
UCLA
UCLA Previously Published Works

Title
Using machine-learning to understand complex microstructural effects on the 
mechanical behavior of Ti-6Al-4V alloys

Permalink
https://escholarship.org/uc/item/4rq514v8

Authors
McElfresh, Cameron
Roberts, Collin
He, Sicong
et al.

Publication Date
2022-06-01

DOI
10.1016/j.commatsci.2022.111267

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4rq514v8
https://escholarship.org/uc/item/4rq514v8#author
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


Using machine-learning to understand complex microstructural effects on the
mechanical behavior of Ti-6Al-4V alloys

Cameron McElfresha, Collin Robertsa, Sicong Hea, Sergey Prikhodkoa, Jaime Mariana

aDepartment of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA

Abstract

Structural materials properties are highly dependent on their microstructure. Their microstructure is in turn affected by
multiple fabrication and thermo-mechanical treatment parameters, all of which conform a highly-dimensional para-
metric space with often hidden correlations that are difficult to extract by experimentation alone. This is particularly
true for alloys of the dual-phase Ti-6Al-4V family, with their greatly complex and rich microstructures, which com-
bine several intrinsic lengthscales associated with multiple grain and subgrain structures, grains with different crystal
lattices (α and β phases), and complex chemistry. Here we use a comprehensive set of machine learning techniques
to develop predictive tools relating the yield strength and hardening rate of these alloys to a set of input parameters
covering extensive ranges. The data generator is a finite-element crystal plasticity model for polycrystal deformation
that takes into account slip anisotropy and employs standard dislocation evolution models for the α and β phases of
Ti-based alloys. Our dataset includes over two thousand independent simulations and is used to train the machine
learning models, which are then used to establish correlations between microstructural parameters and the alloys’
mechanical response. Our results point to the most influential parameters affecting yield strength and hardening
rate, information that can then be used to guide experimental synthesis and characterization efforts to save time and
resources.

Keywords: Ti-6Al-4V alloys, Yield strength, Polycrystal plasticity, Dual-phase Ti alloys, Machine learning,
Hardening rate
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1. Introduction

Titanium alloys are widely used in aerospace, biomedical, transportation, and military applications due to their
specific high strength and fracture toughness, corrosion resistance, and high-temperature properties. In particular,
Ti-6Al-4V is one of the most popular titanium alloys due to the increased strength achieved with the stabilization
of the body-centered cubic (BCC) β phase. The interplay between the hexagonal close-packed (HCP) α phase and
the β phase is the primary factor dictating the strength of titanium alloys. Though the β phase is thermodynamically
unfavorable below 890◦C in pure titanium [1, 2], metastable dual-phase titanium alloys are possible through the
addition of a mixture of beta-stabilizers (such as silicon and vanadium) and alpha-stabilizers (such as aluminum or
oxygen). One of the primary advantages of α/β alloys is that they are heat treatable. Heat treating is vital to relieve
residual stresses, remove machining history, or tune the microstructure for the ability of mass-manufacturing the
material, making α/β alloys a continued area of interest for manufacturing and material science alike.

A number of previous studies have shown that thermo-mechanical processing of α/β Ti alloys can achieve a partic-
ular microstructure-performance combination for various applications [3]. Dual-phase titanium can exist in a number
of microstructures including equiaxed, duplex, lamellar, intergranular, and lath [4, 5]. In addition, there is interest in
better understanding graded or layered microstructures that may be ideal for lightweight or directionally-dependent
high strength applications [6]. The advantageous properties of titanium alloys make them ideal candidates for many
high-performance applications. However, the parametric space including all property-dependent microstructural fea-
tures (grain size, phase fraction, orientation, texture, grain geometry, reinforcement particle size and distribution,
solutes etc.) makes alloy design a multifactorial process of combinatorial proportions. As such, mapping the effect
of one parameter –or of sets of different parameters– to a specific microstructural property or mechanical response
through experimentation alone is thus impractical. For this reason, computational modeling and data analysis can
become essential tools to establish direct correlations and narrow down the parametric space in search for improved
alloys via micro- and macrostructural design.

Traditional computational modeling methods, such as crystal plasticity (CP), are ideal counterparts to experimen-
tal methods in order to study the various features associated with the deformation behavior and mechanical coupling
between the β and α phases. Indeed, different variants of the CP method have been applied in recent times to modeling
the deformation of dual-phase titanium alloys [7–11]. However, while useful to study specific aspects of microstruc-
tural evolution during alloy deformation, these tools alone cannot capture the complexities associated with the broad
parametric space potentially influencing the material response. Capturing complex correlations between sets of vari-
ables requires using additional tools of statistical nature.

Advances in computing power and data availability have, among other things, propelled the widespread use of
machine learning (ML) as an additional means of capturing meaning from data. The materials science modeling
community has benefited from the use of machine learning techniques in studies utilizing density functional theory
[12], dislocation dynamics [13], molecular dynamics [14], crystal plasticity [15], and others [16–18]. The relatively
low cost to entry into the domain of machine learning makes it an ideal resource to complement data-heavy research
processes. Moreover, machine learning techniques are ideal to apply when constructing a predictor for mechanical
behavior because (i) there are often many features that affect a material’s mechanical response, and (ii) the property-
behavior relationship of the features tends to be non-linear. Many machine learning models excel at capturing non-
linear behavior and have been successfully applied to build regressors that predict mechanical behavior for a wide
range of materials including steels [19, 20], composites [21], and metallic glasses [22–24]. It should be emphasized
that while there are constitutive equations that are used to model the mechanical behavior of alloys, the arbitrary
extension of these expressions to include more (possibly non-linear) variables is not trivial [25, 26]. In this way, the
use of ML as opposed to traditional constitutive expressions also decreases the rigor of expanding the model to include
more feature variables as the data becomes available.

In this work, we employ several machine learning regression techniques in an exercise to develop predictive mod-
els for the strength and hardening rate of α/β dual-phase polycrystals. Our microstructure simulator is a crystal
plasticity approach based on the work by Admal et al. [27] adapted to polycrystals with alternating BCC/HCP struc-
tures representative of dual-phase Ti alloys. The CP model is used to generate large data sets relating specific inputs
to objective outputs, and ML regression techniques are then applied to assign importances and extract correlations.

The paper is organized as follows. In Section 2.1 we briefly outline the physical and computational background of
the diffuse-crystal interface model. In Section 2.2 we describe the modifications made to the plasticity model in order
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to simulate a dual-phase α/β titanium crystal and demonstrate acceptable correlation with literature values. In Section
3 we introduce the machine learning models. Section 4 presents the results of the simulations and machine learning
regression exercise. In Section 5 we discuss the findings and potential next steps for improving the dual-phase model.

