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The enhancement of skin friction drag and surface heat flux by the transition to turbulence is a
crucial physical phenomenon in wall-bounded flows. An interpretable mapping of how various
flow phenomena such as turbulence and pressure gradient influence these key surface quantities
is desirable for advancing our understanding of fundamental flow physics, as well as informing
engineering design analysis and developing efficient flow control techniques. To accomplish such
a mapping, in this study, integral forms based on the first-moment of conservation equations are
developed. The angular momentum integral (AMI) equation, obtained from the first moment of the
momentum equation, yields an identity for the skin friction coefficient (friction drag). Furthermore,
the moment of (total) enthalpy integral (MTEI) equation, derived from the first moment of the en-
ergy equation, provides a mapping for the Stanton number (surface heat flux). This first-moment
approach uniquely isolates the skin friction (or surface heat flux) of a laminar BL in a single term
that depends only on the Reynolds number (or Peclet number) most relevant to the flow’s engineer-
ing context, hence other terms are interpreted as augmentations or reductions relative to the laminar
case having the same Reynolds number (or Peclet number).

In the case of zero-pressure-gradient incompressible transitional BLs, the AMI and MTEI equations
examine the peak friction drag and surface heat flux during the transition. These tools demonstrate
and quantify how the streamwise growth of the BL and the mean wall-normal flux resist the extreme
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growth of turbulent enhancement via Reynolds shear stress. This rapid growth of turbulence during
transition imposes near-wall streamwise acceleration that results in a negative wall-normal velocity
very close to the wall. For a fully turbulent regime, the explicit turbulent enhancement is the primary
process of near-wall momentum (or heat) flux, not molecular transport. Consequently, the other
flow phenomena weakly impact the skin friction (or surface heat flux).

The AMI analysis of turbulent flows subjected to strong favorable pressure gradients presents a
substantial reduction of the turbulent enhancement due to a phenomenon referred to as reversion.
The AMI analysis captures this complex phenomenon caused by flow acceleration and exhibits
re-laminarization which deactivates the turbulence. Conversely, adverse pressure gradients cause
marginal alteration in turbulent enhancement downstream, suggesting a weak correlation between
the total Reynolds shear stress and the strength of the pressure gradient. Additionally, the AMI
equation introduces a pressure gradient parameter, which compared to the classic Clauser parame-
ter, offers a more robust similarity in turbulent statistics between two flows with a distinct upstream
history.

In high-speed boundary layers, e.g., supersonic vehicles, due to severe heating, surface heat flux is
more critical than friction drag. The analyze the surface heat flux and friction drag the first-moment
integral approach is extended to compressible flows, considering the variation of density, viscosity,
and thermal conductivity across the boundary layer. The AMI results quantify how the variation of
mean density inside a high-speed turbulent boundary layer impacts the momentum transport and
reduces the friction drag. From an alternative viewpoint, the results demonstrate how the effect of
compressibility on laminar boundary layers can be utilized to develop a mapping between the skin
friction coefficient of the incompressible and compressible turbulent flows. The MTEI analysis
similarly demonstrates how the mean density alters the impact of turbulence on the transport of
total enthalpy and Stanton number. In doing so, the MTEI results highlight the relative role of
turbulent fluxes of enthalpy and mean kinetic energy on the Stanton number.

These results suggest that the first-moment integral equations could be a valuable tool for evalu-
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ating flow control schemes. In the case of turbulent boundary layers over an airfoil with surface
suction or blowing, only minor variations occurred in the turbulent enhancement. The AMI equa-
tion is also applicable to evaluate more complex control methods such as using porous mediums.
Beyond its role as an analysis tool, the concept of first-moment integral equations holds promise
for the development of computationally efficient turbulent models. The AMI analysis quantifies
approximately 80% of the turbulent enhancement in wall-bounded flows originates from the outer
layer of the flow. Therefore, solving the integral form of the Navier-Stokes equation, focusing on
resolving the outer layer, could provide a promising platform for turbulent modeling.
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NOMENCLATURE

Latin Symbols
𝐮 Velocity vector
𝐱 Position vector
𝑐 Airfoil chord length
𝐶𝑓 Skin friction coefficient
𝑐𝑝 Specific heat capacity
𝑓 Force
𝐻 Total enthalpy
ℎ Enthalpy
𝑖 Inviscid flow solution
𝑖𝑜 Inviscid flow solution at the surface
𝑘 thermal conductivity
𝑙 Length scale
𝑀 Mach number
𝑃 Base (mean) pressure
𝑝 Pressure
𝑃𝑒 Peclet number
𝑅𝑒 Reynolds number
𝑆𝑡 Stanton number
𝑇 Temperature
𝑈 Velocity scale
𝑢 Streamwise velocity
𝑣 Wall-normal velocity
𝑥 Streamwise position
𝑦 Wall-normal position
Greek Symbols
𝛼 Thermal diffusivity
𝛽 Clauser parameter
𝛽𝓁 First-moment-based Clauser parameter
𝛿 Boundary layer thickness or channel flow half height
𝛿1 Displacement thickness
𝛿2 Momentum thickness
𝛿𝐻 Total etnhalpy thickness
𝛿ℎ Etnhalpy thickness
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𝓁 First-moment integral length scale
𝜇 Dynamic viscosity
𝜈 Kinematic viscosity
𝜌 Density
𝜏 Shear stress
𝐾 Kinetic energy
𝑡 Time
Subscripts
∞ Free-stream quantity
𝑒 Edge quantity
𝐻 Total enthalpy
ℎ Enthalpy
𝑀 Momentum
𝑜 Stagnation quantity
𝑅𝑒𝑓 Reference quantity
𝑤 Wall quantity
B Bulck quantity
b Base flow quantity
C Compressible
FS Falkner-Skan solution
IC Incompressible
Superscripts
∗ Dimensional quantity
+ Viscous scale (wall units)
𝓁 First-moment with respect to length scale 𝓁
′′ Density-averaged turbulent fluctuation
′ RANS turbulent fluctuation
𝑠𝑙 Semi-local viscous scale
Acronyms
AMI Angular momentum integral
APG Adverse pressure gradient
BL Boundary layer
FIK Fukagata-Iwamoto-Kasagi
FPG Favorable pressure gradient
MEI Moment of enthalpy integral
MTEI Moment of total enthalpy integral
NS Navier-Stokes
RANS Reynolds-averaged Navier-Stokes
RD Renard-Deck
TS Tollmien-Schlichting
ZPG Zero-pressure-gradient
Other Symbols
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|⋅| Absolute value
⋅ Mean quantity
⋅̃ Density weighted average quantity
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Chapter 1

Introduction and Background

1.1 Introduction

1.1.1 Motivation

Wall-bounded flows find widespread applications in both engineering and scientific contexts, span-
ning a broad range of Reynolds numbers. A fundamental application of boundary-layer theory lies
in the computation of friction drag for objects immersed in fluid flow. This includes scenarios such
as the drag experienced by a flat plate at zero incidence, the frictional resistance of ships, airfoils,
airplane fuselages, and turbine blades. One noteworthy characteristic of the boundary layer is its
potential to exhibit reverse flow conditions directly at the solid surface under certain circumstances.
This can lead to the detachment of the boundary layer from the object and the generation of either
large or small eddies at the object’s downstream side. Such behavior can significantly alter the pres-
sure distribution at the object’s rear, contributing to what is known as form or pressure drag. The
boundary-layer theory addresses a vital question: how can the shape of an object be designed to
prevent this undesirable separation phenomenon? Separation is not limited to objects in free flow;
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it also occurs in confined passages like ducts.

Consequently, boundary-layer theory plays a crucial role in describing the flow behavior in blade
cascades within compressors and turbines, as well as in diffusers and nozzles. Moreover, boundary-
layer theory is indispensable for comprehending the processes governing maximum lift in airfoil
designs, where separation phenomena hold paramount significance. Beyond drag and lift consid-
erations, the boundary layer plays a pivotal role in analyzing heat transfer between an object and
the surrounding fluid.

Transition to turbulence is a natural phenomenon that occurs in wall-bounded flows due to the
growth of flow disturbances. Transition to turbulence is mainly predicted by the Reynolds number
depending on flow conditions, e.g., wall roughness and geometry. When compared to its laminar
counterpart, a boundary layer undergoing the transition to turbulence exhibits rapid growth and sig-
nificantly higher wall shear stress and surface heat flux. Fig 1.1 exhibits the skin friction coefficient
of natural and bypass transitional incompressible BLs with respect to Reynolds number based on
the momentum thickness; for both cases, the skin friction peaks during the transition, and its value
is higher than the laminar regime. This enhancement in wall shear stress plays a pivotal role in
determining the drag experienced by streamlined objects, contributing to roughly 50% and 90% of
the drag for commercial aircraft and underwater vehicles, respectively [48]. For high-speed vehi-
cles, however, drag is often less crucial than tremendous surface heat flux. In Figure 1.2 (a,b), the
non-dimensional wall-shear stress (skin friction coefficient) and surface heat flux (the Stanton num-
ber) with respect to the streamwise distance of a high-speed boundary layer at free-stream Mach
number six are plotted (Results from [43]); these quantities are higher during the transition and
turbulence relative to the laminar flow. Supersonic and hypersonic flows are energetic and create
high-temperature regions that directly diminish the aerodynamic performance and make the flow
control schemes less efficient [17]. Compressibility adds more complexity to the flow field as the
density variation across the BL impacts the mass, momentum, and energy transport, and hence the
skin friction and surface heat flux. Figure 1.3 exhibits the computed local wall heat flux coeffi-
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Figure 1.1: Skin friction coefficient for the incompressible boundary layer during the transition to
turbulence.

cient, the so-called Stanton number, using the Reynolds analogy on an adiabatic flat plate; for both
laminar and turbulent regimes compressibility –Mach number– decreases the surface heat flux.

The practical importance of transitional and turbulent boundary layers serves as a driving force
for gaining a deeper understanding of the flow physics responsible for this heightened wall shear
stress and surface heat flux. For engineering applications, this understanding is crucial in develop-
ing and optimizing flow control schemes to efficiently manipulate the flow field to either stabilize,
e.g., friction drag reduction in stream-lined bodies, or destabilize, e.g., separation delay in turbo-
machinery or heat transfer enhancement in combustion. In order to comprehensively unravel the
mechanisms behind these alterations, it is imperative to provide a meticulous examination of the
influence of turbulence on wall shear stress and surface heat flux. One approach to examining the
role of turbulence on friction drag and surface heat flux is using the integral methods.

Integral methods find wide-ranging applications in the study and analysis of wall-bounder flows,
offering valuable insights and practical solutions for engineering and scientific disciplines. These
methods serve as indispensable tools in understanding the behavior of fluid flow near solid surfaces.
In aerodynamics, integral methods enable the calculation of skin friction and drag on aircraft wings,

6



(a) (b)

Figure 1.2: High-speed boundary layer flow over a flat plate; transition to turbulence increases the
skin-friction coefficient (a) and the Stanton number (b). Results from Ref. [43]

aiding in the design of more efficient and fuel-effective airfoils. They are crucial in heat trans-
fer studies, facilitating the prediction of temperature gradients and cooling requirements for engi-
neering applications like gas turbine design and electronic component cooling systems. In marine
engineering, integral methods help assess the hydrodynamic resistance of ships and submarines,
optimizing their hull designs for reduced fuel consumption. Additionally, these techniques are em-
ployed in the environmental sciences to model pollutant dispersion near the Earth’s surface. Integral
methods continue to contribute significantly to various fields by providing practical solutions and a
deeper understanding of boundary layer phenomena. The history of these methods goes back to the
early 20th century when Prandtl established the concept of the boundary layer. Prandtl’s pioneering
work laid the foundation for integral techniques by emphasizing the importance of integrating the
governing equations across the boundary layer to obtain simplified yet insightful solutions. Over
the decades, researchers and engineers have refined and expanded these integral methods to tackle
various aspects of wall-bounded flows, from laminar to turbulent regimes. These methods have
been invaluable for estimating essential parameters such as skin friction, boundary layer thickness,
and heat transfer rates, making them indispensable tools in the study of fluid dynamics and the
design of aerodynamic and hydrodynamic systems.
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Figure 1.3: Local Stanton number predicted by Reynolds analogy on an adiabatic flat plate for
laminar and turbulent regimes. Results from Ref. [171].

1.2 Background

Initially, boundary-layer theory was primarily developed for laminar flows of incompressible flu-
ids, where Stokes’ law of friction served as a foundational framework for understanding viscous
forces. Over time, extensive research efforts delved into this area, resulting in a comprehensive
understanding of these flows. Subsequently, the theory was expanded to encompass the practical
and significant realm of transitional and turbulent, incompressible boundary layer flows [139].

With the rapid increase in velocities in the field of aviation technology, the study of boundary layers
in compressible flows gained significant attention. In addition to the velocity field of the boundary
layer, a thermal boundary layer also forms, which holds immense importance in understanding
heat transfer between the flow and the solid body. The elevated surface temperatures resulting from
internal friction (dissipation) at high Mach numbers have posed substantial challenges, particularly
in aviation and satellite missions, often referred to as the “thermal barrier” problem.
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1.2.1 Transititonal Flow

The transition process from laminar to turbulent within wall-bounded flows holds immense signif-
icance in fluid dynamics, particularly in the context of flow control and drag reduction. Currently,
there is no mathematical model available that can precisely forecast the exact moment of transi-
tion, even on a flat plate. This challenge arises due to the myriad of factors at play, including the
influence of free-stream turbulence, surface irregularities, sound waves, and entrainment effects.
Disturbances, whether steady or unsteady, in the free-stream, such as sound or vorticity, act as the
triggers for transition. Their impact on the fundamental state of the boundary layer is referred to as
"receptivity" [114], where these disturbances provide the initial conditions in terms of disturbance
amplitude, frequency, and phase that ultimately lead to the transition from laminar to turbulent flow
[140]. Natural receptivity, occurring with the free-stream, consists of two different mechanisms:
the irrotational acoustic disturbances that travel with the phase speed equal to sound speed in the
medium (infinity for incompressible fluid) and rotational vortical parts convected with speed rel-
ative to the free-stream velocity. The former is observed to generate the initial amplitude of the
TS waves [90]. The latter contributes to the three-dimensional aspects of the breakdown process
[77, 78]. Bypass transition occurs when finite-amplitude perturbations bypass the early stages of
natural transition. Turbulent spots appear as the perturbations break down. Subsequently, the tur-
bulent spots merge to form a fully turbulent flow. Although the finite-amplitude perturbations can
come from any source, the common understanding of bypass transition is centered around the re-
ceptivity of boundary layers to free-stream instabilities (or turbulence) [182]. In other words, if the
free-stream disturbances are substantial, the growth of linear disturbances is bypassed [114, 115].
Consequently, turbulent spots or subcritical instabilities emerge, and flow becomes turbulent. This
process corresponds to path E in Fig. 1.4. In the case of bypass transition, due to the importance of
the nonlinear effects, the linear theory utterly fails. Although the bypass transition is not completely
comprehended mathematically, it has been documented in cases of roughness and high free-stream
turbulence [136, 137, 138], and has been commonly implemented to trigger the transition to turbu-
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Figure 1.4: The “roadmap” from receptivity to transition [140]

lence [176].

In cases where the amplitude of free-stream disturbances is small, path A in Fig. 1.4, the nonlinear
components within the boundary layer disturbance equations can be disregarded, allowing for the
prediction of disturbance growth or decay using linear theory [171]. These disturbances, charac-
terized by weak growth or decay in space and time, exhibit a primarily two-dimensional nature and
are commonly referred to as Tollmien-Schlichting (TS) waves [87, 120]. Due to the linearity of the
problem, these primary modes, which are common in cruise flight conditions, are well-understood
mathematically. Predicting TS waves involves decomposing the flow field variables into a base
component (𝐮𝑏) and a perturbation component (𝑢̂) such that 𝐮 = 𝐮𝑏 + 𝑢̂. Inserting this definition to
the Navier-Stokes equation, Eq. (2.2), assuming small disturbances (𝑢̂ << 𝐮𝑏), then linearizing the
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Figure 1.5: Natural transition to turbulence in incompressible BLs. DNS instantaneous wall-normal
velocity in 𝑥 − 𝑧 plane at some distance away from the wall from [38].

equation yields the Orr-Sommerfeld equation as

(

𝑢𝑏 − 𝑐TS
) (

𝑣̂′′ − 𝛼2TS𝑣̂
)

− 𝑢′′𝑏 𝑣̂ +
𝑖

𝛼TS𝑅𝑒
(

𝑣̂′′′′ − 2𝛼2𝑣̂′′ + 𝛼4TS𝑣̂
)

= 0, (1.1)

where the superscript prime denotes differentiation in the wall-normal direction, and 𝑅𝑒 is the
Reynolds number. In Eq. (1.1), 𝑐TS = −𝜔̃TS∕𝛼TS is the complex TS wave-speed, and 𝛼TS and 𝜔̃TS

are the wavenumber and non-dimensional wave frequency, respectively. Note, √𝑖 = −1 hence for
temporal instability 𝑐TS𝑖 > 0, whereas for spatially growing TS waves 𝛼TS𝑖 < 0 [171]. Assuming
wave solution for 𝑣̂with homogenous boundary conditions at the wall and the free-stream, Eq. (1.1)
becomes an eigenvalue problem.

As these initially two-dimensional TS waves propagate and grow downstream, their amplitudes
eventually reach finite values, leading to the initiation of substantial nonlinear effects. Conse-
quently, the disturbances become three-dimensional [60]. This three-dimensionality is manifested
in the shape of Λ vortices, which can take on either staggered (H-type) or aligned (K-type) con-
figurations, contingent on the initial amplitude of the two-dimensional wave. During this stage,
the rapid growth of three-dimensional modes occurs over relatively short distances, leading to the
formation of hairpin vortices and eventually culminating in the transition to turbulence [87]. The
process of the natural transition to turbulence in an incompressible BL is exhibited in Figure 1.5;
the transition process initiates by two-dimensional TS waves at ∼ 𝑅𝑒𝑥 = 4 × 105, then H-type Λ

vortices appear at roughly𝑅𝑒𝑥 = 5×105, and shortly after flow becomes chaotic and fully turbulent.
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1.2.2 Turbulent Flow

The transition process, described in the previous section, leads the flow field to a complex regime
known as turbulence. Turbulence is described by its chaotic and irregular nature, with the fluid ex-
hibiting rapid and unpredictable changes in velocity, pressure, and temperature. In a fully turbulent
flow, the chaotic and irregular motions are dominant throughout the entire volume of the fluid, and
there is a lack of any smooth flow patterns. As clarified by Tennekes & Lumely [152], a turbulent
regime is characterized by its irregularity (or randomness), strong diffusivity, Large Reynolds num-
ber, three-dimensional vorticity fluctuations, and dissipation. The concept of turbulent flows that
go under the realm of continuum mechanics is a fundamental phenomenon in science and technol-
ogy. For instance, The substantial diffusivity of turbulence due to the motion of turbulent eddies
and structures, which causes rapid mixing and increased rates of momentum, heat, and mass trans-
fer, delays boundary layer separation on airplane wings. However, it also significantly increases
the friction drag. This example signifies the requirement of comprehending the turbulent structures
and motions prior to engineering designs.

Incompressible turbulent structures

A fully turbulent flow is characterized by turbulent eddies; all scales of fluid motion, from the
largest down to the smallest fluctuations, are chaotic by the nature of turbulence. Besides that, a
wall-bounded, fully turbulent flow exhibits a classical division into inner, outer, and overlap layers.
These layers delineate distinct regions within the boundary layer, each characterized by specific
flow phenomena and scaling laws. The persistence of viscosity mostly marks the inner layer that
is closer to the solid surface. Within this region, the flow is dominated by streamwise streaks, first
observed by Ref. [89]. These low-speed streamwise streaks were observed to play a substantial
role in the process of turbulent production; they coincide with the wall-normal location where the
maximum turbulent kinetic energy production rate occurs –within the buffer region. The relation
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between the streamwise streaks and turbulent production rate was further investigated by studying
BLs with pressure gradient. In the case of adverse pressure gradient BLs, the streaks tend to be
shorter and wave more rapidly, causing a stronger turbulent production rate. On the other hand, in
favorable pressure gradient flows that are characterized by a less turbulent production rate, these
structures tend to be drawn longer and more quiescent. In fact, in the case of a relatively strong
favorable pressure gradient, re-laminarization might occur due to the suppression of the streamwise
streak and, hence, turbulent production rate. Additionally, streamwise-oriented vortices, as postu-
lated by Ref. [85], are a defining feature of this inner layer. These streaks and vortices interact in a
self-sustaining cycle, a concept elucidated by Ref. [57]. These temporal regeneration cycles con-
sist of three steps: streak formation, streak breakdown, and vortex regeneration. Streak formation
arises from the momentum advection by streamwise vortices, while streak breakdown results from
inherent instabilities within the streaks themselves. This cycle operates with scaling laws specific
to the inner layer and can persist independently of the presence of large eddies in the outer flow.
This intriguing independence was demonstrated through numerical experiments conducted by Refs.
[72, 71].

The outer layer of wall-bounded flows that extends from the logarithmic region onwards contains
the large-scale and very large-scale turbulent motions, so-called LSM and VLSM, respectively
[56, 31, 96]. The LSMs are characterized by the streamwise wavelength to the order of 2𝛿-3𝛿,
where 𝛿 denotes the outer region length scale, e.g., the pipe radius or the boundary layer thick-
ness, and span the entire outer region. The VLSMs, also known as superstructures in BLs, are
significantly energetic and account for more than 40% of the total Reynolds shear stress and have a
statistical streamwise coherence of the order of ∼ 10𝛿 for both internal and external wall-bounded
flows (as shown in figure 1.6 [94]). These motions are correlated with the wall and, thus, influ-
encing the inner region of the flow field, and in fact, (V)LSMs extend to the wall [31, 63, 64].
Although, according to the classical description, the near-wall turbulent structures are assumed to
be independent of the outer region with distinct physical characteristics, especially in the limit of
high Reynolds numbers, recent studies revealed dynamic interactions between the inner and outer

13



Figure 1.6: (Very) Large-scale turbulent motions within the outer region; blue and red contours,
respectively, represent low- and high-speed motions. Figure from Ref. [94]

regions [110, 29, 61]. In experimental studies, it was observed the inner peak of streamwise tur-
bulent intensity does not conform solely to inner scaling laws, suggesting the influence of outer
flow dynamics [29, 103]. Later on, Hutchins & Maursic experimentally observed the VLSMs ac-
tively modulate the generation of near-wall turbulence, and this impact becomes more significant
with Reynolds number [64]. This growing influence of (very) large-scale motions suggests that the
small-scale turbulent fluctuations are becoming further inhomogeneous as the Reynolds number
increases. This hierarchical structure, where the size of eddies scales proportionally with their dis-
tance from the wall, constitutes the dominant eddy framework that occupies the overlap or logarith-
mic layer in high Reynolds number flows. It forms the foundation of the attached-eddy hypothesis
initially proposed by Townsend [155], with subsequent extensions outlined in Ref. [104]. Recent
findings indicate that these self-similar eddies also undergo regeneration through a self-sustaining
process that mirrors the dynamics occurring near the wall [66].
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The dynamic interaction between inner and outer regions suggests their direct influence on the wall
shear stress enhancement mechanisms and, hence, the total mean wall shear stress exerted on the
wall. This enhancement is not merely limited to the wall shear stress but also to surface heat flux.
Numerical studies by Hwang [65] revealed that by excluding the impact of the outer region motions,
as the Reynolds number increases, the near-wall structures gradually contribute less to the overall
mean wall shear stress. Later, Deck et al. [30] and De Giovanetti et al. [28] implemented spectral
decomposition to determine the direct impact of LSMs, VLSMs, and the hierarchy of attached
eddies on the wall shear stress. Their numerical investigation yields the increasing enhancement of
wall shear stress generation by the motions as mentioned earlier at higher Reynolds numbers.

Non-zero pressure gradient flows

Turbulent boundary layers (BLs) experiencing streamwise pressure gradients are widespread in
various engineering applications. Despite their significance, the impact of pressure gradients on
the characteristics of wall-bounded turbulence remains unclear. One reason for this lack of detailed
understanding is the absence of a systematic approach to characterizing pressure gradients and
detecting the edge of the BL, where beyond that, the flow is assumed irrotational. In general, the
effect of pressure gradient on turbulent BLs closely relates to their streamwise development, so it
is crucial to establish and examine the concept of equilibrium.

According to Townsend’s idealized definition [154], equilibrium is attained when all flow proper-
ties achieve self-similarity based on a consistent set of scaling variables, rendering the normalized
flow independent of streamwise position. Self-similarity implies that profiles of a specific flow pa-
rameter measured at different locations exhibit identical shapes and can be collapsed onto a single
form through appropriate normalization. The requirement for absolute equilibrium can be relaxed
by semi-equilibrium (or approximate equilibrium [32]), which denotes a condition where the nor-
malized flow changes gradually with streamwise position over distances much greater than the
boundary layer thickness, often due to Reynolds number dependence.
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In the context of two-dimensional turbulent BL with a non-zero pressure gradient, the state of
equilibrium can be expressed by a parameter

𝛽 =
𝛿1
𝜏𝑤

𝑑𝑃𝑒
𝑑𝑥

, (1.2)

referred to as the non-equilibrium Clauser parameter [24]. Here, 𝛿1 is the displacement thickness,
and 𝜏𝑤 is the wall shear stress. Also, 𝑃𝑒 denotes the edge pressure. The constraint of constant 𝛽
is assumed to be necessary to approach (approximate) equilibrium in BL flows [32]. The Clauser
parameter (𝛽) can also be interpreted through the von Kármán momentum integral equation by
looking into the streamwise change in the momentum defect

𝑑
𝑑𝑥

(

𝜌𝑈 2
𝑒 𝛿2

)

= 𝜏𝑤 + 𝛿1
𝑑𝑃𝑒
𝑑𝑥

; (1.3)

This parameter represents the ratio between the excess pressure force applied on the BL (𝛿1 𝑑𝑃𝑒𝑑𝑥
)

(relative to potential flow solution) and wall shear stress (𝜏𝑤). In the above equation, 𝑈𝑒 is the edge
velocity in the streamwise flow direction, and 𝛿2 is the momentum thickness. It is important to
note that while a constant 𝛽 is a prerequisite for equilibrium behavior, turbulent BLs, even in zero-
pressure-gradient scenarios, are not completely similar due to the inherent independence of the
inner and outer flow scales. The potential for an equilibrium state in turbulent BLs under pressure
gradients can be illustrated through similarity analyses outlined by several researchers, including
Refs. [32, 20].

The presence of pressure gradients, whether adverse or favorable, serves as a source of non-equilibrium,
thereby influencing the dynamics and behavior of turbulent boundary layers (BLs). The large-scale
motions in the outer region have been observed to be sensitive to pressure gradient effects. For
instance, Harun et. al using spectral and scale decomposition analysis noted that the turbulent large
structures are more energetic under the APG effects [59]. Despite being more energized, they ob-
served a similar spectral distribution of energy within the wake region of the flow, indicating that

16



the geometrical structure of the outer layer remains universal.

In BLs subjected to imposed APGs, deviations of the mean velocity profile within the logarithmic
region were observed for both approximate equilibrium (constant 𝛽) and non-equilibrium flows
[112, 14]. Additionally, the impact of APG on the stronger wake region has been documented [36].
Bobke et al. [14] further analyzed the effect of APG on Reynolds stress components through a
series of high-fidelity numerical experiments on flat plates and the suction side of an airfoil. They
observed that inner-scaled Reynolds stress components increase with higher levels of 𝛽. Specif-
ically, the streamwise normal Reynolds stress develops a secondary peak within the outer layer;
a peak that amplifies at higher 𝛽. On the other hand, the strength and location of the inner peak
remain unchanged. Moreover, APG leads to a significant enhancement of the Reynolds shear stress
within the outer layer, resulting in an increase in correlation between streamwise and wall-normal
velocities and indicating a shift in the location and mechanism of turbulent production of kinetic
energy [145]. APGs have been observed to induce changes in the dynamic of turbulent structures.
Specifically, they lead to a reduction in the number and an increase in the distance of low-speed
streaks within the viscous sublayer [95]. In addition, compared to ZPG BLs, the frequency of
bursts in the inner region is reduced, whereas the frequency of sweeps events is increased [93]. As
discussed above, the impact of APG on the outer region of the BL is more substantial; within the
outer region, the presence of trains of the hairpin vertical structures and elongated low-momentum
regions becomes more prominent compared with ZPG BLs [95].

While APGs have received considerable attention in research, there is a notable scarcity of experi-
mental and simulation studies focusing on BL flows with favorable pressure gradients (FPG). FPGs
entail flow acceleration in the flow’s principal direction, resulting in a thinning of the BL thickness.
When imposed on turbulent BLs, strong FPG also leads to a phenomenon known as the reversion
process to a laminar state, as described by Narasimha et al. [117]. The first evidence of flow re-
laminarization under acceleration goes back to high-speed BLs experiments by Sternberg [149] on
a cone. However, here, I limit our focus on flow acceleration in low-speed BLs, i.e., incompress-
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ible regime. As elucidated by Narasimha et al. [117], the re-laminarization process entails the
suppression of turbulence to such an extent that Reynolds stresses exert minimal influence on the
mean flow. Consequently, the mean velocity profile deviates from the law of the wall, ultimately
resulting in a drop in the skin friction coefficient. During the re-laminarization process, turbulent
intensity may not necessarily decrease; the production rate of turbulent kinetic energy can remain
higher than its dissipation. However, the dominance of pressure forces due to flow acceleration
leads the Reynolds stress components to become frozen, rendering them irrelevant to the flow dy-
namics. Hence, the term “quasi-laminar” is taken by Ref. [117] to characterize this flow state.
Several parameters have been proposed to quantify and predict re-laminarization under favorable
pressure gradients (FPG). Patel [125] initially observed deviations in the streamwise velocity pro-
file beyond the logarithmic region, a finding subsequently corroborated by other studies [177, 106].
Patel introduced a parameter to define the threshold for the breakdown of the logarithmic law as

Δ𝑝 = 𝜈
𝜌𝑢3𝜏

𝜕𝑃𝑒
𝜕𝑥

, (1.4)

where 𝜈 is the fluid’s kinematic viscosity and 𝑢𝜏 represents the friction velocity. Patel proposed a
limit of Δ𝑝 = −0.018 for predicting re-laminarization. However, this value was later revised; Patel
et al. [126] suggested that the non-dimensional shear stress gradient can offer a more universal
criterion

Δ𝜏 = 𝜈
𝑢3𝜏

𝜕𝜏
𝜕𝑦
. (1.5)

They identified a critical value of −0.009 for the departure from the logarithmic law, indicating
the onset of re-laminarization. Bradshaw [15] later revised the proposed value to Δ𝜏 = −0.013,
suggesting that it signifies the beginning of the logarithmic law overshoot rather than the initiation
of the re-laminarization process. It is important to note that computing the wall-normal shear stress
gradient 𝜕𝜏∕𝜕𝑦 presents challenges in the above equation. According to the literature, the exami-
nation of FPG and re-laminarization was primarily focused on flows over flat plates and overlooked
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the influence of upstream APG on FPG effects. Initially, these effects were experimentally investi-
gated in turbulent BLs over bumps and hills [157, 9, 10, 168], followed by numerical analyses on
bump flows [177, 106]. Uzun & Malik [158] simulated the NASA wall-mounted hump using the
wall-resolved large eddy simulation (LES) and observed the trend in the skin friction matches the
empirical outputs of Greenblatt et al. [52]. Additionally, they examined re-laminarization under
FPGs using the so-called re-laminarization parameter

𝐾𝐿𝑎𝑚 = 𝜈
𝑈 2
𝑒

𝜕𝑈𝑒
𝜕𝑥

, (1.6)

and concluded this process was incomplete. Balin & Jansen [7] conducted a direct numerical sim-
ulation (DNS) of low-speed flow over a two-dimensional Gaussian bump with Reynolds number
𝑅𝑒𝐿 = 1, 000, 000 to examine the effects of alternating adverse and favorable pressure gradients.
Consistent with prior studies, they observed deviations from the logarithmic law due to FPG ef-
fects and identified critical values of Δ𝑝 = −0.025 and 𝐾𝐿𝑎𝑚 = 3 × 10−6 to characterize the re-
laminarization process, despite the flow remaining in the fully turbulent regime. Additionally, they
observed the emergence of two internal layers resulting from the curvature changes on the bump
surface, similar to the observation of Ref. [9]. The formation of distinct internal layers within the
boundary layer suggests a decoupling between the inner and outer regions of the flow. This phe-
nomenon was further evidenced by recent numerical experiments conducted by Uzun and Malik
[160] on a Gaussian bump at Reynolds number 𝑅𝑒𝐿 = 2, 000, 000, where they observed an inter-
nal layer created in the FPG region behaving similarly to free shear layer. The internal flow near
the wall behaves as a regular BL and is responsible for generating wall shear stress. Yet, far from
the wall, flow behaves similarly to a free-shear flow (as described by Ref. [9]) influenced by local
pressure gradients and surface curvature [7].

As discussed above, the generation of internal layers due to alternating favorable and adverse pres-
sure gradients pertains to the flow history effects, which describe how upstream pressure gradients
alter the turbulent statistics downstream. These history effects are known to make achieving simi-
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larity between the inner-scaled statistics more difficult. This is one of the major challenges in de-
veloping robust turbulent models for non-equilibrium BLs. Bobke et al. [14] examined the history
effects for APG BLs by comparing the inner-scaled mean velocity and Reynolds stress components
of two distinct BLs with matching 𝛽 and Reynolds number based on the friction velocity (𝑅𝑒𝜏).
Their findings indicated the large structures within the outer layer are less energetic under APG if
the upstream pressure gradients throughout their streamwise development is weaker, i.e., weaker
history effect. Additionally, their study suggested that𝑅𝑒𝜏 appears to inadequately capture the non-
equilibrium effects, thus making it less feasible to observe similarity; however, the choice of 𝑅𝑒𝛿1
yields more robust similarity for two distinct BL, primarily because of its direct correlation with
the definition of 𝛽.

Compressible flows and transformation

For the turbulent structures in compressible BLs, at least in the scope of this study, central to our
present understanding is the hypothesis of Morkovin [113]. He postulated that density and en-
thalpy fluctuations do not significantly impact the turbulent time and length scales. This is often
true for BLs below the hypersonic regime in which the turbulent Mach number is much lower
than unity. Later, Spina and Smits [148] experimentally showed evidence that the influence of
compressibility on turbulent large-scale organized structures is relatively minor for (relatively low
Mach number) supersonic BLs. As such, our understanding of turbulence in compressible BLs
often borrows heavily from our (comparatively more mature) understanding of incompressible tur-
bulent BLs. This analogy between compressible and incompressible turbulent structures is the basis
for developing mapping between compressible and incompressible boundary layers, e.g., predict-
ing the mean velocity profile for compressible wall-bounded flows. Van Driest [161] introduced
the very first successful transformation for adiabatic compressible wall-bounded flows. He postu-
lated that the compressible turbulence obeys Prandtl’s incompressible mixing length assumption.
Hence the non-dimensional mean shear stress is independent of the Mach number. The concept
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of Mach-number-independency signifies that one can integrate the non-dimensional mean shear
stress to obtain the law of the wall. Van Driest transformation, however, is inaccurate for diabetics
(with heat transfer) wall-bounded flows. To address this issue, more general mappings were pro-
posed by asserting equilibrium in the inner layer energy cascade [184, 62]. Using this assumption,
a Mach-independent non-dimensional mean shear stress as a function of semi-local wall-normal
coordinate, 𝑦𝑠𝑙 was obtained, where the semi-local velocity scale 𝑢𝑠𝑙 = √

𝜏𝑤∕𝜌̄(𝑦) and length scale
𝑙𝑠𝑙 = 𝜈(𝑦)∕𝑢𝑠𝑙 are shown to yield more accurate transformation for the wall-normal distribution of
turbulence. These so-called (quasi-) equilibrium transformations demonstrate a robust collapse of
compressible datasets to the incompressible reference within the log layer, whereas its accuracy
fails within the viscous sub-layer. To achieve an accurate mapping within the viscous sub-layer
where the equilibrium assumption is not valid, Trettel & Larson [156] proposed a mean velocity
profile scaling by neglecting the Reynolds shear stress and assuming that the total shear stress does
not change with wall-normal distance in the wall units, 𝑦+. They asserted that the non-dimensional
viscous stress –by friction velocity and wall units– is merely a function of the semi-local wall-
normal coordinate, 𝑦𝑠𝑙. Although mapping proposed by Ref. [156] demonstrated a robust method
for wall-bounded flows in the viscous sub-layer, it over-predicts the compressible mean velocity
profile within the logarithmic region, specifically in boundary layers in which the viscous shear
stress is relatively low. Recently, Griffin et al. [54] proposed a mapping on the basis of equilibrium
and viscous stress transformations. This mapping, referred to as total-stress-based transformation,
decomposes the non-dimensional total mean shear stress as 𝜏+ = 𝜏+𝜈 + 𝜏+𝑡 , where the terms on
the right-hand side denote the non-dimensional viscous and Reynolds shear stresses, respectively.
Consequently, the total shear stress can be written as

𝜏+ = 𝑆+

(

𝜏+𝜈
𝑆+
𝑇𝐿

+
𝜏+𝑡
𝑆+
𝑒𝑞

)

, (1.7)

where 𝑆+ is the generalized non-dimensional mean shear. This quantity demonstrates a robust
Mach-independency across the whole inner layer for internal and external flows [54]. It is also
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only a function of the semi-local wall-normal distance, 𝑦𝑠𝑙. In Eq. (1.7), 𝑆+
𝑇𝐿 and 𝑆+

𝑒𝑞 are the
non-dimensional mean shear stress proposed by Refs. [156] and [62], respectively. Note, Eq.
(1.7) asymptotes to the Trettel & Larson transformation [156] close to the wall where 𝜏+ → 𝜏+𝜈 .
However, within the log layer, where the equilibrium assumption is approximately valid and 𝜏+ ≈

𝜏+𝑡 , 𝑆+ ∼ 𝑆+
𝑒𝑞. This approach exhibits a general applicability to different types of wall-bounded

turbulence. Using the transformation proposed by Ref. [54], it was observed that compressible
velocity profiles collapsed to the high Reynolds number incompressible BL even if the wall is
diabetic. All of the above methods accounted for distinct effects of compressibility on the viscous
and Reynolds shear stresses to develop mappings. Another approach is to obtain a transformation
from the similarities in integral methods. In this study, the author seeks mapping between the
compressible and incompressible boundary layers on the basis of wall-normal integral methods.

1.2.3 Integral Equations

The previous sections reviewed the dynamics and motion of turbulent wall-bounded flows and dis-
cussed the turbulent structures in different regions of the flow. In addition, we discussed the in-
fluence of non-equilibrium effects like pressure gradient and compressibility on different turbulent
scales. This section discusses the implementation of the integral methods to further study turbu-
lence and its impact on the major engineering quantities such as skin friction.

The characterization of contributions from different scales required spectral decomposition in ad-
dition to a relationship that distinguishes the mean turbulent enhancement of the wall shear stress
from the other flow phenomena. Such a relationship can be obtained using the wall-normal integral
form of the Navier-Stokes equation (integral methods). The so-called FIK relationship, introduced
by Fukagata, Iwamoto & Kasagi [46], was applied by Refs. [30, 28] to characterize the high-
Reynolds-number turbulent wall-shear stress.

Integral methods in boundary layer flows are a fundamental and powerful approach used in fluid
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mechanics and aerodynamics to analyze and understand the behavior of viscous fluids near solid
surfaces. These methods employ integral equations derived from the fundamental equations of
fluid dynamics, such as the Navier-Stokes equations. By integrating these equations at any station
in the flow direction, from the solid surface into the outer flow, integral methods provide insights
into crucial boundary layer parameters like skin friction, pressure distribution, and boundary layer
thickness. Integral methods are precious when analytical or closed-form solutions are sought for
practical engineering problems. They have been instrumental in the design of aerodynamic shapes,
optimization of boundary layer control, and the development of high-performance aircraft and ve-
hicles. Additionally, they serve as a bridge between theoretical analysis and experimental results,
aiding in the validation and verification of numerical simulations and wind tunnel experiments in
the study of boundary layer flows. For the wall-bounded flows, the integral methods are constructed
based on integration in the wall-normal direction; hence, the complexity of transitional perturba-
tions or turbulent fluctuations within the flow field is filtered over. However, their impact on surface
friction or heat flux might be determined.

von Kármán equation

In boundary layers, the classic form of integral relation is the zeroth-order moment integral equation
that is obtained by wall-normal integration of momentum deficit equation. This equation, referred
to as von Kármán equation [165], reads

𝜏𝑤
𝜌

= 𝑈 2
𝑒

d𝛿2
d𝑥

+
(

𝛿1 + 2𝛿2
)

𝑈𝑒
d𝑈𝑒
d𝑥

, (1.8)

for incompressible BLs, where 𝛿1 and 𝛿2 are the displacement and momentum thicknesses, subscript
𝑒 denotes the BL edge. The zeroth order moment integral equation for internal wall-bounded flows,
e.g., channel or pipe flows, yields an explicit relationship between the wall-shear stress and the
streamwise mean pressure gradient. Kármán-type integral equations also exist in compressible
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BLs for the wall shear stress and surface heat flux. Eq. (1.8) is valid for laminar, transitional, and
turbulent regimes. However, the information embedded within the Kármán type equations does not
explicitly yield the mean turbulent enhancement of the wall shear stress.

Fukagata, Iwamoto & Kasagi equation

Fukagata, Iwamoto, and Kasagi [46] introduced an integral equation (original for internal flows),
known as the FIK identity, that provides a relationship between the mean skin friction coefficient
and distinct flow phenomena, namely the laminar, turbulent, and streamwise inhomogeneous con-
tributions. Later on Peet & Sagaut [128] extended and generalized the FIK equation for three-
dimensional complex wall shapes . The FIK identity is a result of three-fold integration, with the
third integration carried across the half-height of the channel (𝛿), i.e., ∫ 𝛿

0 𝑑𝑦 ∫
𝑦
0 𝑑𝑦 ∫

𝑦
0 𝑑𝑦, of the

streamwise momentum equation. The three-fold integration of the streamwise momentum equa-
tion is, in fact, equivalent to the second moment of the momentum equation through the Cauchy’s
formula of repeated integration

∫

𝑏

𝑎
d𝑥𝑛 ∫

𝑥𝑛

𝑎
d𝑥𝑛−1…∫

𝑥3

𝑎 ∫

𝑥2

𝑎
d𝑥1𝑓

(

𝑥1
)

= 1
(𝑛 − 1)! ∫

𝑏

𝑎
d𝑥(𝑏 − 𝑥)𝑛−1𝑓 (𝑥). (1.9)

By applying the three-fold integration or its alternative, the second moment of momentum, the
viscous term in the Navier-Stokes equation is transformed from a second derivative of the mean
velocity into the bulk velocity (flow rate), i.e., 𝑈𝑏 = 1∕𝛿 ∫ 𝛿

0 𝑢̄(𝑦)d𝑦. This is the primary outcome of
triple integration, as the bulk velocity is a particular engineering quantity in internal flows through
the definition of skin-friction coefficient 𝐶𝑓 = 2𝜏𝑤∕𝜌𝑈 2

𝑏 . The FIK equation for fully-developed
channel flow reads

𝐶𝑓 = 12
𝑅𝑒𝑏

+ 12∫

1

0
2(1 − 𝑦)

(

−𝑢′𝜈′
)

𝑑𝑦 − 12∫

1

0
(1 − 𝑦)2

(

𝐼𝑥
)

𝑑𝑦, (1.10)
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where 𝑅𝑒𝑏 is the Reynolds number based on the bulk velocity and half height of the channel. The
first two terms on the right-hand side of Eq. (1.10) represent the laminar friction and turbulent
enhancement. In contrast, the third term contains the inhomogeneous and transient contributions
that are negligible in homogenous and statistically stationary flows, respectively. This way, the FIK
identity represents a comparison between the skin friction coefficient in a turbulent channel flow
to a laminar one at the same 𝑅𝑒𝑏 –the same flow rate in both regimes; the integral of the Reynolds
shear stress quantifies the difference between two regimes.

Notably, the turbulence enhancement in the FIK equation is weighted linearly with the distance from
the wall, a direct consequence of triple integration. This monotonically decreasing weight away
from the wall qualitatively supports the previous observations about the impact of the turbulence
structures at different distances from the wall on the wall-shear stress [46]. In principle, an integral
form of the conservation equations can be constructed for any order [8]. Furthermore, the first-order
moment yields

𝐶𝑓
4

= 1
𝑅𝑒𝑐

+ ∫

1

0

−𝑢′𝑣′
𝑈 2
𝑐
𝑑
(𝑦
ℎ

)

, (1.11)

where𝐶𝑓 = 2𝜏𝑤∕𝜌𝑈 2
𝑐 and𝑅𝑒𝑐 = 𝑈𝑐ℎ∕𝜈, and𝑈𝑐 representing the centerline velocity. In Eq. (1.11),

the turbulence enhancement (unweighted) represents the difference between the skin friction of
turbulent and laminar regimes at the same 𝑅𝑒𝑐. Therefore, the order of moment in the integral
equation (alternatively, the sequence of successive integrations) determines the velocity scale that
appears in the dimensionless equations. For internal flows, the original FIK identity is preferred
since it yields the bulk velocity (flow rate). Fukagata et al. [46] further applied the three-fold
integration to the mean equations governing the ZPG external flows and proposed an identity for
BL flows

𝐶𝑓 =
4
(

1 − 𝛿1∕𝛿99
)

𝑅𝑒𝛿99
+4∫

1

0

−𝑢′𝑣′
𝑈 2

∞

(

1 −
𝑦
𝛿99

)

𝑑
(

𝑦
𝛿99

)

−2∫

1

0

(

1 −
𝑦
𝛿99

)2 𝐼𝑥𝛿99
𝑈 2

∞
𝑑
(

𝑦
𝛿99

)

,

(1.12)

25



where 𝛿99 denotes the 99% BL thickness definition and 𝑅𝑒𝛿99 = 𝑈∞𝛿99∕𝜈. Also, the boundary layer
skin-friction coefficient 𝐶𝑓 depends on the free-stream velocity

𝐶𝑓 ≡
𝜏𝑤

1
2
𝜌𝑈 2

∞

. (1.13)

It is noticeable that there is no single term on the right-hand side of Eq. (1.12) that represents the
true laminar friction in the same Reynolds number; the first term depends on the ratio of 𝛿1∕𝛿99,
which is implicitly affected by turbulence. Thus, a critical shortcoming of the BL version of the
FIK relation is its failure to isolate the laminar skin friction.

