differ strongly from battery SOC when a square
wave power command is imposed. The exponential decay
term will cause the temperature to gradually reduce its rate of
change when constant power is applied until the equilibrium
temperature is reached. When a symmetric square wave in
electrical fan power is applied to an HVAC system, the tem-
perature will quickly change commensurate with the direction
of the change in thermal power during the first half of the
wave, but slowly decay as time continues. In the second half
of the event, the change in thermal power delivery is larger
than in the first, as the larger step change in supply air flow
is compounded with temperature difference in the new state.
This results in a more rapid change in the temperature than was
observed in the first half of the wave. In fact, the temperature
will arrive back at its original state before the period of the
square wave is complete (assuming a near linear relationship
between fan power and air flow) and the remainder of the time
that the square wave is implemented will push the system
past its original state of charge. Control will be necessary
during recovery to make up for this excess charge, resulting in
”losses” or ”gains” that impact the RTE. An excellent example
of this is visible in the default scenario simulation results in
[19], reproduced here in Figure VI. Regardless of the order of
the square wave, in the second half of the event the temperature
crosses the baseline temperature, completing an SOC cycle,
before the end of the event. After the event, PI control attempts
to quickly restore the system to baseline by either increasing or
decreasing fan power, causing the RTE reported to be above or
below one depending on the order of the square wave pulses.

Fig. 4. Dynamics of HVAC System with a square wave fan input from Figure
4 in [19]

B. Service Definition and Round-Trip Efficiency

The present section explores the impact of service definition
on RTE. We argue that RTE results for demand response from
HVAC systems are heavily dependent on the service definition,
which limits the utility of the metric.

In the experimental results summary of Section III we
saw a strong dependence of the RTE results on the shape
of the service requested. The order of the charge and dis-
charge commands often results in a flip from efficiency gains
to efficiency losses, due to state-dependent effects on heat
transfer dynamics. This effect was magnified when increasing
the duration.

When the concept of RTE was introduced, the service
defined to generate results was a symmetric square wave. This
illustrative service mimicked a simple charge-discharge cycle
of a battery by asking for constant power in either direction
with the same magnitude and duration. However, the standard
definition for round-trip efficiency for a battery is the ratio
of energy delivered in discharging to energy consumed in
charging measured at the point of common coupling with the
the grid [32], which is irrespective of the shape of the service.
Dramatically different results can be possible if another service
were defined.

Raman and Barooah [21] show that as a square wave tests
are repeated N times and then allowed to recover after the
repetitions, the RTE trends toward 1 as N grows. This is
because perturbation to the temperature state due to any loss
is bounded by the outdoor air temperature and the supply air
temperature. Thus any control required to recover the system
to its initial state during the recovery period is also bounded
in terms of energy input, but the energy content of the square
wave signal repeated N times is unbounded. So as N −→ ∞,
Eout/Ein −→ 1.

Another example of the impact of service on RTE results is
a demand response shed. Grid services provided by demand
response are often shed events, in which electrical demand
is reduced in response to a grid signal. The simplest shed
event for VAV HVAC demand response would reduce fan
power for a period of time, then return fan power to its initial
value. In this type of event, assuming ambient conditions and
occupancy are fixed, the temperature SOC would rise toward
some new equilibrium temperature during the shed, and then
would return to its initial value, given enough time, due to
the state-based thermal dynamics of an HVAC system. From
the perspective of the battery analogy, this return to the initial
SOC would be accomplished without having to ”charge” the
system by increasing demand over baseline because the system
was commanded back to its pre-event control state and given
ample time for heat transfer to find its equilibrium, and thus
would have an infinitely large RTE. Considering RTE for
this simplified DR event provides no useful information and
highlights the dependence of the metric on the service used to
measure it.

