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Abstract: We evaluated 18 methods capable of identifying initial contact (IC) and terminal contact
(TC) gait events during human running using data from a single wearable sensor on the shank or
sacrum. We adapted or created code to automatically execute each method, then applied it to identify
gait events from 74 runners across different foot strike angles, surfaces, and speeds. To quantify
error, estimated gait events were compared to ground truth events from a time-synchronized force
plate. Based on our findings, to identify gait events with a wearable on the shank, we recommend the
Purcell or Fadillioglu method for IC (biases +17.4 and −24.3 ms; LOAs −96.8 to +131.6 and −137.0 to
+88.4 ms) and the Purcell method for TC (bias +3.5 ms; LOAs −143.9 to +150.9 ms). To identify gait
events with a wearable on the sacrum, we recommend the Auvinet or Reenalda method for IC (biases
−30.4 and +29.0 ms; LOAs −149.2 to +88.5 and −83.3 to +141.3 ms) and the Auvinet method for TC
(bias −2.8 ms; LOAs −152.7 to +147.2 ms). Finally, to identify the foot in contact with the ground
when using a wearable on the sacrum, we recommend the Lee method (81.9% accuracy).

Keywords: inertial measurement units; in-field sport and athlete monitoring; initial contact; heel
strike; toe off; stance; swing; step

1. Introduction

In this paper, we explore the accuracy and precision of different methods to identify
gait events during human running using a single wearable device (accelerometer, gyro-
scope, or inertial measurement unit). Identifying when the foot contacts and leaves the
ground—the initial contact (IC) and terminal contact (TC) gait events, respectively—allows
biomechanists to break the cyclic movements of running into discrete phases. Identifying
IC and TC events allows the analysis of basic but highly useful temporal variables like
stride (right IC to right IC or left IC to left IC), step (right IC to left IC or left IC to right
IC), stance/contact (right IC to right TC or left IC to left TC), swing (right TC to right IC
or left TC to left IC), and flight/float (right TC to left IC or left TC to right IC) times and
frequencies (1/time) (Figure 1). These basic temporal variables are critical in the analysis
and prediction of running speed and performance [1–4]. Segmenting running into these
discrete phases also forms the starting point for many more advanced biomechanical analy-
ses that quantify and compare kinematic or kinetic features’ means and variances. Thus,
accurately identifying IC and TC events is a critical first step in the analysis and evaluation
of running.

IC and TC events can be identified with relative ease using force plates or instrumented
treadmills in labs. Further, several methods have been developed to identify these events
from lab-based motion capture [5–8]. However, lab settings impose constraints on data
collection: force plates, instrumented treadmills, and motion capture systems require
participants to visit a lab, are expensive, and require a trained technician. These ‘captive’
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systems may also cause participants to alter their gait (e.g., treadmill or short running track)
and limit the volume of data collection to a few gait cycles [9–12]. Thus, ‘captive’ systems
only provide ‘snapshots’ of data, decreasing ecological validity and limiting investigations
of phenomena that occur across many gait cycles such as adaptation, fatigue, movement
variability, and overuse injury [13–20]. Advances in technology such as instrumented
insoles have allowed biomechanists to overcome some of these constraints but suffer from
their own issues with durability and comfort [21]. Consequently, researchers remain largely
reliant on ‘captive’ technology.
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Figure 1. Gait phases defined by initial contact (IC) and terminal contact (TC) gait events. Left arm
and leg represented in blue; right arm and leg represented in orange; trunk represented in green.

The emergence of small, low-cost accelerometers, gyroscopes, and inertial measure-
ment units (IMUs) (collectively called ‘wearables’ for the remainder of this paper) offers
a new way forward [22]. These portable sensors can continuously record data during
prolonged runs in natural environments. Wearables have high rates of adoption among
runners [23] and have demonstrated accuracy in measuring or estimating several biome-
chanical parameters, including gait events [22,24–26]. Based on these promising findings,
our objective was to identify and evaluate wearable-based methods of gait event identi-
fication that met two criteria: (1) the method needed to minimize system complexity by
relying on a single wearable located on the shank or sacrum/low-back (in contrast to sets
of multiple wearables); and (2) the method needed to be automated, using an unsuper-
vised processing code to prevent bottlenecks caused by manually processing thousands or
millions of gait events.

In line with this objective, we identified 18 candidate methods (Table 1). As inputs,
candidate methods used accelerations from the shank (8 of 18) or sacrum (5 of 18), angular
velocities from the shank (3 of 18) or sacrum (1 of 18), or both accelerations and angular ve-
locities from the shank (1 of 18). Several (5 of 18) heavily filtered or otherwise manipulated
their inputs using a variety of techniques (multi-resolution analysis, complementary signals,
over-smoothing, wavelet-mediated differentiation, Principal Component Analysis). The
majority (17 of 18) used rules- or threshold-based heuristic approaches to estimate events
(e.g., find signal max, then find zero-crossing preceding max), while one used a machine
learning approach (Echo State Network). Further descriptions of individual methods are
provided in the Supplementary Material.

Importantly, each of these methods represents a promising approach for in-field gait
event identification, but unfortunately, comprehensive comparisons of these methods have
not been conducted, leaving users with little guidance on selecting the best method for
their application. Further, most methods have at least one of the following limitations:
Most methods were developed and validated (1) using a small sample (n ≤ 10: [27–35];
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11 ≤ n ≤ 20: [36–42]; n > 20: [43,44]), (2) using a narrow range of, or unreported, running
speeds (single speed: [32,36,37,39,43], speeds not reported: [28,30,31,35,38,40]),
(3) using a single running surface (all except [44]), (4) without accounting for foot-strike
kinematics (foot strike not reported: [27,28,30,31,33–36,38,40,41,43]; only one strike pattern
studied: [29,32,37,39]), and (5) without adequate synchronization between wearable data
and a ground truth reference (no synchronization reported: [27,31,36,39,43]; imprecise
synchronization: [33,41,42,44]). These limitations decrease the confidence with which we
can apply these wearable-based methods broadly across conditions and participants.