Later on, several derivations of the FIK equation were developed based on the triple integration for
turbulent BLs [109, 108], even for non-equilibrium flows encountering pressure gradient [5]. The
definition of 𝐶𝑓 in BLs is based on the free-stream velocity, not the flow rate (𝑈𝑏). This choice
of velocity scale shows the inherent difference between BLs and channel flows; internal flows are
characterized based on the pressure difference and flow rate. However, in BLs, the friction drag
depends on the momentum deficit with respect to the free-stream velocity. Therefore, we must
reflect engineering context in the analysis of friction or heat transfer. This difference was illustrated
by Xia et al. [178], where they developed a twofold repeated integration for incompressible BLs
inspired by FIK identity that yields

𝐶𝑓 = 2
𝑅𝑒𝛿99
⏟⏟⏟

𝐶𝜈

+2∫

1

0

(

−𝑢′𝑣′
)

d𝑦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐶𝑅

+ 2∫

1

0
(1 − 𝑦)

(

−𝜕𝑢̄𝑢̄
𝜕𝑥

− 𝜕𝑢̄𝑣̄
𝜕𝑦

−
𝜕𝑝̄
𝜕𝑥

)

d𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐶

+ 2∫

1

0
(1 − 𝑦)

(

1
𝑅𝑒𝛿99

𝜕2𝑢̄
𝜕𝑥2

− 𝜕𝑢′𝑢′
𝜕𝑥

)

d𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐷

,

(1.14)
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where 𝐶𝜈 and 𝐶𝑅 denote the contributions of the viscous and Reynolds shear stresses, respectively,
whereas 𝐶𝐶 is the contribution of the mean convection term and 𝐶𝐷 is the contribution from the
mean streamwise derivatives. The twofold repeated integration technique, based on the FIK iden-
tity, was recently implemented to decompose the wall shear stress and surface heat flux in com-
pressible BLs [170, 180]. The FIK identity for BLs is not constrained to ZPG BLs; Atzori et al.
[5] developed a FIK formulation from the convective form of the governing equation to examine
incompressible BLs undergoing adverse pressure gradient.

There are two major concerns regarding the FIK identity and its derivations. The first one is the
linear weight of the turbulent enhancement based on the distance from the wall. The second con-
cern is the mandate of truncating the wall-normal integral at 𝑦∕𝛿99 = 1, while there still could
be fluctuation beyond that. The latter is especially critical at higher Reynolds numbers, for which
the turbulence-induced excess friction is mainly generated within the logarithmic region, while the
influence of buffer and wake regions gradually diminishes. Besides that, to the knowledge of the
author, there is no clear physical explanation regarding the linear weighting.

Renard & Deck equation

Taking into account the above concerns regarding the FIK identity, Renard & Deck [135] proposed
an integral equation based on the mean streamwise kinetic energy budget, 𝑢̄2∕2, to decompose the
skin friction coefficient of the wall-bounded flows. In order to preserve the power generated by the
wall shear stress, they used the absolute frame of reference; the wall is moving at −𝑈∞ and the
undisturbed fluid outside of the BL has zero streamwise velocity. Note, the absolute frame for ZPG
BLs over a flat plate is inertial since𝑈∞ is constant. The caveat, however, is this choice of reference
frame. In contrast to flat plates, for complex geometries and non-equilibrium flows, such a frame
of reference is not trivial. The mean streamwise kinetic-energy budget-based integral equation,
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referred to as the RD relation, reads

𝐶𝑓 = 2
𝑈 3

∞
∫

∞

0
𝑣
(

𝜕𝑢̄
𝜕𝑦

)2

d𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑓,𝑎

+ 2
𝑈 3

∞
∫

∞

0
−𝑢′𝑣′ 𝜕𝑢

𝜕𝑦
d𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑓,𝑏

+ 2
𝑈 3

∞
∫

∞

0

(

𝑢 − 𝑈∞
) 𝜕
𝜕𝑦

(

𝜏
𝜌

)

d𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑓,𝑐

.
(1.15)

In Eq. (1.15), the skin friction coefficient𝐶𝑓 denotes the mean power generated by the wall towards
the fluid –in the absolute frame of reference. This power is diffused through the BL due to (molec-
ular) viscosity, 𝐶𝑓,𝑎. Note this term is not the skin friction that would be seen in a laminar flow
at a matching Reynolds number. In other words, the RD decomposition cannot isolate the laminar
friction as we saw in the FIK relation for internal flows. A portion of the mean power generated
by the wall towards the fluid in the absolute frame is taken by turbulence through the production of
turbulent kinetic energy, 𝐶𝑓,𝑏. This term represents the local source of the excess turbulent friction
that is dominated within the logarithmic region at higher Reynolds numbers. In other words, unlike
the FIK identity that is claimed not to be able to predict the importance of the logarithmic region
at higher Reynolds numbers, the RD relation addresses this matter via 𝐶𝑓,𝑏 [135]. This term is
expected to be the dominant contributor to the skin friction coefficient in high-Reynolds-number
flows. In Eq. (1.15), 𝐶𝑓,𝑐 , originally, denotes the increase rate of absolute-frame mean streamwise
kinetic energy. In other words, this is part of the skin friction power that does not dissipate or con-
vert to turbulent kinetic energy. 𝐶𝑓,𝑐 , however, is written in terms of the wall-normal gradient of
the mean total shear stress in Eq. (1.15). This form of 𝐶𝑓,𝑐 simplifies the application of the RD
relation on standard experimental and numerical datasets as it avoids the requirement of knowing
the streamwise dependent information, e.g., streamwise derivatives.

The application of the RD equation is not limited to ZPG BLs. Fan et al. [41] applied the RD iden-
tity to incompressible turbulent BLs experiencing adverse pressure gradients. They observed as
the Clauser parameter increases –a stronger adverse pressure gradient– the outer region dynamics
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contribute more to the skin friction, whereas the inner region becomes less prominent. The RD
decomposition has also been extended to compressible BLs [97] and hypersonic flows, including
high-enthalpy effects [124]. Passiatore et al. [124] confirmed the validity of the compressible RD
identity at relatively low Reynolds numbers and showed the contribution of 𝐶𝑓,𝑎 is more substantial
than 𝐶𝑓,𝑏. Moreover, they exhibited that the presence of chemical reactions does not deteriorate the
budget of the RD decomposition. The RD decomposition was also applied to interpret the higher
wall-shear stress during the transition to turbulence rather than fully turbulent flow [105]; 𝐶𝑓,𝑏 con-
tribution to the skin friction is higher than fully turbulent flow because the production rate enhances
within the transition zone populated by turbulent spots. This interpretation, however, depends on
choosing the RD identity as the platform of the analysis. For example, selecting the FIK equation
instead presumably leads to a different explanation. In other words, the interpretations based on
different decompositions depend on the reference state that skin friction enhancement or reduction
is compared with. Zhang et al. [183] pointed out this concept by examining the turbulent friction
drag reduction in the numerical study of viscoelastic incompressible channel flows. They showed
that implementing either the FIK or RD decompositions emphasizes different physical interpreta-
tions. Consequently, there are several different ways to decompose the skin friction coefficient or
other engineering quantities, and the purpose of application must impose the identity to be used
beforehand.

Angular momentum integral equation

Recall that in the FIK equation for BLs, the first (viscous) term no longer represents the skin fric-
tion of laminar flow. In other words, the FIK identity could not isolate the laminar friction at a
matching Reynolds number. To resolve this matter, Elnahhas & Johnson [38] introduced the an-
gular momentum integral (AMI) equation that is built on the first-moment of momentum equation
and applied it to numerical datasets of an H-type natural transition to turbulence and two bypass
transitions by Refs. [176] and [129, 182]. This so-called AMI equation isolates the skin friction of
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a ZPG laminar BL –similar to the first term in the right-hand side of the FIK identity of the internal
flows. Therefore, a single viscous term gives the skin friction coefficient that would be seen in the
ZPG laminar BL at a matching Reynolds number, e.g.,𝑅𝑒𝑥,𝑅𝑒𝛿1 , or𝑅𝑒𝛿2 . Such a choice makes the
other terms to be interpreted as enhancements or reductions with respect to the reference laminar
case. This AMI’s property is non-trivial and depends on taking the first moment with respect to
an axis located in an appropriate wall-normal distance, 𝓁 that is the center of action of the viscous
force, i.e., the viscous torque about 𝓁 is zero. This concept mathematically reads

𝑇𝜈,𝓁 = ∫

∞

0
𝜈(𝑦 − 𝓁)𝜕

2𝑢̄
𝜕𝑦2

d𝑦 =
𝓁𝜏𝑤
𝜌

− 𝜈𝑈∞ = 𝑈 2
∞𝓁

(𝐶𝑓
2

− 1
𝑅𝑒𝓁

)

, (1.16)

where 𝑇𝜈,𝓁 denotes the viscous “torque” and 𝑅𝑒𝓁 is the Reynolds number based on the length scale
𝓁. For instance, by setting the viscous torque zero, 𝑇𝜈,𝓁 = 0, in incompressible laminar BLs, i.e.,
Blasius solution [12]

𝐶𝑓
2

≡ 1
𝑅𝑒𝓁

= 0.332
√

𝑅𝑒𝑥
= 0.221
𝑅𝑒𝛿2

= 0.571
𝑅𝑒𝛿1

= 1.63
𝑅𝑒𝛿99

(1.17)

that is varying with respect to the streamwise direction. Subsequently, the length scale 𝓁 is obtained
as

𝓁 = 3.01
√

𝑣𝑥
𝑈∞

= 4.54𝛿2 = 1.75𝛿1 = 0.613𝛿99. (1.18)

The AMI equation is derived by multiplying the streamwise momentum deficit equation by (𝑦 − 𝓁)

–the first moment– then integrating with respect to the wall-normal direction from 𝑦 = 0 to 𝑦 → ∞.
Thus, the AMI derivation of the AMI equation is somewhat similar to the Kármán-type equations; if
𝓁 → ∞, the AMI equation asymptotes to the well-known von Kármán momentum equation. With
such a choice for 𝓁, Elnahhas & Johnson proposed a decomposition for skin friction coefficient,
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known as the AMI equation that reads

𝐶𝑓
2

= 1
𝑅𝑒𝓁

+ ∫

∞

0

−𝑢′𝑣′
𝑈 2

∞𝓁
d𝑦 +

{

𝜕𝛿𝓁2
𝜕𝑥

−
𝛿2 − 𝛿𝓁2

𝓁
d𝓁
d𝑥

}

+
𝛿2,𝑣
𝓁

+
𝛿𝓁1 + 2𝛿𝓁2
𝑈∞

𝜕𝑈∞

𝜕𝑥
+ 𝑥,𝓁, (1.19)

where 𝛿𝓁2 and 𝛿𝓁1 are, respectively, the first-moment (or generalized form) of the momentum and
displacement thicknesses [38]. The first term in the right-hand side of Eq, (1.19) represents the
(equivalent) laminar skin friction at the matching Reynolds number. The other terms represent the
contribution of different flow phenomena to the skin friction as torques about distance 𝑦 = 𝓁 from
the surface. For instance, the second term on the right-hand side of the AMI equation denotes the
explicit turbulence enhancement, i.e., the contribution of Reynolds shear stress to the skin friction
coefficient. This flow phenomenon acts as a counterclockwise torque about axis 𝑦 = 𝓁 and reshapes
the velocity profile in a way that increases the skin friction coefficient (Fig. 1.7 (a)). Conversely,
another flow phenomenon –represented by the AMI equation– might act as a clockwise torque that
reduces skin friction. For example, adverse pressure gradient is an example of clockwise torque as
shown in Fig. 1.7 (b). The third term in the AMI equation is introduced as the rate of streamwise

x

y

(a)
𝓁(𝑥) 𝓁(𝑥)

(b)
Figure 1.7: Schematic of applying torque with respect to axis 𝑦 = 𝓁 (black solid line) to the blue
velocity profile: (a) applying a counterclockwise torque, and (b) applying a clockwise torque.

growth of 𝛿𝓁2 relative to 𝓁. The fourth term directly depends on the mean wall-normal flux of
momentum thickness, 𝛿2,𝑣. It represents the redistribution of angular momentum through the mean
flow away from the wall. Finally, the last term, 𝑥,𝓁, denotes the flow features often neglected in
statistically stationary boundary layers [38].
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It is worth mentioning that the AMI equation, Eq. (1.19) has responded to the concerns regarding
the FIK identity for BL flows. Namely, with an appropriate choice of the length scale 𝓁, one
can isolate the laminar friction at a matching Reynolds number. Moreover, the concept of the
first-moment integration with respect to axis 𝑦 = 𝓁 is physically justified –imposing zero viscous
torque– to avoid the not-physically-justified implementation of three-fold (or two-fold) integration
in the FIK method. Also, the ambiguity of the linear weight of turbulence enhancement that was
discussed by Ref. [135] is resolved in the AMI equation. Additionally, the AMI equation is built on
the momentum deficit, so the wall-normal integration does not need to be truncated mathematically.
This gives an advantage over the FIK identity for BLs in which the integration must be truncated
at 𝛿99. Furthermore, the AMI equation provides a clear interpretation of other flow phenomena,
including the effect of pressure gradient.

1.3 Research goal

The AMI equation is derived from the Navier-Stokes equation without any approximation or as-
sumption. Thus, it can be applied to all boundary layer flows, even with complex configurations
and geometries, e.g., non-equilibrium flows. The AMI equation provides a physical interpretation
of flow phenomena above the wall and how they impact the skin friction coefficient relative to a
based laminar flow. In this study, we seek to develop the first-moment integral equations, on the
basis of the AMI equation, for boundary layer flows to decompose the skin friction coefficient and
surface heat flux, subsequently to study the influence of different flow phenomena on these engi-
neering quantities. One engineering application of first-moment integral equations is evaluating
the flow control schemes. The integral equations have been extensively used to examine the ef-
fectiveness of control schemes on skin friction coefficient and surface heat flux [67, 121, 75, 150]
and to explore the theoretical limit for friction drag reduction [83]. Since the first-moment inte-
gral equations based on the AMI approach provide an interpretation of different flow phenomena,
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such as the explicit contribution of turbulence relative to a base laminar flow, it can be used as a
tool to examine several active or passive control schemes on turbulent fluctuation (or transitional
perturbations). The major research goals that are completed in this writing are the following:

1. Developing the first-moment integral equations for incompressible zero-pressure-gradient
boundary layers with heat transfer to study the skin friction coefficient and Stanton number
in transitional and turbulent regimes; investigating the peak surface friction and heat flux
during the transition,

2. Applying the first-moment integral equation to non-equilibrium boundary layers, experienc-
ing pressure gradient –adverse or favorable– to investigate the complexity between the effect
of pressure gradient and turbulence on the skin friction coefficient. Developing a quantity to
represent the pressure gradient strength based on the AMI equation, similar to the Clauser
parameter. Investigating history effects in BLs encountering pressure gradient and how it
impacts the turbulent structures,

3. Extending the first-moment integral equations to high-speed boundary layers and investigat-
ing the impact of compressibility, turbulence, and other flow phenomena on the skin friction
coefficient and Stanton number. Exploring the skin friction coefficient and Stanton num-
ber mapping between compressible and incompressible BLs using the first-moment integral
equation,

4. Developing a basis for the other applications of the first-moment integral equations beyond
a post-processing tool. This includes modifying the AMI equation to examine flow control
schemes.
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1.3.1 Thesis Outline

The thesis is organized as follows. Chapter 1 developed the motivation of the topic and, later
on, provided the related previous studies and discussed what needs to be done in the future. In
Chapter 2, the governing equations to model the physics of flow fields are stated. This is followed
by the numerical schemes implemented to discretize and solve the given governing equations, as
well as post-processing methods for the first-moment integral analysis in Chapter 3. Chapter 4
extends the first-moment integral equation to incompressible boundary layers with heat transfer
and discusses how different flow phenomena impact the friction drag and surface heat flux during
the transition and in early turbulence. Chapter 5 extends the angular momentum integral analysis
to non-equilibrium turbulent boundary layers with non-zero pressure gradients. This chapter also
discusses more complex BLs, such as flows over an airfoil and a two-dimensional bump surface, to
examine the mild surface curvature effects on the turbulent enhancement. Chapter 6 introduces the
first-moment integral equations to high-speed boundary layers for the skin friction coefficient and
Stanton number, considering the variation of fluid density, viscosity, and thermal conductivity. In
Chapter 7, we introduce the other applications of the first-moment integral analysis beyond using it
as a post-processing analysis tool. In this chapter, the concept of using the AMI analysis to evaluate
a flow control scheme is examined. Additionally, using this concept to develop computationally
efficient turbulent models will be discussed.
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Chapter 2

Governing Equations

This chapter covers the Navier-Stokes (NS) equations governing the physics of the fluid flow based
on conservation principles and the integral relations derived from them. The conservation equations
for viscous flows are provided in 2.1, in which the physical interpretation of each term is discussed.
Taking the NS equations and applying some mathematics works, the integral equations are derived
and elaborated.

2.1 Equation of Motion – Fluid Flow

The governing equations for fluid flows expressed in the conservative form within the three-dimensional
Cartesian coordination system –using index notation– read

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 (2.1)
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for mass (or continuity), and

𝜕
𝜕𝑡
(𝜌𝑢𝑖) +

𝜕
𝜕𝑥𝑗

(𝜌𝑢𝑖𝑢𝑗) = −
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑓𝐵𝑖 (2.2)

for momentum with body force component 𝑓𝐵𝑖 , where 𝑖 = 1, 2, or 3. In the above equations, 𝜌 is
the fluid density. 𝑢𝑖 represents a component of the velocity vector, 𝐮 = (𝑢, 𝑣,𝑤). 𝑝 is the thermody-
namic pressure causing fluid-static stress on the fluid element, whereas 𝜏𝑖𝑗 is the deviatoric stress
tensor representing the fluid-dynamic contributions –an approximate since 𝑝 is only well-defined
for equilibrium conditions. For an isotropic flow, the stress-strain rate constitutive relationship is
independent of the orientation of the coordinate system. Moreover, 𝜏𝑖𝑗 is symmetric, 𝜏𝑖𝑗 = 𝜏𝑗𝑖,
hence

𝜏𝑖𝑗 = 2𝜇
(

𝑆𝑖𝑗 −
1
3
𝑆𝑘𝑘𝛿𝑖𝑗

)

+ 𝜇𝑣𝑆𝑘𝑘𝛿𝑖𝑗 , (2.3)

where 𝑆𝑖𝑗 = 1
2
( 𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

) is the strain rate tensor, also 𝜇 and 𝜇𝑣 are the fluid dynamic viscosity
and bulk viscosity, respectively; the kinematic viscosity is defined as 𝜈 = 𝜇∕𝜌. The constitutive
relation, (2.3), is valid for Newtonian fluid in which there is a linear relationship between the stress
and strain rate tensor components.

The physics of a fluid flow requires a balance of heat transfer and kinetic and internal energy. To
complete the governing equations, the differential conservation of energy –in conservative form–
reads

𝜕
𝜕𝑡

(

𝜌
[

ℎ + 1
2
𝑢𝑖𝑢𝑖

])

+ 𝜕
𝜕𝑥𝑗

(

𝜌
[

ℎ + 1
2
𝑢𝑖𝑢𝑖

]

𝑢𝑗
)

=
𝜕𝑝
𝜕𝑡

+ 𝜌𝑓𝐵𝑖 𝑢𝑖 + 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑖
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

−
𝜕𝑞𝑖
𝜕𝑥𝑖

, (2.4)

where ℎ and 1
2
𝑢𝑖𝑢𝑖 represent flow’s enthalpy and kinetic energy, respectively; using the definition of

total (or stagnation enthalpy)𝐻 = ℎ+ 1
2
𝑢𝑖𝑢𝑖 the above equation might be written in terms of𝐻 . The

first two terms in the right-hand side of Eq. (2.4) represent work by body force and viscous stress,
respectively. 𝑞𝑖 is a component of the heat flux vector, including thermal conduction and radiation;
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the radiation heat flux is often neglected unless the static temperature is enormous. Neglecting
radiation, thus, heat flux is modeled as 𝑞𝑖 = −𝑘 𝜕𝑇

𝜕𝑥𝑖
based on Fourier’s law for heat conduction,

where 𝑇 is static temperature and 𝑘 is the fluid’s thermal conductivity.

Equation of state for perfect gas

A relation defining one state function, such as pressure or internal energy, in terms of two or more
others is called an equation of state. For a compressible fluid flow composed of a single component
–the subject of this study– the specification of two independent thermodynamic quantities deter-
mines the state of the system. For instance, in such a system, the equation of state for pressure is
𝑝 = 𝑝 (𝜌, 𝑇 ). The equation of state is simplified to 𝑝𝑉 = 𝑁𝑘𝐵𝑇 using the perfect (or idea) gas
assumption for 𝑁 identical noninteracting gas molecules confined within a container with volume
𝑉 , where 𝑘𝐵 is the Boltzmann’s constant. The perfect gas assumption is valid as long as attrac-
tive forces between the molecules are negligible and 𝑉 ∕𝑁 is much greater than the volume of an
individual gas molecule.

Kinetic theory and statistical mechanics analysis justified the assumption that at ordinary tem-
peratures and pressures, most gases can be modeled as perfect gases. This assumption has been
prevalently implemented in studying gas dynamic systems unless temperature and pressure are, re-
spectively, extremely low and high. Using the perfect gas assumption, one can relate enthalpy to
temperature using the definition of constant specific heat 𝑐𝑝 = (𝜕ℎ∕𝜕𝑇 ) |constant pressure. If the flow
is further assumed to be calorically perfect for which 𝑐𝑝 does not vary with temperature, enthalpy
is simply ℎ = 𝑐𝑝𝑇 . Note the calorically perfect assumption is limited to perfect gases away from
extremely high (the specific heat capacities may change significantly) or low (quantum effects be-
come important) temperatures. In this work, the author models compressible fluids, like air, as
thermally and calorically perfect gases using the equation of state 𝑝 = 𝜌𝑅𝑇 to relate pressure, den-
sity, and temperature, where 𝑅 is the gas constant that reads 𝑅 = 287 J∕kgK for dry air at ordinary
temperatures.

37



2.1.1 Averaged Equations

For transitional and turbulent flows, the mean (or expected) flow field is of more interest to predict-
ing the flow behavior for engineering and scientific applications. For instance, knowledge of the
mean allows one to determine the average lift and drag on an airfoil or the pressure drop in a pipe.
Also, friction drag and surface heat flux depend on the mean velocity and temperature gradients,
respectively. Therefore, much effort has been directed towards determining the expected values of
transitional and turbulent flow fields. In this section, the governing equations provided in Section
2.1 are (time) averaged to obtain a partial differential equation for the mean field, referred to as
Reynolds-averaged Navier–Stokes (RANS) equations.

Incompressible Flow

In incompressible flows with constant density, viscosity, and thermal conductivity, one can simplify
the governing equation discussed in 2.1; 𝑆𝑘𝑘 = ∇ ⋅ 𝐮 = 0, and hence the fluid-dynamic stress rate
tensor reduces to 𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 .

For transitional and turbulent flows, one can obtain the RANS equations by taking the mean of
the NS equations discussed in Section 2.1. To do so, the instantaneous flow quantities must be
decomposed into the mean and fluctuation (or perturbation for transitional flows) components. For
example, the instantaneous velocity vector is 𝐮 = 𝐮 + 𝐮′ in which (⋅) and (⋅′) represent the mean
and fluctuation components of flow quantities, respectively. Besides that, In incompressible flows,
density, viscosity, and thermal conductivity are constant. 𝑆𝑘𝑘 = ∇ ⋅ 𝐮 = 0 from (2.1), and hence
the the fluid-dynamic stress rate tensor reduces to 𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 . Consequently, The RANS equation
yield

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (2.5)
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for mass conservation and

𝜕𝑢𝑖
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(

𝑢𝑖𝑢𝑗
)

= −1
𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢𝑖
𝜕𝑥𝑗𝑥𝑗

−
𝜕𝑢′𝑖𝑢

′
𝑗

𝜕𝑥𝑗
, (2.6)

for momentum conservation (without body force). The averaged energy equation is further sim-
plified for incompressible flows; enthalpy is substantially larger than kinetic energy, ℎ ≫ 1

2
𝑢𝑖𝑢𝑖,

and fluid’s density and conductivity are constant. Given the assumption above for incompressible
flows, the energy equation is simplified to

𝜕𝑇
𝜕𝑡

+
𝜕(𝑢𝑖𝑇 )
𝜕𝑥𝑖

= 𝛼 𝜕
2𝑇

𝜕𝑥𝑖𝑥𝑖
−
𝜕
(

𝑢′𝑖𝑇 ′
)

𝜕𝑥𝑖
, (2.7)

in terms of the temperature field, where 𝛼 = 𝑘∕𝑐𝑝𝜌 is the fluid’s thermal diffusivity. In incompress-
ible flows (neglecting the Boussinesq Approximation [147]), the energy equation is uncoupled from
the momentum equation. In other words, the temperature field does not impact the velocity field.

Note, the RANS Eqs. (2.5), (2.6), and (2.7) appear nearly identical to the NS equations except
for the term involving −𝑢′𝑖𝑢

′
𝑗 in momentum conservation (and −𝑢′𝑖𝑇 ′ in energy equation). In Eq.

(2.6) −𝑢′𝑖𝑇 ′ is a second-order tensor, referred to as the Reynolds (or turbulent) stress tensor, which
represents the explicit contribution of turbulence on momentum transport alongside with viscous
effects. Similar to deviatoric stress tensor 𝜏𝑖𝑗 , the Reynolds stress is also symmetric. The RANS
equation is a manifestation of the closure problem, i.e., there are more unknowns than equations.
Hence, the system is unclosed. In general, the set of equations governing the evolution of statistical
quantities (obtained from the NS equations) will always be unclosed. As a consequence of the
closure problem, modeling of some statistical quantities, e.g., the Reynolds stress, is a subject of
major turbulence research studies.
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Compressible Flow

For compressible flows, density is not constant. To alleviate the complexity caused by non-constant
density in RANS equations, the density-weighted (Favre) averaging, introduced by Favre [42], can
be applied. The Favre average of a flow quantity 𝑓 is defined as

𝑓 =
𝜌𝑓
𝜌
. (2.8)

The fluctuation component is the difference between a Favere average quantity and its instantaneous
value, e.g., 𝑓 ′′ = 𝑓 − 𝑓 . Throughout this report, the Favre average flow quantities and their
fluctuations are represented by (

⋅̃
) and (⋅′′), respectively to be distinguished from regular (time)

average quantities discussed in the previous section. Analogous to the RANS equation, we derive
the Favre averaged equations for the mean flow and turbulent quantities. Note that Favre averaging
is applied for the velocity and temperature (and enthalpy) fields, whereas density and pressure are
not Favre averaged. Thus, we impose the following decomposition on the NS equations to obtain
the averaged equations

𝑢𝑖 = 𝑢̃𝑖 + 𝑢′′𝑖 , 𝜌 = 𝜌 + 𝜌′

𝑝 = 𝑝 + 𝑝′, ℎ = ℎ̃ + ℎ′′.

The averaged NS equations without body forces are simplified to

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑖

𝜌𝑢̃𝑖 = 0, (2.9)

for continuity,

𝜕
𝜕𝑡
𝜌𝑢̃𝑖 +

𝜕
𝜕𝑥𝑗

𝜌𝑢̃𝑖𝑢̃𝑗 = −
𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(

𝜏 𝑖𝑗 − 𝜌̄𝑢′′𝑖 𝑢
′′
𝑗

)

(2.10)
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momentum, and

𝜕
𝜕𝑡

(

𝜌𝐻̃
)

+ 𝜕
𝜕𝑥𝑗

(

𝜌𝐻̃𝑢𝑗
)

=
𝜕𝑝
𝜕𝑡

+ 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑖
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜕
𝜕𝑥𝑗

(

𝑘 𝜕𝑇
𝜕𝑥𝑗

)

(2.11)

total enthalpy conservation, respectively.
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Chapter 3

Computational Methods

In this chapter, the numerical schemes used to develop high-performance computing software to
simulate incompressible transitional boundary layers are elaborated. This software was originally
developed at Stanford University [100]. The first section discusses the numerical techniques to
computationally discretize and integrate incompressible transitional and turbulent wall-bounded
flows.

Besides the computational methods to integrate the governing equations, later in this chapter, we in-
troduce the computational schemes applied to post-process the transitional and turbulent boundary
layer datasets, namely for the integral equations.

3.1 Incompressible Flow Field

Prior to the numerical scheme, we must introduce a dimensionless form of the governing equations.
In computational fluid dynamics (CFD), the Navier-Stokes equations are written and integrated in
a dimensionless form using the appropriate characteristic velocity and length scales. These charac-
teristics are problem-dependent, i.e., given the nature of the flow, one can choose a different set of
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scales. For incompressible flows, the dimensionless form of the Navier-Stokes equations equation
reads

𝜕𝑢𝑖
𝜕𝑥𝑖

=, (3.1)

for continuity, and

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑗𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝
𝜕𝑥𝑖

+ 1
𝑅𝑒

𝜕𝑢𝑖
𝜕𝑥𝑗𝑥𝑗

, (3.2)

for momentum conservation. Here, 𝑅𝑒 is the Reynolds number defined by the given velocity and
length scales, 𝑅𝑒 = 𝑈𝐿∕𝜈. Also, the base mean pressure is absorbed as a body force in the
momentum equation. Note, in incompressible flows, that absolute pressure is indeterminate in
incompressible flows, and only its gradients can be computed. We choose the BL free-stream
velocity, 𝑈∞, and the flat plate streamwise length, 𝐿, as the velocity and length scales, respectively,
hence the reference Reynolds number is 𝑅𝑒 = 𝑈∞𝐿∕𝜈.

Numerical scheme

To computationally solve Eq. (3.2) for boundary layer flows developing on a flat-plate, we employ
direct numerical simulation (DNS) on a three-dimensional staggered grid system, aiming to en-
hance coupling between the velocity components and the pressure gradient as proposed by Harlow
and Welch [58]. In this approach, considering a three-dimensional cell, the pressure is computed
and stored at the center of a cell. Meanwhile, the velocity components are computed at the faces
of the cell corresponding to their direction. For instance, the 𝑥-velocity component is stored at
the vertical faces of a cell as shown in Fig. 3.1 for a two-dimensional staggered system). This
arrangement facilitates the evaluation of the pressure gradient with second-order accuracy. It in-
volves using central finite differences for all the spatial discretization, considering two neighboring
points for each velocity component. A fully explicit scheme is implemented for all the advection
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Figure 3.1: Two-dimensional staggered grid system; pressure is located at the center of a cell, and
velocities are at the faces.

and diffusion terms in Eq. (3.2) using the fractional-step method [84]. Using the fractional-step
method we can interpret the role of pressure in the momentum equations as a projection opera-
tor. In other words, exploiting the continuity constraint pressure projects an arbitrary vector into a
divergence-free velocity field. Therefore, following Ref. [84], a two-step time integration of Eq.
(3.2) can be implemented. In the first step, we omit the pressure gradient and explicitly solve for
the predicted velocity (𝑢̂𝑖),

𝑢̂𝑖 − 𝑢𝑛𝑖
Δ𝑡

= −
𝜕𝑢𝑛𝑗𝑢

𝑛
𝑖

𝜕𝑥𝑗
− 1
𝑅𝑒

𝜕𝑢𝑛𝑖
𝜕𝑥𝑗𝑥𝑗

, (3.3)

where superscript 𝑛 and Δ𝑡 denote the index of the time step and time-step size, respectively. The
velocity field in the next time step, 𝑛 + 1, is obtained using the corrector step

𝑢𝑛+1𝑖 − 𝑢̂𝑖
Δ𝑡

= −
𝜕𝜙
𝜕𝑥𝑖

, (3.4)
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where 𝜙 here is the pseudo-pressure field. Note, the (corrected) velocity field must satisfy the
continuity, 𝜕𝑢𝑛+1𝑖 ∕𝜕𝑥𝑖 = 0. Therefore, pseudo-pressure 𝜙 can be computed by solving a Poisson
equation that is obtained by taking the divergence of the above equation. This Poisson equation for
pressure projection reads

𝜕2𝜙
𝜕𝑥𝑖𝜕𝑥𝑖

= − 1
Δ𝑡
𝜕𝑢̂𝑖
𝜕𝑥𝑖

, (3.5)

where the right-hand side is known at each time step. Knowing the predicted velocity and pseudo-
pressure fields, we can substitute them in Eq. (3.4) to compute the velocity field in the advanced
time step, 𝑛+1. To solve the system of equations in pressure projection, I utilized the Linear Alge-
bra PACKage (LAPACK) library in Fortran. Additionally, Fast Fourier Transform (FFT) was em-
ployed in the periodic spanwise direction to enhance computational efficiency and accuracy. These
methods collectively provided robust and reliable solutions for the pressure projection equations,
ensuring efficient computation of the flow variables in the simulation domain.

It is worth mentioning that since a fully explicit scheme was applied in the software ([100]), the
pseudo-pressure, 𝜙, and original pressure, 𝑝, are equivalent. However, if one uses an implicit (or a
semi-implicit) numerical scheme, like the Crank-Nicholson Adam-Bashforth method, the original
(or true) pressure must be computed from

𝑝 = 𝜙 + Δ𝑡
2𝑅𝑒

𝜕2𝜙
𝜕𝑥22

; (3.6)

however, this correction relation is an order of (𝑅𝑒), and hence could be assumed negligible for
high Reynolds numbers [84].

In this study, time integration for both predictor and corrector steps is performed using an explicit
third-order Runge-Kutta (RK3) scheme, as described in Ref. [122]. Assuming numerical time
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integration of an equation as

𝑑𝜓
𝑑𝑡

= 𝑔(𝜓, 𝑡), (3.7)

where 𝜓 and 𝑔 are known in time step 𝑛, 𝜓𝑛+1 can be computed following these steps

𝜓 ′ ≡ 𝜓𝑛 + 𝑎Δ𝑡𝑔𝑛

𝜓 ′′ ≡ 𝜓 ′ + 𝑏Δ𝑡𝑓
(

𝜓𝐴, 𝑡𝑛 + 𝐴Δ𝑡
)

𝜓𝑛+1 ≡ 𝜓 ′′ + 𝑐Δ𝑡𝑔
(

𝜓𝐵, 𝑡𝑛 + (𝑎 + 𝐵)Δ𝑡
)

.

(3.8)

In the above steps 𝜓𝐴 ≡ 𝜓𝑛+𝐴Δ𝑡𝑔𝑛 and 𝜓𝐵 ≡ 𝜓 ′+𝐵Δ𝑡𝑔
(

𝜓𝐴, 𝑡𝑛 + 𝐴Δ𝑡𝑛
), where 𝑡𝑛 denotes time

in 𝑛𝑡ℎ step. Also, the RK3 coefficients are

𝑎 = 1
4
, 𝐴 = 8

15
, 𝐵 = 5

12
, 𝑐 = 3

4
. (3.9)

Boundary Conditions

For an incompressible boundary layer flow, no-slip, no-penetration boundary conditions are im-
posed at the wall. To initialize the flow within the domain, the laminar Blasius solution, accurately
interpolated at the wall-normal grid points using suitable flow scales, is superimposed with H-type
temporal instability obtained derived from the parabolized stability equation [100]. This induced
instability mode amplifies downstream, facilitating the transition to a fully turbulent regime. The
outflow is modeled based on the linearized Navier-Stokes equation with the convective velocity. To
ensure a proper outflow condition, the linearized Navier-Stokes equation with the convective ve-
locity is employed. Finally, at the upper boundary of the computational domain, the flow variables
gradually approach the scaled laminar Blasius solution, maintaining consistency with the overall
flow behavior.
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Parallel Architecture

The parallelization of the Fortran DNS BL code is handled by the message passing interface (MPI)
merely in the spanwise 𝑧-direction where the flow is periodic. Subtracting two from the total num-
ber of grid points in the spanwise direction, the resulting must be divisible by the number of the
machine’s processors. Therefore, the total number of spanwise planes allocated to each processor is
(

𝑛𝑧 − 2
)

∕𝑛𝑝, where 𝑛𝑧 and 𝑛𝑝 denote the total number of grid points in 𝑧-direction and total number
of processors, respectively. To simulate BLs at high Reynolds numbers, the DNS BL code might be
further parallelized in the other two directions, namely the wall-normal and streamwise directions,
to reduce the computational cost.

3.2 Boundary Layers Post-processing

Identifying the edge of the boundary layer

In the realm of both experimental investigations and simulations involving viscous flows, it is vital
to possess the capability to establish and calculate the boundary layer thickness, denoted as 𝛿. This
refers to the distance perpendicular to the surface where viscous influences become non-negligible.
Furthermore, the definition of 𝛿 becomes essential for the calculation of integral quantities charac-
terizing the boundary layer. For instance, it is required for the determination of the displacement
thickness 𝛿1 and momentum thickness 𝛿2, respectively, to represent the length scales associated with
near-wall mass and momentum deficits. These measurements are the building blocks of integral
equations for BLs, e.g., AMI or Karman-type equations. Therefore, using a robust but user-friendly
approach to obtain the boundary layer thickness and the edge velocity and pressure is of paramount
importance in the accuracy of integral equations.

Although calculating 𝛿 is a relatively straightforward task for canonical equilibrium flows, e.g.,
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zero-pressure-gradient (ZPG) BLs, no established definitions exist for more complex non-equilibrium
ones. Also, even for simple ZPG flows, the nature of the integral methods was observed to be re-
markably sensitive to the determination of the BL edge and outer scale velocity. In ZPG BLs, the
velocity field approaches the edge velocity as the wall-normal distance 𝑦 → ∞. The thickness 𝛿𝑛%
is defined as the location where 𝑛% of edge velocity is attained, that is

𝑢
𝑈𝑒

|

|

|

|𝑦=𝛿𝑛%
= 𝑛

100
, (3.10)

where 𝑛 = 99% is a common choice. This procedure, however, is not applicable to boundary
layers encountering pressure gradients or complex geometries. For example, for flows around an
airfoil –a complex geometry– the above definition cannot distinguish the viscous region within the
BL from the inviscid flow since it also features a wall-normal velocity gradient. In other words,
for non-equilibrium flows, the (mean) flow field does not approach a constant asymptote at the
edge. In this section, we discuss the so-called local-reconstruction method introduced by Griffin
et al. [53] to predict the BL thickness and obtain the BL edge quantities as well as the counterpart
inviscid streamwise velocity field, 𝑈𝑖. This method is established based on the application of the
Bernoulli equation in the wall-normal direction. The local-reconstruction method proposed key
features despite many other methods such as mean-vorticity based [25, 159, 151] and mean-shear
threshold techniques [4], it does not require numerical integration or differential to determine the
edge of the boundary layer. Also, the computation of the boundary layer thickness in a non-iterative
process reduces the computational cost. Additionally, this method is versatile for a wide range
of Reynolds numbers and free-stream flow conditions (with or without free-stream turbulence).
Finally, the local reconstruction only requires the mean velocity profiles (𝑢 and 𝑣) and the mean
pressure profile (𝑝) as inputs. Thus, it can be readily applied to both numerical and experimental
datasets. In conclusion, this method is robust versatile, and computationally efficient to locate the
edge of the BL and to compute the outer scale velocity.
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The local-reconstruction method defines the boundary layer thickness as

𝑢
𝑈𝑖

|

|

|

|𝑦=𝛿𝑛%
= 𝑛

100
, (3.11)

where 𝑈𝑖(𝑦) is the inviscid mean streamwise velocity profile. Note, for ZPG boundary layers, both
(3.10) and (3.11) are equivalent. Generally, the inviscid velocity profile can be determined by solv-
ing the Euler equations while imposing no-penetration boundaries, which are shaped according to
the local displacement thickness computed through a viscous simulation. However, this approach
becomes impractical due to the interdependence between the displacement thickness and the bound-
ary layer thickness. Alternatively, the local reconstruction method introduces a straightforward and
computationally efficient technique to construct the inviscid solution. For steady incompressible
BLs, the local-reconstruction method starts with the definition of the total (stagnation) pressure

𝑃𝑜 = 𝑝 + 1
2
𝜌
(

𝑢2 + 𝑣2
)

, (3.12)

assuming the mean wall-normal velocity (𝑣) and (static) pressure (𝑝) are equal to their inviscid so-
lution counterparts; the no-penetration boundary condition is imposed to both inviscid and viscous
simulations. However, the no-slip boundary condition is only relevant in the context of viscous
flows. Consequently, the reconstructed inviscid streamwise velocity profile, 𝑈𝑖, exhibits deviations
in the vicinity of the wall, where viscous effects hold sway. Conversely, the mean wall-normal
velocity and pressure profiles exhibit substantially weaker reliance on viscous effects, justifying
the above assumption. Taking into account the (presumptive) irrotational inviscid flow with wall-
normal velocity and pressure profiles, respectively, equivalent to 𝑣 and 𝑝 –from the viscous flow– the
Bernoulli equation might be approximated globally rather than only along the streamlines. Thus,
the streamwise inviscid velocity at each streamwise location is reconstructed as

𝑈𝑖 = ±
√

2
𝜌
[

𝑃𝑜,Ref − 𝑝
]

− 𝑣2, (3.13)
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where the sign of 𝑈𝑖 must be compatible with the mean streamwise velocity at the edge of the BL,
𝑢(𝑦 = 𝛿). One can choose 𝑃𝑜,Ref = Max [𝑃𝑜

]; recall, the total pressure is a measurement of the flow’s
capacity to do work. Naturally, it diminishes closer to the wall due to the viscous effects, hence
choosing 𝑃𝑜,Ref = Max [𝑃𝑜

] guarantees the robustness of the method. Also, 𝑃𝑜 is expected to remain
constant at 𝑦 ≥ 𝛿. This is shown in Figure 3.2 (a) for NACA-4412 airfoil at two different streamwise
locations experiencing moderate “◦” and strong “∗” pressure gradient, respectively. According to
Figure 3.2 (b), the reconstructed inviscid velocity profile, 𝑈𝑖, agrees with the mean velocity profile,
𝑢, outside of the BL, where the flow is approximately irrotational. In Fig. 3.2 (b), the red dotted-line
depicts 𝛿99 thickness predicted by local-reconstruction method, where 𝑢∕𝑈𝑒 = 0.99.
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Figure 3.2: Normalized total pressure (a), and velocity profiles (mean and inviscid) in the wall-
normal direction for flow over NACA-4412 airfoil. Symbols “◦” and “∗” denote two streamwise
stations with moderate and strong pressure gradients, respectively. The red dotted line in (b) rep-
resents 𝛿99. 𝑐 here is the chord length.

The local-reconstruction method can be extended for compressible boundary layers by using the
total (stagnation) enthalpy, 𝐻 , instead of the 𝑃𝑜. The total enthalpy is constant outside of the BL
if the free-stream is irrotational and adiabatic. Similar to Eq. (3.13) for incompressible flows, the
inviscid compressible velocity profile is reconstructed as

𝑈𝑖 = ±
√

2
[

𝐻Ref − ℎ
]

− 𝑣2, (3.14)
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where, similarly, 𝐻Ref = Max[𝐻] is a unique choice to ensure the validity of the method. From
the energy conservation laws, the total enthalpy is constant across shock waves. Hence, the local-
reconstruction method is still applicable for the flows experiencing shocks. The normalized dis-
tribution of total enthalpy, 𝐻 , as well as mean and inviscid velocity profiles for a cold-wall, ZPG,
Mach five turbulent BL over a flat plate are presented in Figures 3.3 (a,b), respectively. Unsur-
prisingly, 𝐻 is maximum and approximately constant outside of the BL. Since the flow does not
experience a pressure gradient, the mean velocity profile, 𝑢, remains constant outside of the BL,
matching the locally reconstructed inviscid velocity, 𝑈𝑖.
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Figure 3.3: Normalized total enthalpy (a), and velocity profiles (mean and inviscid) in the wall-
normal direction for high-speed turbulent flow over a flat plate. The red dotted line in (b) represents
𝛿99. 𝐿 denotes the length of the flat plate.

Wall-normal integration

Calculating the wall-normal integrated quantities, such as displacement and momentum thick-
nesses, is of paramount importance in the analysis of viscous BLs. In addition, these quantities
are the building blocks of the integral methods. Computing these integrals often requires using
numerical methods. In this work, we perform the wall-normal integration by applying a commonly
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used trapezoidal rule that reads

∫

𝑥𝑖+1

𝑥𝑖

𝑓 (𝑥)𝑑𝑥 ≈ Δ𝑥
2

(

𝑓𝑖 + 𝑓𝑖+1
) (3.15)

for one interval 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, where Δ𝑥 is the size of the interval. The accuracy of this scheme
can be evaluated by Taylor series expansion; for a single interval, the trapezoidal approximation
yields

∫

𝑥𝑖+1

𝑥𝑖

𝑓 (𝑥)𝑑𝑥 = Δ𝑥𝑖
𝑓
(

𝑥𝑖
)

+ 𝑓
(

𝑥𝑖+1
)

2
− 1

12
Δ𝑥3𝑖 𝑓

′′ (𝑦𝑖
)

+⋯ (3.16)

that is third-order accurate. For the entire domain, we examine the accuracy by summing over the
intervals –assuming uniform spacing Δ𝑥 = Constant– and using the mean value theorem of integral
calculus. Thus for the entire domain from 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛

∫

𝑥𝑛

𝑥0

𝑓 (𝑥)𝑑𝑥 =
𝑛−1
∑

𝑖=0
∫

𝑥𝑖+1

𝑥𝑖

𝑓 (𝑥)𝑑𝑥 = Δ𝑥
2

(

𝑓 (𝑥0) + 𝑓 (𝑥𝑛) + 2
𝑛−1
∑

𝑗=1
𝑓𝑗

)

+⋯ (3.17)

where 𝑥̄ is a point within the interval [𝑥0, 𝑥𝑛
]. Consequently, the trapezoidal rule is second-order

accurate over the entire domain. Note this second-order accuracy in space is consistent with the
numerical schemes we introduced earlier to discretize and solve the NS equation.

Theoretically, in BLs, the wall-normal integrals are taken from 𝑦 = 0 to 𝑦→ ∞; however, numeri-
cally, the integration must be truncated at some distance away from the wall, outside of the BL. The
truncation is essential in most numerical experiments to remove unwanted and unphysical effects
from the analysis that are caused by imperfect boundary conditions. For instance, including the
free-stream vortical disturbances, the vorticity mixing layer type flow, or the shear layer due to the
top boundary condition can deteriorate the statistical convergence. In this work, we choose 1.5𝛿99
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as the upper limit of the integration, i.e.