2. Numerical model

2.1. Diffuse Crystal Interface Plasticity Model
The following is a brief description of the previously-developed diffuse crystal interface plasticity model employed

here. The original work can be found in ref. [27]. The basis of the diffuse-crystal interface model is to identify
dislocations as the basic carrier of plastic deformation and build grain boundaries as continuum aggregates of these
defects. In this fashion, grain boundaries are seen as incompatibilities of a plastic rotation field, which –much in
the manner of standard elasto-plastic decompositions– must be closed by defining a special class of geometrically-
necessary dislocations (GND) that habit the GB plane. Crystal deformation is modeled in the traditional sense, as a
multiplicative combination of elastic and plastic deformations:

F (X, t) = FL (X, t) FP (X, t) (1)

where FL and FP are the lattice and plastic components of the total deformation gradient F, respectively, at time t and
position X. The evolution of FP is determined through the contribution of slip systems via slip rates using the flow
rule:

ḞP = LPFP (2)

LP is the plastic velocity gradient, defined as:

LP (X, t) :=
∑
α=1N

γαsα ⊗ mα (3)

where sα and nα are unit vectors representing the glide and plane normal directions for slip system α. The value
γα corresponds to the crystallographic slip rate on each slip system. The additional microscopic force and energy
balance considerations are described in ref. [27]. Using standard crystal plasticity methods, a stress-free single crystal
is constructed at t = 0 by requiring that:

FL (X, 0) = FP (X, 0) ≡ I (4)

such that F ≡ I. In contrast, the diffuse crystal interface model sets the initial state of the polycrystal to be:

FL (X, 0) = R0 (X) , FP (X, 0) = R0 (X)T (5)

where R0 represent the lattice rotation field in the polycrystal and maintains piecewise-constant values in each grain
and smooth transitions across grain boundaries.

The rotational decomposition expressed in eq. (5) is the central framework to the diffuse-crystal interface plasticity
model employed here. Using this decomposition, we can study polycrystals as a single boundary-value problem.
Numerical discontinuities in FL and FP are avoided by implementing a smoothed step function in the space of the
rotational fields. The remainder of the grain boundary and finite element numerical procedures remain the same as
described in ref. [27]. However, the constitutive equations for plastic flow have been modified to accommodate the
allotropic nature of α/β-Ti and the changes are described in Section 2.2.

2.2. Dislocation evolution model
The dual-phase nature of Ti-6Al-4V results in complex plastic deformation mechanisms that are not easily mod-

eled. The microscopic force balance used here [27] is an extension of the approach developed by Barton et al. in [28]
for BCC crystals, not applicable to the HCP α phase. For α-Ti, we adopt the model by Moore et al. [29], which is
also based on a Kocks-Mecking dislocation density evolution law:

ρ̇ =
(
k1
√
ρ − k2ρ

) N∑
α

|γ̇α| (6)
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where ρ is the dislocation density, k1 is the hardening parameter, k2 is the recovery parameter, and
∑N
α |γ̇

α| is the total
shear rate. Limited hardening has been seen in near-α alloys in the elasto-plastic transient range [29], and thus we set
k2 to zero. The evolving dislocation density is used to calculate the slip system strength through:

gα = wα (
g0 + α̃Gb

√
ρ
)

(7)

where g0 is the lattice resistance, G is the shear modulus, b is the Burgers vector’s modulus, and α̃ is a material
parameter that captures latent hardening. The anisotropy of the HCP crystal is embodied in the varying weights
symbolized by the variable wα which takes values of 1.0, 1.0, 1.1, and 3.0 for slip on the basal <a>, prismatic <a>,
pyramidal <a>, and pyramidal <c+a>, respectively [30–32]. The inclusion of the slip system weight is one of the
primary modifications to the plasticity model previously used in ref. [27] that enables extension to an allotropic HCP
polycrystal. Lastly, the shear rates follow the standard strain-rate sensitivity dependence on stress, i.e.:

γ̇α = γ̇0

∣∣∣∣∣ταgα

∣∣∣∣∣ 1
m

sign(τα) (8)

where γ̇0 is a reference slip rate, τα is the resolved shear stress, gα is the crystal strength, and m is the strain rate
sensitivity exponent. τα is obtained as the Schmid projection on slip system α of the Cauchy stress, σ:

τα = sα · σ · mα (9)

with:
σ :=

C

2

(
FT F − I

)
(10)

where C is the elasticity matrix. The system of equations provided in eqs. (1) to (10) is solved using a finite element
approach in systems containing large numbers of grains, as described in Appendix A. A description of the procedure
used to construct the crystals is given in Appendix B. The relevant modeling parameters used throughout the simu-
lations are given in Table 1. The α̇, γo, m, and b parameters were adopted from ref. [29] and ρ0 (initial dislocation
density) was taken as 1012 m−2, which is a reasonable value for the HCP [33] and BCC [27] phases. The k1 and
g0 parameters were used to fit the model to literature data. The use of a single crystal strength parameter, go, was
adopted for model simplicity. While the α and β slip systems certainly have different crystal strengths the priority
of the exercise was to utilize the CPFE approach to generate adequate data to train a predictive regressor. The result

Parameter Value Units
k1 700 –
g0 322.2 MPa
b 3 × 10−10 m
ρ0 1012 m−2

α̃ 0.5 –
m 0.02 –
γ0 0.001 s−1

Table 1: Simulation parameters used in the finite element simulations.

of a simulated tensile test using a 90%/10% α/β equiaxed polycrystal is shown in Figure 1(a) along with a handful
of tensile testing results of Ti-6Al-4V from the literature. The results of tensile loading a single crystal of α-Ti in
the basal, prismatic, and pyramidal orientations is shown in Fig. 1(b). The anisotropy of the HCP α phase is clearly
demonstrated through the varying mechanical response to the different loading orientations. As expected, under basal
loading conditions the crystal appears ‘soft’ while under prismatic loading conditions the crystal appears ‘hard’. As
well, the strength for two orientations of β-Ti are also shown, a ‘soft’ one (loading along a direction near the middle of
the standard triangle) and a ‘hard’ one (a vertex of the triangle). As the results show, the α phase can always produce
a harder response compared to the BCC β one (partly due to an increased number of available slip systems in the
HCP phase, see Appendix A). The β phase has similarly been observed to deform more easily than the α phase in
experimental studies [34–36].
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A demonstration of the initial configuration of a dual phase crystal is provided in Figure 2 as a function of both
phase and texture distribution. For clarity, the initial configuration shown in Fig. 2 is not the configuration that was
used to find the data shown in Fig. 1(a).
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Figure 1: (a) Stress-strain curves of a simulated 90/10 α/β polycrystal along with a handful of literature results [37–39]. (b) Simulated tensile
testing results from an α-Ti single crystal demonstrating the anisotropic mechanical response of the HCP lattice. Included is a β-Ti single crystal
with a random orientation.