To address these limitations and help users make an informed decision about which
of the many available methods to use for their application, we attempted to replicate each
of the 18 methods using code published by the authors (2 of 18), by acquiring code directly
from the authors (2 of 18), or by following descriptions in the original papers to produce
new code (14 of 18). We also created modified versions of three methods, resulting in code
for 21 methods (code for each method is available at https://github.com/DovinKiernan/
REID_IMU_Running_Event_ID, published on 3 May 2023). We then evaluated each method
to determine how well it could identify IC and TC events from a large sample that was
collected across a range of running speeds, surfaces, and foot strike angles. To do so,
we quantified: (1) how often each method failed to identify gait events; (2) the method’s
accuracy (bias); (3) precision (error variance); (4) the effects of speed, surface, and foot
strike angle on accuracy; and (5) the time required to execute each method.

https://github.com/DovinKiernan/REID_IMU_Running_Event_ID
https://github.com/DovinKiernan/REID_IMU_Running_Event_ID
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Table 1. Summary of methods to identify gait events from running using data from a single wearable on the shank or sacrum/lower back. M—male; F—female;
NR—not reported; FF—forefoot; RF—rearfoot; SS—self-selected; α—acceleration; ω—angular velocity; SCS—segment coordinate system; WCS—wearable
coordinate system; GCS—global coordinate system (coordinate conventions defined below). IC—initial contact; TC—terminal contact; RL—right/left.

Sensor
Location Method Sample Foot-Strike Speed Surface Placement Signals Sampling

Frequency Events Ground Truth Sync

Sh
an

k

Mizrahi [36] n = 14 (14 M)
Healthy NR 3.5 ± 0.2 m/s Treadmill Tibial tuberosity aWCS,Y 1667 Hz IC None N/A

Mercer [27] n = 10 (10 M)
Healthy NR 3.1–3.8 m/s Treadmill Anteromedial

distal tibia aWCS,Y 1000 Hz IC, TC None N/A

Purcell [28] n = 6
Healthy NR SS jog, run, and

sprint Overground Anteromedial
distal tibia aWCS,X,Y,&Z 250 Hz IC, TC Forceplate

1000 Hz TTL pulse

Greene/McGrath
[29,45]

n = 5 (4 M; 1 F)
Healthy RF 0.6–3.3 m/s Treadmill Anterior aspect of

mid shank ωWCS,Z 102.4 Hz IC, TC MoCap
200 Hz TTL pulse

Aminian/
O’Donovan

[35,46]

n = 1 (1 M)
Healthy NR SS jog Overground Shank ωSCS,Z 102.4 Hz IC, TC MoCap

200 Hz TTL pulse

Sinclair [37] n = 16 (11 M; 5 F) RF 4.0 ± 0.2 m/s Overground Anteromedial
distal tibia aWCS,Y 1000 Hz IC, TC Forceplate

1000 Hz
Synchronous

recording

Whelan [30]

n = 7 (3 M; 4 F)
National and
international

sprinters

NR ≤50% max effort Overground Anteromedial
mid-tibia aWCS,X 148.2 Hz IC Forceplate

1000 Hz TTL pulse

Norris [31] n = 6 (1 M; 5 F)
Recreational NR SS half-marathon

training Overground Anteromedial
distal tibia aWCS,Z 204.8 Hz IC None N/A

Schmidt [38]
n = 12 (10 M; 2 F)
Track and field

athletes
NR SS sprint Overground Lateral distal tibia aWCS,Y

ωWCS,Z
1000 Hz IC, TC Photocell NR

Aubol [39]
n = 19 (9 M; 10 F)
≥16.1 km/wk

Injury free
RF 3.0 ± 0.2 m/s Overground Anteromedial

distal tibia aWCS,X,Y,&Z 1000 Hz IC Forceplate
1000 Hz

Synchronous
recording

Fadillioglu [40] n = 13 (13 M)
Injury free NR SS walking and

running Overground Leg ωWCS,Z 1500 Hz IC, TC Forceplate
1000 Hz TTL pulse

Bach [43] n = 21 (13 M; 8 F)
Healthy NR 2.2 ± 0.1 m/s Treadmill Anteromedial

proximal tibia aWCS,X,Y,&Z 142.9 Hz IC, TC Forceplate
1000 Hz NR

Sa
cr

um
/L

ow
er

ba
ck

Auvinet [32] n = 7 (7 M)
“top-level” RF 5.2 ± 0.1 m/s Overground Lumbar spine aWCS,X,Y,&Z 100 Hz IC, TC, RL MoCap

200 Hz Photoflash

Lee [33]
n = 10 (6 M; 4 F)

National standard
runners

NR 2.8–5.3 m/s Treadmill Sacrum (S1) aWCS,X&Z 100 Hz IC, TC, RL MoCap
100 Hz

Vertical
movement

Wixted [34] n = 2
Nationally ranked NR 5.9–6.2 m/s Overground Lumbar spine

(L3–L4) aWCS,X&Y 500 Hz IC, TC Insoles
500 Hz

Synchronous
collection

Bergamini [41]

n = 11 (7 M; 4 F)
Amateur and

national track and
field team

NR 5.7–10.8 m/s Overground Lumbar spine (L1) ωWCS,X,Y,&Z 200 Hz IC, TC Forceplate/Mocap
200 Hz/300 Hz