∫

∞

𝑦=0
[⋅] 𝑑𝑦 ≈ ∫

1.5𝛿99

𝑦=0
[⋅] 𝑑𝑦, (3.18)

where the flow beyond this limit, from 𝑦 = 1.5𝛿99 to 𝑦 → ∞, is approximately completely irrota-
tional. The contour plot of vorticity for an H-type transitional incompressible BL flow is presented
in Figure 3.4. Here 1.5𝛿99 is shown to be away from the region where vorticity,𝜔𝑧, is non-negligible.

Figure 3.4: Normalized spanwise vorticity contour for incompressible H-type transitional BL sat-
urated to 0.01 ||

|

Max [𝜔𝑧
]

|

|

|

. Solid and dashed red lines represent 1.5𝛿99 and 𝛿99, respectively.
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Chapter 4

First-moment Integral Equations for

Low-speed Boundary Layers with Heat

Transfer

Transitional and turbulent boundary layer (BL) flows possess dramatically more considerable wall-
shear stresses and surface heat fluxes than their laminar counterparts. Locally, this can be explained
by appealing to the presence of spatio-temporally coherent velocity and temperature regions, which
enhance the momentum and thermal transport across the BL. However, these coherent structures are
seldom present alone but are usually influenced by other physical phenomena, such as the stream-
wise growth of boundary layers or free-stream pressure gradients.

This chapter first reviews the angular momentum integral (AMI) equation introduced in [38] in
incompressible BLs. On the basis of the AMI equation, Section 4.1.2 first provides the derivation of
the moment of enthalpy integral (MEI) equation from the conservation equations. This is followed
by an interpretation of the terms that appeared on the right-hand side of the MEI equation and
explains how turbulence and other flow phenomena enhance surface heat flux. Section 4.2 examines
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the application of the AMI and MEI equation by studying the direct numerical simulation dataset
of a transitional and turbulent BL obtained by Wu et al. [176]. Finally, the conclusion is given in
Sec. 4.3.

4.1 Derivation and Interpretation

This section provides the fundamental steps to obtain the first-moment integral equations for ZPG
incompressible boundary layers. We first review the angular momentum integral equation intro-
duced in Ref. [38]. We extend the concept of the first-moment integral equations to energy equa-
tions based on the enthalpy of the flow field.

4.1.1 Angular Momentum Integral Equation

The derivation of the angular momentum integral (AMI) equation, introduced in Ref. [38], proceeds
similarly to von Kármán’s momentum integral equation [165]. For the present work, the statistically
two-dimensional mean flow in a flat-plate BL is described in Cartesian coordinates. The RANS
equations for incompressible BLs read

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (4.1)

for continuity and

𝜕𝑢
𝜕𝑡

+
𝜕(𝑢2)
𝜕𝑥

+
𝜕
(

𝑢𝑣
)

𝜕𝑦
= −1

𝜌
𝜕𝑝
𝜕𝑥

+ 𝜈 𝜕
2𝑢
𝜕𝑥2

+ 𝜈 𝜕
2𝑢
𝜕𝑦2

− 𝜕𝑢′𝑢′
𝜕𝑥

− 𝜕𝑢′𝑣′
𝜕𝑦

, (4.2)

for the 𝑥-momentum conservation, respectively. In Eq. (4.2), the fluid’s density (𝜌) and kinematic
viscosity 𝜈 remain constant. Also, 𝑝 is the mean pressure. The effect of surface curvature on
boundary layers can be neglected in some cases. The generalization of this approach to include
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BLs on surfaces with significant curvature effects is a topic for future work.

The BL is subjected from above to a free-stream flow with velocity 𝑈∞(𝑥, 𝑡) and pressure 𝑃∞(𝑥, 𝑡),
where 𝑥 is the streamwise coordinate along the surface; note, for ZPG BLs, the free-stream quan-
tities –subscript ∞– are the same as the edge ones –subscript 𝑈𝑒. Within the free-stream, the
streamwise momentum equation is

𝜕𝑈∞

𝜕𝑡
+ 𝑈∞

𝜕𝑈∞

𝜕𝑥
= −1

𝜌
𝜕𝑃∞

𝜕𝑥
. (4.3)

It is assumed here that the wall-normal variation of𝑈∞ on the scale of the boundary layer thickness
is insignificant compared to the wall-normal variation of the velocity within the BL. However, this
assumption may need to be relaxed in the future to apply this approach to strong adverse pressure
gradients and boundary layer separation.

Now, subtracting Eq. (4.2) from Eq. (4.3) yields a transport equation for the streamwise momentum
deficit (𝑈∞ − 𝑢) as

𝜕
(

(𝑈∞ − 𝑢)𝑢
)

𝜕𝑥
+
𝜕
(

(𝑈∞ − 𝑢)𝑣
)

𝜕𝑦
+
(

𝑈∞ − 𝑢
) 𝜕𝑈∞

𝜕𝑥
= −𝜈 𝜕

2𝑢
𝜕𝑦2

+ 𝜕𝑢′𝑣′
𝜕𝑦

− 𝐼𝑀 , (4.4)

where all the terms neglected in statistically stationary high Reynolds number BL theory to the
skin-friction coefficient are gathered in a single term

𝐼𝑀 = 𝜕
𝜕𝑡

(

𝑈∞ − 𝑢
)

+ 𝜕
𝜕𝑥

(

−
(

𝑢′𝑢′
)

+ 𝜈 𝜕𝑢
𝜕𝑥

)

− 1
𝜌

(

d𝑃∞

d𝑥
−

d𝑝
d𝑥

)

. (4.5)

Equation (4.4) expresses how the streamwise momentum deficit in BLs changes because of the
streamwise and wall-normal fluxes, free-stream acceleration, pressure gradient, viscous transport,
and Reynolds stresses. Integration of Eq. (4.4) across the BL from 𝑦 = 0 to 𝑦 = ∞, then normal-
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izing by 𝑈 2
∞ results in the von Kármán momentum integral equation [165]

𝐶𝑓
2

=
d𝛿2
d𝑥

+
2𝛿2 + 𝛿1
𝑈∞

d𝑈∞

d𝑥
+ 𝑀 , (4.6)

where the momentum and displacement thicknesses are defined, respectively, as

𝛿2 ≡ ∫

∞

0

(

1 − 𝑢
𝑈∞

)

𝑢
𝑈∞

d𝑦, 𝛿1 ≡ ∫

∞

0

(

1 − 𝑢
𝑈∞

)

d𝑦, (4.7)

and 𝑀 represents the contribution of all the negligible terms (inside 𝐼𝑀 , Eq. (4.5)) to 𝐶𝑓∕2.
Also, the skin-friction coefficient for BLs is 𝐶𝑓 ≡ 2𝜏𝑤∕𝜌𝑈 2

∞, in which 𝜏𝑤 = 𝜇
(

𝜕𝑢∕𝜕𝑦
)

𝑦=0 is the
shear stress at the wall and 𝜇 = 𝜌𝜈 is the fluid’s dynamic viscosity. Note Eq. (4.6) is valid for
laminar, transitional, and fully turbulent flows. In other words, the influence of fluctuations, e.g.,
Reynolds shear stress, momentum flux, and hence skin friction, is implicit. Because turbulence
only rearranges momentum in the wall-normal direction, it does not directly provide a source or
sink for the integral of momentum (deficit). Instead, the impact of turbulence on Eq. (4.6) is to
change the relationship between 𝐶𝑓 and 𝛿2. To see the effect of turbulence explicitly, one must
consider how momentum is distributed in the wall-normal direction, e.g., by considering moments
of momentum.

The AMI equation is derived by multiplying Eq. (4.4) by (𝑦 − 𝓁(𝑥)) –as the first moment– and
integrating in the wall-normal direction from 𝑦 = 0 to 𝑦 = ∞. This may then be stated in terms of
the skin-friction coefficient with a subsequent division by 𝓁𝑈 2

∞ that yields

𝐶𝑓
2

= 1
𝑅𝑒𝓁

+ 1
𝓁 ∫

∞

0

−𝑢′𝑣′
𝑈 2

∞
d𝑦+

(

d𝛿𝓁2
d𝑥

−
𝛿2 − 𝛿𝓁2

𝓁
d𝓁
d𝑥

)

+
𝛿2,𝑣
𝓁

+

(

2𝛿𝓁2 + 𝛿𝓁1
𝑈∞

d𝑈∞

d𝑥

)

+𝓁
𝑀 , (4.8)

where the left-hand side is the skin-friction coefficient, and on the right-hand side, there are several
terms related to several physical flow phenomena. In (4.8), 𝑅𝑒𝓁 = 𝑈∞𝓁∕𝜈 represents the Reynolds
number based on the length scale 𝓁(𝑥), and 𝓁

𝑀 contains all terms neglected in BL theory (in Eq.
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(4.5).) The angular momentum and displacement thicknesses are defined as

𝛿𝓁2 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

)

(

1 − 𝑢
𝑈∞

)

𝑢
𝑈∞

d𝑦, 𝛿𝓁1 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

)

(

1 − 𝑢
𝑈∞

)

d𝑦, (4.9)

which collapse to 𝛿𝓁2 = 𝛿2 and 𝛿𝓁1 = 𝛿1 in the limit of 𝓁 → ∞. In fact, the AMI equation returns the
von Kármán momentum integral equation when 𝓁 → ∞. The wall-normal momentum thickness is
defined as

𝛿2,𝑣 ≡ ∫

∞

0

(

1 − 𝑢
𝑈∞

)

𝑣
𝑈∞

d𝑦, (4.10)

representing the integration of the mean wall-normal flux of the streamwise momentum deficit.
Equation (4.8) represents the integral budget of mean angular momentum with respect to 𝑦 = 𝓁,
in the BL approximation where 𝑥 is a time-like variable. It may also be called a first moment of
momentum integral equation [73] (for historical context, see also [88]).

According to Ref. [38], the choice of 𝓁(𝑥) can be made to isolate the ZPG laminar skin friction
coefficient in a single term of the AMI equation, 2∕𝑅𝑒𝓁. This choice allows the other terms in
the equation to be straightforwardly interpreted as enhancement or attenuation of the skin friction
compared to a laminar BL at a matching Reynolds number. The skin-friction coefficient of ZPG
laminar BLs from Blasius solution, [12], yields

𝐶𝑓
2

= 1
𝑅𝑒𝓁

≈ 0.332
√

𝑅𝑒𝑥
≈ 0.221
𝑅𝑒𝛿2

≈ 0.571
𝑅𝑒𝛿1

, (4.11)

which corresponds to

𝓁(𝑥) ≈ 3.01
√

𝜈𝑥
𝑈∞

≈ 4.54𝛿2(𝑥) ≈ 1.75𝛿1(𝑥). (4.12)

Each of these relations represents a unique choice for the AMI equation. For example, the choice
of 𝓁 ∼

√

𝑥 makes the first term equal to the skin friction of the Blasius BL at a given 𝑅𝑒𝑥. In
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that case, the AMI equation expresses the BL skin friction relative to the laminar case at the same
𝑅𝑒𝑥. Similarly, the choice 𝓁 ∼ 𝛿2 makes the first term equal to the Blasius friction for a given𝑅𝑒𝛿2 ,
and thus the AMI equation quantifies the skin friction relative to a laminar BL as the same 𝑅𝑒𝛿2 .
Therefore, the ability to choose 𝓁(𝑥) provides flexibility for the analysis and clarity of interpretation.
Due to the physical basis of the momentum thickness stemming from the von Kármán momentum
integral equation (4.6), the results in this chapter will use the AMI equation with the length scale
𝓁 ∼ 𝛿2. Elnahhas & Johnson [38] briefly considered different choices for the length scale, and
further insights from other choices are left for future work. Once the choice of 𝓁 is made, the other
terms may now be interpreted as changes to the skin friction relative to a Blasius BL having the
same 𝑅𝑒𝓁. The second term in Eq. (4.8) accounts for how turbulent fluctuations (via the Reynolds
stress) alter the skin friction coefficient. Unsurprisingly, a negative correlation between streamwise
and spanwise fluctuations increases skin friction (Figure 1.7). In the AMI equation, the contribution
of the Reynolds shear stress to skin friction is unweighted as a function of wall-normal distance so
that the wake region of the BL contains most of this integral.

The third term on the right-hand side of Eq. (4.8) expresses the streamwise growth of the angular
momentum thickness, 𝛿𝓁2 , relative to how quickly 𝓁 increases. The increase in 𝓁 is dictated by the
choice of length scale to use for Eq. (4.12), e.g., 𝓁 ∼

√

𝑥 or 𝓁 ∼ 𝛿2, where the Blasius solution
sets the coefficient. Another way of thinking about the AMI equation is that an increase in angular
momentum thickness must be equal to the sum of the skin friction torque along with the other
torques represented on the right-hand-side of Eq. (4.8).

The mean wall-normal velocity also redistributes streamwise momentum (deficit), reflected in the
fourth term on the right-hand side of Eq. (4.8). In the case of a positive mean wall-normal velocity,
momentum deficit is carried away from the wall. This may be thought of as a torque that decelerates
the mean flow in the outer BL and speeds up the near-wall flow, increasing the skin friction.

Any free-stream pressure gradient also acts as a torque on the BL velocity profile. As quantified
by the fifth term on the right-hand side of Eq. (4.8), an accelerating free-stream (favorable pres-
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sure gradient) acts to increase the skin friction coefficient. In contrast, a decelerating free-stream
(adverse pressure gradient) does the opposite. Finally, the contribution of the terms neglected by
BL approximation is accumulated in the sixth term. A comprehensive interpretation of each flow
phenomenon in the AMI equation is provided in Ref. [38].

4.1.2 Moment of Enthalpy Integral Equation

Derivation

The derivation and interpretation of the AMI equation for skin friction was given previously by
Elnahhas & Johnson [38]. An analogy between skin friction and surface heat transfer has long been
a staple of boundary layer theory. In this section, we build on the approach of the AMI equation to
introduce an analogous moment of enthalpy integral (MEI) equation for surface heat transfer.

For incompressible flows, the averaged conservation equation for enthalpy provides an expression
for how turbulence and other flow phenomena alter the Stanton number, and hence the Reynolds’
analogy. For statistically stationary, two-dimensional BLs, without heating source/sink, and with
constant fluid properties, the Reynolds-averaged conservation equation for thermal energy –written
in terms of temperature, 𝑇 ,– reads

𝜕𝑇
𝜕𝑡

+
𝜕(𝑢𝑇 )
𝜕𝑥

+
𝜕(𝑣𝑇 )
𝜕𝑦

= 𝛼𝜕
2𝑇
𝜕𝑥2

+ 𝛼𝜕
2𝑇
𝜕𝑦2

−
𝜕(𝑢′𝑇 ′)
𝜕𝑥

−
𝜕(𝑣′𝑇 ′)
𝜕𝑦

, (4.13)

where 𝛼 is the fluid’s thermal diffusivity. Subtracting the adiabatic free-stream (𝑇∞ is constant)
enthalpy, equation,

𝜕𝑇∞
𝜕𝑡

+ 𝑈∞
𝜕𝑇∞
𝜕𝑥

= 0, (4.14)

from (4.13) yields a transport equation for the mean excess enthalpy equation (often 𝑇𝑤 ≥ 𝑇∞ in
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incompressible BLs) in terms of temperature as

𝜕
(

(𝑇 − 𝑇∞)𝑢
)

𝜕𝑥
+
𝜕
(

(𝑇 − 𝑇∞)𝑣
)

𝜕𝑦
−
(

𝑈∞ − 𝑢
) 𝜕𝑇∞
𝜕𝑥

= 𝛼𝜕
2𝑇
𝜕𝑦2

−
𝜕(𝑣′𝑇 ′)
𝜕𝑦

+ 𝐼ℎ, (4.15)

where all the terms neglected in statistically stationary, two-dimensional BL approximations are
gathered in a single term

𝐼ℎ =
𝜕
𝜕𝑡

(

𝑇∞ − 𝑇
)

+ 𝜕
𝜕𝑥

(

−
(

𝑣′𝑇 ′
)

+ 𝛼𝜕𝑇
𝜕𝑥

)

(4.16)

Integrating Eq. (4.15) in the wall-normal direction from 𝑦 = 0 to 𝑦 = ∞, then normalizing by
𝑈∞(𝑇𝑤 − 𝑇∞) results a Kármán integral type relation for the Stanton number [142]

𝑆𝑡 =
d𝛿ℎ
d𝑥

+
𝛿ℎ
𝑈∞

d𝑈∞

d𝑥
+

𝛿ℎ
𝑇𝑤 − 𝑇∞

d𝑇𝑤
d𝑥

+ ℎ, (4.17)

where 𝛿ℎ is the enthalpy thickness,

𝛿ℎ ≡ ∫

∞

0

𝑢
𝑈∞

(

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

)

d𝑦, (4.18)

representing the wall-normal integral of the streamwise flux of the enthalpy excess (or deficit) [171].
Moreover, ℎ corresponds to the contributions of the negligible terms (𝐼ℎ) to the Stanton number.
The Stanton number for incompressible BLs is defined as

𝑆𝑡 ≡
𝑞𝑤

𝜌𝑈∞𝑐𝑝
(

𝑇𝑤 − 𝑇∞
) , (4.19)

representing the non-dimensional form of surface heat flux 𝑞𝑤 = −𝑘(𝜕𝑇 ∕𝜕𝑦)𝑦=0, where 𝑘 = 𝜌𝑐𝑝𝛼

and 𝑐𝑝 are the fluid’s thermal conductivity and constant specific heat capacity, respectively.

Note the influence of turbulence in the Eq. (4.17) is implicit because turbulence rearranges enthalpy
(and momentum) in the wall-normal direction; it does not directly provide a source or sink. Instead,
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the impact of turbulence in Eq. (4.17) is to change the relationship between 𝑆𝑡 and 𝛿ℎ. In order
to explicitly quantify the impact of turbulence on the surface heat transfer, one must consider how
enthalpy is distributed in the wall-normal direction, e.g., by considering the first moment of the
enthalpy equation.

Similar to the AMI equation, the moment of enthalpy integral (MEI) equation is obtained by mul-
tiplying Eq. (4.15) by (𝑦−𝓁) –the first moment– then integrating across the BL, ∫ ∞

0 (𝑦 − 𝓁) [⋅] 𝑑𝑦.
Normalizing the resulting by 𝓁𝑈∞

(

𝑇𝑤 − 𝑇∞
) yields the MEI equation

𝑆𝑡 = 1
𝑃𝑒𝓁

+ 1
𝓁 ∫

∞

0

𝑇 ′𝑣′
𝑈∞(𝑇𝑤 − 𝑇∞)

d𝑦 +

(

d𝛿𝓁ℎ
d𝑥

−
𝛿ℎ − 𝛿𝓁ℎ

𝓁
d𝓁
d𝑥

)

+
𝛿ℎ,𝑣
𝓁

+

𝛿𝓁ℎ
𝑈∞

d𝑈∞

d𝑥
+

𝛿𝓁ℎ
𝑇𝑤 − 𝑇∞

d𝑇𝑤
d𝑥

+ 𝓁
ℎ ,

(4.20)

where 𝑃𝑒𝓁 = 1∕
(

𝑃𝑟 ⋅ 𝑅𝑒𝓁
) is the Péclet number, and 𝑃𝑟 = 𝜈∕𝛼. 𝛿𝓁ℎ and 𝛿ℎ,𝑣 are the first-moment

of enthalpy thickness and wall-normal enthalpy thickness, respectively, defined as

𝛿𝓁ℎ ≡ ∫

∞

0

(

1 −
𝑦
𝓁

) 𝑢
𝑈∞

(

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

)

d𝑦, 𝛿ℎ,𝑣 ≡ ∫

∞

0

𝑣
𝑈∞

(

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

)

d𝑦. (4.21)

Note in the limit of 𝓁 → ∞ the first moment of enthalpy thickness collapses to 𝛿ℎ, and hence the
MEI equation becomes the classic integral Eq. (4.17). In Eq. 4.20, 𝓁

ℎ represents the contribution
of the neglected terms (𝐼ℎ) to the Stanton number based on the first moment integral approach.
Note a meaningful interpretation of the MEI equation depends on the choice of the length scale 𝓁;
an appropriate definition of 𝓁 is precisely discussed later in this section.

Interpretation

The right-hand side of the MEI equation, Eq. (4.20), consists of different terms mapping different
physical flow phenomena and quantifying how they alter the Stanton number. A summary of the
physical interpretation of these terms is provided below and supplemented by a brief discussion of
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each flow phenomenon in the following paragraphs.

(I) 1
𝑃𝑒𝓁

⟶ surface heat flux of an equivalent laminar BL at matched 𝑃𝑒𝓁,

(II) 1
𝓁 ∫

∞

0

𝑇 ′𝑣′
𝑈∞(𝑇𝑤 − 𝑇∞)

d𝑦⟶ turbulent flux integral, turbulent transport of enthalpy,

(III) d𝛿
𝓁
ℎ

d𝑥
−
𝛿ℎ − 𝛿𝓁ℎ

𝓁
d𝓁
d𝑥

⟶ streamwise growth of the first moment of enthalpy thickness,

(IV)
𝛿ℎ,𝑣
𝓁

⟶ flux by mean wall-normal transport,

(V)
𝛿𝓁ℎ
𝑈∞

d𝑈∞

d𝑥
⟶ free-stream pressure gradient flux,

(VI) 𝛿𝓁ℎ
𝑇𝑤 − 𝑇∞

d𝑇𝑤
d𝑥

⟶ flux by wall temperature-variation, and

(VII) 𝓁
ℎ ⟶ heat flux due to negligible terms.

Diffusion flux and the laminar Stanton number (I)

In the MEI equation, the Stanton number and the laminar surface heat flux are obtained from the
wall-normal integration of the first moment of the diffusion flux in Eq. (4.15)

∫

∞

0
(𝑦 − 𝓁)

[

𝛼𝜕
2𝑇
𝜕𝑦2

]

d𝑦 = −𝓁(𝑇𝑤 − 𝑇∞)𝑈∞

(

𝑆𝑡 − 1
𝑃𝑟 ⋅ 𝑅𝑒𝓁

)

(4.22)

From Eq. (4.22), if 𝓁 is chosen such that 𝑆𝑡 = 1∕𝑃𝑟 ⋅ 𝑅𝑒𝓁 for a ZPG incompressible laminar BL,
then the integral of total diffusion flux about 𝑦 = 𝓁(𝑥) vanishes. Therefore, the length scale 𝓁(𝑥)

mathematically connects two BLs, the BL to be analyzed (in this study, transition to turbulent) and
the baseline (ZPG) incompressible laminar BL. In other words, the laminar Stanton number in the
MEI equation is isolated in 1∕𝑃𝑟 ⋅ 𝑅𝑒𝓁 with such a choice for 𝓁(𝑥). Because of the physical basis
of Eq. (4.17) we tie the definition of the length scale 𝓁(𝑥) to the enthalpy thickness, 𝓁(𝑥) ∼ 𝛿ℎ(𝑥),
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hence for an (a ZPG) incompressible laminar BL

𝑆𝑡 = 1
𝑃𝑟 ⋅ 𝑅𝑒𝓁

= 𝛼
𝑈∞

(

𝑐𝑇 𝛿ℎ(𝑥)
) , (4.23)

where 𝑐𝑇 is a constant determined by solving the self-similar laminar incompressible BL equa-
tions, e.g., Blasius solution. For incompressible flows, there is a Prandtl number dependency be-
tween proposed length scales in the AMI and MEI equations (approximated ratio of the thermal
and momentum BL thickness 𝛿ℎ∕𝛿 ≈ 𝑃𝑟−0.4, where 𝛿ℎ and 𝛿 are the thermal and momentum BL
thicknesses, respectively [171]). In particular, when 𝑃𝑟 = 1, the length scale of the MEI equation is
equal to the AMI equation’s length scale (obtained from Blasius solution) 𝓁(𝑥) = 4.54𝛿ℎ = 4.54𝛿2

(𝛿ℎ = 𝛿2 in laminar regime), i.e. 𝑐ℎ = 4.54. Thus, the Reynolds number used for similarity with
the baseline laminar BL is 𝑅𝑒𝛿ℎ = 𝑈∞𝛿ℎ∕𝜈 = 𝑅𝑒𝛿2 . Note this equality is not perfectly valid for the
transitional and turbulent flows. In other words, the turbulent transport mechanism is not exactly
the same for enthalpy (scalar quantity) and momentum (vector quantity) fluxes.

Turbulent enthalpy flux (II)

The second term on the right-hand side of the MEI equation is the turbulent flux by wall-normal ve-
locity temperature covariance, 𝑣′𝑇 ′. The turbulent heat flux does not appear directly in the Kármán
integral type equation, Eq. (4.17), since it vanishes at boundaries (wall and free-stream). How-
ever, by integrating the first moment of the velocity-temperature covariance in the enthalpy excess
equation,

−∫

∞

0
(𝑦 − 𝓁)

𝜕
(

𝑣′𝑇 ′
)

𝜕𝑦
d𝑦 = ∫

∞

0
𝑣′𝑇 ′d𝑦, (4.24)

the turbulent flux is preserved. The turbulent flux represents how turbulence carries enthalpy excess
away from the wall, generating further heat flux relative to the base laminar heat flux.
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Streamwise growth of moment-of-enthalpy thickness (III)

Integrating the first moment of the streamwise enthalpy excess yields

−∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑥

(

𝑢
𝑈∞

(

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

))

d𝑦 = 𝓁
d𝛿ℎ𝓁
d𝑥

−
(

𝛿ℎ − 𝛿ℎ𝓁
) d𝓁
d𝑥
. (4.25)

The enthalpy thickness 𝛿ℎ from the Kármán integral type equation, Eq. (4.17), represents the net
streamwise flux of enthalpy deficit/excess. Equation (4.25) represents the rate at which the first mo-
ment of enthalpy thickness grows relative to the growth rate of 𝓁(𝑥). The first moment of enthalpy
thickness, 𝛿𝓁ℎ , is a signed quantity so that it can be negative or positive depending on the choice
of 𝓁(𝑥). A physical interpretation of Eq. (4.25) is considering it as the resultant term from all of
the fluxes impacting the BL as well as the surface heat flux itself in the left-hand side of the MEI
equation. In other words, the first moment of enthalpy thickness absorbs any imbalance of enthalpy
fluxes at a given streamwise location. For example, it will be shown that this term is often negative
(attenuation of surface heat flux). In this case, this streamwise growth term may be interpreted as
absorbing the turbulent heat flux, which would otherwise necessitate a more considerable surface
heat flux, into a growth of the moment of enthalpy.

Mean wall-normal flux (IV)

The mean wall-normal flux in the MEI equation originates from the flux of enthalpy excess carried
by the mean wall-normal velocity,

−∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑦

(

𝑣̄
𝑈∞

(

𝑇 − 𝑇∞
𝑇w − 𝑇∞

))

d𝑦 = 𝛿ℎ𝑣 (4.26)

This term represents the wall-normal flux of enthalpy. When 𝑣 is positive, as is typically in BLs, this
term increases the Stanton number by assisting the wall-normal transport of enthalpy away from
the wall. Conversely, if 𝑣 < 0, the mean wall-normal velocity transports enthalpy excess toward
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the wall, attenuating the Stanton number. This reversal behavior is observed for transitional BLs in
the AMI equation for the skin friction coefficient [38].

Flux by free-stream pressure gradient (IV)

A non-zero free-stream pressure gradient due to variable 𝑈∞ with the streamwise direction impacts
the surface heat flux. For instance, a favorable free-stream pressure gradient accelerates𝑈∞, damp-
ing the velocity defect in the BL and contributing to the Stanton number. In contrast, an adverse
free-stream pressure gradient decreases the surface heat flux. In this study, only zero free-stream
pressure gradient incompressible BL will be considered, so this term is expected to be negligible.
MEI-based analysis of pressure gradient effects on surface heat transfer is reserved for future work.

Flux by non-isothermal wall (VI)

According to the MEI equation, wall temperature variation impacts the surface heat flux. Increas-
ing wall temperature in the streamwise direction enhances the surface heat flux, yet diminishing
wall temperature causes a negative contribution to the Stanton number. This chapter focuses on
isothermal BL. Hence, this term is going to be negligible. Analysis of BLs with wall temperature
variation is left to future work.

Departure from the BL approximations (VII)

All terms in the enthalpy excess transport equation that are typically small in statistically stationary
and two-dimensional BLs are accumulated in a single term, the 𝓁

ℎ . While not the case in this study,
these terms could become considerable in the vicinity of flow separation.
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4.2 Results and Analysis

4.2.1 Transitional and Turbulent Regimes

The angular momentum integral equation and its extension to heat transfer, the moment of en-
thalpy integral equation, are generally applicable analysis tools for BL flows, i.e., they are valid for
laminar, transitional, and turbulent regimes. One primary application of the first moment integral
equations is measuring the explicit turbulence enhancement of the skin friction and surface heat
flux in transitional and turbulent BLs. Therefore, in this section, we apply these equations to DNS
results to further investigate the role of turbulence on skin friction and surface heat flux.

Dataset

Here, we work with a ZPG incompressible BL dataset obtained from a direct numerical simulation
(DNS) by Wu et al. [176]. The simulation inlet is a laminar (Blasius) BL at 𝑅𝑒𝛿2 ≈ 80, with
turbulence from a precursor simulation of homogeneous isotropic turbulence added to the free-
stream to trigger bypass transition. The inlet turbulent intensity in the free-stream is 3%. The
simulation domain is long enough in the streamwise direction, allowing the turbulent BL to grow
to𝑅𝑒𝛿2 ≈ 3000 and𝑅𝑒𝜏 ≈ 1000 at the outlet. A total of 16384×500×512 grid points are used. Grid
resolutions in wall-parallel planes are 3.5 < Δ𝑥+ < 5.5 and 4.5 < Δ𝑧+ < 7, respectively, where
the superscript “+” denotes normalization with viscous scales. The streamwise grid resolution is
within the range of 2𝜂 < Δ𝑥 < 3𝜂 for the inner layer and 0.5𝜂 < Δ𝑥 < 2𝜂 for the outer region,
where 𝜂 is the local Kolmogorov length scale obtained from the fluid kinematic viscosity, 𝜈 and
turbulent dissipation, 𝜀, as 𝜂 =

(

𝜈3∕𝜀
)1∕4. In the wall-normal direction, the resolution ranges over

0.4𝜂 < Δ𝑦 < 2𝜂 across the BL thickness. The temperature field (passive scalar) is simulated with
𝑃𝑟 = 1 and isothermal boundary conditions at the wall. The incompressible Navier–Stokes and
energy equations were solved using the fractional step method.
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Figure 4.1: The balance of the right-hand side of the AMI equation compared with 𝐶𝑓 . The labeled
dashed curves are laminar (Blasius) friction and turbulent correlation of skin-friction coefficient
[171].

Angular Momentum Integral Equation

Preliminary results for the skin friction and the right-hand side of Eqn. (4.8) are shown in Fig. 4.1.
The right-hand side of the AMI equation balances the skin-friction coefficient with approximately
1.4% average error. The major cause of the deviation is the amplification of statistical convergence
errors generated by calculating the derivatives in the streamwise direction in the streamwise growth.
Also plotted are the skin friction formulae from the Blasius solution, 0.442∕𝑅𝑒𝛿2 , and a power-law
approximation for turbulent BLs, 0.058∕𝑅𝑒0.2𝑥 . According to these results, the skin friction deviates
from the laminar solution at approximately 𝑅𝑒𝛿2 = 200, and the flow becomes fully turbulent at
roughly 𝑅𝑒𝛿2 = 900.

In Figures 4.2(a,b), the contributions of the four significant terms on the right-hand side of the AMI
equation to the skin-friction coefficient are shown with respect to 𝑅𝑒𝛿2 . The AMI equation’s length
scale 𝓁(𝑥) = 4.54𝛿2(𝑥) is based on the Blasius solution. Note the DNS simulation has a nominal
zero free-stream pressure gradient and is far from BL separation. Therefore, the contribution of
these two AMI terms to the skin-friction coefficient is orders of magnitude smaller than the other
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four terms. Figure 4.2(a) exhibits the direct impact of the first four terms on 𝐶𝑓∕2, and Figure
4.2(b) provides their normalized contribution by 𝐶𝑓∕2.

For𝑅𝑒𝛿2 < 200, where the flow is mostly laminar, the dominant flow phenomenon in the AMI equa-
tion generating friction is the laminar term. The laminar friction, however, decreases downstream
with ∼ 1∕

√

𝑥 in the streamwise direction. During the initial stages of transition, the fluctuations
(or perturbations) are significantly weak. Hence, the enhancement of turbulent torque to 𝐶𝑓∕2 is
negligible. In contrast, for the fully turbulent regime (𝑅𝑒𝛿2 > 900, the contribution of turbulent

torque to𝐶𝑓∕2 is dominant since most of the wall-normal momentum transport is done by Reynolds
shear stress that brings high-speed flow towards the wall. According to Figure 4.2(b), the normal-
ized contribution of turbulent torque is about one, confirming roughly that all of the wall-normal
transport mechanism is done by Reynolds shear stress.

The streamwise growth in angular momentum thickness is an overall negative contribution to the
skin friction because this represents that the mean velocity profile of the BL absorbs angular mo-
mentum as it becomes thicker, offsetting the torques and decreasing the required skin friction needed
to balance the integral equation. The mean wall-normal velocity is usually positive as the BL grows
so that 𝛿2,𝑣 is positive in the laminar and fully turbulent regimes. Thus, the mean transport of mo-
mentum deficit away from the wall provides torque in the direction requiring a larger skin friction
coefficient. However, the contribution of mean-wall normal is generally weaker than the aforemen-
tioned dominant terms in the laminar and turbulent regimes.

Within the laminar regime (𝑅𝑒𝛿2 < 200), the mean-wall normal and streamwise growth balance
each other so that their sum is zero by design. That is, the choice of 𝓁 ensures that streamwise
growth precisely offsets the wall-normal velocity of the Blasius BL. For fully turbulent BL (𝑅𝑒𝛿2 >
900), also, the normalized contribution of these two flow phenomena to 𝐶𝑓∕2 in Fig. 4.2(b) are
small and relatively constant. In fact, beyond 𝑅𝑒𝛿2 ≈ 1200, none of the terms in the AMI equation
vary significantly in relative magnitude. Therefore, from the perspective of the AMI equation, the
basic physics of skin friction enhancement by turbulence can be understood at relatively modest
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Figure 4.2: The AMI budget for the four significant flow phenomena with respect to 𝑅𝑒𝛿2: (a) the
contribution of each term to 𝐶𝑓∕2, and (b) the contribution of each term normalized by 𝐶𝑓∕2.

Reynolds numbers. For the remainder of this chapter, the focus will be on the behavior of the four
major flow phenomena in the AMI and MEI equations during the transition to turbulence and early
turbulent regime (𝑅𝑒𝛿2 ≤ 1200).

Moment of Enthalpy Integral Equation

In this section, the moment of enthalpy integral (MEI) equation is applied to analyze the mean
surface heat flux in the BL database from Ref. [176]. The balance of the right-hand side of the
MEI equation is compared with the left-hand side (the Stanton number) in Fig. 4.3 within the
transitional and early turbulent regime (𝑅𝑒𝛿2 ≤ 1200). The average error is approximately 1.3%,
approximately the same as observed for the AMI equation in Fig. 4.1.

The DNS simulation has an adiabatic free-stream condition with zero pressure gradient, and an iso-
thermal wall boundary condition is imposed. Hence, the contributions of edge pressure gradient

flux and wall temperature variation to the Stanton number are found to be negligible, as expected.
In addition, the BL is away from any flow separations, so the BL approximations are valid, resulting
in a substantially small effect from the negligible terms on surface heat flux. In Figures 4.4(a,b),
the four significant flow phenomena in the right-hand side of the MEI equation with respect to
𝑅𝑒𝛿ℎ = 𝑈∞𝛿ℎ∕𝜈 are shown. The MEI equation’s length scale, 𝓁(𝑥) = 4.54𝛿ℎ(𝑥), is the same as
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Figure 4.3: The balance of the right-hand side of the MEI equation compared with 𝑆𝑡. The labeled
dashed curves are laminar Stanton number and turbulent power-law prediction of the Stanton num-
ber [171].

the AMI equation for 𝑃𝑟 = 1. Figure 4.4(a) shows the direct contribution of each term to 𝑆𝑡, and
Figure 4.4(b) provides their relative contribution (each term normalized by 𝑆𝑡). Given the DNS
data for 𝑃𝑟 = 1 (and 𝑅𝑒𝛿2 ≈ 𝑅𝑒𝛿ℎ), the Reynolds analogy is expected and, qualitatively observed
by comparing Figures 4.4(a,b) and Figures 4.2(a,b) for the MEI and AMI equations, respectively.
Quantitatively, however, we spot a deviation in Reynolds analogy, especially within the fully turbu-
lent regime; downstream of𝑅𝑒𝛿2 = 900, the explicit turbulence enhancement to the Stanton number
is greater than its counterpart contribution to the skin friction coefficient. This deviation is more
clear comparing the value of the normalized contribution of turbulent flux to 𝑆𝑡 and turbulent flux

to 𝐶𝑓∕2 –Figures 4.2(b) and 4.4(b); for the turbulent torque it yields one, whereas for the turbulent

flux is about 10% higher. The main explanation for this deviation is the slight difference between
the turbulent transport mechanism for a scalar quantity (enthalpy/temperature) in comparison with
a divergence-free vector quantity (momentum/velocity).

Within the laminar region (early transition), 𝑅𝑒𝛿2 < 200, the fractional contribution of the laminar

heat flux is about one –verifying that this term properly represents the laminar heat flux– while
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Figure 4.4: The MEI budget for the four significant flow phenomena with respect to 𝑅𝑒𝛿2: (a) the
contribution of each term to 𝑆𝑡, and (b) the contribution of each term normalized by 𝑆𝑡.

the streamwise growth and mean wall-normal flux precisely offset each other by design. For fully
turbulent flow, the laminar Stanton number is insignificant, and the surface heat flux generated
directly by turbulence is slightly higher than the net Stanton number. Therefore, there must be
(at least) one term resisting the turbulent heat flux. Similar to the AMI analysis, the streamwise

growth negatively contributes to 𝑆𝑡. That is, it absorbs the impact of turbulence into growth in the
moment of enthalpy. According to Figure 4.4(b), since the normalized enhancement of turbulent

flux is somehow converged, the normalized negative contribution of streamwise growth does not
vary significantly downstream. Moreover, the relatively small positive mean wall-normal velocity
assists the wall-normal transport of enthalpy; hence, mean wall-normal flux weakly contributes to
the enhancement of the mean Stanton number.

Whereas for the laminar and fully turbulent BLs (away from separation), the balance of the MEI
and AMI equations follow the fundamental physical expectations, during the transition and early
turbulent we observe an unexpected trend by the major flow phenomena resulting in the maximum
surface heat flux and skin friction. The transitional BL is explored in more detail in Section 4.2.1
by considering the MEI and AMI equations together.
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Peak surface friction and heat flux during the transition to turbulence

In this section, the peak surface heat flux and friction during the transition are examined by applying
the physical understanding of the MEI and AMI equations. As the transition initiates (𝑅𝑒𝛿2 > 200),
the turbulent flux boosts up and outpaces 𝑆𝑡 beyond 𝑅𝑒𝛿2 ≈ 380, Fig. 4.4. A similar trend is
observed for the turbulent torque in the AMI equation, but the outpacing is temporal, confined
between 𝑅𝑒𝛿2 ≈ 380 and 𝑅𝑒𝛿2 ≈ 1000, Fig. 4.2. The integral of −𝑢′𝑣′ reaches its peak value
roughly at 𝑅𝑒𝛿2 ≈ 530. With a slight spatial delay, the maximum 𝑆𝑡 and 𝐶𝑓∕2 about 𝑅𝑒𝛿2 ≈ 650.
Surprisingly, in contrast to the laminar regime, during the transition, the streamwise growth and
mean wall-normal cooperate, resisting the severe turbulent enhancement of surface heat flux and
friction. To examine the (stronger) negative contribution of these two flow features, we examine
the contours of the integrands of turbulent flux (and turbulent torque), mean wall-normal, and
streamwise growth in the 𝑥 − 𝑦 plane in the following paragraphs.

The direct impact of turbulence on 𝑆𝑡 (and 𝐶𝑓∕2)relative to the laminar effect is through the wall-
normal integral of the turbulent covariance. Figures 4.5(a,b) exhibit the contour plots of the tur-
bulent heat flux, 𝑣′𝑇 ′, and Reynolds shear stress, −𝑢′𝑣′, normalized by 𝑈∞(𝑇𝑤 − 𝑇∞) and 𝑈 2

∞,
respectively. These two are the integrands of the associated terms in the AMI and MEI equations.
The Reynolds stress and heat flux reaches a maximum during the transition in a region close to the
wall, 𝑦 < 𝓁, approximately from 𝑅𝑒𝛿2 = 380 to 𝑅𝑒𝛿2 = 550 where the turbulent covariance is sub-
stantially high and reaches the maximum within a localized region (yellow). This region coincides
with the maximum contribution of turbulent heat flux (and turbulent torque) to 𝑆𝑡 and 𝐶𝑓∕2, and
is slightly higher for the former than the latter, explaining the higher contribution of turbulent flux

to 𝑆𝑡 compared with the contribution of turbulent torque to 𝐶𝑓∕2 in Figs. 4.2 and 4.4.

For laminar or fully turbulent regimes, the mean wall-normal velocity is positive and thus increases
𝑆𝑡 (and 𝐶𝑓∕2) by assisting in the transport of temperature excess (or velocity deficit) away from the
wall. During the transition to turbulence (230 ≤ 𝑅𝑒𝛿2 ≤ 680), however, the wall-normal velocity

73



200 400 600 800 1000 1200
0

0.02

0.04

0.06
99

200 400 600 800 1000 1200
0

0.05

0.1

99

y

(b)(a)

0.14

Figure 4.5: Integrands of the explicit turbulence enhancement on the (a) Stanton number by
𝑇 ′𝑣′∕𝓁𝑈∞(𝑇𝑤 − 𝑇∞), and (b) skin-friction coefficient by −𝑢′𝑣′∕𝓁𝑈 2

∞.

(𝑣) switches sign to negative in a region near the wall, as shown in Fig. 4.6(b). When 𝑣 < 0, the
contribution of the mean wall-normal flux to𝑆𝑡 (and𝐶𝑓∕2) is negative. This effect can be observed
in Fig. 4.6 (c) within the range of 300 ≤ 𝑅𝑒𝛿2 ≤ 500.

The author is not aware of previous research exploring the observed negative wall-normal velocity
during transition, so a short explanation is pursued here. The conservation of mass in an incom-
pressible flow constrains the mean velocity field to be divergence-free, Eq. (4.1). As a laminar or
fully turbulent boundary layer grows, the near-wall flow typically decelerates gradually, 𝜕𝑢∕𝜕𝑥 < 0.
During the transition to turbulence, however, the introduction of coherent transitional structures
rapidly mixes higher-speed fluid toward the wall. This accelerates the near-wall flow in the stream-
wise direction, i.e., 𝜕𝑢∕𝜕𝑥 ≥ 0, as shown in Fig. 4.7(a). To satisfy the continuity constraint,
𝜕𝑣∕𝜕𝑦 ≤ 0 in this near-wall region, Fig. 4.7(b). Given the no-penetration boundary condition that
𝑣 = 0 at the wall, the wall-normal velocity must, therefore, be toward the wall to accommodate
the localized streamwise acceleration. Thus, the mean wall-normal transport of momentum and
heat (temporarily) reverses direction. The impact of this reversal on skin friction and surface heat
transfer is quantified in Fig. 4.6(c). In Figure 4.4 (and Figure 4.2), the contribution of the tur-

bulent flux (and turbulent torque) demonstrates an inflection point (a curvature change) –at about
𝑅𝑒𝛿2 = 380– during the transition. This curvature change corresponds to the streamwise location
where the turbulent enhancement growth weakens that, coincides with the negative contribution
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Figure 4.6: Impact of the mean wall-normal flux to the AMI and MEI analysis. (a) Contour plot
of wall-normal velocity in the 𝑥− 𝑦 plane, and (b) the direct contribution of the mean wall-normal
flux to 𝑆𝑡 and 𝐶𝑓∕2.

of mean wall-normal during the transition as well as the stronger streamwise growth of the BL
thickness.

The other flow feature influencing the turbulence enhancement of surface heat transfer (and skin
friction) is the streamwise growth of the first moment of enthalpy thickness (or angular momentum
thickness). This flow phenomenon has a negative contribution in incompressible BLs away from
flow separation to skin friction, [38], and surface heat flux, see Figs. 4.2 and 4.4. For laminar flows,
the streamwise growth term in AMI and MEI is negative with a decaying magnitude. During the
transition, the negative contribution of the streamwise growth to 𝑆𝑡 (and 𝐶𝑓∕2) grows in magnitude
from 𝑅𝑒𝛿2 = 230 to 𝑅𝑒𝛿2 = 500 (at the peak turbulent flux), partially offsetting the sharp increase
in the turbulent heat flux. Downstream of 𝑅𝑒𝛿2 = 500, when the near-wall streamwise velocity
gradually decelerates in the streamwise direction, the effect of streamwise growth slowly drops.
In Figures 4.8(a,b), contours of the integrands of the streamwise growth for the MEI and AMI
equations are shown, corresponding to a quantitative mapping based on its effect on the surface
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Figure 4.7: (a) Contour plot of the mean wall-normal velocity acceleration in 𝑦, and (b) profiles of
the streamwise velocity and (spatial) streamwise acceleration (𝜕𝑢∕𝜕𝑥) within transitional BL.

flux quantities. During the transition (from 𝑅𝑒𝛿2 ≈ 230 to 𝑅𝑒𝛿2 ≈ 680), a reversed behavior in the
integrand of the streamwise growth is observable near the wall, corresponding to the region where
the near-wall flow accelerates in the streamwise direction, Figure 4.7. Note 𝜕𝑢∕𝜕𝑥 is a crucial
term in the integrands. Therefore, the higher the streamwise acceleration, the greater the negative
contribution of streamwise growth to 𝑆𝑡 (and 𝐶𝑓∕2).