Since RTE results exhibit this dependence on the shape
of the service being provided, comparing resources based on



the metric is only valuable when they are compared for the
same service. By extension, RTE results are useful when the
service they are being calculated for is commonly used, which
is not the case for the illustrated square wave service. The
benefit of the RTE metric for batteries is that it allows the
prospective resource owner to make financial decisions when
deciding on which storage resource to purchase and how to
operate it, as the RTE is relatively constant for most chemical
storage use cases. It also provides some grid operators a
parameter for scalable prediction of a resource’s available
capacity for market awards. However as discussed above,
because RTE depends strongly on the shape of the grid service
requested, it is less useful for these generic decisions for
DR applications. RTE’s strongest application for DR is to
predict energy consumption, but because the metric varies
based on environmental and service contexts, a more direct
measure of energy consumption can provide the same quality
of information with a simpler execution.

C. Alternate Metrics for Demand Response Efficiency

In this section, we discuss an alternate metric, AEC, pro-
posed in the literature, describe its value over RTE, and
propose a simple extension to compare asymmetric services.

Additional energy consumption can provide a useful met-
ric for demand response resource owners or power systems
operators where RTE fails. It represents the total quantity of
energy consumption over the baseline across the DR event and
recovery periods. Understanding the AEC caused by providing
a demand response service can lead system operators to a
better prediction of the net load and a more accurate dispatch.
It can also allow the demand response resource owner to better
understand their marginal cost of providing service, particu-
larly if their energy costs . However, AEC alone is insufficient
to inform future participation without some understanding of
the context of services offered or provided.

Creating a unit-less quantity for comparison to other re-
sources, such as efficiency, becomes less meaningful with the
dependence of the response on both the service parameters and
the states of the resource and its surroundings. AEC could
be normalized by some derivative of energy content of the
service, such as the γ metric described in Lin et al. [19]
in which AEC is divided by the energy in one half of the
square wave signal. With such a metric, the same resource
can be expected to have a significant scatter of results based
on the shape of that energy service and the conditions of the
resource at the time of testing. In order to be most informative,
a resource owner will need to perform simulations and/or
experiments of their resource under varying conditions so that
a probabilistic model of energy consumption, and thus cost,
may be obtained and used to develop a market strategy.

Even with adequate data to support prediction using AEC,
the metric was designed for symmetric services, such as the
square wave, to highlight the asymmetry in response. However,
grid services are rarely symmetric and when AEC is applied
to an asymmetric service, the resulting value can be heavily

skewed by the power that was commanded by the system
operator, obfuscating actual losses from providing the service.

We propose a simple adjustment to AEC to extend it to
any asymmetrical service by subtracting the service’s control
signal from the resource’s measured response. We call this
metric the uninstructed energy consumption (UEC), and it
is directly analogous to the metric by a similar name used
in wholesale markets as the basis for uninstructed imbalance
energy charges [33].

To formalize UEC, consider a time period, T , comprised
of both the DR event and recovery period, such as the two
hour experimental period used for each repetition of DR
experiments in [18]. The AEC is the integral over T of the
measured resource power, Pm(t), less the baseline power,
Pb(t). The requested grid service signal, Psig(t), represents
the sum of the baseline power Pb(t) and a change from
that power demand, ∆Psig(t). We note that in some cases,
system operators request ∆Psig(t) from a baseline quantity,
and in others they request Psig(t). The UEC is related to AEC
by subtraction of what would be the change requested from
baseline, ∆Psig . Alternatively, this simplifies to the integral
of the control error, irrespective of the baseline:

UEC =

∫
T

(
Pm(t)− Psig(t)

)
dt

If the DR service involves ∆Psig(t) requests from the sys-
tem operator, then knowledge of the building’s baseline would
still be required to construct this metric. On the other hand if
the system operator requests Psig(t) directly, knowledge of the
building’s baseline power consumption is not needed. Baseline
power consumption is always required for AEC.