Hammer tap/
none

Benson [44] n = 54 (29 M; 25 F)
Recreational FF and RF 2.7–3.6 m/s Treadmill and

Overground Lower back aWCS,X,Y,&Z 201 Hz IC, TC, RL Forceplate
1000 Hz Vertical jump

Reenalda [42]
n = 20 (15 M; 5 F)
≥15 km/week; no

injuries
FF and RF 3.1–4.2 m/s Treadmill Sacrum aGCS,Y

240 Hz
interpolated to

1000 Hz
IC Forceplate

1000 Hz
x-correlated

MoCap
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2. Materials and Methods
2.1. IMU Calibration

Tri-axial IMUs (ProMove MINI, Inertia Technology, Enschede, The Netherlands;
±16 g primary, ±100 g secondary, ±34.91 rad/s, 1000 Hz) were secured to a centrifuge
(ClearPath MCVC, Teknic, Victor, NY, USA) with custom 3-D printed jigs (SOLIDWORKS
2019, Dassault Systèmes, Vélizy-Villacoublay, France) and calibrated in 6 orientations at 16
known accelerations (from 0 to 41.42 g, where 1 g = 9.8 m/s2 [47,48]) and angular velocities
(from 0 to 78.54 rad/s). Adapting methods from Coolbaugh et al. [49], known data (K)
from the centrifuge and measured data (M) from the IMU were used to calculate 3 × 7 cali-
bration matrices (C; 3 signed magnitude terms, 3 absolute magnitude terms, and one bias
term per axis) and quantify sensor accuracy after subtracting out biases observed during a
quiet period (B) (Equation (1)). After calibration, IMU primary accelerometer errors were
≤0.01 ± 0.04 g, secondary accelerometer errors were ≤0.05 ± 0.07 g, and gyroscope errors
were ≤0.01 ± 0.01 rad/s.

C ∗ (M + B) = K (1)

2.2. Participants

Seventy-seven participants ≥18 years old who reported running ≥16 km per week
for ≥6 months were recruited from the University of California, Davis, local running
clubs, and the community at large. Three participants were excluded from analysis
due to movement of an IMU (n = 2) or inability to complete the protocol as instructed
(n = 1), leaving a final sample of 74 (32 males; 42 females; age 28 ± 12 years; Figure 2). All
participants provided written informed consent, and procedures were approved by the
University of California, Davis Institutional Review Board.
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Figure 2. From left to right: sample sex, age, height, weight, and self-reported average distance run
per week. The white horizontal line represents the mean; dark blue represents ±95% confidence
interval (±1.96 SEM) around the mean; and light blue represents ±1 SD around the mean. Gray dots
represent participants outside ±1 SD.

2.3. Protocol

Using adhesive-bonded hook-and-loop fasteners, IMUs were attached to neoprene
belts with anti-slip silicone inners, then wrapped with elastic straps as tightly as possible,
within the limit of participant comfort. IMUs were placed anterior and superior to the
lateral malleoli, on the superior aspect of the iliac crests in line with the greater trochanter,
and on the superior aspect of the sacrum in line with the spine (Figure 3). Only data from
tibial and sacral IMUs are analyzed here.
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Figure 3. Left: IMU placement and coordinate conventions. For consistency, different conventions
used across methods have been standardized to ISB conventions [50]: Segment coordinate systems
(SCS) were defined as anterior (+x), proximal (+y), and medial-lateral (with right defined as +z);
wearable coordinate systems (WCS) were defined square to the IMU housing, which was roughly
aligned with the direction of progression (+x), longitudinal axis (+y), and right (+z). Middle: Belt
design and IMU fixation. Right: Experimental setup.

Participants wore their own shoes and ran a 25 m runway with an embedded force
plate (Kistler 9281, Kistler Group, Winterthur, Switzerland; 1000 Hz). Running speed was
recorded using two custom-built laser speed gates, placed 2.5 m on each side of force plate
center. Participants warmed up and practiced striking the force plate three times per side
at their slowest (“the slowest pace you would use on a run”), typical (“the pace you use
for the majority of your running”), and fastest (“the fastest pace you would use on a run”)
self-selected speeds. During this warmup, markers on the lateral calcaneus and base of
the fifth metatarsal were recorded using a conventional camera (Exilim EX-FH25, Casio;
120 Hz). Foot strike angle was calculated by subtracting a neutral standing foot an-
gle (Kinovea 0.9.5) with positive values indicating a more dorsiflexed foot at IC and
values > 0.14 rad corresponding to rear-foot strike, −0.03 to 0.14 rad to mid-foot strike, and
<−0.03 rad to forefoot strike [51]. After warm-up, five stances per side were collected at
each speed for two surface conditions: (1) with a track surface covering the runway and
force plate (track) and (2) with no covering on the hardwood floor of a basketball court
(floor). Participants always progressed from their slowest to fastest speeds, but the order of
foot and surface was pseudo-randomized.

IMU data were synchronized within 100 ns of each other with a wireless network hub
(Advanced Inertia Gateway, Inertia Technology, Enschede, The Netherlands; 1000 Hz). This
hub periodically sent voltage pulse trains that were synchronously recorded by IMUs and
a custom MATLAB script that simultaneously recorded the speed and force data (R2018b,
MathWorks, Natick, MA, USA). Pulse trains were cross-correlated to synchronize signals.