To summarize, in the transitional region, there are several flow aspects involved in a rapid process
to increase the Stanton number (and skin friction coefficient). The dominant effect is simply the
significant increase in momentum and enthalpy transport by rapidly growing instabilities. Other
phenomena of the flow above the wall tend to partially offset the impact of the enhanced transport
on surface flux quantities. Specifically, the mean wall-normal flux and streamwise growth of BL
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Figure 4.8: Contour plots of the integrands of the streamwise growth: (a) in the MEI equation for
𝑆𝑡, (b) in the AMI equation for 𝐶𝑓∕2.

thickness act in a manner to attenuate skin friction and surface heat flux, mitigating the turbulence’s
impact. For the fully turbulent flow, the dominant flow phenomenon generating skin friction and
heat transfer at the wall is the turbulent heat flux, while the other terms involved in Eq. (4.20) have
a relatively small effect, without significant streamwise variation, merely balancing each other.

4.3 Conclusion

The turbulent enhancement of the surface friction and heat transfer is implicit in the classic Kármán
type integral equations for boundary layer (BL) flows. This chapter introduced a new moment of
enthalpy integral (MEI) equation to quantify the impact of various flow phenomena on the Stanton
number of incompressible boundary layer (BL) flows. Analogous to the angular momentum integral
(AMI) equation of Elnahhas & Johnson [38], the MEI equation is developed using the first moment
of the excess enthalpy (or temperature) equation and explicitly quantifies the impact of turbulent
transport on surface heat transfer as an integral of the turbulent heat flux. More generally, the MEI
equation provides a quantifying mapping of the BL flow phenomenon based on how they alter the
surface heat flux. The MEI equation represents a comparison of a turbulent BL with an equivalent
laminar one, which is represented by the first term on the right-hand side. As such, other terms
affecting the surface heat flux are cleanly interpreted as changes relative to the surface heat flux of
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the equivalent laminar BL case.

The use of the AMI and MEI equations as incisive analysis tools was demonstrated on a DNS
database of a transitional and turbulent boundary layer. Through the transition to turbulence, the
rapid growth of the turbulent heat flux is quantitatively mapped to its influence on surface heat
flux. At the same time, the MEI equation reveals how mean wall-normal and streamwise growth
terms are both resisting the turbulence enhancement of the Stanton number. A closer look at the
mean flow reveals how the Reynolds shear stress accelerates the near-wall flow. This phenomenon
results in two effects. First, the streamwise positive acceleration near the wall causes the moment
of enthalpy thickness to grow faster, absorbing more of the turbulent heat flux into a reshaping
of the mean enthalpy (or temperature) profile. Second, the near-wall flow acceleration induces
a negative mean wall-normal velocity to satisfy continuity. This negative wall-normal flux, due
to the mean velocity, temporarily opposes the action of the turbulent heat flux in rearranging the
distribution of the thermal energy in the BL. In a fully turbulent flow, the dominant enhancement
of the Stanton number (and skin friction coefficient) is quantified as the integral of the turbulent
heat (and momentum) flux. In contrast, the contribution of other flow phenomena in the MEI (and
AMI) equation is relatively smaller and asymptote (to our knowledge).

In conclusion, the MEI and AMI equations provide a flexible, intuitive framework for quantita-
tively connecting flow phenomena throughout the BL to their effect on the surface heat flux and
skin friction, respectively. While this analysis tool is demonstrated only for a relatively simple flow
in this chapter, it opens up the possibility of using this approach for many other applications and
purposes in future work. For example, the AMI and MEI equations are suitable for the analysis of
boundary layers subjected to free-stream pressure gradients, and they may be adapted to account
for surface curvature effects. The design and optimization of flow control schemes aiming to de-
crease skin friction, delay transition, or alter surface heat transfer may benefit from the quantitative
nature of the insight provided by the AMI and MEI equations. For future studies, this concept
can be extended to incorporate how different turbulent length scales are responsible for turbulent
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enhancement, connecting turbulence structure with engineering quantities of interest.
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Chapter 5

First-moment Integral Equations for

Boundary Layers with Pressure Gradient

Turbulent boundary layers (BLs) experiencing pressure gradients and separation have been exten-
sively studied due to their prevalence in science and engineering. A thorough understanding of
their intricate physics is crucial for accurately predicting and designing various engineering sys-
tems, such as wing design in the aviation industry. These flows exist in a state of non-equilibrium,
wherein the mean flow and Reynolds-stress tensor profiles do not guarantee a similar behavior
when scaled with the appropriate local velocity and length scales. Under favorable pressure gradi-
ents (FPG), where the streamwise flow accelerates, there is a tendency for re-laminarization. This
phenomenon entails the persistence of turbulence in the outer region but with a passive down-
stream influence on the BL development. Conversely, adverse pressure gradients (APG) stimulate
turbulent structures in the outer layer, leading to higher turbulent production rates due to increased
Reynolds shear stress and dissipation. Generally, the history effects caused by pressure gradients,
whether favorable or adverse, alter the turbulent statistics, predominantly within the logarithmic
and wake regions.
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In turbulent flows, surface curvature and imposed boundary conditions (BCs) can generate pressure
gradients. Examples of the former include flow over an airfoil, while the latter involves simulating
BLs over a flat plate with imposed suction or blowing. The pressure gradient can either acceler-
ate the flow downstream, known as a favorable pressure gradient (FPG) or decelerate it, termed
an adverse pressure gradient (APG). Intense flow acceleration due to FPG can trigger flow re-
laminarization, as discussed by [118]. Conversely, studies by [112] and [164] have suggested a
more pronounced wake region in turbulent BLs under APG compared to those under zero pressure
gradient (ZPG). This observation is linked to the presence of more energetic turbulent structures
within the outer layer of the BL. Moreover, severe APG can lead to more complex conditions,
specifically flow separation, under which the BL approximations become invalid.

In this chapter, I reformulate the AMI equation based on inviscid flow solutions and apply it to vari-
ous turbulent BL scenarios, including APGs for flow over flat-plates and airfoils. Also, I will study
a more complex flow over a two-dimensional Gaussian bump to examine how the AMI equation
tackles flows with an alternating pressure gradient.

5.1 Derivation and Interpretation

The derivation of the AMI equation to tackle boundary layers with pressure gradient follows a sim-
ilar approach as section 4.1. The major difference, however, is implementing the inviscid stream-
wise velocity (at the surface) as the outer-scale velocity instead of the edge or free stream velocities.
Such a choice is justified due to the ambiguity of the definition of the edge in non-equilibrium BLs
with pressure gradient. Similar to section 4.1 the derivation begins with the (statistically) two-
dimensional conservation of mass and streamwise momentum equations outside a thin BL. This
“outer flow” state is governed by Euler’s equations

𝜕𝑈𝑖
𝜕𝑥

+
𝜕𝑉𝑖
𝜕𝑦

= 0, (5.1)
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for continuity and

𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑖
𝜕𝑈𝑖
𝜕𝑥

+ 𝑉𝑖
𝜕𝑈𝑖
𝜕𝑦

= −𝑑𝑃
𝑑𝑥

, (5.2)

for 𝑥−momentum. In this study, we adopt a common notation where 𝑥 and 𝑦 denote the wall-
tangential (or streamwise) and wall-normal directions, respectively, whereas 𝜉 represents the 𝑥−axis
in the Cartesian coordinate system. Furthermore, 𝑈𝑖 and 𝑉𝑖 represent the (inviscid) velocities cor-
responding to the streamwise (𝑥) and wall-normal (𝑦) directions, respectively, and 𝑃 denotes the
outer flow pressure. It’s worth noting that, for the sake of simplicity, we neglect the explicit curva-
ture effects within the scope of this study. The outer flow does not see to the no-slip, no-penetration
BCs. A zero vorticity BC thus can be applied at the wall for the outer flow, resulting in a more gen-
eralized form allowing non-zero vorticity in the free-stream, represented as 𝜕𝑈𝑖∕𝜕𝑦 = 𝜕𝑉𝑖∕𝜕𝑥−Ω.
However, in many cases of interest, such as inflow, outflow, or far-field conditions, these boundary
conditions do not introduce any vorticity, and the flow is fully irrotational, with Ω = 0. Addition-
ally, it is essential to note that in the outer layer, we assume there is no Reynolds stress, implying
no turbulence above the boundary layer. Although beyond the scope of this work, this assumption
could be relaxed to handle more complex geometries, such as a turbulent shear layer impinging on
a boundary layer.

Inside the BL, the Reynolds-Averaged Navier-Stokes (RANS) equations describe the flow. Using
lowercase letters, the continuity and 𝑥−momentum equations are expressed as

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (5.3)

and

𝜕𝑢
𝜕𝑡

+ 𝑢𝜕𝑢
𝜕𝑥

+ 𝑣𝜕𝑢
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+ 𝜈
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

− 𝜕𝑢′𝑢′
𝜕𝑥

− 𝜕𝑢′𝑣′
𝜕𝑦

. (5.4)

In these equations, 𝜈 denotes the fluid kinematic viscosity, 𝑢 and 𝑣 represent the mean streamwise

82



and wall-normal velocities, respectively, and 𝑝 is the mean pressure.

By subtracting the 𝑥−momentum equation inside the BL, Eq. 5.4, from that of the outer flow,
Eq. 5.2, and utilizing the continuity equation, we derive a general equation for the streamwise
momentum deficit

𝜕
[

(𝑈𝑖 − 𝑢)𝑢
]

𝜕𝑥
+
𝜕
[

(𝑈𝑖 − 𝑢)𝑣
]

𝜕𝑦
+ (𝑈𝑖 − 𝑢)

𝜕𝑈𝑖
𝜕𝑥

+ (𝑉𝑖 − 𝑣)
𝜕𝑈𝑖
𝜕𝑦

+ 𝜈 𝜕
2𝑢
𝜕𝑦2

− 𝜕𝑢′𝑣′
𝜕𝑦

+ 𝐼𝑀 = 0, (5.5)

where the unsteady acceleration and terms neglected by BL approximation are collected in a single
term

𝐼𝑀 =
𝜕(𝑈𝑖 − 𝑢)

𝜕𝑡
+
𝜕(𝑃 − 𝑝)
𝜕𝑥

+ 𝜈 𝜕
2𝑢
𝜕𝑥2

− 𝜕𝑢′𝑢′
𝜕𝑥

. (5.6)

Multiplying Eq. 5.5 by (𝑦 − 𝓁) yields the first moment of the momentum deficit, where 𝓁(𝑥) rep-
resents the AMI’s length scale, indicating a distance from the wall (shown in Fig. 1.7). Integrating
this expression in the wall-normal direction, ∫ ∞

0 (⋅) d𝑦, and normalizing by 𝓁𝑈 2
𝑖𝑜, we obtain the

AMI equation for the skin friction coefficient

𝐶𝑓
2

= 1
𝑅𝑒𝓁

+ 1
𝓁 ∫

∞

0

−𝑢′𝑣′

𝑈 2
𝑖𝑜

d𝑦+
𝛿𝓁1
𝑈𝑖𝑜

d𝑈𝑖𝑜
d𝑥

+

(

d𝛿𝓁2
d𝑥

+
𝛿𝓁2 − 𝛿2

𝓁
d𝓁
d𝑥

+
2𝛿𝓁2
𝑈𝑖𝑜

d𝑈𝑖𝑜
dx

+
𝛿2,𝑣
𝓁

)

+𝓁. (5.7)

In this form of the AMI equation, we adopt the inviscid velocity at the wall, denoted as 𝑈𝑖𝑜, as the
outer velocity scale for several reasons. Specifically, this choice offers robustness in calculating
the AMI equation’s budget compared to using the edge velocity, which relies on determining the
boundary layer edge in flows with a non-zero pressure gradient. Typically, the inviscid velocity
is determined using potential flow solutions. However, in our work, we employ the local recon-
struction method described in section 3.2, adapted to our numerical dataset detailed in section 5.2.
This technique enables us to reconstruct 𝑈𝑖 at each streamwise location from the given turbulent
statistics with the assumption that the BL’s mean wall-normal velocity and pressure are equivalent
to the inviscid solution. Additionally, the local reconstruction method predicts the BL thickness,
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𝛿99, defined as the distance from the wall where 𝑢∕𝑈𝑖𝑜 = 0.99. Due to the sensitivity of the AMI
equation, a physical prediction of the BL edge is crucial for numerically computing the wall-normal
integrals. Similarly, we can linearly interpolate to compute the edge velocity, 𝑈𝑒, at 𝑦 = 𝛿99. Now,
utilizing the inviscid velocity, we define the skin friction coefficient as

𝐶𝑓 ≡
𝜏𝑤

1
2
𝜌𝑈 2

𝑖𝑜

, (5.8)

where 𝜏𝑤 is the wall shear stress, and 𝜌 is the fluid’s density. On the right-hand side of Eq. 5.7,
𝑅𝑒𝓁 = 𝑈𝑖𝑜𝓁∕𝜈 represents the Reynolds number based on the AMI’s length scale, 𝓁. 𝛿𝓁1 and 𝛿𝓁2
denote the angular displacement and momentum thicknesses, respectively, defined as

𝛿𝓁1 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

)

(

𝑈𝑖 − 𝑢
𝑈𝑖𝑜

)

d𝑦, & 𝛿𝓁2 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

) 𝑢
𝑈𝑖

(

𝑈𝑖 − 𝑢
𝑈𝑖𝑜

)

d𝑦, (5.9)

using the inviscid velocity, which is slightly different from their definition by [38], but similarly, in
the limit of 𝓁 → ∞ the first-moment forms of displacement and momentum thicknesses asymptote
to their classic form 𝛿1 and 𝛿2. Similarly, we define the wall-normal momentum thickness

𝛿2,𝑣 ≡ ∫

∞

0

𝑣
𝑈𝑖

(

𝑈𝑖 − 𝑢
𝑈𝑖𝑜

)

d𝑦, (5.10)

which represents the wall-normal transport of the streamwise momentum deficit. The last term in
Eq. 5.7, 𝓁, denotes the integral of the first moment of 𝐼𝑀 (Eq. 5.5) corresponding to the sum of
the departure from the BL approximations and unsteady acceleration.

As presented in section 1.2.3, the notion of the first moment of momentum can be envisioned as
the angular momentum of a flow, where the streamwise coordinate 𝑥 behaves akin to a time-like
variable. The reference point around which the moment is calculated, the AMI’s length scale is
allowed to vary downstream, i.e., 𝓁 = 𝓁(𝑥). Therefore, Eq. 5.7 acts as the integral conservation
equation for the angular momentum of a BL mean velocity profile, wherein the terms in the right-
hand side of the equation are interpreted as torques redistributing momentum in the wall-normal
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direction. In the following paragraphs, we provide a summary of flow phenomena that appear in
AMI analysis.

The skin friction coefficient and the first term on the right-hand side of Eq. 5.7 stem from the
viscous torque, 𝑇 𝓁

𝑣 , given by

𝑇 𝓁
𝑣 = ∫

∞

0
𝑣(𝑦 − 𝓁)𝜕

2𝑢
𝜕𝑦2

d𝑦 =
𝓁𝜏𝑤
𝜌

− 𝑣𝑈𝑖𝑜 = 𝑈 2
𝑖𝑜𝓁

(𝐶𝑓
2

− 1
𝑅𝑒𝓁

)

. (5.11)

Although the selection of 𝓁 as input of the AMI analysis is arbitrary (e.g., one can choose 𝓁 → ∞

by which Eq. 5.7 reverts to the well-known von Kármán integral equation [76]), a natural choice is
to define 𝓁 as the center of action of viscous force, i.e., 𝑇 𝓁

𝑣 = 0, in a reference laminar flow. Con-
sequently, 1∕𝑅𝑒𝓁 precisely represents the laminar friction experienced by a boundary layer at the
same Reynolds number. The rationale behind this choice is to compare turbulent boundary layers
(with pressure gradient) with a base laminar flow and observe how other flow phenomena, such as
turbulence and pressure gradient, modify (or diminish) the reference laminar flow (as illustrated in
Fig. 1.7). In the scope of this paper, the base laminar flow can be either Blasius or Falkner-Skan
solutions. Such a choice, and setting 𝑇 𝓁

𝑣 = 0, result in 𝓁 = 𝛼𝛿1 (or 𝓁 = 𝛼𝛿2), where 𝛼 is a coeffi-
cient determined numerically by solving the respective self-similar laminar solutions. For instance,
assuming Blasius solution as the base laminar solution

𝐶𝑓
2

= 0.571
𝑅𝑒𝛿1

= 0.221
𝑅𝑒𝛿2

, (5.12)

which leads to 𝓁 = 1.75𝛿1 (or 𝓁 = 4.54𝛿2). Note that the choice between 𝓁 ∼ 𝛿1 or 𝓁 ∼ 𝛿2 yields
an identical interpretation of the AMI budget and laminar friction. Therefore, the user must decide
which form of 𝓁 to use in defining the Reynolds number fixed for the sake of comparison. More
information regarding the choice of 𝓁 was detailed in section 1.2.3.

The second term on the right-hand side of Eq. 5.7 represents the explicit enhancement of the
skin friction coefficient due to turbulence, i.e., Reynolds shear stress. Note that the integral of the
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spatial derivative of Reynolds stress in Eq. 5.5 is naturally zero across the BL, thus not explicitly
influencing the von Kármán integral equation. However, in the first-moment-based AMI equation,
the contribution of Reynolds shear stress acts as a torque, directly augmenting the wall shear stress.
This contribution of Reynolds shear stress in the AMI equation is therefore referred to as turbulent

torque.

The direct impact of the imposed non-zero pressure gradient on the skin friction coefficient is di-
rectly assessed through the AMI analysis by wall-normal integration of the first moment of the edge
velocity acceleration that yields

𝜌
d𝑈𝑖𝑜
d𝑥 ∫

∞

0
(1 − 𝑦∕𝓁)

(

𝑈𝑖 − 𝑢̄
)

d𝑦 = 𝜌𝑈𝑖𝑜
d𝑈𝑖𝑜
d𝑥

𝛿𝓁1 . (5.13)

This term, referred to as pressure gradient, in the AMI equation signifies the direct influence of
the inviscid flow acceleration (or deceleration) on the wall shear stress. For instance, in the case of
an adverse pressure gradient, this flow phenomenon acts as a clockwise torque with respect to 𝓁,
thereby reducing 𝐶𝑓 (Fig. 1.7 (b)). Note the pressure gradient term introduced by [38] is different
from the above definition. Specifically, Ref. [38] defined the pressure gradient torque based on the
free-stream velocity (𝑈∞) as

𝑇∇𝑝,𝓁 = 𝓁𝑈∞
d𝑈∞

d𝑥
(

𝛿𝓁1 + 2𝛿𝓁2
)

. (5.14)

Also, the extra term with 2𝛿𝓁2 , originates from the first moment of the streamwise flux –will be
discussed in the next paragraph– and corresponds to streamwise transport of momentum deficit
rather than pressure gradient. Additionally, using our formulation, pressure gradient mimics the
pressure gradient term in the von Kármán equation. Also, analogous to the classic definition of
the non-equilibrium Clauser parameter, 𝛽, which measures the relative contribution of a pressure
gradient to the transport of the momentum deficit (normalized by the wall shear stress), we define
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the AMI-based Clauser parameter as:

𝛽𝓁 = −𝜌𝑈𝑖𝑜
d𝑈𝑖𝑜
d𝑥

𝛿𝓁1
𝜏𝑤
, (5.15)

which differs from the definition of 𝛽 in this work by employing 𝛿𝓁1 instead of 𝛿1. In the next sections,
we employ 𝛽𝓁 and compare it with 𝛽 as a measurement of the strength of pressure gradient to study
the pressure gradient history effects on turbulent statistics.

The fourth term on the right-hand side of the AMI equation arises from the integration of the first
moment of the collective streamwise and mean wall-normal fluxes. This term, known as the mean

flux (or total mean flux), encompasses two distinct mechanisms: 1) the rate of streamwise growth
of the angular momentum thickness relative to the growth rate of 𝓁, and 2) the redistribution of
angular momentum via mean wall-normal flow. Ref. [82] noted that this flow phenomenon par-
tially counterbalances the substantial growth of turbulent torque during the transition to turbulence,
serving as a resistance to non-equilibrium.

The last term on the right-hand side of the AMI equation represents the combined effect of unsteady
acceleration and terms that are typically neglected by BL approximations. The unsteady accelera-
tion is zero in statistically steady flows, such as the BL around an airplane wing in cruise conditions.
In addition, at high Reynolds numbers and away from the separation point, the deviation from the
BL approximation is minimal, making these negligible terms insignificant for the AMI analysis.

5.2 Dataset and Numerical Techniques

We consider several high-fidelity numerical simulations of incompressible turbulent BLs with non-
zero pressure gradients, including BL over flat-plates, wing airfoils, and a two-dimensional Gaus-
sian bump. The flow configuration of each turbulent dataset is detailed in table 5.1. As discussed
in section 5.1, we derive the AMI equation, Eq. 5.7, for BLs in tangential-normal coordination
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Label ID Color Data type Reynolds number 𝑅𝑒 Clauser parameter 𝛽
Wing WRLES 𝑅𝑒𝑐 = 400, 000 0 − 40.78
Bump DNS 𝑅𝑒𝐿 = 1, 000, 000 0 − 38.91
𝛽1 WRLES 𝑅𝑒𝛿𝑜1 = 450 0 − 1.18

m13 WRLES 𝑅𝑒𝛿𝑜1 = 450 0 − 1.7
𝛽2 WRLES 𝑅𝑒𝛿𝑜1 = 450 0 − 2.31

m16 WRLES 𝑅𝑒𝛿𝑜1 = 450 0 − 2.95
m18 WRLES 𝑅𝑒𝛿𝑜1 = 450 0 − 4.90
ZPG DNS 𝑅𝑒𝛿𝑜1 = 454 ∼ 0

Table 5.1: Turbulent BL datasets. Three types of BLs are examined: flow over an airfoil, a Gaussian
bump, and a flat-plate. For flat-plates, including ZPG, the reference Reynolds number is computed
based on the displacement thickness at the inlet, 𝛿𝑜1. The reported values of 𝛽 are associated with
the APG region 𝑅𝑒𝛿1 ≤ 6500.

system, assuming the explicit curvature effects are insignificant –an assumption that is valid for the
Wing and Bump datasets [162, 7, 5]. Therefore, for simplicity, in all cases, including the flat-plates,
𝑥 and 𝑦 denote the wall-tangential and wall-normal directions, respectively.

5.2.1 Wing dataset

The datasets for the Wing simulations correspond to the suction side of the NACA-4412 airfoil
(Fig. 5.1) at an angle of attack of 5◦ [5]. Referred to as the Wing case, the Reynolds number based
on the chord length (𝑐) is 𝑅𝑒𝑐 = 𝑈∞𝑐∕𝜈 = 400, 000, where 𝑈∞ denotes the free-stream velocity.
The flow experiences deceleration in the streamwise direction (adverse pressure gradient) due to
surface curvature, resulting in Clauser parameter values ranging between 0 < 𝛽 < 40 along the
chord length 𝜉∕𝑐 < 0.95. It is worth noting that the reported values of 𝛽 slightly differ from Ref.
[5] due to the use of inviscid velocity as the velocity scale for defining

𝛽 = −𝜌𝑈𝑖𝑜
d𝑈𝑖𝑜
d𝑥

𝛿1
𝜏𝑤
, (5.16)
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y x

Figure 5.1: The suction side of NACA-4412; the region of interest in this study spans from
𝜉∕𝑐 = 0.2 to 𝜉∕𝑐 = 0.9. The solid and dashed blue lines denote the displacement and momen-
tum thicknesses, respectively. The red arrows represent the (local) tangent-normal coordination
system represented by 𝑥 − 𝑦.

which differs from Eq. 1.2. Figure 5.2 (a) illustrates the shape factor for the Wing data under
adverse pressure gradient (APG); as expected, the shape factor increases monotonically due to the
APG effect, leading to boundary layer thickening. The Clauser parameter 𝛽 is depicted with respect
to 𝑅𝑒𝜏 in Figure 5.2 (b). It’s noteworthy that 𝑅𝑒𝜏 exhibits a reversal trend: typically, 𝑅𝑒𝜏 increases
downstream in boundary layers, as in zero pressure gradient (ZPG) boundary layers; however, for
the flow over the airfoil, 𝑅𝑒𝜏 shows an increasing trend followed by a decreasing behavior at higher
𝛽. This is because the friction Reynolds number 𝑅𝑒𝜏 , which represents the ratio between the outer
region length scale, 𝛿 (or 𝛿99), and the viscous length scale 𝛿𝜈, decreases due to the influence of
severe APG.

The Wing dataset was simulated by well-resolved LES on the open-source nek-5000 solver, which
operates based on the spectral-element method developed by Ref. [127]. The LES filtering tech-
nique follows the approximate deconvolution relaxation-term (ADM-RT) sub-grid model devel-
oped by Ref. [141]. A RANS simulation provides boundary conditions at the inlet, upper, and
lower sides, while a local-stress outflow condition is utilized for the rear side of the domain (Ref.
[35]). The mesh is generated based on the wall-shear stress from RANS simulations to ensure a
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(a) (b)

Limit of         = 0.9

Limit of           = 6500

Figure 5.2: Wing dataset; the BL shape factor with respect to 𝜉 (a), and the Clasuer parameter with
respect to friction Reynolds number 𝑅𝑒𝜏 (b).

resolution of approximately (Δ𝜉+,Δ𝜂+,Δ𝑧+) < (18, 0.64, 11.9) in the turbulent region of the do-
main, where superscript (+) denotes wall-units (normalized by 𝛿𝜈 = 𝜈∕𝑢𝜏 , where 𝑢𝜏 =

√

𝜏𝑤∕𝜌 is
the friction velocity) and 𝑧 represents the spanwise direction. For further information regarding the
numerical setup and its validity, please visit Refs. [163, 6, 5].

5.2.2 Bump dataset

The bump dataset corresponds to a DNS of a turbulent BL over a two-dimensional Gaussian bump,
as investigated by Ref. [7]. The surface of the bump is defined by the equation 𝜂(𝜉) = ℎ exp

(

−(𝜉∕𝜉0)2
),

where 𝜂 represents the 𝑦−axis in the Cartesian coordinate system. This geometry, illustrated in
Fig. 5.7 (bottom), is designed to replicate the three-dimensional Boeing company bump flow (Ref.
[146]) experimentally studied by Ref. [175]. In the bump’s surface relation, ℎ = 0.085𝐿 and
𝜉0 = 0.195𝐿 are length parameters describing the bump’s dimensions, with 𝐿 = 0.9144 m repre-
senting the length of the square cross-section of the wind tunnel used in the experimental setup.
The flow is characterized by a reference Reynolds number𝑅𝑒𝐿 = 𝑈∞𝐿∕𝜈 = 1, 000, 000, where the
dimensional free-stream velocity𝑈∞ = 16.4 m∕s, matching standard sea level conditions, resulting
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in an incompressible flow with Mach number 𝑀 = 0.045. This flow experiences an alternating
pressure gradient due to surface curvature, resulting in a weak APG region upstream, followed by
a strong FPG behind the bump’s peak at 𝜉∕𝐿 = 0. A severe APG causes flow separation down-
stream of the bump’s peak (𝛽 → ∞) about 𝜉∕𝐿 = 0.2, though the BL re-attaches and continues
developing at 𝜉∕𝐿 = 0.4 under a weak FPG. Figure 5.3 exhibits the BL’s shape factor, e.g., the
ratio of 𝛿1∕𝛿2, with respect to 𝜉. A natural impact of FPG is reducing the shape factor, as is evident
upstream of the bump’s peak. A decreasing shape factor indicates a thinner boundary layer with a
sharper velocity profile. APG, on the other hand, increases the ratio between the displacement and
momentum thicknesses, attributed to BL thickening.

weak

APG

strong

FPG

strong

APG

weak

FPG

Figure 5.3: Boundary layer shape factor, 𝛿1∕𝛿2, in the bump flow with respect to 𝜉. Flow separation
causes a substantial increase in the shape factor about 𝜉∕𝐿 = 0.25.

The DNS simulation was performed using the stabilized finite element method by applying trilinear
hexahedral elements and second-order accurate, implicit time integration following Refs. [173, 69].
No-slip no-penetration BC is imposed at the bump’s surface, while the top BC (at 𝜂∕𝐿 = 0.5)

was modeled as an inviscid wall offset by the RANS predicted displacement thickness described
above with zero transpiration (zero velocity component normal to the surface) and zero traction.
The inflow is generated by the synthetic turbulence generator (STG) (Ref. [143]). Finally, for the
outflow, weak enforcement of zero pressure was applied along with zero traction. The computa-
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tional grid used for the DNS was structured with a total of 554 million points, which yields spacing
(Δ𝜉+,Δ𝜂+,Δ𝑧+) < (15, 10, 8) with the minimum Δ𝜂+ = 0.1 near the surface, in wall units. The
reader is suggested to visit [7] to obtain more information about the numerical setup and validity
of the simulation.

5.2.3 Flat-plate dataset

For comparison purposes, we investigate a series of turbulent BLs developing over a flat-plate.
These simulations are conducted using well-resolved LES techniques, employing the ADM-RT
sub-grid model, similar to the approach used for the airfoil simulations. The simulations are exe-
cuted using the SIMSON code, a pseudo-spectral-based solver developed by [22]. Specifically, we
examine the ZPG case studied by Ref. [37] and APG cases investigated by Refs. [13, 14], both with
similar numerical setup that results in spatial resolution (Δ𝑥+,Δ𝑦+,Δ𝑧+) = (20, 0.2−30, 10) in wall
units. However, for the flat-plates with APG, the pressure gradient was imposed through the varia-
tion of the free-stream velocity at the top of the numerical domain, following the near-equilibrium
definition by Ref. [155] using a power-law function for the edge velocity. It is important to note that
in the context of flat-plate simulations, the wall-tangential and wall-normal coordinates are aligned
with the Cartesian coordinate system, and hence no mapping is required.

Figures 5.4 (a, b) show the skin friction coefficient with respect to the streamwise position and the
Clauser parameter with respect to𝑅𝑒𝜏 , respectively. For all the APG flat-plates, 𝐶𝑓 is always lower
than the ZPG case. This is because of the BL thickening caused by flow deceleration. According to
Fig. 5.4 (b), in contrast to the trend of𝑅𝑒𝜏 for the Wing case (shown in Fig. 5.2), for the flat-plates,
𝑅𝑒𝜏 monotonically increases under APG. The plots of 𝛽 also exhibit that 𝑚18 yields the strongest
APG effect, with the maximum hardly reaching 𝛽 = 5, while 𝛽1 is the weakest case. Moreover,
despite the region upstream (that is still under the effect of inflow conditions), the 𝛽1 and 𝛽2 cases
have approximately constant 𝛽 values, reading values of one and two, respectively. Therefore,
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(a) (b)

Figure 5.4: Flat-plate dataset; plots of the skin friction coefficient with respect to 𝑥 (a), and the
Clauser parameter with respect to 𝑅𝑒𝜏 (b).

according to the definition of equilibrium discussed in section 1.2.2, they are in semi-equilibrium
condition.

5.2.4 Numerical techniques for AMI analysis

Because the AMI analysis is established in curvilinear coordination, for the Wing and Bump flows,
an appropriate tensor rotation is employed to map the flow statistics from the Cartesian frame of
reference to local orthogonal directions. Additionally, as detailed in Section 5.1, we utilize the
methodology developed by Ref. [53] to quantify the locally reconstructed inviscid velocity at each
streamwise position and predict the location of the BL edge based on 𝛿99. To check the robustness,
especially in the Bump case with the most substantial curvature, we examine the normal rays to the
surface (in 𝑦−direction) at each streamwise location, confirming they neither intersect within the
BL nor near the BL edge. Figures 5.5 (a, b) illustrate 𝑈𝑖 by dashed lines, alongside 𝑢 normalized
by 𝑈∞, at three distinct streamwise locations for Wing and Bump, respectively. Notably, there is
a remarkable agreement between 𝑈𝑖 and 𝑢 profiles within the outer flow, marked beyond the black
symbols that indicate the prediction of 𝛿99. For example, the three streamwise locations in the Bump
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(a) (b)

Figure 5.5: Calculation of the locally reconstructed inviscid velocity, 𝑈𝑖, along the wall-normal
direction for (a) Wing and (b) Bump datasets. The solid and dashed lines represent the mean
streamwise and inviscid velocity profiles normalized by the free-stream velocity, 𝑈∞. The solid
black lines denote the location of 𝛿99 computed by the local reconstruction method.

flow are associated with the region under strong FPG 𝜉∕𝐿 = −0.12, strong APG 𝜉∕𝐿 = 0.15, and
very close to the separation point 𝜉∕𝐿 = 0.22. These plots confirm that the local reconstruction
method is capable of quantifying 𝑈𝑖, 𝛿99, and the edge velocity accurately. It is important to note
that the trends observed in the computed𝑈𝑖𝑜 and predicted𝑈𝑒 are similar (see Fig. A.3 in Appendix
A). However, when using 𝑈𝑖𝑜, we noticed a smaller error in the budget of the AMI equation defined
as

𝜖(𝑥) =
|𝐶𝑓 − 2𝑅𝐻𝑆|

𝐶𝑓
, (5.17)

for both the Wing and Bump cases. Here, 𝑅𝐻𝑆 represents the sum of all terms on the right-hand
side of Eq. 5.7.

To compute the streamwise derivatives of flow statistics required for closing the AMI budget, we
utilize the second-order central finite difference scheme, excluding the end grid points. However,
it’s worth noting that computing these derivatives can amplify natural turbulent noise, which tends
to increase 𝜖 (Refs. [38, 81]). Furthermore, for the numerical wall-normal integration in the AMI
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analysis, we employ the trapezoidal scheme introduced in 3.2. It is important to recall that the
computation of derivatives and integration is conducted concerning the curvilinear coordinates.

5.3 Results and Analysis

This section applies Eq. 5.7 to the set of turbulent introduced in section 5.2. The aim is to investigate
how non-zero pressure gradients –either adverse or favorable– affect the AMI equation’s budget,
specifically turbulent torque, and consequently, the skin friction coefficient.

Initially, we analyze the AMI equation for the Wing dataset subjected to an adverse pressure gradi-
ent. Subsequently, we delve into a more intricate scenario, such as the flow over a Gaussian bump,
which encounters alternating adverse-favorable pressure gradients. Finally, we narrow our focus
to the region under adverse pressure gradient conditions to explore the upstream history effects on
turbulent statistics.

5.3.1 Flow over airfoil

In this section, we apply the AMI analysis to a series of turbulent BLs over the suction side of
a NACA-4412 airfoil at an angle of attack of 5◦, referred to as the Wing case in table 5.1. The
objective is to assess the accuracy of our methodology in handling BLs subjected to curvature-
induced pressure gradients.

Figure 5.6 presents the budget of the AMI equation (Eq. 5.7) for turbulent BL developing over the
suction side of an airfoil, namely the Wing case described in table 5.1; the top figure shows the
absolute contributions of each flow phenomena, and the bottom figure exhibits the relative (nor-
malized by 𝐶𝑓∕2) contributions. The budget includes the four significant flow phenomena in the
AMI equation, namely laminar friction, turbulent torque, pressure gradient, and mean flux. The
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unsteady effects and terms neglected by the BL approximation, referred to as negligible terms, are
not included. This omission is justified by their limited contribution to the skin friction coefficient
away from separation (see Appendix A. The negligible terms are expected to become more sig-
nificant as the flow approaches the separation point, which does not occur in the Wing case. In
this case, we opt for 𝓁 = 4.54𝛿2, a value derived from the Blasius solution based on momentum
thickness. This selection results in a streamwise-averaged 𝜖 of less than 6%, underscoring the va-
lidity and accuracy of the AMI methodology for BL undergoing weak-to-moderate APG. Similar
observations were made in ZPG transitional and turbulent incompressible BLs [38, 82], as well
as in high-speed ZPG turbulent BLs [81]. In all these cases, the primary source of error was the
computation of streamwise derivatives, 𝜕(⋅)∕𝜕𝑥, in the AMI equation. It is worth noting that this
error would be further diminished with additional (time) averaging. Compared with ZPG turbulent
BLs, APG turbulent BLs exhibit a faster reduction of skin friction coefficient (shown with a black
line in Fig. 5.6 (top)) as the flow develops downstream. This trend quantitatively matches with the
budget of the right-hand side of the AMI equation, Eq. 5.7 (shown in Fig. A.1).

As depicted in Fig. 5.6, the negative contribution of pressure gradient to𝐶𝑓∕2 consistently strength-
ens due to the curvature of the airfoil, especially, its growth ramps up as the flow approaches the
trailing edge. The normalized contribution of pressure gradient (Fig. 5.6 bottom) exhibits a range
from approximately 0% upstream to more than −600%, highlighting the profound impact of pres-
sure gradient on the transport of momentum deficit and, consequently, wall-shear stress. Although
pressure gradient ramps up rapidly, it does not exert a significant impact on laminar friction; this
flow phenomenon – with about 4% contribution to 𝐶𝑓∕2 (Fig. 5.6 (bottom)) – gradually diminishes
downstream in fully turbulent BLs, exhibiting behavior similar to ZPG turbulent BLs. Therefore,
it is reasonable to argue that laminar friction shall be neglected from the AMI budget for turbulent
BLs without any flow control scheme.

In contrast to the modest impact of laminar friction on wall shear stress, the turbulence-induced
enhancement of surface friction through turbulent torque in the AMI equation is substantial. Its
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Figure 5.6: The AMI budget with respect to the chord length, 𝜉∕𝑐, for the Wing case (table 5.1);
(a) the absolute budget, and (b) the relative budget normalized by 𝐶𝑓∕2.

relative contribution (normalized by 𝐶𝑓∕2) is approximately 100% within the range of 0.2 < 𝜉∕𝑐 <
0.4, where 𝛽 < 2 (weak-to-moderate pressure gradient); an observation analogous to ZPG turbulent
BLs [82]. Generally, the upstream-to-downstream variation of turbulent torque, when 𝓁 is obtained
from the Blasius solution, is relatively small. This difference amounts to approximately ∼ 13%

from 𝜉∕𝑐 = 0.2 to 𝜉∕𝑐 = 0.9, while the change in pressure gradient is significant (from 𝛽 ≈ 0

to 𝛽 ≈ 20). These observations suggest that turbulent torque is not necessarily correlated with
the strength of adverse pressure gradient. Instead, the author posits that turbulent torque is more
closely correlated with the rate at which APG changes. As the rate of change of APG increases,
turbulent torque becomes more pronounced. A similar observation is documented by [5], where the
FIK identity was utilized to establish a connection between the variation of the so-called turbulent
contribution, denoted by 𝐶𝑇

𝑓 , and the rate of change of 𝛽.
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Since the non-equilibrium caused by pressure gradient ramps up downstream, mean flux is the flow
phenomena in the AMI equation resisting it. The friction enhancement by mean flux, especially,
becomes significant for 𝛽 > 2, where the impact of the pressure gradient (on the transport of mo-
mentum deficit) is two times greater than wall shear stress. In fully-turbulent ZPG incompressible
BLs, mean flux negatively contributes to 𝐶𝑓∕2, while its upstream-to-downstream variation was
reported insignificant in Refs. [38, 82], merely because these flows are in the equilibrium state.
Conversely, in this case, mean flux increases 𝐶𝑓 , partially alleviating the enormous negative con-
tribution of pressure gradient. In fact, the friction enhancement of mean flux exceeds turbulent

torque’s beyond 𝜉∕𝑐 = 0.85 (𝛽 > 10), becoming the dominant contributor to 𝐶𝑓 .

5.3.2 Flow over Gaussian bump

In this section, we extend the application of the AMI equation to include a DNS dataset of flow
over a two-dimensional Gaussian bump, referred to as the Bump case in table 5.1 (Ref. [7]). This
presents a more complex scenario due to the alternate adverse and favorable pressure gradients
induced by the bump’s surface curvature. Specifically, the boundary layer experiences a significant
FPG from 𝜉∕𝐿 = −0.29 to the peak of the bump at 𝜉∕𝐿 = 0, followed by an extreme APG
downstream, leading to boundary layer separation where 𝜏𝑤 ≤ 0.

Within the streamwise range of interest in this paper, the averaged error (𝜖) is maintained at 𝜖 <
10%. Downstream of the bump’s peak, characterized by an adverse pressure gradient (𝜉∕𝐿 ≤

0.18), the averaged 𝜖 further diminishes to approximately 6%, followed by a noticeable escalation
approaching the separation region; plot of𝐶𝑓∕2 compared with the sum of the right-hand side of the
AMI equation is presented in Fig. A.2. The author attributes this increase primarily to inadequate
(time) averaging, a consequence of the unstable separation bubble. As discussed in section 5.2.4,
calculating the streamwise derivatives for the AMI analysis that amplifies the inherent turbulence
noise is another source of error. Therefore, improved (time) averaging techniques are expected to
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enhance the accuracy of these derivative computations, ultimately resulting in reduced errors within
the AMI budget.

According to Fig. 5.7 (bottom), the bump flow undergoes alternating adverse and favorable pres-
sure gradients due to the geometry of the surface; far upstream, the BL encounters weak APG
followed by relatively strong FPG on the left side of the bump’s peak. From 0 ≤ 𝜉∕𝑐 ≤ 0.4 the
BL experiences vigorous APG, leading to flow separation at ∼ 𝜉∕𝑐 = 0.2. The AMI budget, with
𝓁 = 4.54𝛿2 (derived from the Blasius solution), is illustrated in the middle panel of figure 5.7 for
the four primary flow phenomena on the right-hand side of the AMI equation: laminar friction,
turbulent torque, pressure gradient, and mean flux. Note that in figure 5.7, the unsteady effects and
terms neglected by BL approximations, i.e., negligible terms, are not included (visit Appendix A
for the entire AMI budget). The maximum contribution of these terms is determined to be 8% only
within the separation region, while before separation, the contribution is less than 2%.

Within the FPG region, the skin friction coefficient initially increases, reaching a peak at 𝜉∕𝐿 =

−0.14. According to the AMI budget, this enhancement is primarily attributed to the (simultaneous)
increase of turbulent torque upstream of 𝜉∕𝐿 ≈ −0.2. This increase can be attributed to both the
upstream weak APG and the early effects of FPG (before flow undergoes re-laminarization). The
turbulent torque’s enhancement occurs while the contributions from pressure gradient and mean

flux mostly offset each other. Pressure gradient positively influences𝐶𝑓 , aligning with the curvature
of the bump. Conversely, mean flux opposes the friction enhancement by FPG and turbulence. This
negative contribution becomes more significant downstream of 𝜉∕𝐿 = −0.14, resisting the rise in
laminar friction because of the phenomenon of so-called re-laminarization caused by the effect of
FPG.

Given the moderate Reynolds number of the flow, re-laminarization is anticipated, yet RANS tur-
bulent models have failed to predict it (Ref. [7]); however, the AMI analysis quantitatively captures
this phenomenon showing the feasibility of implementing the AMI approach – or integral methods
in general – to develop turbulent models to predict re-laminarization. During this so-called re-
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Figure 5.7: The AMI budget (middle) for BL over a Gaussian bump with respect to the normalized
streamwise location, 𝜉∕𝐿; dotted and solid black lines in the bottom panel represent the AMI length
scale 𝓁 and BL thickness 𝛿99, respectively. The top panel exhibits turbulent torque within the
different regions of BL; 𝑦∗ = 𝑦∕𝛿99 and 𝑦+ denote the wall-normal position normalized by outer
and inner scales, respectively. Symbol ∗ represents three streamwise locations where the turbulent
statistics are compared in figure 5.8.

laminarization process, laminar friction increases from 10% to over 17% of the local skin friction
coefficient, concurrently accompanied by a significant decline in turbulent torque from approxi-
mately 150% to 55% of the skin friction coefficient. Interestingly, downstream of the maximum
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wall friction (at 𝜉∕𝐿 ≈ −0.1), the reduction of turbulent torque surpasses the decline in 𝐶𝑓∕2,
highlighting the influence of FPG-induced re-laminarization.

To further explore re-laminarization, the absolute and outer-scaled profiles of Reynolds shear stress
and turbulent kinetic energy, 𝑘 = 1

2

(

𝑢′𝑢′ + 𝑣′𝑣′ +𝑤′𝑤′
)

, are presented in figure 5.8; these profiles
are plotted at three distinct streamwise locations: 𝜉∕𝐿 = −0.2, 𝜉∕𝐿 = −0.14, and 𝜉∕𝐿 = −0.01

(denoted by ∗ in the middle panel of Fig. 5.7). As depicted in Fig. 5.8 (a), −𝑢′𝑣′ is more pro-
nounced at 𝜉∕𝐿 = −0.2, where turbulent torque peaks. However, as the re-laminarization effect
accumulates downstream, the Reynolds shear stress is shifted towards the surface, with its max-
imum approaching the wall within the buffer region. Additionally, the integral (or total) shear
generated by turbulence weakens downstream, where the re-laminarization effect accumulates at
𝜉∕𝐿 = −0.01. A similar trend is also observed for the outer-scaled profiles of Reynolds shear
stress (Fig. 5.8 (b)), showing the increase of denominator, 𝑈𝑖𝑜, downstream is inadequate to re-
verse the order of profiles. The author attributes the downstream weakening of Reynolds shear
stress caused by re-laminarization to the wall constraint on the turbulent shear. As the turbulent
shear moves towards the surface, the wall further suppresses the production of 𝑣′, and thus 𝑢′𝑣′.
Therefore, although the reduction of turbulent torque partially corresponds to the increase in its
denominator 𝑈 2

𝑖𝑜 (explicit effect of FPG), Reynolds shear stress is also weaker and less efficient due
to re-laminarization as it is pushed toward the wall.

Surprisingly, according to the absolute profile of turbulent kinetic energy (Fig. 5.8 (c)), 𝑘 is
strongest at 𝜉∕𝐿 = −0.01, whereas that is the location turbulent torque is minimum, and re-
laminarization is accumulated. Moreover, re-laminarization does not shift where the maximum
turbulent kinetic energy occurs, i.e., within the buffer layer. These findings elucidate that the phe-
nomenon commonly referred to as re-laminarization is more akin to turbulence deactivation, where
turbulence becomes one-dimensional, i.e., 𝑢′𝑢′ increases, but streamwise and wall-normal veloc-
ities are less correlated. This process is also referred to as “frozen turbulence” since the higher
turbulent intensity (𝑘) is frozen and does not contribute to the turbulent transport of momentum via
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Figure 5.8: Reynolds shear stress and turbulent kinetic energy profiles in the bump flow with respect
to 𝑦+: absolute (a, c) and outer-scaled (normalized by𝑈 2

𝑖𝑜) (b, d). In (c, d), shaded dashed and dotted
lines are associated with 𝑢′𝑢′ and 𝑣′𝑣′ +𝑤′𝑤′, respectively.