(a) (b)

Figure 2: A 90/10 α/β dual-phase microcrystal in which the coloring represents (a) uniquely oriented lamellae layers and (b) grain composition by
color: α (blue) or β (yellow).

For this study we focus on the influence of grain geometry, grain size, strain rate, and α/β volume fraction as
contributing factors to the microstructure-controlled strength. Grain geometry refers to the α/β ”packets” within the
microcrystal. The three grain geometries considered are equiaxed, platelet, and needle, exemplars of which are shown
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in Figure 3. Grain size refers to the ”packet size” of α/β lamellae. This is an important distinction as each packet is
composed of many individual lamellae layers that are approximately 0.5-3 µm thick. For further clarity please refer to
the description of the crystal construction in Appendix B. All microstructures were loaded in uniaxial tension along
their principal length axis, which was made to coincide with the x direction, as shown in Figure 3.

x
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z

(a)

x
y

z

(b)

x
y

z

(c)

Figure 3: Examples of the (a) equiaxed, (b) plate, and (c) needle microstructures. Each color represents a single grain that would contain a packet
of uniquely oriented α/β lamellae. All microstructures were placed under uniaxial tension in the x direction.

3. Machine Learning Prediction of Strength and Hardening

Modern crystal plasticity finite element (CPFE) models are continuously improved with the addition of relevant
mechanistic information and increased parameter accuracy. These models complement and accelerate experimental
efforts by providing indications of pathways to achieve a desired material performance. However, advanced CPFE
models are often overly sensitive to certain input parameters and initial conditions and microstructures, making it
difficult to parse through extended parameter sets and simulation conditions. In addition, the computational time
required to simulate the necessary combinations of unique initial microstructures is not negligible. Therefore, de-
veloping a holistic understanding of a material’s parametric features is often non-trivial. This effort can be aided
by machine learning where regression techniques can be used to generalize the output of CPFE and predict desired
micromechanical properties of crystals. Machine learning also provides insight into the importance of different mi-
crostructural features to better guide experimental efforts towards the most influential characteristics. In this study we
use a supervised machine learning approach to develop several regression models that can assist in the prediction of
the mechanical response of a dual-phase titanium polycrystal, namely, the yield strength and hardening rate. Table 2
provides a list of the models utilized in this study and their associated abbreviations. A brief mathematical description
of each model is provided in Appendix C. More thorough mathematical descriptions can be found in the references
listed in Table 2. Both linear models (e.g., linear regression) and non-linear models (e.g. artificial neural network)
were chosen in order to approach the regression exercise with methods that range in complexity. In this way, the sim-
ple linear models act as a control condition. Moreover, it has been demonstrated that different regression techniques
performer better/worse on different types of data [40–42]. Prior to running a large scale study it is difficult to assess
which type of model will perform best, and therefore, we opted to include a variety of regression techniques.

3.1. Evaluation Metrics

Next we define a series of relevant evaluation metrics common to all the regression models:

1. The mean-absolute error (MAE) is the mean of the absolute differences from the predicted, yi, and true, ŷ data
from a sampling set of size n. The equation is given as:

MAE =
1
n

n∑
i=1

∣∣∣yi − ŷ
∣∣∣ (11)
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Abbreviation Model References

LR Linear Regression [43]
R-LR Ridge Linear Regression [43]
KNN K-Nearest Neighbors Regression [43]
RT Regression Tree [43]
RF-R Random Forest Regression [44, 45]
XGB XgBoost [40, 46]
GB-R Gradient Booster Regression [47–49]
ANN Artificial Neural Network [50, 51]

Table 2: List of the models used and their associated abbreviations.

2. The root mean-squared error (RMSE) is the mean square difference from the predicted data and true data. The
RMSE is more sensitive to outliers than the MAE and the equation is given as:

RMSE =

√√
1
n

n∑
i=1

(
yi − ŷ

)2 (12)

3. The R2 score is a general fit of measure from a predicted regression curve to the original set of data on a scale
from 0 (worst) to 1 (perfect). The equation for R2 is:

R2 = 1 −

∑n
i=1

(
yi − ŷ

)2∑n
i=1

(
yi − ȳ

)2 (13)

4. Lastly, the Pearson’s correlation coefficient (PCC) is used during the results discussion and is described here.
The PCC describes the linear correlation between two random variables on a normalized scale between 1 and−1.
The measure of 1 being a perfect positive linear correlation and −1 being a perfect negative linear correlation.
PCC does not capture non-linear relationships. The equation for PCC is:

ρX,Y =
cov(X,Y)
σXσY

=
E[(X − µX)(Y − µY )]

σXσY
(14)

where E(x) is the expected value of x, µX and µY are the means of X and Y , and σX and σY their standard devi-
ations. The expectation operator E here describes the arithmetic mean of the product of individual differences
between the random variables (X,Y) and their respective means.

All models were implemented using the scikit-learn library and xgboost library in Python [46, 52]. 8-fold
cross-validation was used during training.

4. Results

4.1. Plasticity Model Results
Crystals were constructed using a four-dimensional parameter vector whose components are given in Table 3. The

matrix of combinations that results from exploring these four dimensions amounts to 567 unique points in parameter
space (9×7×3×3 matrix), each of which was run four independent times to ensure numerical consistency and –when
relevant– statistical validity. Thus, a total of 2268 finite element simulations were run over the course of this work.
Data points were generated at random within the intervals specified in Table 3.

For each simulation, the yield strength was measured by the 0.2%-strain offset rule and the hardening rate was
determined as the linear slope of stress-strain curve after yield.

Figure 4 shows the distribution of yield strength and hardening rate as a function of strain rate, β volume fraction,
and grain geometry. All subplots contain the same data though different combinations of the input features are used
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Parameter Values Units

β fraction 5, 10, 15, 20, 25, 30, 35, 40, 45 vol. %
Grain Size 10, 12, 14, 17, 23, 25, 30 µm
Strain Rate 1.0, 5.0, 10.0 10−3 s−1

Grain Geometry Equiaxed, needle, platelet –

Table 3: Input values for crystal formation used in finite element simulations.

to demonstrate trends in the crystal’s mechanical response. In Figure 4(a), the data show that β fraction and strain rate
both positively correlate to yield strength, as shown by the tendency for larger red circles on exist the right side of the
plot. It is also apparent that the highest hardening rates are typically observed with the lowest strain rate and highest
β fraction samples. Figure 4(b) demonstrates that the grain size has a definite positive correlation with the hardening
rate for certain samples. The relationship between grain size and yield strength is not discernible from the data shown.
As well, grain geometry does not appear to have a clear correlation with either hardening rate or yield strength.

Figure 4(c) reinforces the observations that the lowest β fraction samples exhibit the lowest yield strength and
hardening rate while the highest β fraction samples exhibit the highest yield strength and hardening rate. This effect
is amplified as the grains get smaller.