2.4. Data Processing

Quiet periods were identified (angular velocity < 0.5 rad/s and jerk < 0.01 m/s3 for at
least 100 ms) and used to remove biases from IMU data. Saturated frames from the primary
accelerometer (|a| > 15.5 g) were replaced with corresponding frames from the secondary
accelerometer. Data were filtered with a 4th-order 50-Hz low-pass Butterworth filter.
Angular velocity was drift-corrected using a Madgwick filter [52–54]. Starting at each quiet
period, accelerations were used to estimate IMU position in the inertial reference frame,
then angular velocities were used to estimate frame-by-frame changes in IMU orientation
and remove the gravity component from accelerations [55]. Data were then expressed
in a segment coordinate system based on the Principal Component that explained the
most variance in angular velocity during running (the medial-lateral axis) and the gravity
vector during quiet standing [56,57]. Force plate data were filtered with a 4th-order 50-Hz
low-pass Butterworth filter. A vertical force threshold of 10 N was used to define the start
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and end of stance (IC and TC, respectively). IMU data were segmented using the time the
participant crossed the first and second speed gates, yielding 5 m of running data for each
trial. For more detailed IMU processing, see Supplemental Materials.

During data processing, we observed small timing discrepancies caused by the initial-
ization of discrete MATLAB data acquisitions and small variances in the sampling rates
of the IMU and MATLAB systems. Although extremely small, these discrepancies could
accumulate over the course of the ~60 min data collection, leading to timing differences
between the first and last synch events of a data collection (on the order of 10 s of ms).
Given this study’s focus on event timing, a conservative approach was used, and only
trials that contained a synch event were analyzed (642 of 4440 trials). All other trials were
discarded to ensure millisecond-level accuracy was maintained.

2.5. Analysis

To quantify how well each method agreed with ground truth gait events (IC and
TC) measured by the force plate, error was quantified for each of the 642 trials with each
method. The error was calculated by subtracting method-estimated gait-event timings
from force plate gait-event timings. To account for the non-independence of the data
(642 trials from 74 participants) and ensure proper estimation of variance, IC and TC errors
were entered into two separate linear mixed-effects models in R (v4.2.2; R Foundation for
Statistical Computing, Indianapolis, IN, USA) as described in Carstensen et al.’s approach
to linked replicates (Equation (2)) [58]:

ymethod,participant,trial = amethod + bparticipant + cparticipant,trial + dmethod,participant + emethod,participant,trial (2)

This approach allowed us to quantify variance components and estimate: (1) method
biases (accuracy); (2) limits of agreement (LOA) within which 95% of future errors for a
given method are expected to fall; and (3) within-method standard deviations that quantify
method repeatability (precision) (see also [59–61]). Model assumptions of independence,
normality, and homoscedasticity were validated by plotting within-participant variances
against within-participant means, histograms of residuals, residuals for each level of
random effect, and residuals as a function of fitted value.

To evaluate if any potential explanatory variables affected method error, a second
set of linear mixed effects models was developed for each method. These models added
surface, speed, and foot strike angle as fixed effects. A threshold of p ≤ 0.05 was used to
evaluate whether a fixed effect explained a significant amount of a given method’s error.

Finally, to quantify the processing time required to execute each method, the same
computer (Intel Core i9-13900HX; Kingston Fury 64 GB DDR5 5600 MT/s; Gammix S70
Blade 7400 MB/s SSD) was used to process two 30 min, 1.8 million frame (1000 Hz), steady
state running trials obtained from a separate study (but using the same IMUs, placement,
and pre-processing) [62]. Each trial was processed 100 times per method, and processing
times were recorded.

3. Results
3.1. Failure to Identify Gait Events or Step Side

Some methods were unable to recognize any gait events within the 5 m of running that
was segmented for analysis in each trial: Aminian/O’Donovan_modified missed 18.8%
of trials, Greene/McGrath_modified missed 0.9%, Whelan missed 1.6%, Norris missed
7.3%, Schmidt missed 63.9%, Aubol missed 6.4%, Fadillioglu missed 1.1%, and Bach missed
27.5% (Figure 4). All other methods identified gait events in every trial.

Methods using wearables placed on the shank only provided information ipsilateral
to placement, and thus the side contacting the ground during stance was always known. In
contrast, methods using wearables placed on the sacrum/low-back provided information
on bilateral gait events. To account for this, three of six sacrum/low-back placed methods
could identify the side (i.e., right or left) contacting the ground. Of these, the Lee method
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was the most accurate, correctly identifying sides 81.9% of the time. The Benson and
Auvinet methods correctly identified sides 54.6 and 75.0% of the time (Figure 5).
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Figure 4. The white horizontal line represents the mean percentage of trials per participant without
any gait events recognized; dark blue represents ±95% confidence interval (±1.96 SEM) around
the mean; and light blue represents ±1 SD around the mean. Gray dots represent participants
outside ±1 SD. No bars indicate that gait events were identified in every trial for every participant.
Methods on the white background are for wearables on the shank. The methods on the gray
background are for wearables on the sacrum/low back.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 4. The white horizontal line represents the mean percentage of trials per participant without 

any gait events recognized; dark blue represents ±95% confidence interval (±1.96 SEM) around the 

mean; and light blue represents ±1 SD around the mean. Gray dots represent participants outside 

±1 SD. No bars indicate that gait events were identified in every trial for every participant. Methods 

on the white background are for wearables on the shank. The methods on the gray background are 

for wearables on the sacrum/low back. 

Methods using wearables placed on the shank only provided information ipsilateral 

to placement, and thus the side contacting the ground during stance was always known. 