Reynolds shear stress [117, 119]. The one-dimensionalization of turbulence is evident from the sub-
stantial enhancement in the profiles of 𝑢′𝑢′ (shaded dashed lines in Fig. 5.8 (c)) from 𝜉∕𝐿 = −0.2

to 𝜉∕𝐿 = −0.01, while the sum of 𝑣′𝑣′ and 𝑤′𝑤′ weakens downstream.

The impact of re-laminarization on turbulence is further examined in Fig. 5.7 (top), illustrating the
contribution of turbulent torque within the inner layer, logarithmic region, and the outer layer of the
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BL. The boundaries of these three regions are defined based on the approximation of [133] for wall-
bounded flows. Within the range of applied FPG and re-laminarization, turbulent torque diminishes
in both the logarithmic layer and outer region, with a negligible alteration in the inner layer. The
spatial reduction rate in the outer layer mirrors that of the total turbulent torque; nevertheless, this
rate is comparatively smaller for the logarithmic region and exhibits an inverse correlation with the
distance from the wall. Consequently, based on the AMI analysis for moderate to high Reynolds
numbers, we deduce that the direct influence of FPG and re-laminarization is more pronounced on
the logarithmic region and the outer layer of the BL. Assuming the impact of FPG generated by
surface curvature similar to a turbulent control scheme, this observation aligns with findings from
flow control studies in Ref. [23] & [21], indicating that as the Reynolds number increases, targeting
the near-wall turbulence becomes less crucial for reducing the wall-shear stress since the foot-print
of the logarithmic region and the outer layer becomes more profound on the skin friction.

Just upstream of the bump’s peak, while the flow is still experiencing FPG and re-laminarization,
pressure gradient and mean flux reach an equilibrium state, exhibiting negligible variations with
the streamwise direction. However, this equilibrium is disrupted immediately downstream of the
peak, where the flow encounters an intense adverse pressure gradient (APG). Re-laminarization un-
dergoes a reversal, marked by a pseudo-re-transition to turbulence, during which turbulent torque

increases at a slightly higher rate than the rise of 𝐶𝑓∕2 (see Fig. 5.7 middle). This phenomenon
is reminiscent of observations in prior studies such as [38] and [82] for transitional ZPG BLs. Ex-
amining the top panel of Figure 5.7, it is evident that the boost in turbulent torque is not confined
solely to the logarithmic region and the outer layer; the inner layer’s Reynolds shear stress also
experiences a significant increase. Notably, during the re-transition, the contribution of the loga-
rithmic region to turbulent torque surpasses that of the outer layer, becoming the dominant region.
The author attributes this observation to the previously discussed stronger weakening effect of FPG
on the outer layer.

A noteworthy difference between transitional ZPG BLs and APG re-transition lies in the role of
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mean flux. Under the influence of APG, this flow phenomenon does not resist the turbulent torque.
On the other hand, it significantly contributes to 𝐶𝑓 to counteract the substantial negative contri-
bution of pressure gradient. Despite the friction enhancements by both turbulent torque and mean

flux, they prove insufficient, as APG forces the flow to separate at approximately 𝜉∕𝐿 = 0.2. In
the separated flow region, where 𝐶𝑓 ≤ 0, statistics are noisy due to an unstable separation bubble
–characterized by several frequencies according to Refs. [144, 116]–, and the BL approximations
are naturally invalidated. It is essential to note that the AMI equation, obtained solely from conser-
vation equations, does not depend on the validity of the boundary layer approximation. Therefore,
accurate results from AMI can be expected with sufficient (time) averaging, even for separated
flows. In the top panel of Figure 5.7, the plots of turbulent torque within the logarithmic region and
the outer layer are omitted. This exclusion is due to the undetermined nature of 𝑦+ as 𝜏𝑤 → 0 in the
separated flow region. However, within the inner layer, the contribution of turbulent torque remains
unchanged where the flow is (weakly) detached (or separated). This observation suggests that the
primary impact of separation is limited in the logarithmic region and the outer layer, while the inner
layer is weakly impacted by APG and separation; Finally, further downstream of the bump surface
(𝜉∕𝐿 ≥ 0.4), weak FPG causes the flow to reattach. Although the flow is significantly influenced by
the upstream alternating pressure gradient, as the pressure gradient approaches zero downstream,
the boundary layer behavior resembles that of fully turbulent ZPGBL. Turbulent torque begins re-
ducing downstream, and mean flux roughly converges to a negative value.

This section presented the application of the AMI analysis for investigating a complex non-equilibrium
BL over a two-dimensional Gaussian bump. The flow undergoes alternating adverse and favorable
pressure gradients, influencing the turbulence structures. Notably, the strong FPG upstream of the
bump’s peak induces re-laminarization, a phenomenon effectively captured and quantified by the
AMI analysis. The AMI analysis in this section revealed the enhancement of laminar friction oc-
curring simultaneously with a significant reduction in turbulent torque. In the subsequent sections
of this paper, our attention is limited to the region featuring moderate-to-strong APG, 𝛽 ≤ 40.
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5.3.3 Adverse pressure gradient & history effects

In the preceding sections, we delved into the application of the AMI equation, Eq. 5.7, for turbu-
lent BLs over an airfoil (Wing case) and a two-dimensional Gaussian bump (Bump case). Both
scenarios involve a non-zero pressure gradient due to surface curvature. In this section, we limit
our focus to BLs encountering APG. We undertake a comparative analysis, contrasting the AMI
budget and statistics of the Wing and Bump cases with a set of flat-plates that experience weak-to-
moderate APG, as detailed in the dataset provided in table 5.1. For our analysis, we opt for an AMI
length scale, 𝓁, determined by the displacement thickness derived from the laminar Blasius solu-
tion, i.e., 𝓁 = 1.75𝛿1. This selection is justified by considering the influence of pressure gradient
and adhering to the classical definition of the non-equilibrium Clauser parameter, both of which
are functions of 𝛿1. Additionally, we constrain our investigation to the streamwise positions corre-
sponding to 1400 ≤ 𝑅𝑒𝛿1 ≤ 6500, where 𝑅𝑒𝛿1 = 𝑈𝑖𝑜𝛿1∕𝜈. Within this refined range, 0 ≤ 𝛽 < 40

and 0 ≤ 𝛽𝓁 < 20, as illustrated in Figs. 5.11 (a, b). For the Bump case, specifically, due to the
alternating adverse and favorable pressure gradients, we limit our analysis to the right-hand side of
the bump’s peak from 𝜉∕𝐿 ≈ 0 to 𝜉∕𝐿 ≈ 0.15, upstream of the separation bubble.

The primary components of the AMI equation are illustrated in figures 5.9 within the specified range
of 1400 ≤ 𝑅𝑒𝛿1 ≤ 6500. To facilitate comparison, a ZPG dataset is represented in black. Notably,
laminar friction exhibits consistent behavior across all cases due to the uniform determination of 𝓁
based on the Blasius solution, resulting in a constant AMI coefficient for all instances. In addition,
the variation of 𝛿1 with respect to 𝑅𝑒𝛿1 is also not significantly influenced by the strength of APG,
leading to a close alignment of laminar friction with the ZPG BL.

Despite the relatively modest contribution of laminar friction, it’s noteworthy that turbulent torque

emerges as the predominant flow phenomenon in the AMI budget for all turbulent BLs. Figure 5.9
(b) exhibits the explicit turbulence enhancement of skin friction. Across all flat-plates, as detailed
in table 5.1, the incremental change in turbulent torque from upstream to downstream remains
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modest, with the highest variation at only 8%, associated with case 𝑚18. Notably, for flat-plates
sharing similar base flow and configuration parameters, such as inlet Reynolds number, the trend
and magnitude of turbulent torque exhibit close similarity. For instance, the difference between
cases 𝛽1 and 𝑚18 never exceeds 7%. These observations indicate that the variation in turbulent

torque primarily depends on flow configurations and Reynolds number, while weak-to-moderate
APG has an insignificant effect on the wall-normal integral of (or total) Reynolds shear stress. This
conclusion gains further support from the Wing case, where there is a substantial change in pressure

gradient (as depicted in Fig. 5.9 (c)), ranging from 𝛽 ≈ 0 to 𝛽 ≈ 40. Despite this significant
variation in pressure gradient, the trend of turbulent torque results in an upstream-to-downstream
variation of only 13%.

Additionally, for the Wing case, when turbulent torque is plotted against𝑅𝑒𝛿1 and with 𝓁 = 1.75𝛿1,
a weak increasing trend is observed within the range 1400 ≤ 𝑅𝑒𝛿1 < 2800. This trend, however,
reverses downstream of 𝑅𝑒𝛿1 = 2800 and exhibits a monotonically decreasing behavior. Inter-
estingly, According to Fig. 5.6 in which 𝓁 = 4.54𝛿2, turbulent torque increases downstream of
𝜉∕𝑐 = 0.4, showing an opposite trend from figure 5.9 (b). This opposite trend is attributed to the
choice of 𝓁 and if it is defined based on 𝛿1 or 𝛿2, and thus how the displacement or momentum
thickness responds to APG. Nevertheless, both figures indicate that the trend of turbulent torque

appears to correlate with the curvature of pressure gradient or the rate of change of 𝛽𝓁 not the
strength of APG (absolute value of 𝛽). For example, as illustrated in Figure 5.9 (c), within the
range 1400 ≤ 𝑅𝑒𝛿1 < 2800, the curvature of pressure gradient is concave, indicating a faster rate
of change in the strength of pressure gradient. However, downstream of𝑅𝑒𝛿1 = 2800, the curvature
of pressure gradient becomes convex, aligning with the streamwise positions where the trend of
turbulent torque reverses.

In the Bump case, downstream of its peak where the surface curvature imposes APG, the trend
of turbulent torque is intricate due to the upstream re-laminarization (or turbulence deactivation).
Within the range 1400 ≤ 𝑅𝑒𝛿1 < 2000, turbulent torque experiences a substantial increase of about
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63%. This augmentation primarily results from the so-called re-transition (turbulence re-activation)
process occurring after applying APG. APG thickens the BL and pushes the Reynolds shear stress
away from the surface, a process in contrast to what FPG does during re-laminarization. The en-
hancement of turbulent torque due to the re-transition process is quite similar to was noted in Ref.
[82] for incompressible ZPG transitional BLs. Furthermore, from 𝑅𝑒𝛿1 = 2000 to 𝑅𝑒𝛿1 = 6500,
turbulent torque continues to increase monotonically by approximately 20%. This enhancement
predominantly corresponds to the FPG history effects carried over into the APG region and it seems
to gradually diminishes downstream as the history effects fade. The plots of pressure gradient in
Fig. 5.9 (c) clearly demonstrate the carried-over effect of FPG into the APG region. Notably,
pressure gradient’s contribution to 𝐶𝑓∕2 is positive within the range 1400 ≤ 𝑅𝑒𝛿1 < 2500, de-
spite this region belonging to the right-hand side of the bump’s peak where 𝛽 > 0. These findings
suggest that the AMI equation, specifically the choice of 𝓁, partially captures the FPG history ef-
fects, mostly mirrored in pressure gradient and mean flux. As discussed previously, mean flux is
the term that resists non-equilibrium physics, such as transition and imposed pressure gradient. In
ZPG turbulent boundary layers, this flow phenomenon roughly converges and contributes nega-
tively to 𝐶𝑓 . However, in the bump case, mean flux generates an increasingly negative contribution
from 𝑅𝑒𝛿1 = 1400 to 𝑅𝑒𝛿1 = 2000 to resist the pseudo-re-transition to turbulence (re-activation
of turbulence), a parallel observation to [38, 82] for ZPG transitional boundary layers. Beyond
𝑅𝑒𝛿1 = 2400, where the re-transition process has weakened, and the carried-over FPG history has
partially faded, mean flux begins to mostly compensate the severe negative contribution of pressure

gradient; as APG strengthens, the mean flux’s contribution approaches a positive value, eventu-
ally becomes the dominant contributor to 𝐶𝑓 . A similar phenomenon occurs for the Wing case,
where mean flux initiates from a negative value upstream, matching ZPG BL, yet increases and ap-
proaches a positive value as pressure gradient becomes stronger. For the flat-plates, however, since
the growth of 𝛽 is much smaller than Wing and Bump, mean flux remains a negative quantity and
changes marginally in response to the variation of pressure gradient, similar to ZPG BLs. Note that
the approximate convergence of mean flux is aligned with the definition of semi-equilibrium BLs
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Figure 5.9: The AMI budget within the APG region with respect to 𝑅𝑒𝛿1; contribution of the sub-
stantial flow phenomena impacting 𝐶𝑓∕2: (a) laminar friction, (b) turbulent torque, (c) torque due
to pressure gradient, and (d) torque due to total mean flux. (e) exhibits the contribution to 𝐶𝑓∕2 by
the sum of (c) and (d).
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(𝛽 = constant). Another noteworthy observation in the AMI budget pertains to the summation of
pressure gradient and mean flux. As illustrated in Figure 5.9 (e), for all cases, this combined effect
appears to approach convergence downstream when 𝓁 ∼ 𝛿1 based on the Blasius solution. Note the
convergence depicted in Fig. 5.9 (e) directly follows from the earlier discussion indicating that the
turbulence enhancement of the skin friction coefficient weakly depends on the strength of APG.
For instance, in all flat-plates, this term converges beyond 𝑅𝑒𝛿1 = 3000 –less than 3% variation
from 𝑅𝑒𝛿1 = 3000 to the far downstream. A similar convergence pattern is observed in the Wing
dataset downstream of 𝑅𝑒𝛿1 = 4000. However, for Bump, the FPG history effect delays reaching
equilibrium, and the approximate convergence occurs beyond 𝑅𝑒𝛿1 > 5000, where the FPG history
effect is faded.

To further explore how APG alters the turbulence enhancement, specifically the integral of Reynolds
shear stress, we analyze the turbulent torque within different layers of the BL, namely the inner
layer, logarithmic region, and outer layer. Figure 5.10 (a) illustrates that under weak-to-moderate
APG, like in flat-plates and Wing dataset, the contribution of the inner layer to turbulent torque

remains small. In the Wing case, for example, the relative contribution of the inner layer is only
around 5%, remaining approximately constant across the flow. This ratio is lower than in a ZPG
BL, which typically reads 14%, suggesting that the inner layer plays a less crucial role in BLs sub-
jected to APG. A similar trend is observed in Fig. 5.10 (b) for the logarithmic region, where the
contribution is weaker for flat-plates and Wing datasets.

For the Bump dataset, the contribution of the inner layer is more significant. Due to the re-
laminarization process occurring upstream of the bump’s peak, the role of the inner layer and vis-
cous effects become more substantial, increasing monotonically downstream until 𝑅𝑒𝛿1 = 2000.
Within this region, turbulence (i.e., Reynolds shear stress) is pushed towards the wall, as shown
in Fig. 5.8 (a), causing an increase in the inner layer. This increase coincides with a reduction of
turbulent torque within the outer layer, where its relative contribution drops to about 55%, whereas
this number for the flat-plates and Wing case read more than 80% as shown in Figure 5.10 (d).
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In the logarithmic region that overlaps with both the inner and outer layers, we observe an aug-
mentation downstream until 𝑅𝑒𝛿1 = 2400. To further investigate this increase, we decompose the
logarithmic region; from 𝑅𝑒𝛿1 = 1400 to 𝑅𝑒𝛿1 = 1800, this increase occurs from 𝑦+ = 30 to
𝑦∗ = 0.1 (the overlap between the inner layer and logarithmic region), whereas above 𝑦∗ = 0.1,
the contribution drops. However, in the range of 1800 ≤ 𝑅𝑒𝛿1 ≤ 2400, the enhancement within
the logarithmic region is attributed to its overlap with the outer layer. Additionally, for flows sim-
ilar to the Bump case, which undergoes strong alternative APG and FPG, the logarithmic region
might capture more of the total Reynolds shear stress than the outer layer. For instance, within
1600 ≤ 𝑅𝑒𝛿1 ≤ 4600, the relative contribution of the logarithmic region is higher than the outer
layer, peaking about 85% of the total turbulent torque. These findings emphasize the importance
of resolving the logarithmic region or developing LES models to capture its role in such complex
flows accurately.

For the Wing and flat-plates that are only under APGs, the majority of Reynolds shear stress is
concentrated in the outer region of the BL. The relative contribution of the outer layer to turbulent

torque increases downstream with Reynolds number, starting from approximately 80% at 𝑅𝑒𝛿1 =

1400 and reaching 97% at 𝑅𝑒𝛿1 = 6500 (in flat-plates). In the Wing case, however, the outer
layer responds to the rate of change of APG, i.e., the curvature of pressure gradient, reflecting the
reduction in total turbulent torque due to the growth rate of pressure gradient. In other words, the
rate of change of APG primarily interacts with the outer layer, aligning with observations in Ref.
[14]. Nevertheless, even under substantial variation in APG, as seen in the Wing case, the relative
contribution of the outer layer to turbulent torque does not go below 80%. Also, for the Bump case,
beyond 𝑅𝑒𝛿1 = 4600, where the influence of FPG and re-laminarization diminish, the outer layer is
still responsible for more than 75% of the total turbulent torque. The importance of the outer layer
and the fact that turbulent torque captures a substantial amount of the total Reynolds stress can be
the backbone of developing integral-based turbulent models (see chapter 7).

In this section, we underscored our adoption of 𝓁 = 1.75𝛿1 from the Blasius solution, a choice
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Figure 5.10: Contribution of the turbulent torque to 𝐶𝑓∕2 within the (a) inner layer (from 𝑦 = 0
to 𝑦∗ = 0.1), (b) log-law region (from 𝑦+ = 30 to 𝑦∗ = 0.3), and outer layer (from 𝑦+ = 50 to
𝑦∗ = 1). Panel (d) shows the ratio of the turbulent torque within the outer layer and its total value.
𝑦∗ = 𝑦∕𝛿99 and 𝑦+ = 𝑦∕𝛿𝜈 denote the normalized wall-normal distance by the BL thickness, 𝛿99,and viscous length scale, 𝛿𝜈, respectively. Shaded lines represent the total turbulent torque in the
AMI budget Fig. 5.9 (b).

justified by the classical definition of the Clauser parameter as a function of displacement thickness.
We aim to establish the AMI’s length scale based on the displacement thickness, leading to the
derivation of an AMI-based Clauser parameter denoted as 𝛽𝓁. This parameter is formulated as a
function of 𝛿𝓁1 instead of 𝛿1, where 𝓁 ∼ 𝛿1. Figures 5.11 (a, b) illustrate the trends of 𝛽 and 𝛽𝓁,
respectively, with respect to 𝑅𝑒𝛿1 . The overall trends of 𝛽 and 𝛽𝓁 are similar; however, 𝛽 spans
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Figure 5.11: The Clauser parameter with respect to 𝑅𝑒𝛿1; (a) based on 𝛿1 (the classic definition),
and (b) based on 𝛿𝓁1 obtained from the AMI analysis. V, X, and XI6 mark the streamwise matching
locations at which turbulent statistics are compared (shown in Fig. 5.12) based on table 5.2.

from 0 to 40, and 𝛽𝓁 yields smaller values in the range 0 < 𝛽𝓁 < 20. Additionally, the growth rates
of 𝛽 and 𝛽𝓁 differ, leading to different intersection (or matching) locations between the datasets.
The most significant difference in behavior between 𝛽 and 𝛽𝓁 corresponds to the Bump dataset. As
previously discussed, the AMI budget, particularly pressure gradient, captures the carried-over FPG
effect within the APG region, 𝜉∕𝐿 > 0. This history effect is reflected in Fig. 5.11 (b), where the
plot of 𝛽𝓁 vs. 𝑅𝑒𝛿1 shifts to the right compared to the plot of 𝛽. This shift aligns with the streamwise
range where the contribution of pressure gradient is positive in figure 5.9 (c). Consequently, the
matching locations between the Bump and other cases shift to the right accordingly.

The matching location has been the subject of several studies examining the pressure gradient his-
tory effects on turbulent statistics. Specifically, Ref. [14] chose the matching 𝑅𝑒𝜏 − 𝛽 to examine
the upstream pressure gradient history effect. However, they did not identify a systematic similar-
ity in turbulent statistics when comparing BLs undergoing different upstream pressure gradients
at matching 𝑅𝑒𝜏 − 𝛽. These findings suggest that 𝑅𝑒𝜏 may inadequately capture non-equilibrium
effects in flows experiencing APG. Moreover, using 𝑅𝑒𝜏 for statistical comparisons becomes prob-
lematic for BLs near separation as the wall-shear stress approaches zero. Therefore, for the sake of
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ID Symbol Data label 𝑅𝑒𝛿1 − 𝛽𝓁 𝑅𝑒𝛿1 − 𝛽
I × Wing-𝛽1 1886 − 0.34 1958 − 1.14
II ◦ Wing-m13 2341 − 0.61 2296 − 1.69
III ▽ Wing-𝛽2 2455 − 0.72 2421 − 1.96
IV □ Wing-m16 2811 − 1.13 2732 − 2.71
V ◊ Wing-m18 3044 − 1.48 2965 − 3.45
VI × Bump-𝛽1 2691 − 0.37 1508 − 0.93
VII ◦ Bump-m13 2803 − 0.58 1612 − 1.44
VIII ▽ Bump-𝛽2 2915 − 0.82 1558 − 1.2
IX □ Bump-m16 3073 − 1.18 1674 − 1.68
X ◊ Bump-m18 3232 − 1.57 1638 − 1.55

XI1 ⬡ Wing-Bump 3712 − 3.05 −
XI2 ⬡ Wing-Bump 4193 − 4.83 −
XI3 ⬡ Wing-Bump 5063 − 9.25 −
XI4 ⬡ Wing-Bump 5258 − 10.24 −
XI5 ⬡ Wing-Bump 5585 − 12.48 −
XI6 ⬡ Wing-Bump 6246 − 18.39 6404 − 37.54

Table 5.2: Matching positions between 𝑅𝑒𝛿1 − 𝛽𝓁 and 𝑅𝑒𝛿1 − 𝛽 for the dataset in table 5.1.

identifying similarities in turbulent statistics, including the mean streamwise velocity and Reynolds
stress components, we utilize 𝑅𝑒𝛿1 and compare matching locations for 𝑅𝑒𝛿1 − 𝛽 and 𝑅𝑒𝛿1 − 𝛽𝓁 (all
matching locations in the dataset are recorded in table 5.2).

Furthermore, figure 5.12 illustrates profiles of the inner-scaled mean streamwise velocity, 𝑢, and
Reynolds stress components, 𝑢′𝑖𝑢′𝑗 , for V (Wing-m18), X (Bump-m18), and XI6 (Wing-Bump) at
the matching𝑅𝑒𝛿1−𝛽𝓁 and𝑅𝑒𝛿1−𝛽. These corresponding locations are indicated in Fig. 5.11. In all
these plots, the 𝑥−axis represents the wall-normal position normalized by the AMI’s length scale,
while the insets present the profiles with respect to 𝑦+. Please note that the solid lines depict the
matching𝑅𝑒𝛿1−𝛽𝓁, and shaded colors represent the profiles at the matching𝑅𝑒𝛿1−𝛽 for comparison.
As depicted in Fig. 5.12 (a, b) for case V, involving the Wing and m18 datasets, the normalized wall-
normal distance, 𝑦∕𝓁, accurately captures the width of both datasets. When employing 𝑅𝑒𝛿1 − 𝛽𝓁,
the mean velocity profiles exhibit a stronger similarity compared to the matching 𝑅𝑒𝛿1 − 𝛽 (shaded
lines), particularly near the boundary layer’s edge. This more robust similarity using 𝛽𝓁 instead of
𝛽 is also shown in Fig. 5.12 (b) for the higher-order statistics, e.g., the Reynolds stress components.
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Figure 5.12: History effects; the inner-scaled mean velocity and Reynolds stress components with
respect to 𝑦∕𝓁 at matching 𝑅𝑒𝛿1 − 𝛽𝓁 (𝑅𝑒𝛿1 − 𝛽 shaded lines) for V, X, XI6 (shown in Figs. 5.11);
the solid, dashed, dashed-dotted, and dotted lines represent 𝑢′𝑢′+, 𝑣′𝑣′+,𝑤′𝑤′

+, and −𝑢′𝑣′
+, respec-

tively. The insets exhibit the same profiles Vs. 𝑦+. Symbol ◊ denotes the wall-normal position of
𝛿99.
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According to Fig. 5.12 (b), although using 𝛽𝓁 the profiles are not self-similar, especially in the
outer layer, their trends are more comparable rather than what 𝛽 predicts (shown shaded lines).
Consistent with [14], we identify a secondary peak in the profile of 𝑢′𝑢′+ occurring in the range
0.4 < 𝑦∕𝓁 < 1 (50 < 𝑦+ < 200) within the outer layer, while the first peak, similar to ZPG BLs,
is confined below 𝑦∕𝓁 = 0.1 (𝑦+ < 20). Therefore, the secondary peak is the outcome of the
pressure gradient stimulating the outer region of the BL. Also, the exact location of this secondary
peak appears to vary depending on the upstream pressure gradient history. It is noteworthy that
𝑅𝑒𝛿1 − 𝛽𝓁 yields an even more robust similarity –compared to 𝛽– when we analyze the statistics of
the Wing and less extreme flat-plate cases, such as 𝛽1 or 𝑚16 (not shown in this study). However,
for BL flows undergoing a more complex pressure gradient history, the profiles of turbulent statistics
are expected to be less similar.

Examining Fig. 5.12 (d) for case X, involving the Bump and m18 datasets, reveals that the width of
the profiles, based on 𝑦∕𝓁, is less alike; specifically the secondary peak for Bump is shifted toward
the surface. This shows that the secondary peaks of 𝑢′𝑢′+ do not necessarily occur at the same 𝑦∕𝓁,
especially if the flow experiences alternating pressure gradients. The author attributes the difference
in the width of the profiles to the carried-over FPG, similar to our previous observation n section
5.3.2, where the imposed FPG upstream of the bump’s peak shifts turbulence towards the wall.
Despite the lack of an absolute similarity using 𝑅𝑒𝛿1 − 𝛽𝓁, the statistics appear considerably more
similar than those predicted by 𝑅𝑒𝛿1 − 𝛽 (plotted with shaded lines). The significant discrepancy
between the profiles of the statistics when using𝑅𝑒𝛿1−𝛽 is primarily due to predicting intersections
too early upstream since 𝛽 fails to capture the FPG history effects.

Comparing the matching location of the Wing and Bump datasets, XI6, (Figs. 5.12 (e, f)) which
occurs far downstream at 𝑅𝑒𝛿1 = 6242 for 𝛽𝓁 (or 𝑅𝑒𝛿1 = 6404 for 𝛽), we identify a single peak in
both profiles of 𝑢′𝑢′+ occurring between 0.5 < 𝑦∕𝓁 < 0.65 (90 < 𝑦+ < 125) within the outer layer,
approximately analogous to the wall-normal positions of the secondary peaks in Figs. 5.12 (b, d).
This matching location suggests that a stronger APG does not significantly change the wall-normal
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Figure 5.13: The correlation between 𝐶𝑓 and 𝛽𝓁 (or 𝛽). Skin friction coefficient at the streamwise
location of matching 𝑅𝑒𝛿1 − 𝛽𝓁 (and 𝑅𝑒𝛿1 − 𝛽 shaded color) according to table 5.2; a comparison
between (a) Wing and flat-plates, and (b) Bump and flat-plates.

position of the secondary peak, yet it impacts the strength of the secondary peak. Besides that,
using 𝛽𝓁 (or 𝛽 shown with shaded color) to compare the Reynolds stress components of Wing and
Bump, we conclude it is extremely difficult to obtain a systematic similarity between two distinct
BLs undergoing severe alternating pressure gradient history. Nevertheless, for such complex flows,
statistics behave substantially more similarly using the matching 𝑅𝑒𝛿1 − 𝛽𝓁 rather than 𝑅𝑒𝛿1 − 𝛽.
Specifically for the mean velocity profiles, 𝛽𝓁 yields a systematic similarity for 𝑢+ at the edge of the
BL, where 𝑦+ → ∞. The systematic collapse of inner-scaled mean velocity profiles at the edge of
the BL using matching𝑅𝑒𝛿1 −𝛽𝓁 suggests a strong correlation between 𝐶𝑓 and 𝛽𝓁. This correlation
can be understood from 𝑢+(𝑦+ → ∞) = 𝑈𝑒∕𝑢𝜏 , where 𝑈𝑒 ∼ 𝑈𝑖𝑜; hence, 𝑢+(𝑦+ → ∞) ∼

√

1∕𝐶𝑓 .
To further support this correlation, Figure 5.13 displays the skin friction coefficient at matching
𝑅𝑒𝛿1 − 𝛽𝓁 (and 𝑅𝑒𝛿1 − 𝛽 with shaded color) for the intersections between the Wing and flat-plates
(a) and Bump and flat-plates (b).

As shown in Fig. 5.13 (a), when using matching𝑅𝑒𝛿1 −𝛽, the values of skin friction coefficients do
not coincide and diverge for more extreme cases, indicating a weak correlation between 𝛽 and 𝐶𝑓 .
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Conversely, when employing 𝛽𝓁, the skin friction coefficients demonstrate a systematic collapse,
suggesting a strong correlation between 𝐶𝑓 and 𝛽𝓁. This systematic correlation holds to a weaker
degree for more complex flows, such as the Bump case, and the matching locations between this
flow and the flat-plates. According to Fig. 5.13 (b), there is no discernible correlation between
𝛽 and 𝐶𝑓 . This is because, as shown in figure 5.11 (a), within the APG region, 𝛽 values in the
Bump dataset cannot capture the FPG history effect, yielding the intersection with the flat-plate
way far upstream. On the other hand, since 𝛽𝓁 (partially) captures the FPG history effects, 𝐶𝑓 and
𝛽𝓁 remain (strongly) correlated with a marginal difference between the skin friction coefficients of
less than 7%. A difference that is attributed to the partial absorption of Bump’s complex upstream
history effect. A different choice of the AMI’s length scale (𝓁) (not based on the Blasius solution)
could potentially alleviate the partial absorption of upstream history effects, and hence lead to
a stronger correlation between 𝐶𝑓 and 𝛽𝓁 even for complex flows such as the Bump case. For
instance, although not covered in this study, implementing the Falkner-Skan solution by matching
the power-law acceleration parameter between turbulent and laminar regimes –as the base of the
AMI analysis– might lead to a more robust absorption of the upstream history effects.

To further investigate the 𝛽𝓁 − 𝐶𝑓 correlation, we examine the most extreme case by comparing
the intersection between the Bump and Wing datasets. In Fig. 5.11 (a, b), for 𝛽, there is a single
matching location at 𝑅𝑒𝛿1 = 6404 (𝛽 = 37.54). Whereas, in plots of 𝛽𝓁, the Wing and Bump lines
follow close to each other starting at 𝑅𝑒𝛿1 = 3712 (𝛽𝓁 = 3.05) until, at 𝑅𝑒𝛿1 = 6245 (𝛽𝓁 = 18.51),
where they cross for the last time and eventually diverge. Figure 5.14 illustrates the correlation
between 𝐶𝑓 and 𝛽𝓁 at the crossing points of𝑅𝑒𝛿1 −𝛽𝓁. As 𝛽𝓁 of Wing and Bump grow downstream,
on top of each other, 𝐶𝑓 and 𝛽𝓁 become more correlated. At 𝑅𝑒𝛿1 = 6245, corresponding to XI6,
the 𝛽𝓁 − 𝐶𝑓 correlation is almost perfect, whereas there is a discrepancy between the values of 𝐶𝑓
extracted from matching 𝛽 (shown with shaded colors). It is important to highlight that the 𝛽𝓁 −𝐶𝑓
correlation for Wing and Bump (XI6) (occurs at 𝑅𝑒𝛿1 = 6245) is stronger than Bump and m18 (X)
(occurs at (𝑅𝑒𝛿1 = 3232). This is reasonable since XI6 is further downstream and the FPG history
effect gradually fades at higher Reynolds numbers.
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Figure 5.14: The correlation between 𝐶𝑓 and 𝛽𝓁 (or 𝛽) for the Wing and Bump datasets. Skin
friction coefficient at the streamwise location of matching 𝑅𝑒𝛿1 − 𝛽𝓁 (𝑅𝑒𝛿1 − 𝛽 shaded color).

5.3.4 AMI analysis - Falkner-Skan solution

In the preceding section, we primarily focused on the BL regions experiencing moderate APG,
where we investigated the impact of APG on the Reynolds shear stress enhancement of skin friction
coefficient using the AMI analysis. Additionally, we introduced an AMI-based non-equilibrium
Clauser parameter, denoted as 𝛽𝓁, to delve into the influence of pressure gradient history effects on
turbulent statistics. However, thus far, our approach has relied on an AMI length scale derived from
the Blasius solution that yields a straightforward interpretation of the AMI budget, primarily for
pressure gradient as a torque with respect to a base zero-pressure-gradient BL. In this upcoming
section, we explore an alternative approach by employing the Falkner-Skan laminar solution to
determine 𝓁.

Our objective here is to establish a relationship for 𝓁 within the APG region, specifically within the
range of 1400 ≤ 𝑅𝑒𝛿1 ≤ 6500, by aligning the Clauser parameter between the turbulent datasets
listed in table 5.1 and the laminar Falkner-Skan solution. In essence, we determine the coefficient
𝛼𝐹𝑆 (introduced in section 5.1) by utilizing the Falkner-Skan solution with the precise value of 𝛽
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at each streamwise location.

To obtain the coefficient 𝛼𝐹𝑆 based on the Falkner-Skan solution, we developed an ordinary dif-
ferential equation (ODE) solver using the shooting method to solve the self-similar Falkner-Skan
momentum equation. The similarity form, introduced in Ref. [40], is defined by 𝜂 = 𝐶𝑦𝑥𝑎, where
𝜂 represents the self-similar variable, consistent with a power-law edge velocity distribution given
by 𝑈𝑒(𝑥) = 𝐾𝑥𝑚, where 𝐶 and 𝐾 are constants to make 𝜂 dimensionless and 𝑚 = 2𝑎 + 1. The
ODE solver selects 𝜂 = 𝑦

√

(𝑚 + 1)𝑈𝑒(𝑥)∕𝜈𝑥, and imposes appropriate BCs, similar to Blasius so-
lution for a flat-plate (refer to chapter four in [171]). Using the similarity solution, the skin friction
coefficient and displacement thickness, respectively, are expressed as

𝐶𝑓
2

≡
2𝜏𝑤
𝜌𝑈 2

𝑒
=
√

(𝑚 + 1) 𝜈
𝑈𝑥

𝑓 ′′(0), (5.18)

and

𝛿1 ≡ ∫

∞

0

(

1 − 𝑢
𝑈𝑒

)

𝑑𝑦 =

√

1
𝑚 + 1

𝜈𝑥
𝑈𝑒

lim
𝜂→∞

(𝜂 − 𝑓 ), (5.19)

where 𝑓 represents the similarity function, and the prime superscript indicates differentiation with
respect to 𝜂. Similarly, we can derive a relationship for the Clauser parameter that reads

𝛽 ≡ − 1
𝑈𝑒

𝑑𝑈𝑒
𝑑𝑥

2𝛿1
𝐶𝑓

= − 𝑚
𝑚 + 1

[ lim𝜂→∞(𝜂 − 𝑓 )
𝑓 ′′(0)

]

, (5.20)

where the term enclosed by brackets is self-similar. We further relate 𝛽 to the AMI’s length scale
coefficient, 𝛼𝐹𝑆 , as

𝛽 = −𝑚
𝑚 + 1

[

lim
𝜂→∞

(𝜂 − 𝑓 )
]2

𝛼𝐹𝑆 . (5.21)

Figure 5.15 (a) illustrates the plot of 𝛽 with respect to 𝑚 within the APG region (𝑚 ≥ 0). Interest-
ingly, the plot of 𝛼𝐹𝑆 with respect to 𝛽 demonstrates a linear relationship (Fig. 5.15 (b)). Therefore,
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one can determine the appropriate 𝛼𝐹𝑆 at each streamwise position by knowing the Clauser param-
eter. The linear function 𝛼𝐹𝑆(𝑥) = 1.75 + 0.822𝛽(𝑥) is fitted to compute 𝛼𝐹𝑆 from 𝛽 values.

(a) (b)

slo
pe =

 0
.8

22

1.75 (Blasius solution)

Figure 5.15: Self-similar Falkner-Skan solution and the Clauser parameter; relationships between
𝛽 and 𝑚 (a), and 𝛼𝐹𝑆 and 𝛽 (b).

Now that we have established a relationship between 𝛽 and 𝓁, we can determine 𝓁 = 𝛼𝐹𝑆𝛿1 by
knowing the 𝛽 values in the turbulent dataset, table 5.1. As a result, when we apply this 𝓁 to
the AMI analysis, the first term on the right-hand side of the AMI equation, representing laminar

friction (1∕𝑅𝑒𝓁), precisely yields half of the skin friction coefficient that would be expected if the
flow were laminar (with the same Reynolds number) under the same 𝛽. This choice of 𝓁, however,
makes the interpretation of pressure gradient somewhat ambiguous because now a portion of the
pressure gradient effect is absorbed by laminar friction. One can assume pressure gradient as
the pressure gradient effects relative to the base Falkner-Skan flow. This term, although for the
turbulent dataset is more distinct from each other than in Figure 5.9 (a), weakly contributes to the
skin friction coefficient. The explicit turbulent enhancement in the AMI equation based on the
Falkner-Skan solution, however, remains the primary contributor to 𝐶𝑓 .

In Figure 5.16 (a), we observe a distinct trend in the behavior of turbulent torque compared to
Figure 5.9 (b), where the analysis was based on the Blasius solution. Specifically, the behavior of
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turbulent torque shows an inverse relationship with the strength of the pressure gradient, i.e., 𝛽.
For flat-plates characterized by weak-to-moderate pressure gradients, there is a minimal variation
in turbulent torque from upstream to downstream, especially beyond 𝑅𝑒𝛿1 = 3500, where their 𝛽
is flattened. In contrast, for cases exhibiting rapid growth in 𝛽, such as Wing and Bump, the vari-
ation in turbulent torque from upstream to downstream is more pronounced. This behavior can be
attributed to the fact that the total Reynolds shear stress remains constant downstream, as discussed
in Section 5.3.3. Consequently, as 𝓁 increases with 𝛽, turbulent torque decreases downstream at an
inverse rate. Despite the significant changes in turbulent torque with 𝛽 in the Wing and Bump cases,

(a) (b)

Falkner-Skan solution

Figure 5.16: Turbulent torque with respect to 𝑅𝑒𝛿1 when 𝓁 is obtained from the Falkner-Skan
solution; (a) the absolute contribution to 𝐶𝑓∕2, (b) the relative contribution (normalized by 𝐶𝑓∕2).

it is noteworthy that the relative contribution (normalized by 𝐶𝑓∕2) of turbulent torque (shown in
Fig. 5.16 (b)) tends to flatten downstream of𝑅𝑒𝛿1 = 6000. This suggests for relatively strong APG,
e.g., 𝛽 ≥ 10, the spatial rate of change of this flow phenomenon mirrors that of the skin friction
coefficient.

Using the Falkner-Skan solution as the reference flow for the AMI equation allows us to derive the
AMI’s Clauser parameter, 𝛽𝓁, where 𝓁 varies downstream as a function of 𝛽. Figure 5.17 illustrates
this 𝛽𝓁 with respect to 𝑅𝑒𝛿1 , compared with 𝛽 (shown with shaded lines). According to the plots of
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the Wing and Bump cases in Figure 5.17, far downstream where the pressure gradient is relatively
strong (𝛽 ≥ 40), 𝛽𝓁 and 𝛽 converge to each other. To understand this phenomenon, consider an
asymptotic condition where 𝛽 → ∞: the AMI’s length scale, 𝓁 → ∞. Consequently, as mentioned
in section 5.1, if 𝓁 → ∞, the AMI equation will recover the von-Kármán integral equation, i.e.,
𝛽𝓁 → 𝛽. On the other hand, for 𝛽 → 0 (𝛽 < 1), the Falkner-Skan-based AMI yields analogous
results as shown in Figure 5.11 (b) for 𝛽𝓁 based on the Blasius solution. Additionally, in the Bump

Falkner-Skan solution

Figure 5.17: The Clauser parameter with respect to 𝑅𝑒𝛿1 based on 𝛿𝓁1 obtained from the AMI anal-
ysis using Falkner-Skan laminar solution. The shaded lines denote 𝛽 as in Fig. 5.11 (a).

case, Figure 5.17 indicates that 𝛽𝓁 has marginally captured the upstream FPG effect. Therefore,
compared with 𝛽, the plot of 𝛽𝓁 is slightly shifted to the right. This absorption of the FPG history
effect, however, is not sufficient; also, it is weaker than what we observed in figure 5.11 (b) for
𝛽𝓁 based on the Blasius solution. As a result, the matching location between Bump and flat-plates
occurs too early upstream when 𝛽𝓁 is based on the Flakner-Skan solution. Consequently, the turbu-
lent statistics at these matching locations yield less similarity compared to what we observed earlier
for 𝛽𝓁 obtained from the Blasius solution, like in figures 5.12 (c, d). This weaker similarity also
manifests in the correlation between 𝐶𝑓 and 𝛽𝓁, where we compute a weaker correlation when 𝛽𝓁 is

122



based on the Falkner-Skan solution rather than figure 5.13 (b). In conclusion, these findings based
on the Falkner-Skan solution clarified that although there might be other options than choosing 𝓁

from the Blasius solution, this choice yields a more straightforward interpretation and more robust
similarity behavior in turbulent statistics of two different BLs.

5.4 Conclusion

This chapter extends the application of the angular momentum integral (AMI) equation, first intro-
duced by [38] for ZPG incompressible boundary layers (BLs), as an analysis tool to study turbulent
BLs undergoing non-zero pressure gradient. The AMI analysis measures the explicit turbulent en-
hancement by Reynolds shear stress relative to a base laminar, referred to as turbulent torque, flow
while the BL undergoes a pressure gradient. Additionally, it yields a single term corresponding to
the flow acceleration (or deceleration) measuring the direct impact of non-zero pressure gradients.
From this term, we derived an AMI-based non-equilibrium Clauser parameter, 𝛽𝓁 as a counter-
part of the classic Clauser parameter, 𝛽, that measures the relative role of pressure gradient on the
transport of momentum deficit through the von Kármán integral equation.

We applied the AMI equation, expressed in wall-tangential and wall-normal coordinate system, to
a set of high-fidelity numerical turbulent BL simulations, comprising flows over the suction side
of NACA-4412 airfoil and a two-dimensional Gaussian bump both under moderate pressure gra-
dients. The AMI analysis with Blasius solution as the base laminar flow for BL over the airfoil
quantified a marginal variation of turbulent torque. At the same time, the adverse pressure gra-
dient changes substantially downstream. In the bump flow, the strong favorable pressure gradient
resulted in a substantial reduction of turbulent torque, co-occurring with the enhancement of lam-
inar friction in the AMI equation. These results revealed signs of re-laminarization in a way that
turbulent energy is deactivated and turbulence becomes one-dimensional, i.e., the streamwise and
wall-normal velocities are less correlated. Downstream of the bump’s peak, flow experiences a
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severe adverse pressure gradient that leads to flow separation at which the error of the AMI bud-
get increases primarily due to the lack of sufficient averaging. Within this region, turbulent torque
gradually increases downstream, recovering from the upstream favorable pressure gradient. This
increase occurs within the outer layer of the BL, while the inner layer remains unchanged, parallel
to observations by [14].

To examine the pressure gradient history effects on turbulent statistics we compared the profiles of
the inner-scaled streamwise mean velocity and Reynolds stress components of the airfoil and bump
flows with flat-plates under adverse pressure gradients. The profiles were plotted at the matching
Reynolds numbers (based on displacement thickness), 𝑅𝑒𝛿1 , and 𝛽𝓁 compared with the classic ap-
proach of using 𝛽. We noticed not perfect but more robust similarity in turbulent statistics using 𝛽𝓁
over 𝛽. Especially, using matching 𝑅𝑒𝛿1 − 𝛽𝓁, the mean velocity profiles of two distinct flows are
converged at the edge of the BL, revealing a strong correlation between the skin friction coefficient
and 𝛽𝓁.

An alternative approach for the AMI analysis involves using the Falkner-Skan laminar solution
with a matched 𝛽 value (at any streamwise position) as the base laminar flow. In this method, 𝓁 is
implicitly calculated from the 𝛽 values of the turbulent dataset. This approach provides a different
interpretation of the AMI’s pressure gradient term. For flows with a weak pressure gradient, the
Falkner-Skan-based pressure gradient is similar to the one based on the Blasius solution. However,
for flows with 𝛽 > 20, the Falkner-Skan-based pressure gradient asymptotically approaches the
one in the von Kármán integral equation. With this approach, the spatial rate of change of turbulent
torque mirrors that of the skin friction coefficient for 𝛽 > 20.

In conclusion, the AMI equation provides a flexible and intuitive framework for understanding the
impact of flow phenomena within the boundary layer on the skin friction coefficient, especially
in the presence of pressure gradients. Future research could explore applying the AMI analysis to
boundary layers with significant direct curvature effects to investigate how curvature alters turbulent
enhancement. Studying bump flows at high Reynolds numbers, where re-laminarization does not
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occur, could be intriguing to examine pressure gradient history effects. Additionally, exploring the
AMI equation in separated flows with adequately averaged statistics could give valuable insights
into the physics of such a complex phenomenon.
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Chapter 6

First-moment Integral Equations for

High-speed Boundary Layers

The enhancement of skin-friction drag and surface heat flux by the transition to turbulence is a
crucial physical phenomenon for the design of high-speed vehicles. Recently, Elnahhas & Johnson
[38] developed the angular momentum integral (AMI) equation by integrating the first moment of
momentum deficit equation for incompressible BLs. The AMI equation accomplishes for BLs what
the FIK equation does for internal flows (pipes, channels). Specifically, it relates the skin-friction
coefficient of any (e.g., turbulent) BL to the sum of an equivalent laminar skin-friction coefficient
(as a function of a user-defined Reynolds number) plus an (unweighted) integral of the Reynolds
shear stress, along with other terms (e.g., free-stream pressure gradients). In addition to the clear
mathematical interpretation as enhancement or attenuation relative to an equivalent laminar BL,
the AMI equation also has an intuitive physical explanation in terms of torques that reshape the
mean velocity profile, changing its angular momentum (moment of momentum) and affecting the
slope at the wall. Analogously, a first-moment integral method for energy (enthalpy) equation
was developed to obtain the moment of temperature integral (MEI) equation for transitional and
turbulent incompressible BLs with heat transfer in Chapter 4. MEI provides a quantifying mapping

126



between different flow phenomena, including turbulent contribution, and how they alter the Stanton
number. The existing development of the AMI and MEI equations has previously focused solely
on incompressible BLs, so the application of this approach for compressible BLs is not yet clear.