Figure 5 shows histograms of hardening rate and yield strength for the all data captured during parametric sweep
(data shown in Figs. 4(a) to 4(c). The mean value of each parameter is shown, as well as the value of the first three
standard deviations. These markers can be used in coordination with the previous plots to determine the samples that
fall more than three standard deviations from the mean and can therefore be considered outliers. The hardening rate
data shows a measured mean value of 2.69 GPa with a standard deviation of 1.94 GPa. The yield strength data showed
a measured mean value of 883.4 MPa with a standard deviation of 36.5 MPa. Using these criteria, 18 outliers were
found, 13 based on hardening rate and 5 based on yield strength. Further examination of the outliers showed each had
4 or fewer grains of 25 µm or larger, 12 had 45% β fraction, 13 had an input strain rate of 10−3 s−1.

Figure 6 shows the yield strength or hardening rate as a function of two input parameters. Each row of plots have
the same input parameters for ease of comparison. Plots (a) and (b) show the yield strength and hardening rate versus
strain rate and β fraction. Plots (c) and (d) show the same outputs as a function of grain size and β fraction. Plots (e)
and (f) show the outputs versus grain geometry and grain size. Each plot shows all non-zero data from the simulated
data set.

Synthesizing the information shown in Figures 6(a) and 6(b), we see that increasing the β fraction and strain rate
together results in increasing yield strengths, but does not contribute to increasing hardening rates. With respect to
yield strength, increasing the strain rate from ε̇ = 0.001 s−1 to ε̇ = 0.005 s−1 has less effect than changing the strain
rate the same amount up to ε̇ = 0.01 s−1. In contrast, the largest increase in hardening rate is seen at high β percentage
and low strain rate. By the information in these two plots, β percentage alone is not enough to control both the yield
strength and post-yield hardening rate. A combination of β percentage and strain rate would be necessary to tune the
output yield strength and hardening rate to desired values.

Using the information shown in Figures 6(c) and 6(d) we can further examine the effect of grain size on the output
yield strength and hardening rate. According to the output of the simulations, the grain size has little effect on the
yield strength until the upper limit of 30 µm was reached. For these specific samples, increasing the β fraction had a
stronger positive correlation than in samples with more grains. This trend also exists for the measured hardening rate,
as the samples with the fewest grains show a significantly stronger correlation between hardening rate and β fraction.
From these two plots it appears grain size has a minimal effect on yield strength and hardening rate at least for a fixed
simulation volume (2.7 × 10−14 m3 in our case).

4.2. Machine Learning Results

Prior to model fitting we investigated the relative importance of the feature variables. Feature importance mea-
surement is similar to traditional forms of sensitivity analysis wherein the emphasis is typically on identifying which
features have the most/least impact on the predicted variable. To do this we trained a random forest regressor and
calculated the permutation importance for all features. A random forest was chosen to run the preliminary analysis
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Figure 4: Hardening rate and yield strength distributions for all ”gridded” simulations. Same data displayed for each plot with color/bubble size
discrimination added for (a) strain rate and β fraction, (b) grain size and grain geometry, and (c) grain size and β fraction.
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Figure 5: Histograms for data distribution of (a) hardening rate and (b) yield strength. Flags used to show mean and standard deviations of data.

because they have proven to be successful at adapting to a diverse set of problems [53]. The authors refer to the
appendix and the attached works for a more thorough description of the regression technique. The permutation impor-
tance is calculated by randomly permuting the row-wise order of a given feature and then re-calculating the prediction
scoring (RMSE, in this case) of the entire set [54, 55]. This procedure is done individually for all features and the
normalized relative importance values are assigned based on the magnitude of decrease in the scoring for the permuted
feature whereby the sum of all importance values is 1. The feature with the highest permutation importance decreases
the prediction accuracy the greatest (of the feature variables) when its values are randomly permuted. The calculation
of permutation importance is a common method to down-select from a high-dimensional feature set [56, 57]. The
relative permutation importance values for both the yield strength and hardening rate models are given in Figure 7.
For both models the grain geometry is the feature with the least importance (with values of 0.001 and 0.02 for the
strength and hardening rates, respectively). All models were trained with the grain geometry feature both included
and excluded and the better-performing model was selected. Excluding the grain geometry parameter increased the
accuracy of all strength models and raised the average R2 by 4%. For the hardening rate models the R2 score increased
by an average of 6%.

The skew of the hardening rate and yield strength outputs, 2.56 and 0.60 respectively, were initially considered as
detrimental factors to both models’ performances. However, re-training with normalized outputs did not meaningfully
improve any of the models’ behavior. Similarly the 3σ rule was applied to remove outlying data but model perfor-
mance worsened across the board. During training all continuous features were normalized and the grain geometry
feature was one-hot encoded (i.e. equiaxed=1, plate=0, needle=-1). Hyperparameter tuning was performed using
5-fold cross-validation and a grid search method.

The fitting results for the yield strength-predicting ML models is listed in Table 4, while Figure 8 plots the RMSE,
MAE, and R2 results for the testing data as well as the random dataset. All models have R2 of 0.7 or below. The linear
models (LR,R-LR) have performed similarly with R2 values of 0.59 while the other four models (RFR, RFR, XGB,
GB-R,ANN) have R2 values of 0.64 to 0.70. The KNNR method fell in between the two regions with a R2 value of
0.60. The poor relative performance of the linear models (LR, R-LR) is expected because the strength-microstructure
relationships tend to be nonlinear.

The fitting results for the hardening rate-predicting ML models are given in Table 5, and the associated testing
RMSE, MAE, and R2 values are plotted in Figure 9. Again the non-linear models (KNNR, RT, RFR, XGB, GB-R,
ANN) outperform the linear models (LR, R-LR). The hardening rate predictors do not perform as well as the yield
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Figure 6: Yield strength and hardening rate plots versus multiple input parameters
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Figure 7: Feature importance as calculated by feature permutation with the trained random forest regression model. The ”strength model” and
”hardening model” correspond to the preliminary random forest regression models trained on the yield strength and hardening rate data, respectively.

strength predictors and the best hardening rate model (in terms of R2) is RFR with R2=0.62.
The distribution of true and predicted values for the the test evaluation of both the regularly-spaced and random

datasets for several models are provided in Appendix D.

Model RMSE Test MAE Test R2 RMSE Random

LR 22.3 17.3 0.59 25.4
R-LR 22.3 17.3 0.59 25.3
KNNR 21.4 16.7 0.62 24.8
RT 20.0 15.7 0.67 29.9
RFR 19.6 15.3 0.68 25.4
XGB 19.2 15.3 0.70 25.3
GB-R 19.3 15.2 0.69 25.6
ANN 20.8 15.6 0.64 24.8

Table 4: Model performance for predicting yield strength values. RMSE and MAE values are units of MPa.