In contrast, methods using wearables placed on the sacrum/low-back provided infor-

mation on bilateral gait events. To account for this, three of six sacrum/low-back placed 

methods could identify the side (i.e., right or left) contacting the ground. Of these, the Lee 

method was the most accurate, correctly identifying sides 81.9% of the time. The Benson 

and Auvinet methods correctly identified sides 54.6 and 75.0% of the time (Figure 5). 

 

Figure 5. The white horizontal line represents the mean percentage of trials per participant where 

the side was correctly identified; dark blue represents ±95% confidence interval (±1.96 SEM) around 

the mean; and light blue represents ±1 SD around the mean. Gray dots represent participants outside 

±1 SD. 

3.2. Initial Contact 

Using Carstensen’s method for linked replicates [58], biases, within-method SDs, and 

95% LOAs (1.96 SD of errors) for the IC estimation of each method were modeled (Figure 

6). Results revealed high biases and/or LOAs for several methods; thus, a second figure 

Figure 5. The white horizontal line represents the mean percentage of trials per participant where the
side was correctly identified; dark blue represents ±95% confidence interval (±1.96 SEM) around
the mean; and light blue represents ±1 SD around the mean. Gray dots represent participants
outside ±1 SD.

3.2. Initial Contact

Using Carstensen’s method for linked replicates [58], biases, within-method SDs, and
95% LOAs (1.96 SD of errors) for the IC estimation of each method were modeled (Figure 6).
Results revealed high biases and/or LOAs for several methods; thus, a second figure
displaying only the best-performing methods (LOAs within ±200 ms) is also provided
(Figure 7). The best-performing methods for shank-mounted wearables were Mizrahi
(+18.6 ms bias, −112.2 to +149.3 ms LOA), Mercer (−31.7 ms bias, −166.3 to +102.9 ms
LOA), Purcell (+17.4 ms bias, −96.8 to +131.6 ms LOA), and Fadillioglu (−24.3 ms bias,
−137.0 to +88.4 ms LOA). The best-performing methods for sacrum/low-back mounted
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wearables were Auvinet (−30.4 ms bias, −149.2 to +88.5 ms LOA), Lee (+29.1 ms bias,
−92.9 to +151.0 ms LOA), Wixted (+29.6 ms bias,−92.5 to +151.7 ms LOA), Benson (+19.2 ms bias,
−129.6 to +168.1 ms LOA), and Reenalda (+29.0 ms bias, −83.3 to +141.3 ms LOA).
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Figure 6. Means (white bar), ±1 within-method SD (dark blue), and ±95% LOA (1.96 SD of errors;
light blue) for the IC estimation of each method. Gray dots represent trials falling outside the 95%
LOA. A value of 0 indicates perfect agreement with the ground truth. Positive values indicate the
IC was estimated later than the ground truth (after the force plate IC). Negative values indicate the
IC was estimated earlier than the ground truth (before the force plate IC). Methods with a white
background are for wearables on the shank. The methods on the gray background are for wearables
on the sacrum/low back.

We performed a second set of linear mixed effects models on each method to examine
the role of potential explanatory variables. These models revealed that none of the methods’
IC estimations were significantly affected by surface (all ps > 0.05). In contrast, speed
explained a significant amount (p ≤ 0.05) of the error in 3 of 15 shank-placed methods
and 5 of 6 sacrum-/low-back-placed methods, and foot strike angle explained a significant
amount of the error in 1 of 15 shank- and 0 of 6 sacrum-/low-back-placed methods. Table 2
displays the coefficients for each potential explanatory variable and whether the explana-
tory variable significantly explained the method error. To better illustrate these effects,
model-predicted mean absolute errors were also plotted as a function of speed and foot
strike angle (Figure 8 for the best-performing methods; Supplemental Materials for others).
“Hotter” yellow colors in these plots correspond to higher predicted mean absolute error
(MAE), while “cooler” blue colors correspond to lower predicted MAE. Predicted MAEs
are plotted as a function of the speeds (x-axis) and foot strike angles (y-axis) observed in
this study. For example, the vertical bands of cooler colors in the Wixted, Benson, and Lee
plots suggest that these methods work well at a certain range of speeds but have higher
predicted MAE outside of those ranges, while the hotter colors in the corners of the Mercer
and Reenalda graphs suggest a combination of slower speeds and high (Mercer) or low
(Reenalda) foot strike angles increases predicted MAE. In contrast, the relatively consistent
colors in the Mizrahi, Purcell, Fadillioglu, and Auvinet graphs suggest the predicted MAE
is stable across the range of foot strike angles and speeds modeled here.
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Figure 7. Only methods with LOAs within ±200 ms are plotted. Means (white bar), ±1 within-
method SD (dark blue), and ±95% LOA (1.96 SD of errors; light blue) for the IC estimation of each
method. Gray dots represent trials falling outside the 95% LOA. Outliers falling outside the ±200
ms range are plotted at ±200 ms. A value of 0 indicates perfect agreement with the ground truth.
Positive values indicate the IC was estimated later than the ground truth (after the force plate IC).
Negative values indicate the IC was estimated earlier than the ground truth (before the force plate
IC). Methods with a white background are for wearables on the shank. The methods on the gray
background are for wearables on the sacrum/low back.

Table 2. Effects of surface, running speed, and foot strike angle on initial contact (IC) and terminal
contact (TC) estimation across methods. Numbers represent coefficients for the intercept of surface
(added to model estimates for the floor condition but not the track condition) and the slopes of
running speed and foot strike angle. * Significant (p ≤ 0.05) effects are highlighted in blue.