The purpose of this chapter is to derive and demonstrate how the AMI equation can be applied
to compressible BLs of a calorically perfect gas. In addition, a moment of total enthalpy integral
(MTEI) equation is introduced as an extension to the MEI equation previously developed for incom-
pressible BLs. The MTEI equation provides an interpretable relationship for the Stanton number in
compressible BLs in terms of key flow physics, analogous to what AMI accomplishes for the skin
friction coefficient. This integral-based approach provides another perspective for examining the
effect of Mach number and wall cooling on turbulence in high-speed BLs with a particular focus on
engineering-relevant surface quantities related to drag and heat transfer. The chapter is organized
as follows. Section 6.1 first derives the AMI equation for compressible BL flow of calorically per-
fect gas and provides an intuitive interpretation for each term related to the skin-friction coefficient.
That is followed by the derivation of the MTEI equation for the Stanton number in a similar manner
and a comprehensive interpretation of each flow phenomenon in the equation. Section 6.2 covers
the application of the AMI and MTEI equations; laminar self-similar compressible datasets are ex-
amined first in Section 6.2.1. This is followed by the analysis of the fully turbulent DNS dataset
in Section 6.2.2. This section briefly summarizes the DNS data set and the numerical methods
to solve turbulent compressible BLs and demonstrates the use of the AMI and MTEI equations.
In Sections 6.2.2 and 6.2.2 the AMI and MTEI equations, respectively, are applied to analyze the
DNS data for a range of edge Mach numbers and wall-temperature boundary conditions. Finally,
conclusions are given in Sec. 6.3.
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6.1 Derivation and Interpretation

The derivation of the first-moment integral equations is based on section 4.1 for ZPG incompress-
ible BLs. However, here, due to the compressibility effects the flow quantities such as density
and viscosity are not necessarily constants. In this section, a more general form of the first mo-
ment integral equations for skin friction and surface heat flux are introduced, taking into account
density and viscosity variation. The result provides a direct relationship that quantitatively maps
flow physics throughout the boundary layer based on their enhancement or attenuation of the skin
friction coefficient and Stanton number relative to a baseline laminar BL.

6.1.1 Compressible Angular Momentum Integral Equation

Derivation

The derivation of the AMI equation for compressible flows is outlined in this subsection. The
Reynolds averaged conservation of mass and streamwise momentum for a statistically steady 2D
flow, respectively, yield

𝜕(𝜌̄𝑢̃)
𝜕𝑥

+
𝜕(𝜌̄𝑣)
𝜕𝑦

= 0 and (6.1)

𝜕(𝜌𝑢̃𝑢̃)
𝜕𝑥

+
𝜕(𝜌𝑢̃𝑣)
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+ 𝜕
𝜕𝑦

(

𝜇𝜕𝑢
𝜕𝑦

− 𝜌𝑢′′𝑣′′
)

+ 𝐼𝑀 , (6.2)

where (⋅) stands for the Reynolds averaging. Also, (⋅̃) and (⋅)′′ represent a density-weighted (Favre)
averaged quantity and fluctuations with respect to the Favre averaging, respectively. In Eq. (6.2), 𝑢,
𝑣, and 𝑝 are the streamwise (𝑥) velocity, wall-normal (𝑦) velocity, and pressure, respectively. Also,
𝜌 and 𝜇 are the density and dynamic viscosity, respectively. Note that 𝐼𝑀 represents the streamwise
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derivative terms neglected by the BL approximations. At the edge of the BL, assuming there is no
wall-normal gradient and viscous effect, the streamwise momentum equation yields

𝜌𝑒𝑈𝑒
d𝑈𝑒
d𝑥

= −
d𝑃𝑒
d𝑥

, (6.3)

where the subscript (⋅)𝑒 stands for the edge quantities like the edge velocity, 𝑈𝑒, and pressure, 𝑃𝑒.
Subtracting Eq. (6.2) from Eq. (6.3), and adding 𝑈𝑒 multiplied by Eq. (6.1), gives a transport
equation for the mean streamwise velocity defect

𝜕
(

𝜌̄𝑢̃
(

𝑈𝑒 − 𝑢̃
))

𝜕𝑥
+
𝜕
(

𝜌𝑣
(

𝑈𝑒 − 𝑢̃
))

𝜕𝑦
= −

(

𝜌𝑒𝑈𝑒 − 𝜌𝑢̃
) 𝑑𝑈𝑒
𝑑𝑥

+ 𝜕
𝜕𝑦

(

𝜌𝑢′′𝑣′′ − 𝜇𝜕𝑢
𝜕𝑦

)

− 𝐼𝑀 , (6.4)

where the terms neglected by the statistically stationary BL approximations (including the stream-
wise gradient of the edge and mean pressure difference) are gathered in 𝐼𝑀 . Integration of Eq. (6.4)
across the BL, ∫ ∞

0 [⋅]𝑑𝑦 yields the von-Kármán momentum integral equation,

𝐶𝑓
2

=
d𝛿2
d𝑥

+
(

2 +
𝛿1
𝛿2

+
𝑈𝑒
𝜌𝑒

𝑑𝜌𝑒
𝑑𝑈𝑒

)

𝛿2
𝑈𝑒

d𝑈𝑒
d𝑥

+ 𝑀 , (6.5)

where the skin-friction coefficient, 𝐶𝑓 = 2𝜏𝑤∕𝜌𝑒𝑈 2
𝑒 , is the non-dimensional mean wall shear stress,

𝜏𝑤 = 𝜇𝑤 (𝜕𝑢∕𝜕𝑦)𝑤. For isentropic edge flow, (𝑈𝑒∕𝜌𝑒)𝜕𝜌𝑒∕𝜕𝑈𝑒 = −𝑀2
𝑒 . Moreover, 𝑀 is the out-

come of the integration of 𝐼𝑀 and can be safely neglected for most thin BL flows. The momentum
and displacement thicknesses for compressible BLs are, respectively,

𝛿2 ≡ ∫

∞

0

𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

(

1 − 𝑢̃
𝑈𝑒

)

d𝑦 and 𝛿1 ≡ ∫

∞

0

(

1 −
𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

)

d𝑦. (6.6)

Eq. (6.5) is valid for both laminar and turbulent regimes; however, the contribution of turbulence is
implicit. In other words, Eq. (6.5) does not provide any explicit representation of how turbulence
impacts the skin friction coefficient.

The AMI equation is derived by multiplying Eq. (6.4) by (𝑦 − 𝓁(𝑥)) –the first moment– and in-
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tegrating across the BL, ∫ ∞
0 {𝑦 − 𝓁(𝑥)} [⋅]𝑑𝑦. Applying the no-slip and no-penetration boundary

conditions at the wall, the AMI relation reads

𝐶𝑓
2

= 1
𝑅𝑒𝓁

+ 1
𝓁 ∫

∞

0

−𝜌̄𝑢′′𝑣′′

𝜌𝑒𝑈 2
𝑒

d𝑦 +

{

d𝛿𝓁2
d𝑥

−
𝛿2 − 𝛿𝓁2

𝓁
d𝓁
d𝑥

}

+
𝛿2,𝑣
𝓁

+ 1
𝓁 ∫

∞

0

(

𝜇 − 𝜇Ref
) 𝜕𝑢
𝜕𝑦

𝜌𝑒𝑈 2
𝑒

d𝑦

+

(

2 +
𝛿𝓁1
𝛿𝓁2

+
𝑈𝑒
𝜌𝑒

d𝜌𝑒
d𝑈𝑒

)

𝛿𝓁2
𝑈𝑒

d𝑈𝑒
d𝑥

+ 𝓁
𝑀 ,

(6.7)

where 𝜇Ref is a reference viscosity to define the Reynolds number of a compressible BL, 𝑅𝑒𝓁 =

𝑈𝑒𝜌𝑒𝓁∕𝜇Ref , and 𝓁
𝑀 is generated by the integration of the first moment of 𝐼𝑀 . An appropriate

definition of the length scale 𝓁 to isolate the laminar friction is given in Eq. (6.13), followed by
other alternative options in Section 6.1.1. Also, the complete derivation of the AMI equation,
Eq. (6.7), is provided in Appendix B. The AMI equation for compressible BLs, Eq. (6.7), was
independently introduced by Kianfar et al. [80, 79] and Xu et al. [179]. Note that Ref. [179] used a
slightly different treatment of the mean viscosity variation, basing their treatment on the Reynolds
number using the edge viscosity.

The angular momentum and displacement thicknesses introduced in Eq. (6.7) are, respectively,

𝛿𝓁2 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

) 𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

(

1 − 𝑢̃
𝑈𝑒

)

d𝑦 and 𝛿𝓁1 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

)

(

1 −
𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

)

d𝑦. (6.8)

Finally, Eq. (6.7) also introduces the wall-normal momentum thickness,

𝛿2,𝑣 ≡ ∫

∞

0

𝜌
𝜌𝑒
𝑣
𝑈𝑒

(

1 − 𝑢̃
𝑈𝑒

)

d𝑦. (6.9)

Following the BL theory, the streamwise direction, 𝑥, may be interpreted as a time-like variable. In
this perspective, Eq. (6.7) may be seen as an integral conservation principle for angular momentum
about 𝑦 = 𝓁(𝑥). As such, the AMI equation represents the sum of torques equal to the growth of
the BL’s angular momentum integral, 𝑑𝛿𝓁2 ∕𝑑𝑥.
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Interpretation

The terms appearing on the right-hand side of the AMI equation, Eq. (6.7), represent various phys-
ical flow phenomena influencing the skin friction coefficient. A succinct physical description of
each term is given in the following paragraph.

(I) 1
𝑅𝑒𝓁

⟶ skin friction coefficient of an equivalent laminar BL at matched 𝑅𝑒𝓁,

(II) 1
𝓁 ∫

∞

0

−𝜌̄𝑢′′𝑣′′

𝜌𝑒𝑈 2
𝑒

d𝑦⟶ turbulent torque by Reynolds shear stress,

(III) d𝛿
𝓁
2

d𝑥
−
𝛿2 − 𝛿𝓁2

𝓁
d𝓁
d𝑥

⟶ streamwise growth of angular momentum thickness,

(IV)
𝛿2,𝑣
𝓁

⟶ torque by mean wall-normal transport,

(V) 1
𝓁 ∫

∞

0

(

𝜇 − 𝜇Ref
) 𝜕𝑢
𝜕𝑦

𝜌𝑒𝑈 2
𝑒

d𝑦⟶ deviation from reference viscosity,

(VI) 1
𝑈𝑒

d𝑈𝑒
d𝑥

(

𝛿𝓁1 + 2𝛿𝓁2
)

+ 1
𝜌𝑒

d𝜌𝑒
d𝑥
𝛿𝓁2 ⟶ edge pressure gradient torque,

(VII) 𝓁
𝑀 ⟶ negligible terms, departure from BL assumptions.

A more detailed discussion of the terms is given in each of the following paragraphs below. Since
the AMI equation arises from the first moment of the velocity defect transport equation, the flow
phenomena on the right-hand side of Eq. (6.7) may be interpreted as torques. Figure 1.7 presents
a schematic of how these flow phenomena may be seen as torques that redistribute momentum rel-
ative to 𝑦 = 𝓁(𝑥), reshaping the mean velocity profile. For example, the Reynolds shear stress
acts as a counterclockwise torque with respect to 𝑦 = 𝓁(𝑥), which redistributes momentum toward
the wall (more precisely, velocity defect away from the wall), causing an enhancement in skin fric-
tion. As a different example, an adverse pressure gradient acts as a clockwise torque, redistributing
momentum away from the wall (velocity defect toward the wall) and decreasing skin friction.
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Viscous force and laminar friction coefficient (I) & (VI)

In the AMI equation, the skin-friction coefficient, 𝐶𝑓 , the laminar friction, and viscous deviation

terms originate from the first-order moment of viscous force (viscous torque) about 𝑦 = 𝓁(𝑥)

𝑇𝜈,𝓁 = ∫

∞

0
(𝑦 − 𝓁)

[

𝜕
𝜕𝑦

(

𝜇𝜕𝑢
𝜕𝑦

)]

d𝑦 = 𝓁𝜏𝑤 − 𝜇Ref𝑈𝑒 − ∫

∞

0

(

𝜇 − 𝜇Ref
) 𝜕𝑢
𝜕𝑦

d𝑦. (6.10)

If we choose the reference viscosity to be the shear stress weighted viscosity, 𝜇Ref = 𝜇2, defined as

𝜇2 =
∫ ∞
0 𝜇 𝜕𝑢

𝜕𝑦
d𝑦

∫ ∞
0

𝜕𝑢
𝜕𝑦
d𝑦

= 1
𝑈𝑒 ∫

∞

0
𝜇𝜕𝑢
𝜕𝑦

d𝑦, (6.11)

the deviation term (V) will vanish. In that particular case, the viscous torque becomes

𝑇𝜈,𝓁 = 𝜌𝑒𝑈
2
𝑒 𝓁

(𝐶𝑓
2

− 1
𝑅𝑒𝓁

)

. (6.12)

From Eq. (6.12), if 𝓁 is chosen such that 𝐶𝑓∕2 = 1∕𝑅𝑒𝓁 = 𝜇2∕(𝜌𝑒𝑈𝑒𝓁) for a ZPG laminar BL
solution, then the viscous torque about that 𝓁 vanishes, 𝑇𝜈,𝓁 = 0. The length scale 𝓁 mathematically
connects two BLs, the BL to be analyzed and the baseline ZPG laminar BL it is compared against.
The interpretation of the laminar term becomes particularly profitable when the length scale 𝓁 is
tied to a thickness measurement of the BL, e.g., 𝛿2, 𝛿1, or √𝜈𝑥∕𝑈𝑒. Given the physical significance
of the momentum thickness stemming from the momentum integral equation, Eq. (6.5), 𝓁 ∼ 𝛿2 is
a natural choice that has provided insight for incompressible BLs [38]. With this choice,

𝐶𝑓
2

= 1
𝑅𝑒𝓁

=
𝑐2𝜇Ref
𝑈𝑒𝜌𝑒𝛿2

, and 𝓁 = 𝛿2∕𝑐2, (6.13)

where 𝑐2 is a constant determined by solving self-similar laminar compressible (or incompressible)
BL equations. From Eq. (6.13) one can extract the appropriate length scale 𝓁, representing the
center of action of the viscous force for an equivalent laminar BL with the same𝑅𝑒𝛿2 = 𝜌𝑒𝑢𝑒𝛿2∕𝜇Ref .
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Choices are possible, such as tying the length scale to 𝓁 ∼ 𝛿1 or 𝓁 ∼
√

𝜈𝑥∕𝑈𝑒, which would
correspond to the center of action for the viscous force in a laminar BL at the same 𝑅𝑒𝛿1 or 𝑅𝑒𝑥,
respectively [38, 179]. Therefore, 𝓁 = 𝛿2∕𝑐2 isolates in a single term of the AMI equation the
equivalent skin friction coefficient of a laminar BL having the same 𝑅𝑒𝛿2 = 𝜌𝑒𝑢𝑒𝛿2∕𝜇Ref . In other
words, 2∕𝑅𝑒𝓁 represents the skin-friction coefficient if the flow was a ZPG laminar BL at the same
momentum thickness Reynolds number. As a result, all other terms in the AMI equation can be
interpreted as augmentations or attenuations of the skin friction coefficient compared to the laminar
case.

Note that the laminar solution of the skin friction coefficient to determine 𝑐2 may come from an
incompressible (e.g., Blasius) or fully compressible formulation. If a solution to the Blasius equa-
tion is used (𝑐2 ≈ 0.22), then the AMI equation represents the comparison of a general turbulent
compressible BL with an incompressible laminar one. Suppose a more general compressible for-
mulation of the self-similar BL equations is used [171]. In that case, the AMI equation can be
interpreted as a comparison with a baseline ZPG laminar BL at the same edge Mach number, 𝑀𝑒,
and wall-edge temperature ratio 𝑇𝑤∕𝑇𝑒 – provided the self-similar solution for 𝑐2 matches those
quantities, i.e., 𝑐2 = 𝑐2(𝑀𝑒, 𝑇𝑤∕𝑇𝑒).

In addition to choosing the reference length scale (e.g., 𝓁 ∼ 𝛿2 or 𝓁 ∼ 𝛿1) and the reference BL
formulation (incompressible or compressible), the use of the AMI equation also allows for choosing
different reference viscosities. As noted above, there is one particularly advantageous choice for
the AMI equation, 𝜇Ref = 𝜇2, because it causes the deviation term to vanish. With the choice of
𝜇2, the Reynolds number used for similarity with the baseline laminar BL is,

𝑅𝑒2 =
𝑈𝑒𝜌𝑒𝛿2
𝜇2

=
∫ ∞
0 𝜌𝑢̃

(

𝑈𝑒 − 𝑢̃
)

d𝑦

∫ ∞
0 𝜇 𝜕𝑢

𝜕𝑦
d𝑦

=
∫ 𝑥
0 𝜏𝑤(𝜉)d𝜉

∫ ∞
0 𝜇 𝜕𝑢

𝜕𝑦
d𝑦

, (6.14)

where 𝑥 = 0 is the start of the boundary layer. The numerator of 𝑅𝑒2 is the net streamwise flux of
velocity defect in the boundary layer. Using the momentum integral equation, Eq. (6.5), this is equal
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to the upstream-integrated mean wall shear stress (in the absence of an edge pressure gradient). The
denominator is the wall-normal integral of the viscous stress across the boundary layer.

One alternative to 𝜇2 would be the wall viscosity, 𝜇𝑤. These two probably do not differ much for
adiabatic walls but can vary significantly for strong wall cooling. In principle, the edge viscosity,
𝜇𝑒, could also be chosen. In the end, the choices of length scale and reference viscosity combine
to determine the particular interpretation of the AMI equation as a comparison of skin friction
coefficient with an equivalent laminar BL with matched 𝑅𝑒𝓁 = 𝜌𝑒𝑈𝑒𝓁∕𝜇Ref .

Reynolds shear stress and turbulent torque (II)

The second term on the right-hand side of the AMI equation is the torque due to the Reynolds shear
stress, −𝜌𝑢′′𝑣′′. The Reynolds stress does not appear explicitly in the momentum integral equation,
Eq. (6.5), because it evaluates to zero at both boundaries (wall and edge). In contrast, by integrating
the first moment of the velocity defect transport equation, the integral of the Reynolds shear stress
appears as an effective torque redistributing velocity defect in the wall-normal direction,

∫

∞

0
(𝑦 − 𝓁)

𝜕
(

𝜌̄𝑢′′𝑣′′
)

𝜕𝑦
d𝑦 = −∫

∞

0
𝜌̄𝑢′′𝑣′′d𝑦. (6.15)

This turbulent torque explicitly quantifies how turbulence enhances the BL’s friction relative to the
baseline laminar BL by bringing higher momentum fluid toward the wall. It is worth mentioning
that, in the AMI equation, in contrast to the FIK relation for internal flows [46], the contribution
of Reynolds shear stress to the skin-friction coefficient is unweighted. The physical interpretation
of the weighting (or lack thereof) in the Reynolds shear stress integral is discussed in detail in Ref.
[38].

For compressible flows, the velocity covariance is weighted by the mean density, signifying the role
of density in the turbulent transport of momentum. The impact of density variation on the wall-
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normal turbulent flux is not specific to the definition of Favre averaging. In general, the momentum
(and hence momentum flux) is proportional to the local density, regardless of the averaging method.
The difference between 𝑢′𝑣′ and 𝑢′′𝑣′′ was not found to be significant in the present work. A stress-
weighted density may encapsulate the role of density variation in altering the turbulence stresses,

𝜌2 =
∫ ∞
0 𝜌𝑢′′𝑣′′d𝑦

∫ ∞
0 𝑢′′𝑣′′d𝑦

, (6.16)

such that, by definition, the turbulent torque may be written as −𝜌2 ∫ ∞
0 𝑢′′𝑣′′d𝑦. For most BL flows,

−𝑢′′𝑣′′ > 0, so the turbulent torque defined here is typically positive (enhancement of wall shear
stress).

Streamwise growth of momentum thickness (III)

Integrating the first moment of the streamwise momentum deficit yields

−∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑥

(

𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

(

1 − 𝑢̃
𝑈𝑒

))

d𝑦 = 𝓁
d𝛿𝓁2
d𝑥

−
(

𝛿2 − 𝛿𝓁2
) d𝓁
d𝑥
. (6.17)

The momentum thickness 𝛿2 from the classical momentum integral equation, Eq. (6.5), represents
the net streamwise flux of streamwise velocity defect. Likewise, 𝛿𝓁2 , the angular momentum thick-
ness, represents the first moment about 𝑦 = 𝓁(𝑥) of the streamwise velocity defect flux. Equation
(6.17) represents the rate at which the angular momentum thickness grows relative to the growth
rate of 𝓁. The choice of length scale, 𝓁, plays an important quantitative role in this term. The
angular momentum thickness, 𝛿𝓁2 , is a signed quantity and can be negative or positive depending on
the choice of 𝓁. One way to interpret Eq. (6.17) is to think of it as representing the rate of change
of the angular momentum, with the streamwise coordinate as a time-like variable. As such, it is the
resultant term from all of the torques acting on the BL profile as well as the wall shear stress itself
from the left-hand side of the AMI equation, Eq. (6.7). Thus, the angular momentum thickness can
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be thought of as absorbing any imbalance of torques at a given streamwise location.

Mean wall-normal torque (IV)

The mean wall-normal torque in the AMI equation originates from the flux of velocity defect carried
by the mean wall-normal flow,

−∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑦

(

𝜌
𝜌𝑒
𝑣
𝑈𝑒

(

1 − 𝑢̃
𝑈𝑒

))

d𝑦 = 𝛿2,𝑣. (6.18)

This term represents the wall-normal flux of streamwise velocity defect, typically positive in most
BL conditions. When 𝑣 is positive, as is typical in BLs, this acts to increase the skin friction because
the effect is to transport velocity defect away from the wall, increasing the near-wall velocity. Hence,
it looks like a counter clock-wise torque in the AMI equation. In special cases, when 𝑣 ≤ 0, the
mean wall-normal velocity transports velocity defect toward the wall to attenuate the skin friction.
For example, a reversal of mean wall-normal flux has been observed for transitional BLs in the
incompressible regime [38].

Non-zero edge pressure gradient (VI)

The torque due to edge pressure gradient originates from a non-zero streamwise derivation of edge
velocity, 𝑈𝑒, and density, 𝜌𝑒. A favorable edge pressure gradient accelerates the edge velocity,
damping the velocity defect in the BL and acting as a counterclockwise torque, which tends to
increase the skin friction, Figure 1.7(a). In contrast, an adverse pressure gradient reduces the wall
shear stress by acting as a clockwise torque with respect to 𝑦 = 𝓁(𝑥), Figure 1.7(b). In this study,
only zero pressure gradient BLs will be considered, so this term is negligible for all cases shown
here. Future work will examine the effect of edge pressure gradients using the AMI equation.
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Departure from BL approximations (VII)

Torque caused by the terms corresponding to derivatives with respect to streamwise direction and
variation of mean pressure across the BL is included in 𝓁

𝑀 . For most BLs, the contribution of these
terms is expected to be negligible. The negligible terms, however, might need to be accounted for
in some critical scenarios, such as transitional flows and flows in the vicinity of the BL separation
or shock-BL interactions.

6.1.2 Moment of Total Enthalpy Integral Equation

In a previous study, the concept of the AMI equation has been extended to study heat transfer
in incompressible BLs [82], analogous to the AMI equation for the skin friction coefficient. The
resulting Moment of Temperature Integral (MTI) equation relates the surface heat flux to various
flow physics through the BL. In this section, this approach is generalized to form the moment of
total enthalpy integral (MTEI) equation for compressible BLs, taking into account variations in
density, viscosity, and thermal conductivity.

Derivation

Taking a similar approach as in section 6.1.1 yields the MTEI equation from the total enthalpy
equation. The Reynolds averaged total enthalpy equation for a statistically stationary 2D BL reads

𝜕
𝜕𝑥

(

𝜌𝑢̃𝐻̃
)

+ 𝜕
𝜕𝑦

(

𝜌𝑣𝐻̃
)

= 𝜕
𝜕𝑦

(

𝑘𝜕𝑇
𝜕𝑦

+ 𝜇𝑢𝜕𝑢
𝜕𝑦

− 𝜌̄𝑣′′𝐻 ′′

)

+ 𝐼𝐻 , (6.19)

in which the Favre averaging is implemented. In Eq. (6.19), 𝐻 = 𝑐𝑝𝑇𝑜 = 𝑐𝑝𝑇 + 𝑢2∕2 is total
enthalpy (by neglecting contributions of wall-normal and spanwise velocities by invoking standard
BL arguments), and 𝑇 is temperature. While the (dynamic) viscosity (𝜇) and thermal conductivity
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(𝑘) are assumed to vary with temperature, Prandtl number, 𝑃𝑟 = 𝜇𝑐𝑝∕𝑘, and specific heat capacity,
𝑐𝑝, are approximated as constants in this work. However, this assumption can be straightforwardly
relaxed to address more general scenarios. In Eq. (6.19), the terms that are neglected in BL ap-
proximation are collected in 𝐼𝐻 . Subtracting Eq. (6.19) from𝐻𝑒 times the continuity equation, Eq.
(6.1), a transport equation for the total enthalpy defect is achieved,

𝜕
𝜕𝑥

(

𝜌𝑢̃
(

𝐻𝑒 − 𝐻̃
))

+ 𝜕
𝜕𝑦

(

𝜌𝑣
(

𝐻𝑒 − 𝐻̃
))

= − 𝜕
𝜕𝑦

(

𝑘𝜕𝑇
𝜕𝑦

+ 𝜇𝑢𝜕𝑢
𝜕𝑦

− 𝜌𝑣′′𝐻 ′′

)

− 𝐼𝐻 . (6.20)

The total enthalpy at the BL edge,𝐻𝑒, is assumed constant in the streamwise direction (i.e., assum-
ing adiabatic flow outside the BL). Integrating Eq. (6.20) across the BL yields the (classic) integral
equation for the Stanton number

𝑆𝑡 =
d𝛿𝐻
d𝑥

+
(

1 +
𝑈𝑒
𝜌𝑒

𝜕𝜌𝑒
𝜕𝑈𝑒

)

𝛿𝐻
𝑈𝑒

d𝑈𝑒
d𝑥

+
𝛿𝐻

𝐻Ref −𝐻𝑤

d(𝐻Ref −𝐻𝑤)
d𝑥

+ H, (6.21)

where the Stanton number (𝑆𝑡) and total enthalpy thickness (𝛿𝐻 ) are defined as follows,

𝑆𝑡 ≡
𝑞𝑤

𝜌𝑒𝑈𝑒
(

𝐻Ref −𝐻𝑤
) , 𝛿𝐻 ≡ ∫

∞

0

𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

(

𝐻𝑒 − 𝐻̃
𝐻Ref −𝐻𝑤

)

d𝑦. (6.22)

In the above, 𝑞𝑤 = −𝑘𝑤 (𝜕𝑇 ∕𝜕𝑦)𝑤 is the wall heat flux. Typically negligible for BLs, 𝐻 is the
result of integration of 𝐼𝐻 . Equation (6.21) is valid for laminar, transitional, and turbulent flow,
yet one cannot determine the explicit contribution of fluctuations (or perturbations) on surface heat
flux. In contrast, taking a similar approach as the AMI equation, we multiply Eq. (6.20) by a length
scale, (𝑦 − 𝓁), (as the first moment), then integrate the whole equation across the BL. Imposing the
wall and edge boundary conditions, we obtain the MTEI equation for high-speed compressible BLs
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𝑆𝑡 = 1
𝑃𝑟Ref ⋅ 𝑅𝑒𝓁

+ 1
𝓁 ∫

∞

0

−𝜌𝑣′′𝐻 ′′

𝜌𝑒𝑈𝑒
(

𝐻Ref −𝐻𝑤
)d𝑦 +

{

d𝛿𝓁𝐻
d𝑥

−
𝛿𝐻 − 𝛿𝓁𝐻

𝓁
d𝓁
d𝑥

}

+
𝛿𝐻,𝑣
𝓁

+ 1
𝓁 ∫

∞

0

(

𝑘 − 𝑘Ref
) 𝜕𝑇
𝜕𝑦

+
(

𝜇 − 𝜇Ref
)

𝑢 𝜕𝑢
𝜕𝑦

𝜌𝑒𝑈𝑒
(

𝐻Ref −𝐻𝑤
) d𝑦 +

(

1 +
𝑈𝑒
𝜌𝑒

𝜕𝜌𝑒
𝜕𝑈𝑒

) 𝛿𝓁𝐻
𝑈𝑒

d𝑈𝑒
d𝑥

+
𝛿𝓁𝐻

𝐻Ref −𝐻𝑤

d(𝐻Ref −𝐻𝑤)
d𝑥

+ 𝓁
𝐻 .

(6.23)

where the left-hand side is the Stanton number defined in Eq. (6.22). The basis of choosing an
appropriate length scale 𝓁 for the MTEI equation is discussed in Section 6.1.2. In particular, to
isolate the laminar Stanton number (like in this report), 𝓁 is defined in Eq. (6.30). The MTEI
equation, Eq. (6.23), introduces the moment of total enthalpy thickness and mean wall-normal
enthalpy thickness as

𝛿𝓁𝐻 ≡ ∫

∞

0

(

1 −
𝑦
𝓁

) 𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

(

𝐻𝑒 − 𝐻̃
𝐻Ref −𝐻𝑤

)

d𝑦, 𝛿𝐻,𝑣 ≡ ∫

∞

0

𝜌
𝜌𝑒
𝑣
𝑈𝑒

(

𝐻𝑒 − 𝐻̃
𝐻Ref −𝐻𝑤

)

d𝑦, (6.24)

respectively. The total enthalpy thickness, 𝛿𝐻 , is recovered in the limit of 𝓁 → ∞. Finally, 𝓁
𝐻 in

Eq. (6.23), arises from the integration of the first moment of 𝐼𝐻 .

In Eq. (6.23), 𝑘Ref and 𝜇Ref are the reference conductivity and viscosity, respectively. The reference
conductivity and viscosity are related via a reference Prandtl number, 𝑃𝑟Ref = 𝑐𝑝𝜇Ref∕𝑘Ref . It is not
necessary to choose 𝑃𝑟Ref = 𝑃𝑟, even for constant 𝑃𝑟 flow. Instead, the reference Prandtl number
should be chosen based on the desired reference enthalpy,

𝐻Ref = 𝑐𝑝(𝑇𝑒 − 𝑇𝑤) + 𝑃𝑟Ref
𝑈 2
𝑒

2
. (6.25)

Thus, the reference Prandtl number acts as a sort of reference recovery factor for defining the Stanton
number.

A common definition of the Stanton number is based on the difference between the adiabatic wall
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temperature, 𝑇aw, and wall temperature, 𝑇𝑤, that is, 𝑆𝑡 = 𝑞𝑤∕𝜌𝑒𝑈𝑒
(

𝐻aw −𝐻𝑤
). Such a definition

can be facilitated with the choice of 𝑃𝑟Ref = 𝑟Ref , the reference recovery factor for defining an
adiabatic wall temperature. However, it is well known that the recovery factor for laminar and tur-
bulent BLs can be quite different, e.g., 𝑃𝑟1∕2 for laminar BLs and approximately 𝑃𝑟1∕3 for turbulent
BLs [171]. This complicates the interpretation of the MTEI equation, in particular, the first term,
which should represent the Stanton number of an equivalent laminar BL that serves as a reference
for the transitional or turbulent BL under consideration. Thus, it is not clear how to choose the
reference recovery factor. (Often for BLs in the hypersonic regime with chemical and thermal non-
equilibrium, the heat flux coefficient is defined based on the edge kinetic energy, 𝐶𝑞 = 𝑞𝑤∕𝜌𝑒𝑈 3

𝑒

[34].)

Instead, the author believes that the interpretation of the MTEI equation is more straightforward if
the edge stagnation enthalpy is used in the denominator of the Stanton number, corresponding to
the choice of 𝑃𝑟Ref = 1. With this choice, the denominator includes the maximum total enthalpy
difference, 𝐻𝑒 −𝐻𝑤, available to supply energy to the wall (in the form of surface heat flux). This
definition does allow for negative Stanton numbers in the case of non-unity recovery factors. Still,
such negative Stanton numbers are interpretable as net energy flux opposite the global driving en-
ergy difference. The effect of turbulence to increase the recovery factor (adiabatic wall temperature)
can thus be included within the broader analysis without causing interpretive difficulties. Thus, the
Stanton number definition used in this chapter is given by Eq. (6.22), equivalent to the choice of
𝑃𝑟Ref = 1. Other choices are possible and may be the subject of future research.

Interpretation

The right-hand side of the MTEI equation, Eq. (6.23), consists of several terms representing a
mapping of flow phenomena based on how they alter the Stanton number. A physical description
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of each flow feature in the MTEI equation is summarized as

(I) 1
𝑃𝑟Ref ⋅ 𝑅𝑒𝓁

⟶ the Stanton number of an equivalent laminar BL at matched 𝑅𝑒𝓁,

(II) 1
𝓁 ∫

∞

0

−𝜌𝑣′′𝐻 ′′

𝜌𝑒𝑈𝑒
(

𝐻Ref −𝐻𝑤
)d𝑦⟶ turbulent flux integral, turbulent transport of total enthalpy,

(III) d𝛿
𝓁
𝐻

d𝑥
−
𝛿𝐻 − 𝛿𝓁𝐻

𝓁
d𝓁
d𝑥

⟶ streamwise growth of the first moment of total enthalpy thickness,

(IV)
𝛿𝐻,𝑣
𝓁

⟶ flux by mean wall-normal transport,

(V) 1
𝓁 ∫

∞

0

(

𝑘 − 𝑘Ref
) 𝜕𝑇
𝜕𝑦

+
(

𝜇 − 𝜇Ref
)

𝑢 𝜕𝑢
𝜕𝑦

𝜌𝑒𝑈𝑒
(

𝐻Ref −𝐻𝑤
) d𝑦⟶ deviation from reference viscous transport,

(VI)
(

1 +
𝑈𝑒
𝜌𝑒

𝜕𝜌𝑒
𝜕𝑈𝑒

) 𝛿𝓁𝐻
𝑈𝑒

d𝑈𝑒
d𝑥

⟶ edge pressure gradient flux,

(VII) 𝛿𝓁𝐻
𝐻Ref −𝐻𝑤

d(𝐻Ref −𝐻𝑤)
d𝑥

⟶ flux by wall-temperature variation,

(VIII) 𝓁
𝐻 ⟶ negligible terms.

A detailed discussion of these flow phenomena is given in the proceeding paragraphs. The MTEI
equation is derived from the first moment of the total enthalpy deficit transport equation that in-
volves both internal and kinetic energy transport mechanisms. Thus, we interpret the flow phe-
nomena on the right-hand side of Eq. (6.23) as fluxes of total enthalpy, or redistribution of the total
enthalpy profile.

Viscous flux and the laminar Stanton number (I) & (V)

In the MTEI equation, the Stanton number, laminar flux, and deviation originate from

∫

∞

0
(𝑦 − 𝓁)

[

𝜕
𝜕𝑦

(

𝑘𝜕𝑇
𝜕𝑦

+ 𝜇𝑢𝜕𝑢
𝜕𝑦

)]

d𝑦 =𝓁𝑞𝑤 −
𝑘Ref
𝑐𝑝

(

𝐻Ref −𝐻𝑤
)

− ∫

∞

0

(

(

𝑘 − 𝑘Ref
) 𝜕𝑇
𝜕𝑦

+
(

𝜇 − 𝜇Ref
)

𝑢𝜕𝑢
𝜕𝑦

)

d𝑦.
(6.26)
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One can merge all the viscous (laminar) effects in a single term, 1∕𝑃𝑟Ref ⋅ 𝑅𝑒𝓁, by choosing the
reference conductivity as 𝑘Ref = 𝑘𝐻 (i.e., reference viscosity as 𝜇Ref = 𝜇𝐻 ), where

𝑘𝐻 =
∫ ∞
0 𝑘

(

𝑐𝑝
𝜕𝑇
𝜕𝑦

+ 𝑃𝑟𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦

∫ ∞
0

(

𝑐𝑝
𝜕𝑇
𝜕𝑦

+ 𝑃𝑟Ref𝑢
𝜕𝑢
𝜕𝑦

)

d𝑦
=

∫ ∞
0

(

𝑘 𝜕𝑇
𝜕𝑦

+ 𝜇𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦

𝑇Ref − 𝑇𝑤
, (6.27)

𝜇𝐻 =
∫ ∞
0 𝜇

(

𝑐𝑝
𝑃𝑟

𝜕𝑇
𝜕𝑦

+ 𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦

∫ ∞
0

(

𝑐𝑝
𝑃𝑟Ref

𝜕𝑇
𝜕𝑦

+ 𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦
=
𝑃𝑟Ref ∫

∞
0

(

𝑘 𝜕𝑇
𝜕𝑦

+ 𝜇𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦

𝑐𝑝(𝑇Ref − 𝑇𝑤)
=
𝑃𝑟Ref
𝑐𝑝

𝑘𝐻 , (6.28)

where 𝑇Ref = 𝐻Ref∕𝑐𝑝 is the adiabatic wall temperature, 𝑇Ref = 𝑇aw, for 𝑃𝑟Ref = 𝑟Ref or the edge
stagnation temperature, 𝑇Ref = 𝑇𝑜,𝑒, for the choice 𝑃𝑟Ref = 1. With such reference values, the
deviation term (V) will vanish. 𝜇𝐻 can be interpreted as a viscosity balancing between molecular
conduction and viscous dissipation of kinetic energy. Hence,

𝜌𝑒𝑈𝑒
(

𝐻𝑒 −𝐻𝑤
)

𝓁
(

𝑆𝑡 − 1
𝑃𝑟Ref𝑅𝑒𝓁

)

= 0. (6.29)

For ZPG compressible BLs,

𝑆𝑡 = 1
𝑃𝑟Ref𝑅𝑒𝓁

=
𝑐𝐻𝑘𝐻

𝜌𝑒𝑐𝑝𝑈𝑒𝛿𝐻
, and 𝓁 = 𝛿𝐻∕𝑐𝐻 , (6.30)

where 𝑐𝐻 is a constant calculated by solving self-similar ZPG laminar compressible (or incompress-
ible) momentum and energy equations. Implementing the definition of 𝓁 according to Eq. (6.30)
the laminar 𝑆𝑡 is precisely equal to 1∕𝑃𝑟Ref𝑅𝑒𝓁 at specific 𝛿𝐻 (𝑥). Together, the choice of 𝛿𝐻 and
𝑘𝐻 as the reference length and reference transport coefficient, respectively, the Peclet number used
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for similarity with the baseline laminar BL is,

𝑃𝑒𝐻 =
𝑈𝑒𝜌𝑒𝑐𝑝𝛿𝐻
𝑘𝐻

=
∫ ∞
0 𝜌𝑢̃

(

𝐻𝑒 − 𝐻̃
)

d𝑦

∫ ∞
0

(

𝑘 𝜕𝑇
𝜕𝑦

+ 𝜇𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦
=

∫ 𝑥
0 𝑞𝑤(𝜉)d𝜉

∫ ∞
0

(

𝑘 𝜕𝑇
𝜕𝑦

+ 𝜇𝑢 𝜕𝑢
𝜕𝑦

)

d𝑦
. (6.31)

The numerator is the streamwise flux of the total enthalpy defect. Using the total enthalpy integral
equation, Eq. (6.21), this is equal to the upstream-integrated wall heat flux. The denominator is the
net wall-normal flux of total enthalpy due to viscous and conductive transport.

Turbulent total enthalpy flux (II)

The second term on the right-hand side of the MTEI equation is the flux due to covariance of wall-
normal velocity and total enthalpy, −𝜌𝐻 ′′𝑣′′. By integrating the first moment of the wall-normal
derivative of the turbulence covariance,

∫

∞

0
(𝑦 − 𝓁)

𝜕
(

𝜌̄𝐻 ′′𝑣′′
)

𝜕𝑦
d𝑦 = −∫

∞

0
𝜌̄𝐻 ′′𝑣′′d𝑦, (6.32)

we obtain the explicit contribution of the turbulent flux of total enthalpy (turbulent flux) to the
surface heat flux. Naturally, the internal and kinetic energies are embedded into total enthalpy.
Therefore, the covariance of wall-normal velocity and total enthalpy can be further decomposed to
quantify the role of enthalpy and kinetic energies on turbulent flux. Eq. 6.32 is rewritten as

∫

∞

0
𝜌𝐻 ′′𝑣′′d𝑦 = ∫

∞

0
𝜌
(

𝑐𝑝𝑇 ′′𝑣′′ + 𝑢̃𝑢′′𝑣′′ + 1
2
𝑢′′𝑢′′𝑣′′

)

d𝑦, (6.33)

where 𝑐𝑝𝜌𝑇 ′′𝑣′′, 𝜌𝑢̃𝑢′′𝑣′′, and 𝜌𝑢′′𝑢′′𝑣′′∕2 are wall-normal turbulent fluxes of enthalpy, mean kinetic
energy, turbulent kinetic energy, respectively. For high Mach number (supersonic and hypersonic)
BLs, the turbulent transport of the mean kinetic energy, 𝜌𝑢̃𝑢′′𝑣′′, is expected to be the primary con-
tributor enhancing the surface heat flux, whereas the turbulent flux of enthalpy, 𝑐𝑝𝜌𝑇 ′′𝑣′′, naturally
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reduces the surface heat flux toward the wall because 𝑇𝑤 ≥ 𝑇𝑒, as is the case for most high-speed
aerodynamic heating applications.

Streamwise growth of enthalpy thickness (III)

The contribution of the streamwise growth of the total enthalpy thickness to the surface heat flux
originates from

∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑥

(

𝜌
𝜌𝑒

𝑢̃
𝑈𝑒

(

𝐻𝑒 − 𝐻̃
𝐻Ref −𝐻𝑤

))

d𝑦 = −𝓁
d𝛿𝓁𝐻
d𝑥

+
(

𝛿𝐻 − 𝛿𝓁𝐻
) d𝓁
d𝑥
. (6.34)

The total enthalpy thickness, 𝛿𝐻 , from Eq. (6.21), represents the net streamwise flux of total en-
thalpy defect in the BL. The first moment of the total enthalpy defect flux is captured by 𝛿𝓁𝐻 , the
moment of total enthalpy thickness. Equation (6.23) can be thought of as an equation for the growth
rate of the moment of total enthalpy thickness, 𝑑𝛿𝓁𝐻∕𝑑𝑥, with all other terms being analogous to
“torques”, redistributing the total enthalpy in the wall-normal direction to alter its moment about
𝑦 = 𝓁(𝑥). Like the angular momentum thickness, the moment of total enthalpy thickness is a signed
quantity; its rate of change with 𝑥 can be positive or negative, depending on how it absorbs total
enthalpy fluxes from the other terms. Moreover, the growth rate of the moment of total enthalpy
and angular momentum thicknesses are not necessarily the same due to the effect of Prandtl number
and complex energy transfer mechanisms.

Mean wall-normal flux (IV)

The mean wall-normal flux of total enthalpy is due to the wall-normal advection of total enthalpy
deficit,

∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑦

(

𝜌
𝜌𝑒
𝑣
𝑈𝑒

(

𝐻𝑒 − 𝐻̃
𝐻Ref −𝐻𝑤

))

d𝑦 = −𝛿𝐻,𝑣. (6.35)
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This term represents how mean wall-normal velocity transports total enthalpy across the BL and af-
fects the surface heat flux. It is analogous to the mean wall-normal torque in the AMI equation and
will generally have the same behavior. A recent investigation of incompressible BLs revealed a neg-
ative contribution of mean wall-normal to the Stanton number because of the negative wall-normal
velocity region in the vicinity of the surface during the transition to turbulence [82]. However, for
a fully turbulent regime, the mean wall-normal flux is generally positive and weakly augments the
surface heat flux.

Non-zero edge pressure gradient and wall temperature variation (VI) & (VII)

Just as an adverse or favorable pressure gradient may act as torque to alter the mean velocity defect
profile, the moment of total enthalpy thickness is also subject to edge pressure gradient effects.
Additionally, any variation of the wall temperature also impacts the evolution of the moment of total
enthalpy thickness. In this chapter, zero pressure gradient BLs over isothermal walls are considered,
so the exploration of these terms is left to future work.

Departure from BL approximations (VIII)

All terms in the total enthalpy conservation equation that are typically small in thin BLs are gathered
in a single term, negligible fluxes. For high-speed BLs (with no BL separation), the negligible

terms originated from the streamwise derivative of the streamwise heat flux, −𝑘𝜕𝑇 ∕𝜕𝑥, and the
streamwise velocity and total enthalpy covariance, 𝜌𝑣′′𝐻 ′′. While not relevant to the present work,
these terms could become significant and warrant more attention to flows such as incipient BL
separation or shock-BL interactions.
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6.2 Results and Analysis

Now that the first-moment integral equations, namely AMI and MTEI equations, are extended to
high-speed BLs, The author applies these techniques to laminar and turbulent compressible BL
datasets. The BL dataset has a wide range of edge Mach numbers from subsonic to supersonic.
Also, a variety of wall-temperature boundary conditions, including adiabatic wall and cold wall,
have been applied. This section studies the AMI and MTEI equations within the laminar regime.
Subsequently, we focus on fully turbulent BLs to investigate the effect of turbulence on the skin
friction coefficient and Stanton number.