Because UEC, like AEC and RTE, also does not consider
the quantity of demand response capacity offered, or the shape
of the system operator commands, it would be valuable to pair
this data with data collected about the service provided to get
a more holistic view of performance. UEC provides an ex-
post understanding of the unintended costs of providing any
grid service, and can be useful in conjunction with AEC to
get a more complete picture of costs and opportunities for
savings from improved control performance. Collecting his-
torical results of UEC and coupling them with environmental
and service conditions will allow the power system operator
or DR resource owner to compose a probabilistic picture of
the unintended energy cost of providing a service which can
be useful in decision making. Inclusion of electricity and
ancillary service price information would be necessary to make
estimates of the cost of providing ancillary services.

V. METRICS AND EXPERIMENTAL RESULTS

In this section, we take a more granular look at data from
the experiments documented in [15], [16] and perform a new
analysis applying the three metrics described in this paper:
RTE, AEC, and UEC.

Here we focus on frequency regulation experiments per-
formed in LBNL’s FLEXlab. We use two thermally identical
test cells and designate one cell our “Experiment” cell in which



the HVAC system follows a frequency regulation control signal
while the other is the “control” cell which generates our
baseline. Figure 5 displays the frequency regulation offers,
signal and response time series for the experiment in which
symmetric frequency regulation was provided. The top plot
shows the capacity offered and the incoming regulation signal
around a zero baseline. The lower plot shows the baseline
power, the regulation signal and fan response. The control
methodology used for the control cell was that of a system
that is “regulation-ready”, or is maintaining temperature and
air flow states to hold regulation reserve capacity, but not
actuating the fan to follow the independent system operator’s
control signal. For three hours in the early morning, the day
ahead optimization opted not to offer frequency regulation to
maximize revenue in other hours, so the RTE, AEC, and UEC
metrics for the fan are not reported for those hours.

Fig. 5. Symmetric regulation and reserve provision experiment.

Because the test cells at FLEXlab are built with identi-
cal layouts and components, we used a measured baseline
electricity consumption for the fan in the control cell to
determine the efficiency impacts in our original work [16]. The
model predictive controller is used to establish the necessary
air flow rate to maintain temperature and hold reserves for
each 15 minute interval that defines the baseline electricity
consumption. That air flow command is sent to both control
and experiment cells, but is augmented with the frequency
regulation signal response in the experiment cell. However,
when evaluating data for the present analysis we found that fan
consumption in the control cell was greater than consumption
predicted by the fan model of the experiment cell learned from
data.This difference in these baselines is illustrated in Figure 6,
with the measured baseline in red and the calculated baseline
used in this analysis in black.

Due to these observed differences in the electrical power
response of the fans between the experiment test cell and the
control test cell, a baseline derived from the measurement
of the control cell’s fan power creates a bias in the results
toward greater discharging energy. To avoid this bias, the

Fig. 6. Measured baseline challenges in symmetric regulation experiment.

baseline electricity consumption of the fan in this work is
computed by running the air mass flow commands used to
maintain the control room’s temperature (which are the output
of the model predictive controller) through the cubic fan model
obtained from data in the experimental test cell’s AHU. In this
way, we preserve the temperature dynamics of the baseline
conditions in the control test cell but ensure that the electricity
consumption represented by the baseline is consistent with the
machinery used to perform the regulation test.

Evaluation of the metrics of efficiency is performed on an
hourly basis in this analysis to be consistent with the duration
of a frequency regulation capacity offer in most US ancillary
service markets. Table III provides statistics of RTE for the
symmetric regulation experiment. The statistics it reports are
the mean, standard deviation, median, min, max, 25th, and
75th percentile RTEs for the energy content of the frequency
regulation signal, for the fan, an estimation of the chiller, and
a combined result of the fan and chiller. As discussed in [15],
the twin test cells share a single chiller, so it is necessary to
disaggregate the impacts of each cells’ dynamics from total
chiller power. In this case, we assume the same value for
COP, 3.5, used in [19] and [21], and compute electrical power
by dividing heat transferred across the coil by COP. Heat
transferred across the coil is computed by the product of coil
water mass flow, temperature change and the specific heat of
water.