Initial Contact (IC) Terminal Contact (TC)

Method Surface Speed Foot Strike Surface Speed Foot Strike
Mizrahi −5.02 0.71 −15.91 n/a
Mercer −5.07 2.59 −11.99 −0.07 34.17 * −47.56
Purcell 0.74 −0.14 19.66 2.46 4.00 * 4.02

Aminian/O’Donovan 2.81 −31.55 19.26 −15.10 11.29 −1.83
Aminian/O’Donovan

modified 11.40 −5.58 −0.12 −1.26 −5.95 * 10.76

Greene/McGrath 2.22 −5.53 23.35 1.12 1.18 −16.43
Greene/McGrath

modified −1.91 −2.70 9.89 3.79 0.69 −25.87

Sinclair −7.24 0.18 −44.17 −9.19 −15.65 43.08
Whelan −14.22 −13.89 * 74.18 * n/a
Norris −23.89 −36.41 148.44 n/a

Schmidt −11.17 209.61 * 49.38 −2.46 227.50 * 18.75
Aubol −26.90 −3.94 34.33 n/a

Fadillioglu 0.20 1.44 −2.13 1.27 −4.44 37.21
Bach 19.63 9.71 32.00 −7.44 −3.37 −44.60

Bach modified −1.07 36.60 * 68.71 1.75 54.45 * 75.07
Auvinet −3.08 0.01 0.13 0.15 6.86 * −19.55

Lee −1.03 −15.11 * 13.29 0.74 −12.46 * 4.05
Wixted −2.99 −13.39 * 10.53 −1.52 2.37 0.20

Bergamini −9.77 −19.31 * 12.63 −9.95 2.87 −34.54
Benson 0.11 −25.14 * −6.34 0.46 4.60 * −7.39

Reenalda −0.13 −5.93 * −9.39 n/a
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Figure 8. Mean absolute error in IC predicted by mixed effects models for each of the best-performing
methods (LOAs within ±200 ms), plotted as a function of speed and foot strike angle. “Cooler” blue
values represent lower predicted mean absolute errors, while “hotter” yellow values represent higher
predicted mean absolute errors.

3.3. Terminal Contact

Using Carstensen’s method for linked replicates [58], biases, within-method SDs,
and 95% LOAs for each method’s TC estimation were calculated (Figure 9). Results re-
vealed high biases and/or LOAs for several methods; thus, a second figure displaying
only the best-performing methods (LOAs within ±200 ms) is also provided (Figure 10).
The best-performing methods for shank-mounted wearables were Purcell (+3.5 ms bias,
−143.9 to +150.9 ms LOA) and Fadillioglu (+17.7 ms bias, −148.9 to +184.4 ms LOA).
The best-performing methods for sacrum/low-back mounted wearables were Auvinet
(−2.8 ms bias, −152.7 to +147.2 ms LOA), Lee (+24.3 ms bias, −139.4 to +187.9 ms



Sensors 2023, 23, 5022 12 of 20

LOA), Wixted (−43.8 ms bias, −192.7 to +105.1 ms LOA), and Benson (+26.6 ms bias,
−130.4 to +183.5 ms LOA).
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Figure 9. Means (white bar), ±1 within-method SD (dark blue), and ±95% LOA (1.96 SD of errors;
light blue) for the TC estimation of each method. Gray dots represent trials falling outside the 95%
LOA. A value of 0 indicates perfect agreement with the ground truth. Positive values indicate the
TC was estimated later than the ground truth (after the force plate TC). Negative values indicate the
TC was estimated earlier than the ground truth (before the force plate TC). Methods with a white
background are for wearables on the shank. The methods on the gray background are for wearables
on the sacrum/low back.
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Figure 10. Only methods with LOAs within ±200 ms are plotted. Means (white bar), ±1 within-
method SD (dark blue), and ±95% LOA (1.96 SD of errors; light blue) for the TC estimation of
each method. Gray dots represent trials falling outside the 95% LOA. Outliers falling outside the
±200 ms range are plotted at ±200 ms. A value of 0 indicates perfect agreement with the ground
truth. Positive values indicate the TC was estimated later than the ground truth (after the force plate
TC). Negative values indicate the TC was estimated earlier than the ground truth (before the force
plate TC). Methods with a white background are for wearables on the shank. The methods on the
gray background are for wearables on the sacrum/low back.
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We performed a second set of linear mixed effects models on each method to examine
the role of potential explanatory variables. These models revealed that none of the methods’
TC estimations were significantly affected by surface or foot strike angle (all ps > 0.05),
while speed explained a significant amount (p ≤ 0.05) of error in 5 of 11 shank-placed
methods and 3 of 5 sacrum-/low-back-placed methods. Table 2 displays the coefficients
for each potential explanatory variable and whether the explanatory variable significantly
explained the method error. To better illustrate these effects, model-predicted MAEs were
plotted as a function of speed and foot strike angle (Figure 11 for the best-performing
methods; Supplemental Materials for others). These plots suggest that predicted MAEs for
the Purcell, Auvinet, and Wixted methods are relatively stable across speeds and foot strike
angles. In contrast, the Lee method has an increase in predicted MAE at lower speeds, the
Benson method has an increase in predicted MAE at higher speeds and lower foot strike
angles, and the Fadillioglu method has an increase in predicted MAE at lower speeds and
higher foot strike angles.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 11. Mean absolute error in TC predicted by mixed effects models for each of the best-per-

forming methods (LOAs within ±200 ms). Plotted as a function of speed and foot strike angle. 

“Cooler” blue values represent lower predicted mean absolute errors, while “hotter” yellow values 

represent higher predicted mean absolute errors. 