Model RMSE Test MAE Test R2 RMSE Random

LR 1.78 1.26 0.10 1.08
R-LR 1.78 1.24 0.10 1.07
KNNR 1.13 0.86 0.59 1.34
RT 1.12 0.82 0.60 1.44
RFR 1.10 0.81 0.62 1.38
XGB 1.16 0.85 0.57 1.29
GB-R 1.17 0.87 0.57 1.36
ANN 1.34 0.86 0.47 1.16

Table 5: Model performance for predicting hardening rates. RMSE and MAE values are in units of GPa.

Figure 10 plots the target output of all unique points in the parametric space ordered from least to greatest for
yield strength and hardening rate. The noise to signal ratio, σ/x̄, is overlaid for each plot as red points. The σ values
are the standard deviation of the four replica simulations run for each point and the x̄ value is the mean that was used
for model training. For the yield stress the signal to noise ratio is consistent for all points at values between 0.02
to 0.08. In contrast, the signal to noise ratio for the hardening rate data reaches values as high as 8.0 for the lowest
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hardening rate samples and and has an average value of approximately 1.0. The comparatively high σ/x̄ value for
the hardening rate data indicates that the hardening rate replicas had poor agreement with one another. Statistical
variation in the target values is not a detriment to the microstructural model. Rather, it is expected that the random
sampling construction procedure generates a unique microstructure for each simulation and certain micromechanical
responses (e.g., hardening rate) are more sensitive to the stochastic nature of the construction than others. A detailed
investigation of these parameters is beyond the scope of this paper and will be investigated in future work.
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Figure 10: Plot of the mean target value from a unique point in simulation space ordered from least to greatest in terms of (a) yield strength and (b)
hardening rate. Error bars are the standard deviation from 4 replicas simulated at each point. The red circles are the noise to signal ratio σ/x̄.

Further understanding of the performance can be determined with the evolution of pair-wise correlations between
the feature variables and the target variables based on the number of simulations conducted. This provides information
on how many simulations are needed before the model reaches a maximum in accuracy for each individual correlation
value. This also provides information about the change in the correlation values, and how many simulations are needed
before reliable information can be obtained from the simulated data set. Figure 11 shows the Pearson correlation
coefficient versus the number of unique data points simulated for both yield strength and hardening rate based on the
four input parameters. As the figure shows, convergence in the predictors is achieved after 200 samples approximately.
The yield strength plot confirms the positive correlation from β fraction and strain rate, and the minimal correlation
with grain size and geometry. The hardening rate plot shows the near-zero positive correlation from β fraction and
geometry, and the negative correlation from grain size and strain rate.
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Figure 11: Pearson correlation coefficient versus number of samples for (a) yield strength and (b) hardening rate.

5. Discussion

The main purpose of this study is to demonstrate how a relative large parameter set (defined by four microstructural
variables, with several values each, 567 distinct simulation conditions in total) can be parsed effectively using machine
learning techniques to predict useful outcomes in terms of alloy mechanical properties. Ultimately, studies such as
the present one are aimed at improving and refining the alloy design process to save scarce resources, both in terms
of time and money, and accelerate material characterization and synthesis by focusing on parameters with the greatest
influence. Specifically, we have chosen a system with a relatively complex microstructure but great metallurgical
promise, namely Ti-6Al-4V alloys with various features. Indeed, Ti-6Al-4V has recently been the subject of design
optimization efforts using machine learning techniques [58, 59]. Next, we discuss our main findings and identify the
lessons learned and their potential applicability.

5.1. Plasticity Model Discussion

The constitutive law and flow rule used in this work have been chosen due to their simplicity so that –in principle–
they lead to uncomplicated material responses to facilitate the extraction of trends using the machine learning methods.
However, they are still grounded on solid crystal plasticity principles and some interesting results are worth being
discussed.

For example, the yield stress displays near-logarithmic growth with strain rate for β fractions up to roughly 30%
vol, as shown in Fig. 13(a) This agrees well with previous Ti-6Al-4V studies [38, 39, 60] and accurately reflects the
basis of a flow stress power law. When the β fraction is greater than 30%, the σy-ε̇ relationship transitions to being
exponential. The amount of β in the crystal plays an increasingly important role in determining the magnitude of the
yield strength as ε̇ is increased (see Figure 6(b)). The β fraction and σy relationship is near linear which agrees with
previous works [61] and should be expected as a function of the general rule of mixtures. This is demonstrated in
Fig. 13(b). In a similar study of Ti-6Al-4V deformed dynamically (at rates larger than those considered here), the
slopes of the β fraction and σy relation were observed to increase with strain rate [61]. In the crystal plasticity model
employed here, neither phase displays intrinsic hardening (recall that k2 = 0 for both the α and β phases in Table 1).
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Thus, the sole source of hardening is given by the value of the resolved shear stress itself, which as a general rule is
always higher for systems with a reduced number of slip systems (and the associated lattice stress). As indicated in
Table A.6, the HCP α phase contains a total of 39 independent slip systems, against the 12 of the BCC β phase. It is
thus reasonable to obtain an increase in the hardening rate as the volume fraction of β increases.
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Figure 12: Yield strength as a function of strain rate for this study and experimentally determined values from literature.
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Figure 13: (a) A subset of the data partitioned by crystals with β % ≤ 0.3 (in blue) and β % > 0.3 (in red). The crystals with β % ≤ 0.3 have a
logarithmic relationship between σy and ε̇. Meanwhile the crystals with β % > 0.3 follow an exponential trend for σy and ε̇ for the range explored.
(b) Yield strength as a function of β fraction for a subset of ε̇ = 0.005 s−1 and ε̇ = 0.01 s−1 data plotted alongside data from [61].

Regarding grain geometry, in this study it was seen to have practically no effect on the measured yield strength or
hardening rate, as shown in Figs. 6(e) and 6(f). Grain geometry effects may have been minimized due to the choice
to simulate lamellae with minimal microstructural texture, as opposed to adding texture as another input parameter
and expanding the parameter space. Though each α or β layer had its own unique orientation, there was no difference
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in interlayer misorientation between the needle, equiaxed, and plate geometries. Thus each grain geometry resulted
in low texture crystals that differed in grain shape but conserved grain boundary area and texture. This negates the
anisotropy of the HCP phase, making the simulation volume directionally-independent. This may also explain the
presence of outliers in the simulations with larger grain sizes (25-30 µm) as fewer grains may randomly be oriented in
harder or softer directions. Though beyond the scope of this work, this effect can be corrected by sampling lamellar
packets that are constructed with preferential orientations that consider the grain shape and orientation itself. This
type of adjustment could then provide insight to the difference in mechanical response provided by plate, needle, and
equiaxed structures with lamellar and non-lamellar substructures that are oriented different ways within the outer grain
structures.