If the controls were operating with perfect accuracy, then
the fan RTE would perfectly replicate the signal RTE. While
some of the spread in the fan RTE can be attributed to the non-
zero energy content of the regulation control signal, there is an
average difference between the two in their hourly RTE score
of 0.11, suggesting some inaccuracy in the control response.
Once the chilled water loop was considered, the system’s RTE
scores tended to increase with the majority of scores in the
0.9-1.1 range.

Table IV parallels the results shown in Table III, but for the
day in which asymmetrical frequency regulation was allowed.
In this relaxed condition, the system operates its baseline
closer to the energy efficient optimum and offers considerably
more regulation down (the ability to increase demand) than
regulation up. The results quickly show the weakness of RTE
to handle an asymmetric response. Both the fan and the signal



Mean Std. Dev. Median Min Max 25th 75th
Signal 0.9874 0.1776 0.9674 0.7222 1.4238 0.8764 1.1461
Fan 0.8896 0.1519 0.8133 0.6603 1.1034 0.7723 1.0650
Chiller 1.1893 0.3920 1.0881 0.7373 2.2764 0.9383 1.2700
Combined 1.0472 0.2883 0.9801 0.6170 1.9848 0.8875 1.1425

TABLE III
STATISTICS OF HOURLY ROUND-TRIP EFFICIENCIES FOR SYMMETRIC FREQUENCY REGULATION EXPERIMENTS.

Mean Std. Dev. Median Min Max 25th 75th
Signal 0.2524 0.1151 0.2223 0.1065 0.6242 0.1971 0.2733
Fan 0.2473 0.1135 0.2198 0.1039 0.6197 0.1898 0.2671
Chiller 0.9445 0.3768 0.8583 0.5525 2.0912 0.6982 1.068
Combined 0.7010 0.3540 0.6021 0.3568 1.7553 0.4838 0.7238

TABLE IV
STATISTICS OF HOURLY ROUND-TRIP EFFICIENCIES FOR ASYMMETRIC FREQUENCY REGULATION EXPERIMENTS.

results show very low RTEs, due to the greatly increased
charging energy in the asymmetric signal over that of the
discharging.

Fig. 7. Histogram of hourly additional energy consumption for both symmet-
ric and asymmetric experiments.

Histograms of AEC for the two experiments are shown in
the subplots of Figure 7. For the symmetric regulation exper-
iments, AEC is averaging near 0 Wh and largely contained
within -100 to 100 Wh. For the asymmetric case, almost all
of the AEC recorded is greater than 100 Wh, getting as high as
600 Wh. This major difference in additional energy accounts
for the energy inherent in the service that was offered, a cost
or revenue that may already be expected, and doesn’t represent
any unanticipated losses or additional thermal energy stored in
the space. Using AEC for asymmetric services offers provides
limited understanding of any additional energy consumption
that may be incurred by providing grid services and makes a
performance comparison to days in which symmetric service
was offered more challenging.

Figure 8 shows the uninstructed energy consumption that
may result in a charge or credit that was not inherent to the
regulation signal. The UEC results for both the asymmetric
and symmetric cases are much more comparable than those of
AEC: Both asymmetric and symmetric results in comparable
magnitudes of uninstructed energy, though the asymmetric
UECs are almost entirely positive (the capacity offered was

Fig. 8. Histogram of hourly uninstructed energy consumption for both
symmetric and asymmetric experiments.

positive) while the symmetric case had both positive and
negative UEC. This bias could provide insight into unexpected
costs of providing asymmetric service or suggest inaccuracies
present in the control that can be compensated for. In this case
the largely positive skew of the UEC suggest that overshoot is
dominating the control error. This insight is obfuscated in the
AEC results by the presence of the energy in the asymmetric
signal. While AEC still represents real costs and presents value
to the resource owner, the advantages of using UEC allow for
comparison of performance of a single resource across both
symmetric and asymmetric services.