3.4. Processing Time 

Finally, to quantify the time required to execute each method, two 30 min, 1.8 million-

frame, steady-state running trials were processed 100 times with each method. Processing 

times were recorded and plotted in Figure 12. Most methods were able to process data in 

<5 s, all methods in <20 s. 

Figure 11. Mean absolute error in TC predicted by mixed effects models for each of the best-
performing methods (LOAs within ±200 ms). Plotted as a function of speed and foot strike angle.
“Cooler” blue values represent lower predicted mean absolute errors, while “hotter” yellow values
represent higher predicted mean absolute errors.

3.4. Processing Time

Finally, to quantify the time required to execute each method, two 30 min, 1.8 million-
frame, steady-state running trials were processed 100 times with each method. Processing
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times were recorded and plotted in Figure 12. Most methods were able to process data in
<5 s, all methods in <20 s.
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Figure 12. Magnitude of bars represents mean time to process 30 min of steady state running data
sampled at 1000 Hz. Error bars represent ±1 SD about the mean.

4. Discussion

We identified 18 separate methods to estimate initial contact (IC) and terminal contact
(TC) gait events from running using a single wearable sensor on the shank or sacrum/low
back. We modified three of these original methods in an attempt to improve performance,
resulting in a total of 21 methods. For each method, we either adapted (4 of 18) or created
(14 of 18) code to automatically process data (available at https://github.com/DovinKiernan/
REID_IMU_Running_Event_ID published on 3 May 2023). We then used each automated
method to estimate gait events from 74 runners across two different surfaces (wood floor
and running track), three self-selected speeds (slowest, typical, and fastest), and foot strike
angles (ranging from forefoot to rearfoot strike patterns). To quantify error, these estimated
gait events were compared to ground truth force plate events.

Overall, we found errors to be higher than reported in the original studies (ex-
cept [42,44]). This is likely a function of several factors: First, in contrast to some studies,
we time synchronized our ground truth force plates with our IMUs with ms accuracy.
Second, to our knowledge, the current study represents the largest sample used to validate
and compare running gait event identification methods. Most studies used samples of
11 ± 13 participants (mean ± SD) to both develop and validate their method. Third, the
current study used a range of conditions, including different surfaces, speeds, and foot
strike angles. In contrast, the methods studied were developed and validated under a
narrow set of conditions (except [44]). Thus, errors reported for most studies are likely
a function of both developing and validating on the same small sample of participants
and narrow set of conditions. When adopting a gait event identification method, users
should consider the conditions and participants with which the method was developed
and validated and not assume that the method will work under other conditions or for
other participants.

For example, O’Donovan et al. [35] and McGrath et al. [29] adapted methods developed
for walking [45,46] without specifying any changes to address differences between walking
and running. These methods had high errors, often mislabeling gait events from pre-
/proceeding steps as the event of interest due to their large time windows. On the other
side of the spectrum, Schmidt et al. [38] developed their method specifically for sprinting.

https://github.com/DovinKiernan/REID_IMU_Running_Event_ID
https://github.com/DovinKiernan/REID_IMU_Running_Event_ID
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This likely explains the high error observed across the range of running speeds we used
here. As a final example, Bach et al. [43] trained an Echo State Network to estimate gait
events using data from a narrow set of conditions. To replicate their model, we used the full
running data set published with their original paper but still observed high errors when
estimating gait events from our data. This likely stems from the model being applied to
conditions on which it was not trained. It is possible that further training in these novel
conditions could improve results.

These observations should also be applied to the current study, given that we only
quantified the error for over-ground running on two level surfaces. It should not be as-
sumed that our results would hold for incline/decline running, treadmill running, or
running on other surfaces (e.g., sand, grass/turf, asphalt, concrete). That said, none of
the evaluated methods had significantly different errors across the two surfaces we used,
suggesting these methods could be used on similar surfaces (e.g., concrete, asphalt). Finally,
all methods studied here have been developed and validated on a relatively homogenous
group of runners. Thus, if studying participants drawn from different populations, our
results may not be representative. For example, individuals with lower extremity ampu-
tation could have higher frequency components in their data that could disrupt pattern
recognition [63], or data from individuals with more subcutaneous body fat could contain
more noise from soft tissue artifacts [64,65].

With those caveats in mind, for IC estimation with a shank-placed wearable, we
recommend either the Purcell [28] or Fadillioglu [40] methods. Both methods were able
to identify gait events in almost all trials (100% and 98.9%) and stood out with low biases
(+17.4 and −24.3 ms) and LOAs (−96.8 to +131.6 and −137.0 to +88.4 ms). Further, neither
method was significantly affected by running surface, speed, or foot strike angle, suggesting
that both methods could be applied broadly across conditions.

For IC estimation with a sacrum or low-back placed wearable, we recommend the
Auvinet [32] or Reenalda [42] methods. Both methods were able to identify gait events
in 100% of trials and stood out with low biases (−30.4 and +29.0 ms) and LOAs (−149.2
to +88.5 and −83.3 to +141.3 ms). The Auvinet method was not significantly affected
by running surface, speed, or foot strike angle. In contrast, the Reenalda method was
significantly affected by running speed, with errors increasing at low running speeds as
well as a trend toward errors increasing at lower foot strike angles. Thus, the Reenalda
method may be preferable when speeds are known to exceed ~4 m/s while the Auvinet
method may be preferable for speeds below ~4 m/s or when conditions are unknown.
The Lee, Wixted, and Benson methods [33,34,44] also present viable options when speed is
known to fall within certain ranges (see Figure 7).