The yield strength data produced in this study deviates from the classical Hall-Petch relationship (see Figure
6(c)) when the dislocation mean free path is considered to be the grain size. The limited influence of grain size on
the strength and hardening is likely a result of the lamellar substructure. Since the lamellae packing does not differ
in terms of spacing or density between large/small grains the total inter-lamellar distance remains roughly constant
despite variations in the grain size (for the range explored). This effect could be mitigated by imposing a local
hardening condition that is reflective of the dislocation pileup due to the true grain size of local lamellae packet.
Alternatively a non-lamellar substructure (i.e., large α and β grains) or Hall-Petch-type strengthening parameter could
be used.

Furthermore, is has been experimentally observed that the α/β lamellar thickness and ratio in Ti-6Al-4V strongly
dictates mechanical behavior [67–71]. It is possible that negligible influence of grain size may, rather, be due to the
α/β lamellae width effects having a dominant influence on strength. Figure 14 shows the yield strength as a function
of lamellar spacing and α lamellae width for this study and experimental data found in literature. Note that since we
used constant lamellae packet size (i.e., the width of a single α/β bilayer) there is a single data point from this work in
Figure 14(a). The Hall-Petch type relationship is recovered for yield strength when the dislocation free glide distance
is considered to be the α lamellae width, as shown in Figure 14(b). Considering that BCC β phase is generally softer
than the HCP β phase (see Figure 1(b)), increasing the β content would be expected, to first order, to lead to a decrease
in strength. However, here we see that the Hall-Petch strengthening achieved through the reduction in the α lamellae
widths more than compensates and increases the strength of the alloy. Future work will include refinement of the
lamellar spacing/grain size relationship in the context of the dual-phase CPFE model.

Further improvements can be made to the model by incorporating mechanisms such as grain boundary strengthen-
ing, reinforcement particle strengthening, precipitation/solid solution strengthening, and temperature effects by mod-
ifying the crystal strength and plasticity expressions (equations 6-8). Consideration of non-lamellar microstructures
and dynamic loading effects may be beneficial to assist with modeling high-strain rate phenomena.
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Figure 14: Yield strength as a function of (a) lamellar spacing and (b) α width for this study and experimentally determined values from literature.
Lamellar spacing is considered the width of a combined α/β bilayer.
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5.2. Machine Learning Discussion

Multidimensional parametric design spaces can be complex to analyze by ‘hand’ and are further complicated by
non-linear feature behavior. To aid with analysis of these types of design spaces the ultimate goal of many machine
learning regression exercises is to provide a predictive model for target values learned through example data. In this
case, the regression exercise was aimed at modeling the yield strengths and hardening rate of a dual-phase Ti crystal
with certain microstructural traits. Several models were trained for both target values using a uniformly-spaced dataset
and then evaluated using both the uniform grid and random dataset. An ensemble regressor was constructed from all
the trained models [75]. An ensemble regressor makes a prediction based off of the weighted average of individual
predictions from several multiple models. In our case, the weight prescribed to each model was calculated using the
arbitrary expression:

wi =
1
3

( RMSEi
test∑

RMSEi
test

)−1

+ 2
 RMSEi

random∑
RMSEi

random

−1 (15)

where RMSEi
test and RMSEi

random are the testing root-mean-squared errors calculated using the test and random
datasets, respectively. Because true microstructural traits exist on a continuum scale, we placed an additional (ar-
bitrary) weight on the performance of the models on the random dataset. Predicted yield strength and hardening rate
values as a function of the β fraction and grain size from the voting models are given in Figure 15. Though it is
beyond the scope of this study, the authors note that the influence of randomly sampled data on an otherwise uni-
formly distributed parametric dataset is an interesting premise for improving a model’s predictive power. That is, how
much “non-grid” data should be added to an otherwise organized dataset in order to achieve an acceptably generalized
model.

Lastly, it is important to recognize that the predictive power of the models could undoubtedly be improved with
more data. Increasing the number of replicas at each point in parametric space would help further reduce the noise
to signal ratio, particularly for the hardening rate data. This is evidenced by Figure 16 which shows the average
signal to noise ratio as a function of the number of replicas. 100 structures were selected at random to generate a fifth
replica. Similarly the models would benefit from a “finer gridded” parametric space (e.g., simulating structures with
ε̇ = 0.0075 s−1, ε̇ = 0.002 s−1) that would simply provide a more rich training set.

6. Conclusions

We conclude the paper with our most important findings:

• We have extended a single-crystal plasticity model to study a polycrystal dual phase material with complex mi-
crostructures. The model captures dual-phase BCC/HCP microstructures using standard dislocation evolution
models with features inspired in experimental behavior.

• Our model agrees with the tensile testing behavior observed in other works and does well to capture trends in
crystal strength.

• Several machine learning regression models were trained on the data to produce ensemble models that can make
quick predictions and generalize the yield strength and hardening rate CPFE outputs.

• We demonstrated clear trends in yield strength and hardening rate as a function of β fraction, strain rate, grain
geometry, and grain size.

• As general conclusions, (i) the grain shape has practically no bearing on yield strength and hardening rate
outcomes, (ii) the β-phase volume fraction was seen to be the most influential feature on both outcomes, (iii)
strain rate is a strong predictor of yield strength but not of hardening rate, while grain size is weakly and
negatively correlated with yield strength and hardening, respectively.

• Future work will be aimed at extending the plasticity model to include temperature, obstacles, and dynamic
loading conditions.
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Figure 15: Predictions of (a)-(b) hardening rate and (c)-(d) yield strength as a function of grain size and β fraction for weighted voting regressor.
Each plot contains three planes are plotted in black, green, and blue that correspond to ε̇ values of 0.001, 0.005, and 0.01 s−1, respectively.
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Appendix A. Finite Element Implementation

The finite element implementation in COMSOL5.5 for this study is fully described in [27]. A MUMPS direct solver
and BDF (Backward Differential Formula) time stepping algorithm were employed. All simulations were performed
with a free tetrahedral mesh with 99883 elements and 595620 degrees of freedom. The stiffness matrices for the α
and β phases have been taken from refs. [76–78] and are given below (all values in GPa).