6.2.1 Laminar Regime

Before turning our attention to turbulent boundary layers, here, the impact of compressibility on
skin friction and surface heat flux is explored. For now, we limit our analysis to ZPG laminar
compressible BLs over a flat plate. Similar to incompressible laminar BLs, self-similarity can be
achieved in compressible BLs using unique transformations. Taking into account the Illingworth
transformation for steady laminar BLs with constant edge conditions, the similarity variables read

𝜉(𝑥) = 𝜌𝑒𝜇𝑒𝑈𝑒𝑥 and 𝜂(𝑥, 𝑦) =
𝑈𝑒
√

2𝜉 ∫

𝑦

0
𝜌𝑑𝑦. (6.36)

A streamfunction 𝜓 = 𝑓 (𝜂)
√

2𝜉 satisfies the (steady) continuity equation, Eq. (2.1), in a way that
𝑢 = 𝑈𝑒𝑓 ′ and 𝜌𝑣 = −𝜌𝑒𝜇𝑒𝑈𝑒𝑓∕

√

2𝜉 − 𝜂𝑥𝑓 ′
√

2𝜉. Applying the above transformation to the steady
BLs momentum equation, the following ordinary differential equation (ODE) for 𝑓 is achieved

(

𝐶𝑓 ′′)′ + 𝑓𝑓 ′′ = 0, (6.37)
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where 𝐶 = 𝜌𝜇∕𝜌𝑒𝜇𝑒 is the Chapman-Rubesin parameter. Note only in this case the superscript ′
denotes differentiation with respect to the similarity variable 𝜂. The boundary conditions for Eq.
(6.37) are the same as Blasius solution, namely 𝑓 (0) = 0, 𝑓 ′(0) = 0, and 𝑓 ′(𝜂 → ∞) = 1. The
BLs energy equation also takes a self-similar ODE form –under some assumptions [171]– if the
enthalpy field is separated into a magnitude, ℎ𝑒(𝜉), multiplied by a shape function, 𝑔(𝜂), as

ℎ(𝑥, 𝑦) = ℎ𝑒(𝜉)𝑔(𝜂). (6.38)

The self-similar energy equation for calorically perfect gas with constant 𝑃𝑟 reads

(

𝐶𝑔′
)′ + 𝑃𝑟𝑓𝑔′ + 𝑃𝑟(𝛾 − 1)𝑀2

𝑒𝐶𝑓
′′2 = 0, (6.39)

where it’s coupled with the momentum equation, Eq. (6.37). The boundary conditions for 𝑔, de-
pending on the wall condition, yield

Adiabatic wall: 𝑔(0) = 𝑔𝑤, 𝑔
′(0) = 0, 𝑔(∞) = 1

Non-adiabatic wall: 𝑔(0) = 𝑔𝑤, 𝑔
′(0) ≠ 0, 𝑔(∞) = 1.

The self-similar momentum and energy equations, Eqs. (6.37) and (6.39), are solved numerically
by applying second-order finite differences and a Newton-Raphson method with a line-search algo-
rithm, based on Ref. [174]. The inputs for the self-similar BL solver are the edge Mach number and
the wall-edge temperature ratio. The C++ solver outputs the self-similar functions 𝑓 , 𝑓 ′, 𝑓 ′′, and 𝑔
from which I construct the streamwise and wall-normal velocity profiles as well as the temperature
and density fields.
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Angular momentum integral equation

For the laminar regime, naturally, the Reynolds stress components are zero, i.e., the turbulent torque

disappears. Moreover, the negligible terms vanish to comply with the BL approximations. In our
analysis, although not necessary, I further assumed the BL edge quantities remain constant in the
streamwise direction; thus, the edge pressure gradient is also zero. Note these conditions are already
imposed on the self-similar equation, Eq. (6.37). Consequently, the AMI equation is simplified to

𝐶𝑓
2

= 1
𝑅𝑒𝓁

+

{

d𝛿𝓁2
d𝑥

−
𝛿2 − 𝛿𝓁2

𝓁
d𝓁
d𝑥

}

+
𝛿2,𝑣
𝓁

+ 1
𝓁 ∫

∞

0

(

𝜇 − 𝜇Ref
) 𝜕𝑢
𝜕𝑦

𝜌𝑒𝑈 2
𝑒

d𝑦 (6.40)

for ZPG laminar compressible BL. If we choose 𝓁 ∼ 𝛿2, and constraint 𝐶𝑓∕2 ≡ 1∕𝑅𝑒𝓁, coefficient
𝑐2 in Eq. (6.13) can be determined from the self-similar solution as

𝑐2 =
[

𝜇𝑤
𝜇Ref

] 𝑓 ′′(0) ∫ ∞
0 𝑓 ′(1 − 𝑓 ′)𝑑𝜂
𝑔(0)

. (6.41)

Having the appropriate AMI’s length scale, 𝓁, we can proceed with the AMI analysis and apply
it to the self-similar laminar solution. Here, I consider the cases in Table 6.1, and input feed 𝑀𝑒

and 𝑇𝑤∕𝑇𝑒 as inputs to the laminar solver. Figure 6.1 shows the four non-zero flow phenomena that
appear in the right-hand side of Eq. (6.40); Fig. 6.1 (a) is the laminar term that is equivalent to the
skin-friction coefficient. Therefore, the sum of the other three flow phenomena must cancel each
other out. Consistent with previous observations, [171],𝐶𝑓 decreases at higher𝑀𝑒. We observe this
is primarily due to the effect of lower near-wall density and how it impacts the momentum transport
mechanism; this phenomenon will be further studied in the next section for fully turbulent flows.
Moreover, the effect of wall cooling on friction is evident; the stronger the wall cooling, the higher
the skin friction coefficient. This effect is significant comparing D-5 and E-5, both with 𝑀𝑒 = 5,
yet E-5 is strongly cooled. The contribution of deviation from the reference viscosity is non-zero
as 𝜇Ref = 𝜇𝑤, Figure 6.1 (b). This contribution is directly impacted by the temperature profile
within the BL and the imposed wall condition, e.g., adiabatic or non-adiabatic. The deviation
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negatively contributes to 𝐶𝑓 for the adiabatic wall cases for which the peak temperature occurs
at the surface, and the reference viscosity is smaller than the wall viscosity. Colder 𝑇𝑤 increases
the deviation until it becomes positive for strongly cold wall cases, such as E-5. The trend of the
streamwise growth and (mean) wall-normal torque are similar to what was observed in laminar and
early transitional incompressible BLs, Chapter 4. The (mean) wall-normal torque increases the
skin-friction coefficient, whereas the streamwise growth approximately balances this enhancement.
Their strengths depend on the wall-cooling and edge Mach number and how these confine the BL
thickness growth; the thicker the viscous region –higher wall-normal velocity–, the stronger the
effect of the (mean) wall-normal torque, and hence the streamwise growth.

A similar laminar AMI analysis is presented in Figs. 6.2 but for the reference viscosity 𝜇Ref =

𝜇2, obtained from Eq. (6.11). Therefore, the viscous deviation naturally vanishes, Fig. 6.2 (b).
Since 𝐶𝑓∕2 = 1∕𝑅𝑒𝓁, the streamwise growth and wall-normal torque perfectly balance each other.
Interestingly, choosing 𝜇Ref = 𝜇2 absorbs a considerable amount of the wall-cooling effect on the
streamwise growth and wall-normal torque, i.e. these flow phenomena primarily vary with respect
to 𝑀𝑒.

Moment of total enthalpy integral equation

The MTEI equation is significantly simplified for the laminar regime as the turbulent flux and neg-

ligible terms naturally disappear. Furthermore, we focus on ZPG BLs over a flat plate with constant
wall temperature in the streamwise direction; hence, fluxes by the edge pressure gradient and wall-

temperature variation vanish too. Consequently, the MTEI equation reads

𝑆𝑡 = 1
𝑃𝑟Ref ⋅ 𝑅𝑒𝓁

+

{

d𝛿𝓁𝐻
d𝑥

−
𝛿𝐻 − 𝛿𝓁𝐻

𝓁
d𝓁
d𝑥

}

+
𝛿𝐻,𝑣
𝓁

+ 1
𝓁 ∫

∞

0

(

𝑘 − 𝑘Ref
) 𝜕𝑇
𝜕𝑦

+
(

𝜇 − 𝜇Ref
)

𝑢 𝜕𝑢
𝜕𝑦

𝜌𝑒𝑈𝑒
(

𝐻Ref −𝐻𝑤
) d𝑦.

(6.42)
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Figure 6.1: The budget of the laminar AMI equation, Eq. (6.40), based on 𝜇Ref = 𝜇𝑤: laminar skin
friction (a), the viscous deviation (b), the streamwise growth of the angular momentum thickness
(c), and the torque due to wall-normal velocity (d). Each term is shown as a function of 𝑅𝑒𝛿2 =
𝑈𝑒𝜌𝑒𝛿2∕𝜇𝑤. In (a), C-2 is shown with dashed lines.

By assuming 𝓁 ∼ 𝛿𝐻 , and isolating the laminar Stanton number to 1∕𝑃𝑟Ref𝑅𝑒𝓁, we determine
coefficient 𝑐𝐻 in Eq. (6.30) as

𝑐𝐻 =
[

𝑘𝑤
𝑘Ref

] [

𝑇Ref − 𝑇𝑤
𝑇𝑒

] 𝑔′(0) ∫ ∞
0 𝑓 ′(1 − 𝐺)𝑑𝜂

𝑔(0) (1 − 𝐺(0))
, (6.43)

where 𝐺 = 𝑇𝑜∕𝑇𝑜,𝑒 is the ratio of the stagnation temperature. Note, the second term within the
brackets on the right-hand side of Eq. (6.43) emerges from the definition of the Stanton number,
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Figure 6.2: The budget of the laminar AMI equation, Eq. (6.40), based on 𝜇Ref = 𝜇2: laminar skin
friction (a), the viscous deviation (b), the streamwise growth of the angular momentum thickness
(c), and the torque due to wall-normal velocity (d).

Eq. (6.22), and hence the choice of the reference total enthalpy; this is discussed in details in Section
6.1.2.

Figures 6.3 present the four non-zero flow phenomena that appeared on the right-hand side of the
laminar MTEI equation, Eq. 6.42. The laminar solution is obtained for the non-adiabatic wall
cases in Table 6.1 by inputting 𝑀𝑒 and 𝑇𝑤∕𝑇𝑒. The influence of the edge Mach number and wall-
cooling on the Stanton number are qualitatively similar to what we observed in laminar skin friction
coefficient; the higher the edge Mach number or, the weaker the wall cooling, the lower the Stanton
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number at the wall, Fig. 6.3 (a). In addition, the wall-normal flux in the MTEI analysis behaves
analogous to its counterpart in the AMI equation. With the choice of 𝜇Ref = 𝜇𝑤 (and 𝑃𝑟 = 0.72),
the viscous deviation term has stronger negative contributions to the Stanton number rather than
the viscous deviation term in the AMI analysis, Fig. 6.3 (b). Interestingly, wall-cooling forces
the deviation term to approach zero; we observe in D-5 that this term approximately vanishes. To
alleviate this stronger negative contribution and to satisfy the balance of the MTEI budget, the flux
caused by the streamwise growth becomes more positive than its counterpart in the AMI equation,
Fig. 6.3 (b). Surprisingly, for the cases with weak wall-cooling (D-5), this flow phenomenon, that
is often contributes negatively to the Stanton number, flips the sign and becomes positive.

In Figs. 6.4 the laminar MTEI analysis is conducted using the reference viscosity 𝜇Ref = 𝜇𝐻

based on Eq. (6.28). Here, the flow phenomena on the right-hand side of the MTEI equation are
plotted with respect to the Peclet number, 𝑃𝑒𝐻 , in the 𝑥-axis. Note the choice of the reference
viscosity yields zero viscous deviation. In analogous to the laminar AMI analysis, by making the
viscous deviation zero, the streamwise growth and wall-normal flux perfectly cancel each other.
Also, These two flow phenomena are now mainly sorted based on the edge Mach number, i.e., their
dependency on wall-cooling have been reduced.

6.2.2 Turbulent Regime

As discussed before, the first moment integral equations are valid for laminar, transitional, or tur-
bulent regimes. In Section 6.2.1, we applied the AMI and MTEI decomposition on laminar com-
pressible BLs with a variety of edge and wall temperature conditions. These equations provide
a physical understanding of how and why the skin friction and surface heat flux vary in laminar
high-speed BLs. Besides that, the laminar solutions –with matching wall-edge conditions as the
turbulent counterpart– are required to determine coefficients 𝑐2 and 𝑐𝐻 in the AMI and MTEI equa-
tions length scale 𝓁, respectively. Having the required coefficients in hand, we can proceed to study
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Figure 6.3: The budget of the laminar MTEI equation, Eq. (6.42), based on 𝜇Ref = 𝜇𝑤: laminar
Stanton number (a), the viscous deviation (b), the streamwise growth (c), and the flux due to wall-
normal velocity (d).

turbulent high-speed BLs.

Dataset

This section discusses the compressible turbulent BL data used to evaluate the AMI and MTEI
equations, Eqs. (6.7) and (6.23), respectively. The data are obtained from DNS of compressible
BLs using a turbulent recycling method with zero edge pressure gradient [33]. A sixth-order hy-
brid scheme was utilized in the numerical simulations to ensure very low numerical dissipation.
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Figure 6.4: The budget of the laminar MTEI equation, Eq. (6.42), based on 𝜇Ref = 𝜇𝐻 : laminar
Stanton number (a), the viscous deviation (b), the streamwise growth (c), and the flux due to wall-
normal velocity (d).

This scheme uses a skew-symmetric formulation [130] in smooth regions of the flow and a sixth-
order targeted essentially non-oscillatory (TENO) scheme across discontinuities [45]. In low-Mach-
number calculations, the TENO scheme is never utilized, and the calculation is entirely carried out
using the skew-symmetric method. At higher Mach numbers, the TENO scheme is triggered only on
a small fraction of the computational grid points. Since the Reynolds number is relatively high for
the simulations, a second-order central finite-difference stencil is applied for the diffusion fluxes.
The time integration is conducted using the strong-stability-preserving third-order Runge–Kutta
method [50]. The system of equations for DNS is solved by the hypersonics task-based research
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Case Inputs Outputs
ID Col 𝑀𝑒 𝑅𝑒𝛿𝑖𝑛 𝜇𝑤∕𝜇𝑒 𝑇𝑤∕𝑇aw 𝜌𝑤∕𝜌𝑒 𝜌min∕𝜌𝑒 𝜌2∕𝜌𝑒 𝜌2∕𝜌𝑤 𝜇2∕𝜇𝑒 𝜇𝐻∕𝜇𝑒 𝑅𝑒2 𝑃𝑒𝐻

A-.6 0.6 2800 1.05 1 0.94 0.94 0.98 1.04 1.03 - 294-959 -
B-2 2 4736 1.49 1 0.58 0.58 0.80 1.38 1.34 - 299-928 -
C-2 2 2800 1.02 0.6 0.96 0.85 0.90 0.93 1.09 - 244-816 -
D-5 5 20000 2.27 0.6 0.3 0.28 0.52 1.71 2.07 1.54 446-1238 681-1890
E-5 5 10000 1.07 0.2 0.89 0.48 0.63 0.70 1.49 1.51 361-1104 388-1222
F-7 7 20000 2.12 0.3 0.33 0.24 0.44 1.31 2.27 2.16 314-901 363-1079
G-7 7 10000 1.63 0.2 0.49 0.28 0.47 0.95 2.07 - 182-571 -

Table 6.1: DNS inputs and some fundamental flow outputs; 𝑅𝑒𝛿𝑖𝑛 = 𝜌𝑒𝑈𝑒𝛿𝑖𝑛∕𝜇𝑒 is the Reynolds
number based on the inflow BL thickness (𝛿𝑖𝑛); Prandtl number 𝑃𝑟 = 0.72, (non-dimensional)
specific heat 𝑐𝑝 = 3.5, and heat capacity ratio 𝛾 = 1.4 are set as constants and the same for all
cases.

(HTR) solver [33].

The compressible fluid for DNS is air assumed as a perfect gas. The DNS data covers a range
of edge Mach numbers, 0.6 ≤ 𝑀𝑒 ≤ 7, with different wall temperature boundary conditions,
including both cold walls and adiabatic walls. Table 6.1 lists the dimensionless input parameters in
addition to parameters summarizing the variation of mean density and viscosity in the simulation
results. The (Favre) average normalized velocity and Reynolds shear stress as a function of the wall-
normal direction normalized by the semi-local length scale (𝑦𝑠𝑙), [99], are shown in Figure 6.5(a,b),
respectively. The average velocity profiles in Figure 6.5(a) are normalized by 𝑈𝑒, reflecting their
contributions to the integrands in the AMI equation. Figure 6.5(b) confirms that Reynolds shear
stress profiles are similar near the wall when normalized by 𝜏𝑤. The peak of Reynolds shear stress
does depend on the friction Reynolds number, which is not matched between each of the cases
because of practical constraints.

Similar plots for the profiles of the (Favre) average total enthalpy and the total enthalpy and wall-
normal velocity covariance are provided in Figure 6.6(a,b). A subset of the simulations listed in
Table 6.1 is included here to focus on the higher Mach number cases. Figure 6.6(a) exhibits the
significance of Mach number and wall cooling on total enthalpy; stronger wall-cooling generates
higher edge-wall total enthalpy difference, which is the primary potential of energy transfer within
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Figure 6.5: Normalized Favre averaged (a) velocity by the edge velocity and (b) Reynolds shear
stress by the wall shear stress. The profiles are plotted at 𝑅𝑒2 shown with “*” in Figure 6.9(a)

the BL. Figure 6.6(b) shows the turbulence covariance behaves similar to Reynolds shear stress
profiles in Figure 6.5(b), especially close to the wall, when they are normalized by the surface heat
flux, 𝑞𝑤. In addition, we decompose 𝜌𝑣′′𝐻 ′′ to its major contributors according to Eq. (6.33),
Figure 6.6(b); the dashed lines represent the wall-normal turbulent flux of enthalpy (𝑐𝑝𝜌̄𝑇 ′′𝑣′′),
with negative impact on the net turbulent flux of total enthalpy, 𝑇𝑤 ≥ 𝑇𝑒, helping wall cooling. The
dashed-dotted lines show the wall-normal turbulent transport of the mean kinetic energy, 𝜌𝑢̃𝑢′′𝑣′′;
this transport mechanism enhances the net turbulent flux of total enthalpy by bringing the high
energy eddies toward the wall where they stagnate, subsequently generate significant heating at the
wall. Finally, the dotted lines represent the turbulent flux of turbulent kinetic energy, 1

2
𝜌𝑢′′𝑢′′𝑣′′,

with relatively negative weak influence.

The effect of compressibility on momentum and energy transport is due to the variation of density
and viscosity within the BL. Density and viscosity are explicitly related to temperature; assuming
perfect gas, since the pressure variation within the BL is slight, density has a direct inverse relation
with temperature. Moreover, viscosity is a function of temperature using Sutherlands’ law (with
constants 𝑇0 = 273.15 K and 𝑆0 = 110.4 K) for air. In Figure 6.7(a,b), the profiles of the average
density and (Favre) average viscosity, respectively, are presented with respect to 𝑦𝑠𝑙. For cold-
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Figure 6.6: Normalized Favre averaged (a) total enthalpy by the edge total enthalpy, and (b) wall-
normal velocity and total enthalpy turbulent covariance by the wall heat flux (for study cases of
MTEI equation). In (b) the dashed-, dashed-dotted-, and dotted-lines represent 𝑐𝑝𝜌𝑇 ′′𝑣′′, 𝜌𝑢̃𝑢′′𝑣′′,
and 1

2
𝜌𝑢′′𝑢′′𝑣′′, respectively. The profiles are plotted at 𝑃𝑒𝐻 shown with “*” in Figure 6.13(a)

wall boundary conditions, the peak of temperature occurs within the BL, which coincides with
minimum density and maximum viscosity. In contrast, for adiabatic wall boundary conditions,
the temperature is maximum at the wall. Generally, higher 𝑀𝑒 leads to lower density and higher
viscosity, but the wall temperature also has a crucial effect on both density and viscosity within the
BL. In Figure 6.7(a), the dashed lines present the stress-weighted density expressed in Eq. (6.16).
There is an inverse relation between edge Mach number and 𝜌2; the higher 𝑀𝑒, the lower 𝜌2. In
addition to the edge Mach number influence, higher wall temperature also decreases the stress-
weighted density. This can be clearly observed by comparing D-5 and E-5, where 𝜌2 is smaller for
D-5 with higher 𝑇𝑤.

Normalized 𝜇2 and 𝜇𝐻 –reference viscosities in the AMI and MTEI equations– by the edge viscosity
are shown in Figure 6.7(b) with dashed and dashed-dotted lines, respectively. According to the
definition of 𝜇2, Eq. (6.11), the value of it is not necessarily between 𝜇𝑒 and 𝜇𝑤, and it depends on
the streamwise location. In fact, 𝜇2 absorbs the effect of wall cooling and the temperature rise within
the BL. The deviation between 𝜇2 and 𝜇𝐻 is smaller when the edge-wall temperature difference is
weaker (strong wall-cooling). For example, for E-5, which represents the highest wall-cooling case,
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the difference between 𝜇2 and 𝜇𝐻 is about 1%. Conversely, this deviation becomes more substantial
for the cases with higher 𝑇𝑤, like in D-5.

0.2

0.4

0.6

0.8

1

A-.6

B-2

C-2

D-5

E-5

F-7

G-7

10
0

10
2

𝑦𝑠𝑙

𝜌∕
𝜌 𝑒

(a)

1

1.5

2

2.5

10
0

10
2

𝑦𝑠𝑙
𝜇∕
𝜇 𝑒

(b)

Figure 6.7: Normalized (a) average density by the edge density, and (b) Favre average viscosity by
the edge viscosity. The dashed lines in (a) show 𝜌2, Eq. (6.16). Also, the dashed and dotted lines in
(b) represent the value of 𝜇2, Eq. (6.11), and 𝜇𝐻 , Eq. (6.28), respectively. The profiles are plotted
at 𝑅𝑒2 shown with “*” in Figure 6.9(a), except for 𝜇𝐻 that is plotted at 𝑃𝑒𝐻 shown with “*” in
Figure 6.13(a)

As discussed in sections 6.1.1 (for AMI equation) and 6.1.2 (for MTEI equation), to isolate the
ZPG laminar contribution, it’s necessary to determine the appropriate length scale 𝓁. This requires
solving the self-similar momentum and energy equations for compressible (or incompressible) BLs.
The Blasius solution can simply be used to get 𝓁 according to an incompressible laminar BL. To
obtain 𝓁 from a compressible laminar BL we use coefficients 𝑐2 and 𝑐𝐻 from Eqs. (6.41) and
(6.43), respectively, for the AMI and MTEI equations. These coefficients yield the suitable linear
relationship between 𝓁 and 𝛿2 (and 𝛿𝐻 ) concerning the choice of the reference viscosity. The self-
similar solver, Section 6.2.1, takes the required edge and wall flow parameters as inputs, provided
in Table 6.1, then outputs the self-similar velocity and temperature profiles.
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Angular momentum integral equation

This section exhibits the use of the AMI equation, Eq. (6.7), to analyze the DNS datasets summa-
rized in Table 6.1. For demonstration purposes, the stress-weighted viscosity, 𝜇2, is chosen as the
reference viscosity, and the length scale is chosen proportional to the momentum thickness, 𝓁 ∼ 𝛿2.
The coefficient of proportionality is calculated from the ODE solution to the self-similar ZPG lam-
inar BL equations described previously. Recall that the choice of 𝜇2 is motivated by the AMI
equation, while the choice of 𝛿2 comes from its significance in the momentum integral equation,
see Section 6.1.1. Thus, the following analysis interprets turbulent boundary layer physics relative
to a baseline laminar boundary layer having the same edge Mach number (𝑀𝑒), edge temperature
(𝑇𝑒), wall temperature (𝑇𝑤), and the Reynolds number defined by 𝑅𝑒2 = 𝜌𝑒𝑈𝑒𝛿2∕𝜇2.

With this choice, the AMI length scale is based on a compressible laminar solution is 𝓁 = 𝓁2,C,
where the subscripts “2” and “C” denote the reference viscosity, 𝜇2, and compressible laminar
solution, respectively. Another related possibility, which is a useful foil, is to use an incompressible
laminar boundary layer, i.e., a solution to the Blasius equation [12], as the baseline for AMI analysis.
This laminar boundary layer is still chosen to match the 𝑅𝑒2 of the turbulent boundary layer to be
analyzed, but the edge Mach number is zero, and no temperature variation is included, 𝑇𝑤 = 𝑇𝑒.
This choice is denoted 𝓁 = 𝓁IC where “IC” signifies the option of an incompressible laminar BL.

Figure 6.8 presents each term in the AMI equation using𝑅𝑒2 and 𝓁2,C. Data from an incompressible
(IC) turbulent BL simulation with heat transfer [176, 82] are also included. For the given data, the
maximum (streamwise averaged) relative residual error of the AMI equation, Eq. (6.7), is less than
or (approximately) equal to 5%. The residual error in closing the AMI equation from DNS data is
primarily caused by statistical convergence error, which is amplified by the streamwise derivative
needed to compute the term proportional to 𝑑𝛿𝓁2 ∕𝑑𝑥. Thus, the error depends mainly on the length
of time used for averaging each simulation and the error for the cases shown here was deemed
sufficiently small for our present purposes.
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Figure 6.8: Evaluation of non-negligible terms in the AMI equation, Eq. (6.7), based on 𝓁 = 𝓁2,Cand 𝜇Ref = 𝜇2 for the cases in Table 6.1 within the fully turbulent regime: (a) baseline laminar skin
friction, (b) the integral torque of the Reynolds shear stress –the dashed lines exhibit 𝐶𝑓∕2–, (c)
the streamwise growth of the angular momentum thickness, and (d) the torque due to mean wall-
normal velocity. Each term is shown as a function of 𝑅𝑒2, Eq. (6.14). A part of the upstream data
is truncated because of the effect of the turbulent recycling.

Figure 6.8(a) presents the𝐶𝑓∕2 of the equivalent compressible ZPG laminar BL at the same Reynolds
number,𝑅𝑒2. The laminar skin friction is relatively small compared to the fully turbulent BL –about
15%– and diminishes slowly with the Reynolds number, ∼ 𝑅𝑒−12 . The reference laminar BL depends
on 𝑀𝑒, 𝑇𝑒, and 𝑇𝑤 of the turbulent BL case, so this term shows some variation as expected, though
not significant compared with the turbulent torque, Fig. 6.8(b). The integral of the Reynolds shear
stress is the primary contributor to enhancing 𝐶𝑓∕2 compared with the other terms. It represents

160



the total torque due to Reynolds shear stress carrying high-momentum flow toward the wall. This
behavior is consistent with the observation in Ref. [179] (for 𝑀𝑒 = 2.5 and adiabatic wall, using
edge viscosity for the reference Reynolds number). The turbulent torque gradually diminishes with
𝑅𝑒2 approximately at the same pace as 𝐶𝑓∕2.

In Figure 6.8(c), the rate of the streamwise growth of the angular momentum thickness is shown
for each case. This term has a negative contribution to skin friction, as the turbulent BL grows
thicker than its laminar counterpart, absorbing a small part of the Reynolds shear stress torque into
the growth of the angular momentum. According to Figure 6.8(c), the variation in this term is
substantially less than that of the Reynolds shear stress integral in Figure 6.8(b). Nonetheless, a
minor opposite trend can be observed.

The contribution of the mean wall-normal torque to 𝐶𝑓∕2 is presented in Figure 6.8(d). For a fully
turbulent regime, the mean wall-normal torque has a relatively weak influence and does not vary
significantly with streamwise direction, consistent with previous observations of incompressible
flows [38, 82]. It is worth mentioning the other terms on the right-hand side of the AMI equation,
including edge pressure gradient torque and negligible terms, are at least an order of magnitude
smaller than those shown here. Also, the deviation term vanishes when 𝜇Ref = 𝜇2 by definition.
For completeness, these terms are shown in Appendix C.1.

The impact of the edge Mach number and wall temperature on the terms in the AMI equation is
succinctly demonstrated in Fig. 6.8, showing a greater influence by the edge Mach number than the
wall temperature. The viscous dissipation roughly scales with𝑀2

𝑒 and generates high temperatures
in the near-wall region. As the pressure remains approximately uniform across the BL, the density
in the near-wall region decreases with increasing Mach number. The ability of correlated velocity
fluctuations, 𝑢′′𝑣′′, to cause a net momentum flux is proportional to the mean density, 𝜌. Therefore,
the turbulent torque in the AMI equation generally decreases with increasing 𝑀𝑒. The laminar

and streamwise growth terms similarly depend on the mean density and decrease in magnitude
with increasing 𝑀𝑒. The variation in turbulent torque is clearly the dominant effect in Fig. 6.8
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so that the skin friction decreases with increasing 𝑀𝑒. This is consistent with the well-known
inverse relationship between the edge Mach number and the skin-friction coefficient for laminar
and turbulent BLs [171, 172].

After the effect of the edge Mach number, the AMI equation is also sensitive to the wall temperature.
Lower wall temperatures (stronger wall-cooling) are known to increase the laminar and turbulent
skin frictions [172, 167]. Higher wall temperature enhances the turbulent wall-normal transport of
the Reynolds shear stress away from the wall [3]. Thus, when the surface temperature is higher,
lower skin friction drag is expected. Figure 6.8 shows that the enhancement of turbulent torque by
lower 𝑇𝑤 is significant. For example, comparing D-5 and E-5 with the same 𝑀𝑒 = 5 but one with
strong wall cooling (E-5) shows roughly 20% higher turbulent torque for E-5. A similar trend can
also be seen for𝑀𝑒 = 2 by comparing B-2 and C-2. The difference in wall temperature for F-7 and
G-7 (𝑇𝑤∕𝑇aw = 0.3 and 0.2, respectively) is apparently not significant enough to cause a noticeable
difference in the AMI terms. As with the Mach number, the increase of Reynold shear stress with
decreasing wall temperature can be linked to an associated increase in the near-wall mean density.
Generally, an increase in turbulent torque due to lower wall temperatures is slightly offset by a much
weaker opposing trend in the streamwise growth of angular momentum.

Figure 6.9 directly considers the skin friction coefficient (the sum of terms shown in Fig. 6.8) and
further investigates the impact of the edge Mach number and wall temperature on the turbulent

torque. Figure 6.9(a) compares the skin friction with the sum of RHS terms in the AMI equation,
verifying the calculations. Also shown is the turbulent torque, which is just one of the terms in
the AMI equation. Evidently, the trend in turbulent torque closely matches the skin friction coef-
ficient trend with 𝑀𝑒 and 𝑇𝑤. To examine this in more detail, Fig. 6.9(b) compares the integrand
of the turbulent torque term. Interestingly, the length scale 𝓁2,C is fairly effective in collapsing
the wall-normal extent of the turbulent boundary layers across different Mach numbers and wall
temperatures. The trend in skin friction coefficient, then, can be traced to the variation in the mag-
nitude of the Reynolds shear stress, −𝜌𝑢′′𝑣′′. To quantify the extent to which the trends in Reynolds

162



shear stress magnitude may be explained by the trends in near-wall mean density discussed in the
previous two paragraphs, the inset of Fig. 6.9(b) shows the Reynolds shear stress profiles divided
by the mean density. The result is a significant increase in similarity amongst the cases, even if
there is no complete collapse. Therefore, the effect of 𝑀𝑒 and 𝑇𝑤 on skin friction coefficient may
be explained mainly by the influence of mean density, 𝜌, in determining the efficiency with which
correlated velocity fluctuations, 𝑢′′𝑣′′, transport momentum across the boundary layer. More specif-
ically, at higher edge Mach number (and higher wall temperature), lower near-wall density reduces
the momentum transport and, subsequently, skin friction.

Alternatively, the variation of the skin-friction coefficient with 𝑀𝑒 and 𝑇𝑤 may be tied to trends
in the laminar compressible BL. Figure 6.9(c) shows the turbulent torque from the AMI equation
when the baseline laminar BL is chosen at 𝑀𝑒 = 0 rather than at the matching 𝑀𝑒 of the turbulent
case. In other words, 𝓁 = 𝓁IC is the same for all cases, calculated using the solution to the Blasius
equation. Interestingly, 𝓁IC leads to much closer collapse for the turbulent torque compared with the
compressible length scale 𝓁2,C (matched𝑀𝑒) in Figure 6.9(a). However, there is still some variation
in Fig. 6.9(c) and the Reynolds shear stress profiles, i.e., the integrands of the turbulent torque, show
substantial differences in Fig. 6.9(d). Both the width (𝑦∕𝓁 axis) and peak are different for each case,
showing a strong dependence on 𝑀𝑒 and 𝑇𝑤, though the integrals of each curve are quite similar.
According to Figure 6.9(b), as already seen for higher𝑀𝑒, the peak of the profile of the normalized
Reynolds shear stress is lower, yet the width related to 𝓁IC is larger. For example, the width of
integrands for F-7 and G-7 extend beyond 𝑦∕𝓁IC = 6. Also, colder wall temperature causes stronger
maximum normalized Reynolds shear stress but over a smaller relative width. This can be seen by
comparing the profiles of D-5 with E-5 or B-2 with C-2. Inset of Figure 6.9(d) shows the normalized
Reynolds shear stress by the edge conditions multiplied by the ratio between the compressible
and incompressible length scales, 𝓁2,C∕𝓁IC, plotted with respect to 𝑦∕𝓁2,C (consistent with Figure
6.9(b)). Although there is still a subtle edge Mach number influence, in the inset of Figure 6.9(d),
there is a better collapse between the cases with the same 𝑇𝑤∕𝑇aw ratio –representation of wall-
cooling strength. For instance, comparing C-2 and D-5, 𝑇𝑤∕𝑇aw = 0.6, we observe the peak values
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are roughly the same (but slightly shifted). Therefore, the skin friction of a high-speed turbulent
BL relative to a 𝑀𝑒 = 0 turbulent BL may be quantitatively (but not perfectly) tied to the same
relative comparison for laminar boundary layers, provided the comparisons are done at matched
𝑅𝑒2 as defined in Eq. (6.14).
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Figure 6.9: Contribution of the turbulent torque to 𝐶f∕2 and the profile of its integrand at “*”:
(a) turbulent torque by choosing 𝓁 based on self-similar laminar compressible BLs, 𝓁 = 𝓁2,C, and
(b) profile of the integrand of turbulent torque with respect to wall-normal distance normalized
by 𝓁2,C. In (a), the thinner dashed- and dotted lines show the 𝐶f∕2 and the right-hand side of the
AMI equation. The Inset of (b) exhibits the integrand of turbulent torque by removing the effect of
density variation within the BL. (c) The turbulent torque by choosing 𝓁 based on Blasius solution
for IC BLs, 𝓁 = 𝓁IC, and (d) profile of the integrand of the turbulent torque with respect to the
wall-normal distance normalized by 𝓁IC. Inset of (d) presents the integrand of the turbulent torque
multiplied by the ratio of compressible and incompressible length scales, 𝓁2,C = 𝓁IC, with respect
to 𝑦∕𝓁2,C.
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In the analysis of turbulent BLs, it is common to use the viscosity at the wall, 𝜇𝑤, as the reference
viscosity. This has proven particularly effective when the wall temperature is near the adiabatic
wall temperature [131]. Figure 6.10 examines the comparison between choosing 𝜇Ref = 𝜇2 and
𝜇Ref = 𝜇𝑤 on turbulent torque (white background), laminar friction (light gray background), and
streamwise growth (dark gray background). In this figure, each term from the RHS of the AMI
equation, Eq. (6.7), is normalized by 𝐶𝑓∕2. Thus, this figure can be interpreted as showing the
percent contribution of each term to the skin friction coefficient.

For 𝜇Ref = 𝜇2 in Figure 6.10(a), the normalized turbulent torque is almost equal to one for both
cases, which is consistent with the dominant effect of turbulence on momentum transport and skin
friction enhancement. This is simply another way to visualize the data from Fig. 6.9(a), where it
was already shown that the turbulent torque term closely followed the skin friction coefficient for
𝓁 = 𝓁2,C. Choosing 𝜇2 as the reference viscosity leads to a closer collapse of the turbulent torque

around one (1.0) for the given data compared with the result of choosing the wall viscosity as the
reference, Figure 6.10(b). This can be clearly seen for E-5 (purple), which has the strongest wall
cooling, and the normalized turbulent torque is roughly 50% larger. A similar effect is observed
for the laminar friction and streamwise growth when 𝜇Ref = 𝜇𝑤. In fact, taking E-5 as an example
again, we observe almost 300% higher negative contribution by normalized streamwise growth if we
pick 𝜇𝑤 as the reference viscosity. The effect of wall temperature is much weaker when choosing
𝜇Ref = 𝜇2. This comparison provides a further justification for the use of 𝜇2 –as the reference
viscosity– in the above analysis, in addition to its physical interpretability as the stress-weighted
average viscosity. This choice enables the identification of some of the above trends with mean
density and laminar BL length scale.

The overall impact of the trends observed in Figs. 6.9 and 6.10 can be concisely summarized in
terms of the overall impact on skin friction by using the trends to construct transformations between
compressible and incompressible skin friction coefficient. Figure 6.11 shows the results of two such
transformations, (i) based on stress-weighted density, 𝜌2, and (ii) laminar BL length scale, 𝓁.
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Figure 6.10: Normalized contribution of turbulent torque (white background), laminar friction
(light gray background), and streamwise growth (dark gray background) by 𝐶f∕2: when the refer-
ence viscosity (a) 𝜇Ref = 𝜇2, and (b) 𝜇Ref = 𝜇𝑤.

Figure 6.11(a) shows 𝐶𝑓∕2 for the compressible and incompressible data without transformation.
Assuming 𝐶𝑓∕2 is roughly equal to the turbulent torque, combined with the role of mean density
observed in Fig. 6.9(b), suggests multiplying 𝐶𝑓∕2 with the ratio of 𝜌𝑒∕𝜌2. According to Figure
6.11(b), this transformation only partially compensates for different edge Mach numbers and wall
temperature; it is not a strong enough correction to compensate for the entirety of the compressibil-
ity effect. Indeed, a closer inspection of Fig. 6.9(b) indicates that the peak of 𝑢′′𝑣′′∕𝑈 2

𝑒 still varies
noticeably for 𝑀𝑒 = 5 and 7. Thus, the AMI equation provides a way to quantify the impact of
lower mean density on the skin friction coefficient. The density ratio correction 𝜌𝑒∕𝜌2 is too simple
to explain the entire effect of compressibility but still explains a significant part of it. There are sev-
eral explanations for this, including the effect of the imposed boundary conditions, e.g., viscosity
variation, and internal regulation that becomes considerable for relatively high 𝑀𝑒 [123, 107].

Another transformation approach is inspired by Figure 6.9(c) where Blasius solution was used to
obtain the AMI length scale, 𝓁 = 𝓁IC, and a relatively suggestive collapse of turbulent torques was
observed. Figure 6.9(d) further shows the ability of the length scale ratio between compressible
and incompressible laminar flows, 𝓁2,C∕𝓁IC, in obtaining better similarity in the Reynolds shear
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Figure 6.11: (a) Skin friction coefficients without transformation, (b) integral transformation based
on stress-weighted density, and (c) integral transformation based on the ratio of the compressible
and incompressible AMI length scales.

stress profiles. Because for a fully turbulent regime, the dominant source of skin friction is due
to Reynolds shear stress, we apply this ratio directly to the skin friction in Figure 6.11(c). This
transformation performs well for the adiabatic wall cases with about a maximum deviation of 4%
from the incompressible 𝐶𝑓∕2. However, strong wall cooling still creates noticeable deviation for
(

𝓁2,C∕𝓁IC
)

𝐶𝑓∕2 from the incompressible 𝐶𝑓∕2, up to roughly 20% for E-5. Thus, the self-similar
laminar BL solutions appear useful in providing information about turbulent BL skin friction, at
least when the stress-weighted average viscosity is used to define the Reynolds number, 𝑅𝑒2, at
which the relevant ratios are computed.

Moment of total enthalpy integral equation

At high Mach numbers, the surface heat transfer is often of more significant concern than the skin
friction drag. Therefore, quantitative mapping of flow phenomena throughout the BL and how they
alter the Stanton number is crucial. This section applies the MTEI analysis, discussed in section
6.1.2, to the DNS data with relatively high edge Mach numbers and non-zero surface heat flux. We
limit our focus to the higher Mach number cases D-5, E-5, and F-7, for which the wall temperature
is lower than the adiabatic wall temperature but higher than the edge wall temperature. G-7 is
not included in the MTEI analysis as it is quite similar to F-7 –the same edge Mach number and
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very close wall cooling effect– but with a lower Reynolds number range. This similar behavior
was already observed in the AMI analysis, Section 6.2.2, especially in Figure 6.8(b) in which the
turbulence skin friction enhancement of F-7 is approximately the continuation of G-7 at higher
Reynolds number. The compressible data is compared with the incompressible, constant property
turbulent BL with heat transfer [176]. For the incompressible BL data, the non-dimensional wall-
edge temperature difference and Prandtl number are unity. Most of the discussion provided in
section 6.2.2 for the AMI equation and momentum transport is analogous to the MTEI equation and
energy transport but a bit more complex. The total enthalpy conservation is the basis of the MTEI
equation, which consists of two energy transport mechanisms: kinetic energy and internal energy.
Considering the Mach number as a dimensionless ratio of kinetic energy and internal energy, for
incompressible flows, the kinetic is neglected, 𝑀𝑒 = 0. Conversely, for high-speed flows, the
kinetic energy is significant and even dominant.

Figure 6.12 shows the breakdown of the Stanton number using the MTEI equation for the four major
flow phenomena with respect to the Peclet number 𝑃𝑒𝐻 = 𝑅𝑒𝐻𝑃𝑟Ref , where𝑅𝑒𝐻 = 𝜌𝑒𝛿𝐻𝑈𝑒∕𝜇𝐻 is
the Reynolds number based on the given reference viscosity; the full budget is provided in Appendix
C.2. Recall that 𝑃𝑟Ref = 1 is chosen here to make the 𝑆𝑡 number based on the edge stagnation tem-
perature rather than the adiabatic wall temperature. Here, the length scale 𝓁 = 𝓁𝐻,C is determined
based on the reference viscosity 𝜇Ref = 𝜇𝐻 and self-similar ZPG compressible laminar BL solu-
tion. Figure 6.12(a) shows the laminar Stanton number that gradually diminishes with the Peclet
number, 𝑃𝑒𝐻 , as we go further downstream. According to Figures 6.12(a,d), the mean wall-normal

transport also weakly contributes to the surface heat flux and does not show a significant variation
between the cases. Moreover, similar to its AMI counterpart, the mean wall-normal change with
respect to 𝑃𝑒𝐻 is negligible.

Figure 6.12(b) exhibits the direct contribution of turbulence on surface heat flux through wall-
normal turbulent flux of total enthalpy, −𝜌𝐻 ′′𝑣′′. The turbulent flux is larger in magnitude and
shows more significant variation than the other three terms displayed in Fig. 6.12. Since both kinetic
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and internal energies are embedded within the definition of total enthalpy, the contribution of the
turbulent flux of total enthalpy to the Stanton number in the MTEI equation can be split; according to
Figure 4.1(b), the turbulent transport of the mean kinetic energy, 𝜌𝑢̃𝑢′′𝑣′′, is the primary contributor
due to relatively high 𝑀𝑒 (high edge kinetic energy). Turbulence via Reynolds shear stress carries
this kinetic energy flow toward the wall, where it stagnates and generates a tremendous amount of
heat flux toward the wall. Conversely, the turbulent flux of enthalpy, 𝑐𝑝𝜌𝑇 ′′𝑣′′, partially removes
high internal energy flows from the wall toward the edge (𝑇𝑤 ≥ 𝑇𝑒). In other words, the balance of
these two mechanisms is essentially the net contribution of turbulent flux to the Stanton number.

The streamwise growth of the first moment of total enthalpy thickness is the only negative term. In
fact, streamwise growth helps cool the wall by absorbing some of the turbulent flux into downstream
growth rather than wall heat flux. For instance, comparing D-5 and E-5, it is evident the flux by
streamwise growth is more substantial for E-5 with more intense wall-cooling.

In Figure 4.2(a), the significant reduction of the near-wall mean density due to the rise of temper-
ature within the BL was shown. This reduction, subsequently, decreases the turbulent momentum
and total enthalpy flux. According to Figure 6.13(a), the ratio of turbulent flux and the Stanton
number is roughly between 90% to over 130%. This number is closer to ≈90% for D-5 (weakest
wall-cooling). However, the turbulent flux becomes greater than the Stanton number for the cases
with stronger wall-cooling, such as E-5. The enhancement of turbulent flux for the cases with strong
wall-cooling is examined in Figure 6.13(b); here, we plot the profile of its integrand with respect to
the wall-normal direction within the fully turbulent regime, at “*”. Evidently, there is no meaning-
ful similarity in the profiles of the integrands. However, by removing the mean density variation
across the BL, inset of Figure 6.13(b), the profiles become significantly more similar, even if they
do not truly collapse. In other words, much of the variation in turbulent flux contributions to the en-
hanced surface heat flux can be attributed simply to the lower mean density in the near-wall region
diminishing the effectiveness of turbulent fluctuations in transporting energy toward the wall. In
fact, by removing the effect of density variation across the BL, the contribution of turbulent flux to
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Figure 6.12: Budget of MTEI based on 𝓁 = 𝓁𝐻,C and 𝜇Ref = 𝜇𝐻 within the fully turbulent regime:
(a) laminar Stanton number, (b) contribution of turbulent flux to Stanton number, (c) streamwise
growth of the first moment of total enthalpy thickness, and (d) contribution of mean wall-normal
flux. The incompressible (IC) data is shown in black. A part of the upstream data is truncated
because of the effect of the turbulent recycling.

𝑆𝑡, for all cases, is significantly more similar to the incompressible case. This observation matches
the results observed earlier in the inset of Figure 4.4(b) for the turbulent torque by the Reynolds
shear stress.

In Figure 6.13, the turbulent flux of total enthalpy is consistently higher for the strongly cooled case
E-5. To shed more light on this, Fig. 6.14 explores the decomposition of the total enthalpy flux,
𝜌𝑣′′𝐻 ′′, into two components: (i) the turbulent transport of mean kinetic energy, 𝜌̄𝑢̃𝑢′′𝑣′′, and (ii)
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the right-hand side of the MTEI equation. The inset of (b) shows the integrand of turbulent flux by
pulling out the influence of density variation within the BL.
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Figure 6.14: Decomposition of the turbulent flux of total enthalpy and the profile of its integrand at
“*”: (a) direct contribution of turbulent transport of mean kinetic energy (dashed-dotted line) and
turbulent enthalpy (heat) flux (dashed lines) to𝑆𝑡with respect to the streamwise location, 𝑃𝑒𝐻 , and
(b) profile of their integrands with respect to wall-normal distance normalized by 𝓁𝐻,C. In (a,b),
the dim, thin solid lines represent the net contribution of the turbulent flux of total enthalpy. Insets
of (b) show the integrands by pulling out the effect of density variation within the BL.

the turbulent enthalpy flux, 𝑐𝑝𝜌̄𝑇 ′′𝑣′′. Figure 6.14(a) represents their direct contribution to 𝑆𝑡. The
Reynolds shear stress increases 𝑆𝑡 by bringing the mean kinetic energy toward the wall. On the
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other hand, the turbulent enthalpy flux advects enthalpy away from the wall for most of the boundary
layer (except below the temperature peak). The profiles of the integrands of turbulent transport of
mean kinetic energy and turbulent enthalpy flux in Figure 6.14(b) confirms the aforementioned
effect; the profile of turbulent enthalpy flux for F-7 is just slightly lower than E-5, yet there is
a clear drop in the turbulent transport of mean kinetic energy for F-7 with a higher edge Mach
number. In contrast to the influence of 𝑀𝑒, which was more effective on turbulent flux of mean
kinetic energy, the impact of 𝑇𝑤 is more substantial on turbulent enthalpy flux rather than turbulent
transport of mean kinetic energy. According to Figure 6.14(a), a comparison between D-5 and
E-5 reveals stronger wall-cooling in E-5 slightly (about 10%) reduces the turbulent transport of
mean kinetic energy flux. On the other hand, the (absolute) effect of turbulent flux of enthalpy
drops substantially for roughly 80%. The weaker effect of turbulent enthalpy flux in case E-5 may
be conceptually associated with a smaller temperature difference, 𝑇𝑤 − 𝑇𝑒, due to stronger wall-
cooling.