VI. CONCLUDING REMARKS

The literature on the efficiency of demand response presents
a large – even confusing – array of results, including some
round-trip efficiencies that are surprisingly low and suggest
that large-scale reliance on demand response would result
in significant increases in electricity consumption. When a
square wave charge-discharge or discharge-charge cycle is
commanded of VAV HVAC systems, simulation results suggest
state-dependence of temperature dynamics will dictate whether
the resulting RTE is less than or greater than 100%. However,
experimental results display much lower RTE results than
simulation, and appear to reverse the state-dependence effect.
We lay out physics and engineering-based mechanisms that



could be leading to these results, then evaluate the available
results in the literature to determine which mechanisms can
be ruled out and which may be present. We propose that
differences in RTE may be caused by bias introduced by
linearization methods for determining the baselines, and the
conflation of poor tracking response with efficiency loss and
that actual efficiency losses may be much lower than the some
of the experimental results indicate.

This paper also discusses the sensitivity of the RTE metric
to the shape and definition of the grid service provided in
the context of demand response. The logic behind the RTE
metric stems from the battery analogy, but batteries and HVAC
systems have very different responses in state of charge and
temperature, respectively, to a constant electrical power control
input. While batteries display a constant growth proportional
to the input, HVAC systems have an exponentially decaying
change in temperature that drives the system toward a new
equilibrium. This vastly different dynamic response results in
a strong relationship between the RTE results and the shape
of the power commanded for grid services over time. This
suggests that the RTE metric, as a means for comparison,
is only useful to grid operators and resource owners if the
grid service being evaluated is representative of a real service,
which is not the case for the symmetric square wave.

While the additional energy consumption metric contains
more actionable information for resource owners, it, like RTE,
has limited applicability to asymmetric grid services, which
are the most common class of services that DR provides.
Both AEC and RTE have no means to distinguish between
asymmetry in energy that was commanded versus asymmetry
that stems from energy losses or inaccurate control response.
The metric we propose – uninstructed energy consumption
– uses the grid operators command signal as well as the
resource’s control response to determine how much of the
measured output was not requested by the system operator.
This allows for the comparison of the impacts of providing
varying degrees of asymmetric services with the same re-
source, which could provide the resource owner actionable
information about control response in addition to evaluation
of the unintended costs of providing grid services from HVAC-
based demand response. In our experimental results, AEC
values for symmetric services are 2-5 times less than those
calculated for asymmetric services of comparable capacity,
indicating a large bias in results caused by the asymmetry
of the signal unrelated to inefficiency of service provision. In
contrast, with the UEC metric, differences between symmetric
and asymmetric performance are much smaller. Any remain-
ing differences indicate true biases in unexpected energy in
asymmetric service provision. These artifacts could provide
useful information for a resource owner without obfuscation
from the control signal.

However, these alternate measures of energy loss or gain
still suffer from a dependence on the shape of the service, and
would be most informative when a large dataset is gathered
from simulation and/or experimentation with the intended
HVAC system. Coupling this information with information

about the services provided and market prices could lead to
valuable approaches for market participation.

The results of the present work suggest the need for the
following research:

• Perform additional experiments and data analysis to
isolate the dominant loss mechanisms and verify the
impacts of baseline linearization and inaccurate control
performance in discharge-charge experiments.

• Research to improve control methods, especially in large
commercial buildings with many VAVs to control, is
needed to help DR resource owners understand and
contain their costs.

• Further development of strategies to use historical mea-
sures of AEC and UEC predict the energy cost of
providing services – and to subsequently generate bid
curves for market integration.

• A deeper understanding of the comfort implications of
actuating demand response is needed, as these have the
potential to be greater than the added electricity cost ,
particularly as the duration of grid service increases.

Research in these areas will support more informed market
participation for future demand response resources.
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