Cα =



169.4 90.0 66.0 0 0 0
90.0 169.4 66.0 0 0 0
66.0 66.0 169.2 0 0 0

0 0 0 7.4 0 0
0 0 0 0 7.4 0
0 0 0 0 0 46.8



Cβ =



119.4 55.7 55.7 0 0 0
55.7 119.4 55.7 0 0 0
55.7 55.7 119.4 0 0 0

0 0 0 31.9 0 0
0 0 0 0 31.9 0
0 0 0 0 0 31.9


The CP model admits slip on basal, prismatic and pyramidal planes for the α phase (3, 11, and 25 slip systems
respectively), and close-packed slip for the β phase (12 slip systems). All vectors s and m in eq. (3) for the hexagonal
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phase are expressed in three-component Miller notation using the conversion introduced by Frank [79]:

[h k i l] → [(h − i) (k − i) l] (A.1)
(h k i l) → (h k l) (A.2)

These expressions satisfy the orthogonality relations between slip direction and slip plane normal. The slip systems
considered in this work are given in Table A.6. The slip systems for BCC crystals capture 1/2〈111〉 {110} and are given

Table A.6: Conversion from 4-index slip system to 3-index notation

slip system type No. slip plane slip direction
4-index 3-index 4-index 3-index

basal
1 (0001) (001) [21̄1̄0] [100]
2 (0001) (001) [1̄1̄20] [1̄1̄0]
3 (0001) (001) [1̄21̄0] [010]

prismatic

4 (011̄0) (010) [21̄1̄0] [100]
5 (11̄00) (11̄0) [1̄1̄20] [1̄1̄0]
6 (1̄010) (1̄00) [1̄21̄0] [010]
7 (011̄0) (010) [21̄1̄3] [101]
8 (011̄0) (010) [21̄1̄3̄] [101̄]
9 (11̄00) (11̄0) [1̄1̄23] [1̄1̄1]

10 (11̄00) (11̄0) [1̄1̄23̄] [1̄1̄1̄]
11 (1̄010) (1̄00) [1̄21̄3] [011]
12 (011̄0) (010) [0001] [001]
13 (1̄010) (1̄00) [0001] [001]
14 (11̄00) (11̄0) [0001] [001]

pyramidal

15 (011̄1) (011) [21̄1̄0] [100]
16 (01̄11) (01̄0) [21̄1̄0] [100]
17 (11̄01) (11̄1) [1̄1̄20] [1̄1̄0]
18 (1̄101) (1̄11) [1̄1̄20] [1̄1̄0]
19 (1̄011) (1̄01) [1̄21̄0] [010]
20 (101̄1) (101) [1̄21̄0] [010]
21 (1̄011) (1̄01) [21̄1̄3] [101]
22 (1̄101) (1̄11) [21̄1̄3] [101]
23 (2̄112) (2̄12) [21̄1̄3] [101]
24 (101̄1) (101) [21̄1̄3̄] [101̄]
25 (11̄01) (11̄1) [21̄1̄3̄] [101̄]
26 (21̄1̄2) (21̄2) [21̄1̄3̄] [101̄]
27 (101̄1) (101) [1̄1̄23] [1̄1̄1]
28 (011̄1) (011) [1̄1̄23] [1̄1̄1]
29 (112̄2) (112) [1̄1̄23] [1̄1̄1]
30 (1̄011) (1̄01) [1̄1̄23̄] [1̄1̄1̄]
31 (01̄11) (01̄1) [1̄1̄23̄] [1̄1̄1̄]
32 (1̄1̄22) (1̄1̄2) [1̄1̄23̄] [1̄1̄1̄]
33 (11̄01) (11̄1) [1̄21̄3] [011]
34 (01̄11) (01̄1) [1̄21̄3] [011]
35 (12̄12) (12̄2) [1̄21̄3] [011]
36 (1̄101) (1̄11) [1̄21̄3̄] [011̄]
37 (011̄1) (011) [1̄21̄3̄] [011̄]
38 (1̄101) (1̄11) [1̄21̄3̄] [011̄]
39 (1̄21̄2) (1̄22) [1̄21̄3̄] [011̄]

in past publications by our group [80, 81].
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Appendix B. Construction of Dual Phase Lamellar Polycrystals

All grains were constructed as Voronoi tessellations wherein grain centers c j were randomly selected from a cubic
grid and each individual point pi was assigned to the nearest grain center such that:

pg
i = min

(
dist(pi, c j) : j ∈ {1, ...,C}

)
(B.1)

where pg
i is the grain assignment for the point pi. Here there are a total of C grain centers and the function dist(pi, c j)

returns the distance between the grid point pi and the grain center c j. The distance equation is a modified euclidean
distance function give as:

dist(pi, c j) =

( px
i − cx

j

sx

)2

+

 py
i − cy

j

sy

2

+

 pz
i − cz

j

sz

2

(B.2)

where sx, sy, and sz are distance scaling factors that enable elongated grains. For this study the scaling factors for the
equiaxed, plate, and needle grains are given in Table B.7. To achieve a unique lamellar structure within each grain

Grain Geometry sx sy sz

Equiaxed 1 1 1
Needle 1 1 4
Plate 1 4 4

Table B.7: Grain geometry parameters.

a set of plate-like grains are first constructed. Grains are assigned to either α or β phase as a function of their the
distance from the x-axis such that:

c( j) =

 β phase, if Fβ/G ≤ min
(∣∣∣L j − nl

∣∣∣ : n ∈ {0, ...,G + 1} where G =
⌊
H/l

⌋)
α phase, otherwise

(B.3)

here L is the x coordinate of the grain center, l is the spacing between same-phase lamellae, Fβ is the β phase fraction
out of 100, and H is the total height of the simulation cube. The G =

⌊
H/l

⌋
term indicates the number of lamellae layers

in each simulated cube while the Fβ/G term is the thickness of each β layer. Once a plate-like cube was constructed
it was put through a set random rotations across the x, y, and z axis to achieve a unique grain alignment. For each
simulation a set of 20 unique lamellar crystals were constructed and the sampled from to populate the grain geometry
defined by the original Voronoi tesselations –ultimately leading to equiaxed, needle, or plate-like grain geometries
with an intra-grain α/β lamellar structure.

We recognize that there are various forms of α/β subgrain morphologies but here we focus on lamellar structures
for the purpose of this study.

Appendix C. Machine Learning Regression Models

Appendix C.1. Linear Regression
Given the simple hypothesis function of:

f (θ) = θ0x0 + θ1x1 + ...θnxn (C.1)

where θ are the feature weights and xn are the feature values for n features. Considering optimizing a least-squares
cost function, a direct solution for the optimal θ values can be expressed as:

θLR =
(
XT X

)−1
XT y (C.2)

where X is the collection of input features and y is the output values for each instance. The above expression does not
hold for other cost functions, but rather, demonstrates the form of the model.

25



(a) (b) (c)

(d) (e) (f)

Figure B.17: Pure lamellar crystals with 17(a) - 17(c) outlined phase boundaries and 17(d) - 17(f) shading indicating either α (blue) or β (yellow)
phase. All crystals have been put through 3 random rotations across their x, y, and z axes.

Appendix C.2. Ridge Linear Regression
To regularize the traditional linear regression expression in equation C.2 a complexity penalty of λ

∑n
i=1 θ

2
j can be

added to the least-squares cost function. Because the cost function is still convex, there is a unique solution:

θRR =
(
XT X + λI

)−1
XT y (C.3)

where λ ∈ [0,∞) is the regularization parameter and I is the identity matrix.