Despite the relative similarity observed for the total enthalpy flux in the inset of 6.13(b) after re-
moving the density effect, the two contributing fluxes (turbulent enthalpy flux and turbulent flux of
the mean kinetic energy) individually do not show the same degree of similarity in Figure 6.14(b).
Here, by removing the explicit influence of density variation on turbulent fluxes, the effect of edge
Mach number is significantly reduced, so the profiles are then sorted primarily based on the im-
posed wall temperature from the highest, D-5, to the lowest, E-5; higher 𝑇𝑤 leads to larger integrand
magnitudes.

Taking D-5 as an example with the hottest wall in the given DNS data justifies the concept of heat
conduction due to the edge-wall temperature difference and how turbulent enthalpy flux toward the
edge resists the generated heat at the wall by stagnating edge kinetic energy. In fact, this mechanism
explains the net negative 𝜌𝑣′′𝐻 ′′ values close to the edge of BL from 𝑦∕𝓁 ≈ 1.7 to 𝑦∕𝓁 ≈ 2.3,
where turbulent enthalpy flux (negative contribution to net 𝑆𝑡) becomes greater than the turbulent
transport of the mean kinetic energy (positive contribution to net 𝑆𝑡). In conclusion, the turbulent
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transport of the total enthalpy via mean kinetic energy is slightly more localized near the wall. It
attenuates lightly quicker away from the wall rather than the turbulent enthalpy flux.

In summary, this section shows the capability of the MTEI equation as a quantitative mapping
between the flow phenomena above the wall and how they impact the net surface heat flux. The
MTEI equation distinguishes the contribution of kinetic energy and internal energy on heat flux,
and one can understand how and when they resist each other depending on the given edge and wall
flow conditions.

6.3 Conclusion

In this chapter, an angular momentum integral (AMI) equation was introduced for compressible
flow boundary layers (BL) with variable density and viscosity. The AMI equation provides a sim-
ple way to quantify how turbulence and other flow phenomena such as compressibility impact the
BL skin friction coefficient relative to an equivalent zero pressure gradient (ZPG) laminar BL.
Moreover, a moment of total enthalpy integral (MTEI) equation is developed for high-speed BLs
with surface heat flux. Analogous to the AMI equation, the MTEI equation quantifies the enhance-
ment of a BL’s Stanton number by turbulent fluxes and other flow phenomena relative to the laminar
BL case. The resulting AMI and MTEI equations are given in Eq. (6.7) and Eq. (6.23), respec-
tively. A calorically perfect gas assumption is maintained in this work but can be relaxed to include
high-enthalpy effects in future works.

The AMI equation is an integral conservation law for the first moment about 𝑦 = 𝓁(𝑥) of velocity
defect, normalized to be written in terms of the skin-friction coefficient. The length scale, 𝓁, about
which the moment is taken to be the center of action of the viscous force for a laminar BL sharing
the same Reynolds number, such that the skin friction of an equivalent ZPG laminar BL is isolated
into a single term as a function of the Reynolds number only. This choice allows the other terms in
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the AMI equation to be straightforwardly interpreted as an enhancement (or attenuation) of the skin
friction coefficient relative to the laminar baseline case. The length scale for the Reynolds number
similarity can be tailored to suit the desired interpretation of the analysis.

Similarly, the MTEI equation is an integral conservation law for the first moment of total enthalpy
defect, written in the dimensionless form in terms of the Stanton number. For the MTEI equation,
the moment is centered about the center of action of the combined conductive heat flux and viscous
kinetic energy flux for an equivalent ZPG laminar BL. This results in an equation that contains
the laminar BL Stanton number in a single term as a function of the Reynolds (or Peclet) number,
allowing a specific interpretation of the other terms in the MTEI equation as enhancements or
attenuations of surface heat flux relative to the baseline laminar case.

For compressible BLs with variable viscosity, a reference viscosity must also be chosen. The form
of the AMI equation itself suggests the choice of the shear stress weighted viscosity, 𝜇2, as the
representative viscosity of the BL. Moreover, a reference viscosity and conductivity, 𝜇𝐻 and 𝑘𝐻 ,
respectively, emerge from the MTEI equation as natural choices for representative transport coeffi-
cients in high-speed BLs.

The compressible AMI equation was applied to the DNS data from turbulent BLs having a range of
edge Mach numbers, 𝑀𝑒, and wall temperature boundary conditions, 𝑇𝑤. Relative to laminar BLs
with the same 𝑀𝑒, 𝑇𝑤, and momentum thickness Reynolds number based on 𝜇2 (𝑅𝑒2), the trend in
skin friction for turbulent BLs closely followed the behavior in the Reynolds shear stress integral.
It is demonstrated that choosing 𝜇2 shows a better collapse for compressible BLs compared with
the choice of 𝜇𝑤.

A closer inspection of the Reynolds shear stress integrand revealed that the lower skin friction for
higher𝑀𝑒, higher 𝑇𝑤 cases is associated primarily with lower near-wall mean densities. The effect
of compressibility on the skin friction coefficient may be summarized as follows. Fluid entrained
into the BL from the edge is decelerated with tiny pressure variation across the BL, leading to
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higher temperatures and lower densities in the near-wall region. Turbulent enhancement of wall
shear stress relies primarily on the transport of momentum across the BL by the Reynolds shear
stress, −𝜌𝑢′′𝑣′′. Normalized by the edge velocity,𝑈 2

𝑒 , the covariance of streamwise and wall-normal
velocities does not vary as strongly with𝑀𝑒 and 𝑇𝑤. However, the mean density drops significantly
in the near-wall region for high 𝑀𝑒 and 𝑇𝑤, considerably decreasing the turbulent momentum flux,
leading to lower skin-friction coefficients.

An alternative description of skin friction coefficient trends in compressible BLs can be made us-
ing the incompressible laminar solution (i.e., Blasius). The ratio of length scales based on the
incompressible and compressible laminar solutions is also shown to capture much of the variation
in skin friction coefficient with 𝑀𝑒 and 𝑇𝑤. This suggests that when BLs are compared with sim-
ilarity based on 𝑅𝑒2 = 𝜌𝑒𝑈𝑒𝛿2∕𝜇2, the effect of compressibility on laminar BLs somewhat closely
matches its impacts on turbulent BLs, especially for adiabatic or weakly cooled walls.

Applying the MTEI equation to the DNS dataset with non-zero heat flux, an analogous compress-
ibility effect was observed for the total enthalpy transport. Reduction in the Stanton number ob-
served at higher edge Mach numbers and wall temperatures could be most explained by simply
considering the impact of mean density on turbulent fluxes. However, another physical effect re-
lating to wall-cooling, 𝑇𝑤 − 𝑇𝑒 (edge-wall temperature difference), was observed. The lower the
edge-wall temperature difference in the case of strongly cooled walls suppresses the turbulent en-
thalpy flux (𝑐𝑝𝜌𝑣′′𝑇 ′′) much more than the turbulent transport of the mean kinetic energy (𝜌𝑢̃𝑢′′𝑣′′).
In fact, this further explores how intense wall cooling breaks the analogy between the skin friction
coefficient and the Stanton number.

In conclusion, the AMI and MTEI equations are shown to be a practical tool for using DNS (or
experimental) data to elucidate essential physics in high-speed turbulent BLs. The present work
demonstrates their use for fully turbulent BLs with a calorically perfect gas. One possible future
approach is to further quantify the contribution of different turbulent length scales (turbulent struc-
tures) using the AMI and MTEI equations. This will be fruitful in comprehending the effect of
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turbulent structures in compressible BLs on surface drag and heat transfer in comparison with in-
compressible BLs. It would also facilitate the exploration of how the integral approach pursued here
may complement existing velocity profile transformations to elucidate high-speed effects on turbu-
lent BL physics. Crucial applications to hypersonic aerothermodynamics can be addressed with
extensions of AMI and MTEI to include high-enthalpy effects such as variable specific heats be-
cause of the vibrational excitation and changing chemical composition. The peak surface heat flux
during transition to turbulence is often crucial, so the application of the MTEI equation to transi-
tional BLs with various instability modes may prove quite fruitful, given the exceptional trends that
have been observed using moment-integral equations for transitional incompressible BLs [38, 82].
Ultimately, this line of research can provide a robust, more quantitative understanding of the re-
lationship between transitional and turbulent flow physics and the dangerously high surface heat
fluxes on hypersonic vehicles.
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Chapter 7

Application of the First-moment Integral

Equations

Previous chapters focused on utilizing the first-moment integral equations, such as AMI and MTEI,
as analysis tools for studying transitional and turbulent boundary layers. This chapter explores addi-
tional applications of the first-moment integral equations for boundary layers. Firstly, we introduce
the application of the AMI equation to boundary layers with flow control. This involves extending
the analysis to incorporate the effects of various flow control mechanisms, e.g., surface suction or
blowing, on wall-bounded flows. Furthermore, we explore a turbulent modeling platform based on
solving the integral form of the Navier-Stokes equations. This approach holds promise for devel-
oping computationally efficient models.

7.1 Flow Control in Wall-bounded Flows

Flow control is a central topic in fluid dynamics that is concerned with devising passive or ac-
tive means of intervention with the flow structure and its underlying mechanisms in a manner that
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causes desirable changes in the overall flow behavior. Through flow control, it is possible, in prin-
ciple, to enable favorable outcomes such as, for example, delay of laminar-to-turbulent transition
and reduction of skin-friction drag in wall-bounded flows [47]. These scenarios allow for substan-
tial savings in fuel expenditure for air, sea, land vehicles, wind, and water turbines, long-range gas
and liquid pipelines, and other similar applications. A flow control scheme can be either active
or passive. The active methods require providing power to the control system, which might be
time-dependent. Flow control by active means has been extensively investigated over the past few
decades [169, 98, 74, 55, 2, 68]. Active control schemes require a source of power. For example, for
the flight of X-21, there was a constant suction porous surface at the leading edge on a swept wing
that caused a transition delay up to a chord Reynolds number 4.7 × 107 [47]. This achievement,
however, came with a substantial power cost to run the control scheme, and sometimes, this power
is higher than the power saved due to drag reduction. Moreover, other environmental obstructions
could impact the efficiency of the control scheme, e.g., insects clogging the porous suction. Pas-
sive techniques, on the other hand, are desirable because of their simplicity and low cost, i.e., no
active control devices, wires, ducts, slots, etc., are needed, and no electric power is required to
drive the control process. Passive techniques widely explored in the literature include the use of
riblets [166, 49], roughness [26, 44], or porous features [1] on the surface exposed to the flow, or
coating the surface with a compliant material [92, 11, 16, 48, 18, 101, 27, 102, 39]. These pas-
sive techniques were shown to be practical for some cases. Yet, their robustness for engineering
applications is challenging. For instance, using compliant coating was observed to be successful
for (turbulent) drag reduction [91]; however, consistent and definitive proof is absent regarding the
efficacy of compliant coatings in the stabilization of TS waves. Moreover, the utilization of such
compliant surfaces was initially deemed suitable primarily for marine settings, mainly because the
panels needed to be excessively flexible for aerospace applications [19]. This determination no-
tably curtails the potential use of compliant surfaces for flow control within aeronautical contexts.
The next section presents a modified form of the AMI equation that includes the explicit role of
non-zero wall-normal velocity on the skin friction coefficient. Subsequently, a set of turbulent BL
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over an airfoil with suction and blowing is examined by this form of AMI analysis.

7.1.1 Surface suction and blowing

The AMI equation, defined in 5.7, can be revised for BLs with a non-zero wall-normal velocity at
the surface. If the wall-normal velocity at the wall is not zero, an extra term appears in the AMI
equation as
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where 𝑉𝑤 denotes the non-zero wall-normal velocity at the wall. The fifth term in Eq. 7.1 accounts
directly for the surface penetration effect or the presence of non-zero wall-normal velocity at the
wall. This term, known as wall BC, directly depends on 𝑉𝑤(𝑥) and illustrates how the imposed wall
BCs influence the skin friction coefficient. It is naturally zero for flows with no-penetration BC.
However, for BLs subject to flow control schemes such as surface suction or blowing, this term
alters the budget of the AMI equation.

We apply Eq. 7.1 to a set of incompressible turbulent BLs over NACA-4412 airfoil at an angle of
attack of 5◦. Similar to section 5.2, the Reynolds number based on the chord length (𝑐) is 𝑅𝑒𝑐 =
𝑈∞𝑐∕𝜈 = 400, 000, where 𝑈∞ denotes the free-stream velocity. Apart from the reference Wing
case that was discussed in Chapter 5, two other BLs under the same flow configuration are studied,
but with control schemes employing surface suction (Wing-suction) and blowing (Wing-blowing).
The control surface extends from 𝜉∕𝑐 = 0.25 to 𝜉∕𝑐 = 0.855, with a constant control intensity
set at 0.1%𝑈∞ [5]. Figure 7.1 illustrates the budget of the AMI equation for turbulent BL over an
airfoil under suction and blowing, compared with the reference Wing discussed earlier. For the
convenience of the reader, the control surface is shaded in Fig. 7.1.

With surface suction (or blowing), laminar friction (not shown here) is marginally higher (or lower)
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(c) (d)

(b)(a)

Figure 7.1: The AMI budget of the reference wing compared with the suction and blowing cases
with respect to 𝜉∕𝑐 for: (a) turbulent torque, (b) pressure gradient, (c) mean flux, and (d) wall BC.
The shaded gray region denotes the streamwise position under suction (or blowing). In (a) shaded
black lines exhibit 𝐶𝑓∕2.

than the reference case as BL thickness reduces (or increases) downstream; thinning of 𝛿99 is cor-
related with a reduction in 𝛿2, and hence 𝓁. Ignoring the contribution of laminar friction, which
is not effectively impacted by either suction (or blowing), a major flow phenomenon is wall BC.
In the AMI equation, the direct impact of suction and blowing (or any imposed wall BC) on 𝐶𝑓∕2
is associated with wall BC. This flow phenomenon explicitly depends on the wall-normal velocity
at the surface, 𝑉𝑤. Figure 7.1 (a) depicts wall BC along with 𝐶𝑓∕2 (shown in shaded black lines).
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In these plots, suction is represented by dashed lines, and the blowing case is illustrated by dotted
lines, while the reference case without control is represented by solid lines. As expected, suction
naturally increases the skin friction coefficient by enhancing the wall-edge velocity gradient and
pulling higher momentum fluid toward the wall. On the other hand, surface blowing leads to about
a 20% reduction of 𝐶𝑓 with respect to the reference case by thickening the boundary layer. With
regular no-slip and no-penetration wall BCs, wall BC is naturally zero, as shown for the reference
wing. For instance, in the surface suction (or blowing) case, the relative contribution of wall BC

reads from 24% (or −35%) at the leading edge to approximately 80% (or ∼ −200%) at the trail-
ing edge of the control region. This monotonic increase of the relative contribution downstream is
merely due to the reduction of 𝐶𝑓∕2 because 𝑉𝑤 is imposed to be a constant.

Despite the limited influence of suction (or blowing) on laminar friction, the control region changes
the turbulence enhancement. As shown in figure 7.1 (b), the impact of suction (or blowing) on
turbulent torque is opposite and less significant compared to its impact on𝐶𝑓 . For example, surface
suction increases the skin-friction coefficient but diminishes turbulent torque. The AMI equation
quantifies the maximum change of turbulent torque to be, respectively, −10% and 9% for suction
and blowing. Moreover, suction (or blowing) seems to have a cumulative effect on turbulent torque;
at the leading edge of the control region, the difference between turbulent torques is negligible, yet
it increases downstream. Therefore, for the suction case, the lower downstream turbulent torque

shows surface suction alleviates the impact of pressure gradient on the upstream-to-downstream
variation of the turbulence enhancement; the difference of turbulent torque between 𝜉∕𝑐 = 0.2 to
𝜉∕𝑐 = 0.9 is less than 1%, while in the reference case, this number was reported to be 13%. These
results suggest that surface suction must reduce the negative contribution of pressure gradient by
pulling the flow towards the wall.

As presented in figure 7.1 (c), similar to the turbulent torque analysis, the impact of surface suction
(or blowing) on pressure gradient appears to be cumulative too. Within 𝜉∕𝑐 ≤ 0.4, the effect
of suction (or blowing) on pressure gradient is insignificant. However, the accumulated effect
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becomes more pronounced downstream of 𝜉∕𝑐 = 0.4, also slightly influencing the growth rate of
pressure gradient. The AMI analysis quantifies the maximum impact of surface suction on pressure

gradient to be approximately 14%, observed at the trailing edge of the control surface, compared
with the reference wing. Surface blowing has a similar but opposite effect, enhancing the strength
of pressure gradient.

Due to the natural cumulative effect of suction (or blowing) on turbulent torque and pressure gra-

dient, mean flux is the only flow phenomenon partially resisting the immediate impact of wall BC

on 𝐶𝑓 . In other words, mean flux alleviates the non-equilibrium caused by both pressure gradient

and wall BC. In the spatial range of 0.2 ≤ 𝜉∕𝑐 ≤ 0.4, where pressure gradient is relatively weak,
the absolute contribution of mean flux to 𝐶𝑓∕2 is small for the reference Wing. In the suction (or
blowing) case, on the other hand, mean flux resists the immediate skin-friction enhancement (or
reduction) caused by wall BC. The immediate response of mean flux to suction (or blowing) can be
understood by looking into its sub-terms. As described in section 5.1, mean flux is the sum of the
streamwise growth of the BL thickness and the mean wall-normal flux, first introduced in [38]. Suc-
tion (or blowing) only implicitly influences the streamwise growth of the BL. However, the mean
wall-normal flux absorbs the immediate change of suction (or blowing). This term, demonstrated to
enhance wall shear stress in fully turbulent flows [38, 82, 81], exhibits a weaker effect with suction
but a stronger impact with blowing at the surface of the control region. This is a consequence of
suction (or blowing) altering the mean wall-normal velocity profile, influencing the wall-normal
transport of momentum, particularly near the surface. For example, suction induces a region with
negative mean wall-normal velocity, leading to an inverse contribution of mean wall-normal flux.
Therefore, mean flux compensates for approximately 70% of the wall BC’s friction enhancement,
primarily by generating weaker (and sometimes negative) mean wall-normal flux. Interestingly,
this observation parallels findings in transitional incompressible boundary layers ([82]), where a
small region near the surface exhibited wall-normal deceleration and 𝑣 ≤ 0, forcing the near-wall
flow to accelerate in the streamwise direction due to the continuity constraint.
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The authors contends that BLs with surface suction and transitional flows, which are characterized
by the presence of negative near-surface wall-normal velocity, hold the potential to foster other flow
control schemes.

7.2 Wall-normal Integral-based Turbulent Modelling

The development and application of integral-based methods for the analysis and modeling of wall-
bounded flows began with the study of laminar boundary layer (BL) flows [165, 132, 153] and
expanded to turbulent flows with the introduction of wall-normal integrals in the RANS equa-
tions [88]. While the advancements in numerical computation have facilitated the solution of fully
three-dimensional partial differential equations, such as the Navier-Stokes equations, through high-
fidelity platforms like DNS, the computational cost remains prohibitively high, particularly for ap-
plications involving higher Reynolds numbers [181]. Even less expensive numerical methods, like
LES, are still computationally demanding at Reynolds numbers relevant to practical applications
[181].

The significant impact of turbulent motions with streamwise extents comparable to the BL thick-
ness, channel half-height, or pipe radius presents intriguing challenges and opportunities for mod-
eling [70, 86, 63, 111]. These large-scale motions (LSMs) and superstructures –or very-large-scale
motions (VLSMs)– exhibit substantial wall-normal extent (as illustrated in Fig. 1.6) and contribute
significantly to turbulent kinetic energy and Reynolds stress across much of the boundary layer.
The primary challenge in developing models for wall-bounded turbulence based on (V)LSMs lies
in creating an efficient framework directly derived from conservation laws, e.g., the Navier-Stokes
equations.

One approach to address this challenge, proposed by Ragan & Johnson [134], involves utilizing
instantaneous wall-normal integrals of first principles. This approach can be interpreted as an LES
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version of traditional RANS-based integral methods, inspired by the budget of the angular momen-
tum integral equation for the turbulent enhancement. As shown in figures 5.10 more than 60% of
the zeroth integral of (or total) Reynolds shear stress, known as turbulent torque, is accumulated
within the outer region of the BL. This value reaches to more than 90% for the near-equilibrium
BLs, e.g., zero-pressure-gradient BLs. These prior observations clearly show the importance of the
outer region of the flow in capturing the dominant effect of Reynolds shear stress.

Applying the concept of zeroth and first moments to the DNS data from the Johns Hopkins Turbu-
lence Databases for a turbulent channel flow with𝑅𝑒𝜏 = 1000 [51] as a priori test, Ragan & Johnson
[134] observed that the larger turbulent structures still exist in the two-dimensional field of instan-
taneous wall-normal integrated velocity (see Figure 7.2). Figure 7.2 (a) displays the inner-scaled

(a) (b)

Figure 7.2: Comparison of the inner-scaled instantaneous streamwise velocity in 𝑥−𝑧 plane: (a) at
wall-normal distance 𝑦∕𝛿 = 0.2, and (b) after applying the wall-normal integral operator. Results
from Ragan & Johnson [134].

instantaneous streamwise velocity component in the 𝑥 − 𝑧 plane away from the wall at 𝑦∕𝛿 = 0.2)
in which the large-scale streaky turbulent structures are evident. Upon applying the wall-normal
integral operator –similar to a filter– to 𝑢′+, the large-scale streaks are preserved almost identically
at similar locations within the 𝑥 − 𝑧 plane (Figure 7.2 (b)). These findings suggest that the zeroth-
and first-moment integral operators approximately retain the a significant portion of the turbulent
dynamics. These findings are in parallel with our previous analysis using the angular momentum in-
tegral equation in boundary layers, where we observed that up to 90% of the turbulent enhancement
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is attributed to the outer region and (V)LSMs.
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Chapter 8

Conclusion and Future Works

The focus of this thesis was developing the first-moment integral equations as an analysis tool
to examine the surface friction and heat flux in boundary layer flows. The first-moment integral
equations are derived from the first principles without any assumption. For instance, the angular
momentum integral (AMI) equation, first introduced by Elnahhas & Johnson [38], is derived from
the conservation of momentum and shows how different flow phenomena above the wall impact the
skin friction coefficient. With a similar approach, the moment of (total) enthalpy integral (MTEI)
equation is obtained from the energy conservation and yields a decomposition for the Stanton num-
ber.

8.1 Summary of Completed Works

A boundary layer, first hypothesized by Prandtl, is a thin layer of flow in the vicinity of a surface
where the no-slip boundary condition is imposed, so the viscous effects are significant. This layer
is known for generating friction drag and is responsible for heat transfer between the fluid state
and surface. Although known as a canonical flow, the physics of boundary layer flows can be
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complex. This complexity arises when the boundary layer transitions to turbulence. Furthermore,
the geometry of the problem, like significant curvature effects, adds additional physical phenomena
to the fluid flow. If the flow is in a high-speed regime, the density variation and compressibility
effects make the physics of turbulent flows further intriguing. In the following text, I summarize
how the first-moment integral equations in this work had been implemented to examine the impact
of different flow phenomena on the skin friction coefficient and Stanton number.

• I extended the first-moment integral equation on the basis of the AMI equation to incom-
pressible transitional and turbulent boundary layer flows with heat transfer. The moment of
enthalpy integral (MEI) equation was introduced to decompose the Stanton number, quantify-
ing how flow phenomena above the wall impact the surface heat flux relative to the reference
laminar flow at the same Reynolds number. Furthermore, the peak skin friction and heat flux
were examined during the transition. I implemented the AMI and MEI equation to demon-
strate how streamwise growth and mean wall-normal flux resist the rapidly growing Reynolds
shear stress enhancement of the skin friction coefficient and Stanton number during the tran-
sition. The growth of the Reynolds shear stress during the transition forces the near-wall
flow to accelerate –an effect similar to the favorable pressure gradient. Due to the continuity
constraint, the near-wall wall-normal velocity becomes negative in that region, carrying high-
momentum flow toward the wall. The author believes this region can yield an optimized flow
control outcome since the negative wall-normal velocity would further stimulate the control
scheme.

• I re-arranged the AMI equation to tackle turbulent boundary layers encountering non-zero
pressure gradients. The reformulated form of AMI is based on the inviscid velocity instead
of the edge or free stream velocities, as the outer layer velocity scale. Such a choice im-
proves the robustness of integral equations by alleviating the ambiguity in the definition of
the boundary layer thickness. The modified AMI equation was applied to flows over a suction
side of an airfoil and a two-dimensional Gaussian bump, where in both, the pressure gradient
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is imposed by the geometry of the surface, i.e., curvature effects. I concluded the strength
of the adverse pressure gradient does not significantly impact the explicit turbulent enhance-
ment of skin friction, e.g., turbulent torque. This observation is aligned with the budget of
the AMI equation for flows over a flat plate with an imposed adverse pressure gradient. In the
bump flow, the AMI equation captured the re-laminarization process caused by (strong) fa-
vorable pressure gradients; during flow acceleration, turbulent torque reduced substantially,
while laminar friction increased. Additionally, using the AMI analysis, I showed this so-
called re-laminarization is truly attributed to frozen turbulence rather than suppressing the
turbulence. I further implemented the AMI equation to examine the pressure gradient history
effects on boundary layer turbulent statistics. The AMI equation offers a pressure gradient
parameter, 𝛽𝓁, (as a counterpart of the non-equilibrium Clauser parameter, 𝛽), which yields
more robust similarity between two distinct boundary layers at matching 𝛽𝓁 than what 𝛽 gives.
Specifically, I observed a strong correlation between 𝛽𝓁 and the skin friction coefficient.

• I extended the AMI equation to high-speed boundary layers, including the compressibility
effects. Furthermore, I introduced the MTEI equation on the basis of the AMI equation to
study the surface heat flux in those flows. The AMI and MTEI equations were applied to a set
of compressible direct numerical simulation datasets for a fully turbulent boundary layer over
a flat plate with a wide range of edge Mach numbers from subsonic to supersonic flows. The
integral equations suggest defining a reference viscosity (and thermal conductivity) over a
common choice of wall quantities. Such a choice yields a more robust collapse of boundary
layers with different edge and wall conditions. Using these reference quantities, I demon-
strated the primary difference between the distribution of the normalized Reynolds shear
stress (by the edge velocity) in the wall-normal direction for different boundary layers is due
to the mean density profile. In other words, the profile of −𝑢′′𝑣′′∕𝑈 2

𝑒 is significantly simi-
lar for a wide range of edge Mach numbers and wall conditions. I also obtained a mapping
between the skin friction coefficient of compressible and incompressible boundary layers us-
ing the ratio between the AMI length scale of compressible and incompressible flows. This
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transformation yields an accurate prediction for adiabatic wall cases, while its accuracy di-
minishes as the wall-cooling gets stronger. A similar analysis was performed to examine the
significant surface heat flux of supersonic datasets.

• Besides using the first-moment integral equation as a post-processing platform, they can be
used to develop and optimize flow control schemes. Specifically, the AMI equation was
modified to yield a term for the explicit contribution of non-zero wall-normal boundary con-
ditions. Applying this to flow over an airfoil with surface suction and blowing exhibited a
weak impact of the control scheme on the turbulent enhancement. The AMI equation can also
be implemented to examine other control schemes. Furthermore, I discussed the potential for
developing integral equations as a computationally efficient approach to turbulent modeling.
One avenue involves solving the zeroth- and first-moments of the integral of Navier-Stokes
equations, merely resolving the outer region of wall-bounded flows. My earlier observation
supports this proposition that over 80% of the turbulent enhancement captured by the AMI
equation is concentrated in the outer region.

8.2 Future Research Ideas

In light of the findings of this thesis, I propose the following subjects as potential paths for further
investigation.

• Expanding the application of first-moment integral equations to boundary layer flows over
rough surfaces presents a promising avenue for research. Surface roughness, typically char-
acterized by roughness functions or empirical methods, appears as an extra term in the gov-
erning equations. By taking the first-moment integral, we can directly quantify the explicit
impact of surface roughness on both surface friction and heat flux relative to base laminar
flow. Furthermore, extending the integral equations to incorporate surface roughness enables

189



us to investigate how roughness alters turbulent enhancement compared to smooth surfaces.
By systematically analyzing turbulent statistics and flow dynamics over rough surfaces, we
can develop more robust models for flows with surface roughness.

• The application of the first-moment integral equations to boundary layer flows with signif-
icant curvature effects is a crucial avenue for future research. While this thesis primarily
focused on flows where direct curvature impact was limited, such as bump flows, the influ-
ence of curvature can be substantial in cases involving flows around blunt bodies or certain
airfoils. Therefore, it becomes imperative to extend the AMI analysis to include explicit cur-
vature effects and assess their impact on turbulent enhancement. An initial step towards this
analysis involves deriving the integral equations in a general curvilinear coordinate system.
To the best of the author’s knowledge, there is currently no systematic set of integral equa-
tions available for such a coordinate system. Thus, future research efforts should focus on
formulating integral equations that account for the complex interplay between curvature ef-
fects and turbulent boundary layer dynamics. This will provide valuable insights into how
curvature influences turbulence enhancement and aid in the development of more accurate
turbulence models for curved boundary layer flows.

• Implementing the Angular Momentum Integral (AMI) equation for flows approaching sep-
aration or in separated flow regimes presents an intriguing avenue for further investigation.
Since the AMI equation is derived from fundamental conservation equations without rely-
ing on the boundary layer approximation, it holds potential applicability to separated flows.
Studying separated flows using the AMI equation requires access to reliable and sufficiently
averaged turbulent datasets. By conducting such an analysis, we can gain deeper insights into
how separated flow phenomena, such as separation bubbles, influence turbulence dynamics.
This research endeavor can enhance our understanding of the intricate interactions between
separated regions and turbulence structures, paving the way for more accurate modeling and
prediction of separated flow behavior.
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• Investigating the application of first-moment integral equations to transitional high-speed
compressible boundary layers represents a compelling research direction. While this thesis
concentrated on fully turbulent compressible flows, where turbulence was triggered by turbu-
lent recycling, the intriguing findings regarding transitional incompressible boundary layers
prompt exploration into compressible regimes. Applying the AMI analysis to transitional
compressible boundary layers entails examining the first- and second-mode of transition and
assessing how various flow phenomena in the AMI equation respond to these transitional
states at different frequencies. By conducting such investigations, we can gain valuable in-
sights into the transitional behavior of compressible boundary layers, facilitating a deeper un-
derstanding of the underlying physics and providing insights into developing robust control
schemes. Additionally, the first-moment integral equations can be extended to transitional
and turbulent high-speed flows considering the high-enthalpy effects. This requires deriving
the equations for each species as well as including additional terms in the momentum and en-
ergy conservation. By doing so, one can examine how dissociation due to the high-enthalpy
effect could impact the turbulent enhancement of the surface friction and heat flux.
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Appendix A

Full budget of the AMI Equation for flows

with Pressure Gradient

Wing dataset

This appendix provides the full budget of the AMI equation, including negilible terms, for the Wing
dataset. Figure A.1 exhibits 𝐶𝑓∕2 and the sum of the all terms in the right-hand side of Eq. 5.7,
denoted as 𝑅𝐻𝑆, where a great match between the left and right-hand sides of the AMI budget is
evident. Unsurprisingly, negilible remains insignificant even downstream under relatively higher
adverse pressure gradient.

Bump dataset

This appendix presents the complete budget of the AMI equation, including negligible terms, for
the Bump dataset. Figure A.2 illustrates 𝐶𝑓∕2 and the sum of all terms on the right-hand side of
Eq. 5.7, labeled as 𝑅𝐻𝑆. A good agreement is observed between the left and right-hand sides
of the AMI equation, except in regions very close to separation (or separated flow). Additionally,
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Figure A.1: The full budget of AMI equation for the Wing dataset. Here, 𝓁 = 4.54𝛿2 obtained from
Blasius solution. The shaded lines represent the flow phenomena already shown in Fig. 5.6.

downstream of the separation bubble, where flow reattachment occurs, the sum of the right-hand
side of Eq. 5.7 fluctuates around 𝐶𝑓∕2. This suggests that the AMI analysis captures the physics
within this region, although insufficient averaging leads to oscillations.

Figure A.2: The full budget of AMI equation for the Bump dataset. Here, 𝓁 = 4.54𝛿2 obtained
from Blasius solution. The shaded lines represent the flow phenomena already shown in Fig. 5.7.

As expected, negilible terms remain insignificant away from the separation region. However, near
and within the separation bubble, the terms neglected by the boundary layer approximation and
unsteady acceleration become significant. Furthermore, the (absolute) contribution of negilible

terms slightly increases where the flow is accelerating within the favorable pressure gradient region.
The authors attribute this marginal enhancement to an increase in the streamwise derivatives that
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appear in Eq. 5.6. Specifically, the streamwise derivative of 𝑢′𝑢′ is higher than the other regions of
the flow.

Comparsion between edge and inviscid velocities

The comparison between the inviscid velocity at the surface and the edge velocity, both computed
by implementing the local reconstruction method is showing in figure A.3 (a, b), respectively, for the
Wing and Bump datasets. For the Wing case, the difference between𝑈𝑖𝑜 and𝑈𝑒 is small. Similarly,

(a) (b)

Figure A.3: Comparison between the normalized inviscid velocity at the wall and the edge velocity
by 𝑈∞; (a) for the Wing case, and (b) for the Bump flow.

for the bump flow, away from the bump’s peak 𝑈𝑖𝑜 and 𝑈𝑒 match; however, near the bump’s peak at
𝜉∕𝐿 = 0, the difference between these two velocity scales increases. This is primarily attributed to
the curvature effect that is stronger in the Bump case, especially near its peak. Note that comparing
the budget of the AMI equation reveals that using 𝑈𝑖𝑜 as the outer-scale velocity yields a more
robust analysis with a smaller error.
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Appendix B

Step-by-step Full Derivation of Angular

Momentum Integral Equation

Here, the step-by-step derivation of the AMI equation is provided. Favre average Navier-Stokes
equation for statistically two-dimensional compressible BLs reads

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌𝑢̃) + 𝜕
𝜕𝑦

(𝜌̄𝑣) = 0, (B.1)

for continuity and

𝜕
𝜕𝑡
(𝜌𝑢̃) + 𝜕

𝜕𝑥
(𝜌𝑢̃𝑢̃) + 𝜕

𝜕𝑦
(𝜌𝑢̃𝑣) = −

d𝑝
d𝑥

+ 𝜕
𝜕𝑥

(

𝜏𝑥𝑥 − 𝜌𝑢′′𝑢′′
)

+ 𝜕
𝜕𝑦

(

𝜏𝑥𝑦 − 𝜌𝑢′′𝑣′′
)

, (B.2)

for 𝑥-momentum, where we assumed the mean pressure is not changing in 𝑦-direction. We can
further assume

𝜏𝑥𝑦 ≈ 𝜇𝜕𝑢
𝜕𝑦
. (B.3)
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The governing equation at the edge of the BL yields

𝜕
𝜕𝑡

(

𝜌e𝑈e
)

+ 𝜌e𝑈e
d𝑈e

d𝑥
= −

d𝑃e

d𝑥
, (B.4)

presuming the edge conditions are independent of the wall-normal direction, 𝑦. Subtracting Eq.
(B.2) from Eq. (B.4) gives the average 𝑥-momentum deficit equation as

𝜌e𝑈e
d𝑈e

d𝑥
− 𝜕
𝜕𝑥

(𝜌𝑢̃𝑢̃) − 𝜕
𝜕𝑦

(𝜌𝑢̃𝑣) = − 𝜕
𝜕𝑦

(𝜇𝜕𝑢
𝜕𝑦

) + 𝜕
𝜕𝑦

(

𝜌𝑢̃′′𝑣′′
)

− 𝐼𝑀 , (B.5)

in which

𝐼𝑀 = 𝜕
𝜕𝑡

(

𝜌e𝑈e − 𝜌𝑢̃
)

+ 𝜕
𝜕𝑥

(

−𝜌
(

𝑢′′𝑢′′
)

+ 𝜕
𝜕𝑥

(

𝜏𝑥𝑥
)

)

−
(

d𝑃e

d𝑥
−

d𝑝
d𝑥

)

(B.6)

representing the negligible terms for statistically two-dimensional BLs. re-arranging the Eq. (B.5),
and implementing continuity equation the 𝑥-momentum deficit can be re-written as

𝜌e𝑈e
d𝑈e

d𝑥

((

1 −
𝜌
𝜌e

𝑢̃
𝑈e

)

+ 2
(

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

)))

+ 𝑈 2
e
d𝜌e
d𝑥

(

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

))

+ 𝜌e𝑈 2
e
𝜕
𝜕𝑥

(

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

))

+ 𝜌e𝑈 2
e
𝜕
𝜕𝑦

(

𝜌
𝜌e
𝑣
𝑈e

(

1 − 𝑢̃
𝑈e

))

+ 𝜕
𝜕𝑦

(

𝜇𝜕𝑢
𝜕𝑦

)

− 𝜕
𝜕𝑦

(

𝜌𝑢′′𝑣′′
)

+ 𝐼𝑀 = 0.

(B.7)

To obtain the angular momentum (or the first moment of momentum) form, we multiply the whole
Eq. (B.7) by (𝑦 − 𝓁), where 𝓁 is the appropriate choice of length scale based on laminar skin friction
discussed in 6.2.2. Then, we integrate the equation in the wall-normal direction, ∫ ∞

0 (𝑦 − 𝓁(𝑥)) {⋅} d𝑦=0.
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Integration of the first two terms in the left-hand side of Eq. (B.7) yields

(1) → 𝜌e𝑈e
d𝑈e

d𝑥 ∫

∞

0
(𝑦 − 𝓁)

{(

1 −
𝜌
𝜌e

𝑢̃
𝑈e

)

+ 2
(

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

))}

d𝑦 =

− 𝓁𝜌e𝑈e
d𝑈e

d𝑥 ∫

∞

0

(

1 −
𝑦
𝓁

)

{(

1 −
𝜌
𝜌e

𝑢̃
𝑈e

)

+ 2
(

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

))}

d𝑦 =

− 𝓁𝜌e𝑈e
d𝑈e

d𝑥
(𝛿𝓁1 + 2𝛿𝓁2 ),

(2) → 𝑈 2
e
d𝜌e
d𝑥 ∫

∞

0
(𝑦 − 𝓁)

{

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

)}

d𝑦 =

− 𝓁𝑈 2
e
d𝜌e
d𝑥 ∫

∞

0

(

1 −
𝑦
𝓁

)

{

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

)}

d𝑦 = −𝑈 2
e
d𝜌e
d𝑥
𝛿𝓁2 .

These two terms originated from the edge pressure gradient due to the streamwise variation of edge
velocity and density, respectively. The integration of the third term in the left-hand side of Eq.
(B.7), which represents the streamwise variation of the streamwise flux of momentum deficit, gives

(3) → 𝜌e𝑈
2
e ∫

∞

0
(𝑦 − 𝓁)

{

𝜕
𝜕𝑥

(

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

))}

d𝑦 =

− 𝓁𝜌e𝑈
2
e (
𝜕
𝜕𝑥 ∫

∞

0

(

1 −
𝑦
𝓁

)

{

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

)}

d𝑦+

1
𝓁
d𝓁
d𝑥

(

−∫

∞

0

(

1 −
𝑦
𝓁

)

{

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

)}

d𝑦 + ∫

∞

0

𝜌
𝜌e

𝑢̃
𝑈e

(

1 − 𝑢̃
𝑈e

)

d𝑦
)

) =

− 𝓁𝜌e𝑈
2
e

(

𝑑𝛿𝓁2
d𝑥

+
𝛿𝓁2 − 𝛿2

𝓁
d𝓁
d𝑥

)

.

The fourth term in Eq.(B.7) depends on the mean wall-normal flux of the streamwise momentum
deficit. Integration of this term and applying no-penetration through the wall reads

(4) → 𝜌e𝑈
2
e ∫

∞

0
(𝑦 − 𝓁) 𝜕

𝜕𝑦

{

𝜌
𝜌e
𝑣
𝑈e

(

1 − 𝑢̃
𝑈e

)}

d𝑦 =

− 𝓁𝜌e𝑈
2
e

([

(

1 −
𝑦
𝓁

) 𝜌
𝜌e
𝑣
𝑈e

(

1 − 𝑢̃
𝑈e

)]∞

0
+ 1

𝓁 ∫

∞

0

𝜌
𝜌e
𝑣
𝑈e

(

1 − 𝑢̃
𝑈e

)

d𝑦
)

= −𝜌e𝑈 2
e 𝛿

𝑣
2 .
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The viscous effect and wall shear stress are embedded in the fifth term on the left-hand side of
Eq.(B.7). Integrating this term across the wall-normal direction gives

(5) → ∫

∞

0
(𝑦 − 𝓁)

{

𝜕
𝜕𝑦

(

𝜇𝜕𝑢
𝜕𝑦

)}

d𝑦 =
[

(𝑦 − 𝓁)
(

𝜇𝜕𝑢
𝜕𝑦

)]∞

0
− ∫

∞

0
𝜇𝜕𝑢
𝜕𝑦

d𝑦 =

𝓁𝜏w − ∫

∞

0

(

𝜇 − 𝜇Ref
) 𝜕𝑢
𝜕𝑦

d𝑦 − 𝜇Ref𝑈e.

Integration of the sixth term yields

(6) → ∫

∞

0
(𝑦 − 𝓁)

{

− 𝜕
𝜕𝑦

(

𝜌𝑢′′𝑣′′
)

}

d𝑦 = −
[

(𝑦 − 𝓁) 𝜕
𝜕𝑦

(

𝜌𝑢′′𝑣′′
)

]∞

0
+ ∫

∞

0
𝜌𝑢′′𝑣′′d𝑦 =

∫

∞

0
𝜌𝑢′′𝑣′′d𝑦,

where the contribution of Reynolds shear stress on skin friction is preserved. It’s worth mentioning
that the integral of the Reynolds shear stress –without using the first-moment method– vanishes
because the turbulence doesn’t naturally exist either at the wall or within the irrotational edge.
Finally, the integral of the seventh term, which represents all the negligible flow phenomena for
statistically two-dimensional BLs, is

(7) → ∫

∞

0
(𝑦 − 𝓁)

{

𝐼𝑀
}

d𝑦 = 𝓁 ∫

∞

0
(1 −

𝑦
𝓁
)
{

𝐼𝑀
}

d𝑦.

Normalizing all the integrals determined above with the edge dynamic pressure, 𝜌e𝑈e∕2, yields the
angular momentum integral (AMI) equation for skin-friction coefficient 𝐶𝑓

𝐶𝑓
2

= 1
𝑅𝑒𝓁

+ 1
𝓁 ∫

∞

0

−𝜌̄𝑢′′𝑣′′

𝜌e𝑈 2
e

d𝑦 +

{

d𝛿𝓁2
d𝑥

−
𝛿2 − 𝛿𝓁2

𝓁
d𝓁
d𝑥

}

+
𝛿𝑣2
𝓁

+ 1
𝓁 ∫

∞

0

(

𝜇 − 𝜇Ref
) 𝜕𝑢
𝜕𝑦

𝜌e𝑈 2
e

d𝑦

+
{

1
𝑈e

d𝑈e

d𝑥
(

𝛿𝓁1 + 2𝛿𝓁2
)

+ 1
𝜌e

d𝜌e
d𝑥
𝛿𝓁2

}

+ 𝓁
𝑀 .

(B.8)
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In the above equation

𝓁
𝑀 = 1

𝜌e𝑈 2
e
∫

∞

0
(1 −

𝑦
𝓁
)𝐼𝑀d𝑦 (B.9)

is the contribution of all negligible terms to the skin friction coefficient.

Deriving the moment of total enthalpy integral (MTEI) equation, Eq.(6.23), takes similar steps
elaborated above, but starting with the total enthalpy equation for compressible BLs.
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Appendix C

Full Budget of the First-moment Integral

Equations for High-speed Flows

C.1 Angular Momentum Integral Equation

In Figures 4.3(a,b,c,d), the four significant terms in AMI equation with choosing the shear stress
weighted viscosity as the reference viscosity, 𝜇Ref = 𝜇2, and self-similar compressible laminar
solution as the base for the AMI length scale, 𝓁 = 𝓁2,C, are shown. Here, the contributions of the
other flow phenomena are provided to complete the budget of the AMI equation.

C.2 Moment of Total Enthalpy Integral Equation

To complete the budget of the MTEI equation, here, we provide the contribution of the other flow
phenomena including the flux due to deviation from reference viscous transport, edge pressure

gradient flux, negligible terms, and wall temperature variation flux to the surface heat transfer.
Similar to Figure 4.6(a,b,c,d), the reference viscosity is 𝜇𝐻 , and the MTEI length scale is computed
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Figure C.1: Contribution of (a) viscous deviation from reference viscosity, (b) torque due to the
edge pressure gradient, and (c) the negligible terms due to departure from the BL approximations
to the AMI equation, Eq. (6.7), based on 𝜇Ref = 𝜇2 and 𝓁 = 𝓁2,C

from the self-similar compressible laminar solution, 𝓁 = 𝓁𝐻,C.
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Figure C.2: Contribution of (a) deviation from reference viscous transport, (b) flux due to the edge
pressure gradient, (c) non-isothermal wall temperature, and (d) the negligible terms due to departure
from the BL approximations to the MTEI equation, Eq. (6.23), based on 𝜇Ref = 𝜇𝐻 and 𝓁 = 𝓁𝐻,C.
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