For TC estimation with a shank-placed wearable, we recommend the Purcell method [28].
This method identified gait events in 100% of trials with low bias (+3.5 ms) and LOAs
(−143.9 to +150.9 ms). Error was not significantly affected by surface or foot strike angle but
was significantly affected by speed. The slope for speed was, however, quite low, indicating
that error only changed a small amount across speeds (4.00 ms per 1 m/s).

For TC estimation with a sacrum-/low-back-placed wearable, we recommend the
Auvinet method [32]. This method identified gait events in 100% of trials with low bias
(−2.8 ms) and LOAs (−152.7 to +147.2 ms). The error for TC estimation with the Auvinet
method was not significantly affected by surface or foot strike angle but was significantly
affected by speed. At speeds below ~5 m/s, the Lee method [33] could also be used.
Although the Lee method’s bias (+24.3 ms) and LOAs (−139.4 to 187.9 ms) were higher
overall, this appears to be driven largely by the significant effect of speed, with lower
speeds causing larger errors.

To identify the side with a sacrum-/low-back-placed wearable, we recommend the
Lee method [33], which correctly identified the side in 81.9% of gait events. Given these
high success rates and the predictable left-right-left-right pattern of running, the probability
of misidentifying gait events should decrease exponentially as a function of the number
of steps, quickly reaching negligible values. To illustrate, based on the number of steps
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observed in the 5 m trials used here, we observed a probability of misidentification of 0.18.
With another 5 m of steps, we would again have a 0.18 probability of misidentification.
Therefore, we can roughly estimate that the probability of misidentifying all steps in 10 m
should be 0.182 or 0.03. Over 1 km, this would fall to roughly 0.18(1000 m/5 m) or 1 × 10−149.
Thus, over longer data collections, the chances of misidentifying the side a gait event is
occurring on become extremely small.

As seen in the recommendations above, users should balance the reported accuracy of
a method against the potential negative effects that running speed and foot strike angle
could have on it. One approach to address these concerns and improve accuracy may
be to include speed and foot strike angle as model inputs. For example, Patoz et al. [66]
and Alcantara et al. [67] provided their contact time estimation models with running
speed data and reported impressively low error. Unfortunately, these methods estimate
the mean contact times across a data set rather than the timing of individual gait events.
Despite this limitation, these methods illustrate the potential benefits of including speed
as a model input. Speed is relatively easy to calculate from GPS, and several methods
have already been proposed to estimate speed and foot strike angle from accelerations
or angular velocities [68–70]. Thus, the inclusion of speed, foot strike angle, and other
potential explanatory variables may be a relatively easy way to improve the performance
of future methods and should be a target of additional research.

With the continued development of biomechanics data collection and processing
methods that can be used both in the lab and in the field, biomechanics will become
increasingly accessible. Although increasing accessibility was a key goal of this study
(through minimizing system complexity and data processing supervision), this increase in
accessibility also brings challenges. For example, when deploying wearables in the field,
they may be placed by individuals with little training. This could lead to misalignment and
degrade accuracy. To mitigate this issue, we used a segment coordinate system (SCS). In
contrast, most methods studied here (16 of 18) originally used wearable coordinate systems
(WCSs) defined by the axes of the sensors within the wearable. Using a WCS is less reliable
due to (1) differences in wearable manufacturing (sensor axes may not perfectly align with
their housing or each other), (2) participant geometry (e.g., tibial or sacral morphology
may differ across participants), and/or (3) wearable placement (e.g., wearable may be
placed upside down or at an ‘improper’ angle). Thus, we recommend (1) calibrating the
wearable to ensure the output is accurately expressed in a consistent coordinate system [49]
and (2) creating a SCS based off (a) the gravity vector during quiet standing and (b) the
first Principal Component calculated from calibration motions such as rotation about the
medial-lateral axis (e.g., leg swings or inverted pendulum about the ankles) [56,57], and/or
(c) the gravity vector while lying prone/supine. Using this approach, even if a wearable is
‘misaligned,’ the SCS will be unaffected. These or similar methods will help mitigate the
potential pitfalls of deploying wearables, particularly when deployed in the field. Although
we believe using a SCS is best practice, for the sake of comparison, we also executed our
analyses on data expressed in both a WCS and a pseudo-global “tilt-corrected” coordinate
system (see Supplemental Material). In line with a priori expectations, these analyses
show that—even though the same trained experimenter placed every wearable in this
study—MAEs for the recommended methods were, on average, 59.4 ms higher with a WCS
than a SCS.

5. Conclusions

For wearables on the shank, we recommend the Purcell [28] or Fadillioglu [40] method
to identify IC and the Purcell method to identify TC. For wearables on the sacrum/low-
back, we recommend the Auvinet [32] or Reenalda [42] method to identify IC, the Auvinet
method to identify TC, and the Lee [33] method to identify the side in contact with the
ground. These methods are accurate and precise across the speeds and foot strike angles
observed in this study (roughly 2.5–7.5 m/s and −0.25–0.75 rad) and across level track and
hardwood surfaces. We also recommend that input data be expressed in a SCS rather than a
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WCS. Future work should validate these methods across surfaces with different durometers
and inclines/declines. Future work could also improve the accuracy and precision of IC and
TC estimation by combining techniques from the methods examined here or by developing
new methods. Novel methods may benefit from including additional information (e.g.,
running speed or foot strike angle). As seen by the 18 methods examined here, the field is
saturated with options for running gait event identification. This saturation is problematic
given that direct comparison between methods has been rare [31,71], making it difficult
for users to identify the best method for their application. Thus, future work should
use the methods recommended here as a benchmark for comparison when developing
new methods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23115022/s1, REID_IMU_Running_Event_ID [72–88].
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