Appendix C.3. K-Nearest Neighbors Regression
K-nearest neighbors is a non-parametric method that that approximates the value of a new instance by averaging

the target value of observations in the same neighborhood. Given a new instance, an estimate is calculated by first
finding the K-nearest neighbors in Euclidean space and then averaging the feature set such that:

yi =
1
k

k∑
j=1

y jw j (C.4)

where k is the number of nearest neighbors, y j is the target value of neighbor j, and w j is a distance-related weight.
The k parameter is typically learned during training.

Appendix C.4. Regression Tree
Building a decision tree can be thought of as recursively applying the process of dividing a single parent node

into its two child nodes. As such, the process for the division of one node can be used to fully define the construction
process. To find the data points that will be allocated between the two child nodes the optimal data partition is selected
such that the sum of squares is minimized between the creation of the two new nodes, otherwise expressed as:

arg min
j∑

i=1

Ni∑
k=1

(yk − ȳi)2 (C.5)
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where i is a new node, j is the total number of new new nodes, k is a data point in the i partition, Ni is the total number
of data points in the partition i, and ȳi is the average target value of the instances in partition i. A greedy algorithm
is commonly used to select the partitions. The size of the regression tree (e.g. width and depth) is typically set prior
to construction and a full tree is built in the first pass. Estimations are made by taking the average target value of all
data points in a terminal node. Variance and complexity reduction is then achieved by pruning of the full tree. One
possible regression tree cost function can be given as:

Cα(T ) =

T∑
m=1

Nm∑
k=1

(yk − ȳi)2 + αT (C.6)

where α is a regularization parameter, Nm is the number of observations in terminal node m, and T is the number of
terminal nodes. Minimization of equation C.6 is achieved through collapsing nodes to achieve a sub-tree T such that
T ⊂ To where To is the full tree. The weakest link approach to pruning is then commonly used: nodes are collapsed
by order of least contribution to Cα(T ) (i.e. lowest residual sum of squares error) such that a set of trees are produced
that are gradually more generalized and can be fit to α.

Appendix C.5. Random Forest Regression

Random forest regression is an extension of regression trees that utilizes bootstrapping aggregation, that is, the
aggregation of many ”weak” regression trees into an ensemble model that is typically lower variance than its individual
components. A random forest is constructed as:

1. For a training set of size n, set features X, and responses y, select β, the total number of trees in the forest.
2. Sample a subset of instances of the training data Xt ⊂ X, yt ⊂ y and train a new tree ft on the data.
3. Repeat step 2 until β trees have been constructed.

To make an estimate using the random forest simply take the average prediction of all trees in the forest as:

f̂ (xi) =
1
β

β∑
i=1

ft(xi) (C.7)

Appendix C.6. XgBoost

A complete mathematical description of XgBoost is beyond the scope of this work and a brief review is given
here. XgBoost is an algorithm that applies the gradient tree boosting method. Gradient tree boosting takes advantage
of both ensemble learners and iterative improvement to a model by means of using the residual loss of the previous
iteration to train a new estimator. Estimators are added to the model such that the predicted result at iteration t is:

ŷt
i = ŷt−1

i + ft(xi) (C.8)

where ft(x) is the new estimator. In the case of XgBoost, the generalized objective function to optimize during each
step can be given as:

obj(t) =

T∑
j=1

(
G jw j +

1
2

H jw2
j

)
+ Ωλγ(T ) (C.9)

where Ω is a model complexity contribution that is a function of the model of all the trees T with regularization
parameters λ and γ. The parameter w j is the leaf weights, and G j and H j are the sum of the first and second order
components of the Taylor expansion of the specified loss function for leaf j, respectively. From here, an expression
for a measure of how “good” a tree structure q(x) is can be written as:

obj∗ = −
1
2

T∑
j=1

G2
j

H j + λ
+ γT (C.10)
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We can build a tree that continues to split nodes so long as the “goodness gained” from a given node split is larger
than the regularization parameter γ, as:

Gain =
1
2

 G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ

 − γ (C.11)

where the components considered are the gain from the left leaf, the gain from the right leaf, and the score of the
original leaf.

Appendix C.7. Gradient Boosting Regression

Gradient boosting regression relies on the construction of many weak prediction models that is built in an iterative
process. The weak models in this case, and most often are, decision trees. A simplified description is provided here.
First a base estimator, F0(x), is first trained on the data:

Fo(x) = arg min
γ

n∑
i=1

L(yi, γ) (C.12)

where L is a differentiable loss function. The pseudo-residuals, rim, are then calculated for every data point i:

rim = −

[
∂L(yi, F(xi))
∂F(xi)

]
(C.13)

Another weak learner, hm(x), is then trained on the pseudo-residuals and the weight associated with the model, γm, is
calculated using an optimization procedure. Not that here m indicates the current iteration of a total of M steps. The
new model then has the form of:

F̂(x) =

M∑
i=1

γihi(x) (C.14)

New learners are then added to the model iteratively by re-calculating the pseudo-residuals to train a weak model
and find it weights. This procedure can continue for an arbitrary number of steps or until a training metric passes a
threshold.

Appendix C.8. Artificial Neural Networks

Fully dense artificial neural networks are composed of a network of many layers of interconnected nodes. Each
node is connected to all nodes in the previous and following layers by a unique weight w. It is easiest to describe a
neural network through the behavior of a single node - a diagram of which is provided in Figure C.18. The output of
node i in layer j is calculated as:

ai j =

n∑
i=1

wixi + b (C.15)

where b is a node-specific constant and there are n nodes feeding into the node ai j. The value that feeds to all nodes in
the following layer is then calculated as f (ai j), where f is an activation function such as tan. For a regression problem
there is often a final layer with a single node with no activation function to make predictions. The weights w and
constants b are initially randomized and then learned through the training process. A mathematical description of the
training procedure is beyond the scope of this work. The number of layers, activation function, and training procedure
are all hyperparameters that can be optimized to best suit the problem at hand.
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Figure C.18: Diagram of a single neuron in a neural network.

Appendix D. Performance of Machine Learning Models

The prediction accuracy of the various regression models can be shown by comparing the predicted output param-
eter versus the true input parameter for each simulation. This comparison is shown below in Figure D.19 for multiple
regression models. Each subplot shows the author-selected input parameter data in red, and the randomly selected
input parameter data in blue. Each subplot also has a dotted line with slope = 1 which can be used to determine the
accuracy of each point. For a given simulation, if the predicted value matched the true value of the parameter, that
point would fall on the dotted line. Therefore, any points in the upper triangle of a plot have an output parameter
that is over-predicted by the regression model, and any points in the lower triangle have been under-predicted by the
model.
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Figure D.19: True and predicted yield strength and hardening values for the the several models using the gridded and random test sets.
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